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[1] Knowledge of trace gas fluxes at the land surface is essential for understanding the
impact of human activities on the composition and radiative balance of the atmosphere.
An ability to derive fluxes at the regional scale (on the order of 102–104 km2), at the scale
of ecosystems and political borders, is crucial for policy and management responses.
Lagrangian (‘‘air mass-following’’) aircraft experiments have potential for providing direct
estimates of regional-scale fluxes by measuring concentration changes in air parcels as
they travel over the landscape. Successful Lagrangian experiments depend critically on
forecasts of air parcel locations, rate of dispersion of air parcels, and proper assessment of
forecast errors. We describe an operational tool to forecast air parcel locations and
dispersion and to guide planning of flights for air mass-following experiments using
aircraft. The tool consists of a particle dispersion model driven by mesoscale model
forecasts from operational centers. The particle model simulates time-reversed motions of
air parcels from specified locations, predicting the source regions which influence these
locations. Forecast errors are incorporated into planning of Lagrangian experiments
using statistics of wind errors derived by comparison with radiosonde data, as well as the
model-to-model spread in forecast results. We illustrate the tool’s application in a
project designed to infer regional CO2 fluxes—the CO2 Budget and Rectification Airborne
study, discuss errors in the forecasts, and outline future steps for further improvement of
the tool.
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1. Introduction

[2] Fluxes of gaseous species between the land surface
and the atmosphere strongly affect the environment. Radi-
atively active species such as CO2, CH4, and N2O emitted
from human activities are believed to have the potential to
bring about climate change [Intergovernmental Panel on
Climate Change (IPCC), 2001]. Emissions of NOx and
hydrocarbons alter the chemistry of the atmosphere and
lead to production of tropospheric O3 and adverse air
quality [Brasseur et al., 1999]. Evaporation controls the
Earth’s surface energy and hydrological balance, as well as
the dynamics of the atmosphere [Peixoto and Oort, 1992].
[3] Directly measuring the surface sources and sinks for

these gaseous species at the regional scale (102–104 km2)
has been challenging [Brasseur et al., 1999; Parlange et al.,
1995; Wofsy and Harriss, 2002]. Complete ground-based
sampling at the relevant scales is difficult due to resource

limitations and logistical difficulties. Spaceborne sensors
cover regional to global scales, but they are generally less
sensitive to concentration changes in the planetary boundary
layer (PBL) [Liou, 2002], where signals of surface fluxes
are strongest.
[4] Estimates of regional source/sink distributions have

often been derived from scaling up local measurements
[Ehleringer and Field, 1993; Parrish et al., 2002] rather
than relying on direct observations. However, upscaling is
often subject to large errors over a heterogeneous landscape.
Independent estimates are needed to evaluate and test these
upscaling methods.
[5] Lagrangian experiments repeatedly measure concen-

trations of target species in an ensemble of air parcels as
they travel over the landscape [Lin et al., 2004; Lin et al.,
2006]. Such experiments are uniquely suited to provide
direct measurements of regional-scale fluxes that are diffi-
cult to derive from other means. Air parcels are transported
across long distances (several hundred km) over 1 day,
given a typical wind speed of �10 m/s. Net changes in
concentrations of gaseous species in air parcels as they
travel across the landscape reveal the strength of sources/
sinks along their transport path.
[6] While ‘‘Lagrangian experiments’’ may often be

interpreted as ‘‘air mass following’’, atmospheric disper-
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sion causes air parcels originally found within a single air
mass to be separated from one another (Figure 1). Air
parcels separated by dispersion and advected by winds
over hundreds of kilometers necessitate an airborne sam-
pling platform. Aircrafts are especially suited for imple-
menting Lagrangian experiments due to their capability to
carry out three-dimensional sampling and cover the rele-
vant distances.
[7] Implementing Lagrangian experiments requires a

proper tool to forecast the locations of air parcels and their
rate of dispersion in order to plan suitable flight patterns for
the sampling program.
[8] In this paper we describe a tool that incorporates a

particle dispersion model to design Lagrangian experi-
ments for measuring regional-scale sources/sinks of gases.
The tool places special emphasis on meeting the follow-
ing criteria for an effective flight planning tool, described
in detail in the next section: (1) simulation of dispersion,
(2) computational efficiency, and (3) quantitative assessment
of forecast errors.

