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[1] We present an analysis framework and illustrate its potential to constrain terrestrial
carbon fluxes at the regional scale using observations of CO2 and CO over North America
acquired during the CO2 Budget and Rectification Airborne (COBRA) study in 2000.
The COBRA data set, presented in detail in a companion paper [Gerbig et al., 2003]
provides dense spatial coverage and extensive profiling in the lower atmosphere, revealing
strong CO2 signatures of land surface fluxes in the active and relic mixed layers of the
atmosphere. We introduce a ‘‘receptor-oriented’’ analysis framework designed to
quantitatively interpret the atmospheric signatures of surface processes by linking
concentrations at measurement locations (receptors) to surface fluxes in upwind regions.
The framework incorporates three main components: (1) the Stochastic Time-Inverted
Lagrangian Transport (STILT) model, driven with assimilated winds and running
backward in time to map out the source-receptor relationship (footprint) at high temporal
and spatial resolution; (2) an observation-based lateral boundary condition for CO2,
resolving vertical and meridional gradients; and (3) a simple parameterization for
biosphere-atmosphere fluxes that uses eddy covariance observations from the AmeriFlux
network as prior estimates for fluxes. This framework allows quantitative comparison
between the top-down constraint on fluxes from airborne observations of CO2 with the
bottom-up constraint of eddy flux measurements in a Bayesian synthesis inversion. The
model is used to investigate the observed representation error (mismatch between point
measurements and grid-cell-averaged values in models), evaluated in the companion
paper, showing that unresolved spatial variability of surface fluxes gives rise to most of the
representation error over the continent. Thus the representation error reflects the effect
of aggregation errors. Discrepancies between simulated and observed CO2 distributions
are assessed to indicate where improvements are needed, including improved empirical
representation of biosphere-atmosphere exchange process and better simulation of
convective processes in atmospheric transport models. INDEX TERMS: 0315 Atmospheric

Composition and Structure: Biosphere/atmosphere interactions; 0322 Atmospheric Composition and Structure:
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1. Introduction

[2] Continental CO2 fluxes exhibit strong spatial and
temporal variations: biospheric fluxes reverse sign between

night (respiration) and day (respiration + photosynthetic
uptake), and vary across the landscape with vegetation type
and conditions. The atmosphere transports and modifies the
signals from the surface fluxes, giving rise to a CO2
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distribution which varies significantly on relatively small
spatial and temporal scales. This variance leads to poten-
tially large representation errors, uncertainties due to the
comparison of point observations with grid-cell averages
computed by models. The proximity of measurements to
strong surface fluxes requires an analysis framework that
resolves sources and sinks in the near field of the observa-
tions [Lin et al., 2003], even if large-scale fluxes are the
objective; otherwise the flux estimates may be invalid
because of aggregation errors, the accounted extra weight
of fluxes in the near field [Kaminski et al., 2001]. The
covariance between atmospheric mixing and fluxes on
diurnal timescales (‘‘diurnal rectifier effect’’ [Denning et
al., 1996]) needs to be accurately represented.
[3] Gerbig et al. [2003] investigated observations

collected during the CO2 Budget and Rectification Airborne
(COBRA) study to characterize the spatial variability of
atmospheric CO2. This companion paper found that, in order
to effectively utilize the signals from fluxes over the conti-
nent, a modeling framework with high spatial resolution
(<100 km) was required, with full utilization of atmospheric
concentration variations needing resolution of �30 km.
[4] The high-frequency signals of CO2 over the continent,

such as caused by diurnally changing fluxes or by variations
in flow patterns together with spatial gradients in upstream
fluxes, represent a rich source of information on source/sink
distributions, when inversion techniques involving a trans-
port model are applied [Law et al., 2002]. A recent analysis
by Wang [2003] applied Bayesian synthesis inversion to
hourly CO2 measurements made at Cape Grim, off the coast
of the Australian Continent, to infer biospheric exchange
fluxes. A significant reduction in uncertainty of fluxes was
found for regions in southern Australia. Since the measure-
ment location was �200 km from the continent, the data at
Cape Grim are not directly affected by the strong spatial
variability of upstream fluxes in the near-field, but only a
limited portion of the continent could be assessed.
[5] This paper introduces an analysis framework designed

to start addressing the problems encountered when using
data collected over the continent, including representation
and aggregation errors and the diurnal rectifier. The frame-
work is intended to be a first step toward the ‘‘model-data
fusion’’ envisioned in the North American Carbon Program
(NACP) [Wofsy and Harriss, 2002] to assimilate the greatly
expanded data set of CO2 observations over the continent
expected over the next few years.
[6] Figure 1 presents a schematic representation of the

framework. It consists of three main components: a recep-
tor-oriented transport model using analyzed meteorological
field, a lateral tracer boundary condition using remote
marine measurements and a Green’s function for vertical
propagation, and a simple biospheric flux model using
AmeriFlux tower data [Baldocchi et al., 2001] to provide
high spatial and temporal resolution. The framework takes
input from multiple data sources and provides as output
optimized biospheric parameters and, in conjunction with
meteorological fields, associated regional fluxes. We pres-
ent a first application of the framework to COBRA CO2

measurements.
[7] The high spatial and temporal resolution provides the

potential to reduce representation and aggregation errors,
and the explicit simulation of diurnally varying biospheric

fluxes and turbulent mixing enables the diurnal rectifier to
be represented. The application of the data analysis frame-
work to the observations is done in several steps (Figure 1):
(1) Influence functions are calculated for the measurement
locations at high spatial and temporal resolution using the
receptor-oriented Stochastic Time-Inverted Lagrangian
Transport (STILT) model [Lin et al., 2003]; these influence
functions are equivalent to the adjoint of the transport model,
in that they represent sensitivities of atmospheric concen-
trations to upstream surface fluxes or lateral boundary
values. (2) The influence functions are coupled to emission
inventories for fossil fuels and to background fields for CO2

and CO, to derive the combustion CO2 signal (involving
measured CO enhancements above the background as a
combustion tracer and inventory based CO2/CO emission
ratios) as well as the advected background CO2. (3) The
measurement-based CO2 vegetation signal is calculated as
the difference between measured CO2 and the sum of
advected CO2 and combustion CO2 signal. (4) Biospheric
fluxes are modeled as responses to temperature and radiation
from assimilated meteorological data; the responses to these
meteorological drivers are keyed to data from eddy covari-
ance flux towers in the AmeriFlux network [Baldocchi et al.,
2001] (5) Modeled CO2 vegetation signals are derived by
coupling the influence functions to the biosphere model.
(6) Parameters of the biospheric flux model for key vegeta-
tion types are optimized in a Bayesian synthesis inversion to
obtain a match between modeled and measured CO2 vege-
tation signals. (7) As an illustration of the potential of the
framework, estimates of regional fluxes for �1 week are
derived by driving the optimized biosphere flux model with
observed meteorological conditions.
[8] This paper is organized as follows: We start in

section 2 with a description of the major elements of the data
analysis framework designed to cope with, and learn from,
the observed variability of atmospheric concentrations, in-
cluding the receptor-oriented transport model, parameter-
izations for biosphere and fossil fuel fluxes, and a statistical
model used to create the lateral boundary condition for CO2

andCO from ground-based and airbornemeasurements to the
west of the North American continent. Investigation of
sensitivities of the transport model to key parameters is
presented in section 3. The results of applying the receptor-
oriented framework to COBRA data are discussed in
section 4, with a presentation of the surface influence
functions (‘‘footprints’’) for COBRA (section 4.1), the der-
ivation of the measurement-based CO2 vegetation signal
(section 4.2), a Bayesian synthesis inversion to derive
scaling factors for the biosphere model (section 4.3), and
an investigation of the factors regulating representation
error [Gerbig et al., 2003] using the receptor-oriented
framework (section 4.3). In section 5 these results are
discussed, with emphasis on discrepancies between the
observed and modeled vegetation signals, and how these
discrepancies relate to specific shortcomings of currently
available meteorological data and other elements of the
framework.

2. Description of the Analysis Framework

[9] An analysis framework is required that can adequately
resolve the spatial variability of CO2 as discussed in the
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companion paper [Gerbig et al., 2003], with minimal
representation error, and extract the signal of terrestrial
biospheric fluxes present in the aircraft observations (see
Figure 3 in the companion paper). Further requirements of
the analysis framework (Figure 1) are: (1) high temporal
resolution to resolve diurnal cycles in terrestrial fluxes
and boundary-layer dynamics, as well as taking into
account synoptic events that introduce variations in atmo-
spheric CO2; (2) coupling to a boundary condition that
connects tracer mixing ratios over the continent with
global distributions, crucial for long-lived tracers like
CO2; (3) the ability to incorporate surface fluxes from
the biosphere and fossil fuel combustion at high temporal
and spatial resolution, providing the potential to minimize
aggregation errors.
[10] The following sections describe the different ele-

ments of the analysis framework (Figure 1). We first
introduce the receptor-oriented transport model (section
2.1) used to derive influence functions (footprints), which
link the observations with upstream boundary conditions
and surface fluxes. We then describe the lateral boundary
conditions for CO2 and CO mixing ratios (section 2.2), fossil
fuel fluxes (section 2.3), and the biospheric flux model
(section 2.4).

2.1. Receptor-Oriented Modeling Framework

[11] We developed a receptor-oriented atmospheric
modeling framework (in the following referred to as
ROAM) that quantitatively relates local measurements to
the flux distribution upwind at high spatial and temporal
resolution.
2.1.1. Theory
[12] The ROAM problem may be stated as follows: given

a tracer concentration C(xr, tr) at location xrmeasured at time
tr, what is the influence of a given surface flux element
upstream? We introduce the influence functions I(xr, tr j x, t),
which quantitatively link surface sources or sinks S(x, t), for
a conserved tracer emitted at location x and at time t, to the

tracer concentration at a receptor [Holzer and Hall, 2000;
Lin et al., 2003]:

C xr; trð Þ ¼
Ztr
t0

dt

Z
V

d3xIðxr; trjx; tÞSðx; tÞ

þ
Z
V

d3xIðxr; trjx; t0ÞCðx; t0Þ ð1Þ

[13] The first term on the RHS represents changes in the
concentration at the receptor due to surface fluxes in the
domain V between initialization time t0 and tr. Influence I
has units of inverse volume (a density) and, since we use
mixing ratios for C (ppm), S has units of ppm/s. The second
term is the contribution from advection of the initial tracer
field C(x, t0). Surface fluxes in equation 1 can be repre-
sented as interior (volume) sources or sinks [Holzer and
Hall, 2000], placed between surface and a column height h,
chosen to be smaller than the mixed-layer height zi:

Sðx; tÞ ¼
Fðx; y; tÞ � mair

h � rðx; y; tÞ for z � h

0 for z > h

8><>: ð2Þ

[14] Here F is the surface flux in mmol/m2/s, �r is column-
averaged density of air, and mair is the molar mass of air. To
implement surface fluxes at finite temporal (�t) and spatial
resolutions (�x, �y), we integrate the first term of the RHS
of equation (1) over the discrete temporal and spatial
intervals:

