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1 Introduction 

 What this course is about 

 
As summarized in the course description, environmental fields are overwhelmed with 
information, but methods are available to help acquire, analyze, visualize, and interpret the 
associated time series and multidimensional fields. This course is a compromise to allow more 
hands-on programming related to analyzing environmental data. Statistics as used in this course 
can be viewed as a part of Data Science, which encompasses both computer programming and 
statistics, among many other subjects. Data science involves what environmental scientists do: 
collect, prepare, analyze, manage, visualize, and store large volumes of information.  
 
Knowing statistical methods is pointless if you don’t know how to access and visualize the 
resulting information. Being a whiz computer programmer is not useful if you can’t in the end 
find a use for what you are doing. It is frightening how often researchers don’t understand 
statistical methods but apply them to large volumes of data and end up with physically 
implausible results. Just because a computer program ran and did not generate any errors, that 
doesn’t guarantee what you found makes sense physically. 
 
The goal of this course is to review and apply only a small number of core methods to examine 
data that may help you reach conclusions about environmental issues. Actually, good research 
usually ends up raising more questions than reaching solid conclusions. We will rely on the 
University’s Center for High Performance Computing (CHPC) Open OnDemand web portal 
that allows you to learn basic programming concepts without getting too hung up on the nitty-
gritty details. The Python programming language is used within the Linux programming 
environment.  
 
The format of the course involves introducing concepts using Teams and leaving you time to 
work in class on assignments using the OnDemand web portal. My hope is that data science 
concepts and skills  that you are exposed to here will be useful for next summer’s project  and in 
your classrooms.  
 
These notes are the “statistics” text. It is necessary that you have a copy of the Second Edition of 
Python Programming and Visualization for Scientists by Alex De Caria and Grant Petty as a 
resource and reference to programming syntax. The objective is not to have you become an 
expert programmer, but help you to navigate a bit beyond Excel-type approaches with which you 
might be more familiar.  
 

 Effective Research 

You may have some uneasiness regarding the applications of statistics to everyday life. Nearly 
every day some statistical study is reported in the media that is construed to prove the value of 
one substance or approach vs. another. A common public perception of statistics can be 
summarized as: statistics is useful if it confirms your biases and not useful if it requires you to 
question your beliefs. For example, consider the often misattributed quote: there are three types 
of lies- lies, damn lies, and statistics.  But, let’s be real- you rely on statistics all the time to 
describe events or compare outcomes (ERA, GPA), infer what’s going to happen in the future 
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based on past or current samples (polling for elections), assessing risk (is smoking bad for you?), 
and, what scientific research is all about, identify relationships within a large volume of data.  
 
One of the goals of this course will be to emphasize that evaluating data requires you to check 
results and conclusions carefully. Could there be a problem with the data or do you have a 
programming error? What assumptions were made along the way to distill the data that might 
bias the results? Was the analysis approach really appropriate? What alternative explanations 
could there be? How statistically, as well as practically, significant are the results? 
 
The bottom line is KISS- Keep It Simple Stupid. Most complicated programming and statistical 
approaches are just that- complicated.  Machine learning sounds cool, and it is and increasingly 
easy to use. But, most people don’t understand the assumptions and how and what those 
techniques are doing. My general rule is that if you have a really useful result, you should be able 
to see the glimmer of it in the raw data. The trick is to find the gold nugget in the gravel. 
Subjective evaluation of data is critical- if you have to manipulate and massage the data and then 
use some complicated analysis technique to distill the results, how useful will your results be? It 
may be useful if you are attempting to test and verify a well-defined hypothesis, but it may not 
have a direct practical application.  
 
Abuses of statistics result from the common situation that if the only tool in your tool belt is a 
hammer, everything starts to look like a nail. Some statistical measures work better than others 
and some programming techniques are more efficient than others. A lot will depend on the goal 

Figure 1.1. Seasonal total snowfall (cm) from November-April at Alta, UT.  

Figure 1.2. Summer soil-moisture reconstruction for the western U.S. highlighting recent megadroughts 
(Williams et al. 2020). 



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  5

of the research and the type of data you are looking at. A goal of this course is to add a few tools 
to your tool belt- it will be up to you to figure out when is the right time to use them.  
 
As introductory examples of environmental data, consider the time series of measurements of 
seasonal snowfall at Alta, UT from 1946 to the present in Fig. 1.1 and reconstruction of summer 
soil moisture for the western U.S. (Fig. 1.2) that is derived from tree-ring reconstructions. Rather 
than just accepting these records as representing climate variability from year-to year or on 
longer time scales, how were they created? What data were used? Who made the measurements 
and why? Snow doesn’t really fall over a season- it happens during 1-3 day storms, so are 
seasonal totals the best metric to use? Yikes, the snow total this past winter was the second 
lowest from 1946 to the present. 
 
In Fig. 1.2, the conditions during the past 20 years are similar to some of the most serious 
megadroughts in the past 1200 years. There are many questions we need to ask before assuming 
this index is a useful estimate of climate behavior for this region. How was it constructed in 
terms of the physiologic response of trees to climate? How sensitive is the methodology to local 
weather conditions and are the locales of the trees available for analysis representative of climate 
conditions regionally? What corroboration is available during the instrumental record that can be 
used to assess its value? What other factors do you think should be considered? Answering some 
of these questions will come from reading the paper, the supplemental material provided to 
support the paper, and their correction to the paper provided late last year. 
 
Effective research requires preparation. Environmental problems are complicated. It is a bit 
unrealistic to expect that a phenomenon that evolves in time and space with complex interactions 
between variables will have a single causal factor that is completely apparent through a quick 
analysis of data. Rare events that have occurred recently are not due solely to anthropogenic 
forcing- how do we deal with multiple factors that might not be constant in time? That is a 
particularly vexing situation these days. 
 
There are several basic steps to effective research: 

 distill a general interest in a subject into a specific question/hypothesis that can be 
evaluated. While we are all likely interested in the impacts of global warming, it is a bit 
unrealistic to expect to examine all of the general circulation model data or long records 
of weather data in one study. Sometimes it is necessary to limit a study to what can be 
determined given the existing model or data assets. As your MSSST research progresses, 
you may need to search for other data that can help address the question of interest. 

 organize the data. This can be the most tedious step, but the most critical. What data do 
you need? How should gaps of missing data be treated? What are the possible limitations 
of the data? Have you looked at the raw data enough to recognize what might be 
physically implausible values? Does the data make sense physically? Do you need to 
remove large signals that are not of interest to your question, i.e., seasonal or diurnal 
cycles, or model biases? You can avoid a lot of missteps by careful data preprocessing.  

 find relationship(s) among the data. Your choices of analysis approaches are critical. 
Given your hypothesis and your data, what is the best way to proceed? It isn’t going to be 
easy- as you proceed, you may end up having to reevaluate the goal of your research, find 
other data assets, or try other ways to analyze the data.  
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 examine the significance of your results. There is statistical significance, which you 
need to address, and then there is practical significance. Statistical significance is 
important- all too often people over fit data and then their results will be useless when 
applied to an independent data set. However, learn to recognize practical significance. Do 
your results make sense physically? Have you considered the amount of spatial and 
temporal dependence in the underlying data set? That is, the variations in environmental 
observations at one location may not be that different from those nearby. And, 
observations at one time may not be that different from those before or after the time of 
interest. Does the relationship hold up in an independent data set? While your results may 
pass a statistical significant test, are they of any use? 

  review thoroughly what you have done and document your analysis and results. Did 
you cut any corners during the data preparation or analysis? The scientific ethos requires 
that based on the information you provide, someone else can take the same data and 
derive the same results. It is now often required in order to publish a scientific study that 
the data used in that study must be made available to others to evaluate your results. 

 submit your results and study for independent evaluation. Peer review is critical for 
providing an independent opinion of the merits of the analysis that you have completed. 
Accepting criticism of one’s work can be difficult. Be wary of any study that has not 
been subjected to peer review. If a project does not require peer review, then ask 
colleagues for an honest appraisal of the study’s results. 
 

Be aware, however, that refereed statistical studies may have serious flaws. Recognize that there 
is a publication bias to report positive results, no matter how inconsequential, as opposed to 
negative results. The influence of El Nino on the snowpack in the Wasatch is weak at best, and 
there have been many papers attempting to explain those weak relationships. However, it would 
be virtually impossible to have a journal publish a paper with the primary conclusion being there 
is no relationship between El Nino and Wasatch snowpack.  
 

 Uncertainty 

Uncertainty is at the core of this course. Uncertainty arises because:  
1. we can never measure the environment with complete accuracy and precision,  
2. the environment is a chaotic system, which is a maddening combination of randomness 

and order arising from the characteristics of a complex nonlinear system, 
3. our understanding of the environmental system is imperfect, so physical (and certainly 

statistical) models do not capture the complete behavior of the system.  
 
Always assume that ANY observations are uncertain. Was a human observer involved? Did the 
same observer take the observations each time? What automated equipment was used? What 
metadata (data describing the data) are available to explain how the observations were taken? 
And, any chance the data were mucked up during some stage of the data processing before you 
received it- could programming errors have crept in?  
 
I’m a pessimist by nature. If someone asks about some unusual observation that they saw in 
MesoWest, the first thing I do is begin thinking about why that observation is likely messed up. 
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Rarely do we know what the “true” state of the environment should be. An instrument can be 
calibrated to a standard in the laboratory, for example, distilled water in an ice bath should have 
a temperature of 0oC (but what about impurities, dirt in the container, etc.?). However, I’m also 
more of an optimist than many- we can make sense of data even when imperfections in the data 
exist. If a wind sensor in a slot canyon only blows from the west or east, you may still be able to 
determine when a front passes that station in most cases, even with the biases inherent in the 
data. 
 
We need to distinguish between the usually unknown (outside of the laboratory) “truth” and 
actual measurements.  

 True value- value of a quantity sought through measurement, but unknown usually in the 
field 

All measurements from instruments will provide an estimate of the true value, with varying 
degrees of success. A number of measures are available to gauge the uncertainty of observations: 

 Accuracy- difference in response between a standard and instrument in varying 
environmental conditions 

o a measure of how close a measurement is to the “true” value 
o high accuracy can be expensive 

 Limitation- capability of an instrument to give accurate readings within a specific range. 
At extreme ranges, readings may be less accurate and hence, limited 

 Precision- how well repeated measurements of some quantity agree with each other. 
o a precise instrument can be inaccurate 

 
Consider the following shots at a “bulls eye”, where the goal is to hit the X, the true value. While 
it is certainly best to have observations that are both accurate and precise, it may be too costly to 
do so.  

 
Figure 1.3. X is the “truth” while the filled circles reflect observations. 
 
High accuracy   Low accuracy  High accuracy   Low accuracy 
High precision   High precision  Low precision   Low precision 
Small uncertainty  Large uncertainty Large uncertainty         Large uncertainty 
So, high precision cannot make up for inaccurate information (“garbage in, garbage out”). Many 
people end up confused when they hear the same wrong information from multiple sources 
(which often originate from a single highly unreliable source). Judgment and integrity are 
critical in all facets of life, particularly when evaluating the credibility of results obtained from 
environmental data.  
 
The tendency in environmental fields is to overstate the amount of random error and 
underestimate systematic errors (or biases).  

X X X X 
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 Random- that which is not precisely predictable or determinable. Random errors arise 

physically due to sudden changes in the environment, due to turbulence or other 
processes. Random errors can also occur due to faulty equipment or observer 
carelessness. 

 Systematic- errors arising from a consistent response of a measuring device to 
environmental conditions or faulty characteristics of instrumentation that occurs 
frequently.  Systematic errors can vary as a function of weather regime: nonaspirated 
thermistors (thermometers over which there is no air blowing past mechanically) will 
tend to be affected by radiational cooling and heating when the winds are light, for 
example. 
 

Look at the target plots above.  High accuracy and low precision observations are an example of 
random errors while low accuracy and high precision observations are an example of systematic 
errors. 
 

  Population vs. Sample 

In the same way that we rarely know what the “true” value of a variable should be, we never 
know the entire population of true values as the environmental conditions change in time or 
space. We hope that we choose a sample of observations for analysis such that each element in 
the population has an equal chance to be selected, that is our sample is representative of the 
larger (usually unknown population). For example, we don’t know what the future values will 
be, so there are clear problems with any sample we choose. For example, the increasing trend of 
atmospheric carbon dioxide concentrations implies that a sample taken from the recent past can 
not reflect accurately the population of carbon dioxide concentrations that includes future values. 
When we choose a sample, we must try to avoid selection bias (cherry picking the environmental 
situations we study).  
 
Also, because of the serial dependence of environmental data (observations collected 
consecutively will tend to be similar to one another depending on the time scale of the 
phenomenon being measured), it is often difficult to have each element of the sample be 
representative of the span of the observations possible in the population. Further, numerical 
model errors are often such that samples from a model tend to be less variable than observed 
samples, so that a sample derived from model fields will not be representative of the observed 
population. 
 
Selecting the sample for analysis is a critical aspect of organizing the data and depends on the 
question to be addressed by the study. If we want to examine the frequency of occurrence of 
major snowstorms at Salt Lake City, does it make sense to include data from the entire year or 
limit the analysis to data from the cool season only?  
 
An obvious rule of thumb is that your sample should be large enough to capture the phenomenon 
of interest many times. “Degrees of freedom” refers to the number of independent elements in 
the sample; the number of degrees of freedom is usually much smaller than the total number of 
members in the sample in environmental data sets. You may want to use only a fraction of the 
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total data available to begin your analysis. Then, the remaining data will be an independent 
sample that you can use to evaluate and confirm your results. Alternatively, procedures can be 
used to rerun the analysis hundreds of times omitting randomly data each time in order to 
develop confidence in the results. All too often, people assume that their sample is drawn 
randomly from the population, when in reality, their sample grossly underestimates the 
variability inherent in the population. 
 
To illustrate these points, consider Fig. 1.4. Assume that we are measuring some phenomenon 
for which the population consists of only 1 possible “true” value equal to -1. So the population 
mean  (average of all of the true values) in this case is the same as each individual true value 
and equal to -1. Then, we make a total of “n” repeated measurements (in this case a million), 
which is our sample. One of those measured values, xi equals 1 so the measurement error for that 
specific case is 2. The histogram counts all million values into bins. It is more likely in this made 
up example that we measure values near 0 and never measure values outside the lower and upper 
limits. Then, the sample mean is 





n

i
ix

n
X

1

1
 

In our example, the sample mean is 0, so we have a systematic error or bias of +1. If the width of 
the bell curve narrowed, the precision of the sample would increase. As the mean of the sample 
shifts towards -1, then the accuracy of the sample would increase.  
 
It is also important to recognize when events may really be independent of one another. The 
probability of getting heads when you flip an unbiased coin is always 50%, no matter if you have 
had 10 heads in a row before. Many times people confuse streaks, or “hot hands” as being real 
when they are not. Casinos stay in business because gamblers’ perceptions differ from reality- a 
person’s intuitive misunderstanding of causality (I’m wearing my lucky shoes) departs from 
well-founded odds of a likely 
(or unlikely) outcome. And, 
clusters of events do happen by 
chance- two people could be 
winning at the same blackjack 
table by chance, not because it 
is a lucky table. Specific, rare 
health complications  might 
occur in one town at a higher 
rate than “normal” by chance, 
independent of local 
environmental conditions, 
simply because lots of people 
live in lots of towns. 
 
It is also important to clarify 
different types of samples 
within a population. If two 
samples are not drawn from the 
same portions of the population, 

 

Figure 1.4. A million member sample. The True value is assumed to 
be -1. The systematic (average) error would be +1. 

Lower 
limit 

Upper 
limit 

Average of  
measured  
values 

Single  
measured  
value 

“True”  
value 

Systematic 
error  
 

Single 
 measurement 
error  
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then they are independent of one another. For example, a time series of values from 2000-2009 
would be independent of a similar time series from 2010-2019. Two samples are dependent if 
the values in one sample are used to determine the values of the other sample. If we try to 
estimate the snowfall amounts each year at Alta from the snowfall at Salt Lake City, then those 
Alta estimates are dependent on those at Salt Lake City.  
 
In machine learning (a fancy term for using a wide class of statistical tools), a training 
dependent sample is used to determine parameters required to estimate some quantity from other 
data. Then, those parameters are evaluated by using an independent validation sample. Finally, 
another independent data sample, the test or hold-out sample, is used to evaluate the 
effectiveness of the technique to estimate the quantities that are desired. 
 

 Reducing Dimensionality 

Programming and statistical methods applied to environmental data typically involves reducing 
the dimensionality of the data to a manageable size. Which variable(s) do we need to consider? 
Can we consider one variable (univariate analysis) or must we consider multiple variables 
(multivariate analysis). What time scales are we interested in? Hours, days, months, years? And, 
what region (local, regional, globally) or level in the vertical (surface, subsurface, upper air)? 
Are the data available on a spatial grid or at specific points? Reducing dimensionality pops up as  
all kinds of fancier terms: neural networks; principal component analysis, etc. 
 
Statistics often is misinterpreted as bookkeeping. What is the warmest temperature on record at 
Salt Lake City? What is the biggest snow storm at Alta? To even begin to answer those questions 
raises a number of issues. What period of record are we considering? What instrumentation? 
What about siting issues: where are the observations located (airport, downtown, Alta, etc.)?  
 
