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[1] Errors in atmospheric transport of tracers lead to errors
in estimates of tracer fluxes based upon concentration
observations. Typically, such ‘‘inverse’’ methods either
neglect transport errors or only assess their effects roughly.
We describe a method to quantitatively account for transport
errors by incorporating uncertainties in winds into stochastic
motions of air parcels. The magnitude of errors in wind
fields, as well as their spatiotemporal covariances, are
determined by direct comparison of assimilated winds to
radiosonde observations. These statistics of transport errors
are propagated through stochastic motions of air parcels in a
Lagrangian model (STILT). We illustrate this method by
conducting an inverse analysis using simulated CO2

observations over the continent and examine the effect of
transport errors on estimates of regional terrestrial carbon
fluxes. The inverse analysis demonstrates that transport
errors can cause significantly biased estimates. We show
that the proposed method properly accounts for these errors.
Citation: Lin, J. C., and C. Gerbig (2005), Accounting for the

effect of transport errors on tracer inversions, Geophys. Res. Lett.,

32, L01802, doi:10.1029/2004GL021127.

1. Introduction

[2] Inverse studies have been important in providing flux
estimates of trace gases such as CO2 [Gurney et al., 2002],
CO [Kasibhatla et al., 2002], and CH4 [Hein et al., 1997]
by combining observations of trace gas concentrations with
models of atmospheric transport. However, errors in mod-
eling transport—often the largest source of error in inverse
analyses —lead to considerable uncertainties in flux esti-
mates [Gloor et al., 1999].
[3] Despite the significance of transport errors, their

quantitative treatment remains elusive. Past approaches
include: (1) The spread in results between multiple atmo-
spheric models [Gurney et al., 2002]. However, different
transport models may not represent the ensemble of possible
transport realizations, because collaborative development of
atmospheric models often results in similar parameteriza-
tions [Intergovernmental Panel on Climate Change, 2001].
(2) Differences between forecasts projecting over different
time periods into the future (‘‘NMC method’’ [Parrish and
Derber, 1992]). This method is more suited for understand-
ing the growth of forecast errors rather than quantifying
errors in analyzed meteorology used for tracer simulations.
(3) Residuals between simulated and observed tracer time
series [Mahowald et al., 1997]. This approach lumps the
transport error together with errors in prior assumed tracer

fluxes. (4) The ‘‘high-frequency variability’’ in observed
concentrations is assumed to be irreproducible by models.
Time-averages (e.g., annual averages) are commonly
applied [e.g., Gurney et al., 2002]; thus signals found in
deviations from the time-average are essentially neglected.
[4] This paper presents a new method to quantify trans-

port errors by directly comparing analyzed winds with
radiosonde data and incorporating the errors as stochastic
velocities in air parcel trajectories. The perturbed trajecto-
ries sample different portions of the heterogeneous upstream
flux field and propagate transport errors to derive uncer-
tainties in tracer concentrations that are used in inverse
analyses. We illustrate this method with an example using
modeled pseudo-observations of CO2 to examine the effect
of transport errors on the inverse analysis and to test the
method’s potential to account for such errors and retrieve
accurate fluxes.

2. Methodology

2.1. Estimating Statistical Properties of Wind Errors

[5] We determined error statistics of horizontal winds
from the Eta Data Assimilation System (EDAS) [Black,
1994], archived 3-hourly at 80 km resolution (G. D.
Rolph, Real-time environmental applications and display
system (READY) Web site, http://www.arl.noaa.gov/ready/
hysplit4.html). EDAS winds were extracted and linearly
interpolated to locations of radiosonde observations below
10 km in May and June of 2002 over the coterminous U.S.
The observations come from the NOAA Forecast Systems
Laboratory database [Schwartz and Govett, 1992] and the
ARM/CART program [Stokes and Schwartz, 1994]. Air
parcel trajectories are calculated by linearly interpolating
EDAS winds to the parcel location, so deviation between
interpolated and observed winds directly estimates the
trajectory error.
[6] Errors � in both the U- and V- components closely

