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Abstract 33 

 Given the heterogeneous equipment, maintenance and reporting practices, and siting 34 

of surface observing stations, subjective decisions that depend on the application tend to be 35 

made to use some observations and avoid others. This research determines objectively high 36 

impact surface observations of 2-m temperature, 2-m dewpoint, and 10-m wind observations 37 

using the adjoint of a two-dimensional variational surface analysis over the contiguous 38 

United States. The analyses reflect a weighted blend of 1-h numerical forecasts used as 39 

background grids and available observations. High impact observations are defined as arising 40 

from: low observation quality, observation representativeness errors, or accurate observed 41 

weather conditions not evident in the background field. 42 

 The impact of nearly 20,000 surface observations is computed over a sample of 100 43 

analysis hours during 25 major weather events. Observation impacts are determined for each 44 

station as well as within broad network categories. For individual analysis hours, high impact 45 

observations are located in regions of significant weather—typically, where the background 46 

field fails to define the local weather conditions. Low impact observations tend to be ones 47 

where there are many observations reporting similar departures from the background. When 48 

averaged over the entire 100 cases, observations with the highest impact are found within all 49 

network categories and depend strongly on their location relative to other observing sites and 50 

the amount of variability in the weather, e.g., temperature observations in urban areas such as 51 

Los Angeles, CA, where observations are plentiful and temperature departures from the 52 

background grids are small, have reduced impact.   53 



1. Introduction 54 

Mesoscale surface observations are vital data sources for applications in many different 55 

meteorological subfields, including operational forecasting, wind power management, 56 

transportation safety, wildfire management, dispersion modeling, and defense applications 57 

(Dabberdt et al. 2005; Horel and Colman 2005). Two recent reports (National Academy of 58 

Sciences 2009; 2010) recommend that existing and future mesoscale observations be 59 

integrated into a network of networks. The heterogeneous nature of the available mesoscale 60 

surface observing networks within the United States (e.g., varying sensor quality, 61 

maintenance and reporting practices, and siting) can limit their potential benefits. A critical 62 

recommendation in both reports is to improve the metadata that defines the sensor and station 63 

characteristics within the aggregated networks. Users of the national network would then be 64 

able to select the types of stations that meet their specific needs.  65 

Obviously, stations with higher quality equipment that are properly sited and 66 

maintained are likely to be of greater value for all applications. However, does a low-cost 67 

station with lower-quality standards in a largely data void region have greater value than one 68 

of several expensive high quality stations located close to each other? Observation value is 69 

clearly a function of the observation’s total cost, the availability of comparable data nearby, 70 

and its benefit to diverse potential applications, including use by human forecasters and 71 

integration into atmospheric analyses and numerical forecasts.  72 

This study does not attempt to address the broader issues of the relative value of 73 

observations obtained from different networks. Rather, the scope is limited to assessing the 74 

utility of an objective metric to identify the characteristics of observations and networks that 75 



strongly influence mesoscale surface analyses over the contiguous United States (CONUS). 76 

We address the extent to which the impact of observations depends “dynamically” on the 77 

synoptic, mesoscale, and local weather situation relative to the “static” underlying siting and 78 

standards of the various observing networks. This work is motivated by the pressing need to 79 

develop automated quality control procedures for mesonet observations from heterogeneous 80 

sources. 81 

Domestic and international research efforts have led to improved mesoscale analysis 82 

and data assimilation systems. Current operational products include: MatchObsAll, which is 83 

used at many National Weather Service offices; Vienna Enhanced Resolution Analysis 84 

(VERA; Steinacker et al. 2006); Integrated Nowcasting through Comprehensive Analysis 85 

(INCA; Haiden et al. 2010); Mesoscale Surface Analysis System (MSAS; Glowacki et al. 86 

2011); Space and Time Multiscale Analysis System (STMAS; Xie et al. 2011); Real-Time 87 

Mesoscale Analysis (RTMA; de Pondeca et al. 2011), and Rapid Refresh and High 88 

Resolution Rapid Refresh Systems of the National Centers for Environmental Prediction. 89 

These systems rely on analysis techniques ranging from Cressman and spline interpolation 90 

methods to advanced variational techniques. Many of these high resolution (1-12 km) 91 

analyses are not intended to initialize subsequent model forecasts, but instead used as end 92 

products to help diagnose current conditions or verify prior forecasts. Examination of 93 

sequences of such surface analyses allows users to grasp the spatial and temporal variability 94 

of weather situations more readily than direct inspection of conditions at hundreds of specific 95 

observing sites. We will introduce the University of Utah Variational Surface Analysis 96 