We do need to distinguish between weather and climate: 

 weather- state of the atmosphere and, more broadly, state of the environment 
 climate- aggregate summary of the weather,  or, more broadly, aggregate summary of the 

environment 
 
How we go about aggregating the sequence of states of the environment is a critical issue. Much 
of the present climate framework in the U.S. is tied to somewhat outdated practices: climate 
normals are defined in terms of 30-year summaries that shift over time. The recent change in the 
definition of the normal period has been big news of late with the shift from the 1980-2010 
period to the 1990-2020 period.. “Normal” refers to the mean, the average of the values observed 
over time. It is designed to tell someone what the typical weather for a location might be.  But, 
we’ll see later that the mean is not always a good measure of the typical weather- it is sensitive 
to occasional outliers (either real ones or ones that arise from failing to identify erroneous 
observations).  
 
Focusing on extremes (for example, record highs and lows) can also be misleading. Is it critical 
if the temperature drops in a few minute period to some really low value, or is it more important 
if it stays at a slightly higher value, but still unusually low, over a  several hour period? Many of 
our current practices of recording mean and extreme conditions is simply an attempt to reduce 
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the dimensionality of the volume of data available. However, with the sorts of computing 
resources now available, we should not feel so constrained to follow such practices, and, at the 
least, be wary of how those practices may constrain our understanding of the way the 
environment works. 
 
Statistical approaches are useful for weather and climate because: 
 

 both are controlled by innumerable factors, which we hope to segregate into a few critical 
factors from the rest that, for the most part, simply contribute to background noise 

 the characteristics of the system include linearly unstable processes that cause growth of 
small features into larger ones (a topic covered in other atmospheric science classes) 

 the characteristics of the system (dynamics, thermodynamics) are nonlinear and include 
discrete step functions (i.e., rain/no rain) that can lead to the amplification of small errors 
into large ones 

 the system is dissipative, which implies a tendency for “stationarity”, i.e., the climate 
system will remain stable and not run away completely from the current state. Global 
warming is not going to cause earth to turn into Venus, for example.  

 
So, if we want to predict some future outcome, what variables must we consider? What 
locations? Over what time interval?  Dealing with location (horizontal and vertical), time, and 
variable simultaneously is best left to numerical models of the entire climate system. The 
nonlinearities and instabilities make the environment unpredictable after characteristic times that 
differ among the various subcomponents (atmosphere, ocean, ice, etc.). The combination of 
noise and damping in the environmental system makes statistical predictive approaches credible. 
Deterministic approaches to forecasting future states of the environment (i.e., that the system is 
known and predictable at short lead times once the initial state is specified) may be less accurate 
than statistical approaches, which typically presume that there are a range of likely outcomes 
given the uncertainty inherent in the system. 
 

 Descriptive vs. Inferential Statistics 

The distinction between descriptive and inferential statistics ties together many of the above 
points: 
 

 Descriptive- organization and summarization of data, which may include using statistical 
models to interpret the volumes of data 

 
 Inferential- figuring out why the environmental system behaves the way it does using 

data. 
 
During your career you may be faced with the task to extract information from environmental 
data. It is unlikely you will develop a new coupled model of the earth-atmosphere system from 
scratch. Many of you will likely be handed chunks of environmental observational data that has 
been collected. An effective evaluation of data entails the use of statistics descriptively and 
inferentially. The process of data analysis requires brute force detective work: being organized 
and thorough as well as following through and experimenting with different approaches to 
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examine the data. It also requires insight and intuition into the workings of the environment: you 
must understand the goals of your investigation and the flexibility to adapt as your understanding 
improves during preliminary analyses. And, you want to use appropriate programming methods 
so others can use what you have written. 
 
Statistical inference is the goal- we want to draw meaningful conclusions from the data.  That 
means we need to have a plan and an idea about what to expect when we analyze the data. We 
need hypotheses. However, statistical analyses can’t prove much- but, data analysis can rule out 
incorrect hypotheses.  
 
In court, you are expected to be assumed initially to be innocent (not guilty). That is the null 
hypothesis, you are not guilty. The prosecutor’s job is to get the jury to reject that you are 
innocent and provide an alternative hypothesis that you are guilty beyond a reasonable doubt. 
The defending attorney’s job is not to prove you are innocent, all that is necessary is to come up 
with other alternative hypotheses, such as someone else did it or raise the uncertainty about your 
level of guilt above reasonable doubt. We will see that “beyond a reasonable doubt” for a 
statistical inference is related to how often we might expect something might happen by chance- 
once in 20 cases, once in one hundred cases, etc.  
 
We have to be very careful about how we infer a meaningful conclusion. If we want to be really 
careful and only reject the null hypothesis at a high level of certainty (avoid false positives by 
saying it can only happen once every ten thousand cases), then there are going to be more times 
when we should have rejected the null hypothesis and didn’t (false negatives). In other words, 
guilty people will go free more often to insure that no innocent person is sent to jail. Perhaps, a 
less threatening example is designing a spam filter. Your spam filter begins by assuming every 
email is not spam. You should be resigned to let through a few unwanted emails to avoid 
blocking an important email. Right now the University’s spam filter is labeling some critical 
emails sent to me as spam- that is not good programming.  
 

 Replicability and Reproducibility  

Replicability is assessed by researchers who perform an experiment under exactly the same 
conditions multiple times. Replicability reflects the technical stringency or precision of a specific 
experiment. Thirty years ago, two researchers at the University of Utah put out a press release 
claiming they managed to and replicated generating excess heat at room temperature: cold 
fusion. That generated a huge hubbub, but it was not reproducible by others to the extent of their 
claims. Reproducibility is the extent to which measurements or observations agree when 
performed by multiple researchers. 
 
The number of journal articles published worldwide is now over 2 million annually. A quarter of 
these are in the field of biomedicine of which a large fraction of those are never even referenced 
by other studies. Is it any surprise that many articles are being published that contain 
irreproducible results? Search technologies are helping identify issues, but only about .4% of 
articles are retracted of late. Retractions arise from plagiarism, data manipulation (especially in 
figures), and proven data falsification.  
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Reproducibility, rigor, transparency and independent verification are cornerstones of the 
scientific method. Just because a result is reproducible does not make it right (or useful). 
Reproducibility is assessed by performing similar, but not identical, experiments at different 
times, in different locations, and under somewhat different experimental conditions. Replicability 
reflects the technical stringency or precision of a specific experiment.  A precisely conducted 
experiment can be inaccurate, and an accurate experiment may be performed imprecisely—
especially in biomedicine where many factors can account for irreproducible results.  
 
Nassim Taleb highlighted a fundamental flaw of traditional statistical methods and the concept 
of reproducible results using the term black swan event (https://en.wikipedia.org/wiki/ 
The_Black_Swan: The_Impact_of_the_Highly_Improbable). The rarity of black swans in nature 
lends itself to the concept of rare and unpredictable events (at least unpredictable to people who 
are not experts on swans). Scientists are not immune to explaining such events, retrospectively (a 
posteriori) rather than in advance (a priori). Hence, statistical approaches might be in theory 
reproducible for most environment conditions, but not for black swan events. Because of their 
inherent rarity, it is difficult to explain away an irreproducible result on the basis of a rare, 
singular event for which no other evidence is available. Handling black swan events introduces 
the concepts of vulnerability to rare events and the need for resiliency to cope with such events. 
To most of us, the COVID-19 situation has been a black swan event.  But, public health experts 
certainly understood such events could happen and many expected something of this sort was  
predictable and we should have been better prepared for it. 
 
Guidelines from major journal publishers now recommend that journals include in their 
information for authors their policies for statistical analysis and how they review the statistical 
accuracy of work under consideration. Errors in design, analysis and interpretation of data 
science/statistical approaches could be inadvertent or intentional. Bias clearly plays an important 
role in promoting false-positive results. Assumptions regarding random and systematic errors 
contribute as well. Reasons for such bias include: 

 lack of experimental balance leading to an impassioned belief in one particular 
experimental outcome clouding objectivity; 

 perceived pressure to publish for academic advancement or to enhance the likelihood of 
competing successfully for grant funding; 

 the lack of appeal to publish negative (or neutral) results in most high-impact journals.  
 

 Putting Statistics to Work 

We will be using the Open OnDemand framework to alleviate the drudgery associated with 
learning Python language syntax and statistical methods.  You must have the Second Edition of 
Python Programming and Visualization for Scientists by Alex DeCaria  and Grant Perry as a 
reference. The objective of this course is to make you aware of programming methods and foster  
the ability to work both independently and collaboratively to evaluate information. Don’t expect 
us to solve all of your programming mistakes. You will have the opportunity to use Teams to 
communicate with others and bounce ideas and solutions off one another.  
 
It is important that you first understand what you need to do to complete the course assignments. 
Then, take advantage of Python to relieve the tedium of doing the statistical calculations. That 
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may often require you to do some of those calculations manually and then make sure and verify 
what you get using the Python notebooks and programs.  
 
Share code features with others (and us!), if you do so. However, using someone else’s code is 
plagiarism. If you work in a group, make the final product yours, not someone else’s code copied 
verbatim. 
 
As with all programming, there are good ways to approach an assignment, as well as very 
frustrating approaches. Here’s a few reminders: 
 

1. understand what you are expected to do. Ask questions and get clarification before trying 
to write code.  

2. look at the example code, run it interactively, and understand what it does. You won’t be 
expected to start from scratch. Again, ask questions if something is not clear and pay 
close attention to the details of the example code.  

3. Read the notes and  text and look online for techniques and tricks if you’re stuck. There 
are lots of resources to solve problems. 

4. Don’t assume there is only one way to do something, but, recognize I am generally 
expecting a particular approach that csould be used. Let me know if you’ve found an 
alternative approach that works. 

 
Programming is an iterative process. You do something, it doesn’t work, you make a change, and 
it still doesn’t work. Then what? First, when did it stop working? Did the example code do what 
it was supposed to do? Then, what did you change? Have you looked at the variables? Did you 
look at some intermediate values? Don’t assume that just because you didn’t get an error 
message that everything is coded correctly. Check your results. Do they make sense? Look very 
carefully at what you are doing and then ask others in the class if you are still struggling.  
 

 Navigating Online, Communicating and using your own computing resources 

The syllabus and assignments are online in Canvas. Canvas is good to handle assignments and 
know what is due and when. Codes will be available via OpenOnDemand. You must  have the 
example codes and class notes at your fingertips.  You will be able to do all of the work using 
your own computing resources as long as you have decent access to the internet. 
 
I will be using Teams to provide quick updates to everyone or chat individually with you. The 
Teams workspace for this class is: Teams. You will receive an invite before the class starts  
about that.  
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2 Exploratory Univariate Data Analysis 
 
Environmental fields are awash with data. The first priority of any analysis is to simply spend 
time looking at the data in a variety of ways. Then, the next step is to reduce the dimensionality 
of the data sample by summarizing the data. Different types of data lend themselves to different 
approaches, so use examples from other studies or papers to gain ideas as to what might work for 
a particular data set. We’ll begin by examining data samples (level of the Great Salt Lake and 
temperature and precipitation summarized for the state of Utah as a whole) using univariate 
techniques (i.e., the analysis of one variable is assumed to be independent of any other 
variables). Many of the concepts described here you may have already used extensively. The 
objective is to increase your awareness of other tools that may be more appropriate, particularly 
given the limitations of some commonly used techniques.  
 
Programming skills are developed by seeing how others do it. Sometimes you learn as much 
from poorly written code (what you might see in this class!) as well as excellent code. There are 
certainly different ways to examine time series using univariate approaches and different ways 
using Python to do so. It will be very important for you to pay close attention to the Python code 
corresponding to the concepts in this chapter. It doesn’t all have to make sense yet- we will be 
explaining more about the nuts and bolts of plotting later, for example. Use the text to look up 
concepts that we may not have presented to you yet.  The files we will use for the the class are 
accessible via https://home.chpc.utah.edu/~u0035056/atmos_5340/. You will use the files in the 
subdirectory data/gsl_yr.csv, data/utah_precip.csv, and data/utah_temp.csv and python 
notebooks in the subdirectory chapter2/ (chapter_2_2022.ipynb and chapter_2e_2022.ipynb).  
 

a. Examining Time Series of Data 
 
Geophysical data are usually collected sequentially, often at regularly spaced intervals. However, 
the data collection interval may change during the period of record, which introduces issues as 
far as how to summarize the data. Let’s begin with the record of the level of the Great Salt Lake 
as a function of year from 1895 to 2021. Data are available from 
https://waterdata.usgs.gov/nwis/uv?site_no=10010000. Be sure to poke around that site to 
understand how and what the observation are.  We’ll also use estimates of annual precipitation 
and temperature for the state of Utah for the same period.  These are available from 
http://www.wrcc.dri.edu/cgi-bin/divplot1_form.pl?4203.  
 
First, look at the raw data files that you downloaded. The middle column of the lake level file is 
the number of observations. During the early years, the number of observations is only a couple 
per year. Recently, daily values of lake level are available (and actually, they are now 4 times per 
hour). Hence, there may be some uncertainty about the lake level in the early part of the record 
relative to the latter part simply on the basis of the methods used to record the observations.  
(However, we’ll see that the large serial dependence of lake level, i.e., that the lake level varies 
slowly, mitigates this problem to a large extent.)  
 
The annual precipitation and temperature are derived from Cooperative Observer reports, 
summarized into climate divisions, and then aggregated into the statewide average. There’s a 
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large number of steps and assumptions behind those calculations, so don’t simply assume that 
these annual estimates are really representative of the state as a whole. 
 

Figure 2.1. Top panel. Level (green bars, m) of the Great Salt Lake.  Middle panel. Annually averaged 
precipitation (cm) in Utah. Bottom panel. Annually averaged temperature (oC) in Utah. The heavy lines in 
the top panel approximate how many unique periods exist during the record for lake level. 

 
Code is provided to read, analyze, and plot the following figures using Python. The data are read 
into arrays and then time series are plotted as bar plots. As shown in the top panel of Fig. 2.1, 
the lowest lake levels were observed recently and in the 1960’s while the highest water years 
were in the 1980’s. The trend during the past decade has been for lake level to be dropping and 
then remaining relatively flat. The serial dependence of the lake level data is evident, i.e., the 
value of lake level in one year is usually similar to that in adjacent years. A simple way to 
estimate the number of independent values in a sample is to draw subjectively line segments that 
reproduce the primary features of a time series as shown by the heavy line in the top panel of 



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  17

Fig. 2.1. Then, the degrees of freedom is the mean value plus the number of line segments (or 
count the points required to draw the lines), which is ~20 in this case Hence, even though there 
are 127 years in the sample, only about one in six of those values are independent of the others.   
 
Ignoring serial dependence in time series is a really big failure in many geophysical statistical 
studies. For a time series comprised of from two to a million data values, it is entirely possible 
that there are as few as 2 independent values (degrees of freedom) in a time series. If the time 
series has a very large trend, then it can be described entirely by the mean value plus the slope 
of the line. All too often people assume minor “wiggles” in a time series are relevant when the 
statistical approach they are using weights heavily trends and other dominant features. 
 
Let’s look at the annual total precipitation for the state of Utah in the middle panel of Fig. 2.1. 
The wettest year for the state as a whole took place during 1941 and 2020 was the driest. There 
are clearly some strings of years with greater than usual precipitation as well as drought 
episodes. The string of wet years in the early 1980’s corresponds to the increase in lake level of 
the Great Salt Lake, for example. I‘d guestimate about 50 or more line segments would be 
required to reproduce the major features of the time series, which would suggest that the values 
roughly every 2-2.5 years are independent of the others. It’s not really important to try to draw 
those line segments in complicated time series- there are techniques to define the amount of 
“persistence” in a time series as will be discussed later.  
 
Now, let’s examine the year-to-year changes in air temperature in the state of Utah. The 
temperature in Utah during the late 90’s through the recent years have been warmer than that 
during any other decade during the past 100 years.  Note that 2019 was cooler than other recent 
years. Temperature during 1934 appears pretty unusual and is the only year where the annually 
averaged temperature was above 10oC before the 1990’s. Annual temperature greater than 10 oC 
have been common of late.  The serial dependence from year to year is clearly less for 
temperature than for lake level, i.e., we have many more independent values in our sample of air 
temperature than we have for lake level. However, temperatures during the early part of the 
record (on or before the 1920’s) certainly are lower than those of late.  
 
The “linear fit” or trend over time for Utah’s temperature is shown by the dashed black line. 
Temperatures in recent years are roughly 1.5oC higher than they were around 1900. How such a 
linear regression is derived will be discussed later. The question for you to ponder is whether this 
trend line adequately describes what has happened over the past 127 years? Has it been a steady 
rise incrementally from year to year? Or, are there important changes on shorter time scales than 
the full 127 years that we should consider? 

b. Data Distributions and Histograms 

 
An obvious first step when examining a data set is to order (sort) them from smallest to largest or 
vice versa. See the Python code for that. Take a moment and look at the resulting ordered data in 
the program. The first (last) element is the lowest (highest) value and equal to 1277.8 m (1283.3 
m) for lake level. Without some formatting, the values in the Python program would have five 
decimal places - that does not indicate precision in the data. Look at the original data and note 
that the original values are in tenths of feet so it is reasonable to treat the data to tenths of meters.  
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 Of course, computing the maxima, minima, and range (difference between the highest and 
lowest value) can be done easily. The Great Salt Lake has fluctuated in this sample over a range 
of 5.6 m. It is important to recognize that for a time series of environmental observations, the 
serial dependence of the data is lost when we sort by value. So, there is a tendency with sorted of 
data to overemphasize the total number values in a sample (127 years in our case) rather than 
how many independent values there may be (~20). 
 
