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a b s t r a c t

We describe a backward-time Lagrangian air quality model based on time-reversed, stochastic particle
trajectories. The model simulates the transport of air parcels backward in time using ensembles of
fictitious particles with stochastic motions generated from the Stochastic Time-Inverted Lagrangian
Transport model (STILT). Due to the fact that STILT was originally developed out of the HYSPLIT lineage,
the model leverages previous work (Stein et al., 2000) that implemented within HYSPLIT a chemical
scheme (CB4). Chemical transformations according to the CB4 scheme are calculated along trajectories
identified by the backward-time simulations. This approach opens up several key advantages: 1)
exclusive focus upon air parcels that affect the receptor’s air quality; 2) the separation of transport
processesdelucidated by backward-time trajectoriesdfrom chemical reactions that enables implications
of multiple emission scenarios to be probed; 3) the potential to incorporate detailed sub-gridscale
mixing and transport phenomena that are not tied to Eulerian gridcells.

The model was used to simulate concentrations of air quality-relevant species (O3 and NOx) at eight
measurement sites in the Canadian province of Ontario. The model-predicted concentrations were
compared with observations, and comparisons show that simulated O3 concentrations usually agree well
with observations across sites in rural areas, small towns, and big urban regions. Furthermore, the
backward-time model showed improved performance over the previous approach involving forward-
time particle trajectories, especially for O3. However, the model under-estimated NOx at sites away
from the big cities, possibly due to the inability of the coarsely gridded emission grids to resolve fine-
scale NOx sources.

Influences of cross-border transport of U.S. emission sources on the test sites were investigated using
the model by turning off anthropogenic and natural U.S. emission sources. The model results suggest that
total U.S. emissions contributed more than 30% of O3 concentrations at the target sites and that over half
of all hours during the simulation period were affected either by anthropogenic or natural emissions
from the U.S. sources, indicating the importance of U.S. sources for air quality across Ontario.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Anthropogenic emissions of chemically active species are
altering the composition of the atmosphere and will become
increasingly important over the next decades (Brasseur et al., 1999;
Crutzen and Ramanathan, 2000). Biomass burning from land use
change has been accelerating (Setzer et al., 1994), releasing large
quantities of NOx (NO þ NO2) and volatile organic compounds
(VOC) to the atmosphere (Chatfield and Delany, 1990). In the

developing world, regional scale air pollution will accelerate from
urbanization and industrialization, leading to human health prob-
lems and crop damage (Chameides et al., 1994, 1999). After being
emitted, such pollutants are mixed in the atmosphere and trans-
ported across borders (Brankov et al., 2003), resulting in regional
scale pollution that can be examined quantitatively only with
models that account for chemistry and transport at the appropriate
scales. In developed nations, the adverse effects of air pollution on
human health continue to be observedde.g., increased respiratory
hospitalization in Windsor, Ontario (Luginaah et al., 2005; Malig
and Ostro, 2009). Such human health concerns have led to
increasingly stringent controls on air quality by the U.S. EPA (1997)
and the Canadian Council of Ministers of the Environment (2000)
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that necessitate careful balances between health benefits and
mitigation costs (Pandey and Nathwani, 2003; Russell, 1988).
Societal concerns regarding the anthropogenic impact on atmo-
spheric chemistry and air quality call for improvements to
modeling and analysis of regional scale atmospheric chemistry
(Russell and Dennis, 2000).

A variety of numerical air quality models have been developed
since the 1970s. Such models are broadly classified into two types
according to whether they adopt Lagrangian or Eulerian coordinate
systems. Eulerian models calculate the pollutant’s fate and transport
everywhere in themodeling domain using afixed coordinate system.
Lagrangianmodels calculate the trajectories of air parcels and follow
them as they move through the model domain (Lin et al., 2011).

Eulerian models are powerful tools for elucidating the chemical
and physical mechanisms in the atmosphere. Current generation
atmospheric chemistry models generally adopt an Eulerian
approach. However, Eulerian models calculate chemical reactions
usually based on pollutant concentrations diluted over entire
gridcells. The artificial dilution likely results in under-prediction of
concentrations (Gillani and Pleim, 1996). Numerical diffusion
introduced by space discretization in Eulerian models also imposes
artificial mixing of pollutants (Jacobson, 1998; Odman, 1997).
Advances in regional chemical modeling require further improve-
ments in incorporating atmospheric transport processes other than
mixing. Processes such as turbulent fluctuations in tracer concen-
trations (Fitzjarrald and Lenschow, 1983; Georgopoulos and
Seinfeld, 1986), boundary-layer top entrainment (Davis et al.,
1997), and convective transport (Thompson et al., 1994) remain
difficult to represent in the sub-grid scale eddy diffusion coefficient
approach adopted by most Eulerian models. Moreover, the grid-
averaged concentrations prognosed by gridded models are diffi-
cult to compare with point observations.

Lagrangian models have the key advantage of being subject to
minimal numerical diffusion (Seibert, 2004). Backward-time
Lagrangian approaches are also computationally cheap, because
Lagrangian air parcel trajectories running backward from the
receptor site isolate the upwind influences on the receptor. Various
Lagrangian approaches have been adopted for photochemical
modeling in an attempt to complement and address limitations in
Eulerian methods. The simplest of these Lagrangian models simu-
lates pollutants within boxes that are advected along mean wind
trajectories (Eliassen et al., 1982; Simpson, 1993). However, the
idealized box representation cannot readily incorporate detailed
transport processes. Alternatively, puff models such as CALPUFF
(Scire et al., 2000) representpollutant emissionswithGaussianpuffs
that attempt to simulate dispersion effects. However, puff models
have difficulties capturing the interaction between turbulence and
wind shear which distort plumes into non-Gaussian shapes,
potentially introducing large biases in the peak concentrations and
the plume area, thereby requiring ad hoc parameterizations such as
puff splitting (Walcek, 2002; Draxler and Taylor, 1982).