[9] To our knowledge, only a single paper [Stohl et al.,
2004] has previously described a modeling system to aid
in Lagrangian flight planning in the troposphere. These
authors have likewise employed a particle dispersion
model, combining it with Eulerian concentration fields to
enable pollution plumes to be followed from North America
to Europe with multiday Lagrangian experiments. Our
paper differs from that of Stohl et al. [2004] in two
important respects: First, we focus on estimating surface
fluxes rather than tracking pollution plumes. Second, we
introduce a new way to assess forecast errors by various
means: incorporating stochastic wind errors, using multi-
model ensembles, and determining the stability of forecasts
derived from runs of the same model at different forecast
times.
[10] We describe in this paper details of the forecasting

tool (section 3), and we illustrate the use of the tool
(section 4) in the CO2 Budget and Rectification Airborne
(COBRA) study [Gerbig et al., 2003a], which sought to
measure the regional release and uptake of CO2 by the

Figure 1. The relationship between backward- and forward-time transport of air parcels, represented by
grey circles and black triangles, respectively. Dispersion causes air parcels arriving at a measurement
location (receptor) to originate from numerous upwind source regions. Backward-time simulations from
Lagrangian particle dispersion models, which model the effects from dispersion, elucidate the source
regions with a single run.
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terrestrial biosphere [Lin et al., 2004]. We conclude with a
discussion of future improvements and directions.

2. Requirements of Lagrangian Experiment
Planning Tool

2.1. Simulation of Dispersion

[11] Lagrangian experiments require air parcels to be
sampled repeatedly near sources/sinks, often in the lower
troposphere and PBL where wind shear and turbulence are
particularly pronounced [Stull, 1988], causing air parcels
initially found close to one another to disperse significantly
over time. Strong dispersion means that air parcels found at
an observation location (‘‘receptor’’) arrive from numerous
upwind locations (Figure 1), and this feature must be
quantitatively simulated by the flight planning tool. Con-
ventional back trajectory models fail to meet this require-
ment, as trajectories generated by interpolating mean
winds cannot properly simulate dispersion [Stohl, 1998].
Accounting for dispersion is particularly important if
upwind sources are distributed heterogeneously across
the land surface. For example, CO2 fluxes differ markedly
between croplands, coniferous forests, urban areas, and
grasslands [Baldocchi et al., 2001]. Dispersion causes the
receptor to be influenced by a source region distributed
over an area, with differing fluxes, rather than a narrow
source region lying along a single trajectory (Figure 1).
Neglect of wind shear in flight planning, i.e., assuming an
entire atmospheric column to be advected in a single
direction, can severely limit instances when Lagrangian
experiments can be conducted [Lloyd et al., 2001; Schmitgen
et al., 2004].

2.2. Accounting for Forecast Uncertainties

[12] Forecasts inevitably contain uncertainties that cause
forecasted air parcel trajectories to deviate from actual
trajectories in the atmosphere [Draxler, 2003; Straume
et al., 1998]. Flights based on uncertain forecasts potentially
sample air parcels that are not linked in a Lagrangian sense
to the receptor. Thus the forecasting tool needs to incorpo-
rate these uncertainties in order to provide robust flight
plans which reduce the sensitivity to such errors. This
requirement is, like the dispersion requirement, made more
stringent if sources/sinks are heterogeneous [Gerbig et al.,
2003a]. Heterogeneous sources/sinks give rise to upwind
tracer gradients that, if not properly characterized, result in
uncertainties in the sources/sinks inferred from Lagrangian
experiments (see the papers of Lin et al. [2004] and Lin et al.
[2006] for specific examples).

