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ABSTRACT

We derive regional-scale (∼104 km2) CO2 flux estimates for summer 2004 in the northeast United States and southern

Quebec by assimilating extensive data into a receptor-oriented model-data fusion framework. Surface fluxes are specified

using the Vegetation Photosynthesis and Respiration Model (VPRM), a simple, readily optimized biosphere model

driven by satellite data, AmeriFlux eddy covariance measurements and meteorological fields. The surface flux model is

coupled to a Lagrangian atmospheric adjoint model, the Stochastic Time-Inverted Lagrangian Transport Model (STILT)

that links point observations to upwind sources with high spatiotemporal resolution. Analysis of CO2 concentration

data from the NOAA-ESRL tall tower at Argyle, ME and from extensive aircraft surveys, shows that the STILT–

VPRM framework successfully links model flux fields to regionally representative atmospheric CO2 data, providing a

bridge between ‘bottom-up’ and ‘top-down’ methods for estimating regional CO2 budgets on timescales from hourly

to monthly. The surface flux model, with initial calibration to eddy covariance data, produces an excellent a priori

condition for inversion studies constrained by atmospheric concentration data. Exploratory optimization studies show

that data from several sites in a region are needed to constrain model parameters for all major vegetation types,

because the atmosphere commingles the influence of regional vegetation types, and even high-resolution meteorological

analysis cannot disentangle the associated contributions. Airborne data are critical to help define uncertainty within the

optimization framework, showing for example, that in summertime CO2 concentration at Argyle (107 m) is ∼0.6 ppm

lower than the mean in the planetary boundary layer.

1. Introduction

Terrestrial carbon budgets at regional and continental scales

(∼104 to 106 km2) are key to assessment of human impact on

ecosystems and atmospheric composition. However, obtaining

and validating regional-scale fluxes of CO2 and other important

trace gases has proven to be a scientific challenge. Efforts to
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quantify distributions of sources and sinks of CO2 have focused

on global inverse modelling of CO2 concentration data from the

global monitoring network. Most recently, the globe has been

split into 10–20 large regions (Gurney et al., 2002, 2004). Ag-

gregation errors and errors in atmospheric transport, both within

the boundary layer and between the boundary layer and free tro-

posphere, can be formidable obstacles to using this approach to

obtain reliable quantitative estimates of carbon fluxes at regional

and continental scales (Gloor et al., 1999). Global-scale inver-

sions cannot account for important planetary boundary layer pro-

cesses which affect the concentrations on which they are based,
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subjecting them to an additional representation error (Kaminski

and Heimann, 2001).

Observations of CO2 over the continent can potentially pro-

vide the information needed to determine regional fluxes. The

analysis must quantitatively account for the large variability

introduced by sources and sinks in the near-field of the mea-

surement location (Gerbig et al., 2003a), requiring detailed un-

derstanding of terrestrial CO2 sources and sinks at spatial and

temporal scales much finer than those used in global inversions.

In particular, climate variations and human impacts are often

most readily evident at the regional and continental scales. Meth-

ods to quantify CO2 sources and sinks at this scale, intermediate

between global and very localized, are notably lacking. More-

over, different regions can vary markedly in response of the car-

bon cycle to a changing climate (Friedlingstein et al., 2003; Fung

et al., 2005). From a policy perspective, the inability to reliably

quantify carbon exchange at the regional scale presents a po-

tential stumbling block to future regulatory goals, for example,

developing markets for verifiable trading of CO2 emissions.

Eddy covariance measurements are a rich source of infor-

mation on temporal variability and environmental controls of

CO2 exchange between the atmosphere and terrestrial ecosys-

tems (Law et al., 2002); they have semi-continuous temporal

coverage at an increasing number of sites across the continent.

Unfortunately, it is difficult to reliably scale up eddy-flux mea-

surements to regional scales from the localized footprint (∼101

to 102 km2) of the measurements or to test regional flux models

developed using micrometeorological measurements.

Concentration data for CO2 from tall towers (>∼100 m) pro-

vide a potentially powerful constraint on ‘bottom-up’ flux mod-

els, because the relatively large footprint provides an integrated

signal of CO2 exchange at the regional scale (Gloor et al., 2001).

Previous efforts to interpret the signal of regional CO2 exchange

using tall tower concentration data have focused on simple one-

dimensional atmospheric boundary layer budgets that rely on

gradients in CO2 concentrations between the boundary layer

and the free troposphere (Bakwin et al., 2004; Helliker et al.,

2004). These methods are limited to monthly resolution by the

need to smooth and average over several synoptic events. They

also use a marine boundary layer surrogate for the free tropo-

spheric CO2 concentration over the continent, because of limited

observations.

Gerbig et al. (2003a) and Lin et al. (2006) showed, however,

that free tropospheric concentrations depart significantly from

the MBL reference over the continent, leading to biases in cal-

culations of regional CO2 flux. These differences result largely

from the time lag for vertical propagation of marine boundary

layer concentration changes upwards from the surface into the

free troposphere (Gerbig et al., 2003a), as well as from merid-

ional transport via meandering of the polar jet, and deep convec-

tive events (Gerbig et al., 2003a).

This paper uses CO2 concentrations from a tall tower

at Argyle, Maine to critically test a bottom-up CO2 sur-

face flux model based on assimilation of eddy covariance

fluxes. The surface flux model is an application of the

Vegetation Photosynthesis and Respiration Model (VPRM,

http://people.deas.harvard.edu/wofsy/VPRM.submitted.zip,

hereafter referred to as Pathmathevan et al., 2006), a diagnostic

CO2 flux model with a minimum number of parameters

(3 per vegetation class) driven by remote sensing and weather

data. We focus on CO2 sources and sinks for northern New

England and southern Quebec in summer 2004, when we

made extensive aircraft flights in the region. The Stochastic

Time-Inverted Lagrangian Transport (STILT) Model (Lin et

al., 2003), an adjoint transport model with high spatiotemporal

resolution, provides the quantitative link between surface fluxes

calculated with the VPRM and the time-series of concentration

observations at the Argyle, Maine. We then examine the number

of degrees of freedom in the STILT + VPRM inverse problem,

applied at this single tall tower, to lay the groundwork for future

inverse studies seeking to obtain regional or continental fluxes

using a network of tall tower measurements.

2. Methodology

Gerbig et al. (2003b) developed the receptor-oriented modelling

framework that provides the basis for this study, consisting of

four major components: (1) influence functions from the STILT

model that quantitatively link upstream spatially/temporally re-

solved surface sources/sinks to concentration measurements at

a receptor point (i.e. a measurement location) (2) a lateral conti-

nental CO2 boundary condition for North America from Pacific

observations; (3) Fossil fuel CO2 inventories and (4) a model

for surface CO2 fluxes; in this case, the VPRM of Pathmathevan

et al. (2006).