�Ci;j;kðxr; trÞ ¼ Fðxj; yk ; tiÞ
mair

h � rðxj; yk ; tiÞ

�

�
Ztiþ�t

ti

dt

Zxjþ�x

xj

dx

Zykþ�y

yk

dy

Zh
0

dzIðxr; trjx; tÞ

375 ð3Þ

Figure 1. Schematic diagram of the data-analysis framework.
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[15] �Ci,j,k(xr, tr) is the change in tracer amount due to
fluxes F(xj, yk, ti) emitted from a surface grid element j, k,
and in the time interval between ti and ti + �t. The column-
averaged atmospheric mass density is assumed to be con-
stant over the grid element. The term in brackets defines
source-receptor elements that link surface fluxes to concen-
tration changes at the receptor, denoted as the ‘‘footprint
element’’ f (xr, trj xj, yk, ti). We refer to the spatial distribu-
tion of footprint elements for a given time interval as the
‘‘footprint’’.
2.1.2. STILT Model
[16] We extract footprint information from assimilated

meteorological data using the newly developed Stochastic
Time-Inverted Lagrangian Transport (STILT) model [Lin et
al., 2003]. STILT simulates transport backward in time by
an ensemble of representative particles released at a recep-
tor. The particles represent air parcels of equal mass, trans-
ported by mean winds and subgrid turbulent winds
calculated from surface sensible heat and momentum fluxes,
extracted from the assimilated meteorological fields. The
local density of these particles is directly related to the
influence density. Given Ntot particles released from a
receptor at xr at time tr, giving rise to particle density at
location x and time t, r(xr, trj x, t), the influence I is given
by I(xr, trj x, t) = r (xr, trj x, t)/Ntot. If we integrate I over a
time interval �t and volume element above surface grid cell
( j, k), we find:

Ztiþ�t

ti

dt

Zxjþ�x

xj

dx

Zykþ�y

yk

dy

Zh
0

dzIðxr; trjx; tÞ ¼
1

Ntot

XNtot

p¼1

�tp;i;j;k ð4Þ

[17] The RHS is the fraction of particles found in the
volume h��x��y, and �tp,i,k,j is the time which each
individual trajectory p spends in this volume above cell
j, k, during the time interval �t. STILT employs operator
splitting between horizontal advection (long time step, �t),
and vertical turbulence (short time step) (for details, see Lin
et al. [2003]), hence the times �tp,i,k,j are multiples of the
fast timestep. The footprint elements f (xr, trj xj, yk, ti) in
equation (3) are therefore given by

f ðxr; trjxj; yk ; tiÞ ¼
mair

h � rðxj; yk ; tiÞ
1

Ntot

XNtot

p¼1

�tp;i;j;k ð5Þ

and the tracer signal due to upstream surface fluxes F
(Csurface) is obtained by summing equation (3) over all
backward timesteps (i) and surface grid elements ( j, k):

Csurfaceðxr; trÞ ¼
X
i; j; k

�Ci;j;kðxr; trÞ

¼
X
i; j; k

f ðxr; trjxj; yk ; tiÞ � Fðxj; yk ; tiÞ

¼
X
i; j; k

mair

h � rðxj; yk ; tiÞ
� 1

Ntot

XNtot

p¼1

�tp; i; j; k

 !
� Fðxj; yk ; tiÞ ð6Þ

[18] The footprint is similar to the adjoint of a Eulerian
transport model [Errico, 1997]: each footprint element is

equivalent to the sensitivity of the mixing ratio at a given
receptor location with respect to a change in boundary
(surface) flux. The approach of using a Lagrangian particle
dispersion model to derive footprint information has multi-
ple advantages: (1) Interpolation of winds down to the exact
location of a measurement enables footprints to be derived
at much higher spatial resolution than the driving meteoro-
logical data. This is important for the near field, close to the
receptor, where influence from heterogeneous surface fluxes
is strongest and footprint areas are small, providing the
potential to minimize aggregation error. (2) The represen-
tation of influence with particle distributions avoids repre-
sentation errors, since the volume represented by the
particles at the time of the measurement is infinitesimal.
However, a new type of ‘‘sampling’’ error is introduced
because of the finite number of particles used to represent
transport to an individual measurement location. (3) Mod-
eling turbulent transport as the ensemble of stochastically
transported particles more closely approximates the stochas-
tic nature of air parcels transported by turbulence than
typical parameterizations (e.g., diffusion coefficients).
(4) The fact that the model runs backward in time makes
it very efficient, such that only a single reversed-time model
run is required to extract the spatially and temporally
resolved footprint for emissions at all previous times.
[19] For analysis of the COBRA large-scale survey data

the STILT model was driven by assimilated meteorological
data from EDAS (ETA Data Assimilation System) [Rogers
et al., 1995] which covers the United States and parts of
Canada at 80 km horizontal resolution, 250 m vertical
resolution close to the surface, and updates at intervals of
3 hours, supplemented by GDAS (Global Data Assimilation
System) data covering the Northern Hemisphere at�180 km
resolution with 6-hourly updates. Each run was started
using EDAS winds, and meteorological grids were changed
as soon as one particle left the EDAS area. A receptor point
was defined along the flight track of the two large-scale
transects whenever the aircraft moved vertically by about
30 mbar or horizontally by 30 km. An ensemble of Ntot

particles was released at each receptor point, with the value
of Ntot determined from a sensitivity test (see section 3.1).
Particle positions were calculated using appropriate time
steps for advection (Courant number <0.25, between 3 and
120 minutes), and for turbulence (less than 10% of the
Lagrangian timescale for turbulence, 0.1 seconds to 10’s of
seconds). Calculations for a particle were carried out until it
crossed the western model boundary (145�W, see Figure 2)
or after a maximum duration of 15 days.
[20] The particle trajectories were mapped onto a surface

domain (‘‘ROAM domain’’) covering the continental United
States, Mexico and most of Canada (Figure 2). Most
particles exited the domain to the west in less than 15 days.
Calculation of footprints according to equation (5) and
coupling of transport to surface fluxes (equation (6)) were
carried out offline. Footprints were gridded at a maximum
resolution of 1/4�lon 	 1/6�lat, corresponding to roughly
20 	 20 km2. The horizontal size of the grid cells resolving
the footprint was dynamically adjusted as the size of the
footprint area increased, reducing computational time as
well as preventing undersampling of surface fluxes at times
when particles are distributed over extensive areas with
large gaps between neighboring particles. The grid cell
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resolution was degraded by keeping the number of grid
elements representing the footprint between 18 and 36 as the
footprint area increased. All surface flux grids (sections 2.3
and 2.4) were accordingly regridded before coupling to the
footprints.
2.1.3. Convective Cloud Transport
[21] Vertical transport due to deep and shallow convec-

tion plays an important role in exchanging air between
the mixed layer and the free troposphere. Unfortunately,
archived meteorological fields currently lack subgrid con-
vective fluxes from the original data assimilation model.
The amount of convective transport on unresolved scales
(below the EDAS 80 km resolution here) is likely to
regulate the time texch to replace the column of mixed-layer
air by air from the mid troposphere. If convective transport
is neglected, texch is overestimated, causing an excessive
build up of surface emissions in the lower atmosphere of
the model.
[22] We developed a simple parameterization of convec-

tive cloud transport to give an upper estimate of the effect of
subgrid-scale vertical redistribution and provide a lower
limit for texch. This estimate would then be compared
with estimates with no convective cloud transport in
order to bound the effects due to subgrid-scale vertical
redistribution.
[23] The convective cloud transport scheme randomly

assigns a vertical position between the surface and the limit
of convection altitude (zLOC) to each particle with a vertical
position below zLOC. The random redistribution is weighted
by density and takes place whenever a new update of
meteorological data is read (every 3 hours for EDAS) and
whenever zLOC is higher than zi (mixed-layer height). zLOC
is taken to be the uppermost level at which the cloud air
parcel is buoyant, i.e., the highest altitude where the parcel’s
virtual temperature exceeds that of the surrounding air. The
virtual temperature profile in the cloud was calculated by

lifting a cloud parcel starting at the lowest model layer,
lifted dry adiabatically to the lifting condensation level
(LCL), and then moist adiabatically to the profile top. The
presence of liquid water was neglected. We assumed that the
virtual temperature from the assimilated field could be used
as proxy for virtual temperature in the cloud-free environ-
ment at the levels at which cloud and non-cloud virtual
temperatures are equal (i.e., zLOC).
[24] The random redistribution scheme assumes that

convective fluxes (both updrafts and downdrafts) are large
enough to leave a perfectly well mixed column behind after
each convective event, and that the convective events take
place every 3 hours in grid cells with at least some
convective available potential energy (CAPE). This simple
approach represents an upper bound for the vertical redis-
tribution caused by convective cloud transport, since any
further vertical redistribution would not alter the particle
distribution. We also conducted simulations without particle
redistribution due to convection to provide a lower bound
for convective transport effects. Throughout the rest of the
paper, we will present model results from these two cases,
with upper-limit and zero convective transport (‘‘convec-
tive’’ and ‘‘non-convective’’ cases, respectively).

2.2. Determination of the Vegetation Signal

[25] Constraining regional/continental-scale exchanges of
carbon between the biosphere and the atmosphere requires
isolating the biospheric signal (�CO2,veg) from the other
influences on the observed CO2 (CO2,meas), i.e., combustion
signal (�CO2,comb) and advected background contributions
(CO2,bg; second term on the RHS of equation (1)):

�CO2;veg ¼ CO2;meas 
�CO2;comb 
 CO2;bg ð7Þ

[26] The advected background mixing ratio is given
directly by values calculated in ROAM, based on a lateral
boundary condition (see section 2.2.1). The combustion
signal �CO2,comb consists of emissions from fossil fuel
and biomass burning:

�CO2;comb ¼ �CO2;ff þ�CO2;bb ð8Þ

[27] Because of the large forest fires in the domain in
August 2000, we took an empirical approach to determining
�CO2,comb, using the observed tracers instead of directly
using CO2 fossil fuel inventories. Further, the combustion
signals resulted from emissions exhibiting a strong spatial
variation, with a few localized populated areas causing most
of the flux. This causes inaccuracies in transport or in spatial
representation of emissions (on a coarse horizontal grid) to
propagate into modeled combustion signals. By using direct
measurements of a tracer indicative of combustion processes
(CO), and using only relative emission ratios with less spatial
variability (due to co-emission of the tracer with CO2), we
were able to make a more accurate determination of the
combustion CO2 signal actually encountered in flight. The
excess of measured CO over background is an excellent
tracer for biomass burning as well as for anthropogenic
emissions [Potosnak et al., 1999].
[28] We formulated the CO2 combustion signal as a

product of these enhancements in CO with CO2:CO emis-

Figure 2. ROAM domain covering most of North
America. Open circles indicate the subdomain for which
EDAS winds where used. The starting locations for the
particles along the flight track are indicated by the thick
black lines. The gray scale indicates the number of particles
ending in a particular grid cell after 15 days, or leaving the
domain to the west.
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sion ratios from either fossil fuel emission inventories or
from measurements in biomass burning plumes:

�CO2;comb ¼ �COff �
�CO2;ff;inv

�COff;inv

 �
þ�CObb �

�CO2;bb

�CObb

 �
ð9Þ

Here �CO2,ff,inv and �COff,inv are signals at the measure-
ment location due to fossil fuel emissions inside the domain,
obtained by coupling the transport model to emission
inventories (see section 2.2.2).
[29] Excess CO is assumed to be due solely to combus-

tion-derived emissions within the model domain (�COcomb)
and arises from the sum of fossil fuel emission (�COff) and
biomass burning (�CObb). However, this approach requires
separation of biomass burning from fossil fuel sources; in
section 4.2 we make use of the circumstance that during
COBRA, biomass burning sources as well as their signa-
tures were spatially separated from fossil fuel fluxes and
associated plumes. �COcomb can be derived from the
observed CO and the background advected from the lateral
boundary, corrected for estimated chemical production/loss:

�COcomb ¼ �COff þ�CObb ¼ COmeas 
 CObg 
�COOH

� �
ð10Þ

2.2.1. Lateral Tracer Boundary Condition
[30] The lateral tracer boundary condition is necessary to

connect the regional tracer simulations to the global back-
ground tracer distribution and can be derived in two
principal ways: (a) extraction of distributions of CO and
CO2 from a global model incorporating sources and sinks
for these tracers (b) statistical characterization of the spatial
and temporal dependence of tracer variations derived from
available observations, keyed to contemporaneous measure-
ments from surface stations. We decided on the statistical
approach because of large discrepancies between global
models in simulating the CO2 distribution in the upper
troposphere [Law et al., 1996] and the fact that our study
concentrates on sources/sinks in a limited domain instead of
quantifying global-scale fluxes. The western boundary con-
dition was selected to be at 145 W that, because of the
dominant westerly flow over the United States, represents
the tracer concentrations of air parcels over the ocean before
being affected by terrestrial sources and sinks. Indeed, most
of the particles (about 66%) cross the 145 W after being
transported for �6 days backward from the receptor
(Figure 2), and most of the remainder (20%) reside inside
the ROAM domain. Only small numbers exit the domain to
the north (6%), east (4%), or south (4%). The initial value
(concentration of CO2 and CO) for each particle was then
calculated on the basis of the latitude, altitude, and time
when it crosses the western boundary or when the calcula-
tion was stopped after 15 days. This approach neglects
zonal gradients in the global tracer distribution for particles
not leaving the domain to the west. However, zonal gra-
dients are much smaller than meridional gradients; e.g., for
CO2 the difference between samples taken at Arctic stations
Alert (62 W) and at Barrow (156 W) are less than 1 ppm
during the month of August 2000; similarly the differences
between subtropical stations Kumukahi (155 W) and Ber-

muda (65 W) were less than 0.5 ppm. In contrast, merid-
ional differences between the Arctic and subtropics were
much larger, at �6 ppm.
[31] Time-dependent tracer fields for CO2 and CO as

functions of altitude and latitude over the Pacific were
generated by statistical analyses of ground-based and air-
borne measurements of CO and CO2 for the past 20 years
(see Table 2 in the companion paper [Gerbig et al., 2003]).
The analysis was done in two steps: first, mixing ratios at
the ground were represented by an analytical function of
time derived from measurements at selected ground sta-
tions, and then this function was propagated vertically to fit
the airborne measurements at higher altitudes.
[32] To retrieve continuous tracer time-series at the sur-

face, the measurements at three selected ground stations
(Cape Kumakahi (HI), Cold Bay (AK), and Barrow (AK))
for the 20 year period starting 1/1/1980 (in case of CO2) and
for the 10 year period starting 5/26/1992 (in case of CO)
were represented by its Fourier components, with a cut-off
of 5 days. The GLOBALVIEW data set [GLOBALVIEW-
CO2, 2002] (also available on Internet via anonymous FTP
to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW) was
used to fill gaps in the CO2 time series before calculating
the Fourier components. CO data were provided by P.
Novelli (personal communication, 2001) [Novelli et al.,
1998], and missing values were filled by linear interpola-
tion. The result of the Fourier analysis was an analytical
representation of the time-series for CO2 and CO, closely
resembling the measurements. These functions were
linearly interpolated in latitude to provide surface tracer
mixing ratios CO2,S (t, lat) and COS (t, lat) at all required
times t and latitudes lat.
[33] To represent upper air measurements, airborne and

station data collected above 300 m over the northern Pacific
(see Table 2 in the companion paper [Gerbig et al., 2003])
were merged. We also included CO data from Niwot Ridge,
Colorado and continental flask data collected at 8 km above
Carr, Colorado, for CO2 and CO. Aircraft data with poten-
tial influence from the stratosphere were excluded using a
filter based on O3, N2O, CO, potential temperature, H2O,
and altitude. Flask data were given a 10 fold higher weight
to account for the different nature of the data compared to
in-situ measurements; the 1-minute averages of the in-situ
data are assumed to be correlated within a timescale of
10 min (assumed average duration of an atmospheric layer
when sampled by an aircraft flying mostly horizontally).
[34] We used a Green’s function to fit the upper air

measurements for CO2 by vertically propagating the surface
tracer mixing ratios [cf. Andrews et al., 1999]. The Green’s
function makes use of the fact that CO2 is conserved in the
troposphere. In the companion paper we calculated the
monthly mean vertical profiles, based on a comparison
between the marine boundary layer reference from the
GLOBALVIEW data set and the extensive CO2 measure-
ments (Figure 4 in the companion paper [Gerbig et al.,
2003]). A simple Green’s function approach is expected to
capture much of the seasonality of vertical gradients. A
simpler statistical model was fitted for CO, which is not
conserved, involving an average CO gradient, an altitude-
dependent damping of high-frequency variability, and an
altitude-dependent lag time. Details of the fitting procedures
are given in Appendix A.
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[35] Meridional cross sections for CO2 and CO were
generated at a resolution of 0.5 km altitude by 2.5� latitude
and with a time resolution of one day, using the parameter-
izations derived in Appendix A (equations (A1) and (A4)).
To assess the error of these fields, cross sections were
calculated on a weekly basis for the 20 year period in the
case of CO2, and for the 10 year period in case of CO, and
merged with the observations. Residuals in CO2 (measure-
ments - statistical model) have a mean of 0.22 ppm, and a
standard deviation of 1.15 ppm (1s). The seasonal bias error
at elevated altitudes as found for the MBL-reference CO2

(Figure 3; compare Figure 6 in the companion paper) is
greatly reduced. Small biases of up to 1 ppm are observed in
August and September, with opposite signs. This is likely
due to the fact that seasonality in vertical transport is only
represented by a sinusoidal amplitude modulation in the
timescales (see Appendix A), whereas seasonal changes in
transport patterns are likely to occur more abruptly.
[36] Residuals for CO have a mean of 1.2 ppb, and a

standard deviation of 22 ppb. Most of the upper atmosphere
data used here were collected in campaigns, so it is possible
that there is sampling bias due to the specific objectives of

these campaigns. It is difficult, however, to assess how such
a bias would affect the analysis: Large variability for CO
could be caused by selective sampling of polluted layers; it
is also possible that mid-tropospheric air is more influenced
by proximate pollution than the marine boundary layer, thus
causing higher andmore variable CO. Indeed, using themean
CO2:CO ratio from fossil fuel emissions (0.03 ppm/ppb,
see section 4.2), the 22 ppb variability for CO residuals
corresponds to only 0.66 ppm of CO2, smaller than the
observed variability in residuals for CO2.
[37] The particle duration of 15 days is not negligible

compared to an average photochemical lifetime of 30 days
for CO in summer. Hence both photochemical loss due to
reaction with OH and production from CH4 oxidation were
implemented in a simplified way. Climatological values for
OH at the mean position (latitude and altitude) of a
particle ensemble were adopted from the GEOS-CHEM
OH fields (L. Jaegle, http://marzipan.atmos.washington.
edu/ion_script/GEOS/main_geosoh.html), and rate con-
stants for reactions of CO with OH and CH4 with OH
[Atkinson et al., 1997] were calculated using pressure and
temperature measured at the aircraft location. Oxidation of

Figure 3. Distribution of residuals between measured CO2 over the Pacific and Green’s-function-
derived CO2 (measurements - Green’s function) in ppm (x-axes) for different altitude intervals (y-axes)
and for each month. Boxes indicate the central 50%, horizontal lines the central 90%, and vertical bars the
median.
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CH4 was assumed to yield one CO per oxidized CH4. The
calculated net loss for CO was small (about 14 ppb on
average, with a maximum of 30 ppb), but omitting it would
give biased results. No chemical production or loss was
implemented for emission-derived CO (next paragraph),
since most of the signal resulted from emissions close to
the receptor location.
2.2.2. Fossil Fuel Inventories
[38] Emissions of CO2 from fossil fuel, cement produc-

tion and gas flaring were taken from the 1� 	 1� inventory
compiled by Marland et al. [1997], which is the 1995
version of the Andres et al. [1996] inventory. To account
for changes in emissions between 1995 and 2000, a 10%
increase was assumed by propagating the trend between
1992 and 1996 to 2000; because of the lower trends of
the years 1997–1999 of less than 1% [Environmental
Protection Agency (EPA), 2001] this increase is likely to
be high by a few percent.
[39] Surface fluxes of CO were calculated from a combi-

nation of the NAPAP 1990 inventory for the northeastern
United States (1/6�Lat. 	 1/4�Lon.) [EPA, 1993] and the
GEIA inventory (1�Lat. 	 1�Lon.) [Benkovitz et al., 1996].
Since the GEIA inventory does not include emissions for CO,
they were calculated from the low-level NOx emissions using
a linear regression between NAPAP CO emissions and the
GEIA low-levelNOx emissions in the overlapping area (CO=
12.5 	 NOx(GEIA,low); R2 = 0.84). Time-of-day and day-
of-week factors were applied to account for time-dependence
of emission fluxes [Ebel et al., 1997]. Since no information
on the diurnal and weekly variations are given by the CO2

fossil fuel emission inventories, the time factors for CO
emissions were also used for the CO2 emissions; however,
the amplitude of these variations was reduced by a factor of
2.5 in rough agreement with diurnal variations of anthropo-
genic CO2 emissions over Japan [Kondo et al., 2001].