2.3. Computational Efficiency

[13] Computational efficiency enables numerous possibil-
ities for the flight planning tool: use of rapid updates from
numerical weather prediction (NWP) centers, ensemble
simulations to probe sensitivity to model formulation, and
flexibility to test out different ideas. NWP centers improve
forecast quality by continuously assimilating observations
to refine estimates for the state of the atmosphere [Kalnay,
2002; Parrish et al., 1997; Rabier et al., 2000]. In order to
incorporate the refined forecasts from NWP centers, the
flight planning tool needs to be computationally efficient,
such that flight planning products can be rapidly updated as

new forecasts are released (section 3.3.2). Computational
efficiency also allows ensemble runs to be carried out, using
different model products or the same model at different
forecast times, while keeping up with the NWP updates
[cf. Kalnay et al., 1998; Straume et al., 1998].

3. The Flight Planning Tool

[14] We present a flight planning tool that satisfies the
requirements described in the previous section, based on the
Stochastic Time-Inverted Lagrangian Transport (STILT)
model [Lin et al., 2003], a particle dispersion model.
Particle models have specifically been developed to simu-
late turbulent dispersion [Obukhov, 1959; Rodean, 1996;
Smith, 1968]. STILT is built upon a modified version of the
Fortran source code from the NOAA Air Resources Labo-
ratory (ARL) HYSPLIT model [Draxler and Hess, 1997;
Draxler and Hess, 1998]. The flight planning tool includes
UNIX shell scripts and programs written in the higher-level
R language [R Development Core Team, 2004], which call
STILT, process the particle output, and generate results in
both tabular and graphical format. In this section, we first
describe the STILT model (section 3.1) and then present a
sample output from the tool (section 3.2). We then elaborate
on the various ways in which the flight planning tool
accounts for forecast errors (section 3.3).

3.1. STILT

[15] STILT meets the requirements outlined in section 2
in the following ways. STILT simulates turbulence with
stochastic deviations from the mean wind and explicitly
models the interaction between stochastic velocities and the
mean wind shear, the basic cause for dispersion in the
atmosphere. The particles (representing air parcels) start
from the receptor and are transported backward in time,
marking out the upwind source regions (Figure 1) and
providing an especially efficient method to incorporate the
effects of dispersion [Stohl et al., 2003; Uliasz and Pielke,
1990]. The stochastic nature of STILT also means that
‘‘error velocities’’ can be added to the motion of the
particles to incorporate forecast errors [Lin and Gerbig,
2005] (section 3.3.1). Lin et al. [2003] have shown that in a
physically consistent model, a single backward-time simu-
lation provides the same information as many more forward-
time simulations from all potential upwind source regions
and time steps. Thus the backward-time simulation provides
a significant reduction in computational cost.
[16] STILT is an ‘‘off-line’’ model, driven with meteoro-

logical fields generated by other models that numerically
integrate the dynamical equations of the atmosphere. The off-
line character of STILT further translates into a low compu-
tational cost. A simulation using 1000 particles running for
24 hours backward in time typically takes 10 min on an Intel
Xeon 2.4 GHz system with 512 K cache and 2 Gb of
RAM running RedHat 9. This means that even with a
single processor, numerous runs can be completed during
the 6-hour update time between different NWP forecasts.
The off-line characteristic provides the flexibility to use
different meteorological fields as well, enabling the con-
struction of multimodel ensembles to assess model errors
(section 3.3).
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[17] Currently, STILT is driven with meteorological fields,
updated every 6 hours, from the following operational
forecast models: AVN (191 km) [Kanamitsu et al., 1991],
ETA (12 + 40 km) [Black, 1994], and MM5 (15 + 45 km)
[Grell et al., 1994]. The MM5 simulations are conducted by
the U.S. Air Force; the other products are generated by
the National Centers for Environmental Prediction
(NCEP). We downloaded these fields from NOAA ARL
[Rolph, 2003]. Recently, the capability to drive STILT with
RAMS [Cotton et al., 2001], ECMWF [Palmer et al.,
2000], and WRF [Michalakes et al., 2001] fields has also
been implemented.