(UU2DVar) in this paper as an efficient research tool comparable in characteristics and 97 

performance to these operational systems.  98 

Prior work has demonstrated that the near-surface boundary layer in the CONUS 99 

remains under sampled (Myrick and Horel 2008; Horel and Dong 2010). Figure 1 illustrates 100 

the need for additional observing capabilities, particularly in mountainous and coastal areas, 101 

in terms of an integrated data influence analysis (IDI; Uboldi et al. 2008). The IDI analysis is 102 

generated by assuming that the background grid values are 0 everywhere and setting the 103 

observation values at the station locations available in this study to 1. As discussed by Horel 104 

and Dong (2010) and later in Section 2, the IDI analysis is a measure of station density and 105 

depends on the assumed observation and background error covariances. Areas with many 106 

stations and enhanced data coverage appear in dark shades in Fig. 1, while areas with few 107 

observations available appear white or light grey.  108 

Figure 1 should be viewed as a static illustration of data density. An underlying 109 

assumption of the recommendations related to improving station metadata made in the 110 

National Academy of Sciences reports is that by simply knowing the locations of existing 111 

mesonet stations and their basic operating characteristics as part of an improved national 112 

database of station metadata, then it will be possible to infer where additional stations are 113 

needed by identifying the apparent data voids. However, IDI analyses or examination of 114 

network metadata do not take into consideration the spatial and temporal variability arising 115 

from weather and may not identify where observations are most needed.  116 

Observation impacts have often been evaluated through cross-validation experiments, 117 

in which a control analysis using all observations is compared to an analysis in which 118 



observations of interest are excluded from the assimilation (Seaman and Hutchinson 1985; 119 

Zapotocny et al. 2000; Myrick and Horel 2008; Benjamin et al. 2010; Tyndall et al. 2010; 120 

Horel and Dong 2010). Generally, groups of observations are withheld (e.g., observations 121 

from differing types of sensor systems or networks). Horel and Dong (2010) applied this 122 

technique extensively by sequentially withholding each of ~3,000 observations evaluated in 123 

their study from ~9,000 analyses, resulting in over 570,000 cross-validation experiments. 124 

While this methodology provides individual impacts for each observation, it is far too 125 

cumbersome and expensive to use operationally. 126 

A more efficient approach to determine observation impacts utilizes the analysis 127 

adjoint that relates the analysis sensitivity to input location. Adjoints of forecast models are 128 

used routinely to assess where “targeted” observations might reduce forecast errors (Palmer 129 

et al. 1998, Buizza and Montaini 1999; Langland et al. 1999; Zhu and Gelaro 2008). Baker 130 

and Daley (2000) utilized the adjoint of a simple data assimilation system to explore analysis 131 

sensitivity on an analytical function. In this study, a similar approach is applied to surface 132 

mesonet observations throughout the entire CONUS domain to illustrate an approach to 133 

estimate which types of networks tend to have high observation impact. 134 

The approach used in this study is described in Section 2. Application of the 135 

methodology to a single case and aggregate statistics over a sample of 100 analyses are 136 

presented in Section 3. Additional discussion and ongoing work related to automated quality 137 

control procedures for mesonet observations are described in Section 4. 138 

 139 

 140 



2. Method 141 

a. Analysis 142 

This study utilizes the University of Utah Variational Surface Analysis (UU2DVar) to 143 

determine impacts of mesonet observations. The UU2DVar is a univariate two-dimensional 144 

variational (2DVar) analysis tool that generates meteorological analyses of 2-m air 145 

temperature, 2-m dewpoint temperature, 10-m   and   wind components, and surface 146 

pressure (Tyndall 2011). The analysis tool is designed to use the observation space form of 147 

the variational cost function equation (Lorenc 1986; Daley and Barker 2001): 148 

    (  )  (    
    )  (1) 

         
   (2) 

and computes the analysis,   , by spreading information from observations (  ) across the 149 

background grid (  ) by the background (  ) and observation (  ) error covariances, and 150 

the forward operator ( ). The term    is computed by iteratively solving (1), and is used to 151 

yield the analysis in (2). The observation space form of the cost function equation is very 152 

efficient for undersampled problems such as mesoscale surface observation assimilation (the 153 

number of observations is much less than the number of gridpoints of the analysis). The 154 

resolution of the UU2DVar analyses is dependent upon the resolution of the background 155 

fields, which in this study are Rapid Update Cycle (RUC) 1-hr forecasts (Benjamin et al. 156 

2004) downscaled from 13 km to 5 km resolution. These RUC backgrounds also serve as the 157 

background fields for the RTMA (de Pondeca et al. 2011). 158 

Parallelization of the UU2DVar originally using Matlab software for this study and 159 

now using open-source Python libraries has enabled the system to be run in real-time, and 160 



hourly analyses are currently generated over the CONUS domain as part of quality control 161 

procedures for MesoWest (Horel et al. 2002). Usage of parallelization allows efficient 162 

computation of the background error covariance (  ), which is horizontally and vertically 163 

spatially dependent through the product of two inverse exponential functions that depend on 164 

horizontal ( ) and vertical ( ) decorrelation length scales: 165 
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where    is the background error variance and     and     are the horizontal and vertical 166 

distances between gridpoints   and  . The vertical term in the equation adds terrain 167 

anisotropy, which prevents an observation in a valley from influencing areas of the analysis 168 

over nearby mountain ridges. The vertical term also controls the influence of coastal 169 

observations, as water analysis gridpoints have their elevation reduced by 500 m in the 170 

covariance computation to prevent land observations from influencing them. The horizontal 171 

and vertical decorrelation length scales used in this study were 80 km and 200 m, 172 

respectively. These length scales were estimated by Tyndall et al. (2010) for the same RUC 173 

background fields. These assumed decorrelation length scales do influence some of the 174 

results of this study, as they define a priori the spatial scales over which an observation is 175 

most likely to influence the analysis. Since the functional form of the covariance in (3) only 176 

asymptotes to 0 at long distances, correlations between gridpoints separated by more than 177 