2.1. STILT adjoint atmospheric model

STILT is analogous to the adjoint of an Eulerian transport model,

with footprint elements representing the sensitivity of the mix-

ing ratio at receptor location to any given surface flux (Errico,

1997). Information about a footprint, the upstream source region

of surface influences on air at a particular measurement point,

comes from computing transport of an ensemble of particles—

representing air parcels—backwards in time using winds and

turbulence statistics from a high-resolution meteorological as-

similation. STILT links the local concentration C(xr, tr) of a

conserved tracer, measured at a receptor location xr at time tr to

the surface sources S for the tracer emitted at upstream locations

x at prior time t, by computing the influence function I(xr, tr|x,

t) (Lin et al., 2003) through eq. (1a).

C(xr, tr) =
tr∫

t0

dt
∫
V

d3x I (xr, tr|x, t)S(x, t)

+
∫
V

d3x I (xr, tr|x, t0)C(x, t0). (1a)
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The first term in eq. (1a) represents �CO2 at the receptor due to

surface sources in domain V between time t0 and tr. The second

term in (1a) is the advected contribution from the initial tracer

field, which in this case is represented by a boundary condition

based on observations in the mid-Pacific (see below). STILT

represents surface fluxes as volume sources distributed from the

surface through a mixing height h. Lin et al. (2003) recast the

first term in eq. (1a) using eq. (1b), which incorporates a surface

flux F(x, t) and a footprint element f , which is mathematically

defined in eq. (2).

�C(xr, tr) =
tr∫

t0

dt
∫
A

d2x f (xr, tr|x, t)F(x, t) (1b)

f =
h∫

0

dz I (xr, tr|x, t) × mair/(hρair) (2)

The value of the footprint calculation depends on the initial col-

umn height, h, below which turbulent mixing is strong enough to

mix the surface signal. STILT calculates the height of the plan-

etary boundary layer based on a modified Richardson number

method (Lin et al., 2003) and h is determined as a fraction of

that value. Gerbig et al. (2003b) found that simulated footprints

were insensitive to values of h between 10% and 100% of the

planetary boundary layer height.

As currently implemented, the transport fields to drive STILT

can come from operational global forecast or reanalysis prod-

ucts (e.g. Eta Data Assimilation System, Nested Grid Model,

European Center for Medium range Weather Forecast model)

or from mesoscale models run specifically for periods and do-

mains of interest [e.g. Regional Atmospheric Modelling System

(RAMS), Weather Research and Forecasting model (WRF)]. A

stochastic Markov chain is used to represent subgridscale turbu-

lence. STILT can explicitly model convection, for example, in

convective storms, if the driver provides convective mass fluxes.

The footprint f is derived from the local density of particles

by counting the number in surface-influenced boxes and deter-

mining the amount of time each particle spends in each surface

volume element during each time step; the results can be vi-

sualized by plotting the time- and area-integrated footprint of

f [<<f>> units: ppm/(μmole m−2 s−1)]. The principal advan-

tages of STILT include the great care taken to conserve mass

and to maintain well-mixed conditions (viz. to obey the sec-

ond law of thermodynamics), the considerable computational

advantage provided by the backward-time, receptor-oriented for-

mulation: that is, running a minimum number of representative

particles backwards in time, each of which influences the recep-

tor point, and the high spatial and temporal resolution achieved

at modest computational cost (Gerbig et al., 2003b; Lin et al.,

2003).

2.2. Empirical lateral tracer boundary condition

A lateral tracer boundary condition is required to connect re-

gional simulations to the global background distribution. We

use a statistical approach based on available observations in the

Pacific to characterize spatial and temporal dependence of tracer

variations. The boundary condition for North America is im-

posed at 145◦ W, representing tracer concentrations over the

mid-Pacific ocean before air parcels enter the dominant westerly

flow over North America. Most particles cross 145◦ W after be-

ing transported back for roughly 6 d from receptor points in the

United States (Gerbig et al., 2003b).

Gerbig et al. (2003b) describe the full development of the lat-

eral boundary condition, including a complete categorization of

the extensive airborne and station data used in its development.

The statistical analysis consists of a Fourier decomposition of ob-

served CO2 time-series from marine surface stations to yield an

analytical representation, followed by fitting a Green’s function

to aircraft CO2 measurements, to represent the vertical propaga-

tion of the seasonal signal at the into the middle and upper tropo-

sphere. For this study, we updated the station data from Pacific

ground stations in the NOAA GMD network (Cape Kumakahi,

HI; Cold Bay, AK; and Barrow, AK) to include the period from

1 January 1980 to 31 December, 2004. In addition, we updated

upper air profiles from regular NOAA GMD aircraft flights over

Carr, CO, Poker Flats, AK and Park Falls, WI during 2003 and

2004, along with measurements from the Niwot Ridge surface

station. The result is a time–latitude–height boundary condi-

tion, based on data from 1980 to 2004, consisting of meridional

(145◦ W) cross-sections for CO2 with spatial resolution of 0.5

km altitude by 2.5◦ latitude and daily time resolution.

2.3. Fossil fuel inventory

The fossil fuel inventory is unchanged from Gerbig et al. (2003b).

Emissions of CO2 from fossil fuel, cement production and gas

flaring come from the 1◦ × 1◦ database compiled by Marland et

al. (1997), with methodology described by Andres et al. (1996).

A linear extrapolation is applied, propagating the trend between

1992 and 1996, and resulting in a 10% total increase in emis-

sions since 1996. Time-of-day and day-of-week scaling factors

are applied to account for time dependence of emission fluxes fol-

lowing Ebel et al. (1997). As described in Gerbig et al. (2003b),

the time factors for carbon monoxide are applied to CO2, with

the amplitude reduced by a factor of 2.5. The day-of-week fac-

tors are 0.95 on weekends and unity on weekdays. Time-of-day

factors average to unity, and range from 0.69 in the middle of

the night to 1.3 for the rush-hour peak.

2.4. Vegetation photosynthesis and respiration model

The VPRM is a powerful new data-driven diagnostic bio-

sphere flux model fully described in Pathmathevan et al. (2006),
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Fig. 1. VPRM vegetation classification (1

km resolution) for the northeast United

States and southern Quebec, the area with

significant influence on Argyle observations.

