

- Enthalpy
- Conservation Property
- The Second Law and Its Consequences
- Entropy

CLASS Presentation

- Form group of 2 students
- Present ~20 minute presentation (~ 10 minute each person)
- Focus on topics found within "In Practice" section of your textbook.
- Your research should go beyond the textbook.
- Be Creative! Props

Examples of material to present

- Hygrometer
- Wind Chill
- Radiosonde
- Skew-T diagram
- Psychrometer
- Heat Index
- Aneroid Barometer
- Altimeter
- Subsidence inversion

Suggestions for effective display

- Keep it simple! Fancy designs or color shifts make important material hard to read. Less is more.
- Use at least a 24 -point font so everyone in the room can read your material.
- Try to limit the material to eight lines per slide, and keep the number of words to a minimum. Keep it simple.
- Limit the tables to four rows/columns for readability. Sacrifice content for legibility. Large tables can be displayed more effectively as a graph.
- Use easily read fonts.
- Don't fill up the slide - the peripheral material may not make it onto the display screen.
- Identify the journal when you give references.
- Finally, always preview your presentation. You will look foolish if symbols that looked OK in a WORD document didn't translate into anything readable in POWERPOINT.

First Law of Thermodynamics

- Special Case of the Law of Conservation of Energy
- Energy stored by the parcel is its internal energy
- Pressure volume work done by the system = reduction in internal energy + heat supplied by the environment
- Pressure volume work done on the system = increase in internal energy + heat transferred tothe environment

$$
\delta w=-d u+\delta q
$$

Where $\delta w=$ increment of work (per unit mass
$d u=$ change in the internal energy (per unit mass)
$\delta q=$ increment of heat energy (per unit mass)

Revien

Recall: $\delta w \equiv p d \alpha$

$$
\delta q=-d u+p d \alpha
$$

First Law of Thermodynamics

$$
\begin{aligned}
& \delta q=c_{v} d T+p d \alpha \\
& \delta q=c_{p} d T-\alpha d p
\end{aligned}
$$

Enthalpy - Sensible Heat

- Accounts for both the gain in internal energy of the parcel and the mechanical work done in displacing the surrounding air as it expands

Enthalpy - Sensible Heat

Specific Enthalpy - intensive units

$$
\begin{array}{ll}
d h \equiv d u+d(p \alpha)=d u+\alpha d p+p d \alpha \\
& \begin{array}{ll}
\\
\delta q=d u+p d \alpha & \\
& \text { Substitute in } 1 \text { 1st law of Thermo } \\
\delta q=d h-\alpha d p & \\
& \\
\delta q=c_{p} d T-\alpha d p=d u+p d \alpha
\end{array} \\
& \text { compare to } 1^{\text {st }} \text { law form }
\end{array}
$$

$$
d h \equiv c_{p} d T
$$

Heat Capacity at Constant Pressure $=$ Isobaric case

Special Cases of the First Law

$$
\begin{gathered}
\delta q=c_{v} d T+p d \alpha \\
\delta q=c_{p} d T-\alpha d p
\end{gathered}
$$

Review

Isobaric Process: $(\mathrm{dp}=0)$

$$
\delta q=c_{p} d T
$$

Isothermal Process

Isochoric Process
Adiabatic Process

Enthalpy - Sensible Heat

$d h \equiv c_{p} d T$

Gain in heat at constant pressure $=$ Gain in Enthalpy

Enthalpy - Sensible Heat

- Accounts for both the gain in internal energy of the parcel and the mechanical work done in displacing the surrounding air as it expands

Specific Enthalpy - intensive units

$$
h \equiv u+p \alpha=\begin{array}{ll}
\text { Mechanical work: "work required } \\
\text { Internal energy } & \begin{array}{l}
\text { to make room for the parcel by } \\
\text { displacing the surrounding } \\
\text { atmophere. }
\end{array}
\end{array}
$$

Enthalpy - Sensible Heat

$$
\begin{aligned}
& \text { Specific Enthalpy- intensive units } \\
& \quad h \equiv u+p \alpha \\
& \begin{array}{l}
\text { Internal energy } \\
d h \equiv d u+d(p \alpha)=d u+\alpha d p+p d \alpha \\
\quad \delta q=d u+p d \alpha \longleftarrow \\
\text { work } \\
\text { Substitute in } 1 \text { 1st law of Thermo } \\
d h-\alpha d p=d u+p d \alpha
\end{array} \\
& \delta q=d h-\alpha d p
\end{aligned}
$$