3.2. Sample Output

[18] Figure 2 shows an example of a STILT simulation
generated by the forecasting tool, with the receptor placed at
the Howland eddy flux tower in central Maine [Hollinger
et al., 1999]. The Howland tower is placed at the center of a
line, oriented along the cross-wind direction (shown in
green), where particles were released into STILT on 28 May
2004, at 1300 UT, and transported backward in time. The
particles are shown at �8 (yellow), �16 (blue), and
�24 hours (orange) from the time of release, marking the
upwind source regions where air parcels are found. The
particles spread over wider regions as they travel backward

in time, reflecting the dispersive effects of turbulence and
wind shear in the model. The violet particles indicate air
parcel trajectories that incorporate forecast errors in the
form of stochastic velocities (see section 3.3.1).
[19] The shaded regions represent the ‘‘footprint,’’ the

areas where surface fluxes contribute to changes to concen-
trations at the receptor. The footprint is in units of [ppmv/
(�mol/m2/s)], indicating the sensitivity of receptor concen-
trations (ppmv) to surface fluxes (�mol/m2/s), and is calcu-
lated by integrating the amount of time that particles are
found within the PBL (see Gerbig et al. [2003b] and Lin et
al. [2003] for details). In Figure 2, the shaded regions
indicate the 24-hour integrated footprint, so differences in
tracer concentrations between the receptor observations
(green) and those measured 24 hours earlier (orange) reflect
the net contribution of surface fluxes within the footprint
region. Thus the footprint region is the area where atmo-
spheric measurements have ‘‘leverage’’ in constraining
surface fluxes.
[20] The center of mass of the ensemble of particles at

each hour is shown in Figure 2 as a blue point. In addition,
as indicators of particle spread and orientation, the first and
second principal components (eigenvectors associated with
the two largest eigenvalues) of the particle locations are
plotted for �8, �16, and �24 hours as the red and black

Figure 2. An example of the graphical product generated by the flight planning tool. The receptor is
Howland, Maine, which is the center of the downwind (0 hour) cross section from where particles are
simulated backward in time in STILT. The release time is on 28 May, 1300 UT, and in this example, the
STILT particles are driven with meteorological fields from the AVN model updated on 25 May, 0600 UT.
The different components of the figure are tagged with numbers that are linked to explanations on the
side.
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lines, respectively. These lines show the dominant orienta-
tions of the particle ensemble, and their lengths encompass
90% of the particles along the principal components. We
used the violet-colored particles at each hour to determine
the principal components in order to include the effect of
forecast errors, which resulted in a wider spread of particles
and a lengthening of the principal components, reflecting
uncertainties in the air parcel locations (section 3.3.1).
[21] The tool includes an airport database and automati-

cally determines the airports that are closest to the ends and
centers of the particle ensemble. The selected airports are
shown for the specified hours as black points, along with
their airport codes. Airports with ‘‘instrument approach
systems’’ provide locations where vertical sampling can
be conducted to the ground surface even during cloudy
conditions, enabling representative sampling of concentra-
tions in the PBL. The significance of such airports will be
discussed in more detail in section 4.1.
[22] The wheat-colored particles denote air parcels in the

residual (or ‘‘relic’’) layer [Stull, 1988], which were found
within the same PBL during the previous afternoon as air
parcels arriving at the receptor but are found above the
shallow PBL over the receptor in the morning. It is
particularly interesting to identify residual-layer air for
comparison to early-morning observations near the ground
at the receptor. Air in the residual layer becomes decoupled
from surface fluxes after PBL mixing ceases at night, and
hence concentrations in the residual layer are unchanged by
nocturnal surface fluxes. By identifying and sampling air in
the residual layer (generally found downwind of the recep-
tor due to higher wind speeds than those within the shallow
nighttime PBL), concentrations in the PBL from the previ-
ous afternoon can be inferred even if they were not directly
observed. Thus the difference between concentrations in the
residual layer and in the morning PBL at the receptor
provides an estimate of changes that occurred over the
nighttime (see section 4.2).