300 km are set to 0 to improve computational efficiency. 178 

 179 

 180 



b. Observations 181 

Nearly all observations from the 125 mesonet networks used in this research are part of the 182 

MesoWest database of publicly accessible observations (Horel et al. 2002). A continually 183 

updated list of networks available in MesoWest is available online. Two proprietary 184 

networks (WeatherFlow’s largely coastal network and the Oklahoma Mesonet, McPherson et 185 

al. 2007) were added with permission as they help to illustrate networks that would likely be 186 

included in a national network of networks. The networks used in this study are deployed by 187 

entities for specific purposes and can be broadly separated into the 10 categories listed in 188 

Table 1. The median IDI values computed from the locations of all stations within each 189 

category reflect differences in station density, e.g., primarily urban stations (IDI values > 190 

0.95 for the PUBLIC and AQ categories) vs. rural or isolated stations (IDI values < 0.90 for 191 

the RAWS, EXT, and HYDRO categories).  192 

Based on subjective experience working with data from these networks and prior 193 

research (Tyndall et al. 2010), we have attempted to classify loosely the relative magnitude 194 

of mesonet observation errors compared to the background errors. These assumptions are 195 

made separately for temperature, moisture, and wind observation errors for each of the 10 196 

network categories. Given the subjectivity of these assumptions, our approach can be viewed 197 

as a sensitivity study in which the available stations are assigned varying error ratios to 198 

evaluate the dependence of our results on these assumptions. Higher ratios reduce the 199 

influence an observation will have on the resulting analysis in the vicinity of that 200 

observation. As a baseline, observations from the NWS/FAA reporting stations (NWS 201 

category) and other federal and state networks (FED+ category) that tend to adopt 202 



standardized installation, siting, and maintenance procedures are assigned observation to 203 

background error variance ratios of 1.0. This ratio implies that for an isolated observation, 204 

the resulting analysis in the vicinity of the observation will approximate roughly the average 205 

of the observation and background values.  206 

Higher observation to background ratios of 1.5 and 2.0 are assigned for some 207 

observation types and network categories to reflect the characteristics of many of these 208 

networks or as an attempt to account for representativeness errors. For example, the higher 209 

2.0 observation to background error variance ratio is used for wind observations from the 210 

Remote Automated Weather Station (RAWS) category  because: (1) the RAWS standard for 211 

wind sensor height (6 m as opposed to the 10 m standard for NWS and FED+ categories) 212 

leads to lower observed wind speeds relative to the 10 m background wind and (2)  many of 213 

the RAWS stations are sited for fire weather applications in rugged locations with highly 214 

variable terrain and vegetation for which the observations may not represent the conditions 215 

over nearby 5 km analysis grid boxes. Similarly, higher wind observation errors are also 216 

assumed for the AG and PUBLIC categories since many agricultural networks rely on 3 m 217 

towers and PUBLIC sensors are often mounted on or near residences with nearby 218 

obstructions commonplace.  219 

To prevent clearly erroneous observations from entering the analyses in this study, we 220 

used a manual blacklist and observation innovation (observation minus background) checks. 221 

The blacklist was prepared by subjectively rejecting observations from stations exhibiting 222 

both  large mean observation innovations combined with large mean impacts (as defined in 223 



the next subsection) when the 100 analyses were computed using all available observations. 224 

The innovation control check is summarized by Equation 4: 225 

|    (  )|     [         (  
       )    ] (4) 

where    is a tunable coefficient,     is a tunable quality control threshold (in units of the 226 

observations), and   
        are background field values (in units of the observations) no 227 

further than 40 km from the observations. The functions     and       are the maximum 228 

and standard deviations operating on the arguments, respectively. The tunable quality control 229 

threshold was added to prevent observations from being rejected in situations such as 230 

offshore areas where the variance in the background field is usually small. In this study,    is 231 