This is modified from the GLCC 2.0

database (Loveland et al., 2000;

Pathmathevan et al., 2006).

extending the Vegetation Photosynthesis Model developed by

Xiao et al. (2004) to include respiration and saturation of photo-

synthesis at high light levels. The VPRM conceptually partitions

sunlight between photosynthetically active vegetation and non-

photosynthetic components within the leaf and canopy. Satellite

data provide independent information on the spatial and phe-

nological variations of gross primary production using the En-

hanced Vegetation Index (EVI) and Land Surface Water Index

(LSWI), both from MODIS-Terra. Model parameters are ini-

tially determined through fitting to eddy covariance data from

AmeriFlux sites. The model uses temperature from the same

meteorological files used by STILT, and incident solar radiation

from those same fields or from retrievals based on data from

the North American Land Data Assimilation System (NLDAS;

http://ldas.gsfc.nasa.gov/, Mitchell et al., 2003). Net flux is com-

puted every hour on a grid of 1/4◦ longitude by 1/6◦ latitude.

The VPRM bins the GLCC 2.0 1-km resolu-

tion vegetation inventory (Loveland et al., 2000;

http://edcsns17.cr.usgs.gov/glcc/) into 11 classes (10 veg-

etation + 1 flux neutral class; Fig. 1) and calculates net

ecosystem exchange (NEE) of CO2 for each vegetation class

in each grid square separately, scaled by vegetation fraction.

NEE is the sum of two model terms: a light-dependent

term, identified with canopy photosynthesis (GEE), and a

temperature-dependent term identified with ecosystem respi-

ration (R). GEE, as calculated in eq. (3), is assumed to be a

function of shortwave incident flux (SW) and to the observed

EVI (Huete et al., 1997).

GEE = λ × Tscale × Wscale × Pscale × 1

(1 + SW
SW0

)
× SW × EVI,

(3)

where SW0 is the half-saturation value for photosynthesis de-

rived from eddy covariance data for each vegetation type.

The calculation of GEE in eq. (3) includes several scalar func-

tions. These light-, temperature- and water-dependant scalars are

defined as needed for individual vegetation classes in order to ac-

commodate the large range of light- and water-utilization strate-

gies observed in nature. The first scalar in eq. (3) is a temperature

function (T scale), as calculated in eq. (4), capturing temperature

sensitivity of photosynthesis for each vegetation type.

Tscale = (T − Tmin) × (T − Tmax)

[(T − Tmin) × (T − Tmax) − (T − Topt)2]
(4)

The second scalar in eq. (3) adjusts for water stress (W scale based

on the LSWI), as calculated in eqs. (5a) and (5b).

Wscale(grassland/savanna) = (LSWI − LSWImin)

(LSWImax − LSWImin)
(5a)

Wscale(other vegetation types) = (1 + LSWI)

(1 + LSWImax)
(5b)

The third scalar in eq. (3) is a phenology-tracking function based

on LSWI (Pscale),

Pscale(evergreen) = 1 {all times} (6a)

Pscale(grassland/savanna) = (1 + LSWI)

2
{all times} (6b)

Pscale(other vegetation types) = 1 {full canopy period} (6c)

= (1 + LSWI)

2
{bud − burst to full canopy}. (6d)

The bud-burst and full canopy periods of eqs. (6c) and (6d) are

based on EVI, as outlined in Pathmathevan et al. (2006).

In the calibration of the VPRM to eddy covariance data, GEE

is multiplied by an adjustable parameter (λ) for each vegetation

type, representing the overall light use efficiency of the ecosys-

tem. Adjustments which scale λ in our inverse modelling studies
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represent adjustments of the photosynthesis efficiency for a par-

ticular vegetation class over the landscape, as constrained by the

tall tower data.

The VPRM utilizes a linear formulation for respiration (R),

as calculated in eq. (7). R is a function of a second calibration

factor (α) that captures the dependence of respiration on air tem-

perature, when temperatures are above a minimum temperature

Trmin, and an additional calibration parameter (β) represents the

basal respiration rate (e.g. during winter when T < Trmin) for a

given vegetation type.

R = α × T + β {T > Tr min} R = α × Tr min + β {T ≤ Tr min}
(7)

The sets of three scaling parametersfλ, α, βgof the VPRM were

calibrated for each of ten vegetation classes with eddy covariance

data, using all valid hourly NEE measurements for 1–4 yr, at ten

AmeriFlux sites and validated using data from ten separate sites.

The parameters were not initially adjusted to fit atmospheric con-

centration constraints in the present work. Model results with

these 30 calibration parameters (dependent on vegetation class,

invariant with time, determined using eddy covariance data) ac-

counted for 60–80% of the variance of hourly flux data at the

calibration sites, and 50–75% at validation sites; in most cases

predictions of seasonal and annual sums at validation sites were

quite close to observed values (Pathmathevan et al., 2006).

2.5. Argyle tall tower measurements

The receptor-oriented modelling framework (STILT, VPRM,

fossil fuel inventories, lateral boundary condition) allows cal-

culation of CO2 concentration at a given receptor point in space

for any hour given sunlight and meteorological data. In order

to leverage simultaneous measurements being taken during the

COBRA-Maine airborne campaign (see below, and Lin et al.,

2006), the primary receptor point for this study is the NOAA

Argyle tall tower, run by the Global Monitoring Division (GMD)

of NOAA’s Earth System Research Laboratory (ESRL). STILT

is used to determine the influence functions and the upstream

footprint, which are multiplied by the spatially resolved, hourly

biosphere fluxes from the VPRM and fossil fuel fluxes from

the inventory. Contribution from CO2 advected from the lateral

boundary is added and the result compared to the observations

at the receptor.

The Argyle site (45.03◦ N, 68.68◦ W) is a cell phone tower

located in a northern mixed deciduous, evergreen forest in rural

central Maine north of Bangor, elevation 50 m above sea level.

The experimental set-up is similar to the WLEF tower (Bakwin

et al., 1998), with CO2 and CO concentration measurements

taken every 4 minutes at 12 m and 107 m above ground level.

CO2 is measured with a Licor Li-7000 CO2/H2O analyser cali-

brated with five standard gases. CO is measured with a Thermo

Electron model 48CTL CO analyser calibrated using two stan-

dard gases. The zero concentration reference for the CO analyser

is checked by catalytically scrubbing CO from ambient air using

Sofnocat as a reagent as part of the standard measurement pro-

tocol. Supplementary flask samples are collected weekly from

the top level and are shipped to the GMD/ESRL laboratory in

Boulder, CO for analysis of CO2, N2O, CH4, SF6, H2 and CO

concentrations, as well as isotope ratios of 13C and 18O in CO2.

NOAA GMD began sampling at Argyle on 17 September 2003.

The focus of this study is the time period of May to August

2004, coinciding with the COBRA-Maine airborne campaign.