3.3. Accounting for Forecast and Model Errors

[23] The flight planning tool includes several independent
methods to quantify and assess the impact of errors on the
forecast results. We describe each of them below.
3.3.1. Incorporate Forecast Error Statistics in Particle
Motion
[24] STILT has the capability to incorporate uncertainties

in wind vectors as an additional stochastic ‘‘error velocity’’
that transports each particle [Lin and Gerbig, 2005]. Par-
ticles transported with these additional stochastic motions
are generally dispersed over a larger spatial area, reflecting
the additional uncertainty about air parcel locations due to
errors in the forecasted wind fields.
[25] The statistics of the error velocity were estimated

from directly comparing forecasted winds and radiosonde
observations over the coterminous U.S. from the NOAA
Forecast Systems Laboratory database [Schwartz and
Govett, 1992] and the ARM/CART program [Stokes and
Schwartz, 1994]. Figure 3 shows the RMS error in the U
component of the wind as a function of the number of hours
extending into the future for the different forecasted fields
during May and June 2003. For all the models, the RMS
error increases as the forecast extends further into the future.
We are currently unclear as to why the higher-resolution

15-km version of MM5 exhibited larger errors than the
45-km version.
[26] We assume a Gaussian distribution of errors at the

current time with standard deviations from Figure 3, and
prescribe these error velocities in horizontal directions by
assuming serial correlation of 4 hours, spatial correlations
with vertical length scale (decorrelation scale) of 900 m, and
horizontal length scale of 120 km. These correlation values
were originally determined [Lin and Gerbig, 2005] by
comparing radiosonde observations with analyzed (instead
of forecasted) winds from the Eta Data Assimilation System
[Black, 1994].
[27] The violet triangles in Figure 2 are particles simulated

with the additional error wind velocities in the horizontal
directions at the specified hours: 0, �8, �16, and �24. The
violet triangles mark out a wider region than those without
the error velocity during all hours. By planning flights that
sample over the wider region, we expect to be able to sample
the upwind air parcels which would arrive at the receptor
even in the presence of forecast errors.
3.3.2. Multimodel Ensemble
[28] Comparisons between simulations from different

atmospheric models have commonly been used to probe
the sensitivity of results to different numerical schemes and
parameterizations [Denning et al., 1999; IPCC, 2001].
[29] The forecasting tool has the capability to conduct

ensemble simulations using the different forecast models

Figure 3. RMS errors in the U component (west to east) of
horizontal wind, derived from direct comparison with
radiosonde observations below 10-km ASL in the U.S.
during May–June 2003. Winds from different forecast
models are linearly interpolated to the locations of the
radiosondes for the comparison. The errors are shown as a
function of the number of hours the forecasts extend into the
future. These error statistics are used to parameterize an
additional ‘‘error velocity’’ in the STILT simulations in
order to incorporate forecast errors into flight planning (see
violet particles in, for example, Figure 2).
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(AVN, ETA, and MM5) and then to overlay the simulated
STILT particle locations on the same plot to reveal the
degree to which forecasts are model-dependent. Discrep-
ancies between models are then interpreted as an indication
of forecast errors.
[30] For instance, STILTsimulations driven with the AVN,

ETA (40 km), and MM5 (45 km) are overlaid in Figure 4a

for a receptor located at Chatham, New Brunswick, on
9 June 2004. Note that the various-colored particles in
Figure 4 refer to different atmospheric models at the
same hour rather than different times, as was the case for
Figure 2. The particle locations at �16 hours differed
significantly, with the ETA particles being found in Ontario,
whereas the AVN and MM5 particles were dispersed over
different parts of southern Quebec. The results diverged
drastically in this example because the propagation of the
warm front that moved through the region on 8 June
differed greatly between the models. The model comparison
alerted the flight planners to the significant uncertainty
existing in the forecasted position of the warm front, and
we decided not to conduct an experiment this day.

Figure 4. A comparison of STILT simulations using
forecast meteorological fields generated by different models
for two instances: (a) receptor located at Chatham, New
Brunswick, on 9 June, 1300 UT (based on forecasts on
7 June, 1200 UT), and particles shown at �16 hours;
(b) receptor located at Howland, Maine, on 11 June, 2200 UT
(based on forecasts on 10 June, 0600 UT), and particles
shown at �6 hours. Note that, unlike Figure 2, the
different-colored particles do not represent different hours,
but the results for the same hour generated using different
meteorological files.