10 for all variables, and     is set to 3°C, 4°C, and 7.5 m/s for air temperature, dewpoint 232 

temperature, and wind values (both components and speed), respectively. Observation 233 

innovations that were likely due to representativeness errors (e.g., temperature observations 234 

at Mt. Rainier, WA where the analysis grid elevation is much lower than the sensor 235 

elevation) were not removed explicitly unless they were so egregious as to fail the innovation 236 

control check. 237 

An additional quality control step was applied to wind observations to reject very 238 

light winds when the background values were much higher, i.e., wind observations were not 239 

used when the observed speed was less than 1 m/s and the background speeds exceeded 5 240 

m/s. Such situations arise frequently due to a variety of siting and reporting reasons, and 241 

exacerbated at night during periods of weak synoptic flows. For example, the lowest reported 242 

wind speed for NWS observations is 1.25 m/s; hence, a “calm” report when the background 243 

suggests a relatively strong wind is ignored.   244 



c. Observation Impact  245 

As mentioned in the Introduction, the adjoint of a data assimilation tool can be used to find 246 

individual observation impacts in a much more efficient manner than traditional cross-247 

validation experiments using data withholding. The measure of observation impact used in 248 

this study follows that used by Langland and Baker (2004) and Zhu and Gelaro (2008). This 249 

methodology measures observation impact with respect to a sensitivity cost function,  , 250 

which is often a forecast variable of interest over a particular subdomain.  In this research,   251 

is specified to be the squared differences between the analysis and the background field 252 

[      (     )
 ]. Following Baker and Daley (2000), observation sensitivity (      ) 253 

is found using the chain rule: 254 
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The measure of observation impact,  , follows that previously defined by Zhu and Gelaro 255 

(2008) as the scalar product of observation sensitivity and the observation innovations: 256 

  
 

 
〈
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where 〈 〉 denotes the scalar product operator. 257 

 Observation impacts were computed over 100 analysis hours for all available surface 258 

observations. The 100 analysis hour sample was composed of the 00, 06, 12, and 18 UTC 259 

analyses corresponding to multi-million dollar severe weather damage between October 2010 260 

and April 2011. The dates of each event, type of severe weather, and areas affected are listed 261 

in Table 2.  262 



The wide range of values of observation impact (as a function of network category, 263 

variable, location, and date) led us to rank their values from smallest to largest for each 264 

variable. Negative impacts occur where the deviation of an observation from the background 265 

differs in sign relative to its neighbors, which may reflect either an erroneous observation or a 266 

realistic weather phenomenon on a scale smaller than that assumed a priori for the background 267 

errors. The percentile ranks of the observation impacts are aggregated for each station or for 268 

all stations in a network category for each variable for either individual cases or over the 269 

entire 100 analysis sample. Hence, a station’s temperature observations are “high impact” if 270 

its observation percentile rank impact values are large relative to the percentile impact values 271 

for temperature at other stations. 272 

 273 

3. Results  274 

a. 0000 UTC 04 April 2011 275 

The observation impact approach is illustrated using an analysis at the start of a two-day (04 276 

and 05 April 2011) severe weather period. The severe weather on these two days produced 277 

numerous tornado, hail, and high wind reports over much of the Midwest and southeastern 278 

United States particularly later on 04 April, and caused 3 fatalities and over 20 injuries. The 279 

severe weather was associated with prefrontal conditions ahead of the cold front stretching 280 

from Iowa to Arizona evident in  the 0000 UTC 04 April 2011 weather summary of the 281 

Hydrologic Prediction Center  (Fig. 2).  282 

At 0000 UTC 04 April, clear contributions of mesonet observations to the 283 

temperature, dewpoint, and wind speed analyses were evident near the front and dry line 284 



locations as well as elsewhere within the CONUS (Fig. 3). As shown by the analysis 285 

increments in the right panels of Fig. 3, the addition of the observations led to: higher 286 

temperatures and lower dewpoint temperatures than the background south of the warm front 287 

in the Midwest and lower wind speeds north of the warm front. Additionally, the 288 

observations led to substantive adjustments to the background in mountainous areas of the 289 

West, e.g., higher temperatures and dewpoints over the southern Sierra Nevada Mountains in 290 

California and lower wind speeds over portions of Arizona and New Mexico. 291 

The analysis increments in Fig. 3 show the collective influence of all observations on 292 

the analysis. Figure 4 illustrates the influence of each observation for selected network 293 

categories for 2-m temperature based on the analysis adjoint methodology. Red (blue) circles 294 

at station locations in Fig. 4 denote percentile ranks of observation impact in the top 25% 295 

(lowest 25%) for this temperature analysis. The 4 network categories shown in Fig. 4 reflect 296 

the diversity of network density, observation siting, and sensor quality. The NWS category 297 

consists of professional grade equipment sited primarily at airports around the country while 298 

the FED+ category represents an aggregate of national and regional federal networks (e.g., 299 

Climate Reference Network and Modernized Cooperative Observer Program), local federal 300 

networks (e.g., Field Research Division of the NOAA Air Resources Laboratory in eastern 301 

Idaho), and state networks (e.g., Oklahoma, West Texas, New Jersey). The RAWS category 302 

discussed previously is composed of stations that tend to be located in remote locations and 303 

often exhibit representativeness errors while the PUBLIC category constitutes the largest 304 

number of stations that are often densely distributed in urban areas and rely frequently on 305 

lower-grade sensors sited on residences.  306 



For this particular temperature analysis, many of the NWS temperature observations 307 

around the CONUS fall in the “typical” impact range found for most observations, i.e., 308 

percentile ranks between 25% and 75% (upper left panel of Fig. 4). The NWS stations at this 309 

time with the largest impacts (red colors) tend to be clustered near the warm front in the 310 