Out of all of the Lagrangian approaches, stochastic particle
models are the most sophisticated (Stohl, 1998). These models have
the capability to simulate complicated transport effectsde.g., wind
shear, convective redistribution, and turbulent dispersion. Of
particular importance for stochastic particlemodels are simulations
of transport within the planetary boundary layer (PBL), in the lower
troposphere, where strong turbulence renders single deterministic
meanwind trajectories highly erroneous (Stohl andWotawa, 1995).
Since ground-based air quality monitoring sites are necessarily
located within the PBL, a strong need exists for the Lagrangian
particles to be stochastic in nature and run backward in time, to take
advantage of the aforementioned computational savings.

Stein et al. (2000) developed a stochastic Lagrangian model that
runs forward in time. Recently, Miller et al. (2008) and Wen et al.

(2011) described the use of backward-time stochastic trajectories
to simulate air quality-relevant species. However, chemistry was
neglected or highly-simplified in those studies.

In this paper, we developed a comprehensive Lagrangian air
quality model based upon the backward-time stochastic
Lagrangian approach. The new model is capable of simulating
a wide variety of gas phase species that affect air quality using the
Carbon Bond IV (CB4) mechanism (Gery et al., 1989). Lin et al.
(2003) have demonstrated that given proper formulation of
turbulent transport and mass conserving meteorological fields,
backward-time results are identical to their forward-time analogs.
In other words, backward-time simulations retrieve the trajectories
of all air parcels arriving at the receptor in the forward-time case.
This means that the backward-time air parcelsdand only these
parcelsdcontribute to variations in chemical tracers at the
receptor, and these parcels isolate the region of the model domain
needed to be accounted for in the chemical simulations. The
chemical calculations can then be conducted forward in time from
the regions marked out by these particles and along their trajec-
tories, taking into account surface emissions, chemical trans-
formations, and mixing processes.

This approach opens up several key advantages: 1) exclusive
focus upon air parcels that affect the receptor’s air quality; 2) the
separation of transport processes elucidated by backward-time
trajectories from chemical reactions, enabling implications of
multiple emission scenarios to be probed (“reusing” transport
information to achieve computational efficiency); 3) the potential
to incorporate detailed sub-gridscale mixing and transport
phenomena that are not tied to Eulerian gridcells.

It bears mentioning that 3) above is only a potential that may be
realized in the future with the approach presented in this paper.
Currently the particles’ concentrations aremixed and averaged over
fixed Eulerian grids to simulate chemical transformations, following
a “hybrid Lagrangian-Eulerian” approach that has been introduced
by others already (Stein et al., 2000; Stevenson et al., 1998).

The model is designed to simulate air quality over scales of
10e1000 km, serving as a crucial bridge at the regional scale,
between coarse-scale global models and the fine-scale large-eddy
simulations or urban air-shed models. As a test and initial appli-
cation of the model, it was applied to simulate air concentrations of
tracers at eight measurement sites in Ontario, Canada (Sect. 4.2). A
comparison with the forward-time approach was also carried out.
As an application of themodel, the impact of cross-border transport
of U.S. emission on Ontario was investigated (Sect. 4.3). This is an
important policy and health question for Canada, as a significant
fraction of the Canadian population resides near the U.S. border,
downwind of numerous cities, power plants, and other large
pollution sources (CEC, 2004).

2. Model description

2.1. Overview

The backward-time stochastic Lagrangian air quality model was
developed from the Stochastic Time-Inverted Lagrangian Transport
Model (STILT; see http://www.stilt-model.org) (Lin et al., 2003).
STILT was built from the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model (Draxler and Hess, 1997). STILT
was originally developed for atmospheric transport simulations of
inert tracers, especially greenhouse gases (Gourdji et al., 2010; Zhao
et al., 2009; Kort et al., 2008). Recently, efforts have been made to
simulate air quality-relevant species using the STILT model (Miller
et al., 2008; Wen et al., 2011). However, chemistry was neglected or
highly simplified in those studies. This paper represents further
development to account for chemical transformations of a wide
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variety of species that affect air quality. This development leverages
off of earlier work by Stein et al. (2000), which coupled the CB4
chemical mechanism (see Sect. 2.4 below) to HYSPLIT.

The air quality simulation (Fig. 1) begins with a stochastic back-
trajectory simulation, followed by a forward chemical simulation
that determines tracer concentrations along the generated back
trajectories. In the back-trajectory simulation, numerous particles,
each representing an air parcel, are released from a receptor and
transported backward in time for a specific period. Each particle is
transported with both interpolated windfields as well as stochastic
velocities representing turbulent eddies. After back trajectories are
calculated, the concentrations of modeled species are initialized at
the endpoint of each back-trajectory using values outputted from
a global chemical transport model (Sect. 3.2.1). Then the concen-
trations are evolved forward in time along each trajectory to take
into consideration the influences of emission, deposition, mixing
and chemical transformation. Advection, diffusion, emission and
deposition in the model are computed in a Lagrangian framework
while chemistry is calculated on a fixed grid using a particle-in-
grid method (Chock and Winkler, 1994; Stein et al., 2000). Parti-
cles within each gridcell are assumed to be uniformly mixed
before chemical transformation and after that the resulting
concentrations are redistributed among all particles located in that
gridcell (Sect. 2.6). Concentrations at the receptor are obtained by
averaging the concentrations of all particles arriving at the
receptor.

2.2. Transport

This model uses STILT to simulate the transport of air parcels,
represented as fictitious particles. Each fictitious particle is
advected with mean wind velocities as well as stochastic velocities
parameterized to capture the effect of turbulent transport. The
effect of the turbulence is modeled by adding a random velocity to

the mean motion for each particle. This random velocity is
a function of the turbulence intensity and is different for each
particle. To satisfy the well-mixed criterion (Thomson, 1987) in the
strongly inhomogeneous environment of the PBL where the
simple drift correction does not work (Lin et al., 2003; Thomson
et al., 1997), a reflection/transmission scheme for Gaussian
turbulence was employed. The parameterization for the PBL height
was a modified Richardson number method that generalizes to
unstable, neutral, and stable conditions (Lin et al., 2003;
Vogelezang and Holtslag, 1996). The treatment of transport and
dispersion in STILT has been described in detail by Lin et al. (2003)
and Draxler and Hess (1997).