New form of $1^{\text {st }}$ law in terms of enthalpy

Dry Static Energy Conservation

$\begin{aligned} & \qquad q=d h-\alpha d p \\ & \begin{array}{l} \text { Substitute in the } \\ \text { Hydrostatic relationship } \end{array} d p=-\rho g d z \end{aligned}$	Assumes the environmental temp ~ temp of parcel
$\delta q=d h-\alpha(-\rho g d z)$	
Recall $\quad \alpha=\frac{1}{\rho} \quad$ and $\quad d \phi=g d z$	
$\delta q=d h-\alpha(-\rho g d z)$	
$\delta q=d h+d \phi=d(h+\phi)$	Conserved in dry adiabatic
$h+\phi$ Dry Stetic	situation

Real World - Generalization to an irreversible process

What happens when the environmental temperature is not equal to parcel temperature?

- Not in Equilibrium - Positive or Negative Buoyancy
- Forces acting on the parcel as it is displaced, gains/loses kinetic energy (i.e. it accelerates).

$$
\delta q=d h+d \phi+e_{k}
$$

- Dissipates kinetic energy - stops accelerating
- That kinetic energy must heat the parcel or environment. How much to parcel and how much to environment? We don't know.

$$
\delta q \geq d h+d \phi
$$

First Law applied to cyclic process

Recall:

$$
q_{n e t}=w_{n e t}=\oint \delta q=\oint c_{v} d T+\oint p d \alpha \neq 0
$$

Thus, heat is not a state variable!

First Law applied to cyclic process

Recall:

$$
q_{n e t}=w_{n e t}=\oint \delta q=\oint c_{v} d T+\oint p d \alpha \neq 0
$$

Thus, heat is not a state variable!
Specific Entropy
NEW STATE VARIABLE

$$
\begin{gathered}
\oint \frac{1}{T} \delta q=\oint \frac{1}{T} c_{v} d T+\oint \frac{1}{T} p d \alpha \\
\oint \frac{1}{T} \delta q=c_{v} \oint \frac{d T}{T}+R \oint \frac{1}{\alpha} d \alpha \\
\oint \frac{1}{T} \delta q=0 \equiv d s
\end{gathered}
$$

Fig. 5.3

$$
\begin{aligned}
& \text { First Law of Thermodynamics } \\
& \text { in term of Entropy }
\end{aligned} \quad \begin{aligned}
& \delta q=c_{v} d T+p d \alpha \\
& \delta q=c_{p} d T-\alpha d p \\
& \hline
\end{aligned}
$$

$$
\left(\begin{array}{l}
d s=c_{v} d \ln T+R d \ln \alpha \\
d s=c_{p} d \ln T+R d \ln \mathrm{p}
\end{array}\right.
$$

Entropy $=$ Energy dispersal

- Unconstrained energy spontaneously tends to disperse
- For example, energy spontaneously flows from hot to cold

Second Law of Thermodynamics

- Within any isolated system that is not at equilibrium, the net effect of any active process is to always to increase the total entropy of the system.
- A state of equilibrium is reached when the totally entropy of the system has achieved its maximum possible value. At this point, no further evolution of system state variables is possible

> The increase of disorder or entropy is what distinguishes the past from the future, giving a direction to time.

Second Law of Thermodynamics

- Thermal equilibrium in a two body system is reached when both bodies have the same temperature

In Class problem

Calculate the change in air pressure if the specific entropy decreases by $0.05 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the air temperature decreases by 5%.

In Class problem

Calculate the change in air pressure if the specific entropy decreases by $0.05 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the air temperature decreases by 5%.

$$
\begin{gathered}
d s=c_{p} d \ln T+R d \ln \mathrm{p} \\
\ln \frac{p_{f}}{p_{i}}=\frac{c_{p}}{R} \ln \left(\frac{0.95 T_{i}}{T i}\right)-\frac{d s}{R} \\
\ln \frac{p_{f}}{p_{i}}=\frac{1005}{287} \ln \left(\frac{0.95 T_{i}}{T i}\right)-\frac{-50}{287} \\
p_{f}=0.994 p_{i} \quad \begin{array}{c}
\text { Pressure will decreas } \\
\text { amount of } \sim 0.6 \%
\end{array}
\end{gathered}
$$

