

ATMOS 5140 Lecture 11 – Chapter 9

- Absorption by Atmospheric Gases
 - Rotational
 - Vibrational
 - Applications

Basis for Molecular Absorption/Emission

- Changes in the translational kinetic energy of molecules (i.e. temperature)
- Changes in the rotational kinetic energy of polyatomic molecules
- Changes in the vibrational energy of polyatomic molecules
- Changes in the distribution of electric charges within a molecule, possibly including the complete separation (or reunification) of two components previously bound by electrostatic forces

Basis for Molecular Absorption/Emission

- Changes in the translational kinetic energy of molecules (i.e. temperature)
 - Changes in the rotational kinetic energy of polyatomic molecules
 - Changes in the vibrational energy of polyatomic molecules
 - Changes in the distribution of electric charges within a molecule, possibly including the complete separation (or reunification) of two components previously bound by electrostatic forces

Basis for Molecular Absorption/Emission

- Changes in the translational kinetic energy of molecules (i.e. temperature)
 - Changes in the rotational kinetic energy of polyatomic molecules

Changes in the vibrational energy of polyatomic molecules

Changes in the distribution of electric charges within a molecule, possibly including the complete separation (or reunification) of two components previously bound by electrostatic forces

Molecule of smaller Immediate consequence

Relationship between energy level transitions and absorption/emission line spectrum

Relationship between energy level transitions and absorption/emission line spectrum

MOST IMPORTANT SLIDE

Energy	Wavelength	Band	Dominant Transition
Lower Energy	> 20 um	Far IR, Microwave	Rotation
	1um – 20 um	Near IR, thermal IR	Vibration
Higher Energy	<1um	Visible, UV	Electronic

Molecule	Structure		Dipole Moment?
Oxygen	0-0	linear	No (has magnetic dipole moment)
Nitrogen	N N	linear	No
Carbon Monoxide	0 <u> </u>	linear	Yes
Carbon Dioxide (0 <u> </u>	linear	No
Nitrous Oxide (linear	Yes
Water	(°) H	asymmetric top	Yes
Ozone		asymmetric top	Yes
Methane	H H	spherical top	No

Permanent Electirc

Moment of Inertia

OTATIONA	L	Ar	, =0
Description	Moments of Inertia	Examples	
Monoatomic	$I_1 = I_2 = I_3 = 0$	Ar	
Linear	$I_1 = 0; I_2 = I_3 > 0$	N ₂ , O ₂ , CO ₂ , N ₂ O	
Spherical Top	$I_1 = I_2 = I_3 > 0$	CH ₄	
Symmetric Top	$I_1 \neq 0; I_2 = I_3 > 0$	NH_3 , CH_3CI , CF_3CI	(
Asymmetric Top	$ _1 \neq _2 \neq _3$	H ₂ O, O ₃	
	OTATIONA Description Monoatomic Linear Spherical Top Symmetric Top Asymmetric Top	DescriptionMoments of InertiaMonoatomic $I_1 = I_2 = I_3 = 0$ Linear $I_1 = 0; I_2 = I_3 > 0$ Spherical Top $I_1 = I_2 = I_3 > 0$ Symmetric Top $I_1 \neq 0; I_2 = I_3 > 0$ Asymmetric Top $I_1 \neq I_2 \neq I_3$	OTATIONALArDescriptionMoments of InertiaExamplesMonoatomic $I_1 = I_2 = I_3 = 0$ ArLinear $I_1 = 0; I_2 = I_3 > 0$ N_2, O_2, CO_2, N_2O Spherical Top $I_1 = 0; I_2 = I_3 > 0$ CH_4 Symmetric Top $I_1 \neq 0; I_2 = I_3 > 0$ NH_3, CH_3CI, CF_3CI Asymmetric Top $I_1 \neq I_2 \neq I_3$ H_2O, O_3

 N_2

Tetrahedral geometry of methane

Moment of Inertia

 $I = \sum_{i} r_i^2 \delta m_i$

Angular Momentum of a rigid molecule is restricted

to discreet values.

Rotational Quantum

v=0,1,2,....

number

Molecule	Structure		Dipole Moment?
Oxygen	0-0	linear	No (has magnetic dipole moment)
Nitrogen		linear	No
Carbon Monoxide	0 <u> </u>	linear	Yes
Carbon Dioxide	0 <u> </u>	linear	No
Nitrous Oxide		linear	Yes
Water	() () ()	asymmetric top	Yes
Ozone		asymmetric top	Yes
Methane	H C H	spherical top	No

Permanent Electirc

Moment of Inertia

 $I = \sum_{i} r_i^2 \delta m_i$

Molecule	Structure		Dipole Moment?
Oxygen	0-0	linear	No (has magnetic dipole moment)
Nitrogen	N	linear	No
Carbon Monoxide	0 <u> </u>	linear	Yes
Carbon Dioxide (0 <u> </u>	linear	No
Nitrous Oxide (linear	Yes
Water	H o H	asymmetric top	Yes
Ozone		asymmetric top	Yes
Methane	H H	spherical top	No

Permanent Electirc

Either an applied magnetic or electric field has the capacity to exert a torque on the molecule

Moment of Inertia

Permanent Electirc

VIBRATIONAL

Diatomic (N₂, O₂, CO)

- Molecule behaves like a spring
- Vibrational transitions associated with larger energy than rotational transitions (shorter wavelengths)
- Vibrational and rotational transitions often occur simultaneously

Describe a line shape

$$\sigma_{\nu} = Sf(\nu - \nu_o)$$

 $\sigma_v = absorption\ cross\ section\ per\ molecule$