The transport of particles is simulated backward in time by this
model. The backward mode is computationally advantageous if the
number of receptors is less than the number of sources considered.
Thought of another way, these particles are a means to determine
the trajectories and to probe the processes experienced by
substances in their transport history.

2.3. Emission

The concentration change of a species due to surface emissions
is calculated using a “footprint” concept. A footprint
f ð x!r ; trjxi; yj; tmÞ, calculated in a back-trajectory simulation, in units
of ppm (mmole m�2 s�1)�1, represents the sensitivity of the mixing
ratio arriving at its receptor at location x!r at time tr to the surface
flux F(xi,yj,tm) from location xi,yj at time tm. Thus it is a measure of
the contribution from a source of unit strength located at xi,yj at
time tm to the mixing ratio at the receptor. The footprint is derived
from the local density of particles by counting the number of
particles (out of total number Ntot) in surface-influenced boxes and
determining the amount of time Dtp,i,j,k each particle p spends in
each surface volume element (i,j,k) during each time step. The
mathematical definition of a footprint (Lin et al., 2003) is given by:

Fig. 1. Schematic representing the two steps of the air quality simulation: a) a backward-time stochastic Lagrangian particle simulation to describe atmospheric transport; b)
chemical calculations forward in time, along the back-trajectory.
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f
�
x!r ; tr

���xi; yj; tm
�

¼ mair

hr
�
xi; yj; tm

� 1
Ntot

XNtot

p¼1

Dtp;i;j;k (1)

where mair is the molar mass of air, h is the height below which
turbulent mixing is strong enough to mix the surface flux thor-
oughly, and rðxi; yj; tmÞ is the average air density below h.

The concentration change DCm,i,j(s,p,tr) of the sth species in the
p th particle arriving at its receptor at time tr due to a surface
emission flux F(xi,yj,tm) (mmole m�2 s�1) is incremented whenever
the parcel dips below a specific height h which is determined in
STILTas a fraction of the PBLheight (Lin et al., 2003). The fractionwas
set to 0.5 in this study. The concentration change is then given by:

DCm;i;jðs; p; trÞ ¼ f
�
x!r; tr

���xi; yj; tm
�
F
�
xi; yj; tm

�
(2)

This footprint formulation is applied for emission sources at the
surface. For emissions at altitude (e.g., smokestacks) we dilute the
source thoroughly in each emission gridcell in which the pth
particle is found during one model time step (Wen et al., 2011):

DCm;i;j;kðs;p;trÞ ¼
D
�
xi;yj;zk;tm

�
Ntot

XNtot

p¼1

Dtp;i;j;k

¼ F
�
xi;yj;zk;tm

� mair

Lr
�
xi;yj;zk;tm

� 1
Ntot

XNtot

p¼1

Dtp;i;j;k:

(3)

Where F(xi,yj,zk,tm) is the emission flux in a grid box (i,j,k) at time tm.
D(xi,yj,zk,tm) represents the dilution of emission flux in the grid box
with a height of L.

2.4. Gas phase chemistry

The chemical mechanism used in this model is based on the
Carbon Bond IV (CB4) Mechanism (Gery et al., 1989). The CB4 mech-
anism is a collection of reactions that transforms reactants into
products, including key intermediates, developed primarily to
simulate urban and regional ozone formation. The mechanism used
here contains 94 reactions and 39 chemical species. We updated all
rate constants according to the values reported by Yarwood et al.
(2005). The resulting system of stiff ordinary differential equations
of themechanismissolvedusingamodifiedGearmethod(Gear,1971;
Press et al.,1992; Spellmann andHindmarsh,1975). TheGear solver is
an implicit, backwards difference algorithm inwhich concentrations
from previous time steps are used to predict the concentration at the
current time. The algorithmautomatically adjusts the size of the time
step and the order (the number of previous time steps used) to
optimize the solution. The algorithm also estimates the error in the
numerical solutionat each time step, and theuser can specifyanerror
tolerance that constrains the accuracy of the solution. The photolysis
rate constants needed to calculate the chemical transformations are
computed as a function of the solar zenith angle, cloud cover, and
chemical species for each particle at each time step.

The model is designed to take as input user-specified chemical
species and reactions, emissions, deposition parameters. This
allows considerable flexibility in specifying chemical mechanism,
emissions, and deposition parameters and output variables.

2.5. Deposition

Dry and wet deposition are treated in a similar way as described
by Wen et al. (2011). Accordingly, the concentration change of the

sth species in a particle due to dry and wet deposition is expressed
in terms of time constants:

dCs
dt

¼ ��
bds

þ bws

�
Cs (4)

where bds
and bws

are time constants for dry and wet deposition for
the sth species respectively. The time constant for dry deposition
can be expressed as:

bds
¼ Vdrys

Zs
(5)

where Vdrys
(cms�1) is the dry deposition velocity for the sth species.

The dry deposition velocities can be either calculated using a resis-
tance-in-series scheme (Wesely, 1989; Draxler and Hess, 1997) by
this model, or provided explicitly. In this work, the dry deposition
velocitieswere calculated explicitlybya separatemodel (Sect. 3.2.2).
Dry deposition is only estimated when a particle moves into the
lowest model level, the depth of which (Zs) is approximately 50 m,
and is assumed to be the top of the surface layer.

Wet deposition is represented via loss rates computed based on
the large-scale and convective precipitation rates. The wet depo-
sition of gases depends upon their solubility. The influences of
aqueous phase reactions are assumed negligible and are not
considered in this work. For non-reactive gases the wet deposition
is a function of the effective Henry’s Law constant. The gaseous wet
deposition velocity for the sth species can be defined as (Draxler
and Hess, 1997):

Vwets ¼ HsRTP (6)

where R is the universal gas constant (0.082 atm mol�1K�1L) and T
and P are, respectively, air temperature and precipitation rate in
a particle. Hs is the effective Henry’s Law constant of the sth species.
Gaseous wet removal only occurs for the fraction of the pollutant
below the cloud top. The gaseous wet removal time constant is
given by:

bws
¼ FtVwets

Zp
(7)

where Zp is the depth of the meteorological layer in which the
particle is found. Ft is the fraction of the layer that is below the
cloud top.