COBRA-Maine utilized the University of Wyoming King Air

for nearly 200 flight hours over 59 flights in Maine, greater New

England and southern Quebec to characterize regional carbon

exchange. The campaign was based out of the Bangor Interna-

tional Airport, located roughly 30 km south of Argyle. In total,

the aircraft collected over 900 vertical profiles of CO2, CO, water

vapour, ozone and meteorological data from the surface to alti-

tudes up to 8 km. Over 120 of those vertical profiles were flown

within 50 km of the Argyle tall tower. The flight data provide

characterization of CO2, CO and atmospheric structure in the

boundary layer and free troposphere in the vicinity of Argyle.

2.6. Application STILT + VPRM at argyle tall tower

We utilized the STILT + VPRM receptor-oriented modelling

framework to compute hourly concentrations during sum-

mer 2004 for the receptor at 107 m above the ground at

Argyle. For each hour, STILT determined influence functions

using 100 particles, transported back 6 d in time by Eta Data

Assimilation System 40 km (EDAS-40) reanalysis fields ob-

tained from the NOAA Air Resources Lab server (Rolph, 1997;

ftp://www.arl.noaa.gov/pub/archives/edas40/). For consistency

with Gerbig et al. (2003b), we took an initial column height h for

the input of surface emissions (see eq. 2) to be 50% of the plan-

etary boundary layer height, as calculated from the reanalysis

fields. Because we did not have convective mass fluxes available

from EDAS-40, we did not explicitly model convection.

Eight-day EVI and LSWI were computed directly from

MODIS radiances at 1 km resolution for each of the eleven vege-

tation classes (ten vegetated, plus non-vegetated such as ocean),

using quality control as outlined in Pathmathevan et al. (2006),

and aggregated onto a rectangular surface grid spanning 30◦ to

65◦ N and 51◦ to 140◦ W with resolution 1/6◦ latitude by 1/4◦

longitude, taking trimmed mean values from 1 km data for each

parameter, for each vegetation type within a grid square. Temper-

atures to drive the VPRM were taken from the EDAS-40 analysis

fields and shortwave radiation was taken from incoming down-

ward solar radiation tabulated by the North American Land Data

Assimilation System (NLDAS; Mitchell et al., 2003).

The convolution of STILT influence functions and VPRM

fluxes yields a value for CO2 concentration at Argyle for any

hour. We calculated STILT + VPRM concentrations at Argyle

for all hours in two representative 15 d periods, one from 1 June to

15 June and one from 1 August to 15 August. We also determined
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concentrations for midday hours (1400 GMT to 2100 GMT) for

the entire summer, 15 May to 15 September 2004. EDAS fields

do not accurately reflect the near-surface atmospheric environ-

ment at night, when the tower is influenced mainly by nearby

sources. Hence we focused our model-data comparisons on

daytime values.

2.7. Optimization approach

In order to place large-scale constraints on the VPRM param-

eters using the link to atmospheric concentration data at Ar-

gyle, we performed a simplified Bayesian optimization approach

(Rodgers, 2000) with two adjustable coefficients for each vege-

tation type, γ and ρ, one respectively for GEE and R. (Gerbig et

al., 2003):

NEE = γ × GEE + ρ × R. (8)

Here GEE and R are computed from eqs. (3) and (7), respec-

tively. The a priori model (γ = ρ =1 for all vegetation classes)

has assimilated a large volume of eddy covariance information

through the calibration factors (λ, α, β), but no constraint from

atmospheric concentration data had been applied. Thus devia-

tions of Bayesian-optimized γ and ρ from 1 encapsulate the

deviation between local-scale carbon fluxes calibrated against

eddy covariance measurements and regional-scale carbon fluxes

constrained against atmospheric CO2 observations.

As outlined in Rodgers (2000) and Gerbig et al. (2003b),

the measurements at Argyle can be related to vegetation signal

(�CO2) from each vegetation class through

y = K¡ + ", (9)

where y is a vector of measurements, K is the Jacobian matrix

relating the measurement vector to the state vector, ¡ is the state

vector of scaling factors (γ ’s and ρ’s), and " is an error vec-

tor accounting for uncertainties in measurements and modelling

framework. As applied here, the measurement vector y has a

single element for each hourly value at Argyle, calculated by

subtracting from the Argyle observation the computed contribu-

tions advected from the boundary and associated with fossil fuel

combustion. The Jacobian matrix K computes the CO2 signals

for each vegetation class as determined by the STILT + VPRM

from the surface flux model.

The optimum posterior estimates of the scaling factors γ and

ρ for each vegetation class, based on atmospheric concentration

information from Argyle, are obtained by minimizing the cost

function J using a standard least squares formulation

J(�) = (y − K�)T S−1
ε (y − K�) + (� − �prior)

T S−1
prior(� − �prior).

(10)

In eq. (10), there are two error covariance matrices, one for the

vegetation signals, Sε , and one for the prior scaling factors, Sprior.

Sprior comes from work extensively detailed in Pathmathevan et

al. (2006) comparing observed eddy covariance fluxes to the ini-

tial calibration of the VPRM, resulting in standard deviations on

the initial calibration factors that can be normalized and propa-

gated for use as prior uncertainties for scaling factors γ and ρ.

The off-diagonal elements of Sprior are assumed to be 0, since the

calibration of the VPRM does not introduce covariance in errors

between vegetation classes. The values of the diagonal elements

in Sprior for the different vegetation classes are shown in Table 3.

The formulation Sε of is detailed below.

Posterior estimates of ¡ , optimally consistent with both Ar-

gyle measurements and prior estimates of fluxes from the initial

calibration of the VPRM, are obtained by minimizing J. ¡ post

can be calculated using eq. (11) (Rodgers, 2000).

�post = (K T S−1
ε K + S−1

prior)
−1(K T S−1

ε y + S−1
prior�prior) (11)

The uncertainty of ¡ post is expressed through a posterior error

covariance matrix, Spost, as shown in eq. (12).

Spost = (K TS−1
ε K + S−1

prior)
−1 (12)

Following Gerbig et al. (2003b), the error covariance matrix

Sε was assumed to be additive:

Se = Sveg + Spart + Seddy + Stransp + Saggr + Socean. (13)

Sveg is the uncertainty in the vegetation signal (total �CO2),

as given by y in eq. (9). The associated error covariance matrix

Sveg is derived by propagating measurement uncertainty from the

Argyle observations (variable between 0.1 and 0.3 ppm) with

estimated uncertainties in the advected background and in the

contributions from fossil fuels. We used a value of 1.15 ppm

as the standard deviation for normally distributed errors in the

advected background, as calculated by Gerbig et al. (2003b). This

value is supported by measured differences between calculated

advected background values and corresponding free troposphere

observations in the vicinity of Argyle during COBRA-Maine

(Section 3.3) for which the standard deviation was 1.20 ppm.

Uncertainty in the contribution due to fossil fuel combustion

was assumed to be 30% of the signal (Gerbig et al., 2003b).