Figure 5. Outputs that are similar to Figure 2 but driven
with AVN fields updated on (a) 25 May, 0600 UT, and
(b) 25 May, 1200 UT.
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[31] In contrast, the simulations by different models
agreed closely for a receptor located at Howland, Maine,
on 11 June 2004 (Figure 4b). All four models predicted
particles at 6 hours backward in time to cover the Saint
Lawrence River in Quebec. The different models converged
in this case probably because there was no strong synoptic
activity, and winds were under the influence of a large-scale
high-pressure system covering the entire New England,
Quebec, and Ontario regions. We carried out this Lagrangian
experiment (for details, see section 4.1).
3.3.3. Stability of Particle Trajectories Over Different
Forecasts
[32] The stability of forecasts generated by the same

atmospheric model using different updates provided a
further probe of forecast errors. We interpreted notable lack
of stability in the forecasts to indicate instances in which
forecasts were uncertain. For example, the simulation for
the Howland receptor on 28 May, 1300 UT (Figure 5),

changed drastically in 6 hours between the forecasts
updated on 25 May, 0600 UT, and later at 1200 UT. This
is especially obvious in the change of the trajectory for the
center of mass of the particle ensembles (blue points in
Figure 5). The forecasted locations further changed during
the following day (not shown).

4. Examples of Flight Planning During the
COBRA 2004 Experiment

[33] We illustrate in this section how the flight planning
tool was used to design Lagrangian experiments during the
CO2 Budget and Rectification Airborne study (COBRA)
mission in 2004. The goal of COBRA was to quantify
regional fluxes of CO2 by combining dedicated observa-
tions and models [Gerbig et al., 2003b; Lin et al., 2004].
The 2004 mission focused especially on constraining fluxes

Figure 6. Observations and flight tracks from the (a) morning and (b) afternoon of 11 June. The CO2

observations are shown as altitude-versus-cumulative-distance cross sections. The gray lines in the cross
sections are the flight tracks, where direct observations were made; the cross section was constructed by a
kriging method. The flight tracks are shown on maps in the lower panel; the lines in red are the subset of
the flight used to create the cross section. The blue crosses label the cumulative distances during each
flight.
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in the northeastern part of North America (specifically, New
England + southern Quebec) from May through August.
[34] The COBRA aircraft was the University of Wyoming

King Air [http://flights.uwyo.edu/] equipped for in situ
measurements of CO [Gerbig et al., 1999] and CO2 [Daube
et al., 2002].
[35] CO2 exhibits the following two special characteristics

that need to be considered in flight planning: (1) Surface
fluxes of CO2 are distributed throughout the landscape
[Ehleringer and Field, 1993], unlike emissions of pollutant
species, most of which are located in urban centers. Accurate
flight planning is therefore necessary to account for disper-
sion and forecast errors to properly determine upwind air
parcel locations (sections 2.1 and 2.2). Failure to properly
model upstream parcel locations means that observed
changes in CO2 can be attributed to erroneous subregions
of the spatially distributed CO2 fluxes. Furthermore, if
upwind locations are falsely forecasted, but are properly
simulated in the analysis, the failure to measure the upwind
air mass can cause large errors in fluxes inferred from the
Lagrangian experiments [Lin et al., 2004; Lin et al., 2006].
(2) Strong diurnal contrast between nighttime emissions of
CO2 from respiration and daytime uptake from photosyn-
thesis [Goulden et al., 1996; Wofsy et al., 1993]. The
diurnal sign reversal in CO2 fluxes calls for observations
to separately characterize nighttime release and daytime
uptake of CO2.
[36] Here we present two examples from COBRA, one

designed to constrain daytime photosynthetic fluxes and the
other to constrain nighttime release from respiration.