2.6. Mixing parameterization

Since the model presented here uses the particle-in-grid
approach to simulate chemistry, uniform mixing of particles in
each gridcell is assumed and conducted before the chemical
transformations are performed. The meteorological grid is used as
the default grid for particle mixing and chemistry. That means
particles are well mixed in each cell of the meteorological grid, and
each cell is treated as a reactor.

After the chemical transformations have been calculated, the
resulting concentrations are then used to update the concentration
of each chemical compound in each particle following the method
from Stein et al. (2000).

3. Model simulation

3.1. Measurement sites used for simulation and comparison

Eight measurement sites in Ontario, Canada, were selected as
receptors in the model simulations (Fig. 2). These eight sites were
selected mainly to investigate the cross-border transport and the
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contrast between rural and urban air pollutant levels in southern
Ontario. Details regarding the eight sites can be found in Table 1. Six
of themdWindsor, Etobicoke, Sudbury, Peterborough, Barrie and
Kitchenerdare from The National Air Pollution Surveillance (NAPS)
Network. NAPS is primarily an urban network, gathering measure-
ments on O3, PM, SO2, CO, NOx and volatile organic compounds
(VOCs). VOCswere notmeasured at all those sites for 2002, which is
the year this study was focused on. Windsor, Kitchener, Etobicoke
andPeterboroughare located fromsouthwest tonortheast along the
main population corridor in Ontario while Etobicoke, Barrie, Sud-
bury, and Algoma represent a south to north gradient that coincides
with a decline in population density. Windsor and Etobicoke are
found inbigurbanareas.Windsor is across theDetroit River fromthe
U.S. city of Detroit, Michigan. Etobicoke is situated in the Greater
Toronto Area, the most populous metropolitan area in Canada with
over 5 million people. Egbert and Algoma are two sites from the
Canadian Air and Precipitation Monitoring Network (CAPMoN),
a rural network with 10 air monitoring stations across Canada.
CAPMoN measurements are regionally representative and less
affected by local sources of air pollution. Only O3 measurements are
available for these two sites fromCAPMoN. Egbert is less than 20 km
away from the Barrie site, providing a contrast between rural and
urban observations in a similar geographical region.

3.2. Base case simulation

The model was used to simulate air pollutant concentrations at
the eight sites for ten days from July 20th to July 29th in 2002. The

simulations were driven by meteorological data from the NCEP
North American Regional Reanalysis (NARR) (Mesinger et al., 2006).
The NARR data have 239� 277 grids with a horizontal resolution of
32 km covering all of North America. The data cover 45 vertical
layers and are available at three-hourly intervals. In the simula-
tions, ensembles of 1000 particles were released from each site
location every hour. The choice of 1000 particles will be explained
in Sect. 4.1. These particles were run backward in time for six days,
which usually allowed them to be far away from any sources near
the receptors.

3.2.1. Initial/Boundary conditions
At the endpoints of particles, concentrations of modeled species

were initialized usingmonthly mean output for 2002 from a global,
3-D chemical transport model (GEOS-Chem; http://www.geos-
chem.org), according to the spatial locations of particles’
endpoints in the GEOS-Chem simulation domain. The GEOS-Chem
simulation (Millet et al., 2010) was carried out with 2� latitude by
2.5� longitude (2� � 2.5�) grid spacing on 48 sigma vertical layers.
The monthly output of the simulation was interpolated to each day
using the Aitken interpolation method (Aitken, 1932) to represent
daily variation in the concentration initialization. Since chemical
species used in GEOS-Chem are different from those in CB4,
chemical species in GEOS-Chem were mapped onto CB4 species
according to the match table given by Lam and Fu (2009). After the
initialization, the simulation is performed forward in time to
simulate the evolution of concentration due to the influence from
emission, chemical reactions and deposition along each trajectory
for each time step.

3.2.2. Dry deposition velocities and emission datasets
Values of dry deposition velocities and emission datasets

prepared for 2002 for a previous study (Gbor et al., 2007) were
directly employed in this work. The dry deposition velocities were
calculated by the MeteorologyeChemistry Interface Processor
(MCIP) using the Models-3/CMAQ Dry Deposition Model (Byun
et al., 1999). The emissions come from a SMOKE-processed emis-
sion dataset having 132 � 90 gridcells with a horizontal spacing of
36 km and 15 vertical layers. The 1999 National Emission Inventory
(NEI) version 3 IDA Files (U.S. EPA, 2004) were used for emissions of
anthropogenic pollutants in the United States and a 1995 inventory

Fig. 2. Locations of eight measurement sites and their local NOx emission rates averaged over the simulation period.

Table 1
Information regarding the eight measurement sites in this study.

Site Latitude (�) Longitude (�) Instrument
height (m)

Type

Windsor 42.316021 �83.043817 8.0 Urban
Etobicoke 43.64852 �79.59138 5.0 Urban
Sudbury 46.46847 �80.98958 10.0 Urban
Peterborough 44.30733 �78.32071 7.0 Urban
Kitchener 43.44183 �80.50446 5.0 Urban
Barrie 44.39222 �79.70417 5.0 Urban
Egbert 44.23250 �79.78139 5.0 Rural
Algoma 47.03500 �84.38111 5.0 Rural

D. Wen et al. / Atmospheric Environment 54 (2012) 373e386 377
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over Canada from the Ontario Ministry of Environment (OMOE)
(Chtcherbakov, 2003). Emissions of pollutants from biogenic sour-
ces were processed using the BEIS3 program of the Sparse Matrix
Operator Kernel Emission (SMOKE) modeling system. We incor-
porated the Models-3 Input/Output Application Programming
Interface (IOAPI) (Coats, 2003) into the model presented here so
that the model can read in emissions directly from SMOKE output
in the simulation.