We did not account for any influence biomass burning may have

had on the Argyle measurements; 2004 was generally wet in the

region and there were no large fires near Argyle.

Spart is the random error due to particle statistics, and is taken

to be a diagonal matrix with value 13% of the Argyle signal, in

accordance with the relative uncertainties for mixed layer recep-

tor points derived in Gerbig et al. (2003a) for simulations with

100 particles. Seddy is the error due to unresolved eddies, and

is calculated from a statistical comparison of Argyle concentra-

tions to mean concentrations within the mixed layer nearby as

measured by the aircraft during COBRA-Maine (Section 3.3).

Stransp is the sum of two terms. (1) The influence of error in

modelled height of the mixed layer is calculated from aircraft

profiles done near Argyle during COBRA-Maine (Section 3.3).

For profiles within 50 km of Argyle, the mean difference between

EDAS-40 mixed layer height and manually observed height was
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Fig. 2. Time-series of observations from the

NOAA CMDL tall tower site (black line)

and STILT + VPRM derived hourly CO2

concentration at the Argyle receptor (red and

green lines) point, with advected model

background (light grey line) for 1–15 June

2004 (a) and 1–15 August 2004 (b). STILT +
VPRM results based on the initial calibration

are in red; results with the a posteriori

scaling factors from the Bayesian inversion

(Section 3.4) are in green. Differences in

modelled concentration from the background

line are the product of VPRM fluxes and

STILT-derived influence functions.

Hurricane Alex influenced transport during

1–6 August 2004. This time period is shaded

and not included in the Bayesian Inversion.

200 m, with standard deviation of 500 m. The first part of Stransp

was calculated by taking the variance in relative differences be-

tween EDAS-40 and manual mixed layer height (mean = 0,

standard deviation = 0.42) and multiplying by the vegetation

signal for that each time step. (2) Tracer transport error is com-

puted using the method of Lin and Gerbig (2005), in which

direct comparison is made between EDAS assimilated winds

and data and radiosonde observations. Statistics of transport er-

rors from this comparison are propagated stochastically through

STILT as an added error component reflecting uncertainty in

the winds. Tracer transport uncertainty is defined for each hour

as the associated variance in concentrations, as determined by

eq. (1).

Saggr represents the error due to aggregation of fluxes into large

finite regions, with diagonal elements estimated as in Gerbig et

al. (2003b) to be (3 ppm)2. Similarly, the error due to neglecting

oceanic fluxes, Socean, is taken directly from Gerbig et al. (2003b)

as the upper limit of what those fluxes might have a contributed,

0.1 μmol/m2/s.

Errors in transport (Stransp) and aggregation (Saggr) were as-

sumed to have a temporal correlation that decreased exponen-

tially with a decorrelation timescale of 12 hr. Consequently, there

were off-diagonal elements in Stransp and Saggr that were calcu-

lated by multiplying the diagonal elements with a matrix made

from a simple exponential decay function. The 12 hr timescale is

meant to capture the synoptic scale variation expected to affect

Stransp and Saggr. The other terms in eq. (13) were assumed to

have negligible temporal correlation.

3. Results and Discussion

3.1. Comparison of observations and initially calibrated
STILT + VPRM results

STILT + VPRM concentrations at Argyle are consistently very

close to daytime observations during most periods using the co-

efficients derived from eddy flux data without adjustment (γ =
ρ = 1 for all vegetation classes). Figure 2 shows modelled CO2
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Fig. 3. (Top) Time-series of daily afternoon

mean CO2
veg (i.e. �CO2 sum from all

vegetation classes) for 15 May–15 June

2004. There is one point per day along each

line. STILT + VPRM results based on the

initial calibration are in red; results with the

a posteriori scaling factors from the

Bayesian inversion (Section 3.4) are in

green. The Argyle signal (black) is

determined by subtracting from the observed

concentrations the advected background

(Section 2.2) and advected fossil fuel

contribution (Section 2.3) determined by

STILT + VPRM. (Bottom) Time-series of

mean afternoon observations from Argyle

(black line) and corresponding mean STILT

+ VPRM-derived afternoon CO2

concentration (red and green lines) point,

along with advected model background

(grey line) for 15 May–15 June 2004. The

fossil fuel contribution is not explicitly

shown, but included in the STILT + VPRM

calculations of CO2 concentration.

concentrations and model background values calculated from the

advected continental boundary condition along with those meas-

ured at Argyle tower, for two 15 d periods, in June and in August

2004. STILT + VPRM also captures summertime seasonal

trends of ambient concentrations observed at Argyle. Figure 3

(top) shows the STILT + VPRM estimates of CO2
veg compared

directly to with the Argyle data, from which we have subtracted

the advected background and fossil fuel contributions. Note the

drawdown that increases in early summer, then decreases later

in the season, reflecting activity of forests in the region. Most

synoptic variations are well simulated (e.g. Fig. 3, bottom; days

230–233 and days 240–245). These reflect large-scale changes

in environmental drivers (sunlight, temperature), changes in ad-

vected background and fossil fuel influence, and changes in the

particular regions influencing measurements at Argyle.

Due to limitations of the meteorological driver (EDAS),

STILT has difficulty accurately reproducing transport on

stable nights. This is manifest in the time-series by the vari-

able fidelity of STILT + VPRM predictions of the large

positive CO2 concentration excursions in the observations,

associated with build-up of CO2 in the stable nocturnal bound-

ary layer. Significant systematic errors also accrue during

periods of convection, when STILT may calculate erroneous

transport and footprint fields because EDAS reanalysis fields

do not represent convective mass transport. We see this ef-

fect as errors in CO2 concentration at the receptor point at

times when frontal systems are near the receptor (Gerbig et al.,

2003b). For example, during the period around 0000 GMT on

10 June 2004 (Fig. 2a, Julian day 161), NCEP surface charts

and GOES satellite data show a distinct cold frontal passage at

Argyle.

On seasonal timescales, a period of frequent stormy weather,

such as 19 June to 9 July (Fig. 3, Julian days 170 to 190), shows

clear-cut deviations from observations. We will in the future use

a mass flux scheme (e.g. Grell and Devenyi, 2002) with transport

fields from mesoscale models that can output convective mass

fluxes (e.g. WRF, RAMS), in the hope of enhancing the power

of STILT + VPRM to consistently link regional flux fields to

observed concentration values including convective influence

(Gerbig et al., 2005).

In Fig. 2b, the STILT + VPRM does not match the observa-

tions during the period from 1 August to 6 August 2004 (Julian

days 214–219, shown in grey). We attribute this to the inability of

the transport model to capture atmospheric transport associated

with Hurricane Alex. Alex tracked to the northeast staying a few

hundred kilometres offshore, partly out of the EDAS domain. It

strengthened to Category 3 as it moved through latitude 40◦ N

on 4 August. This period has been removed from our Bayesian

inversion (Section 3.4).