4.1. Daytime Constraint

[37] We planned flights to sample the air at �6 (morning,
upwind) and 0 hours (afternoon) at the receptor at Howland,
Maine, on 11 June, 2200 UT. The results from the forecasting
tool (in the form of multimodel comparisons) are shown in
Figure 4b. The change in CO2 concentrations between those
two times reflects the effect of daytime fluxes, dominated by
photosynthetic uptake. To sample the air parcels 6 hours
before arriving at Howland (Figure 6a), the aircraft con-
ducted profiles into airports including Riviere du Loup, along
the St. Lawrence River, and Montmagny to the southwest.
Each profile into an airport was a ‘‘missed approach,’’ a
standard aeronautical maneuver in which the aircraft follows
published procedures and profiles into an airport as if con-
ducting a landing. The aircraft descended at these rural
airports to altitudes as low as several meters above the
runway and then climbed out of the airport. The missed
approaches into airports enabled the aircraft to descend to
altitudes well within the shallow morning PBL even under
cloudy conditions, when limited visibility would otherwise
restrict opportunities for low-altitude sampling in airspace
away from airports. The forecasting tool automatically dis-
plays airports closest to the center of mass of the particle
ensemble and the ends of the two principal components of the
ensemble (Figure 2), facilitating the choice of such airports.
[38] The CO2 concentrations from this experiment are

shown in Figure 6 as altitude-versus-cumulative-distance
cross sections, with flight tracks displayed as gray lines. A
marked difference is observed in the lower troposphere,
where CO2 concentrations were notably lower in the after-
noon over the receptor by �3 ppmv. The change in concen-
tration over 6 hours provides a direct measure of daytime
uptake of CO2 by the vegetation [cf. Lin et al., 2004].
[39] A detailed description of how observations from such

Lagrangian experiments are used to constrain regional-scale
CO2 fluxes can be found in the study of Lin et al. [2004]. In
brief, the analysis proceeds as follows: the upwind observa-
tions are linked to the downwind observations with STILT-
simulated air parcels, driven with assimilated (rather than
forecasted) wind fields. Differences (downwind� upstream)
in CO2 column amounts are then divided by the elapsed time
to produce observed fluxes. These fluxes reflect sources/
sinks throughout the regional-scale footprint source region
and can be compared against predictions from a biospheric
model, which attempts to incorporate the spatiotemporal
heterogeneity arising from biological factors as well as
environmental drivers (for example, radiation and tempera-
ture). Discrepancies between observed fluxes and modeled
fluxes are then minimized by adjusting parameters in the
biospheric model, for example, within the framework of a
formal Bayesian inversion.

4.2. Nighttime Constraint

[40] An example of Lagrangian observations to con-
strain nighttime CO2 emissions was based on the output
from the planning tool shown in Figure 7. For this
experiment, the receptor was located in Baie Comeau,
Quebec, in the morning at 1500 UT on 26 July. Sampling
was conducted at the receptor and 19 hours upwind (after-
noon of previous day), bracketing the nighttime, to measure
the net change in CO2 concentrations arising from net
respiration in the region. The �19-hour air parcels were

Figure 7. Output from the flight planning tool for the
receptor in Baie Comeau, Quebec, on 26 July at 1500 UT.
The result was based upon AVN forecasts updated on
24 July at 1200 UT. This output was used to plan flights to
sample air parcels on the afternoon of 25 July (�19 hours)
and at the receptor, thus bracketing the nighttime period
dominated by respiration. The flight tracks and observations
from this experiment are shown in Figure 8.
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predicted to be over southern Quebec. In order to sample
these parcels, the aircraft conducted missed approaches into
and profiles between the airports of Chibougamau and La
Tuque (shown as red triangles). These profiles only partially

sampled the �19-hour parcels due to restrictions in flight
duration. Likewise, the limited flight duration precluded
direct sampling of residual-layer air parcels (wheat-colored)
eastward of Baie Comeau during the morning of 26 July.

Figure 8. Similar to Figure 6 but for the (a) afternoon of 25 July and (b) morning of 26 July. Both the
observed CO and CO2 cross sections are shown.
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[41] The flexibility in receptor choice, made possible by
the planning tool’s computational efficiency, was critical for
this experiment. We originally intended to place the receptor
at Chibougamau. However, the westerly wind caused air
parcels upwind of Chibougamau to be situated far west in
Ontario. The footprint (shaded area) in this case would then
not have been situated within the COBRA study area of
southern Quebec. We thus moved the receptor further east,
to Baie Comeau, in order to shift the footprint eastward
from Ontario to Quebec.
[42] The observed CO2 concentrations from this exper-