2.3. Biosphere Flux Model

[40] The main role of the biosphere flux model in the
analysis framework is to provide a surface boundary con-

dition for CO2, which captures the dominant patterns of
spatial and temporal variability, i.e., vegetation coverage
and response to environmental drivers (light and tempera-
ture). Terrestrial fluxes of CO2 were modeled by linearly
scaling eddy covariance observations of net ecosystem
exchange (NEE) from the AmeriFlux network [Baldocchi
et al., 2001] for different vegetation types (denoted by i),
projected regionally using land-cover data:

NEEi ¼ li;R � Ri þ li;GEE � GEEi ð11aÞ

Ri ¼ biT ; GEEi ¼
ai � SWRF

bi þ SWRF
ð11bÞ

[41] Here li,R and li,GEE are scaling factors (see below),
Ri is the respiration flux, GEEi is the gross ecosystem
exchange, T is the atmospheric temperature in �C at 2 m;
SWRF is the downward short wave radiative flux from the
assimilated meteorological fields (used as a proxy for
photosynthetically active radiation). The parameters bi
(temperature coefficient for respiration flux, autotrophic +
heterotrophic), ai (maximum GEE), and bi (with ai/bi as the
quantum efficiency) were obtained from least-square fits to
the hourly AmeriFlux data (available under http://public.
ornl.gov/ameriflux) for each vegetation class over the
months July and August in 2000 (Table 1). The model
explained most of the hourly variance for the crop site (r2 =
0.79) and for forests (r2 = 0.56).
[42] The IGBP 1-km resolution vegetation data [Belward

et al., 1999] were regridded to the ROAM domain at
the different horizontal resolutions starting at 1/6�Lat. 	
1/4�Lon., to give relative coverage for each vegetation type
over the ROAM domain. Since tower flux data are not
available for each of the 17 different vegetation classes, the
vegetation classification was simplified into 5 classes:
forests, shrublands (open and closed shrublands, savannas,
grassland, and barren or sparsely vegetated), croplands
(croplands and cropland/natural vegetation mosaic), wet-

Table 1. AmeriFlux Sites Used for Parameterization of NEE for Different Vegetation Typesa

Site
Vegetation Type

(IGBP Classification)
Vegetation

(AmeriFlux Description)
Vegetation Type
(Simplified) s(lR) s(lGEE)

Duke Forest (NC) evergreen needleleaf forest even-aged loblolly pine plantation forest 0.66 1.1
Harvard Forest (MA) deciduous broadleaf forest temperate deciduous forest forest 0.66 1.1
Blodgett Forest (CA) evergreen needleleaf forest mixed evergreen coniferous forest

dominated by ponderosa pine
forest 0.66 1.1

BOREAS NSA - Old Black
Spruce (Canada)

evergreen needleleaf forest evergreen coniferous forests, boreal
needle forest, old black spruce trees

forest 0.66 1.1

Gainesville (Austin Cary) (FL) evergreen needleleaf forest 65 yr regenerating slash/longleaf pine forest 0.66 1.1
Metolius Research Natural Area -
young ponderosa pine (OR)

evergreen needleleaf forest intermediate (56 yrs) ponderosa pine forest 0.66 1.1

Niwot Ridge Forest (Co) evergreen needleleaf forest subalpine coniferous forest forest 0.66 1.1
Univ. of Mich. Biological
Station, (MI)

mixed forest mid-aged conifer and deciduous forest 0.66 1.1

Willow Creek (WI) deciduous broadleaf forest sugar maple-basswood forest, with
some green ash and red oak

forest 0.66 1.1

WLEF Wisconsin Tall Tower (WI) mixed forest temperate/boreal forest, lowland
and wetland forest

forest 0.66 1.1

Lethbridge (Canada) grasslands short/mixed grass prairie (C3/C4) shrubland 20.2 3.9
Barrow (AK) barren or sparsely vegetated arctic tundra shrubland 20.2 3.9
Bondville (IL) croplands annual rotation between corn (C4) -

2001, soybeans (C3) - 2000
cropland 0.27 0.15

aThe last two columns show the uncertainty of the scaling factors as derived from 3-day integrated residuals (see text).
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lands, and water bodies. The scaling factors li,R and li,GEE
then account for mismatches in the classification and
upscaling from flux-site to the larger regions. These scaling
factors, the adjustable parameters for the biospheric CO2

flux, will be estimated using a Bayesian inversion described
in section 4.3.
[43] The net CO2 flux was assumed to be negligible for

water bodies and wetlands. The upper limit of the air-sea
fluxes was estimated to be �
0.1mmoles/m2/s (uptake) on
the basis of recent pCO2 data [Lefevre et al., 1999]. Hence
air-sea exchange fluxes are smaller than terrestrial fluxes
by 3 orders of magnitude and can be neglected even
though a significant part of the ROAM domain is covered
by ocean. Wetlands in most of the domain tend to be very
small units that cannot be distinguished from the surround-
ing forests.
[44] Prior estimates for the different scaling factors were

all set to 1.0, and prior uncertainties of these scaling factors
were estimated from the residuals between hourly eddy
covariance data and hourly predictions using equation (11)
(with scaling factors set to one). Ideally, we would derive
the covariance matrix from residuals in R and GEE, taking
into account the spatial and temporal correlations between
different times and locations ‘‘seen’’ by the airborne mea-
surements (the footprint elements in equation (5)). Unfor-
tunately there is not enough spatial coverage in the
AmeriFlux data to allow for estimation of the spatial
correlation in the residuals, but we can make use of the
temporal coverage at the different sites. We assume that the
biospheric signals ‘‘seen’’ at the receptors relate to 3 day
aggregates of R and GEE in the footprint region,
corresponding to an average turnover time between PBL
and free troposphere. To derive the uncertainty in the scaling
factor for respiration, we integrated the nighttime residuals
(hourly flux measurements
 hourly predictions) over 3 days
and divided by the 3-day integrated nighttime NEE (pre-
dicted) for each site. For each flux site this results in about
20 ratios for the two-month period. The prior uncertainty in
li,R was then calculated as the standard deviation of these
ratios for a given vegetation class i (see Table 1). Similarly,
for GEE we took the ratio of 3-day integrated daytime
residuals in NEE to 3-day integrated daytime NEE (pre-
dicted). If the spatial coverage would allow for derivation of
the spatial correlation in these residuals, the prior uncertainty
in the scaling factor over a large area (such as the footprint of
the measurements, see section 4.1) would likely be less than
our estimate since residuals are likely to be correlated over a
length scale smaller than that covered by the area and leading
to cancellation of errors. In this sense we are using a
conservative estimate for the prior uncertainty.
[45] For forests the uncertainties in li,R and li,GEE are on

the order of 1 (Table 1), corresponding to a signal to noise
of 1 for 3-day aggregated fluxes. For shrubland the values
are significantly larger, resulting from the diversity in the
two AmeriFlux sites (short/mixed grass prairie and arctic
tundra) assumed to be representative for this vegetation
class. For cropland values are smaller, reflecting the fact that
only a single site was used. In this case residuals do not
include a spatial prediction error, so we arbitrarily increased
the uncertainty by a factor of 10 (reducing the weight of the
prior value) to account for the fact that a single flux site over
a crop field is not representative for the diverse crop

types and management regimes found within this vegetation
class.

2.4. Optimization Approach

[46] In order to link the large-scale constraints from the
vegetation signal �CO2,veg to local-scale information pro-
vided by the eddy flux measurements, we scaled up the
tower fluxes to the continent using the vegetation classifi-
cation described in the previous section and equations (6)
and (11) to calculate the resulting vegetation signals at the
aircraft location. The scaling factors used to scale up and
adjust biospheric fluxes constrained by eddy flux measure-
ments were calculated from a formal Bayesian inversion
approach that incorporates a priori estimates and their
associated errors [Rodgers, 2000].
[47] The scaling factors for gross exchange from different

vegetation classes in equation (11) are related to the
measurements (the vegetation signals �CO2,veg) by the
following equation (we mostly follow the notation of
Rodgers [2000]):

y ¼ KLþ E ð12Þ

[48] Here y represents a vector of measurements, K is the
Jacobian matrix relating the measurement vector to the state
vector, L is the state vector of scaling factors, and E is an
error vector accounting for uncertainty in the measurements
and in the modeling framework.
[49] The measurement vector y has one element for each

of the different receptors j at location xrj, and at time trj: y =
[�CO2,veg(xr1,tr1), �CO2,veg(xr1,tr1), . . .]T (where T indi-
cates the transpose). The Jacobian matrix K has as elements
the advected signals after equation (6), where fluxes F are
taken from the prior gross fluxes (photosynthesis GEE and
respiration R) for the different vegetation classes using
equation (11b) along with temperature and shortwave radi-
ation from EDAS:

K ¼

P
i

f ðxr; trjxi; tiÞ � GEEf ðxi; tiÞ
P
i

f ðxr; trjxi; tiÞ � Rf ðxi; tiÞ � � �

..

. ..
. ..

.

24 35

The state vector L combines the scaling factors for the gross
fluxes from different vegetation classes, L = [lGEE,forest,
lR,forest, lGEE,crop, lR,crop, . . .]

T. Optimum posterior esti-
mates of scaling factors are obtained by minimizing the cost
function J, for which we chose the standard least squares
formulation:

JðLÞ ¼ y
 KLð ÞTS
1
e y
 KLð Þ þ L
 Lprior

� �T
S
1
prior L
 Lprior

� �
ð14Þ

[50] Here Se and Sprior are the error covariance matrix for
the vegetation signals and for the prior scaling factors,
respectively. Sprior is derived from comparison between
fluxes from the biospheric model and observed eddy co-
variance fluxes (section 2.3, Table 1). Minimizing J results
in posterior estimates for L consistent with both the mea-
surements along the flight track and the prior estimates for
gross fluxes, given the respective uncertainties Se and Sprior:

bL ¼ KTS
1
e K þ S
1

prior

� �
1

KTS
1
e yþ S
1

priorLprior

� �
ð15Þ

ð13Þ
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[51] The posterior uncertainty of bL is expressed in form
of the error covariance matrix Ŝl:

Ŝl ¼ KTS
1
e K þ S
1

prior

� �
1

ð16Þ

[52] Proper treatment of the uncertainties in the measure-
ments and various parts of the model is important, as these
uncertainties represent weighting factors for the optimiza-
tion. Throughout the following sections we provide esti-
mates for these uncertainties at the different measurement
locations. The error covariance matrix Se is a sum of the error
covariance in the vegetation signal (Sveg, see section 4.2)
and different components describing errors in the modeling
framework:

Se ¼ Sveg þ Spart þ Seddy þ Stransp þ Saggr þ Socean ð17Þ

[53] Here Spart is the random error due to particle statis-
tics (section 3.1), Seddy is the error due to unresolved eddies,
Stransp describes the error in the mixed-layer height in the
transport model, Saggr represents the error due to aggrega-
tion of fluxes into large spatial regions (the footprints of the
northern and southern surveys), and Socean accounts for
neglecting oceanic fluxes in the inversion.
[54] For Spart we used a diagonal matrix (uncorrelated

errors). The square roots of the diagonal elements were
assumed to be 13% of the sum of a typical mixed-layer
signal, in accordance with the relative uncertainty for
mixed-layer receptors derived in section 3.1. For Seddy we
took values for the standard deviation of CO2 within each
missed layer profile as described in the companion paper,
ranging from 0.2 to 2 ppm. A transport error Stransp was
included to account for the mismatch in modeled and
measurement derived mixed-layer height zi. The coarse
resolution in the analyzed fields (250 m close to the surface)
and the difficulties in deriving zi from analyzed profiles
contribute to errors in zi with residuals between measured
and modeled zi averaging 600 m (standard deviation).
[55] The square roots of the diagonal elements of Stransp

were calculating by multiplying the relative error in zi
(represented by (zi(meas)-zi(mod)/zi(mod)) with 10 ppm
as an average vegetation signal in the PBL; here zi(meas)
corresponds to zi estimates from the tracer profiles [see
Lin et al., 2003]. This error affects only measurements at
altitudes below the measured or modeled mixed-layer
height; average values are around 3 ppm. The uncertainty
due to improper parameterization of convective fluxes is
not included as an error term in equation (17); instead
we explicitly use the separate transport simulations
corresponding to minimal convection (without subgrid
convection) and maximum convection (with subgrid con-
vection as described in section 2.1.3. For the aggregation
error Saggr, we chose diagonal elements of Saggr of (3 ppm)2.
As we will show in section 4.4, this error corresponds to
aggregation scales of � 2000 km (the approximate size of
the footprints).
[56] In order to obtain a vegetation signal representing

continental CO2 exchange, the signal from oceanic fluxes
should be subtracted from the vegetation signal in
equation (7). However, using the upper limit flux for

uptake of 0.1 mmol/m2/s [Lefevre et al., 1999] this ‘‘correc-
tion’’ corresponds to less than 2 % of the vegetation signal.
Therefore we have omitted this correction, but instead
included an additional error term Socean for the vegetation
signals corresponding to the upper limit flux.
[57] The transport error, the aggregation error as well as

the error from neglecting oceanic fluxes are assumed to be
correlated within individual profiles. This was ensured by
using exponentially decaying covariances with increasing
temporal and spatial distance between receptors, with a
decorrelation length of 10 km and timescale of 12 min
(corresponding to the spatial and temporal scale of the
aircraft path during a profile through the mixed layer).

