ATMOS 5130

Lecture 7

- The First Law and Its Consequences
- Pressure-Volume Work
- Internal Energy
- Heat Capacity
- Special Cases of the First Law

Pressure-Volume Work

$$
\begin{aligned}
& \delta W=\vec{f} \cdot d \vec{x} \\
& \delta W=F d s
\end{aligned}
$$

Pressure-Volume Work

Pressure-Volume Work

$$
\delta W=p d V
$$

Intensive Units - work or energy per unit mass

$$
\begin{aligned}
& w \equiv \frac{W}{M} \\
& \delta w \equiv p \frac{d V}{M} \\
& \delta w \equiv p d \alpha
\end{aligned}
$$

Where α is the specific volume

$$
w=\int \delta w \equiv \int_{\alpha_{0}}^{\alpha_{1}} p d \alpha
$$

The Total work done by (or on) a parcel during a transition from one state to the next depends on how it gets there!

$$
w=\oint p d \alpha \equiv \int_{\alpha_{0}}^{\alpha_{1}} p_{1}(\alpha) d \alpha+\int_{\alpha_{1}}^{\alpha_{0}} p_{2}(\alpha) d \alpha
$$

The Total work done by (or on) a parcel during a transition from one state to the next depends on how it gets there!

$$
\begin{aligned}
& w=\oint p d \alpha \equiv \int_{\alpha_{0}}^{\alpha_{1}} p_{1}(\alpha) d \alpha+\int_{\alpha_{1}}^{\alpha_{0}} p_{2}(\alpha) d \alpha \\
& w=\oint p d \alpha=\text { CLOSED CYCLE }
\end{aligned}
$$

The Total work done by (or on) a parcel during a transition from one state to the next depends on how it gets there!

$$
w=\oint p d \alpha \equiv \int_{\alpha_{0}}^{\alpha_{1}} p_{1}(\alpha) d \alpha+\int_{\alpha_{1}}^{\alpha_{0}} p_{2}(\alpha) d \alpha
$$

Thermodynamic Diagram

- ANY diagram where the total work involved in a process is proportional to the area enclosed by the curve representing that process
- Skew-T diagram

First Law of Thermodynamics

- Special Case of the Law of Conservation of Energy
- Energy stored by the parcel is its internal energy

First Law of Thermodynamics

- Special Case of the Law of Conservation of Energy
- Energy stored by the parcel is its internal energy
- Pressure volume work done by the system = reduction in internal energy + heat supplied by the environment
- Pressure volume work done on the system = increase in internal energy + heat transferred to the environment

First Law of Thermodynamics

- Special Case of the Law of Conservation of Energy
- Energy stored by the parcel is its internal energy
- Pressure volume work done by the system = reduction in internal energy + heat supplied by the environment
- Pressure volume work done on the system = increase in internal energy + heat transferred tothe environment

Recall: $\delta w \equiv p d \alpha$

$$
\delta q=-d u+p d \alpha
$$

Joule's Law

$$
\delta q=-d u+p d \alpha
$$

- Ideal gas (kinetic theory of gases) - molecules do not exert attractive or repulsive forces
- From equation above the internal energy (u) is proportional to the temperature of the air parcel!

Joule's Law

$$
\delta q=-d u+p d \alpha
$$

- Ideal gas (kinetic theory of gases) - molecules do not exert attractive or repulsive forces
- From equation above the internal energy (u) is proportional to the temperature of the air parcel!

Falling mass

Heat Capacity

> Add heat ($\delta \mathrm{q}$)
> Then temperature will increase (from T to T+dT)
> $\frac{\delta q}{d T}=$ Heat capacity of the material (or specific heat)
> Heat Capacity at Constant Volume = Isochoric case

$$
c_{v} \equiv\left(\frac{\delta q}{d T}\right)_{\alpha=\text { constant }}
$$

Heat Capacity at Constant Pressure = Isobaric case

$$
c_{p} \equiv\left(\frac{\delta q}{d T}\right)_{p=\text { constant }}
$$

Heat Capacity at Constant Volume $=$ Isobaric case

Heat Capacity at Constant Volume $=$ Isochoric case

$$
c_{v} \equiv\left(\frac{\delta q}{d T}\right)_{\alpha=\text { constant }}
$$

Recall,Joule's Law: $\delta q=-d u+p d \alpha$
Since volume is constant, $d \alpha=0$
(So, heat equals internal energy - no work done on system)

$$
\begin{gathered}
c_{v}=\frac{d u}{d T} \\
d u=c_{v} d T \\
\delta q=c_{v} d T+p d \alpha \\
c_{v}=718 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}
\end{gathered}
$$