Histograms are a convenient way to 
summarize the sorted data by aggregating 
them into bins ordered from smallest to 
largest (Figure 2.2). The most basic rules 
of thumb are simply to choose bin widths 
for histograms that give a relatively 
smooth appearing histogram or subdivide 
the range into convenient subintervals for 
labelling. The lake level has been most 
commonly between 1279- 1281 m (upper 
left figure). If we divide it up into .5 m 
intervals (upper right panel) we see that 
values from 1278.5 to 1281 m are 
roughly equally likely to occur. There are 
clearly some outliers, with a few years 
with levels greater than 1282.5 m and no 
years in the sample with values 
between1281.5 and 1282.5 m.  
 
The lower panels in Fig. 2.2 illustrate 
how the raw counts in each bin can be divided by the total number of years (127) to yield the 
fraction of the data in each bin. These are empirical probabilities of how often values lie within 
specific ranges. For example, ~60% of the time the lake level has been between 1279 - 1281 m.  
 
If the percentage of the total contributed by each bin in the histogram is added from smallest to 
greatest, then the cumulative frequency distribution is created (Figure 2.3). Only 10% of the 
time the lake level has been above 1281 m, 50% of the time the lake level has been above ~1280 
m, and 10% of the time the lake level has been below 1278.5 m. If the cumulative probability 
was computed from a coarse histogram (such as if it was done from the values in Figs. 2.2), then 
there would be distinct transitions in the cumulative probability from one discrete value of GSL 
level to another. However, the cumulative probabilities are computed incrementally in Fig. 2.3 
for each data value, which is why there is the fine scale chatter in the distribution.  
 
 

c. Central Value, Spread, and Symmetry 

 
The characteristics of a sample of data are often summarized in terms of: 

Figure 2.2. Histogram of lake level using 1m (upper left) 
and .5 m (upper right) intervals. Fraction of the total that 
lake level falls within 1 m intervals (lower left) and within 
0.5 m interval (lower right). 
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 central value (central tendency or typical value) 
 spread (variation or dispersion about the central or typical value) 
 symmetry (degree to which the values tend to be larger or smaller than the central value) 

These quantities are often 
referred to as the first, second, 
and third moments of the data. 
There are also higher 
moments: the fourth moment is 
kurtosis that evaluates the 
degree to which a sample has 
multiple peaks in its 
distribution or whether the 
distribution is relatively flat.  
 
Whatever approaches we use 
to summarize the data, we 
want measures that are: 
 

 robust- which means not overly sensitive to the characteristics of the entire sample of 
data values. In other words, we want the measure to perform reasonably well no matter 
how the data values are distributed. 

 resistant- not unduly influenced by outliers in the sample. For example, the range is not 
resistant to outliers. 

 
Histograms and cumulative frequency distributions help to define visually the central tendency, 
spread, and symmetry of the sample. Quantiles are defined as percentage thresholds of the data 
that can be estimated visually from cumulative frequency distributions or computed easily. 
 

 q25 – lower quartile- 25% of the sample lies below that value and 75% lies above 
 q50 – median- 50% of the sample lies below that value and 50% lies above 
 q75 – upper quartile- 75% of the sample lies below that value and 25% lies above 

 
The median is a very good measure of the central tendency of the data, i.e., the typical value. It 
tends to be robust and resistant. Terciles (thirds) and deciles (tenths) get used frequently as well. 
If the sample is small, then it is easy to go through an ordered list and count off where the 
percentage thresholds will lie. If the quantile falls between two values, then the average of the 
two adjacent values is used (i.e., if the sample contains 4 values, then the median is the average 
of the second and third value). Experiment by using terciles and deciles as well. In our case, the 
lake level has been below 1281 m roughly 90% of the time while it has been below 1279 m 
roughly 30% of the time. 
 
Box and whisker plots as in Figure 2.4 are a simple way to visualize the range, median, and 
quartiles of the data as well as outliers. The center ‘notched’ line is the median. The top of the 
box is the upper quartile, the bottom of the box is the lower quartile. The difference (q75  - q25 ) 
between those two values is the interquartile range (IQR). The IQR is a robust and resistant 

 
Figure 2.3. Cumulative frequency distribution of lake level. 
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measure of spread within the data set. The ‘whiskers’ are defined arbitrarily here as the 10th and 
90th percentiles. Outlier values above and below those thresholds are shown as circles.  
 
For all three variables in Fig. 2.4, the outliers above the 90th percentile tend to be more spread 
out, which we’ll see is an indication of ‘positive skewness’.  In the case of the GSL level in the 
left panel, the high water years in the 80’s relative to the values observed in other years were 
unusual. Boxplots can be very useful when the data are noisy to quickly define values that may 
be physically implausible. However, extreme values such as those high water level years are not 
erroneous, they happened. Similarly, the precipitation values in 1941 and a couple of other years 
are really unusual based on the sample in the center box and whisker plot. 
 

Figure 2.4. Boxplots of lake level (left), Utah precipitation (center), and Utah temperature (right). 
 
Another central tendency metric is the mode- the most frequently occurring value. One way to 
identify the mode is to determine the center of the bin in a histogram with the largest number of 
counts, e.g.,1278.75 m for the lake level from the upper right panel in Fig. 2.2. The mode is a 
robust and reliant metric of central tendency. Computing the mode using the raw data can be 
misleading as shown in the python code- it is better to bin the data a bit before estimating the 
mode. 
 
A traditional measure of the central tendency or typical value of the sample is the mean, which is 
not a robust and reliant measure of the central value: 
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For convenience in the sample codes, the variables lev, temp, and ppt are loaded into columns of 
a new “numpy” variable with the unoriginal name  ‘array’. These notes will continue to refer to 
the lake level variable alone, which is the first column of array. For the sample of lake levels, the 
mean and median are the same: 1279.8 m. But modify your data set by throwing in a bad value 
for the first element (e.g., 9999), which can commonly happen if the data file becomes corrupted 
for some reason. Obviously, the mean is now much higher, while the median remains unchanged. 
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You will see in the code that we begin to use the “pandas” module at this point too. Pandas 
provides many useful statistical functions and convenient ways to manipulate data in 
“dataframes”. 
 
The trimmed mean X  is a more resistant measure of central tendency, since a fraction of the 
high and low values are removed before the mean is calculated: 
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The kth highest and lowest extreme values are removed before computing the mean from the rest 
of the sample. 
 
Now let’s look at measures of spread. You should already be aware that the maxima, minima, 
and range are not robust and resistant measures of spread. The median absolute deviation 
(MAD) is a more robust and resistant measure of spread and uses all of the data rather than the 
central core of the data as with the IQR. 
 

 MAD = median | xi – q.5 | 
 

MAD is computed by taking the absolute difference between each value and the sample median 
and then taking the median of that resulting sample.   
 
MAD is .9 m for the GSL level. The median absolute deviation tends to be a conservative 
measure of spread. 
 
The standard deviation, s, is a common measure of spread that is not resistant to outliers or 
robust. The square of the standard deviation is the variance, s2, and is called an unbiased 
estimate of the population variance (and s is referred to as an unbiased estimate of the 
population standard deviation): 
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For the GSL level, the standard deviation is 1.16 m and the variance is 1.34 m2. Hence, the 
standard deviation provides an indication that there is roughly 1 meter of variation or dispersion 
about the central value of 1279.8 m and the MAD indicates there there is roughly 1 m of 
variation around the median of 1279.8 m. The MAD is lower because it is less influenced by 
those rare years of really high lake levels in the 1980’s.  
 
 It is very important to pay attention to the units: the standard deviation has the same units as the 
quantity itself, while the variance has those units squared. Why is the variance s2 calculated by 
dividing through by n-1 rather than n as we did when computing the mean? Consider a 
population with mean 0 and population variance 2 . Then the variance of the population can be 
computed in the same manner as the population mean: 
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When we use a sample of n independent values (which may be a small sample), and if we 
compute: 
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Now we need some summation identities: 
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Then  
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Let’s stop here a moment and recognize that the final relationship in 2c.7 is a convenient way to 
compute the variance that does not require removing the mean first and then summing. Instead, 
we can sum the squares of the values (first term) at the same time we are summing the values 
(second term) and later squaring the mean value. That approach is an old school way of 
computing the standard deviation and variance. 
 

Now, if we had a very large sample, the second term 
2

x  should be zero, since the population 
mean is zero. But, for a small sample, it may not. Given that the sample is supposed to be 
comprised of independent values, then it can be shown that: 
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 2x  (you’ll see that this comes from the central value theorem later). As n gets big, then it 

will trend to zero. So, 22222 111 
n

n
x

n

n
x

n
xsx





  

Comparing (2c.3) to the above, 2
xs = (n-1)/n 2s , which is why s2 is an unbiased estimate of the 

population variance; 2
xs is the sample variance. Why should you care? It usually is not a big 

deal, as the differences between the sample and population standard deviation are likely small if 
the sample size is large (more than 50 or so). However, we’ll see later that it can be important to 
differentiate between what we measure from a sample and what we estimate for the population. 
 
Symmetry is a measure of the balance around the center value. Skewness (γ) is a nondimensional 
measure of asymmetry. If γ is close to zero, then the sample is close to a bell curve with roughly 
equal numbers of negative and positive outliers. Skewness will be negative, when data are spread 
more below the mean than above the mean and positive when there are more positive outliers 
than negative ones. Skewness is neither robust nor reliant. 
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In the case of the GSL level, the skewness is .61, which indicates that there are larger departures 
above the mean, i.e., the large positive outliers “skew” the distribution of lake level. The annual 
precipitation and temperature are also positively, but less, skewed than lake level. 

 
Figure 2.5. Top. Departure (m) of lake level from 127 year sample mean. Middle. Departure (cm) of Utah 
precipitation from sample mean. Bottom. Departure (oC) of Utah temperature from sample mean. 

d. Transforming Data 
The interpretation of a sample of data can be aided by transforming the data to a new variable. 
The simplest transformation is to remove the mean, in order to examine specifically the 
variability about a central value. 

 xi΄= xi - x  = anomaly or departure from the mean 
For example, the 127-year sample mean has been removed from the GSL levels in Fig. 2.5. Such 
a simple transformation can make a big difference as far as the interpretation of the data. In this 
instance, the anomalous period of the mid-1980’s stands out. The recent period appears 
comparable to that during much of the middle part of the last century. 
 
Strings of years with above and below normal precipitation in Utah are also more clearly evident 
in Fig. 2.5 than when the raw time series is examined, for example the wet years in the early 
1980’s.  Removing the sample mean from the Utah temperature record reveals that the positive 
temperature anomalies since the 1990’s are unprecedented. In addition, the 1934 temperature 
anomaly was quite unusual for that period.  
 
Obviously, you can transform the data in a myriad of ways. What if we removed the current 
1991-2020 “climate normal” for temperature instead (Fig. 2.6)? Then, the period prior to 1980 
appears to be nearly always below normal for temperature and the years since 2010 are unusually 
high except recently in 2019. 
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Figure  2.6. Anomalies relative to 1991-2020 climate normal.  

 
In many environmental applications, quasi-periodic behavior due to solar forcing (diurnal or 
seasonal) can overwhelm the signal of interest. If you are interested in how much cooler each 
month in 2019 was compared to 2018, then the fact that January is always colder than July may 
not be relevant.  
 
Let’s examine the monthly Great Salt Lake level data since 1903 when the monthly values 
became available. You will need the data file gsl_monthly.csv.  Figure 2.7 shows the 
climatological monthly means separately based on the 119 values available during each month.  
The lake level peaks on average  in June (after 
the spring runoff period) and is lowest in the 
fall. Regular seasonal oscillations are 
detectable in the top panel of Fig. 2.8. Do we 
have 12*119 independent values, one for each 
month? No! Should we use the approach that 
the number of independent samples might be 
defined by the number of line segments 
required, do we now have 2*119 degrees of 
freedom (one for each year’s rise and fall)? 
NO! We have 2 relevant time scales: the 
annual cycle as shown in Fig. 2.7 and the 
relatively small number of multi-year 
fluctuations already evident from the annually-averaged data. Those small number of multi-year 
fluctuations become apparent in the monthly data when the monthly means for each calendar 
month are removed as in the middle panel of Fig. 2.8. 
 
Since the variability in environmental data often differs during the year (e.g., weather systems 
moving across the midlatitudes are more frequent in winter than in summer), it is often 
appropriate when using data from all seasons to “normalize” or “standardize” the anomalies so 

 
Figure 2.7.  Lake level (m) averaged separately for 
each calendar month over the 118 years. 
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that the variability in winter and summer receive similar weight. Hence, the value ijx  for year j 

and month i is subtracted from the mean for that month ix  and divided by the sample standard 

deviation sxi, i.e., 
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Figure 2.8. Top panel. Monthly lake level (m). Middle panel. Departures from monthly means (m). Bottom 
panel. Standardized anomalies (nondimensional). 

 
In other words, a nondimensional time series is generated by creating ‘standardized’ anomalies. 
As shown in the lower panel of Fig. 2.8, the lake level was three standard deviations above 
normal in 1986 and approached 2 standard deviations below normal in 1963. Even though we 
have a sample size of 1428 (119 years *12 monthly values), it is pretty clear from Fig. 2.8 that 
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there remain ~20 independent samples in this time series, if we ignore some of the minor bumps 
and wiggles. 

 
One of the advantages for 
appropriately transforming 
environmental data at higher 
sampling intervals (e.g., monthly 
vs. annually-averaged values) is 
that we can get an improved 
probability density distribution, 
as shown in Fig. 2.9. Compare 
this CDF to the one computed 
from the annual means. In terms 
of standardized anomalies, the 
median is 0, while the monthly 
lake level departs by more than ± 
1 standard deviation around the 
mean cumulatively during 30% of the months. However, keep in mind that even though the 
probability distribution is smoother because of the larger sample size, the number of independent 
values remains low. 
 
Variables such as wind speed and precipitation when examined from hour to hour or day to day 
tend to be strongly positively skewed. In other words, their distributions tend to be asymmetrical 
since no values are possible below 0, many values may be close to 0, and then occasional 
extreme values are possible. A simple transformation for wind speed or precipitation is to take 
the square root of the values, first, then remove the mean and standardize. For example, let 
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The annual Utah precipitation time series exhibits 
considerable year-to-year variability compared to the 
GSL level time series. A common transformation is 
to smooth a time series by redefining each element of 
the time series in terms of an aggregate of nearby 
values within a specified “filter window”. The 
evaluation of megadroughts in Figure 1.1 used a 19 
year window. Running means can shift peaks and 
smooth well-defined jumps in the data. The median 
smoother, where the median of values within a data 
window replace each element of the time series does 
a better job at maintaining sharp jumps in the data. 
Other simple weighting schemes will be shown later 
that can be used to filter out or retain specific 
components of the underlying time scales in the data (i.e., high pass, low pass, and band pass 
filters). A running mean filter is a low pass filter- the slower variations are “passed” and the 
higher frequency variations are removed. 
 

 
Figure 2.9. Cumulative frequency distribution for monthly values 
of lake level. 

 

Figure 2.10. Example of original and 
median smoother (red line) and running 
mean smoother (blue line). 
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Consider a portion of a time series on which a 3 point running mean and running median are 
applied as shown in Fig. 2.10. The original time series is the heavy line, i.e., the values are 0 
from point 1-5 and then the data jumps to 2 at point 6. A three-point (or 5 point) median filter 
exactly matches the original data in this instance, which is sensible. However, a 3-point running 
mean (thin line) will smooth out the jump and lose the useful information that the sudden jump 
occurred at point 6. Instead you are left with the idea that the jump occurred slowly over 2 time 
intervals, not one. 
 
As a general rule, it is better to aggregate the data within a small window and apply the smoother 
several times rather than aggregating the data within a large window and only applying the 
smoother once. Figure 2.11 shows the annual Utah precipitation anomalies after different 
combinations of window width (sample size) and interations. A yearly spike such as in 1941 is 
lost as “noise” while the anomalous string of wet years during the early 1980’s begins to stand 
out as long as the sample size is not large. Is the window size of 11 really useful in this instance? 
Is it too smooth- what signal is left? 

Figure 2.11. Utah annual precipitation anomalies (cyan bars) and the data smoothed using running mean 
smoother (green lines) using different windows (sample sizes; columns) and iterations (rows). The red lines 
in the top row indicate running median smoothers using different sample sizes (there would be no 
difference is iterated multiple times). 

 

e. Exploratory Univariate Analysis of Fluid Velocity 
 
Measures of central tendency and spread for two- and three-dimensional fluid motion can be 
analyzed univariately in terms of components of the flow, including vertical motion  (w) and  
horizontal speed ห𝑉ሬ⃗ ห and direction (θ) or horizontal Cartesian components, e.g., zonal u  (east-
west with u positive when fluid motion is from west to east) and meridional v (north-south with v 
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positive when fluid motion is from south to north). However, univariate metrics of fluid motion 
components can be misleading at times.   
 