3.3. Scenarios

To investigate the source contributions from the United States to
air quality in Ontario, the model was also run for the following
three scenarios in addition to the base run:

1. No U.S. natural emissions: same as base case but all U.S. natural
emission sources (e.g., vegetation and soils) were turned off.

2. No U.S. anthropogenic emissions: same as base case but all U.S.
anthropogenic emission sources (e.g., electric generating util-
ities, chemical manufacturers, furniture refinishers, vehicles,
residential heating, and waste landfill) were turned off.

3. No U.S. emissions: same as base case but all U.S. emissions
(anthropogenic þ natural) were turned off.

4. Results

4.1. Sensitivity to particle number

Due to the stochastic nature of particle trajectories, the accuracy
of the model’s simulation is affected by the number of particles
used. An infinite number of particles is theoretically required to
completely represent the ensemble properties of transport to
a given measurement location. In reality, however, only a limited
number of particles can be used in a simulation due to finite
computational resources. This leads to incomplete sampling of
trajectory pathways and emissions, resulting in fluctuations in
simulated concentrations. A small particle number can reduce
computing time significantly. To find the appropriate number of
particles in a simulation that can achieve adequate accuracy while
also reducing computational time, we ran the model with different
particle numbers for the Barrie measurement site. The particle
numbers examined include 10, 20, 50, 100, 150, 1000, 2000 and
3000, and simulated O3 time series are presented in Fig. 3. The
results show that simulated concentrations with a small particle
number are more variable than those with a big number. Discrep-
ancies between simulations with small and large numbers of
particles are significant. When the particle number is larger than
1000, modeled concentrations become close and almost overlap
each other. The larger the particle number, the closer the values
approach the modeled values with 3000 particles. Therefore, we
assumed that the modeled results with 3000 particles act like “true
values” without error caused by insufficient particles. Fig. 3 also
shows the deviations of all simulations away from the simulation
with 3000 particles where the discrepancy is calculated as the
Mean Normalized Gross Error (MNGE, defined in Table 2). Since the
model run time is proportional to the number of particles, we chose
1000 particles for use in the present simulations, which yielded an
MNGE less than 5% compared to a run with 3000 particles.

4.2. Model performance evaluation

Model performance was also evaluated with measurements for
all test sites by using three model performance metrics recom-
mended by U.S. EPA (1991): the unpaired peak accuracy (UPA), the
mean normalized gross error (MNGE) and the mean normalized

bias error (MNBE). Their definitions are listed in Table 2. MNBE and
MNGE indicate the overall performance of the model while UPA
represents the model’s ability to simulate the peak concentrations.

4.2.1. Ozone (O3) results
Model-simulated hourly O3 concentrations were comparedwith

measurements for all test sites during the simulation period from
July 20th to 29th, 2002. The comparison results (in Fig. 4) show that
the model performed well in predicting O3 concentrations at all
sites: the model captured the general variability in the measure-
ments, the timing of peaks, and the diurnal cycle.

Summary metrics and statistical measures for 1-h O3 concen-
tration for all the sites are presented in Table 3. EPA guidance (U.S.
EPA, 1991) recommends using MNGE and MNBE for O3 model
performance evaluations in conjunctionwith an observation-based
minimum threshold. An observation-based minimum threshold is
required since the normalized quantities can become large when
the observations are small. EPA modeling guidance recommends
using a cut-off value of 60 ppb (U.S. EPA, 2007); however, this cut-
off would eliminate most of the observations for some sites (Sud-
bury) in our model performance evaluation. In this study, a cut-off
value of 40 ppb was used, and the MNGE and MNBE statistical
measures were calculated using all predicted and observed hourly
O3 pairs matched by time for which the observed O3 was 40 ppb or
greater. As indicated in Table 3, all measures for O3 satisfy or nearly
satisfy the EPA guidances of MNGE � 35%, �20% � UPA � 20%, and

Fig. 3. Sensitivity of the model simulation to the number of particles: including
modeled O3 concentrations at Barrie with different particle numbers (Top) and devi-
ations (MNGEs) of O3 from the simulation with 3000 particles (Bottom).

Table 2
Definition of model performance statistics.

Parameter Definition

Unpaired Peak Accuracy (UPA) �Pupeak � Opeak

Opeak

�
� 100%

Mean Normalized Gross Error (MNGE) �
1
N

XN
i¼ 1

����Pi � Oi

Oi

����
�
� 100%

Mean Normalized Bias Error (MNBE) �
1
N

XN
i¼ 1

�
Pi � Oi

Oi

��
� 100%

Pi: prediction at time i; Oi: observation at time i; N: total number of observation;
Pupeak: maximum predicted concentration; Opeak: maximum observed concentration.
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�15% � MNBE � 15% (U.S. EPA, 1991). They are also comparable to
the values reported by other studies (Khiem et al., 2011; Goncalves
et al., 2009; Korsakissok and Mallet, 2010), indicating satisfactory
performance of the model in simulating O3. The statistics also show
that the modeled O3 concentrations agree better for rural sites
(Egbert and Algoma) or smaller towns (Sudbury, Barrie and Peter-
borough) than more polluted sites (Windsor, Etobicoke and
Kitchener) located in or near big cities. We also compared observed

and simulated Ox (O3 þ NO2) because Ox is more conserved than O3
due to the removal of NO titration effects. From UPAs andMNGEs in
Table 3, we can see that the comparisons are obviously improved
when the effects of NO titration are canceled out.

4.2.2. NOx results
Hourly measured and modeled NOx concentrations for six test

sites are shown in Fig. 5. The two rural sites, Egbert and Algoma,

Fig. 4. Modeled (red dash) and measured (black solid) O3 concentrations (ppb) for each test site during the simulation period from July 20th to 29th, 2002. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Statistic for predicted O3, NOx, Ox(O3 þ NO2) concentrations.