Upper Midwest where the background underestimated the strength of the warm front. The 311 

NWS temperature observations with the least impact are found in Virginia and Maryland and 312 

many coastal areas. The FED+ stations in Maine tend to have high impact while those in 313 

eastern Idaho exhibit individually modest impact at this time (upper right panel of Fig. 4).  314 

Even though we a priori “trust” RAWS temperature observations less than NWS of 315 

FED+ observations, many RAWS temperature observations fall in the upper quartile of 316 

impact particularly in the Sierra Nevada and Cascade Mountain ranges of the Pacific states 317 

(lower left panel of Fig. 4). These observations lead to the upward (downward) adjustment of 318 

the background temperature in the Sierras (western Colorado) evident in Fig. 3. It is obvious 319 

that in most major urban areas, the impacts of observations in the PUBLIC category on the 320 

analyses are small, e.g., Los Angeles, CA, San Francisco, CA, Seattle, WA, Dallas, TX, 321 

coastal FL, and Washington D.C. (lower right panel of Fig. 4). This results from the large 322 

number of observations in those areas that reduces the observation sensitivity (5) as well as 323 

our assumption of higher observation to background error ratios for these stations. However, 324 

the limited impact of these observations is as much determined by the weather at this time in 325 

those locations, as NWS observations in those locations also tend to have small impact. Since 326 

the PUBLIC observations differ from the background substantively in Illinois, Indiana, and 327 



Ohio, those observations influence the analysis as much as other stations that we “trust” 328 

more.  329 

Hence, observation impact as defined in this study depends on a complex blend of the 330 

assumptions regarding observation and background errors, local observation density, and the 331 

local, regional, and synoptic-scale weather taking place at any one time. To reduce the 332 

dependency on specific weather features at specific times, we now examine observation 333 

impact over a representative sample of 100 analyses. 334 

 335 

b. Observation Impacts Over 100 Analysis Hours 336 

Although the 100 analyses used in this section are associated with severe weather in specific 337 

locales (Table 2), they reflect a reasonable mix of typical weather conditions when viewed on 338 

the CONUS scale. Following the previous case study, the percentile ranks of the observation 339 

impacts are computed for each variable and analysis. Then, the median percentile rank over 340 

the sample of 100 cases is determined for the observations at a specific station. Those 341 

stations that consistently influence the analyses more will have median values in the upper 342 

quartile while most stations will have less effect or influence analyses on only a few 343 

occasions within this sample.  344 

Figure 5 summarizes the impact of temperature, dew point temperature, and wind 345 

observations from the 4 network categories previously highlighted in Fig. 4. Not all NWS 346 

stations exhibit high impact on temperature analyses (Fig. 5a). For example, temperature 347 

observations from NWS stations near Los Angeles and San Francisco, CA exhibit some of 348 

the lowest impacts. Hence, the cumulative number of observations combined with the 349 



generally limited variability in temperature in those areas requires less adjustment of the 350 

background field and reduces the impact of any one station. On the other hand, NWS 351 

observations have large impact in North and South Dakota and many locations in Colorado 352 

and offshore areas in the Gulf of Mexico. In addition, many of the stations in the NOAA 353 

Special Operations and Research Division (SORD) network in southern Nevada included in 354 

the FED+ category have a large impact on the temperature analyses.  355 

When evaluated over the entire 100 analysis sample, RAWS temperature 356 

observations frequently have a large impact in rugged areas (Fig. 5a) even though we have 357 

assumed those observations to have larger errors. The impact of temperature observations 358 

from the PUBLIC network category are clearly tied to the local density of observations with 359 

lower impacts in many metropolitan areas but substantive impacts in many other locales 360 

around the country.  361 

NWS dew point and wind observations have larger impacts relative to temperature 362 

observations across the central swath of the country in Figs. 5b and 5c respectively. This 363 

suggests greater sensitivity where dew point temperatures and wind speeds vary greatly from 364 

day-to-day and large adjustments to the background fields are common. The impact of dew 365 

point temperature and wind speed observations in the FED+ category from the Oklahoma 366 

Mesonet and West Texas Mesonet stand out for similar reasons. The impact of RAWS dew 367 

point and wind observations tend to reflect representativeness issues with higher impacts in 368 

regions of complex terrain. 369 

To examine the influence of observations from individual stations from all 10 370 

network categories on the analyses, Figs. 6 and 7 show the impact of temperature 371 



observations in northern Utah and wind observations in southern California respectively. As 372 

with the results shown in Fig. 5, these percentile impacts in Figs. 6 and 7 are relative to all 373 

CONUS stations. The dependence on local station density is quite apparent with no one 374 

station in any category having a large impact on the temperature analyses in the Salt Lake 375 

Valley (near SLC, labeled in the EXT panel). Not surprisingly, the stations over the Great 376 

Salt Lake from the air quality (AQ) and local network categories have a large impact as they 377 

help to take into consideration the unique weather conditions over that water body. 378 