The horizontal fluid motion can be described in terms of the zonal and meridional wind as 𝑉ሬ⃗ ൌ
𝑢𝚤̂  𝑣𝚥̂ where the unit vectors define the positive directions (to the east and to the north) and the 
scalars (u, v) express the magnitude of the motion in that direction with a negative value 
indicating motion in the direction opposite to the unit vector.  Alternatively, we can describe the 
horizontal wind velocity 𝑉ሬ⃗ ൌ ห𝑉ሬ⃗ ห�̂� in terms of wind speed 𝑉 ൌ ห𝑉ሬ⃗ ห ൌ √𝑢ଶ  𝑣ଶ where the unit 

normal t̂ is tangent to the wind direction vu /tan180 1  (θ is the direction from which the 
wind blows: north wind is 0; east wind is 90; south wind is 180; west wind is 270).  

 
Figure 2.12. Wind speed (blue lines, m/s) and wind gust (green dots, m/s) 
during May 2020 on the tower atop the WBB. Times in MDT. 

 
Consider the ~45,000 observations at 1 minute intervals of wind speed and wind gust in Fig. 2.12 
from a wind sensor on the 10 m tower on top of the William Browning Building (WBB). Wind 
speeds are often light (less than 2.5 m/s, ~ 5 mph) but there were periods when weather systems 
moved through during which the winds were over 10 m/s. The wind gust metric reported from 
this station is the maximum or peak wind during the one-minute period. Those peak winds were 
as large as 25.5 m/s (~51 mph) at 6:02  PM May 25. Time series plots of wind direction are often  
difficult to interpret (1o and 359o are essentially the same but often plotted at opposite ends of the 
figure). 
 
Reducing the dimensionality of those 45,000 observations could be done in many ways, but is 
most typically done in a way that loses much of the “weather”: compute the average, minimum 
and maximum during each day. Histograms and cumulative frequency distributions can help 
retain some of the information lost by computing daily statistics.  As shown in Fig. 2.13, the 
wind speeds at WBB are positively skewed with values > 6 m/s rare (only 10% of the time). 
Wind direction is multimodal (peaks around 45o-NE wind, 180o- south wind, and 315o- NW 
wind). To put this into a more physical context, winds on top of the Browning Building are 
strongly influenced by terrain flows, with nighttime winds from the northeast (away from the 
mountains) and daytime winds from the northwest (towards the mountains). Then, when weather 
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systems are approaching, winds are 
frequently from the south. Note: in the 
original data there is a false peak at the 
zero angle, because there are some 
missing values interpreted as zero 
wind direction. That is handled in the 
python code and those missing values 
are removed.)  The interpretation of 
the cumulative distribution of wind 
direction is not particularly useful, no 
more so than trying to interpret its 
time series.  
 
Breaking the wind speed and direction 
into zonal and meridional components 
(Fig. 2.14) is occasionally useful, but 
not that useful in this situation.  In this 
case, WBB winds were slightly 
skewed from the east (negative zonal 
wind resulting from the frequent 
downslope nocturnal winds from the east) while the meridional winds were positively skewed 
with winds more frequently from the south (positive meridional winds).  
  
As shown in Fig. 2.15, the wind rose is a special histogram that summarizes the counts from 
specified directions on a polar 
diagram. The python function breaks 
the counts into 1 m/s bins. Hence, 
winds were most frequent from the 
northeast, northwest, and south at the 
Browning Bldg. Strong winds were 
occasionally happening from all three 
of those directional ranges. The wind 
rose helps summarize the combined 
variability of wind speed and direction 
better than the individual histograms 
or cumulative distributions.  
 
Particular care must be taken when 
computing an average of a vector. The 

mean wind speed 𝑉ሜ ൌ ห𝑉ሬ⃗ ห ൌ

√𝑢ଶ  𝑣ଶis not equal to the resultant 
wind speed defined as 𝑉ሜ ൌ √�̄�ଶ  �̄�ଶ.  
 
 

 
Figure 2.13. Histograms  and cumulative frequency 
distributions of wind speed and direction. 

 
Figure 2.14. Histograms  and cumulative frequency 
distributions of zonal and meridional wind components. 
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Fig. 2.16 compares the mean and 
resultant wind speeds as a function of 
time of day. The strongest winds were 
found in the afternoon (15-16 MDT) and 
evening while the weakest winds tend to 
occur early in the morning. The resultant 
wind speed is clearly less than the mean 
wind speed each hour.  
 
Taking a simple average of wind 
direction should also be avoided, since, 
for example, the average wind direction 
for observations of 359o and 1o should be 
0o not 180o. The average wind direction 
loses much of its meaning when wind 
speed is not considered at the same time. 
A common procedure is to compute the 
resultant mean wind direction as 

vur /tan180 1 .  

Then, it is possible to plot the resultant vector 𝑉ሬ⃗ ൌ ห𝑉ሬ⃗ห�̂�where the tangential unit vector is 
defined from the resultant mean wind direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 2.15. Wind rose of WBB winds during May 2020. 
Percentage of values in 22.5o bins in 1 m/s intervals. 

 
Figure 2.16. Comparison of hourly mean wind speed 
(red line) and resultant wind speed (green line) for each 
hour of the day at WBB during May 2020. 
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3 a. Probability 

a. Definitions 
 
We are inundated with probabilities in environmental fields as well as society. The chance of 
rain is 50%- what does that mean? The chance of lung cancer in bald males who smoke is XX%. 
Probabilities should be defined carefully. We begin with some definitions. 
 

 Event- set or class or group of possible uncertain outcomes. Rain/no rain. Temperature 
greater than 50oF, etc. 

 Elementary event- cannot be decomposed into other events 
 Compound event- decomposable into 2 or more elementary events or other compound 

events 
 Null event- that which cannot occur 

 
Example: roll 6 sided die. (1) elementary event- 1 spot comes up; (2) compound event- odd 
number of spots comes up (1, 3, or 5); (3) null event- getting a 7 on a 6 sided die. 
 
Will precipitation occur tomorrow? That is an elementary event if the only other choice is no 
precipitation. However, a compound event would be: will precipitation greater than 0.1 inch 
occur (it could rain more or could rain less or not at all) or will it snow or rain or both?  
 

 S- Sample or event space. Set of all possible elementary events or the largest possible 
compound event 

 Mutually exclusive- two events that cannot occur at the same time 
 Mutually exclusive and collectively exhaustive events (MECE)- no more than 1 event can 

occur and at least one event will occur 
 

b. Venn Diagrams 
 
Venn diagrams are a convenient way to display the sample space and make sense of the event 
outcomes that are possible.  The NCDC storm event climatology 
(http://www.ncdc.noaa.gov/stormevents/) is a rich resource for examining weather events. From 
the reports for Salt Lake County from the NCDC Storm Event climatology, the number of cases 
were tabulated of winter and summer (convective) storms and those storms with property 
damage greater than $5000 during the thirteen year period 1993-2005. Now, some assumptions 
were made along the way as far as how to count events- some winter storms events may have 
been multiple day events, for example, and lightning occurrences were associated with 
convective storms. Some iffy cases where ignored that  could have been a convective winter 
storm. Property damage has occurred from “other” storms and obviously the results might have 
been different if another $ damage threshold was used. In any event, there were a total of 142 
winter storms and 83 summer storms as defined. 79 winter storms had damage in excess of 
$5000 while 25 summer storms had damage of similar amount. Given the nearly 5000 days 
during the 13 year record, these major weather events as defined by NCDC are not very common 
in Salt Lake County. The Venn diagram helps to highlight that winter storms are associated with 
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property damage more 
frequently than summer 
storms in Salt Lake 
County and, as defined 
here, winter and 
summer storms are 
obviously mutually 
exclusive. 
 
Venn diagrams are 
useful for categorizing 
events that fall into 
clear categories and 
they don’t need to be 
done in terms of circles. 
Consider Fig 3.2 that 
shows the possible MECE for a seasonal 
forecast of above/below normal 
temperature and precipitation for a 
specific location. All four possibilities are 
shown and the probability of each event 
will depend on the situation and location. 
 

c. Probability Concepts 
 
The following are pretty obvious, but 
when you get mathematicians involved, 
they have to have “axioms”, lemmas, etc. 

 probability of any event is 
nonnegative. In English:  an event 
has to happen or else it is not an event 

 probability of the compound event S is 1 or 100%.  The probability that all events will 
happen is 1. 

 probability that one or the other of two mutually exclusive events is the sum of their 
individual probabilities.  

 
Definitions: 

 Let E- event 
 Pr{E}- probability of Event E;  1}Pr{0  E  

 Pr{E}=0 event does not occur 
 Pr{E}=1 absolutely sure that event will occur 

 
There are two approaches to probabilities: the frequency view and the Bayesian view. Which 
approach is used depends on the type of problem being investigated. 
 

 
Figure 3.1. Venn diagram of major storms in Salt Lake County during 1993-
2005. 

 

 

Temperature below 
Precipitation below 

Temperature above 
Precipitation below 

Temperature below 
Precipitation above 

Temperature above 
Precipitation above 

Seasonal Forecast Events 

Figure 3.2. MECE possibilities for seasonal forecasts of 
temperature and precpitation anomalies for a specific 
location. 
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Frequency view- probability of an event is its relative frequency after many, many trials 
 a- number of occurrences of E 
 n- number of opportunities for E to take place 
 a/n – relative frequency of event E occurring 
 Pr{E} → a/n as n → ∞ 
 Or a = outcomes = n Pr{E} 
 

Examples: role a die. We expect the 6 spot to come up 1/6 times or 1 time every 6 opportunities. 
If we role the die 100 times, we expect the 6 to come up 16-17 times. However, what we expect 
and what actually happens are clearly different things, that’s where chance/randomness comes 
into play. 
 
Bayesian view- probability represents the degree of belief or quantifiable judgement of a 
particular individual about an outcome of an uncertain event 

 this approach recognizes that some events occur so rarely that there is no long-term 
probability estimate that are relevant 

 Bookies make odds all the time based on their evaluation of the odds of winning for a 
particular team- it is not based on a large sample 

 Two individuals can have different probabilities for same outcome 
 
More concepts 

 If event {E2} occurs whenever {E1} occurs, then {E1} is a subset of {E2} 
 Example: {E1}- temperature below freezing; {E2}- temperature below 50F, then Pr{E1}≤ 

Pr{E2} 
 The complement of {E} is that event {E}c  that does not occur 
 Pr{E}c  = 1 - Pr{E} 
 

What is the probability that {E1} and {E2} occur, that is, the intersection between the two 
events? 

 Pr{E1 ∩ E2} = joint probability that {E1} and {E2} will occur (3.c.1) 
 Pr{E1 ∩ E2} = 0 if {E1}and {E2}are mutually exclusive 

o Example: if {E1}is the occurrence of temperature below freezing and {E2} is the 
occurrence of temperature above 50oF, then their joint probability is 0. 

 
Let’s return to the Venn diagram of the weather events in Salt Lake County. In the way that the 
sample was created, the winter storms and convective storms are mutually exclusive, so there is 
no overlap between those two events. Assuming, that winter storms occur only during the winter 
half of the year and that convective storms occur only in the summer half (not great 
assumptions!), then the number of opportunities is order 180 days x 13 years= 2340 
opportunities. Also, remember that some of the winter storms could be multiple day events, so 
there is  some uncertainty and error in the  results. 
 

 {E1}- occurrence of winter storms = 142 
 Pr{E1}= 142/2340 = .061 
 Pr{E1}c =  .939 
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 {E2}- occurrence of summer convective 
storms = 83 
 Pr{E2}= 83/2340 = .035 
 Pr{E2}c =  .965 
 {E3}- occurrence of property damage = 104 
 Pr{E3}= 104/2340 = .044 
 Pr{E3}c =  .956 
 Pr{E1 ∩ E2} = 0 
 Pr{E1 ∩ E3} = 79/2340 = .034 
 Pr{E2 ∩ E3} = 25/2340 = .011 
 
What is the probability that {E1} OR {E2} 
will occur? That is, one the other, or both will 
occur. This is referred to as the “union” of the 
two events. 
 

 Pr{E1 U E2} =  Pr{E1} + Pr{E2} -  Pr{E1 ∩ E2}  (3.c.2) 
 As can be seen visually from the Venn diagram to the right, the joint probability is 

counted twice when the individual probabilities are summed, so it is subtracted once. 
 

It is worthwhile to see how that is true algebraically as well. Add up each probability separately: 
 
Pr{E1 U E2} =  Pr{E1}  -  Pr{E1 ∩ E2}  +  Pr{E1 ∩ E2}  + Pr{E2} -  Pr{E1 ∩ E2} or 
Pr{E1 U E2} =  Pr{E1} + Pr{E2} -  Pr{E1 ∩ E2} 
 

 If  {E1} and {E2} are mutually exclusive, then  Pr{E1 U E2} =  Pr{E1} + Pr{E2} 
 
A couple more identities that you should be able to visualize from a Venn diagram: 

 Pr{(E1 U E2)c} = Pr{ E1
c ∩ E2

 c} 
o that is the area outside of both circles 

 Pr{(E1 ∩ E2)c} = Pr{ E1
c U E2

 c} 
o this one is a little harder to visualize; it is everything outside of the intersection of 

the two events 
 
Returning to the Salt Lake County storm data: 

 Pr{E1 U E2} = Pr{winter storms} + Pr{convective storms} -  Pr{winter storms ∩ 
convective storms} = .096 since the two events are mutually exclusive the last term is 0 

 Pr{E1 U E3} =  .061 + .044 - .034 = .071 = Pr{winter  storms  or property damage or 
both} 

 Pr{E2 U E3} =  .035 + .044 - .011 = .068 = Pr{summer  storms  or property damage or 
both} 
 
 
 
 

 
Figure 3.3. The overlap (Pr{E1 ∩ E2}) has to be 
subtracted from the sum of the probabilities of each 
event occurring in order to determine if either occur 
(Pr{E1 U E2}). 
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d. Conditional Probability 
 
The storm data example for Salt Lake County indicates that some winter storms lead to 
expensive damage. So, given that a winter storm has occurred, what is the probability that 
damage has occurred? We are now limiting our sample to a smaller number of events, only the  
142 winter storms. So, the probability is now the 79 damaging winter storms divided by the 142 
total winter storms or 56%. 
 

 Conditional probability: probability that  {E2} will occur given that {E1} has occurred 
 Pr{E2 | E1} = Pr{E1 ∩ E2} / Pr{E1}  (3d.1) 
 

{E1} is called the conditioning event; if it doesn’t happen, then we know nothing about the 
probability that {E2} will happen 

 
Alternatively, we can write: 

 Pr{E1 ∩ E2} = Pr{E2 | E1} × Pr{E1}  =  Pr{E1 | E2} × Pr{E2}  (3d.2) 
 
Whether we condition from the first or second event to determine the intersection of the two 
events is our choice and simply depends on the available data. 
 
If two events are completely independent, such that the occurrence of nonoccurrence of one 
event does not affect the probability of the other, then 
 

 Pr{E2 | E1} = Pr{E2}  and Pr{E1 | E2} = Pr{E1} 
Then, 

 Pr{E1 ∩ E2} = Pr{E1} × Pr{E2}   for independent events 
 
If we have a fair coin, then the Pr{head} = .5. The second coin toss does not depend on the first, 
so Pr{10 heads in a row} = .510 

 

e. Persistence 
 
Persistence is the existence of statistical dependence over time (or space), i.e., that once a 
phenomenon begins it does not necessarily end before the next observation time or, that the 
observations at one location are related to the observations at a nearby one. Observations from 
environmental fields should not be considered to be independent of one another unless care is 
taken to choose a sample taking into account spatial and temporal dependence.  
 
Consider the fog climatology shown in Fig. 3.4 that was created for the 2002 Olympics by 
Jonathan Slemmer. We wanted to provide the Olympic forecasters with some information on the 
likelihood of persistent heavy fog at the airport. If it happened during the Olympics, then there 
would have been a bunch of negative consequences with flight delays, etc. (fortunately, it didn’t 
happen during that period). Dense fog doesn’t happen very often. The sample here is large: 31 
years x 365 days= 11315 days. Dense fog happened over a 2 hour period (Jonathan labels this 1 
h of consecutive fog) on only 202 days. So Pr{ 1 hour of consecutive fog} = Pr{1}= 202/11315 
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= 1.8% of days. If we considered the number of hours in a day as well, then the probability that it 
would happen in a specific hour would be correspondingly less. Pr{2} = 109/11315 = .96% of 
days, etc. 
The probability that 3 
hours in a row of fog (2 
consecutive hours) is 
going to happen is pretty 
unlikely = .96% for any 
given day. However, if 1 
hour of consecutive fog 
has already happened, then 
the odds of it continuing 
are obviously much 
higher. 
 Pr{2|1} = 109/202 = 

53.9%, Pr{3|1} = 
70/202 = 35%, 
Pr{10|5} = 41.6%, etc. 

 
Persistence is a good statistical forecasting baseline. When my family asks what the weather is 
going to be like tomorrow, without any other information available, I’m going to say whatever it 
is today. A forecaster adds value when the conditions are present that lead to change and those 
conditions are correctly recognized as such. While it may be useful to tell an airport operator that 
the current dense fog has a high likelihood of continuing, more value will be added if the 
forecaster has information available from which to diagnose when the fog is going to break up.  
 