Site UPA (%) MNBE (%) MNGE (%)

O3 NOx Ox O3 NOx Ox O3 NOx Ox

Windsor 22.5 24.7 12.9 14.7 7.2 21.3 30.5 62.5 28.9
Etobicoke 12.4 4.2 �17.5 �16.3 12.1 �1.2 29.7 70.4 25.1
Sudbury 4.8 �73.8 �0.5 �11.5 �73.8 �16.6 22.8 75.2 24.8
Peterborough 16.6 70.3 �3.0 �1.7 �61.7 �3.3 27.0 74.5 26.9
Barrie 5.7 �72.6 �0.6 �9.8 �67.0 �14.7 29.4 73.2 26.8
Kitchener 17.6 27.7 1.3 �9.5 �11.7 �8.7 34.8 85.6 29.9
Egbert 9.6 �13.7 29.1
Algoma 3.0 �2.2 23.2
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were not included due to their lack of NOxmeasurements. The three
performance metrics mentioned above were also calculated for
NOx, where a cut-off value of 5 ppb was used for the calculation of
MNGE and MNBE. The resulting values are presented in Table 3.

As seen in Table 3 and Fig. 5, model performance for NOx was
much poorer than for O3. For instance, MNGEs for NOx are much
higher than for O3. The difficulties in simulating NOx by air quality
models are well-known, with other studiesde.g., Guerrero (2005);
Biswas et al. (2001)dalso exhibiting large errors that are similar in
magnitude to the current study.

As indicated by the significant negative MNBE values of �60
to �70% at Sudbury, Peterborough, and Barrie, the model consid-
erably under-predicted NOx at these 3 sites. A tendency toward
under-prediction of NOx, especially by regional scale air quality
models, is widely reported (Russell and Dennis, 2000; Lurmann and
Kumar, 1997; De Leeuw et al., 1990; Lu et al., 1997; Hanna et al.,
1996; Reynolds et al., 1996; Lin et al., 2008). One possible reason
is the dilution of the NOx plume over a whole gridcell by a gridded
emission model, at horizontal resolutions coarser than the scale of
NOx plume. The severe under-estimation in this study was
observed at Sudbury, Peterborough, and Barrie, all smaller cities/
towns, inwhich NOxmay be elevated by relatively local sources that
in the model are diluted over the horizontal spacing of 36 km in the
NOx emission griddas indicated by the gridded emissions seen in
Fig. 2. Case in point is Barrie, where a problem is clearly evident:
NOx concentrations are elevated above the simulated values, and
numerous plumes are missed by the model (Fig. 5). A look at the
Barrie station revealed that the sitewas located by a major highway
prone to be affected by local, traffic-derived NOx emissions.

In contrast, the bias is much smaller in larger urban
areasdWindsor, Etobicoke, and Kitchener (Table 3).We suspect this
is because in larger cities NOx emissions are found over awider area
that are better represented by the emission grid. Moreover, photo-
chemistry causes NOx removal to be slower under NOx-saturated
conditions (Kleinman, 1994) while in low-NOx areas chemical
removal of NOx is more efficient, exacerbating the under-prediction
of NOx for the sites in smaller towns where NOx concentrations are
already under-predicted from dilution of more local, sub-gridscale
emissions. Uncertainties in the emission inventories are another
likely source of relatively poor performance of the model for NOx.
However, the impact of errors in the emission inventories cannot be
assessed here due to lack of knowledge about such errors.

Fundamentally, the degraded model performance for NOx as
compared to O3 stems from the fact that O3 varies at larger, regional
scales whereas NOx varies more locally due to the latter’s strong
point sources and shorter chemical lifetime (Logan et al., 1981).

Finally, potential measurement errors in NOx may not be ruled
out. The sites in this study measured NOx with standard chem-
iluminescence monitors equipped with molybdenum oxide
converters. An interference in the chemiluminescence monitor
(U.S. EPA, 1975; Steinbacher et al., 2007; Dunlea et al., 2007) could
result in an overestimation of the real values in measurements of
NO2 (Lamsal et al., 2008).

4.2.3. Sensitivity to particle mixing parameterization
Due to the imperfect “particle-in-grid” approach for mixing and

redistributing chemical species between different Lagrangian
particles (Sect. 2.6), we carried out a sensitivity study to examine its

Fig. 5. Modeled (red dash) and measured (black solid) NOx concentrations (ppb) for the six test sites during the simulation period from July 20th to 29th, 2002. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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effect. To bracket the effect of mixing we added a simulation in
which no particle mixing was implemented. In this simulation
every single particle retained its own chemical identity, and no
redistribution of chemical species with other particles was carried

out at any point. Compared to the standard setup, in which perfect
mixing occurred within individual gridcells, we expect the “true”
mixing strength to be found between the two extremes of perfect
mixing and no mixing.

Fig. 6. Measured (black solid) and modeled O3 and NOx concentrations (ppb) at Barrie during the simulation period from July 20th to 29th, 2002. Modeled results include
simulations with (red dash) and without (cyan dash) mixing and redistribution of chemical species between Lagrangian particles. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Backward-modeled with initialization with GEOS-Chem output (red dash), backward-modeled with zero initial concentration (cyan dash), forward-modeled (blue dash) and
measured (black solid) O3 (Left) and NOx (Right) concentrations (ppb) for Etobicoke (Top), Windsor (Middle), and Barrie (Bottom) during the simulation period from July 20th to
29th, 2002. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Results are displayed in Fig. 6. It can be seen that differences
between the two mixing algorithms were small. Indeed, one can
conclude that discrepancies between the model and the observa-
tions, to first order, are likely not related to how mixing was
implemented. Ideas regarding how to improve upon the mixing
parameterization will be outlined in the Conclusions section.

4.2.4. Backward versus forward simulations
In order to examine the difference in simulation capabilities

between a backward-time model and a forward-time model, we
conducted two backward simulations using the model developed
in this paper and a forward simulation using a previous approach
(Stein et al., 2000).