3.2. Footprint and vegetation influence

Two vegetation types dominate summertime influence at Argyle:

mixed forest and deciduous forest. They contribute on average

at least an order of magnitude greater �CO2 at Argyle during

summer 2004 than the other vegetation types (Table 1). Wet tem-

perate evergreen forest (Eastern white pine) provides the greatest

influence of the remaining classes.

Footprint calculations display the principal areas that influ-

ence Argyle CO2 data, mostly located in Maine and Quebec.

Figure 4 shows the 5 d time-integrated STILT footprint for Ar-

gyle averaged over each daytime hour during the period from 15
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Table 1. Mean �CO2 (ppm) for different vegetation classes at Argyle

Boreal Wet temp. Dry temp. Subtropical Deciduous Mixed Forest Shrub Savannah Crop Grass

evergreen evergreen evergreen evergreen forest

June −0435 −0.512 −0.017 −0.065 −4.99 −5.95 +0.215 −0.046 −0.260 +0.357

July −0.790 −1.06 −0.012 −0.034 −5.48 −9.31 +0.132 −0.029 −0.655 −0.171

August −0.662 −0.475 −0.011 −0.010 −3.46 −7.29 +0.191 −0.049 −0.407 −0.253

Mean �CO2 contribution of each VPRM vegetation class to the modelled concentration at Argyle for daytime hours in June, July and August 2004.

The two primary contributors for each month are in boldface type.

Fig. 4. Visualization of the average 5 d footprint (<<f>>, see eq. 2)

for Argyle tower for daytime hours during the period 15 May to 15

September 2004. For each hour, <<f>> is calculated by taking the

footprint function and integrating over all areas and all times for 5 d

upstream, and the mean result is shown. Values less than 10−5 are not

coloured.

May to 15 September 2004. The area coinciding with the average

footprint is dominated by deciduous and mixed forest (Fig. 1)

as expected. These are among the ecosystem types for which

the VPRM was most effective in capturing seasonal GEE and

respiration variations, and where the model performed best in

cross-validations (Pathmathevan et al., 2006). The signal from

wet temperate evergreens comes from east of Argyle in Nova

Scotia, New Brunswick, and easternmost Maine. Unfortunately

there is not really a suitable eddy flux site for this biome, and

the VPRM had to use Niwot Ridge, a montane forest, as the

calibration site. Influence from this biome also coincides with

unsettled weather in many cases.

Fossil fuel influence on Argyle was consistent across the sum-

mer. The monthly means for summer are shown in Table 2. Fossil

fuel influence at Argyle on a any given day can be vary, depend-

ing on whether air arrived at Argyle from relatively rural southern

Quebec or from the major cities of eastern United States. Aside

Table 2. Fossil fuel �CO2 (ppm) at Argyle

Mean Standard deviation

June 2.5 3.1

July 3.5 2.9

August 3.5 2.7

Mean and standard deviation of monthly �CO2 contribution from

fossil fuels at Argyle, as calculated by STILT + VPRM.

from synoptic timescale variability, fossil fuel influence is rela-

tively constant reflecting very large-scale influences far from the

site.

Monthly average maps of net ecosystem exchange are shown

in Fig. 5, calculated using the VPRM to determine the mean

of all the hourly values at each grid square for each month in

summer, 2004. Within the region that influences concentration

measurements at Argyle tower (see Fig. 4), there is a large in-

crease in uptake from May to June, then a gradual decrease

through July and August, corresponding to the seasonal pattern

expected for a mid-latitude area dominated by deciduous and

mixed forest. Overall, VPRM-derived fluxes appear to capture

both the spatial heterogeneity and temporal variations needed

to meaningfully assess patterns in regional terrestrial carbon

exchange.

Using the daytime results calculated for the entire summer, we

computed average morning concentration values (10 a.m.–1 p.m.

eastern daylight time; 1400–1700 GMT) and afternoon concen-

tration values (2 p.m.–5 p.m. eastern daylight time; 1800–2100

GMT) for each day. We removed from the Argyle data periods

with low turbulent mixing (mean friction velocity, u∗ < 0.2 m/s),

to avoid times where the tower is not well coupled to the over-

lying atmosphere (Lin et al., 2003; Gerbig et al., 2003b). Figure

6 compares these averages to Argyle concentration data aver-

aged over the same periods of the day. Averaging over several

hours allows reduction of hour-to-hour noise in both measure-

ments and model results, while preserving the signal contained

in diurnal patterns that reflect the daily cycle of photosynthetic

uptake.
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Fig. 5. Initially calibrated VPRM calculated

mean monthly (all hours) fluxes for May (a),

June (b), July (c) and August (d) 2004 in

μmol/m2/s, based on hourly calculations.

Fig. 6. Direct comparison of STILT +
VPRM derived concentrations prior to

Bayesian optimization versus Argyle

observations for averaged over morning

(1400 GMT–1700 GMT) (a) and afternoon

(1800 GMT–2100 GMT) (b). The

performance of the model is best in

afternoon, when conditions are most likely

to be well mixed. The 1:1 line is also shown.

Periods with consistently low turbulent

mixing, indicated by mean friction velocity,

u∗, less than 0.2 m/s (seven points in each

case) have been eliminated.

STILT + VPRM captures day-to-day variations in CO2 con-

centration observed at Argyle somewhat better in the afternoon

than in the morning, with root mean square error of 5.66 ppm

versus 9.53 ppm, respectively. The mean difference and mean

absolute difference in the morning are about the same as the root-

mean-square, indicating systematic underestimation of CO2. The

distribution of residuals for the afternoon is more Gaussian with

significantly smaller bias. Morning mean observations at Ar-

gyle are likely influenced in some cases by residual build-up

of CO2 from the previous night, a locally influenced effect that

is insignificant most afternoons. The difference between morn-

ing and afternoon values might also indicate errors in the un-

adjusted VPRM respiration or uptake parameters, particularly

in the mixed forest and deciduous forest vegetation surrounding

Argyle. More likely, the morning bias reflects the inability of

EDAS-40 to adequately capture growth of the planetary bound-

ary layer.

3.3. Comparisons with COBRA-Maine airborne data

Aircraft data collected during the COBRA-Maine campaign give

us valuable information through comparisons with Argyle ob-

servations and STILT + VPRM results. Comparisons with tower

data allow direct quantification of error distributions (e.g. rep-

resentation error) needed to perform a Bayesian optimization.