Later, we will examine ways to estimate the probability of rare events. For example, it is not 
particularly useful to develop probabilities on the occurrence of dense fog for over 20 
consecutive hours based on the 1 event that has happened in our sample. Similarly, we can’t wait 
around for a 100 years to estimate the occurrence of a once in a hundred year flood. 
 

f. Forecast Verification 
We’ll touch on verification of forecasts from several angles. The differences are introduced here 
between a “measures oriented verification approach” (typically using well-established and often 
over-used performance metrics such as hit rate or threat score) vs. a “distributions-oriented 
approach” (where the empirical joint distributions of forecasts and verifying observations are 
generated).  
 
Let’s start with the simple approach that something happens or it doesn’t and we forecast it to 
happen or not. We then count the number of cases for the four possibilities. First, the marginal 
totals are important- they are how often something is observed or forecast (or not observed/not 
forecast). How often do we get the “right” forecasts and how often do we forecast them and they 
don’t happen? 
 

PC = percent correct = 
ାௗ


 

 

Figure 3.4. Fog climatology at the  Salt Lake airport. 
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FAR = false alarm ratio = 


ା
 

  Observed Observed Forecast 
marginal 
totals  

  Yes No  
Forecast Yes a b a+b 
Forecast No c d c+d 
 Observed 

marginal 
totals  

a+c b+d n=a+b+c+d 
sample size 

 
We want the percent correct to be close to 1 and the false alarm ratio to be close to 0. But, what 
happens when we are verifying categorically forecasts of large precipitation amounts (say over 
an inch) at Salt Lake City? That doesn’t happen very often, but the percent correct may be large 
because we may be very successful at forecasting when the precipitation is less than an inch (d). 
Then, to focus on the situations when it either was observed or forecast, the threat score (TS) or 
critical success index (CSI) is used: 
 
TS = CSI = 



ାା
 

The threat score measures the number of correct “yes” forecasts relative to the total number of 
occasions on which the forecast was forecast or observed. Another metric commonly used is the 
probability of detection (POD) or hit rate (HR), which identifies how frequently an event is 
forecast relative to when it is observed: 
 
POD = HR = 



ା
 

Note when we are using one of the marginal totals in the denominator, we’re computing a 
conditional probability. We can express the hit rate as: given that an event occurs, how often is it 
correctly forecast? The FAR is: given that an event is forecast, how often did it not happen? 
 
Now let’s look at an example using Matt Lammer’s research on verifying forecasts made in 
support of prescribed burn and wildfire operations: http://meso1.chpc.utah.edu/jfsp/ 
 
On January 30, 2015, there were 77 forecasts issued in support of prescribed burns nationwide. 
How often did the forecasters anticipate high wind speeds (≥ 5m/s) later that afternoon to take 
place relative to what was observed that day? 
  Observed  Observed Forecast 

Marginal totals  
  ≥ 5m/s <5 m/s  
Forecast ≥ 5m/s 11 6 17 
Forecast <5 m/s 16 44 60 
 Observed 

Marginal totals  
27 50 77 

 
So, the PC= 71.4%; FAR= 35.3%; TS= 33.3%; and POD = 40.7% . How did they do? Clearly, 
the percent correct is high because they forecast correctly a lot of cases when the winds were 
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light. The false alarms are not too bad, 6 of the 17 forecasts of high wind. But, the threat score is 
low because they missed a lot of cases when the winds were observed to be stronger than they 
were expecting. 
Do these forecasts have skill? Statistical skill refers to the relative accuracy of a set of forecasts 
with respect to reference forecasts (random, persistent, or climatological, for example). The 
probability of a correct yes forecast by chance (meaning that the observations and forecasts are 
independent) is just the product of the marginal probabilities of the observations and forecasts: 

Random correct yes forecast by chance = 
ሺାሻ



ሺାሻ


 

Random correct no forecast by chance = 
ሺାௗሻ



ሺାௗሻ


 

 
In our case, the odds of having a randomly correct yes forecast is low (7.7%) but the odds of 
having a randomly correct no forecast is pretty high (50.1%) since it is both observed and 
forecasted to not be windy frequently. 
 

The most generic of skill scores is of the form: 𝑆𝑆 ൌ  ሺ௧ ௦௧௦ିௗ ௧ ௦௧௦ሻ

ሺ௧௧ ௦௧௦ିௗ ௧ ௦௧௦ሻ
 

The Heidtke Skill Score is of this form and can be computed after some substitutions from the 

contingency table values as: 𝐻𝑆𝑆 ൌ  ଶሺௗିሻ

ሺାሻሺାௗሻାሺାሻሺାௗሻ
 

 
In our case, HSS= 31.4%, which is not particularly high and reflects that low wind speed 
forecasts don’t require a lot of skill. 
 
The measures-oriented metrics defined above are ok, but much information is lost by looking 
only at 2x2 contingency tables. Let’s broaden the scope a bit and assume that an accurate 
forecast is one when the forecast wind speed is within 2 m/s of the observed forecast. So, most 
frequently, the forecast errors are up to one m/s weaker than those observed. And, as we 
determined from the earlier metrics, there is a greater tendency to forecast the wind speeds to be 
lower than those observed on this particular day. However, we don’t know from Fig. 3.4 whether 
the forecasters do a better job over some ranges of observed wind speeds than others. We can 
expand the contingency table concept to create a “distributions-oriented” approach to verification 
as shown in the following table. I’ve now arbitrarily decided an accurate forecast is within ±2 
m/s of that observed and then keep track as well of the sign of the errors that exceed that limit. 
I’ve broken up the observed wind speeds into 3 categories as well. Now it is clearer that the 
forecasters tend to underforecast higher wind speeds and don’t ever overforecast high wind 
speeds, only more moderate ones. 
 
This is a MECE data set for this particular sample of forecasts issued on this single day. If we 
were to divide the counts in the interior bins by the sample size (77), then those interior bins 
would be joint probabilities, e.g., 26% of the forecasts were within 2 m/s when the wind speeds 
were between 3 and 6 m/s (20/77). A lot more information can be gleaned by considering the 
conditional probabilities as defined by 3c.1 and 3c.2. For example, given that the observed wind 
speed is greater than 6 m/s (Pr{E1} = 18/77= 23.4%), the probability that the forecasters predict 
the winds to be too light Pr{E2 | E1} is: 

Pr{E2 | E1} = Pr{E1 ∩ E2} / Pr{E1}  = ((11/77)/(18/77)) = 64.7%  
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And, here’s where the interpretation of conditional probabilities can get out of hand. On this 
particular day, given that the error is greater than +2 m/s, then the probability that the wind is in 
the 3-6 m/s category is 100%!! 

Pr{E2 | E1} = Pr{E1 ∩ E2} / Pr{E1}  = ((7/77)/(7/77)) = 100%  
Table 3.1. Distribution-oriented verification of wind forecasts 
 E1 Observed Observed  Observed Error 

Marginal 
totals  

E2  ≤3 m/s 3-6 m/s ≥6 m/s  
Error ≤ -2 m/s 0 10 11 21 
Error ± 2 m/s 22 20 7 49 
Error > 2 m/s 0 7 0 7 
 Observed 

Marginal 
totals  

22 37 18 77 
 

 
Hooray, we can say all forecasters tend to overforecast high winds when the winds are between 
3-6 m/s (no- we can’t).  
 
Now, imagine only one in ten thousand people will get a particular disease- Pr{E1}.  But you 
hear on the news that 50% of the people that come down with the disease ate jello that day- 
Pr{E2-- ate jello | E1}. Should you stop eating jello to avoid catching the disease? Pr{E1 ∩ E2} = 
Pr{E2 | E1} × Pr{E1}  =   .50 * .0001 = .005%  Don’t focus on that eating jello seems to cause an 
alarming increase in risk; the more important issue is the low risk factor for this particular 
disease under any circumstance. 
 

g. Summary 
 
Probabilities are at the heart of modern weather forecasting as well as many other environmental 
applications. While many applications and users will continue to expect to hear on the radio what 
the temperature will be at 4 PM tomorrow, the underlying information from which a forecaster 
will base that specific number will likely be probabilistic information. For example, forecasters 
implicitly use conditional probabilities as part of the forecast preparation. Given the approaching 
front, and given that a specific model has a known bias in temperature in the prefrontal 
environment, they expect the temperature to be higher/lower than what would normally take 
place.  
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3b. Theoretical Distributions and Hypothesis Testing 

a. Parametric and Empirical Probability Distributions 
 
The empirical histograms and cumulative density distributions discussed in Chapter 2 have many 
applications but they are determined from a sample of the population.  Parametric probability 
distributions are a theoretical construct using mathematical relationships to define populations 
with known properties. One or two parameters combined with the assumption that the population 
is composed of random events may be enough to define the occurrence of possible outcomes of 
an environmental phenomenon. By comparing parametric and empirical probability distributions, 
we can deduce additional information about the population from which a sample is taken. The 
advantages of applying parametric distributions include: 

 compactness- we may be able to describe a critical aspect of a large data set in terms of a 
few parameters 

 smoothing and interpolation- our data set may have gaps that can be filled using a 
theoretical distribution 

 extrapolation- because environmental events of interest may occur rarely, our sample 
may not contain extreme events that could be estimated theoretically by extending what 
we know about less extreme events 

 
But keep in mind that while parametric distributions have advantages, they also can instill a level 
of confidence about your understanding of a phenomenon out of proportion to what really can be 
known. For example, as part of the Chapter 2 assignment, you estimated Utah’s average 
temperature in 2050 from extrapolating a linear trend. That may or may not be a good idea. 
 
Roman letters (e.g., s- sample standard deviation) are used to define sample statistics while 
Greek letters (e.g., σ- population standard deviation) are used to define the population statistics. 
Since parametric probability distributions are a theoretical construct that hopefully describes the 
population, the parameters used to define them are generally given by Greek letters.  
 
Many environmental phenomena are discrete events: it either rains at a particular location or not; 
a tornado touches down or not; an earthquake happens in a location/time or it doesn’t. There are 
a large number of parametric distributions (binomial, Poisson, etc.) appropriate for examining a 
data set of discrete events. Because of the limited time available in this course, we are not going 
to discuss discrete parametric distributions. On the other hand, most environmental variables of 
interest can be defined as being continuous: whether it rains or not is part of a continuum of how 
much it rains; we can classify temperature above or below a threshold as a discrete event but 
temperature varies continuously over a wide range of values; earthquake intensity is defined 
continuously on the Richter scale. There are a suite of parametric distributions (Gaussian, 
lognormal, gamma, Weibull, etc.) that are relevant to continuous distributions. 
 
It is important to recognize the steps involved in using parametric distributions: 

 generate an empirical CDF  
 determine a good match between the empirical CDF and a particular parametric 

distribution 
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 use the parameters from that parametric 
distribution to estimate the probabilities of values above or below a threshold, likelihood 
of extreme events, etc. 
 

We begin by defining the probability density function (PDF) for a random continuous variable x 
as f(x), which is the theoretical analog of the histograms in Chapter 2. The sum of f(x) over all 

possible values of  x is . As with the interpretation of integrals in general, think of 

the product  as the incremental contribution to the total probability. The shaded area 

shown in Fig. 3.5 represents and represents 15% of all the possible values.  The 

cumulative distribution function (CDF) is the total probability below a threshold, hence, the total 

area to the left of a particular value: . For example, for the CDF 

in Fig. 3.6, the cumulative probability of negative values is 50%. Also, it is useful to define X(F) 
as the value of the variable corresponding to a particular cumulative probability, e.g., from the 
figure X(75%)=0.66.   
 
The function that defines all possible values of X(F) is referred to as the quantile function. The 
expected value, E, of a random variable or function of a random variable is the probability-
weighted average of that variable or function. 

  

Consider this intuitively as weighting the values of g(x) by the probability of each value of x. A 
reminder of a few integral properties: 

 for a constant c, since the sum of f(x) over all values of x is simply 1 

 for g(x)=x, : μ is the mean of the distribution whose PDF is f(x) 
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Fig. 3.5. Probability density function. 

 

Fig. 3.6. Cumulative density function 
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 The contribution to the 
total variance from a 
particular value of x is 

. So, 
the total variance is 

 

We’ll use the above relationships for several different continuous parametric distributions.  
 

b. Gaussian Parametric Distribution 
 
Each parametric distribution that you are likely to use has a rich tradition in statistics, none more 
so than the Gaussian distribution. The PDF in the previous subsection is that of the Gaussian 
distribution. The two parameters that define the Gaussian distribution are μ and σ. Confusion 
often crops up as a result of outdated statistical terminology. The Gaussian distribution is often 
referred to as the normal distribution. However, that does not mean that the Gaussian 
distribution is what everything should follow- it is just one possibility of many.   

 for  

and its CDF is 

  

 
Let’s return to the GSL monthy lake 
level record. The values for μ and σ 
are estimated from the histogram 
plotted in Fig 3.7 and a Gaussian 
(normal) distribution is then 
calculated using the sample mean 
and variance. Visually, you should 
be able to tell that the Gaussian fit in 
this instance is not particularly 
good, since the lake level is skewed 
(i.e., there are a few events of  
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Figure 3.8. Gaussian fit to temperature at Alta in terms of its  
histogram (top) and cumulative distribution (bottom).  

 
Figure 3.7. Gaussian fit to the monthly level of the Great Salt Lake 
in terms of its histogram (top) and cumulative distribution 
(bottom).  
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high water levels that would not be expected given the typical values of lake level and its spread 
about the sample mean). Also, there are fewer low water years than expected from the Gaussian 
distribution.  
 
Let’s examine the hourly temperature values at Collins (CLN) near Alta during winter from 
1998-2005 as shown in Fig. 3.8. Although the Gaussian distribution underestimates the 
occurrence of temperature near the mean value, it appears that Collins winter temperature can be 
approximated by a Gaussian parametric distribution defined by the sample mean and variance. 
Note the occasional gaps in the histogram- the original data is in 1oF intervals, so there are some 
0.5oC bins with no values.  
 
Now, let’s return to generic Gaussian distributions. Every variable can be transformed into 
standardized anomalies with mean 0  
 

Figure 3.9. PDF’s for the case when the sample mean is 0 and variance  is 1. The percent values within the 
shaded areas are 68.3%, 95.5%, and 2.3%, respectively. 

and variance 1. The leftmost panel of Fig. 3.9 indicates that for an environmental variable for 
which the Gaussian is a good fit to its empirical PDF, then 68.3% of the total variance is within 1 
standard deviation of the mean. The middle figure indicates that 95.5% of the total variance is 
within 2 standard deviations of the mean while the right figure defines that 2.3% of the time we 
would expect that a variable explained by a Gaussian distribution would be larger than 2 
standard deviations of the mean. Alternatively, we can use the quantile function to determine the 
x values that correspond to a particular probability. For example, if we are interested in the limits 
corresponding to 90% of the total variance, then that is equivalent to ±1.65σ of the mean. 

c. Other Parametric Distributions 

 
Many environmental variables (e.g., wind speed and rainfall) are decidedly skewed to the right in 
part because values are nonnegative. The gamma distribution with 3 parameters is quite versatile 
for such situations. Other variables (e.g., wind direction, relative humidity) are constrained at 
both ends for which the beta distribution with 2 parameters is an appropriate choice. 
 
Of interest for many applications, is to examine parametric distributions of extreme values, i.e., 
the rare events for continuous variables. There are a number of variants of theoretical 
distributions to describe extreme events: Gumbell, Fischer-Tippet, and Weibull, among others. 
However, these theoretical distributions assume random events that may not be appropriate for 
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environmental events that often occur serially, e.g., an extreme heat wave typically will last 
several days in succession. If sufficient data are available, then the empirical PDF can be used to 
estimate the probability of rare events.  
 
Extreme values are often defined to 
estimate the annual probabilities of 
damaging events such as heavy rains or 
high winds. The recurrence of extreme 
events is frequently defined in terms of 
the return period, i.e., 100 year floods, 
etc. However, there is no guarantee that a 
100-year event will happen in the next 
100 years. The probability of a 1 in a 100 
year random event is Pr{0.01}. The 
geometric distribution specifies 
probabilities for the number of trials 
required until the next success. Fig. 3.10 
shows the cumulative probability of the 
period until the next 100 year event. In 
other words, if the probability of a 100-
year event is 0.01, then there is only a 63% chance that it will happen in the next 100 years after 
the last event and there is still a 12% chance that it will not happen in 200 years. If the 
probability of a rare event increases to 2%, then there is a 12% chance that it will not happen in 
100 years. Of course, this is only true if the event can be described by a geometric distribution. 
 
As an example of evaluating the return period of extreme events, let’s examine the peak 
streamflow record from the Klamath River in northern California for the 1911 to 2020 water 
years (Oct.-Sept.; hence December floods are part of the following calendar year) as shown in 
Fig 3.11. To what extent can we estimate the occurrence of extremely high peak flows on the  
Klamath River by a parametric fit to the data? We have an advantage here since we can estimate 
empirically what a one in a hundred year event is, as we have a record of 110 years. That 
estimate is the red line in Fig 3.11 determined as the 99th percentile from the empirical CDF that 
is shown as the blue curve in the right panel of Fig. 3.12. People often estimate one in a hundred 
year events from records of 20 (or less) years based on parametric fits. We’ll use this example to 
show how that can be done, but why this approach might not give a realistic answer. Empirically 
in our case, the 99th percentile in the record is 523,400 ft3/s. In this instance, there have been two 
“hundred year” events during the 1965 and 1974 water years. 
 