It is important to point out that the forward and backward
setups are not the same. In the forward simulation particles are
emitted periodically throughout the model domain. The entire
pollutant mass at each emission gridcell is uniformly distributed
among the particles. These particles are then transported forward
in time throughout the simulation domain. The concentration of

each chemical species within a predefined concentration gridcell is
calculated by dividing the sum of the particle masses of a particular
chemical compound by the volume of the corresponding concen-
tration gridcell in which the particles reside. The resulting
concentrations are then utilized to calculate the new masses of the
chemical species, which are assigned back to the particles within
the cell. Once the redistribution has been performed, transport
takes place again, followed by the computation of the chemical
transformations and deposition for the next time step. New parti-
cles are released every time step from the sources to simulate fresh
emissions of pollutants. Importantly, the forward setup did not
include background contributions outside of the simulation
domain through the initialization of particle concentrations using
lateral boundary conditions (Stein et al., 2000). Instead, contribu-
tions solely from emissions within the simulation domain were
accounted for in the forward simulations.

The simulation period runs from July 20th to 29th, 2002, for
both backward and forward simulations. However, the forward
simulation started two days earlier (July 18th) to allow

Fig. 8. Simulated O3 concentrations for 1) base case (red); 2) No U.S. emissions (olive); 3) No U.S. anthropogenic emissions (blue); and 4) No U.S. natural emissions sources (teal) for
each test site. The horizontal black dashed line denotes the one-hour ambient air quality criterion for Ontario (80 ppb). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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concentrations of the chemical species to be initialized. Thus, the
first two-day results of the forward simulation were not used in
result analyses. In the backward simulations, similar to the base
case run, the particles were run backward in time for a period of 6
days. Two backward simulations were carried out to investigate the
effect of concentration initialization on particles. One was initial-
ized with the GEOS-Chem output, while the other was initialized
with zero concentration to mimic the absence of background
initialization in the forward simulation. The NARR meteorological
data used for the base run were used for both backward and
forward simulations. The same chemical mechanism, deposition
method/parameters, photolysis method/parameters were also used
for the both simulations. The forward model was originally
configured to be driven with internally modeled deposition veloc-
ities (rather than outputted from MCIP) and an average diurnal
cycle of gridded emissions (Stein et al., 2000). These modifications
were implemented for the backward simulations in order to match
the forward-model configuration in this comparison. The hourly-
varying emission data were averaged over 20 days to generate an
average diurnal cycle to serve as input for both simulations. Hence
the backward simulations in this comparison differ from those
shown in Figs. 4 and 5.

The modeled concentrations of O3 and NOx as well as measure-
ments for Etobicoke,Windsor, and Barrie are displayed as an example
in Fig. 7. Both the backward and forward simulations can reasonably
capture the general trends and diurnal variation of O3. However, there
was a tendency toward under-prediction of O3 concentrations by the
forward simulations during July 24th to 25th, the period when
concentrations are lowandwhennortherlywindbroughtbackground
air from higher latitudes (see Sect. 4.3, Fig. 9, and the accompanying
text). The larger under-prediction is likely due to the lack of a mecha-
nism to initialize background concentrations for particles in forward
simulations.This is supportedbythecomparisonbetween the forward
simulation and the backward simulation initialized with zero
concentration where the modeled concentrations are very close to
each other when observed concentrations are low.

The concentrations of NOx simulated by the forward model are
comparable to those from backward modeling. NOx was not obvi-
ously under-estimated by the forward simulation, mainly because
NOx, unlike O3, is a more localized pollutant, and therefore is less
significantly affected by the background level.

The comparison between the backward and forward simulations
also demonstrated the computational efficiency of a backward
simulation. TheCPU time foreachof thebackward simulations is less
than half of the time required by the forward simulation.

4.3. Model estimated contributions from U.S. sources

Exposure to elevated concentrations of ground-level O3 is
a serious health concern and adversely affects crops and living
organisms in general (Chameides et al., 1994, 1999). Because
Ontario is downwind of significant U.S. pollutant emissions that
could affect its air quality, we examine here exactly how much U.S.
emissions affect O3 levels at different Ontario sites as an application
of the backward-time stochastic Lagrangian air quality model. In
order to investigate the cross-border transport of U.S. sources and
their impact on Ontario, we conducted three different scenarios: 1)
turning off U.S. anthropogenic sources; 2) turning off U.S. natural
sources; 3) and turning off all U.S. sources (anthropogenicþ natural
sources). Only the impact on O3 was examined here, as the NOx

simulations still contained the previously mentioned representa-
tion errors mainly caused by the dilution of emissions and the
shorter chemical lifetime of NOx (Fig. 5).

The modeled O3 concentrations of the scenarios, along with the
base case, are presented in Fig. 8. Almost all the sites demonstrate
some time periods when O3 concentrations were obviously affected
(Cbase� Cscenario� 0.5 ppb) by U.S. emission sources and some other

Fig. 9. Modeled footprint [log10(ppm (mmole m�2 s�1)�1)] for Barrie for a period between July 24th to 25th showing northerly air flow from northern Canada (left), and a period
between July 26th to 29th showing southerly air flow (right).

Table 4
Influence of U.S. sources on O3 at the target sites during the July 20th to 29th, 2002
simulation period.

Site Percentage of hours
affected (%)

Max concentration of O3

contributed (ppb)

A N T A N T

Windsor 99 91 99 51.7 47.9 66.1
Etobicoke 72 73 78 61.5 63.7 80.0
Sudbury 56 58 60 33.8 28.6 49.4
Peterborough 66 66 68 52.2 56.9 68.8
Barrie 59 63 64 36.4 43.5 51.3
Kitchener 68 76 76 59.0 52.8 71.8
Egbert 61 64 65 37.5 41.7 51.5
Algoma 79 78 82 41.5 24.8 49.5

A: Anthropogenic emission, N: natural emission, T: Total emission.
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periods not obviously affected (Cbase � Cscenario < 0.5 ppb)d
especially July 24th to 25th. To understand the different atmo-
spheric transport between these periods, footprints during the two
types of periods for Barrie are displayed as an example in Fig. 9.
Footprints, which are deduced solely fromair parcel trajectories, are
indicatedby the color scale. These showthe sources of the air parcels
detected during a period affected by U.S. sources and a period
unaffected by them. Fig. 9 clearly shows that O3 concentrationswere
significantly affected during July 26th to 29th due to the transport of
pollutants from the U.S., while O3 was not affected during July 24th
to 25th due to relatively clean air flow from northern Canada.