Temperature observations from transportation networks exhibit a wide range of sensitivities 379 

in this region with low impact near SLC and high impact from some rail network stations in 380 

southeastern Idaho as well as from road weather stations across the southern portions of the 381 

domain.  382 

The impact of surface wind observations in southern California suggest that the 383 

specification of higher observation error for some network categories compared to others is 384 

not a controlling factor. For example, most coastal stations have low impact, implying that 385 

the background fields are not substantively adjusted from either NWS or PUBLIC stations. 386 

However, further into the interior of the San Diego and Los Angeles basins, most stations 387 

have moderate impact, independent of whether they are NWS, RAWS, AQ, or PUBLIC 388 

stations. The analyses in this subdomain are most strongly affected by the relatively few 389 

stations in nearly all categories in the high desert regions north of the San Gabriel and  390 

San Bernardino mountains across the center of this subdomain. 391 

The salient results of our study are summarized in Fig. 8. The fraction of the total 392 

number of stations in each of the 10 network categories that have observation impacts in the 393 



upper quartile accumulated over all 100 cases are shown. (The percentage of the total station 394 

count in each category is used because the total number of stations in each network category 395 

varies widely; see Table 1.) If every station had a comparable impact, then all the bars would 396 

lay along the thick black line, i.e., 25% of the reports from any network would be in the 397 

upper quartile. Network categories with fractions greater (less) than 25% have more high 398 

(low) impact observations. For reference, the assumed observation to background error 399 

variance ratio is indicated in Fig. 8 for each network category and variable as well. If these 400 

assumptions controlled our results, then it would be expected that networks that are “trusted” 401 

less (i.e., error ratios of 1.5 or 2.0) would have fewer stations with large impacts than those 402 

that serve as the baseline (i.e., error ratios of 1.0). However, that is not the case. 403 

Consider first the impact of the network categories shown in Figs. 4 and 5: NWS; 404 

FED+; RAWS; and PUBLIC. As expected, a larger fraction of observations from the NWS 405 

and FED+ network categories have substantive impacts on all three variables relative to 406 

many other network categories. Figure 6 also reinforces the spatial displays in Figs. 4 and 5 407 

that a larger (smaller) fraction of RAWS (PUBLIC) stations have large impacts. These results 408 

are consistent with the interplay between the ability of the background to resolve the 409 

observed weather, the local station density, and representativeness errors as opposed to 410 

simply the specification of the observation error variance.  411 

Now consider the cumulative statistics for the other 6 network categories, beginning 412 

with the networks intended primarily for agricultural applications (AG). The AG impacts 413 

hover around what might be expected for an “average” station, close to 25%. As mentioned 414 

before, AG category wind observations are assigned larger observation errors primarily 415 



because common practice for agricultural applications is to use 3 m towers. Air quality 416 

networks (AQ) tend to have lower than expected impact, presumably due to their locations in 417 

urban areas where many other stations are available (i.e., similar behavior to PUBLIC 418 

stations). They have been assigned intermediate observation errors primarily due to the 419 

Environmental Protection Agency standard for reporting observations in terms of time 420 

averages as long as 60 min in contrast to shorter averaging periods used for stations in other 421 

network categories. 422 

Canadian, Mexican, and offshore observations in the EXT category exhibit the 423 

highest fraction of large impact observations for all three variables. The EXT observations 424 

exhibit a tendency to substantively influence the analyses for all three variables, which is an 425 

indication that the observations tend to depart substantively from the background fields in 426 

those areas. The stations aggregated into the hydrological category (HYDRO) are often 427 

located in remote high elevation sites and report primarily precipitation and temperature (see 428 

Table 1). Hence, of most interest is the large impact of the HYDRO temperature observations 429 

even though they have been assigned a higher observation to background error variance ratio 430 

to compensate for representativeness errors. 431 

The LOCAL network category is the most complex and consists of a diverse mix of 432 

networks available to MesoWest (e.g., NWS Weather Forecast Office local networks, 433 

commercial, and other local networks). We have assigned these to have intermediate error 434 

characteristics reflecting differences in siting and reporting standards. The LOCAL and 435 

PUBLIC network categories are loosely comparable in overall characteristics and, hence, it is 436 

not too surprising that the impact of LOCAL observations falls above only the PUBLIC 437 



observations. Finally, the transportation network category (TRANS) consists of commercial 438 

rail and state Road Weather Information System (RWIS) stations. Overall, the impact of 439 

TRANS stations is high, but that is regionally dependent. RWIS and rail stations in the 440 

eastern half of the country tend to exhibit behavior common to other stations in urban areas 441 

while those in the west tend to be located in a mix of urban and rural locations and have 442 

larger impact on the analyses (not shown).  443 

 444 

4. Discussion  445 

Two-dimensional analyses on a 5 km grid over the continental United States of surface 446 

temperature, moisture, and wind were computed for a sample of 100 cases using the 447 

observation space form of the variational cost function equation (1). This study used the 1-h 448 

forecast grids from the RUC data assimilation system downscaled by NCEP for the RTMA 5 449 

km analyses as background fields combined with observations from nearly 20,000 locations. 450 