Figure 7 shows the characteristic pattern during an afternoon

cross-section observed travelling eastwards across Maine to the

coastal region. STILT + VPRM effectively captures the pat-

terns along the cross-section, but the west-to-east gradient is

overestimated within the boundary layer and there is a notice-

able deviation of the mid-tropospheric values. These differences

are a convolution of transport errors, including boundary layer

height (especially in the coastal zone), and errors in the VPRM

parameters, with a potential minor contribution from misclassifi-

cation of vegetation. Differences are also caused by processes not
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Fig. 7. Comparison of COBRA-Maine in-situ CO2 (ppm) with STILT + VPRM derived CO2 (ppm) along a flight track that traversed the state of

Maine eastwards on the afternoon of 11 June 2004. Longitude-altitude cross-sections using a distance-weighted interpolation, with the flight track

line in light grey are shown for observations (left), the STILT + VPRM results (centre), and the difference between the two (right). The points used

in the interpolation were a subset of flight data, with a point for taken when positioned changed by 10 km along the horizontal flight track or 20 mb

in the vertical.

adequately captured within STILT + VPRM framework: global

scale and far-field effects on the mid-troposphere, convective

redistribution, and vegetation processes (e.g. nutrient cycling,

disturbance, hydrological processes) not included in the VPRM.

It is clear, however, that even perfect optimization of the surface

flux model could not perfectly match observations due to the

strong influence of transport error, for example, due to errors in

the boundary layer height.

Integration of concentrations to a fixed height may provide a

better measure of regional fluxes in the model, since these are

sensitive to regional surface fluxes but relatively insensitive to

details of regional atmospheric dynamics (see, e.g. Chou et al.,

2002). In COBRA-Maine, the observed and STILT + VPRM

values were typically very close. For example, in Fig. 7, mean

CO2 observed above 2 km was 378.94 versus 381.0 from STILT

+ VPRM, and below 2 km, 376.4 ppm versus 376.3, respectively.

The difference between CO2 below and above 2 km, a key mea-

sure of model performance, was 2.5 ppm observed versus 3.7

ppm modelled, typical of the level of agreement we observed.

Aircraft data allow us to assess directly the representation er-

ror incurred by model treatment of measurements at Argyle as

the mean in the regional planetary boundary layer, an important

prior uncertainty for inclusion within a Bayesian optimization.

We expect a small daytime gradient to develop in CO2 con-

centration within the boundary layer due to biospheric uptake,

potentially leading to a biased underestimation of mean PBL

concentrations at the relatively low tower measurement height.

Of the over 120 vertical profiles flown during COBRA-Maine

within 50 km of Argyle, manual examination of individual pro-

files of water vapour, potential temperature, CO2, ozone, and

turbulence showed a clearly discernable inversion marking the

top of the afternoon mixed layer in 4a cases. For each of those

cases, we found the average CO2 concentration measured in

situ by the aircraft as it vertically traversed the boundary layer

and compared it to the value at Argyle tower. The Argyle ob-

servations at 107 m underestimated the mean boundary layer

CO2 by 0.89 ppm on average (Fig. 8). Observations at 25 m

underestimated the mean PBL concentration by much more,

1.49 ppm on average. Overall, this represents a relatively small

Fig. 8. Comparison of CO2 concentration observed at 107 m on the

NOAA CMDL Argyle tall tower and mean boundary layer CO2

concentration, determined from COBRA-Maine airborne data. Each

point represents the mean concentration below the top of the mixed

layer measured by the aircraft as it ascended or descended through the

boundary layer within 50 km of Argyle versus the mean tower

concentration for the same time period. The top of the mixed layer was

determined manually from vertical profiles of water vapour, potential

temperature, ozone, and turbulence.
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potential source of uncertainty compared to others discussed in

Gerbig et al. (2003b). However, to our knowledge, this is the most

extensive systematic comparison of tower measurements to mean

boundary layer values obtained by aircraft to date, with many

more data points than previous studies (Bakwin et al., 2003). It

reinforces that tall towers are less prone to influence from lo-

cal concentration gradients and more representative of a larger

surrounding area than short ones, but systematic differences of

order 1 ppm are likely even at tall towers.

Airborne in-situ concentration measurements collected in the

free troposphere above the top of the mixed layer are use-

ful in evaluating the advected continental boundary condition

value that provides the background upon which the concen-

tration changes due to surface fluxes are imposed. In order to

assess potential error in upstream boundary condition, Gerbig

et al. (2003b) evaluated the mean difference between the em-

pirical boundary condition developed from vertical profiles in

the Pacific and the accumulated library of corresponding Pacific

airborne measurements, obtaining 0.22 ppm, with a standard de-

viation of 1.15 ppm. Latitudinal gradients in the Pacific boundary

condition were not prominent with values around 3 to 4 ppm be-

tween 10◦ N and 72◦ N at most altitudes throughout 2004. In

August and September, the potential bias in our treatment of the

boundary condition was as large as 1 ppm. Figure 9 shows a

comparison of the mean advected boundary condition at Argyle

used in STILT + VPRM calculations to in-situ mean free tropo-

spheric (>3 km) CO2 measured by the King Air for 59 profiles

Fig. 9. Comparison of mean free troposphere CO2 concentration

determined from COBRA-Maine airborne observations and

corresponding background value at Argyle tower, determined from the

advected boundary condition in the receptor-oriented model (Section

2.2). Each point represents one aircraft profile within 50 km of Argyle.

from COBRA-Maine. The mean difference is 1.2 ppm, which

is of the same order as would be expected from the analysis in

Gerbig et al. (2003b), and the same order as the tower-PBL gra-

dient. These results are applied to Sveg (see eq. (13); Section 2.7)

in Bayesian optimization below.

Two types of errors due to transport contribute most strongly

to potential errors in the advected boundary condition. First, be-

cause we assume a boundary condition in the central Pacific, the

small fraction of particles leaving the STILT domain to north (or

south) are given values fit to north (or south) Pacific concentra-

tions, where values in the Arctic or subtropics are needed. These

are not available due to the scarcity of observations. Second, be-

cause EDAS-40 does not include convective transport, there is

the potential for divergence between modelled background and

observed free troposphere due to misrepresentation of convective

influence.

3.4. Bayesian optimization incorporating tower
concentration observations

The Argyle data set provides a constraint for powerful inversion

techniques, such as Bayesian inversion or Ensemble Kalman Fil-

tering to further optimize the VPRM model. Since the VPRM

already incorporates knowledge about the functional dependence

of carbon exchange through the AmeriFlux eddy-covariance

data, STILT + VPRM already goes beyond a straightforward

top-down estimation of fluxes. The Bayesian optimization can

extend bottom-up extrapolation of eddy correlation fluxes by

imposing large-scale constraints from tall tower data. We, there-

fore, undertook an inverse analysis below, exploratory in nature,

using the single tower data set from Argyle within the STILT +
VPRM framework to assess the information available from eddy

covariance and tall tower concentration data.