Heat Capacity at Constant Pressure $=$ Isobaric case

Heat Capacity at Constant Pressure $=$ Isobaric case

Heat Capacity at Constant Pressure $=$ Isobaric case

$$
\begin{gathered}
c_{p} \equiv\left(\frac{\delta q}{d T}\right)_{p=\text { constant }} \\
c_{p}=\left(\frac{d u+p d \alpha}{d T}\right)_{p=\text { constant }}
\end{gathered}
$$

Product rule of differentiation

$$
d(p \alpha)=p d \alpha+\alpha d p
$$

Substitute the ideal gas law (R is constant)
$d(R T)=R d T=p d \alpha+\alpha d p$
$p d \alpha=R d T-\alpha d p$
$p d \alpha=R d T$, where p is constant

$$
\begin{gathered}
c_{p}=\left(\frac{d u+R d T}{d T}\right)_{p=\text { constant }} \\
c_{p}=\frac{d u+R d T}{d T}=\frac{d u}{d T}+R \\
c_{p}=c_{v}+R
\end{gathered}
$$

Review of Heat Capacity

$$
\begin{gathered}
c_{p}=c_{v}+R \\
d u=c_{v} d T \\
\delta q=c_{v} d T+p d \alpha \\
\delta q=\left(c_{p}-R\right) d T+p d \alpha \\
\text { Recall } \quad R d T=p d \alpha+\alpha d p \\
\delta q=c_{p} d T-\alpha d p \\
c_{v}=718 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\
c_{p}=1005 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}=718 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}+287 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
\end{gathered}
$$

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

Isobaric Process: $(\mathrm{dp}=0)$

$$
\delta q=c_{p} d T
$$

Isothermal Process
Isochoric Process
Adiabatic Process

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

Isobaric Process: $(\mathrm{dp}=0)$

$$
\delta q=c_{p} d T=\left(\frac{c_{p}}{c_{v}}\right) d u
$$

$$
\begin{aligned}
& \text { Recall } \\
& \qquad d u=c_{v} d T
\end{aligned}
$$

Isothermal Process
Isochoric Process
Adiabatic Process

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Isobaric Process: }(\mathrm{dp}=0) \\
& \qquad \delta q=c_{p} d T=\left(\frac{c_{p}}{c_{v}}\right) d u
\end{aligned}
$$

Isothermal Process: ($\mathrm{dT}=0$)

$$
\delta q=-\alpha d p=p d \alpha=\delta w
$$

Isochoric Process
Adiabatic Process

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Isobaric Process: }(\mathrm{dp}=0) \\
& \qquad q=c_{p} d T=\left(\frac{c_{p}}{c_{v}}\right) d u \\
& \text { Isothermal Process: (dT=0) } \\
& \quad \delta q=-\alpha d p=p d \alpha=\delta w
\end{aligned}
$$

Isochoric Process: $(\mathrm{d} \alpha=0)$

$$
\delta q=c_{v} d T=d u
$$

Adiabatic Process

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

Isobaric Process: (dp = 0

$$
\delta q=c_{p} d T=\left(\frac{c_{p}}{c_{v}}\right) d u
$$

$$
\delta q=-\alpha d p=p d \alpha=\delta w
$$

Isochoric Process: ($\mathrm{d} \alpha=0$)

$$
\delta q=c_{v} d T=d u
$$

Adiabatic Process: $(\delta q=0)$ negligible change of heat between the system and environment

$$
\begin{aligned}
& c_{v} d T=-p d \alpha \\
& c_{p} d T=\alpha d p
\end{aligned}
$$

Special Cases of the First Law

$$
\begin{aligned}
\delta q & =c_{v} d T+p d \alpha \\
\delta q & =c_{p} d T-\alpha d p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Isobaric Process: }(\mathrm{dp}=0) \\
& \qquad \delta q=c_{p} d T=\left(\frac{c_{p}}{c_{v}}\right) d u \\
& \text { Isothermal Process: }(\mathrm{dT}=0) \\
& \qquad \delta q=-\alpha d p=p d \alpha=\delta w
\end{aligned}
$$

Isochoric Process: ($\mathrm{d} \alpha=0$)

$$
\delta q=c_{v} d T=d u
$$

Special Significance in Meteorology!!

Adiabatic Process: $(\delta q=0)$ negligible change of heat between the system and environment

$$
\begin{aligned}
& c_{v} d T=-p d \alpha \\
& c_{p} d T=\alpha d p
\end{aligned}
$$

Hint for Homework Problem 5.2

