

ATMOS 5140 Lecture 4 – Chapter 3

- Electromagnetic Spectrum
- Applications
 - Ozone Layer
 - Photochemical Smog

$S_0 = 1370 \text{ W m}^{-2}$.

- Thus not really constant
- Varies from 1330 W/m² to 1420 W/m²

Solar Flux S₀

Fig. 2.7: The total flux of solar radiation intercepted by the earth is equal to the product of the incident flux density S_0 and the area of the earth's shadow.

Intercepted Flux $\Phi = S_0 \pi R_F^2$

R_E

Fig. 2.8: The relationship between local solar zenith angle θ_s and insolation on a local horizontal plane.

$$F = S_0 \cos \theta_s$$
.

• Total insolation at the top of the atmosphere at a single location

$$W = \int_{t_{\text{sunrise}}}^{t_{\text{sunset}}} S_0 \cos \theta_s(t) \, dt.$$

- Depends on
 - Length of Day
 - Average values of sun angle (while sun is up): $\cos \theta_s(t)$

At the top of the atmosphere!

Upper Bound

The rest of the class we will focus on how much of this radiation is absorbed and reflected

At the top of the atmosphere!

Upper Bound

The rest of the class we will focus on how much of this radiation is absorbed and reflected

Spectrum

Key point

- When considering radiation is scattered or reflected from particles
 - Dimension of the particle must be comparable to or larger than the wavelength

Real World Application Radar = Microwave Band

	Frequency band	Frequency range (GHz)	Wavelength range (cm)	
NWS TV DOW	L band S band C band X band Ku band	$ \begin{array}{r} 1-2 \\ 2-4 \\ 4-8 \\ 8-12 \\ 12-18 \end{array} $	15-30 7.5-15 3.75-7.5 2.5-3.75 1.67-2.5	Used for Precipitation
	K band Ka band V band W band	18–27 27–40 40–75 75–110	1.11–1.67 0.75–1.11 0.4–0.75 0.27–0.4	

Real World Application

Frequency band	Frequency range (GHz)	Wavelength range (cm)	
L band S band C band X band Ku band Kore Research C band K band K band Vore Research W band	$ \begin{array}{r} 1-2\\ 2-4\\ 4-8\\ 8-12\\ 12-18\\ 18-27\\ 27-40\\ 40-75\\ 75-110\\ \end{array} $	$\begin{array}{r} 15-30\\ 7.5-15\\ 3.75-7.5\\ 2.5-3.75\\ 1.67-2.5\\ 1.11-1.67\\ 0.75-1.11\\ 0.4-0.75\\ 0.27-0.4\end{array}$	Detect Clouds, but not able to penetrate far through precipitation

Ultraviolet Radiation

99% of UV reaching sea level

Visible Band = Max emission of radiation by the sun

Cloud-free atmosphere is remarkably transparent to all visible wavelengths

Thus atmosphere is largely heated from below!

Clouds remarkably reflective in the visible band

Thus, global distribution of clouds has huge influence on the radiation received by earth

Ozone Layer

• Need light <0.2423 um

Photochemical Smog - SIMPLIED

Eq. 1 $NO_2 + hv \rightarrow NO + O^*$ Eq. 2 $O^* + O_2 + M \rightarrow O_3 + M$ Eq. 3 $NO + O_3 \rightarrow NO_2 + O_2$ These reactions make O_3 and O

Photochemical Smog

(b) Photochemical smog

Hydroxyl Radical