These UU2DVAR analyses are now being computed routinely every hourly on a 2.5 km grid 451 

using 2.5 km downscaled grids from the Rapid Refresh data assimilation system that is 452 

undergoing testing for use by the RTMA.  453 

The fundamental result of our study can be summarized by the oft-repeated phrase: 454 

location, location, location. Our metric of impact draws attention to the location of the 455 

observations in terms of the interplay between the weather conditions observed there, the 456 

ability of the background field to diagnose the variability of those conditions, and the 457 

proximity of other nearby observations. Of lesser importance are the types of network from 458 



which the observations are obtained and the assumptions made regarding their observational 459 

errors.  460 

Solely in terms of their impact on high resolution analyses, observations in major 461 

metropolitan areas tend to have reduced impact simply because there are so many other 462 

stations tending to suggest similar adjustments to the background fields. On the other hand, 463 

observations in more remote locations tend to have a higher impact. However, the 464 

observation impact metric by itself can’t distinguish between observations that have high 465 

impact due to gross errors, representativeness errors, or failure of the background fields to 466 

diagnose local weather conditions. 467 

Attribution for the source of discrepancies between observations and background 468 

grids is not clear cut and is all too often assumed to depend strongly on the type of station 469 

rather than the dominant effect of location and the weather experienced there. For example, 470 

the NWS observations of wind speeds at Cape Hatteras, NC (KHSE) are typically several 471 

meters per second weaker than the background wind speeds (not shown explicitly but evident 472 

in Fig. 5c as one of the high impact stations immediately offshore North Carolina). This 473 

situation would be considered a representativeness error, since the reduced wind speeds only 474 

reflect conditions observed in a narrow 1-3 km strip of land. It is unlikely that any data 475 

assimilation system would reject the KHSE observations due to its bias because NWS 476 

observations are generally considered to be well maintained and accurate. However, the only 477 

other observing site on the Cape is located 8 km to the northeast and is a PUBLIC station 478 

(Buxton, NC, D6557). Although that station would often be assumed a priori to provide 479 

inferior observations, the bias of the observations relative to the background grid and their 480 



impact are comparable to those at KHSE. The consistency in bias and impact between the 481 

two observing sites suggests that D6657 can provide valuable information for a variety of 482 

applications. 483 

This study has been directed in part towards developing improved automated quality 484 

control algorithms for mesonet observations. The manual blacklist used to identify 485 

egregiously poor observations within the 100 h sample used in this study is not practical for 486 

routine use. The RTMA analyses generated by the National Centers for Environmental 487 

Prediction do rely in part on manual blacklists maintained and updated by National Weather 488 

Service forecasters around the country (de Pondeca et al. 2011). A problem with manual 489 

blacklists is the difficulty to determine when observations from a rejected station may no 490 

longer be in error. 491 

As summarized by Fiebrich et al. (2010), many mesonets and mesonet aggregators 492 

(e.g., MesoWest and the Meteorological Assimilation Data Ingest System, MADIS) use 493 

automated quality control checks to identify erroneous observations. One common approach 494 

is to perform “buddy” checks that compare observations from one location with others 495 

nearby. While it is possible to do such checks for the 20,000 stations in the MesoWest 496 

database, the UU2DVAR analyses and associated bias and impact metrics provide a more 497 

efficient alternative approach to perform such spatial consistency checks. In areas of high 498 

data density (IDI values > 0.9 for example), biases and impacts at a station that disagree 499 

greatly from values at nearby stations indicate likely erroneous observations at that station.  500 

The development of a national network of networks as recommended by the National 501 

Academy of Sciences panels (2009, 2010) should be a high priority. There is considerable 502 



potential to develop a cost effective national network that takes advantage of the surface 503 

observations collected by hundreds of agencies, commercial firms, educational institutions, 504 

and the public. Understanding the strengths and weaknesses of the existing networks requires 505 

improved metadata combined with studies on the relative impact of those networks. 506 
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Figure Captions 590 

FIG. 1. IDI analysis over the CONUS domain for surface observations that reported at least 591 

50% of the 100 analysis hours used in this study. 592 

FIG. 2. Hydrological Prediction Center 00 UTC 04 April 2011 surface analysis showing 593 

position of frontal structures and dry line over CONUS. 594 

FIG. 3. Meteorological surface analyses (left panels) and analysis increments (right panels) 595 

for 00 UTC 04 April 2011 over CONUS. 596 

FIG. 4. Observation impact percentile for 2-m temperature observations used in the 0000 597 

UTC 04 April 2010 temperature analysis from 4 network categories. 598 

FIG. 5 (a) Median impact percentiles for temperature observations computed over 100 599 

analysis hours for 4 selected network categories. (b) As in (a) except for dew point 600 

temperature. (c) As in (a) except for wind speed. 601 

Fig. 6. As in Fig. 5a except for northern Utah for all 10 network categories. 5-km analysis 602 

terrain shaded in m, with blue areas denoting water gridpoints. Location of the METAR 603 

observation at Salt Lake International Airport is marked in the EXT panel. 604 

FIG. 7. As in Fig. 6 except for wind speed observations over southern California. Locations 605 

of the METAR observations at Los Angeles and San Diego International Airports marked in 606 

the FED+ panel. 607 



FIG. 8. Fraction of reports from each network category with observation impacts in the upper 608 

quartile over 100 analysis hours for temperature, dewpoint, and wind speed. The assumed 609 

observation to background error variance ratio  (see Table 1) is labeled at the top of each bar.610 
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 TABLE 1. Mesonet categories based on purpose and type of network, total number of stations and the median IDI value for that 

category, and the number of observations and assumed observation to background error variance ratio for each variable. 