approximated Gaussian distributions, with insignificant bias.
Values of s(�) are listed in Table 1.
[7] Assimilation of radiosonde observations by EDAS

may result in misleading error statistics. However, removing
observations from sites assimilated by EDAS did not dra-
matically alter the resulting statistics—e.g., s(�) showed only
a small increase from 2.13 to 2.17 m/s in the U- component
for the lowest 3 km.
[8] Neglecting the spatiotemporal covariance of wind

errors underestimates effects from transport errors, since
uncorrelated errors tend to cancel over a parcel’s trajectory.
We determined the correlation timescale ‘t and lengthscale
in the horizontal (‘x) and vertical (‘z) using the variogram
technique [Kitanidis, 1997]. The variogram g refers to the
variance of the difference between two quantities separated
by h—either the separation time or distance. To determine
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‘k (either ‘t, ‘x, or ‘z), an exponential variogram model was
fit to wind errors:

g hð Þ ¼ s2 eð Þ 1� exp � h

‘k

� �� �
ð1Þ

We fit separate variograms for errors in U- and V-, since
these errors were statistically uncorrelated with one another
(R = 0.06). Values of ‘k determined from the exponential
variogram are shown in Table 1.

2.2. Propagating Wind Errors With Lagrangian
Particle Trajectories

[9] Wind uncertainties are incorporated into parcel trajec-
tories as stochastic processes characterized by statistics
established in Section 2.1. We use trajectories from the
Stochastic Time-Inverted Lagrangian Transport (STILT)
model [Lin et al., 2003], which already has built-in stochas-
ticity, to model turbulence. STILT simulates ensembles of
particles, representing air parcels, backward in time from a
measurement location (‘‘receptor’’) to elucidate the upstream
source regions contributing air to the location.
[10] Each particle in STILT is transported by a velocity

vector u, decomposed into a mean component u and a
turbulent component u0. We further add an error component
E, reflecting uncertainty in winds:

u ¼ �uþ u0 þ E ð2Þ

In this study we limited E to the two horizontal (U- and V-)
directions; each component is drawn from a Gaussian
distribution with mean 0 and standard deviation se, decor-
relating exponentially as a trajectory travels over ‘t, ‘x, or ‘z.
[11] Particle trajectories link concentration changes at the

receptor to upstream tracer fluxes. C(xr, tr)— concentration
at receptor location xr and time tr—is the average, over all
Ntot particles, of each concentration Cp(xr, tr) represented by
particle p:

C xr; trð Þ ¼ 1

Ntot

XNtot

p¼1

Cp xr; trð Þ

¼ 1

Ntot

XNtot

p¼1

DCp xr; trð Þ þ C0p xr; trð Þ
� �

ð3Þ

where Cp(xr, tr) is the sum of concentration changes in each
particle due to surface fluxes DCp(xr, tr) and advected

boundary condition C0p(xr, tr). DCp(xr, tr) is a function of
the amount of time dtp,m,i,j the particle p spends in the surface
gridcell i, j at timestep tm and the local surface tracer flux
F(xi, yj, tm). See Lin et al. [2003] for details on equation (3).
[12] Uncertainties in particle trajectories cause uncertain-

ties in modeled C(xr, tr). Addition of E (equation (2)) leads
to wider dispersion of particles, as seen in Figure 1. The
more broadly dispersed particles reflect uncertainty, due to
wind errors, about which source regions the parcels travel
over en route to the receptor. The particles sample a wider
portion of the heterogeneous flux field with addition of E,
and the variance in the distribution of Cp(xr, tr)—
su0+E
2 (Cp)—is greater than the variance solely due to turbu-

lent dispersion—su0
2 (Cp), ignoring transport errors. We

determine the additional variance in Cp(xr, tr) arising from
wind errors—sE

2(Cp)—by adopting the first-order approxi-
mation that variance in Cp arising from turbulence is
independent of the variance arising from wind uncertainties:

s2u0þE Cp

� �
¼ s2u0 Cp

� �
þ s2E Cp

� �
ð4Þ

Thus sE
2(Cp) is obtained simply by the difference between

the variances of Cp in simulations with and without adding
E.
[13] Figure 2a shows the distribution of Cp(xr, tr), de-

rived by setting C0p(xr, tr) to 0 and mapping the particles
onto a simple CO2 flux model (Section 3), for the simula-
tion shown in Figure 1 without transport errors. The
resulting su0