As shown in Fig. 3.12, a Gaussian parametric fit is a poor choice in this instance to describe the 
peak streamflow as it would estimate many more low peak flows than observed and fewer high 
peak flows. The Weibull fit does a better job at capturing the skewed nature of the peak 
streamflow and estimates the magnitude of one in a hundred year peak streamflow fairly well 
(red dash-dot line in Fig. 3. 11). 
 

 

Figure 3.10.   Cumulative distribution for the recurrence 
of a rare event- in this case a one in hundred year event 
assuming a geometric distribution. 



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  45

Another way of examining the “goodness” of a parametric fit is to look at probability-probability 
plots (Fig. 3.13). If the Weibull parametric fit was perfect, then all the blue circles (observed 
values) would lie along the red line. So, the Weibull fit is quite good. 
 
We could now ask 
something for which we 
don’t have a long 
enough record- what 
would be peak 
streamflow for a one in a 
thousand year flood? We 
can extrapolate using our 
Weibull fit and 
guestimate that it might 
be 708,000 ft3/s. That 
would certainly be 
devastating in that river 
corridor if it were to 
happen. 
 

d.  Hypothesis 
Testing of Means 

 
Let’s return to the annual 
precipitation in Utah and 

Figure 3.11. Peak streamflow (ft3/s) during the water year for the Klamath River, CA.  “100 year” peak 
flows (99th percentile or 1 in a 100) were observed in December 1964 (1965 water year) and 1974 (above the 
red line).  “100 year” lowest flows were observed in 1920, 1977, and 2001 (below the blue line).  The doted 
and dashed/dot lines indicate the 100 year peak flows estimated from Gaussian and Weibull fits 
respectively. 

 
Figure 3.12. Empirical histogram (top) and CDF (bottom) of Klamath peak 
streamflow in blue. Red (green) curves denote Gaussian (Weibull) 
parametric fits to the data.  
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use a completely arbitrary definition of 
a drought: that the average annual 
precipitation anomaly over a 5 year 
period differs substantively from zero. 
We will evaluate strings of the 5 year 
periods and try to objectively compare 
each five year period to the others. 
 
One expectation might be that the 
mean precipitation anomaly during 
any of the 5 year periods is 0 - this 
would be the null hypothesis. The null 
hypothesis, H0, defines a frame of 
reference against which to judge an 
alternative hypothesis, HA, which in 
this instance could be “the mean 

precipitation anomaly during the past five years is less than zero”.  
 
The steps required for a hypothesis test are: 

 identify a test statistic that is appropriate to the data and question at hand. The test 
statistic is computed from the sample data values. In this example, the 5-year sample 
mean will be the test statistic, but we’ll also need to use the sample variance as well. 

 Define a null hypothesis that we hope to reject. In this case, the null hypothesis is that the 
sample mean is 0. 

 Define an alternative hypothesis. In this case, the sample mean is negative. 
 Estimate the null distribution, which is the sampling distribution of the test statistic if the 

null hypothesis is true. It is very important to recognize that we need to know the 
sampling properties of the test statistic. That is, the sample mean could be drawn from a 
Gaussian parametric distribution, another parametric distribution or even we could define 
the sampling distribution of the mean empirically by randomly sampling over and over 
taking five years within the past 126 years.  

 Compare the observed test statistic (the composite mean value of each 5-year period to 
the null distribution. Either: 

o the null hypothesis is rejected as too unlikely to have been true if the test statistic 
falls in an improbable region of the null distribution, i.e., the probability that the 
test statistic has that particular value in the null distribution is small, or, 

o the null hypothesis is not rejected since the test statistic falls within the values that 
are relatively common to the null distribution.  

 
Not rejecting H0 does not mean that the null hypothesis is true; rather, there is insufficient 
evidence to reject H0. The null hypothesis is rejected if the probability, p, of the observed test 
statistic in the null distribution is less than or equal to a specified significance (or rejection) level 
denoted as the α level. Usually, 1% or 5% significance levels are used, i.e., if the odds of the test 
statistic occurring in the null distribution are less than 1% or 5%, then we often reject the null 
hypothesis. Depending on how the alternative hypothesis is framed, rejecting the null hypothesis 
may be equivalent to accepting the alternative hypothesis; however, there may be many possible 

 
Figure 3.13. Probability-probability plot with observed 
Klamath peak streamflow in blue. The red straight line 
shows where the observed values should lie if the Weibull 
parametric fit the data perfectly.  
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alternative hypotheses. The first 
step of any significance testing is 
to set an appropriate α level to 
reject the null hypothesis. In other 
words, you must first set a 
threshold, such as 1% that denotes 
a 1 in 100 chance that you are 
accepting the risk of rejecting the 
null hypothesis incorrectly. This 
1% risk is a Type I category error 
of a false rejection of the null 
hypothesis.  
 
Confused? Yes, it can be difficult 
to make sense of this and we’ll 
discuss that this approach is in 
many respects fundamentally 
flawed. However, statistical 
methods require some sense of 
how realistic they are and this is a 
flawed, but standard approach. 
 

e. Central Limit Theorem 
and Student-t Test 

 
Now we consider one of the 
reasons the Gaussian distribution 
is used so much. First, roll 1 six-
sided die 10,000 times. That’s a 
population as shown in the top 
panel of Fig. 3.14. The histogram 
of the population indicates that 
the chance of getting any one 
number from 1-6 is basically the 
same in that population (but they 
are not identical odds). 
show Now roll 6 dice at the same 
time 10,000 times (bottom panels 
of Fig. 3.16). In other words, we 
have a population of 10,000 
samples of 6 events, so there are now 60,000 values.  We can determine each 6-member 
sample’s sum, mean, or variance separately.  The most common sum is around 21 The most 
common mean is around 3.5. The odds of getting a total count of 6 or 36 are small. Note that we 
end up with a Gaussian distribution. The central limit theorem states that the sum (or mean) of a 
sample (6 dice) will have a Gaussian distribution even if the original distribution (one die) does 

 

 
Figure 3.14. Top panels. Population and histograms s based on 
rolling 1 die 10000 times. Bottom panels. Population and 
histograms based on rolling 6 dice 10000 times.  
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not have a Gaussian distribution, especially as the sample size increases. In other words, 
where is the standard deviation of the sample means, σ is the standard deviation 

of the original population, and n is the sample size. For a large population, such as in this 
example, the standard deviation of the population is roughly 1.7 and that of the 6 member 
samples drawn from the population is roughly 0.7, which is what should be expected.  
 
Let’s return to our example attempting to determine 5-year drought periods. The sample standard 
deviation is 6.5 cm for the annual precipitation over the 126 years. We could randomly obtain the 
Gaussian distribution shown in the left panel of Fig. 3.15 with a standard deviation of 6.5 cm 
about the anomaly mean of 0. There is a 95% chance that the precipitation anomaly will lie 
between ±12.7 cm.  There is a 2.5% chance that a random year could have a precipitation 
anomaly below -12.7 cm. So, by chance, if we had a 100 year sample, we would expect 2-3 of 
those years to possibly have precipitation anomalies less than that threshold.  
 
We now randomly take 5 values and average them.  If we selected 5 years at random from the 
population many times, then according to the central limit theorem, we’d end up with the right 
panel. There is a 95% chance that the 5-year sample mean would lie between ±5.7 cm of a 2.5% 
chance that a random sample of five years would have a precipitation anomaly less than -5.7 cm.  
In other words, it becomes easier at least in terms of the magnitude of a single value vs mean of 
5 values to have an extreme 5-year mean (“a drought” according to this lame definition) than just 
to have one extreme dry year.  

Figure 3.15. Gaussian distribution with standard deviation equal to 6.4 cm (left panel) and 2.9 cm (right 
panel). 

We use the central limit theorem as a way to determine whether a mean from a particular sample 
differs significantly from the mean we specify as being appropriate for the null hypothesis 
assuming that we know something about the population variance. Assume for the moment that 
the population standard deviation was 6.5 cm as assumed in the left panel of Fig. 3.15. In the last 
5 years (2016-2020), the annual precipitation anomalies are  1.5, -1.5, -4.6, 9.0.-15.6. The mean 
anomaly over those 5 years is only -2.2 cm, even with the super low precipitation in 2020. Then 

nx /  x



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  49

we would determine that we could NOT reject the null hypothesis at the 2.5% level (the left-tail 
of the distribution) , since the sample mean during the last 5 years of -2.2 cm first lies within the 
shaded area in the right panel of Fig. 3.15 (the right unshaded portion would be shaded in too). 
 
If we go back to 1900-1904 (centered on 1902) when the precipitation departures were -10.0, -
5.7, -8.2, -5.3, -2.9 cm, then the 5-year average is -6.4 cm, which is lower than the -5.7 cm limit 
associated with our 2.5% threshold to reject the null hypothesis. We can state that in this instance 
we can reject the null hypothesis that a negative 5-year mean differs from 0 at the 2.5% level. 
However, we just “cherry-picked” a case- did I have any reason ahead of time to look at the 
1900-1904 period? NO- I ran the analysis and then went searching for one of the cases that meet 
my definition of “significance”- that is an aposteriori approach (after the fact). We could expect 

 
Figure 3.16. Top panel. Yearly precipitation anomalies. 2nd panel. 5-year average precpitation anomalies. 
3rd panel. Values of 1 indicate the null hypothesis can be rejected at the 5% confidence level for a 1-sided 
left t-test. Bottom panel. Values of 1 indicate the null hypothesis can be rejected at the 5% confidence level 
for a 2-sided t-test (both wet and dry events). 
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in a 122 year sample of 5-year means (we can’t compute the 5-year means for the two years on 
the ends of the time series) that there would be ~3 such years to possibly happen by chance. 
 
The above is not the correct way to assess the situation for small sample sizes, as we didn’t 
factor in the sample size explicitly. Usually we only have an estimate of the population variance 
from our sample. Then, as already discussed in Chapter 2, the sample standard deviation 

or . The degrees of freedom is n-1, which is a reminder that the 

sample can be described by the mean (1 value)  plus n-1 others. 
 
The Student’s t test is a way to determine whether the null hypothesis can be rejected. The name 
“Student’s t” comes from an employee of the Guiness brewery who had to submit his paper as 
“Student” anonymously to a journal.  The t value is defined as: , which can 

be shown to be normally distributed for large numbers of degrees of freedom (n-1 greater than 30 
or so).  So, the students-t test is a conventional way to adjust when using a smaller sample size, 
such as our five years for this drought definition. 
 
There are a variety of ways to grasp the meaning of the t statistic. The simplest is to visualize the 
numerator as the ‘signal’, the difference between the sample and null hypothesis means times the 
number of members of the sample, and the denominator as the ‘noise’, the variability within the 
sample. As the value of t gets larger, our confidence in rejecting the null hypothesis that the 
mean of the sample is zero gets higher. The t value is large if: (1) the spread between the sample 
mean and the null value mean is large, (2) the number of members in the sample is large, (3) the 
variability in the sample is small.  
 
Let’s loop over all 5-year samples in our record to see which periods might be considered 
droughts.   The top panel of Fig. 3.16 shows the yearly precipitation anomalies.  Note that the 
precipitation anomalies of -13.5  and -15.6 cm in 1955 and 2020, respectively are the only ones 
that would be considered exceptional and for which we might be able to reject the null 
hypothesis for a single year with 2.5% confidence if this was a random sample drawn from a 
Gaussian distribution as shown in the left panel of Fig. 3.15.  
 
We want to know which 5-year periods can be classified as droughts and have some confidence 
that calling them a drought is not just due to chance. The 2nd panel shows the 5-year averages, so 
the differences from zero is the numerator for the t-test. The denominator for the t-test can be 
guestimated from the top panel (or look at the values for each year in the code) as to the 
variability of the 5 yearly values centered on the middle year.  
 
We first set our rejection limit, α, the probability level for rejecting the null hypothesis. If we 
are only interested in droughts, then if we set α = 5%, we are asking in our case: is the random 
probability that the t-statistic for a particular sample of 5 years lower than 5% and is the t-value 
negative? This is a one-tail t-test (the left tail). If so, then we can reject the null hypothesis 
accepting a 5% risk that it might happen by chance.  The center panel highlights the middle year 
of the 5 years when the null hypothesis can be rejected, i.e., accepting a 5% risk in those 
situations that classifying them as droughts could simply have happened by chance. The 5-year 
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periods where it is not possible to reject the null hypothesis are blank in the third panel.  If we 
are willing to accept a higher risk of falsely rejecting the null hypothesis, then we could use a 
higher threshold of say 10% and thereby identify more drought episodes. Note that our 1900-
1902 period is identified as being one of the periods for which we can reject the null hypothesis 
but even with the abnormally low precipitation in 2020, the 5-year mean from 2016-2020 doesn’t 
meet our objective criteria for a drought. 
 
Now for another caveat- we had 122 opportunities to reject the null hypothesis. So, 5% of 122 is 
~6, which means we might expect purely by chance that we would have 6 drought periods 
lasting 5 years. We found 9 (but there were really only 5 independent events), so we are teetering 
on the edge of not really finding much useful about drought periods in Utah. As a general rule, 
researchers tend to ignore these types of issues related to serial dependence in time series when 
assessing statistical significance. 
 
So far in this simple example, the test of the sample mean is a one-sided (or tailed) ‘left’ test 
(we’re only interested in droughts). A two-sided test would require an alternative hypothesis that 
the 5-year mean anomaly is simply nonzero (either positive or negative) akin to what was 
discussed in relation to Fig. 3.15. We’re now interested in both “droughts” and “wet” periods- 5-
year periods when the average is greater than zero. This alternative hypothesis implies that any 
of the 5-year mean values must be even further from 0 (a smaller p value), i.e., a 2.5% chance for 
drought periods and a 2.5% chance for wet periods. It may seem somewhat paradoxical that 
assuming an alternative hypothesis (both wet and dry) leads to a tougher obstacle to reject the 
null hypothesis but that is due to keeping the rejection limit, α, at 5%.  This becomes evident in 
the bottom panel of Fig 3.16 since the null hypothesis can be rejected for only a smaller number 
of really strong “drought” periods. But, now we can reject the null hypothesis for a number of 5-
year wet periods, including the early 1980’s. Remember that the “signal” (the mean of the 5 
values) is evaluated relative to the “noise”, the variance within the sample. So, we are more 
likely to be able to reject the null hypothesis when the variability within the sample is small. 
Note that we now have 7 “independent” periods of either low or high precipitation in the state, 
only one more than what we could expect from chance. (The python code can be confusing. The 
scipy module provides a two-tailed test. The one-sided test is easily computed by simply dividing 
the probability returned from the two-tailed test by two and considering the sign of the t value. 
Dividing the probability by two makes it easier to reject the null hypothesis, the reasons for 
which are described here.) 
 

f. Summary 

The exploratory data techniques developed in Chapter 2 are simply that: exploratory. Research 
involves defining a testable hypothesis and demonstrating that any statistical test of that 
hypothesis meets basic standards. Typical failings of many studies include: (1) ignoring serial 
correlation in environmental time series that reduces the estimates of the number of degrees of 
freedom and (2) ignoring spatial correlation in environmental fields that increases the number of 
trials that are being determined simultaneously. The latter inflates the opportunities for the null 
hypothesis to be rejected falsely. Use common sense. Be very conservative in estimating the 
degrees of freedom temporally and spatially. Avoid attributing confidence to a desired result 
when similar relationships are showing up far removed from your area of interest for no obvious 
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reason. The best methods for testing a hypothesis rely heavily on independent evaluation using 
additional data not used in the original statistical analysis. We’ll introduce those concepts in the 
next chapter.  
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4 Exploratory Multivariate Data Analysis 
 
The techniques in Chapter 2 focus on a sample of 
data from a single variable independent of others. An 
advantage of many environmental data sets is the 
large number of simultaneous measurements 
available. We often want to relate how one or more 
phenomena are related to others. Besides simply 
measuring different quantities, we often have access 
to observations at different locations (both 
horizontally and vertically). Hence, our sample may 
have many dimensions: x, y, z, t, and variable, model, 
etc. The number of dimensions can easily grow 
beyond that. For example, if we are dealing with 
forecasts, then the forecast lead time or perturbations 
of model parameterizations or initial conditions 
become other dimensions. Dealing with the 
dimensionality of environmental data sets in 
statistical analyses is of general concern (see Murphy 
1991; Mon. Wea. Rev., 1590-1601). Obviously, we 
can slice such data sets up in a number of different 
ways to simplify the dimensionality of the problem 
depending on the goals of the study. Exploratory 
multivariate data analysis encompasses an array of 
tools to assess relationships between two or more 
samples.  
 

a. Linear Regression Between Two Variates 
 
We’ll use a data set of monthly precipitation collected at high elevation (SNOTEL) sites in the 
Wasatch Mountains. To keep the analysis manageable, only the time series of precipitation at the 
7 stations labeled in Fig. 4.1 will be used and the data are preprocessed in the code to consider 
only the water year (October-September) totals. These data can be obtained from this link. 
 