iment (Figure 8) show enhancements in the range of 4–
5 ppmv between the previous afternoon and the morning of
26 July in the altitudes below 1 km ASL within the shallow
morning PBL. During both times, a plume of high CO was
observed above 2 km ASL, probably due to the influence of
large forest fires to the west of the study area. The intercep-
tion of this CO plume in both cross sections lends support to
the analysis indicating that the Lagrangian experiment was
generally successful in resampling air parcels after 19 hours
of travel.
[43] In the morning observations (Figure 8b), CO2 con-

centrations (�364 ppmv) between 1- and 2-km ASL are
lower by several parts per million by volume than values
above 2 km or below 1 km. The air in this layer has yet to
be affected by enhancements in the lowest altitudes and
presumably is the residual layer, reflecting concentrations
established in the PBL from the previous afternoon. The
concentration of �364 ppmv is almost identical to the
observed upwind PBL concentrations (Figure 8a) during
the previous afternoon. Although parcels within the
observed PBL at �19 hours, which end up in the residual
layer, should be transported further eastward to locations
marked out by the wheat-colored particles in Figure 7,
which were not directly sampled, this comparison nonethe-
less is highly suggestive that concentrations in the residual
layer may be similar to those from the previous afternoon’s
PBL. This would mean that sampling the residual layer
during the morning provides an indirect way to infer
concentrations from the previous afternoon, and differences
between enhanced concentrations in the shallow morning
PBL and lower concentrations in the residual layer provide
a direct constraint on fluxes from nighttime respiration.

5. Summary and Conclusions

[44] Lagrangian experiments play an important role for
producing direct observations of the sources/sinks of differ-
ent atmospheric species over scales inaccessible by other
means. Lagrangian experiments have wide applicability,
providing a unique data set which serves to test and
constrain models in such diverse disciplines as, for exam-
ple, carbon science [Wofsy and Harriss, 2002], pollution
research [http://www.al.noaa.gov/ICARTT/] [Stohl et al.,
2004], and aerosol studies [Bates et al., 1998]. Furthermore,
the direct measurements of fluxes from Lagrangian experi-
ments can be used to complement surface-based long-term
observational sites by verifying estimates derived solely
from such observations [Lin et al., 2006].
[45] We have described a tool to plan Lagrangian experi-

ments based on a particle dispersion model that satisfies
the following criteria: computational efficiency, dispersion

capability, and the ability to account for forecast uncer-
tainties. Particle-based dispersion models have originally
been developed to specifically simulate turbulent disper-
sion. The backward-time nature of STILT, serving as the
core of the planning tool, means that locations of air parcels
arriving at an observation location can be estimated from a
single model run [Lin et al., 2003]. The stochastic nature of
STILT also means that an additional ‘‘error velocity’’ [Lin
and Gerbig, 2005] can be added to the motion of the
particles to incorporate forecast errors. We further illus-
trated how the tool was used in the 2004 COBRA mission
to constrain regional-scale carbon fluxes. This paper, like
the one of Stohl et al. [2004], demonstrates the potential of
tools based on particle dispersion models to aid in carrying
out Lagrangian experiments.
[46] We have focused exclusively on applying the tool in

the backward-time mode to elucidate the upwind influence
at a measurement location. However, in the case of field
experiments seeking to track specific plumes (for example,
from forest fires or urban areas), the tool can be similarly
applied by simulating particle transport forward in time.
[47] Future improvements to the STILT-based planning

tool will include the capability of incorporating uncertainties
in not just the horizontal velocities but also errors in vertical
redistribution [Gerbig et al., 2006; Lin et al., 2006] from
processes such as convection and turbulent mixing within
the PBL. Such processes are critical for tracer transport
[Thompson et al., 1994] and inference of surface fluxes
[Law et al., 1996] but remain difficult to reproduce in STILT
due to limitations in the meteorological input as well as
model parameterizations [Gerbig et al., 2003b; Gerbig et al.,
2006]. Additionally, real-time assimilation of meteorological
observations from the research aircraft by the flight planning
tool can be used to reveal errors in the original forecasts and
to realize improvements in the transport of air parcels.
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