We performed a Bayesian optimization for scaling factors γ

and ρ for each vegetation class (Table 3). This analysis used

863 daytime hours (excluding hours with missing Argyle data)

during the growing season, 15 May to 15 September 2004. The

atmospheric data provide the most information for the mixed and

deciduous forest vegetation classes as expected from the STILT

footprint in Fig. 4. In all cases, a posteriori scaling factors are

relatively close to unity, consistent with the relatively good per-

formance of the input VPRM. Prior to optimization, the root

mean square error (RMSE) of STILT + VPRM CO2 concen-

trations from the observed concentrations for all daytime hours

was 7.31 ppm. Optimization improved the RMSE to 5.79 ppm,

a 20% reduction.

Errors in computed concentrations reflect errors in the a priori

values of γ and ρ for each class, which can in turn be inter-

preted as errors in the initial calibration factors used to fit the

VPRM. These are mixed with errors in the footprint calcula-

tion and other model errors. Applying the γ and ρ factors to

the STILT + VPRM results shown in Figs. 2 and 3 increases

correlation of model results to observations, but changes the

Tellus 58B (2006), 5



356 D. M. MATROSS ET AL.

Table 3. STILT + VPRM Bayesian optimization based on Argyle tower concentration data

A priori scaling A posteriori scaling A priori A posteriori % reduction in

factor factor uncertainty uncertainty uncertainty

γ borealevergreen 1 0.96 0.018 0.015 16.7

ρborealevergreen 1 0.96 0.112 0.073 34.8

γ wettemperateevergreen 1 1.01 0.013 0.011 15.4

ρwettemperateevergreen 1 1.24 0.060 0.037 38.3

γ drytemperateevergreen 1 1.02 0.022 0.022 0.0

ρdrytemperateevergreen 1 0.94 0.072 0.069 4.2

γ subtropicalevergreen 1 0.96 0.014 0.012 14.3

ρ subtropicalevergreen 1 1.21 0.045 0.036 20.0

γ deciduous 1 0.71 0.023 0.009 60.9

ρdeciduous 1 0.42 0.344 0.017 95.0

γ mixedforest 1 0.67 0.016 0.007 56.3

ρmixedforest 1 0.79 0.148 0.020 86.5

γ shrubland 1 1.00 0.015 0.015 0.0

ρ shrubland 1 0.89 0.068 0.063 7.4

γ savanna 1 0.99 0.015 0.015 0.0

ρbsavanna 1 1.02 0.076 0.076 0.0

γ cropland 1 0.86 0.030 0.020 33.3

ρ cropland 1 0.50 0.170 0.052 69.4

γ grassland 1 0.92 0.027 0.025 7.4

ρgrassland 1 0.08 0.212 0.148 30.2

Bayesian optimization of γ and ρ scalar multipliers for VPRM gross ecosystem exchange and respiration, respectively, for 10 vegetation classes

using Argyle tower concentration measurements. Constraints were hourly daytime (1400–2100 GMT) CO2 concentration observations, over 114 d

(N = 863), computed from STILT–VRPM, May 15 to September 15, 2004. In the a priori case γ = 1 and ρ = 1.

overall patterns only slightly. This indicates the prior values (i.e.

the initial calibrations to eddy covariance data) carry significant

weight in the optimization. Further, deviations are mostly caused

by processes not adequately captured within STILT + VPRM

framework, especially transport error.

Atmospheric concentration data do not provide significant

constraints for scaling factors from either dry temperate ever-

green or wet temperate evergreen vegetation classes, those that

Table 1 shows have the next strongest influence on Argyle, af-

ter deciduous forest and mixed forest. Within the mixed forest

and deciduous forest, atmospheric concentration data provides

strong constraints on two scaling factors and only moderate con-

straints on the other two. Hence, Argyle data alone are insuf-

ficient to fully constrain the VPRM model, even where only

two vegetation classes have major influence. In order to fully

optimize the VPRM for New England and southern Quebec,

additional tower sites and/or inclusion of aircraft data will be

needed.

4. Conclusions

We have used STILT + VPRM, a model-data assimilation frame-

work with a minimum number of parameters, to estimate terres-

trial carbon flux with high temporal resolution on regional to

continental scales. Results from the VPRM, using parameters

derived from AmeriFlux eddy covariance data, showed good

agreement with CO2 concentrations at Argyle tall tower and in

COBRA-Maine aircraft surveys, for simulations in which there

was no adjustment of parameters to fit atmospheric concentration

data. This result shows that STILT + VPRM is fully represen-

tative of the regional scale, rather than just the local scale. The

framework successfully takes eddy flux data from local scales,

and derives the emergent functional dependence of flux on en-

vironmental conditions to capture surface heterogeneity and to

interpret data for carbon fluxes at scales previously inaccessible

from global inversions or local-scale eddy covariance measure-

ments. Success of STILT + VPRM hinges on the capability for

STILT to link regionally representative point concentration data

to upwind sources with high spatiotemporal resolution, plus the

capability for the VPRM to capture the rich spatial and temporal

complexity of CO2 fluxes using remote sensing and eddy flux

data.

The extremely simple mathematical structure of the VPRM

enables efficient optimization of scaling parameters using tall

tower or aircraft concentration data. An exploratory Bayesian

optimization demonstrated the large amount of information nec-

essary to reasonably constrain even a relatively simple biosphere

model such as the VPRM, as well as the critical importance of

transport errors.

Our results imply a conservative approach to estimating the

amount of information any single tower within a network can

provide for carbon accounting. A network may need a denser
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distribution of towers than footprint calculations might suggest

in order to properly attribute CO2 changes to different vegetation,

because the influences of various vegetation types are commin-

gled by atmospheric transport and thus are not readily separated

in an inverse analysis. The Bayesian analysis gives a complete

set of constraints, but there is significant weight for the a priori

fluxes. We do not believe that the need for a dense tower net-

work is an artifact of the STILT analysis, because our Lagrangian

framework has very high-resolution and low artificial numerical

dispersion (Lin et al., 2003), and we can reproduce reasonably

well the available data set even from aircraft (see above); it ap-

pears to be a basic limitation of inversions based on data from tall

towers, even parameter inversions. Aircraft data and/or towers

with overlapping footprints in space and vegetation class will be

needed to provide reliable regional CO2 budgets.

Proper quantification of the uncertainty within the model-data

fusion framework is as important as the flux estimation itself

(Raupach et al., 2005). There are limits on how many parame-

ters any single set of atmospheric data might constrain and there

are unavoidable covariances between CO2 fluxes, weather, and

tower footprints. Hence, effective inversion requires an accurate

and reliable a priori flux models that capture the functional de-

pendence of CO2 exchange on environmental conditions, such

as the calibrated VPRM model presented here.
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