2 (Cp) = (5.57 ppmv)2. When E is added to
the particle trajectories the variance su0+E

2 (Cp) increases
to (8.53 ppmv)2 (Figure 2b). The resulting sE

2(Cp) =
su0+E
2 (Cp) � su0

2 (Cp) = (8.53 ppmv)2 � (5.57 ppmv)2 =
(6.46 ppmv)2. Distributions of Cp are approximately Gauss-
ian (Figure 2), and the increase in variance (su0+E

2 (Cp) �
su0
2 (Cp)) succinctly summarizes the error process that

transforms the distribution. In cases where distributions
of Cp are non-Gaussian, the transformation cannot be
described simply with a single parameter—the enhanced

Table 1. Statistics of Errors in the U- and V- Components of

EDAS Sinds, Derived by Direct Comparison With Radiosondesa

Wind
Component

Altitudes
[km]

R2

(EDAS vs. Radiosonde)
s(�)
[m/s]

‘t
[hours]

‘x
[km]

‘z
[m]

U 0�3 0.88 2.13 2.46 115 1038
V 0�3 0.88 2.22 2.76 116 816
U 3�6 0.91 2.43 2.49 114 1382
V 3�6 0.89 2.43 2.60 96 1052
U 6�10 0.94 3.06 2.63 124 1135
V 6�10 0.93 2.97 2.76 137 1034

as(�) denotes the standard deviation of (EDAS – radiosonde) wind
components. ‘t, ‘x, and ‘z refer to the correlation timescale and lengthscale
in the horizontal and vertical, respectively, derived from the exponential
variogram (equation (1)).

Figure 1. Locations of particles (representing air parcels)
simulated by STILT at different hours backward in time
from 00UT, Aug. 8th 2000, at the WLEF tall tower (red
triangle). The orange particles are transported with EDAS
winds. The blue particles are transported with an additional
error velocity E characterized by s(�) = 2.5 m/s, ‘t = 4 hours,
‘x = 120 km, and ‘z = 900 m. The green particles are
simulated with ‘‘true’’ winds constructed by perturbing
EDAS with the same statistical characteristics and are used
to construct pseudo-observations of CO2 (Section 3).
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variance—and easily incorporated into inverse analyses.
Non-Gaussian distributions of Cp are expected for tracers
observed near concentrated point sources (e.g., combustion
tracers in the vicinity of cities).
[14] sE

2(Cp) serves as a natural measure of transport errors
arising from uncertainties in wind vectors, propagated into
uncertainties in modeled tracer concentrations. sE

2(Cp) is
expected to be larger if (1) the wind regime is more
‘‘complicated’’—e.g., with strong wind shear, or (2) fluxes
are more heterogeneous in the upstream regions. Likewise,
we expect the impact of transport error to increase in these
two scenarios. In the next section sE

2(Cp) is incorporated into
Bayesian inverse analyses.

2.3. Quantitative Use of Estimated Transport
Error in Bayesian Inverse Analysis

[15] Inverse analyses attempt to retrieve elements of the
state vector L based on a vector y of observations. For
tracer-based inversions y is a vector of observed tracer
concentrations, and L is a vector of parameters controlling
tracer fluxes. In the simple linear case y is related to L

through a Jacobian matrix K and error Ey: y = KL + Ey. The
optimal estimate of L (L̂) is [Rodgers, 2000]

L̂ ¼ KTS�1
e K þ S�1

prior

� 	�1

KTS�1
e yþ S�1

priorLprior

� 	
ð5Þ

for the case in which Ey and errors in Lprior (prior estimate
of L) follow Gaussian statistics, characterized by error
covariance matrices Se and Sprior, respectively. The posterior

error covariance matrix for L̂ is given by Ŝl = (KTSe
�1K +

Sprior
�1 )�1.
[16] Ey and its associated error covariance matrix Se

include effects from various error sources. In order to

account for the transport error we calculate sE
2(Cp) from

Section 2.2 for each observation and add sE
2(Cp) to each

diagonal element of Se.