3. Transport Model Tests

3.1. Dependence on Particle Number and
Reproducibility

[58] One would ideally use a sufficiently large number of
particles (Ntot) to represent the ensemble properties of the
transport to a given measurement location. Since model run
time increases proportionally to the number of particles
used, we examined the dependence of the ‘‘sampling’’ error
on Ntot in an attempt to minimize the run time. We examined
the convergence as a function of Ntot of the simulated
mixed-layer signal by coupling the footprints with bio-
sphere-atmosphere exchange fluxes (i.e., by combining
equations (6) and (11)) for a subset of the receptors (we
chose five different mixed-layer measurement locations
along the northern survey). Particle number was varied
between 50 and 1000 for each measurement location, and
the model was run 100 times for each location and Ntot to
derive the statistical variance (i.e., the ‘‘sampling’’ error).
The standard deviation obeyed Poisson statistics, with
stdev(CO2)/CO2 � sqrt(Ntot), as expected. For 100 particles
the error due to the stochastic nature of the model was 13%.
The resulting computational cost was acceptable (3 min per
receptor location for a 15-day simulation without convec-
tion for a 600 MHz processor running Linux, and twice the
time with convection). The stochastic nature of this error
and the complete lack of correlation between different
receptors allow for proper representation of this error in
the ROAM framework as a random, uncorrelated error.

3.2. Depth of ‘‘Surface Layer’’

[59] The dependence of model results (vegetation CO2

signals) on the initial column height h (see equation (2))
used to dilute surface fluxes at each time step was investi-
gated by varying h between 0.1�zi and 1.0�zi. No significant
change in the modeled vegetation signal was found. How-
ever, at shallow initial column depths the number of
particles influenced by surface fluxes during a time step is
smaller, which causes the statistical noise to increase. We
chose a depth of 0.5�zi as the column height for which
timescales for vertical mixing roughly matches the model
timestep for advection.

4. Results

[60] The analysis framework described in section 3 will
now be applied to the COBRA data to derive constraints for
regional fluxes (Figure 1). We first present the footprints,
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i.e., the sensitivities of mixing ratios measured along the
flight track to upstream surface fluxes (section 4.1). Then we
combine measured CO2 with advected background mixing
ratios for CO2 and an estimate of the fossil fuel contribution
to CO2 to isolate the CO2 vegetation signal from the
observations (section 4.2). In section 4.3 we use CO2 signals
due to biospheric fluxes according to equation (11) as
constraints to optimize scaling factors that are consistent
with the observation-based CO2 vegetation signal, and
estimate regional flux distributions and their response to
meteorological conditions.

4.1. Footprints for Mixed-Layer Receptors

[61] To visualize the surface influence and its spatial
variation, we calculated time integrals of footprints over
the 2 days prior to the measurement time, when surface
influence is strongest. For this illustration we chose a small
subset of receptor locations along the flight track of both
surveys, at altitudes below mixed-layer top (zi). The time
integrated footprint (Figure 4) shows the signal in ppm
found at the receptor, caused by a flux of 1 mmol m
2 s
1

from each surface location. Footprints vary on small
spatial scales, especially proximate to the receptor. Far-
ther from the receptors, the dynamic grid resolution
increased the grid size to about 1 degree. The footprints
reveal a strong contrast between the northern and the
southern survey, with north-westerly influence for the
north, and south-westerly influence for the south. By
comparing the time-integrated footprints in Figure 4 with
the vegetation condition index [Kogan, 1997] (Figure 2e
in the companion paper), it becomes clear that the mixed
layer in the northern survey was influenced by vegetation
with fair to favorable growing conditions, while the
southern survey mixed-layer air, especially in the western
part, was influenced by stressed vegetation. This is
consistent with the large differences in the observed
CO2, with a significant draw down in the lower atmo-
sphere along the northern transect and CO2 emission in

the southern transect (Figures 2a and 2c in the compan-
ion paper).
[62] The time evolution of surface influence is shown by

integrating footprints over the surface of the entire model
domain, averaged over time periods ranging from 12 hours
for the first 3 days back, to 72 hours for 9 to 5 days back
(Figure 5). The values displayed represent signals resulting
from a flux of 1 mmol m
2 s
1 acting over 24 hours. They
start at values around 1.5 ppm per mmol m
2 s
1 and decay
by factors of 2–3 over 48 hours. Since these are spatially
integrated footprints, they are not affected by horizontal
dispersion, but only by vertical exchange processes like
subsidence and convective cloud transport, which exchange
air between the mixed layer (ML) and the free troposphere
(FT). For transit-times which are small compared to the
timescale for exchange between ML and FT (texch) one can
simply calculate spatially integrated footprints by dividing
the number of molecules emitted from the surface flux (here
1 mmol m
2 s
1) during a day by the number of molecules
in the column in contact with the surface, with a height
corresponding to the maximum daily zi (mixed-layer
height). This gives an influence of 1.4 ppm/mmol m
2 s
1

for a zi of 1.5 km, in agreement with the values for 0–
12 hours prior to arrival in Figure 5. For transit times much
longer than texch one can assume a vertically well-mixed
troposphere, for which spatially integrated footprints
asymptotically approach a lower limit of 0.3 ppm/mmol
m
2 s
1. However, because of the limited model domain,
particles start leaving the domain, causing the spatially
integrated footprints derived from particle distributions to
decrease below this limit.
[63] Figure 5 clearly shows that convection has a major

impact on the decay of spatially integrated footprints with
time: with convection, the influence decays to less than 1/e
of the initial influence after a single day, while without
convection the influence decays to 1/e only after �5 days.
These e-folding times correspond to the timescale for
mixing between mixed layer and free troposphere. The

Figure 4. Footprints for mixed-layer receptors, integrated over the last 2 days prior to the measurements,
calculated for the non-convective case for the (a) northern and (b) southern surveys. The different pixel
sizes are a result of the dynamic grid resolution. The square with an edge length of 1 degree over the
Atlantic Ocean is shown as reference. See color version of this figure at back of this issue.
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3-day turnover time used in section 2.3 to derive the prior
uncertainty from residuals thus represents a reasonable
value for the COBRA period.

4.2. Observation-Based CO2 Combustion and
Vegetation Signals

[64] In this section we first derive CO2 combustion
signals from the measurement based CO combustion signal
(�COcomb) and the CO2/CO emission ratio following equa-
tions (8)–(10), and then we calculate the measurement
based vegetation signal (�CO2,veg, equation (7)) as well
as the associated uncertainty (Sveg).
[65] �COcomb (Figures 6a and 6b) shows values close to

zero for most of the troposphere, except for polluted layers
due to anthropogenic emissions and biomass burning,
where CO concentrations are elevated by more than
100 ppb. Differences between the runs without convection
(Figure 6a) and with convection (Figure 6b) are small,
indicating that the advected background CO is similar for
both cases. When comparing these ‘‘measured’’ combustion
signals to CO signals from the transport model and the
inventory (�COff,inv , Figures 6c and 6d), it is obvious that
they differ significantly from each other, not only because
of the lack of biomass burning emissions in the model but
also because of inappropriate convective mixing. Without
subgrid convection (Figure 6c) the model overestimates
fossil fuel CO near Boston by a factor of 2, while the
simulation incorporating subgrid convection (Figure 6d)
exhibits closer agreement to measured values.
[66] The partitioning of the contribution of biomass burn-

ing versus anthropogenic sources to �COcomb is required
to derive �CO2,comb, as the two combustion sources yield
different CO2:CO emission ratios. Here it would be desirable
to have another independent tracer to distinguish between
the different sources, such as CH4. However, methane
was only measured from flask samples, with low spatial
coverage. Fortunately, biomass burning sources were not
co-located with anthropogenic sources, and the resulting

biomass burning signals in �COcomb were not observed at
the same locations as the anthropogenic pollution (Figures 6a
and 6b). We thus could identify biomass burning events,
following equation (10), as periods when the modeled
�COff,inv underestimates the ‘‘measured’’ CO combustion
signal �COcomb by more than a factor of 4, and the residual
was assumed to represent the biomass burning signal
�CObb =�COcomb
�COff,inv. This underestimation-factor
is somewhat arbitrary, and is only regarded as a preliminary
method to select the few locations affected by biomass
burning. This method is not expected to succeed in cases
with co-located biomass burning and fossil fuel signals.
[67] In the absence of biomass burning (�CObb = 0,

observed for 88% of the receptors), the CO2 combustion
signal �CO2,comb was derived after equation (9), using the
CO combustion signal and the inventory-based emission
ratio averaged over the footprint. For very low �COff,inv

(<1 ppb) an average emission ratio of 0.03 ppm/ppb
was assumed to avoid instability in the emission ratio
�CO2,ff,inv:�COff,inv , and negative values for �COcomb

(found for 2% of all measurements) were set to zero to
avoid ‘‘negative’’ fossil fuel contributions. In the presence
of CO from biomass burning (at about 12% of the recep-
tors), fossil fuel emissions for CO2 were adopted from the
inventory-based �CO2,ff,inv, and biomass burning CO2 was
calculated as �CO2,bb = (CO2/CO)bb � �CObb, with the
biomass burning emission ratio (CO2/CO)bb estimated to be
0.0071 ppm/ppb from our observed correlations in biomass
burning layers.
[68] Cross sections of �CO2,comb (combustion signal

including biomass burning) for the northern survey are
presented in Figures 6e and 6f, for the cases with and
without convection. They look similar, with relative differ-
ences much smaller than for inventory- based fossil fuel CO
signals (�COff,inv , Figures 6c and 6d) or for inventory-based
CO2 fossil fuel signals (�CO2,ff,inv , not shown). Thus by
using the measured CO enhancements and inventory-based
emission ratio, we reduce biases in combustion-related CO2

due to inaccuracies in transport (e.g., subgrid convection).
The �CO2,comb is influenced predominantly by emissions
from the major cities of Boston and Denver with values of up
to 6 ppm, while biomass burning contributed up to 2 ppm
CO2 in the free troposphere.
[69] Uncertainties for �CO2,comb are estimated for each

receptor location by propagating errors in the separate terms
of equations (9) and (10). Uncertainties in �COcomb are on
average 23 ppb, arising from uncertainties in the boundary
condition (22 ppb), in the assumed OH field (5 ppb for a
50% uncertainty in OH), and in the measurements (2%).
[70] Uncertainties in �CO2,comb also require an estimate

of the uncertainty in CO/CO2 emission ratios. Only quali-
tative estimates are available for uncertainties of emission
inventories on the grid scale; the relative errors are assumed
to be significantly larger than country-level total emissions
[Marland et al., 1997]. However, because of common
factors contributing to the uncertainties in both CO and
CO2 emissions (e.g., population statistics, fuel use, etc.), we
believe that their errors are partly correlated. The conse-
quence is that relative uncertainties in the emission ratio are
less than the individual relative uncertainties. Lacking
detailed information, we estimated the uncertainty in the
emission ratio to 30%. In presence of biomass burning, we