The top panel of Figure 4.2 shows the time series of total precipitation at Ben Lomond Peak and 
Ben Lomond Trail over a 41-year period. Since the stations are very close to one another, it is 
not surprising that the year-to-year variations in precipitation at the two sites are very similar. 
However, since Ben Lomond Trail is at a lower elevation, then its precipitation is distinctly less 
than that at Ben Lomond Peak.  The degree of similarity within the two pairs of time series is 
easier to evaluate after transforming the data into standardized anomalies (bottom panel of Fig. 
4.2 ). You might expect that if we try to estimate the precipitation at Ben Lomond Peak from that 
at Ben Lomond Trail we should be able to do well.  You should also recognize that the degrees 
of freedom in these records is fewer than the 41 years in the sample, maybe something like 20? 
  

Figure 4.1. Locations of the 7 SNOTEL sites 
examined 

TGL 

BLP BLT 

FRM 

PAR 

TIM 

PAY 
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Scatter plots of the values associated with two variables are a convenient way to examine 
relationships between paired data. Clustering, spread, outliers, etc. become apparent in scatter 
plots. Scatter plots can be done in terms of the raw values, anomalies, or standardized anomalies 
depending on the application. Since temporal continuity is lost when looking at scatter plots 
generated from time series of data, you need to be careful to not simply assume that each pair of 
observations is independent of the others. 
 
Figure 4.3 shows scatter plots of the original and standardized anomalies for the Ben Lomond 
time series. The meaning of the lines in each of the panels will become apparent below. Scatter 
plots are easier to interpret when there is a clear one-to-one association between the two 
variables, i.e., for a given value of x, the values of y in the sample are similar to one another. If 
the scatter plot looks like a blob, then that is a clear indication of a lack of one-to-one 
association. If the pairs of values tend to fall along a line, then it is appropriate to think of the 
two variables as being linearly related to one another. They may instead exhibit quadratic or 
higher order association. The scatter plots between the Ben Lomond stations reflect linear 
correspondence but the greater precipitation at the Peak in 1984 compared to the Trail suggests 
less association for that year.  
 
As part of exploratory data analysis it is common to want to estimate the values of one variable 
from that of another. I’m going to avoid saying ‘predict’ one variable from the other for the 
moment. Let’s start by trying to estimate precipitation at Ben Lomond Peak from the values at 
Ben Lomond Trail. First, we know that there is more precipitation on average at the higher 
elevation site, so we need to consider the differences between the two means. The simplest linear 
approach is to assume that for a given value at Ben Lomond Trail �̑�, our estimate 𝑦ො (where the 
subscript i refers to a particular year) at Ben Lomond Peak can be determined as follows: 

Figure 4.2. Time series (cm) of seasonal total precipitation at Ben Lomond Peak and Trail (top  panel) and 
standardized anomalies (nondimensional) of the time series in the lower panel. 
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𝑦ො ൌ �̄�  𝑏ሺ𝑥ො െ �̄�ሻ (4a.1)  
 
That relationship takes into consideration the differences in the two means. We obviously need 
to figure out how to determine the coefficient, b, and one approach is to use our sample of data 
collected over the 40 year period. First, consider the red line in the top panel of Fig. 4.3. It is a 
particular linear estimate using a specific value of b. If the Ben Lomond Trail precipitation is 140 
cm, then we would estimate Ben Lomond Peak to measure ~200 cm.  
 
Alternatively, we can use another coefficient, r, to estimate the standardized anomalies at Ben 
Lomond Peak from the standardized anomalies at Ben Lomond Trail as𝑦ො∗ ൌ 𝑟𝑥ො∗ where the 
asterisk indicates a standardized anomaly and r again needs to be determined from the pairs of 
values in the samples. A linear estimate for a particular value of r is shown by the line in the 
lower panel of Fig. 4.3 If r is 1, then the standardized anomalies at the two sites would be 
estimated to be exactly the same. If r is -1, then they would have the same magnitudes but 
opposite signs of anomalies. If r is 0, then for any x standardized anomaly, the estimate for y 
would be 0. 
 
How good are those estimates? We can use our sample of data to compute the errors for these 
specific choices of b (the slope of the line). For example, we have several observations of Ben 
Lomond Trail precipitation between 140 and 150 cm and during those years, Ben Lomond Peak 
measured between 180 and 250 cm. Obviously, our linear estimate didn’t do particularly well in 
two of those cases, but most of the other years had closer estimates to those observed.  
 
Any particular error in the estimate can be written as 𝑒 ൌ 𝑦

′ െ 𝑦ො, which is the distance between 
the line and the specific observation. The best line will be the one which minimizes all the 

Figure 4.3. Scatter plot of total precipitation (cm) at Ben Lomond Peak vs. Trail (top panel) and of their 
standardized anomalies (bottom panel). 
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distances 𝑒, so we want ∑ 𝑒
ଶ

ୀଵ to be a minimum. For our sample values 𝑦
′ ൌ 𝑏𝑥

′  𝑒, where 
the primes denote deviations from the respective means. Then if we use the entire sample:  
 

𝑦
′ଶ ൌ 𝑏ଶ𝑥

′ଶ  2𝑏𝑥
′𝑒  𝑒

ଶ (4.a.2) 
 

The term on the left is the sample variance of y about the mean and is given as the sum of the 
variance explained by the linear fit + how the errors and the deviations of x are related over the 
entire sample + the variance that is not explained by the linear fit, which is what we want to be 
small. The middle term on the right is assumed to be zero, because 𝑒 is assumed to be random if 
our sample is large enough.  

 Then 𝑠௬ଶ ൌ 𝑏ଶ𝑠௫ଶ  𝑒
ଶ (4.a.3) 

We want to choose b so that the explained variance of the linear fit (the first term on the right) is 
as big as possible and the last term is as small as possible.  

To minimize ∑ 𝑒
ଶ

ୀଵ  means to determine 
డ

డ
∑ 𝑒

ଶ
ୀଵ ൌ 0, which by substituting in for 𝑒 yields 

𝜕
𝜕𝑏

𝑒
ଶ



ୀଵ

ൌ
𝜕
𝜕𝑏

ሺ𝑦
′ െ 𝑏𝑥

′



ୀଵ

ሻଶ ൌ 2ሺ𝑦
′ െ 𝑏𝑥

′



ୀଵ

ሻሺെ𝑥
′ሻ ൌ 0 

 
or ∑ 𝑥

′𝑦
′ ൌ 𝑏∑ ሺ𝑥

′ሻଶ
ୀଵ


ୀଵ . Dividing through by n, using the definition for a mean, and 

rearranging yields 

 𝑏 ൌ 𝑥
′𝑦
′/ሺ𝑥

′ሻଶ ൌ 𝑥
′𝑦
′/𝑠௫ଶ (4.a.4) 

where 𝑥
′𝑦
′  is called the covariance and relates how departures from the mean of x and y are 

related. The covariance has units of the quantity squared, like a variance. Covariances are used in 
many disciplines: turbulence, planetary-scale dynamics, etc.  The covariance is: 

  large and positive if there is a general tendency in the sample for large and positive 
(and/or negative) anomalies of x occurring when large positive (negative) anomalies of y 
are observed  

  large and negative when there is a general tendency for large and positive (and/or 
negative) anomalies of x to occur at the same time as large negative (positive) anomalies 
of y when aggregated over the entire sample 

 near zero when there is a general tendency for cancellation within the sample, i.e., 
sometimes large positive anomaly values of x are associated with large positive anomaly 
values of y and other times large positive anomaly values of x are associated with large 
negative anomaly values of y. 

Returning to 4.a.2, and dividing through by y’s sample variance, then we have: 1 ൌ మ௦ೣమ

௦మ



మ

௦మ
, 

which simply says that a fraction of y’s variance is due to the variance estimated by our linear 
regression estimate and the remaining fraction is due to random (or unexplained) errors. Defining 
r2 as the squared linear correlation coefficient: 

 𝑟ଶ ൌ 𝑏ଶ𝑠௫ଶ/𝑠௬ଶ ൌ ሺ𝑥
′𝑦
′ሻଶ/ሺ𝑠௫ଶ𝑠௬ଶሻ (4.a.5) or 

 𝑟 ൌ ሺ𝑥
′𝑦
′ሻ/ට𝑥

′ଶ𝑦
′ଶ       -1≤r≤1 (4.a.6) 
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In addition, if we standardize the anomalies of x and y by dividing the anomalies by their 
respective standard deviations: 

 )(,/,/ ****
iiyiixii yxrsyysxx   (4.a.7)  

Then, y’s sample variance can be described alternatively as: 1 ൌ 𝑟ଶ 

మ

௦మ
where the squared 

correlation coefficient is the fraction of the total variance of y estimated from x. While the 
covariance is not bounded, െ1  𝑟  1and when: 

 r = 1 - the linear fit estimates all of the variability of the y anomalies and the standardized 
anomalies of x and y vary identically 

 r = -1 - the linear fit estimates all of the variability of the y anomalies in the sample but 
when the standardized x anomaly is positive, then the standardized y anomaly is negative 

 r = 0 - the linear fit explains none of the variability of the y anomalies in the sample and 
the standardized anomalies of x and y have no relationship to one another in the sample.  

 
If r=0, then the only thing we can say is that the best linear estimation for y is its mean value. If 
the scatter plot looks like a blob, then the linear correlation coefficient is likely to be close to 
zero, as there is no linear fit to the data that is going to explain any of the variability of y. As r 
approaches 1 (or -1), then we gain confidence that we can estimate the behavior of the second 
variable from the first, and vice versa. The squared correlation coefficient defines the fraction of 
variance that the two variables have “in common”.  
 
The coefficients b and r can be computed using several different approaches. One approach is 
that the sums of the product xiyi be computed as well as the sum of squares and sums of the two 
variables. i.e., 𝑐𝑜𝑣 ൌ𝑥𝑦 െ 𝑥𝑦. This is a useful approach when processing large data sets. The 
second approach uses linear algebra. Define the column vector �⃗�′ for the x anomalies (BLT) and 
the column vector 𝑌ሬ⃗ ′ for the y anomalies (BLP or TGL), then 

 
Figure 4.4. The linear correlation between the top two time series is 0 while that between the lower two time 
series is -1. 
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�⃗�′ ൌ ൦

𝑥ଵ
ᇱ

𝑥ଶ
ᇱ

. . .
𝑥ᇱ
൪ and 𝑌ሬ⃗ ′ ൌ

⎣
⎢
⎢
⎡𝑦ଵ
′

𝑦ଶ
′

. . .
𝑦′ ⎦
⎥
⎥
⎤
 and the covariance 𝑥

′𝑦
′ ൌ �⃗�′்𝑌ሬ⃗ ′/𝑛  (3.a.7) 

where the superscript T denotes the transpose of the column vector (i.e., the column vector is 
switched to a row vector). The resulting matrix multiplication of the 1 x n row vector times the  
n x 1 column vector yields a scalar number, which divided by the total number of elements, is the 
average of the vector product. Similar matrix multiplications can be done to obtain the sample 
variances.  
 
The linear fits are as shown in the above figures and the linear correlation between the 
precipitation anomalies at Ben Lomond Peak and Trail is 0.96, which is really high. Hence, 91% 
of the variance of total precipitation at Ben Lomond Peak can be explained by the variability of 
total precipitation at Ben Lomond Trail and only 9% of the variance is unexplained.   
 
The Pearson correlation coefficient is another name for the linear correlation coefficient defined 
here. The Pearson correlation coefficient is not a robust and reliant statistical measure, because 
the covariance and variance terms are quite sensitive to outliers. The Spearman rank correlation 
coefficient is a more robust measure and it is determined by sorting the data for the two variables 
in order from least to greatest and then computing the covariance as a function of rank, i.e., the 
correlation would be high if the highest (and lowest) values occur at the same time in both 
records.  The Spearman approach is particularly appropriate for analyzing variables with skewed 
distributions, e.g., precipitation and wind speed. In our simple example of the correlation 
between Ben Lomond Peak and Trail, the Pearson and Spearman correlations are identical. 
 
There are a number of limitations of linear correlation coefficients that must be recognized: 

 There is a widespread tendency to use correlation coefficients of 0.5-0.6 to be indicators 
of “useful” association. However, 75%-64% of the total variance is unexplained by a 
linear relationship if the correlation is in that range.  

 Linear correlations can be made large by leaving in signals that may be irrelevant to the 
analysis. For example, if we correlate over many years two temperature records from 
opposite sides of the earth, the linear correlation will be large if we do not remove the 
annual cycle. Perhaps we may be interested in knowing that the annual cycle in Great 
Britain is similar to that in North Dakota, but usually we are more interested in examining 
departures from the seasonal cycle. 

 Large linear correlations between two variates may occur simply at random, especially if 
we try to correlate one variate with many, many others. This situation arises frequently 
when we relate interannual or intraseasonal anomalies in one part of the globe to those 
over the entire globe. Tests are available to weed out some of these situations. We will 
formalize later what steps should be taken when an unexpected strong association crops 
up vs. one that we have hypothesized to exist. 

 Relationships in the data that are inherently nonlinear will not be handled well.  
 When two time series are in quadrature with one another (e.g., one time series 

corresponds to a cosine and another corresponds to a sine) as shown in Fig. 4.4, then the 
linear correlation is 0. You should be able to recognize that as the relative phase of two 



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  59

sinusoidal time series progresses from 0 to 90 to 180, then the linear correlation changes 
from 1 to 0 to -1. Since the environment is filled with propagating features, the 
limitations of the use of linear correlations for such phenomena should be readily 
apparent.  

 Linear correlation provides no information on the relative amplitudes of two time series. 
For example, the linear correlation between the lower two time series in Fig. 4.4. is -1.0, 
yet the amplitude of one of the time series is 2 times that of the other. The normalization 
by the standard deviation of each variable removes the relative amplitude information.  

 

 
Figure 4.5. Hovmuller diagram (time decreasing down the page and location advancing south 
across the page) of standardized precipitation anomalies. 
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b. Multivariate Linear 
Correlations 

 
As an extension to exploratory tools 
for pairs of data, it is straightforward 
to simultaneously examine the 
association between many 
simultaneous observations such as the 
water year totals at the 7 sites 
highlighted in Fig. 4.1. 
 
We can compute the average and 
sample standard deviation for each of 
the 7 stations over all 42 years (n=42) 
and thereby computed the 
standardized anomalies for each 
station as a function of time. Then, we 
can define the n x 7 two-dimensional 
array of standardized anomalies as �⃗� ∗
 where n is the total number of years and 7 is the number of stations. In other words, 
 

�⃗� ∗ൌ ൦

𝑥 ∗ଵଵ 𝑥 ∗ଵଶ . . . 𝑥 ∗ଵ
𝑥 ∗ଶଵ 𝑥 ∗ଶଶ . . . 𝑥 ∗ଶ

. . . . . . . . . . . .
𝑥 ∗ଵ 𝑥 ∗ଶ . . . 𝑥 ∗

൪ (4.b.1) 

A Hovmuller diagram (time vs. location) is simply a plot of the matrix defined in 4.b.1. For 
example in Fig. 4.5, nearly all the stations show similar year-to-year variations, but there are 
some differences. For example, all the stations had large standardized precipitation anomalies 
during the 2005 season but the positive standardized anomaly at Tony Grove (TGL) was smaller 
than that at all the other locations during that year. Tony Grove had its largest precipitation 
anomaly during 1982. All stations reported low precipitation amounts in 2021. 
 
If all the observations are loaded into a single dataframe then the linear correlations between all 
pairs of simultaneous observations can be calculated as shown in Fig. 4.6. The diagonal elements 
are 1.0, as they are the correlations of the 7 time series with themselves. The correlation matrix is 
symmetric, i.e., the values are the same for each row/column pair.  
 
There are obviously some strong linear associations among all 7. The weakest is between the two 
stations furthest apart: TGL and PAY and equal to 0.64. In other words, those two time series 
explain 40% of the variance of the other, and 60% is not explained by their co-linear variations. 
This result shouldn’t be too surprising, since they are the ones separated by the largest distance 
and there are some differences in the temporal evolution of the precipitation anomalies over time 
evident in the Hovmuller diagram of Fig. 4.5.  TGL is less correlated overall with the 6 others. 
We could use the Spearman correlation to reduce the sensitivity of the correlation matrix to 
outliers. The differences are trivial in this case. 
 

 
Figure 4.6. Correlation between the 7  pairs of  SNOTEL 
precipitation time series computed over the 42 year sample.  
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The above exploration of the data centers on the question: how do the yearly precipitation 
departures from the 42-year temporal mean at one location compare to those at another location 
when considered over all 42 years?  
 
Linear correlations of this sort are commonplace in environmental fields. A time series of one 
variable is often correlated with time series of variables at every location on a grid. That results 
in a temporal anomaly correlation map. “Teleconnection” maps are where the time series at each 
gridpoint of a variable are related to the time series of that same variable at every point and then 
this procedure is repeated for every possible gridpoint. An example of that is shown in the top 
panel of Fig. 4.7 generated by creating a time series from Create time series:  
https://psl.noaa.gov/data/correlation/custom.html for 500 mb height for January from 1948-2022 
at a gridpoint near Salt Lake City (40N, 112.5W).  Here is the final link used to generate the time 
series and here is the link to generate the plot. 
 