3. Test of Estimating Transport Errors in CO2

Inverse Analysis

[17] We applied the method outlined in Section 2 to the
CO2 inverse problem in order to test the method’s capa-
bility to quantitatively account for transport errors and
improve inversion results. The test was conducted using
simulated data (‘‘pseudo-observations’’) derived from mod-
eled transport representing ‘‘truth’’ and prescribed L con-
trolling the CO2 fluxes. The known values of L in the
pseudo-data based inversion enables assessment of the
method’s efficacy.
[18] We adopted a simple representation of CO2 fluxes

[Gerbig et al., 2003, equation 11], at resolution of 1/6�-lat
by 1/4�-lon, that still exhibits diurnal variability. The
Jacobian matrix K is comprised of total changes in CO2

at the receptor due to photosynthesis GEEv and respiration
Rv for each vegetation type v in the source regions [Gerbig
et al., 2003]. We solved for a state vector L comprised of
scaling parameters that scale Rv and GEEv, the sum of which
is the net CO2 flux that is used in equation (3) to determine
CO2 changes in each particle. v was divided into only the
forest and cropland classes [Gerbig et al., 2003]. The state
vector is thus L = [lGEE,forest, lR,forest, lGEE,crop, lR,crop].
Due to the CO2 model’s simplicity—with merely 4 opti-
mizable parameters—we stress that the emphasis here is to
evaluate the transport error method and caution against
over-interpretation of the optimized carbon fluxes.
[19] The test proceeded in the following steps:
[20] 1. Windfields representing ‘‘truth’’, deviating from

EDAS with observed error statistics, were constructed by
adjusting EDAS winds with stochastic perturbations fol-
lowing standard deviation s(�) and correlations ‘t, ‘x, and ‘z.
We used s(�) = 2.5 m/s, ‘x = 120 km, ‘z = 900 m, and ‘t =
4 hours, close to observed values in Table 1.
[21] 2. Pseudo-observations were generated (equation (3))

every 3 hours from August 2nd�15th, 2000, for the top of
the 396-m WLEF tower (Figure 1), a long-term CO2

monitoring site, by simulating STILT particle motions with
the ‘‘true’’ windfield from Step 1 and prescribing ‘‘true’’
CO2 fluxes, in which L = [lGEE,forest, lR,forest, lGEE,crop,
lR,crop] = [1.0, 1.0, 1.0, 1.0] (no scaling). Particles were
simulated backward in time for 3 days, the decay timescale
for sensitivity to surface fluxes [Gerbig et al., 2003]. Figure 1
shows one example of the difference in STILT simulations
between the ‘‘true’’ and EDAS cases.
[22] 3. Modeled CO2 concentrations were simulated by

STILT particles advected with EDAS winds and using the
CO2 flux model. Lprior was [0.71, 1.81, 1.52, 2.80],
obtained by stochastically perturbing [1.0, 1.0, 1.0, 1.0]
with values of Sprior from Gerbig et al. [2003].
[23] 4. Inversions to determine L̂ were conducted

(equation (5)), and results were examined for deviations
from the known, true values of [1.0, 1.0, 1.0, 1.0]. The
following inversions were implemented:
[24] (a) No estimate of transport error included.
[25] (b) Transport error added to Se, using sE