The horizontal black dashed line in Fig. 8 denotes Ontario’s one-
hour provincial ambient air quality criteria (AAQC) for O3 (OMOE,
2008), set to 80 ppb. Exceedances are found in the model for all
of the sites except for the higher latitude sites of Sudbury and
Algoma, albeit actual measurements indicated observed pollution
episodes that were a few ppb short of the 80 ppb limit at Windsor,
Peterborough, Etobicoke and Kitchener during this 10-day period
(Fig. 4). Despite this model shortcoming, the difference between
the red line (base) and all the other lines (different U.S. emissions
switched off) clearly indicates significant influence of U.S. emis-
sions on potential O3 exceedances. Themodel results are suggestive
that without contributions from U.S. natural or anthropogenic
emissions, it is unlikely that O3 concentrations would exceed the
criteria level of 80 ppb at the study sites.

As presented in Fig. 8, the timing and length of periods affected
by U.S. sources differ between sites. Table 4 shows the percentage of
hours affected by U.S. sources, which indicates the relative signifi-
cance of the contribution of U.S. sources to those sites. As expected,
the percentage of hours affected in the simulation period depends
on the transport distance to the U.S. border. O3 concentrations at
Windsor, the site closest to the U.S. border (right across from

Detroit), were influenced almost all the time during the simulation
period. Algoma has the second largest percentage of hours affected
due to its short distance to the U.S. border. Sudbury and Barrie have
the lowest percentages due to their longer transport distances.
However, at all 8 sites over 50% of the hours are affected by U.S.
emissionsdeither anthropogenic or natural.

Average percentages of O3 concentrations contributed by
different U.S. sources during the simulation period were calculated
as another way to evaluate the extent of U.S. source contribution
(Fig. 10). We can see that the contributions from U.S. natural
sources are, in general, slightly smaller than anthropogenic sour-
ces except for only Windsor. We also can see that the contribution
from total emissions is not a simple summation of contributions
from each individual emission source, demonstrating non-linear
impacts of emission sources. Sites like Windsor, Etobicoke,
Kitchener and Peterborough are much closer to the U.S. border,
and therefore they were subject to a more significant impact. For
those sites, more than 24% of total O3 was contributed from U.S.
natural or anthropogenic sources, and total emission sources
contributed more than 40% of O3 concentration. Algoma, although
very close to the U.S., was not affected as significantly because it is
a rural site and situated in the north, where nearby U.S. emissions
are low. U.S. sources have the least impact on Sudbury, again due
to its long distance from the U.S. combined with the low U.S.
emissions for that area.

Table 4 shows the maximum O3 concentrations contributed
from U.S. sources at each site during the simulation period. As
expected, the maximum concentrations contributed are largest at
the four sites close to the U.S. border in the southdWindsor, Eto-
bicoke, Kitchener and Peterborough. Maximum O3 concentration
contributed from U.S. total emission sources were more than
66 ppb for those four sites and around 50 ppb for the other sites.

Fig. 10. Average percentage of O3 concentrations contributed by: 1) U.S. natural emissions (blue bar); 2) U.S. anthropogenic emissions (teal bar); and 3) All U.S. emissions (olive bar) for
eachmeasurement site (reddot) during the simulationperiod. (For interpretation of the references to colour in thisfigure legend, the reader is referred to thewebversionof this article.)
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5. Conclusion and discussion

A backward-time stochastic Lagrangian air quality model was
developed by incorporating the CB4 chemical mechanism into the
STILT model. Thus, the model can use STILT to simulate the transport
of air parcelsbackward in timeand takes advantageofCB4 to simulate
gas phase chemical transformations in the atmosphere along
stochastic back trajectories. The capability for receptor-oriented
chemical simulations based on stochastic particle trajectories signif-
icantly reduces the computational cost by limiting themodel domain
necessary for simulating and understanding tracer concentrations at
receptors. The model was applied to eight measurement sites across
Ontario, Canada, andevaluatedagainstmeasuredconcentrations. The
comparison demonstrated a satisfactory performance of the model
for O3, while NOx is under-estimated at sites away from big cities.We
suspect that the under-estimation is a consequence of the coarse-
scale grid spacing for NOx emissions, although artifacts in measure-
ments of NOx can also contribute to the discrepancy. Uncertainties in
emission inventories are likely another source of the relatively poor
performance of the model for NOx.

One of the main difficulties in simulating chemistry in Lagrangian
particlemodels is theparameterizationofmixingbetweenLagrangian
particles and the particle mass reassignment after chemical trans-
formations. In this work, the particle-in-grid method was used for
mixingandreassigningmassbetweenparticles.Although theparticle-
in-grid method is simple and easily implemented, it is still tied to
Eulerian grids, preventing the model from taking fully advantage of
the Lagrangian framework. Also, the particle-in-grid method lacks
a physical basis in its mixing parameterization. Future studies will
improve the parameterization of mixing by adopting a more sophis-
ticated mixing scheme that is tied to the underlying physics. For
example, themixing scheme in the Chemical LagrangianModel of the
Stratosphere (CLaMS) (McKenna et al., 2002) introduces mixing
between particles separated by distances below a critical value
determined by the Lyapunov exponent of the atmospheric flow. The
Lyapunov exponent is related to stretching of material surfaces and is
thus closely associated to the physics of mixing (Ottino, 1989).

As an application of the backward-time stochastic Lagrangian air
quality model, the cross-border transport and contribution of U.S.
emission sources to receptor sites in Ontario, Canada, were exam-
ined. Model results suggest that total U.S. emissions contributed
more than 30% of O3 concentrations at all sites and anthropogenic
emissions contributed a little more than natural emissions for most
sites. Over half of all hours during the simulation period were
affected either by anthropogenic or natural emissions from the U.S.
sources. Furthermore,model results are suggestive thatwithout U.S.
emissions (either anthropogenic or natural) periods of O3 exceed-
ance above the 80ppb criteria levelwould likely not take place at the
sites. Although some uncertainties exist, the model results still
provide indication of the significance of U.S. sources for air quality
across Ontario.
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