Nearby time series of 500 mb height anomalies near Salt Lake City are positively correlated with 
the time series above Salt Lake City (and the correlation is 1.0 at the gridpoint we started from). 
What is of interest are the relatively strong negative correlations upstream (<-0.5 to the west) and 
downstream (<-0.4 to the east) of Salt Lake City that put together exhibit a wavelike pattern. 
When there is anomalous ridging aloft (few storms in January) affecting Salt Lake City, then 
there is a deep trough in the Gulf of Alaska (lots of storms). Alternatively, lots of ridging in the 
Gulf of Alaska tends to be associated with more troughs aloft (storms) in Salt Lake City and the 
western U.S. What about the weak linear correlations further away from Salt Lake City?  
 
Anomaly correlation maps with many different climate indices can be computed from the CDC 
web site: Correlations: https://psl.noaa.gov/data/correlation/. For example, the middle panel of 
Fig. 4.7 shows the correlation between an index referred to as the Pacific North American (PNA) 
index that is derived as a simple weighted average of 500 mb height in specific locations (near 
Hawaii, in the  
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Gulf of Alaska, western Canada, and the 
southeastern US). The PNA index was derived 
decades ago as an indicator of a leading 
monthly/seasonal weather pattern in the Northern 
Hemisphere 
https://www.cpc.ncep.noaa.gov/data/teledoc/ 
pna.shtml . Note that 500 mb height anomalies 
near Salt Lake City are not strongly correlated to 
the PNA index in January. Here is the link to 
generate the figure. 
 
The lower panel of Fig. 4.7 shows the linear 
correlation between 500 mb height anomalies in 
the Northern Hemisphere and sea surface 
temperature anomalies in the equatorial Pacific 
(for regions referred to as regions 3 and 4). 
Positive correlations imply that when the SST in 
the equatorial Pacific is above (below) normal then 
500 mb heights are above (below) normal. The 
tendency during El Nino winters for enhanced 
troughing (lower than normal 500 mb heights) in 
the Gulf of Alaska and over the southern U.S. 
combined with above normal heights in western 
Canada is evident. However, the linear correlation 
between equatorial SST and 500 mb height during 
January in the vicinity of Salt Lake City is close to 
zero. Here is the link to generate that figure. 
 
Note that all three correlation patterns in Fig. 4.7 
are similar, but not identical. Which ones are 
“significant” and which aren’t? We’ll tackle that 
later.  
 
The above analysis has focused on how the year-
to-year variations in precipitation (rows) at 
locations (columns) relate to similar variations at 
other locations. Alternatively, we could transpose 
the original matrix and view the data as elements 
of maps (m rows) at specific times (n columns): 
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Figure 4.7. Top. Correlation between time 
series of January 500 mb height throughout 
the NH and 500 mb height near Salt Lake City. 
Middle. Same but with the PNA index. Bottom. 
Same but with the equatorial Pacific SST 
index.  
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We can then compute the spatial average over the locations or map elements and the variability 
about that spatial average for a time. We can compute the linear correlation coefficients between 
every pair of maps from  

 𝑆 ൌ �⃗� ∗் �⃗� ∗ /𝑚, (4.b.4) 
Linear correlations between pairs of anomaly maps are commonly used to verify model forecast 
fields vs. analysis grids. Usually, the long-term daily mean is removed at each grid point and 
then the departures from the spatial mean are computed for the forecast and analysis grids. Such 
spatial anomaly correlations have been computed for forecast grids by the operational centers as 
shown in Fig. 4.8 (in this case for the 5-day and 10-day 500 mb height forecast grids in the 
Northern and Hemisphere from NCEP). If the spatial anomaly correlation was equal to one, then 
the forecast and the analysis would exhibit the same spatial anomaly patterns. If the correlation is 
0, then the model forecast and analysis fields are completely unrelated in a linear sense. 
 
These spatial anomaly correlations between two fields are computed as follows. Let the analysis 

grids at m locations (rows) and n times (columns) be �⃗�ᇱ and the forecast grids for one specific 

model at m locations and n times be 𝑌ሬ⃗ ′. Then we can compute the spatial anomaly correlations 
between every matched pair of forecast and verifying analysis maps and generate a figure like 
that from  

 𝑆 ൌ �⃗�′்𝑌ሬ⃗ ′/𝑚, (4.b.5) 
 
Besides the information on the 
relative accuracy of the various 
models shown in Fig. 4.8, the 
magnitude of the anomaly 
correlations indicates greater 
accuracy in the Northern 
Hemisphere at 5 days compared 
to 10-day lead time. All of the 
caveats regarding linear 
correlation apply to the spatial 
anomaly correlations. Hence, for 
this type of forecast verification, 
we are unable to assess if the 
forecasts have large errors in 
amplitude. In addition, a 
relatively good forecast with a 
slight phasing error (i.e., ridges 
and troughs captured properly 
but shifted in longitude) will be 
counted as a relatively poor 
forecast. For many other 
examples of the uses of spatial 
anomaly correlations and other 
accuracy measures, browse 

 

 
Figure 4.8. Anomaly correlations between 120 h (top) and 240 h 
(bottom) model forecasts and analyses computed each day. 
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around https://www.emc. ncep.noaa.gov/ gmb/STATS_vsdb 

 
Figure 4.9. Multivariate ENSO index 

c. Compositing 
 
Compositing (or superposed epoch analysis) is frequently used to assess the common 
environmental features associated with a sample of events. For example, the occurrences of some 
relatively rare event are identified (e.g., local floods or warm sea surface temperature in the 
equatorial Pacific). The goal is to identify the average conditions within some large data set 
before, during, and after those rare events.  The availability of the NCEP/NCAR reanalysis grids 
and the CDC web software available at https://psl.noaa.gov/data/composites/day/ 
and https://psl.noaa.gov/cgi-bin/data/composites/printpage.pl has helped to spawn a cottage 
industry of compositing applications.  
 
The steps in the compositing process can be summarized as follows: 

 select the basis for compositing and define the categories on which the compositing will 
be defined. It is preferable to have some physical reasoning for the categories or else the 
results may have limited usefulness. 

 compute the means and statistics for each category 
 organize and display the results 
 validate the results (the methods for which we will discuss later) either in terms of: 

significance tests;  breaking the data record into parts and showing that the results are 
reproducible in smaller samples; examining the relationship on an independent data set; 
show consistency in space and time; or verify consistency with a well-founded theory. 

 
Relating environmental phenomena to El Nino/Southern Oscillation (ENSO) variability is of 
interest in many fields. The multivariate ENSO index (Fig. 4.9) is one of the better indicators of 
ENSO variability(https://psl.noaa.gov/enso/mei/). It is possible to identify when the biggest El 
Nino and La Nina events have occurred. We have been in La Nina conditions of late. For this 
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example, I’ll limit it to just the top 6 years during Jan-Feb during the available period of record 
for the MEI: 1983, 1987, 1992, 2010, 2016. 
Using https://psl.noaa.gov/cgi-
bin/data/composites/printpage.pl it 
is very straightforward to develop 
the composite 500 mb height 
anomaly map shown in Fig. 4.11 for 
those 6 January’s. While the basic 
information obtained from this 
simple composite is similar to that 
obtained from the linear correlation 
shown in Fig. 4.8 between the MEI 
and 500 mb height anomalies (i.e., 
below normal heights in the Gulf of 
Alaska and over the southern United 
States), the composite analysis 
provides information on the 
amplitude of the anomalies as well.  
 
One of the principal strengths of 
composite analysis relative to linear 
correlation analysis is that no 
assumption about the linearity of the system is made in the composite analysis. As will be 
discussed later, the primary limitation on composite analysis is the extent to which the sample 
mean can be judged to differ from the population mean. That will depend on the sample size and 
how much variability is present within the members of the sample.  
 
Compositing studies need to be carefully evaluated: 

 was there a reason before the analysis started to expect the relationship found in the 
study? We will discuss the advantage of a priori expectations in greater detail later. 

 what is the basis for choosing the compositing categories? How arbitrary was the 
selection or is it based on physical reasoning? 

 was there an opportunity for subjective judgment or bias to enter the composite analysis? 
 do the composite results make sense logically and physically? Are there simpler 

explanations possible? 

d. Enhancing Confidence Using Cross Validation 
An approach to assess the confidence of linear regression results obtained from a sample is to 
apply the linear regression to an independent sample. The data could be divided in half at the 
outset and only half is used to “train” the regression while the rest is kept for the verification of 
the regression. How the data are split between the “dependent/training” and 
“independent/testing” samples can be tricky, especially if there are long term trends or other 
systematic behavior within the data set. Bootstrapping approaches are a super-repetitive 
approach where the data are sampled hundred of times, leaving out as few as one or several 
values in order to determine if there is uncertainty arising from a few outlier cases. 

 
Figure 4.11. Composite 500 mb height anomaly for the 6 
January’s with the highest MEI index. 



Meteorology 5340 Environmental Programming and Statistics. Fall 2022 
 

  66

The Chapter 4 code includes a simple 
example where Payson snowfall is to be 
estimated from the Tony Grove snowfall. 
That relationship based on the 42 year 
sample was ok (linear correlation of 0.64 
or ~40% of the variance shared in 
common). However, the root-mean-
squared error (RMSE) between the 
Payson predicted values estimated by the 
black line in Fig. 4.12 relative to the 
actual snowfall (all the red and green 
dots) is 11.7 cm, meaning typically the 
annual totals estimate at Payson are off 
by several inches. Errors are particularly 
large when Tony Grove Snowfall is in 
the 120-140 cm range.  
 
How much confidence do we have in 
that linear prediction? We use cross 
validation and split the 42 years into two 
21 year random samples. The red dots in 
Fig. 4.12 are the training (dependent) 
data while the green dots are the testing (independent) data. We linearly fit for the training data 
only, which yields the green line. Then we recompute the RMSE between the estimated values in 
the testing years (green dots) relative to the green line. The RMSE is now approaching 14.8 cm, 
larger, but not too much larger, which is also evident by the only slight different slope of the 
black and green lines. So, our original estimate is likely ok.  
 
The coefficient of determination is another metric that attempts to estimate the “goodness of the 
linear fit”. Values approaching 1 indicate a perfect estimate (what you would get if you estimated 
the same data twice) while approaching 0 is really bad. For the 42 year sample, the coefficient of 
determination was 0.41 and dropped to 0.27 for the cross-validation test. So, not a great fit, 
which is certainly evident in Fig. 4.12. 
 

e. Principal Components 

The year-to-year variations in precipitation at the Wasatch stations are generally similar. If we 
wanted one index of Wasatch mountain precipitation over time, should we just average together 
the 7 values each year? Could there be more than one mode of year-to-year variability tucked 
away in the data that we can identify? Principal component (PC) analysis is one approach to 
identify structures in large multivariate data sets. The purpose of PC analysis is to reduce the 
dimensionality of data sets through linear recombination of the variables. It is an exploratory 
analysis tool that can provide insight into spatial and temporal variations within a data sample. 
PC analysis is one of the most widely used multivariate statistical analyses in the environmental 
sciences, has a long history in other fields, and figures prominently in machine learning 
applications.  

 
Fig 4.12. Linear fit of Payson snowfall estimated by Tony 
Grove snowfall using all years (the training years- red 
dots- and testing years-green dots) is shown by the black 
line. The green line is based on the linear fit using only the 
independent years (green dots).  
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There are some key caveats about the approach: 

• it depends on linear regression which suffers from the many limitations described earlier 
• some of the implicit mathematical assumptions of the technique constrain the results into 

predictable and often artificial modes. 
 

PC analysis is not the only approach available to you to find modes. Some of the others include: 
• Canonical correlation: identify pairs of patterns in two data sets 
• Principal oscillation analysis (POP): fit data to a linear low-order model  
• Discriminant analysis: separate data into groups defined in advance  
• Cluster analysis: separate data into groups based on similarity within sample of data 
• Artificial neural networks: adaptive system that evolves as information input during 

learning phase 
• Harmonic and spectral techniques. 

 
Each of these alternative methods have advantages and disadvantages. Before using PCs or any 
other of these approaches, you need to spend some time deciding which is the most appropriate 
to use for your application. 
 
There are still some critical preprocessing steps to consider: 

• What are the critical temporal and spatial scales for the phenomena of interest? 
• Should trends or seasonal or diurnal cycles be removed? 
• Are the phenomena sampled frequently enough to observe without aliasing? 
• Should the data be transformed to reduce skewness, i.e., increase normality? 
• Have outliers been eliminated? 

 
Let’s assume our goal is to use PC analysis to define a single index of Wasatch precipitation 
based on the 7 SNOTEL time series, i.e., a reduction in the location dimension from 7 to 1. From 
the 2-dimensional array of standardized anomalies shown in Fig. 4.5 (the Hovmuller diagram), 
we can compute the linear correlation coefficients between every pair of stations (pairs of 
columns) as shown in Fig. 4.6. The large linear correlations between the precipitation time series 
evident in Fig. 4.6 imply there are fewer than 7 independent time series in the sample. So, it is 
not unreasonable to expect that we might be able to come up with a Wasatch precipitation index. 
 
Define the first principal component time series to be the time series that explains the maximum 
sum of shared variance among all 7 time series. There are a total of 7 units of variance in the 
data set since each time series has been standardized to uit variance. This time series is defined in 
terms of a linear combination of the 7 standardized anomaly time series as follows with the year 
indicated by index i:  

  
 

If we start with m=7 columns, then we end up with m=7 principal components or 6 more 
equations like the above. Do we really need all of those time series? The goal is to have one (or a 
few) of these principal components explain such a large fraction of the total variance in the data 
set that we can ignore the rest. Now, for some matrix algebra by writing:  

17,1,76,1,65,1,54,1,43,1,32,1,21,1,11, /)( iiiiiiii xexexexexexexep 
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The loadings or weights (E’s)  applied to the original time series are the 

elements of a eigenvector array (m x m) E that can be computed from the correlation array R 
where Λ is a diagonal eigenvalue array (m x m). Confused? You should be. The crux of PC 
analysis follows from the characteristics of symmetric matrices such as R. Any symmetric matrix 
can be decomposed into eigenvalues and eigenvectors as follows: 

 
 
 

This is all handled in the Chapter 4 python code in a couple of lines. What we obtain from PC 
analysis are three types of output: 

 Eigenvalues (the λ’s) : 
• Amount of normalized variance explained by principal components 
• Percent variance explained by the first principal component is *100/m where m 

is the number of original time series 
 Principal components (the P’s): 

• If the original rows are elements of a time series, then the principal components 
are time series  

• These time series are linearly independent of one another (which means they are 
linearly uncorrelated with each other) 

 Eigenvectors (the E’s): 
• if the original columns were locations, then the eigenvectors are recombinations 

of locations, or think of them as maps  
• Each of these “maps” are linearly independent of each other (or spatially 

uncorrelated) 
 
As shown in the Chapter 4 code, the first principal component explains 88% of the total variance 
within the 7 precipitation time series. The second explains 6% and the rest explain trivial 
additional amounts of the total variance. This is an example of a useful application of principal 
component analysis. Explaining 88% of the total variance is very good and reflects that it is 
reasonable to use this index to describe the temporal variability in Wasatch precipitation (and 
that year-to-year variations in precipitation are similar along the Wasatch). We’ve collapsed the 
seven time series into one index that is defined by a weighted combination of the 7 original time 
series. Those weights are determined empirically from the linear correlations between the time 
series and not determined from the particular values of the time series directly. As shown in the 
code, the first principal component index is independent of the remaining linear combinations 
both in time and space and the second and higher principal components explain limited variance. 
 
Figure 4.13 shows the PC1 and PC2 time series. Compare the PC1 time series to Fig 3.5 and note 
that locations do have higher seasonal precipitation during 2011 and low precipitation in 2021 
and 2022. Be cautious about attributing any meaning to the PC2 time series- it only explains 6% 
of the variance.  All too often people attribute physical meaning to principal components that 
explain limited variance that is likely inappropriate.  
 
 

1 EXP
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Figure 4.14 shows the eigenvectors, the correlations between the first two principal component 
time series and the 7 original time series.  There are very high correlations between all 7 original 
time series and PC1, but the correlation between the first principal component and Tony Grove is  
weaker. The second principal component is poorly correlated with all of the original time series 
but a bit higher with Tony Grove (negatively correlated) and Payson (positively correlated).  
 
The limitations of principal component analysis have been recognized for many years. The 
orthogonality (linear independence) constraint of the eigenvectors leads to artificial and 
predictable structures for 2nd and higher eigenvectors relative to the preceding ones. In addition, 
the results may change if more (or fewer) SNOTEL stations were used. Principal component 
analysis can be very sensitive to the domain of the analysis if the scale of any underlying modes 
is smaller than that of the domain.  
 
This is only a very brief overview of PC 
analysis. The number of modes to consider 
significant is a sampling issue and discussed at 
length in the literature. One general rule is to 
look for a clear drop off in explained variance 
among the eigenvalues Another way is to only 
retain principal components that have 1 
normalized unit of variance or more. When 
consecutive principal components explain 
comparable percentages of variance, then 
alternative linear combinations are equally 
valid for that number of modes.  
 

Figure 4.13. Time series of PC1 and PC2 derived from the 7 SNOTEL precipitation time series. 

 
Figure 4.14. Correlations between SNOTEL time 
series and PC1 and PC2 time series.  