2(Cp) quan-
tified from advecting particles with E (equation (4)). The

Figure 2. Distribution of CO2 concentrations—deter-
mined by equations (3) and (4), using a simple CO2 flux
representation (see Section 3)—over different particles p
(Cp) for the case shown in Figure 1 (but transporting the
particles for 3 days backward). Overlaid are Gaussian
distributions characterized by the observed mean and
standard deviation. (a) Regular STILT simulation, with
variance su0

2 (Cp) reflecting only turbulence. (b) Simulation
incorporating wind uncertainty E in transporting particles,
resulting in variance su0+E

2 (Cp) reflecting both turbulence
and transport error.
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additional spread shown in blue in Figure 1 covered the
deviation between particles simulated by the ‘‘true’’ and
EDAS cases, suggesting this method has the capability to
describe uncertainties in particle trajectories. The mean
value of sE

2(Cp) for WLEF was (5.91 ppmv)2 during the
simulation period.
[26] (c) Transport error added to Se, estimated from the

variance of residuals between observed and modeled CO2

[Mahowald et al., 1997] (with no E added to particle
transport). This estimate yielded a value of (7.07 ppmv)2

during the same simulation period.

4. Results of Pseudo-Data-Based Inverse Analysis

[27] Results from the inverse analysis are shown in
Figure 3. The L̂ retrieved from the case without accounting
for transport errors (orange) deviated significantly from the
prescribed values, with narrow posterior error bars that do
not include [1.0, 1.0, 1.0, 1.0] even at the 3-s level. This
case illustrates the fact that neglecting effects from transport
uncertainties leads to results that are biased, or overly
‘‘confident’’. In contrast, the case incorporating transport
errors (blue) retrieved results closely matching the truth. All
of the error bars bracket [1.0, 1.0, 1.0, 1.0] at the 2-s level.
This suggests that the method described here quantitatively
accounts for the transport error and is capable of minimiz-
ing the bias associated with improper constraints. The use
of residuals between the pseudo-observations and the
simulated concentrations (green) also enables the bias
arising from transport error to be reduced, but the resulting
posterior error bars in L̂ are much wider than those from
our method, suggesting more uncertainty in the retrieved
result and less information retrieved from the inversion.
This overestimate of errors arises because the residuals
reflect errors in both Lprior and transport, and attribution

of residuals solely to transport error leads to results that are
overly conservative.

5. Summary and Conclusions

[28] This paper has presented a method to quantify
transport errors for tracer inversions. Uncertainties in winds
are incorporated into the motion of Lagrangian particles (air
parcels), and the additional variability in tracer concentra-
tions represented by the distribution of particles is treated as
the uncertainty due to transport errors and included within
the inverse analysis. A test using pseudo-data and known
CO2 fluxes has illustrated the method’s potential to minimize
biases due to transport errors and improve flux retrievals.
[29] The proposed method generates well-defined esti-

mates of transport errors based on actual meteorological
observations. The stochastic, Lagrangian nature of STILT
enables natural propagation of uncertainties in parcel tra-
jectories. The combination of a tool like STILT and a simple
representation of CO2 fluxes suggested that the uncertainty
in CO2 concentration resulting from transport errors was as
large as 5.9 ppmv, on average, for WLEF during August
2000. The same information can not be easily generated
from Eulerian methods. For example, adding a diffusion
term in the tracer transport equation to simulate the addi-
tional spread witnessed in trajectory locations from wind
uncertainties (Figure 1) does not provide the distribution of
particle concentrations (Figure 2) and the associated sE2(Cp).
Instead, a full suite of ensemble simulations—analogous to
the ensemble of particles—would be required.
[30] This study has focused on errors in horizontal

velocities. However, errors in vertical mixing and veloci-
ties have significant implications for tracers such as CO2

[Denning et al., 1996], CO, and O3 [Thompson et al.,
1994]. Due to the sporadic occurrence of convective
transport we expect errors associated with vertical veloc-
ities to be non-Gaussian. Future work will expand upon
the current approach to characterize error statistics of
vertical velocities as well as mixing heights and to incor-
porate these uncertainties into trajectories of Lagrangian
particles.
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