Figure 5. Spatially integrated surface influence for mixed-
layer receptors as a function of time before arrival at the
flight track, for the northern (solid symbols) and the
southern transect (open symbols). Results for the convective
case are shown as solid lines, and for the non-convective
case as dashed lines.
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Figure 6. Combustion signals for CO and CO2 along the northern survey. (a and b) CO fossil fuel signal
�COcomb after equation (11), (c and d) CO fossil fuel signal �COff,inv calculated by ROAM using the
emission inventory, and (e and f ) CO2 combustion signal after equation (10), using measured CO and
CO2:CO emission ratio. Left column (Figures 6a, 6c, and 6e) shows results for the non-convective case,
right column (Figures 6b, 6d, and 6f ) for the convective case. To interpolate the tracer data in altitude and
longitude between the measurement locations, the squared inverse of the distance was used as weighting,
with the distance measured in units of 500 m vertical and degree longitude horizontal (aspect ratio 1/200).
Tracer data from different days and different times of the day were used for the cross sections. See color
version of this figure at back of this issue.
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increased the uncertainty by a factor of 2 to account for the
fact that in these cases, inventory-based CO2 fossil fuel
signals (�CO2,ff,inv), inventory-based CO fossil fuel signals
(�CO2,ff,inv) and the estimate of the biomass burning
emission ratio were used to derive �CO2,comb. Uncertainties
in �CO2,comb calculated in this way range from 0.2 to
3 ppm, and for CO2 fossil fuel signals larger than 5 ppm, the
relative uncertainty is 35%.
[71] Figures 7a and 7b show the signal due to biosphere-

atmosphere exchange (�CO2,veg), derived from the mea-
sured CO2 distribution, combustion CO2, and advected
background using equation (8). The vegetation signal, on
average, is an order of magnitude larger than the contribu-
tion from combustion. The strongest vegetation signals are
found in the lower atmosphere of the northern survey, with a
drawdown of 13–18 ppm in the west and 10–15 ppm in the
eastern part. At the lowest altitudes over Massachusetts
(71� W) a large, positive signal of about 10 ppm was
observed during the takeoff of the aircraft in the morning
(8 am local time), caused by accumulation of respiration in a
shallow mixed layer during the previous night.
[72] Slightly negative values of �CO2,veg are found in the

free troposphere, with lowest values of 
5 ppm observed in
the middle part (84�W) of the northern survey. This appears
to be a continental-scale signal of CO2 uptake by vegeta-
tion, transported vertically to the middle troposphere by
convection. The vegetation signal in the southern survey
shows free tropospheric values close to zero, and a large
buildup of CO2 in the lowest kilometer, exceeding 10 ppm
over Kansas. Significant drawdown in CO2 along the
southern survey was only observed at the northeastern
terminus, over Massachusetts and Maine; vegetation signals
at this time were roughly 
10 ppm in both the lower
atmosphere and the free troposphere, indicating convective
transport.
[73] Uncertainties in �CO2,veg (Figures 7c and 7d) are

derived for each receptor location by propagating errors in
equation (8) from the different terms, which are assumed to
be independent. The uncertainty in the advected background
field was calculated as a sum of the residuals (1.15 ppm,
section 2.2.1) and an additional term, which accounts for the
omission of the zonal longitudinal gradients. The latter term
was assumed to increase at 1 ppm per 6000 km distance
between the position of the particle ensemble at 15 days
back and the location of the lateral boundary field at 145 W.
The overall uncertainties in �CO2,veg are much larger than
the ±0.19 ppm from the measurement uncertainty for
mixed-layer averaged CO2 (see section 2.2). However, the
uncertainties are significantly smaller than the vegetation
signal itself (see Figure 7), with relative uncertainties
approaching 5% for unpolluted areas with strong signature.

4.3. Upscaling Ameriflux From a Bayesian Inversion
Analysis

[74] The derived vegetation signals�CO2,veg are now used
as the observational constraints for the scaling parameters
in the biospheric flux model; that is, we use equations (15)
and (16) to obtain optimal estimates and posterior uncertain-
ties of the scaling parameters for the gross fluxes (GEE and
R). The upscaling was done separately for the northern
survey and the southern survey in order to account for the
large differences in the vegetation condition index for the

different footprint areas. The Northeastern part of the south-
ern survey (east of the dashed line in Figure 7b) was included
in the northern survey, since the footprints for these measure-
ments were located further north than the rest of the southern
survey (Figure 4). Relative influences from the different
vegetation classes for mixed-layer measurements (Table 2)
indicate that the dominant classes are the Northern Pacific
Ocean and forests, followed by shrublands and croplands;
less than 1% of the influence was from wetlands, which we
therefore ignored in the following analyses. Relative contri-
butions of the different vegetation classes to the total GEE
and respiration signals (Table 2) based on prior scaling
factors show that forests and croplands are the main contrib-
utors to uptake and release of CO2 during this time of the
year, accounting for about 90% of the signal.
[75] Uncertainties due to the different types of model

error (Spart, Seddy , Stransp, Saggr, and Socean) calculated
according to section 2.4 are shown in Figures 7e and 7f
for the northern and southern survey. They are signifi-
cantly larger then the uncertainty in the vegetation signal
(Figures 7c and 7d). However, it is important to mention
that the model error (with the exception of Spart and Seddy)
was assumed to be correlated within individual profiles,
thus reducing the overall uncertainty as compared to an
uncorrelated error. Together with the prior uncertainty,
these errors serve as weights for the optimization.
[76] Figure 8 shows the retrieved scaling factors for

forest, crop and shrubland GEE and R in the footprint areas
of the two regions (northern and southern survey), obtained
for the cases with and without convection. Also shown are
the uncertainties associated with the retrievals (square-roots
of the diagonal elements of Sl). Observed fluxes for forests
in the northern footprint are in rough agreement with simple
upscaling of AmeriFlux sites (scaling factors close to 1),
while southern forests are significantly less active (scaling
factor for GEE less than one), reflecting stressed vegetation.
The strong overestimation of crop fluxes is expected, since
a single AmeriFlux site within a crop field was assumed to
be representative for fluxes of both ‘‘cropland’’ and ‘‘crop-
land/natural vegetation mosaic’’ classes in the IGBP vege-
tation grid. Scaling factors calculated for the convective
case are different from the non-convective case. This is due
to dilution of surface signals to higher altitudes and due to a
footprint that is confined to a smaller area as well as a
shorter time-span (see Figure 5). The differences, although
not statistically significant, are on the same order of
magnitude as the posterior uncertainties, indicating that
uncertainties associated with convection are as important
as the other components of the measurement error Se.
[77] Significant reduction in the prior uncertainty was

achieved for most of the scaling factors. Of course this
depends on the prior uncertainty which was conservatively
estimated. However, the reduction of the priori uncertainties
also indicates the amount of information contained in
continental CO2 vegetation signals. Posterior uncertainties
range from 0.2 for forest GEE, to more than 3 for shrubland
GEE. The retrieved scaling factors for shrubland are below
zero, indicating that GEE and R could not be separated
properly for this vegetation class (corresponding off-diago-
nal elements of the Sl are on the order of 0.9).
[78] NEE for the whole surface domain was calculated on

a 3-hourly time step for the month of August 2000 on the
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Figure 7. Measurement derived CO2 vegetation signals after equation (9), for the (a) northern survey and
(b) southern survey, (c and d) uncertainty of the CO2 vegetation signal, and (e and f) uncertainty of the
modeled vegetation signal due to the model error components Spart, Seddy, Stransp, Saggr, and Socean. All
results are shown for the non-convective case. The vertical dashed line in Figure 7bmarks the eastern end of
the data used in the optimization for the southern survey. See color version of this figure at back of this issue.
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basis of equation (11), using surface temperature and
downward shortwave radiative flux from the EDAS fields
and scaling factors from the non-convective case. The
resulting estimates for the 24-hour averaged net bio-
sphere-atmosphere fluxes for the non-convective case are
shown in Figure 9. Diurnally averaged fluxes range from
6 mmole/m2/s uptake to 2 mmole/m2/s release of CO2. Note
that, in this illustration, the parameters derived from the
northern survey were applied to the whole domain, for the
later time period, with southern survey parameters used for
the earlier time period.
[79] Error bars for individual grid elements are large,

since in addition to the uncertainties for the retrieved scaling
factors, the temporal and spatial upscaling from the foot-
prints to the larger regions have to be taken into account.
We therefore regard the maps in Figure 9 as hypothetical
snapshots of NEE that are subject to large uncertainties but
capture some of the spatial and temporal variability associ-
ated with the response to light and temperature.
[80] Most striking is the variability of fluxes in both space

and time: in the footprint area of the northern survey
(Figure 9, top) patches of low uptake are located next to
areas with strong uptake, and these areas change from day to
day. This variability is dominated by moving cloud systems:
on 17 August a band of clouds covered the Great Lakes and
areas north and moved to the east during the following days,
reducing photosynthetic uptake. In the footprint area of the
southern survey simulated fluxes are small, with less tempo-
ral variability. Spatial variability was associated with vege-
tation patterns in the western end of the flight area.

4.4. Representation Error Over the Continent

[81] In the companion paper [Gerbig et al., 2003] a
measurement-derived representation error was presented,
based on the spatial variability of CO2 at different horizontal
scales (also shown in Figure 10). High variability of
upstream surface fluxes on small spatial scales is a possible
cause for this behavior. To assess the spatial variability in
CO2 mixing ratios associated with fine-scale variance of the
surface fluxes, we ran the receptor-oriented model with
different spatial resolutions (from 20 to 640 km). The model
was run for the same mixed-layer locations that were used
in the statistical analysis of the representation error, and
mixing ratios representing a continental flux signal were
calculated using our posterior biospheric fluxes and the
emission inventory for CO2 fossil fuel. For each receptor we
calculated differences between these signals from the high-
resolution run (20 km biosphere, 1 deg. fossil fuel) and from
the degraded runs. Standard deviations of these differences

are shown in Figure 10 (black solid lines) for the different
resolved grid scales of the degraded runs (note that the
results are shifted to match the representation error at 20 km
grid size). These standard deviations match the measure-
ment-derived representation error at scales up to 160 km.

Figure 8. Inversion results from the Bayesian inversion
applied to the COBRA data. Shown are the estimates of the
scaling factor (diamonds) and associated uncertainties (error
bars).