     Temperature Dewpoint Wind 

Category Group Purpose/Type 
No. of 

Networks 

Total No. 

of Stations 

Median 

IDI 
No.   

    
  No.   

    
  No.   

    
  

NWS NWS/FAA 1 1814 0.94 1751 1.0 1747 1.0 1733 1.0 

FED+ 
Federal and state 

networks 
21 849 0.95 696 1.0 513 1.0 470 1.0 

RAWS Fire weather 1 1986 0.86 1736 2.0 1729 2.0 1674 2.0 

PUBLIC 

Primarily Citizen 

Weather Observing 

Program (CWOP) 

3 6808 0.96 5263 1.5 5168 1.5 4842 2.0 

AG Agricultural 9 472 0.94 440 1.5 434 1.5 413 2.0 

AQ Air quality 8 796 0.96 522 1.5 227 1.5 650 1.5 

EXT 
Offshore, Canadian, 

Mexican 
6 940 0.71 755 1.5 392 1.5 628 1.5 

HYDRO Hydrological 11 3580 0.85 1411 2.0 151 2.0 207 2.0 

LOCAL 
Commercial, state, and 

local  
41 799 0.94 610 1.5 542 1.5 492 1.5 

TRANS Road and rail weather  24 1653 0.93 1538 1.5 1116 1.5 1076 1.5 

TOTAL 125 19697 - 14722 - 12019 - 12185 - 

 



33 

 

  

TABLE 2. Sample of 25 high impact weather days used to evaluate observation impacts. 

Date Weather Region  Date Weather Region 

1 Oct. 2010 Floods NY, PA  15 Jan. 2011 Flood; Wildfire WA, ID; SC 

2 Oct. 2010 Hail NM  16 Jan. 2011 Flood ID, OR 

5 Oct. 2010 Hail, Flash Flood AZ, NV  1 Feb. 2011 Cold TX 

24 Oct. 2010 Tornado TN, TX  20 Feb. 2011 Ice Storm MI 

26 Oct. 2010 Tornado WI  27 Feb. 2011 Wildfire TX 

27 Oct. 2010 Tornado MN; NC  28 Feb. 2011 Wildfire; Flood TX; IN, OH, TN 

22 Nov. 2010 Wind; Tornado IL, WI  7 Mar. 2011 Flood NJ 

10 Dec. 2010 Winter Storm MN  24 Mar. 2011 Flood CA 

12 Dec. 2010 Flood WA  4 Apr. 2011 Tornado 
AR, KY, LA, 

MS, OH, TN 

19 Dec. 2010 Flood CA, UT  5 Apr. 2011 Tornado GA, NC, KY 

21 Dec. 2010 Flood AZ, CA, NV  25 Apr. 2011 Tornado 

AL, AR, GA, 

LA, MS, NC, 

TN, TX, VA 

31 Dec. 2010 Tornado AR, IL, MS  26 Apr. 2011 Tornado “” 

    27 Apr. 2011 Tornado “” 
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Fig. 1. IDI analysis over the CONUS domain for surface observations that reported at least 

50% of the 100 analysis hours used in this study. 
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Fig. 2. Hydrological Prediction Center 00 UTC 04 April 2011 surface analysis showing 

position of frontal structures and dry line over CONUS. 
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Fig. 3. Meteorological surface analyses (left panels) and analysis increments (right panels) 

for 00 UTC 04 April 2011 over CONUS.   
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Fig. 4. Observation impact percentile for 2-m temperature observations used in the 0000 

UTC 04 April 2010 temperature analysis from 4 network categories. 
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Fig. 5 (a) Median impact percentiles for temperature observations computed over 100 

analysis hours for 4 selected network categories.   
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Fig. 5b. As in Fig. 5a except for dew point temperature.  
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Fig. 5c. As in Fig. 5a except for wind speed.  
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Fig. 6. As in Fig. 5a except for northern Utah for all 10 network categories. 5-km analysis 

terrain shaded in m, with blue areas denoting water gridpoints. Location of the METAR 

observation at Salt Lake International Airport is marked in the EXT panel. 
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Fig. 7. As in Fig. 6 except for wind speed observations over southern California. Locations of 

the METAR observations at Los Angeles and San Diego International Airports marked in the 

FED+ panel. 
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Fig. 8. Fraction of reports from each network category with observation impacts in the upper 

quartile over 100 analysis hours for temperature, dewpoint, and wind speed. The assumed 

observation to  background error variance ratio  (see Table 1) is labeled at the top of each bar.  