Table 2. Relative Influence From Different Vegetation Classes, for Runs Without Subgrid Convectiona

Vegetation

Influence GEE Signal Respiration Signal

North Survey South Survey North Survey South Survey North Survey South Survey

Water bodies 44% 38% 2% 1% NA NA
Forests 16% 21% 44% 71% 41% 61%
Shrublands 29% 29% 8% 3% 24% 10%
Croplands 11% 11% 45% 25% 34% 21%
Wetlands <1% <1% NA NA NA NA
Wetlands <1% <1% NA NA NA NA

aAlso shown is the relative contribution of each vegetation class to the signal due to assimilation fluxes (GEE signal) and
due to respiration fluxes (respiration signal).
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We infer that the increase in the representation error of CO2

in the scale range from 20 km to 160 km is due to spatial
variability of upstream surface fluxes.
[82] We also calculated these differences for runs with

shortened integration time, accounting only for surface
fluxes 6 and 1 hours prior to the measurement (shown in
Figure 10 as the dotted and dashed-dotted lines, respec-
tively). The results for 6 hour integration time closely
follow the 360 hour results at small scales up to 80 km,
suggesting that most of the variability in CO2 on these
scales is due to variability of fluxes in the near field of the
observations. However, results for 1 hour integration time
tend to deviate from the results for longer integration times
at all scales, starting at 40 km.
[83] Differences between the high-resolution run and a

run which only resolves surface fluxes at a coarse scale can
also be interpreted as an estimate for the aggregation error:
signals from surface fluxes with no spatial variation on the
coarse scale are compared with signals from fluxes with
resolved spatial variations on the 20 km scale. For a coarse
scale of 2000 km (corresponding to the size of the foot-
prints) the standard deviations of differences are about
3 ppm. This value provides an estimate of the aggregation
error.

5. Discussion

[84] Many attempts have recently been made to derive
regional CO2 fluxes from long-term tower based measure-
ments of CO2 in simpler budget approaches. These
approaches usually use a one-dimensional framework and
combine a measure of the turnover time of the mixed layer
with the free troposphere with temporal variations in differ-

Figure 9. Twenty-four-hour averages of NEE from forests and croplands based on the upscaling of
AmeriFlux data for three consecutive days preceding the measurements (results for non-convection case).
The top and bottom rows show results using scaling factors constrained by the northern and the southern
surveys, respectively. See color version of this figure at back of this issue.

Figure 10. ROAM generated representation error for
mixed-layer receptors (triangles) as a function of surface
flux grid size. Results are shown for integration times of
360 hours (solid line), 6 hours (dotted line), and 1 hour
(dashed-dotted line). Also shown is the measurement
derived total representation error (combined measurement
uncertainty and representation error) after Gerbig et al.
[2003] (light grey circles and vertical bars indicate the 5–
95% range). Values for the ROAM generated representation
error are offset to match the measurement derived
representation error at a grid size of 20 km.
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ences between mixed-layer CO2 and free tropospheric CO2

to estimate fluxes over an unspecified area. The receptor-
oriented analysis of the COBRA data indicates a number of
problems associated with such simplifications: (1) CO2 in
the free troposphere over the continent cannot be described
simply by the MBL-reference CO2 taken at the same
latitude, since significant biases can result from both verti-
cal gradients and meridional components in advection (see
section 2.2; also the companion paper); a more sophisticated
boundary condition is needed to reduce these biases;
(2) Footprints for mixed-layer receptors typically extend
over an area of about 105 km2 (Figure 5) and over a few
days preceding the measurement (Figure 6), and changes in
these footprints due to meteorological conditions will cause
changes in CO2 due to spatial variability in surface fluxes;
these variations in CO2 need to be properly attributed to the
areas sampled, rather than to changes in fluxes in a single
area [Lin et al., 2003]; (3) local estimates of a turnover time
between mixed layer and free troposphere at the receptor
cannot be assured to be equivalent to turnover times in the
footprint area. Hence we believe that an analysis framework
that appropriately represents atmospheric transport and
spatially and temporally varying surface fluxes should be
used to infer regional fluxes.
[85] The measurement-derived vegetation signal

(�CO2,veg) presented in section 4.2 from the COBRA in-
situ measurements of CO2 and CO provides a tight con-
straint for regional biospheric fluxes, with uncertainties on
the order of 15% for strong mixed-layer signals in absence
of pollution (Figures 7a–7d). To assess how successfully
the approach resolves the spatial and temporal variability in
CO2 mixing ratios, we compare simulated CO2 vegetation
signals �CO2,veg,mod with ‘‘measured’’ vegetation signals
�CO2,veg. The simulated distribution of CO2 vegetation
signals CO2,veg,mod for the different surveys and the different
model cases are shown in Figures 11a–11d. In general there
is reasonable agreement between the modeled (Figure 11)
and the ‘‘measured’’ (Figure 7) cross sections. Both exhibit
the strong depletion of CO2 in the lower atmosphere for the
northern survey, and a build up of CO2 in the middle of the
southern survey. CO2,veg,mod explained 40% of the variance
in CO2,veg. However, there are numerous discrepancies
which can be related to (1) inadequate representation of
atmospheric transport and (2) oversimplified representation
of biosphere. In the following paragraphs we discuss errors
in modeled vegetation signals due to points 1 and 2 and
their effects on the simulated large-scale distribution of
vegetation CO2.

5.1. Discrepancies Related to Transport
Representation

[86] Transport errors can arise from inadequate parame-
terizations within STILT (e.g., convection, mixed-layer
height, turbulence statistics) and from errors in the assim-
ilated winds used to drive STILT, either because of the
assimilation process itself or by inadequate post-processing
[Lin et al., 2003]. The only transport uncertainty accounted
for in the inversion is the error due to the mismatch in zi,
which we attempted to represent in Stransp (section 4.3).
The other errors are more difficult to account for but
are expected to cause discrepancies between modeled and
measured vegetation signals.

[87] The clearest discrepancies are caused by the extremes
in vertical redistribution built into the convective parame-
terization: in the westernmost profile of the northern transect
the model case with convection (Figure 11c) overestimates
the vertical dilution of �CO2,veg,mod, while the non-convec-
tive case (Figure 11a) shows reasonable agreement with the
observations (Figure 7a). For the easternmost profile of the
southern transect it is the opposite: no vegetation signal was
found around 6 km in the non-convective case, while a
significant depletion of CO2 resulted from the convective
case (see Figures 7b, 11b, and 11d). In this example
convection was active in the footprint area during the
afternoon on the day before the flight. This indicates that
the two cases (excessive convection and no convection)
bound the true influence of convection on the tracer distri-
bution. However, the strong impact of convection on the
derived fluxes (Figure 9) indicates the necessity for a
convection scheme to accurately quantify convective cloud
transport, with realistic temporal variations to avoid biases in
simulated CO2 due to covariation with surface fluxes.
Clearly assimilated meteorological products should include
convective fluxes, and the convective parameterizations in
the assimilation model need to be realistic.
[88] In the middle of the northern survey (at 83 W)

neither the nearly flat profile of �CO2,veg with a depletion
in the lowest 2 km of only 2–3 ppm nor the free tropo-
spheric vegetation signals of 
1.2 ppm is properly repro-
duced by either model case. Both seem to produce a
minimum depletion in the mixed layer similar to the
observations, but displaced hundreds of km further to the
west, at 88 W. A potential explanation for this discrepancy
can be seen from Figure 9: surface fluxes are strongly
influenced by a cloud system moving from the Great Lakes
region toward the northeast, and the amount of CO2-
depletion in the sampled air depends critically on the
relative location of footprint area and the cloud system at
a given time. Reduced cloud cover (or higher incident
radiation) over the footprint area in the simulation can cause
substantial changes in CO2 vegetation signals. A further
contribution to this discrepancy might be unresolved meso-
scale circulations in the proximity of the Great Lakes,
yielding wrong estimates for the footprint close to the
receptors, where influence is strongest (see Figure 4).
Significant errors can accrue if the assimilation model
misrepresents clouds in the footprint, as might be expected
around the Great Lakes, or in areas near frontal systems.
[89] Throughout the profiles of both surveys there is a

significant underestimation of the nighttime build-up of
respiration signal in the early morning mixed layer, and
an overestimation at levels in the residual layer. The
problem results from slightly too much vertical mixing:
residual layer receptors at altitudes of around 500 m agl are
influenced by the surface during night time in the dispersion
model, whereas the strong vertical gradients of tracer
indicate a stronger mixing barrier at low levels in the
atmosphere. The ability to use the information contained
in the nighttime buildup of respired CO2 is crucial to
independently constrain fluxes due to nighttime release
and daytime uptake of CO2. The difficulty in partitioning
respiration and uptake of CO2 is illustrated by the large
correlation (r � 0.9) between scaling factors for uptake
(GEE) and respiration (R). A better separation between
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nighttime release and daytime uptake can only be expected
from more sophisticated mixing schemes in models during
night time, and from improved vertical resolution.
[90] As discussed by Lin et al. [2003], lack of mass

conservation in EDAS winds leads to inaccuracies in
source-receptor relationships. These inconsistencies are
related to the post-processing of wind fields (degradation
of resolution and non-mass conserving transformations in
the vertical coordinate and horizontal re-projections), and to
the assimilation process in the weather prediction model
itself. Violations of mass conservation are likely to have an
impact on the retrieved vegetation CO2 signals, but the
magnitude of the error is difficult to estimate. Using mass
conserving wind fields, or correcting wind fields to con-
serve mass has therefore a high priority.

5.2. Discrepancies Related to Representation of the
Biosphere

[91] The assumption made in the simple parameterization
of biosphere-atmosphere flux is that a given vegetation class

within the footprint area for a given survey (north or south)
has a light and temperature response similar to the Ameri-
Flux data from July and August 2000 representing this
vegetation class. The assumption of spatial homogeneity
within a vegetation class over the footprint areas re-intro-
duces an aggregation error, problematic given significant
spatial differences in vegetation health, and the broad range
of vegetation types included in one of our coarse classes,
within a footprint (Figure 2e of Gerbig et al. [2003] and
Figure 5). The estimated uncertainty of 3 ppm due to
aggregation (section 4.4) might account for the aggregation
error, but it significantly increases the model error by on
average 70%.
[92] There are two basic approaches to reduce this source

of aggregation error: one can decrease the size of the flux
region, and thus solve for more parameters which can adjust
the spatial flux pattern, or one can improve the spatial
distribution of fluxes, e.g., by adding information on veg-
etation health, or by using a full biosphere model which
describes phenomena such as drought stress. The former

Figure 11. Modeled vegetation CO2 signal (a and b) for the non-convective case and (c and d) for the
convective case. Left column (Figures 11a and 11c) shows results for the northern survey, right column
(Figures 11b and 11d) for the southern survey. Left of the vertical dashed lines in Figures 11b and 11d the
southern survey scaling factors are used; to the right of these lines, northern survey scaling factors were
applied. See color version of this figure at back of this issue.
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approach of course can lead to an under-determined
problem; in this case it would be required to add informa-
tion about spatial and temporal correlations of the prior
uncertainties.
[93] Future work will include the implementation of a

more sophisticated representation of the biosphere, e.g.,
using information on leaf nitrogen, on crop data from
USDA (e.g., harvesting cycles), and perhaps the use of
satellite-derived quantities such as the vegetation condition
index [Kogan, 1997] and NDVI (normalized difference
vegetation index). The important capability of this recep-
tor-oriented framework, however, is that it can be coupled to
any surface flux patterns at high spatial and temporal
resolution, such as that generated by a full biospheric
model. Ultimately, one would not optimize for fluxes on
some regional scale, but for parameters controlling uptake
and respiration in a spatially explicit biosphere model.

6. Concluding Remarks

[94] COBRA can be viewed as a snapshot of data
that could be provided by future sampling networks with
enhanced spatial coverage and multiple profiles. We have
analyzed COBRA data to critically test the requirements of
a model-data fusion system aimed at deriving regional to
continental flux estimates from measurements of CO2 over
the continent. The spatial patterns in the CO2 data collected
over the United States during COBRA show clear signa-
tures of terrestrial fluxes during the active growing season.
A significant fraction of the information in these signatures,
however, is contained in relatively small spatial and tem-
poral scales. Appropriate analysis frameworks to resolve
these scales are needed in order to effectively use the
information in continental measurements of CO2; otherwise
this fine-scale signal is transformed into large-amplitude
unresolved variance.
[95] The receptor-oriented framework presented here was

designed as an attempt to represent the processes that could
potentially introduce biases in flux estimates and to extract
the signal of terrestrial fluxes from continental CO2 obser-
vations. It consisted of (1) a Lagrangian transport model
(STILT) to couple transport and surface fluxes at high
resolution using assimilated winds, (2) lateral boundary
conditions for CO2 and CO from a climatological analysis,
and (3) surface fluxes from fossil fuel and the biosphere.
This framework is analogous to a regional adjoint model in
a Eulerian framework; both require boundary conditions
from either a global model or from a climatology based on
measurements. One difference is that the receptor-oriented
approach resolves variations in surface flux on scales
smaller than the grid of the meteorological fields.
[96] The receptor-oriented framework allowed us to cal-

culate vegetation signals �CO2,veg along the COBRA flight
track as the difference between measured CO2 and the sum
of advected boundary mixing ratios and combustion signal.
Simultaneous observations of CO enabled improved esti-
mates of the combustion signal �CO2,comb. The vegetation
signals provided a tight constraint for large-scale biosphere-
atmosphere exchange fluxes from upscaling of AmeriFlux
measurements. Modeled vegetation signals explained 40%
of the observed variance, reasonable agreement in light of
the shortcomings in current transport fields. The optimized

biosphere model provided estimates of net fluxes at conti-
nental scale, constrained to be consistent (subject to the
limitations in the current analysis framework) with observed
concentrations over the continent and with AmeriFlux data
on vegetation sources and sinks.
[97] Discrepancies between modeled vegetation signals

and vegetation signals derived from airborne observations
revealed a variety of problems which have to be addressed
in future studies: (1) an accurate convection scheme is
required for a long-lived tracer like CO2 with surface
sources/sinks, whose atmospheric signatures are sensitive
to vertical redistribution; (2) improvements in mixing
schemes during nighttime periods (including higher vertical
resolution) are needed in order to separate respiratory
release and photosynthetic uptake of CO2; (3) offline
transport models using assimilated winds can be subject
to violations of mass conservation, which can have a
significant effect on the accuracy of source-receptor rela-
tionships; (4) large variations in biosphere-atmosphere
exchange result from the reduction of downward radiation
due to cloud systems, and it is important to accurately
represent these systems and their effect on radiation in
the footprint area of CO2 measurements; (5) the overly
simplified biospheric representation, assuming spatially and
temporally constant light and temperature responses, is
inadequate to yield accurate relationships between large-
scale and local fluxes. Fluxes from a full biosphere model
can and should be coupled to the receptor-oriented frame-
work in the future, with focus on estimating biospheric
parameters rather than scaling factors in the values of fluxes.
[98] When examining these large-scale measurements as

a snapshot of the data that would be collected by a future
sampling network, one would be interested in quantifying
not only large fluxes during the growing season, but more
importantly long-term (e.g., net annual) exchange fluxes
over regional to continental scales. Thus the uncertainties
have to be put in a long-term context, and it becomes very
important how the errors are correlated from day to day, i.e.,
whether the uncertainties accumulate to a bias on seasonal
to annual timescales, or whether the uncertainties are only
correlated over short timescales, such that integration over
longer time periods reduces the resulting uncertainties. One
cannot assume that it is appropriate to average over unre-
solved spatial and temporal variability, because significant
biases may be introduced: e.g., coarse vertical resolution
and inappropriate representation of vertical mixing may
cause biases because of the rectifier effect [Denning et al.,
1996]. Biases can also result when systematic patterns in
wind direction are not properly resolved because of anisot-
ropy of CO2 fluxes in the near field surrounding a mea-
surement station. Therefore an appropriate description of
the spatial and temporal covariances of the errors in addition
to their magnitudes is required in the future.
[99] For the transport error, for example, this could be

done involving a careful statistical analysis of differences
between analyzed meteorological fields and extensive
meteorological measurements, similar to what is done in
weather prediction centers. A similar effort is required to
describe prior uncertainties and their covariances in bio-
spheric flux models and in emission inventories (which
should also be included as a ‘‘soft’’ constraint [Engelen et
al., 2002; Rodgers, 2000], e.g., by solving for emission
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fluxes given a prior estimate). Future programs such as the
NACP will provide data with enhanced temporal and spatial
coverage which will allow us to assess these unresolved
issues.
[100] We envision a variety of future applications for the

receptor-oriented framework presented here. The frame-
work can be applied to long-term measurements (e.g., from
instrumented towers) of CO2, CO, and other tracers like
CH4 to provide information on regional fluxes over annual
and interannual timescales. The capability to calculate
quantitative footprint estimates, resolving influences from
different vegetation types, is invaluable to evaluate the
design of hypothetical observational networks. When cou-
pled to a full biospheric model, the framework could enable
assimilation of atmospheric observations to constrain
parameters controlling both short-term, rapid processes
and slow processes in the carbon cycle at continental and
regional scales.

Appendix A

A1. Fitting of Upstream CO2 Data Over the Pacific

[101] The data were grouped into two latitude bands
(south and north of 37.5�N), and into altitude bins, with
ranges 0–2.5, 2.5–5, 5–8, and above 8 km. To propagate
the CO2 time series vertically, daily averaged mixing ratios
CO2,z(t, lat) measured within altitude bin j and at latitude bin
i were related to the time-series at the surface CO2,S(t

0, lat)
by the Green’s-function Gi,j (t 
 t0) for the 1-D advection-
diffusion equation, similar to the approach used by Andrews
et al. [1999] for stratospheric CO2:

CO2;z t; latð Þ
Z

Gi;j t 
 t0ð Þ � CO2;s t
0; latð Þ � dt ðA1Þ

with:

Gi;jðt 
 t0Þ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 
 t0ð Þ3

q exp 
bi;j tð Þ � t 
 t0ð Þ 
 ci;jðtÞ
t 
 t0

 �
ðA2Þ

[102] Parameter bi,j(t) controls the decaying behavior at
large t 
 t0, while ci,j(t) controls the behavior at small t 
 t0.
a is an integration constant to normalize G. The timescales
1/bi,j(t) and ci,j(t) are allowed to be time dependent, param-
eterized by a sinusoidal with a one year cycle:

bi;jðtÞ ¼
bi;j

1þ si � sin 2p � ðt 
 t0Þ=Tð Þ
ci;jðtÞ ¼ ci;j � 1þ si � sin 2p � ðt 
 t0Þ=Tð Þð Þ

ðA3Þ

[103] Here T is one year, and t0 was empirically chosen as
1 October to allow for smaller timescales in summer (faster
vertical transport). The parameter si controls the amplitude
of the seasonal variation of the timescales. The parameters
bj,i, cj,i, and si for the 2 latitude bands and the 4 altitude
bins, i.e., a total of 18 parameters, were estimated by least
square optimization using a total of 16,788 observations
(see Table 2).
[104] This framework of a one-dimensional system with a

boundary condition at the ground (z = 0) is not very realistic

(the sources for CO2 at higher altitudes are usually not
exactly underneath at the same horizontal location), but it is
practical: It provides a way to relate upper air measurements
of CO2 to surface measurements with a certain time-lag
(causing the seasonal cycle to occur later or earlier at higher
altitudes), and with a damping of higher-frequency varia-
tions via the width of G(t-t0) which reflects the effect of
atmospheric mixing processes. Further it makes use of the
fact that CO2 is conserved in the troposphere.

A2. Fitting of CO Data

[105] To propagate the CO time series vertically, a differ-
ent approach had to be used, since CO (unlike CO2) is not
conserved in the troposphere. The data were grouped into
three different latitude bands (10–37.5�N, 37.5–62.5�N,
62.5–70�N); these bands are centered over the surface
stations. The CO time series at the surface COS(t, lat) was
separated into a slow component COslow(t, lati) (timescales
longer than 1 year) and a fast component COfast(t,lat)
(timescales 1 year to 40 days). The following parameteri-
zation was chosen to fit measured mixing ratios COz(t, lat)
at higher altitudes:

CO t; z; latð Þ ¼COslowðt 
 fi � z; latÞ þ di � z
þ 1þ ei � zð Þ � COfast t 
 fi � z; latð Þ ðA4Þ

[106] Here, parameter di represents an average vertical CO
gradient for latitude bin i, which is required to account for
photochemical losses of CO, ei reflects the damping of the
seasonal cycle (and higher frequencies) with increasing
altitude, and fi is the change of the lag time with altitude.
These 3 parameters for each latitude band were estimated by
using a least square fit at each latitude bin from a total of
15,797 observations.
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Figure 4. Footprints for mixed-layer receptors, integrated over the last 2 days prior to the
measurements, calculated for the non-convective case for the (a) northern and (b) southern surveys.
The different pixel sizes are a result of the dynamic grid resolution. The square with an edge length of
1 degree over the Atlantic Ocean is shown as reference.
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Figure 6. Combustion signals for CO and CO2 along the northern survey. (a and b) CO fossil fuel signal
�COcomb after equation (11), (c and d) CO fossil fuel signal �COff,inv calculated by ROAM using the
emission inventory, and (e and f) CO2 combustion signal after equation (10), using measured CO and
CO2:CO emission ratio. Left column (Figures 6a, 6c, and 6e) shows results for the non-convective case,
right column (Figures 6b, 6d, and 6f ) for the convective case. To interpolate the tracer data in altitude and
longitude between the measurement locations, the squared inverse of the distance was used as weighting,
with the distance measured in units of 500 m vertical and degree longitude horizontal (aspect ratio 1/200).
Tracer data from different days and different times of the day were used for the cross sections.
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Figure 7. Measurement derived CO2 vegetation signals after equation (9), for the (a) northern survey
and (b) southern survey, (c and d) uncertainty of the CO2 vegetation signal, and (e and f ) uncertainty of
the modeled vegetation signal due to the model error components Spart, Seddy, Stransp, Saggr, and Socean. All
results are shown for the non-convective case. The vertical dashed line in Figure 7b marks the eastern end
of the data used in the optimization for the southern survey.

GERBIG ET AL.: TOWARD REGIONAL-SCALE FLUXES OF CO2, 2

ACH 6 - 15



Figure 9. Twenty-four-hour averages of NEE from forests and croplands based on the upscaling of
AmeriFlux data for three consecutive days preceding the measurements (results for non-convection case).
The top and bottom rows show results using scaling factors constrained by the northern and the southern
surveys, respectively.
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Figure 11. Modeled vegetation CO2 signal (a and b) for the non-convective case and (c and d) for the
convective case. Left column (Figures 11a and 11c) shows results for the northern survey, right column
(Figures 11b and 11d) for the southern survey. Left of the vertical dashed lines in Figures 11b and 11d
the southern survey scaling factors are used; to the right of these lines, northern survey scaling factors
were applied.
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