

John Horel, Chris Anders, Neil Lareau Joe Young, David Whiteman University of Utah John.horel@utah.edu

Outline

- Developing a baseline of the 4D PBL structure during PCAPS through integration of prior and field campaign observations
- Recasting Convective Inhibition, CIN, as "Rising Motion Inhibition" to objectively define stable and mixed layers
- Next talk- interactions between Valley and larger Great Salt Lake Basin

Developing a Baseline of the 4D PBL Structure During PCAPS

- High resolution (10 m) vertical structure in core of Salt Lake Valley (NCAR ISS site) at hourly intervals
 - Integrate 102 soundings with subhourly profiler winds and temperatures constrained by surface conditions
- High resolution (~ 100 m) horizontal surface structure of temperature, wind, and moisture at hourly intervals
 - 2D variational assimilation system (Tyndall and Horel 2012, WAF In Press)
 - Background defined by hourly vertical profiles
 - Adjust background by ~100 surface observations
 - Assume observational errors small relative to background
 - Diurnal evolving bias correction incorporated in the surface analyses (Dee 2006)

IOPs-1&2 1-11 December 2010

- Sondes and Neil processing
- Potential temperature and wind speed

PCAPS field campaign instrumentation

Presence vs. Structure of Persistent Cold-Air Pools

- You know one when you see one...
- Objectively identifying occurrence can be accomplished by many metrics but estimating intensity and structure is more difficult
- The criteria for stable boundary layer classification need to be sharpened with simultaneous measurement of vertical profiles and turbulence through the stable boundary layer (Fernando and Wier, 2010 BAMS)

Common Metrics

- Wolyn and McKee (1989; MWR): lapse rate
 < 2.5°C/km below 1.5 km AGL
- Reeves and Stensrud (2009; WAF); Reeves et al. (2011; WAF): Inversion below crest with wind speed < 5 m/s
- Liu and Liang (2010, JCLIM): PBL height derived from ~50,000 fine-resolution research soundings with stable BL defined by potential temperature gradients

FIG. 3. Illustration of idealized PBL regimes (CBL, NRL, SBL) and PBLF

FIG. 2. A temperature versus height plot of a sounding which meets the DSL criteria and one which does not. The lighter lines are lapse rates of 9.8, 4.0, 2.5° C km⁻¹, and isothermal.

Approach

- Recast "Convective Inhibition" as "Rising Motion Inhibition (RMIN)"- work (J kg⁻¹) required to lift parcels adiabatically 300 m
- Maximum work required at base of stable layer base; least amount of work required at base of mixed layer
- If RMIN = -10 J kg^{-1}
 - then 4.5 m s⁻¹ vertical velocity required to lift parcel 300 m

Representative Vertical Structures During PCAPS Cold Air Pools (Lareau et al. 2012)

IOP-5

Objectively defining mixed layer depth

- For surface based mixed layers, max elevation of:
 - Standard definition of mixed layer height based on lifting surface parcel with sfc temp +1K ...or...
 - base of stable layer with RMIN \leq -5 J kg⁻¹
- For surface based stable layers, max elevation of:
 - Base height of 100 m AGL adjusted as function of surface RMIN within 50-200 m AGL
 - Top of residual layer if prior mixed layer extending above top of existing surface stable layer

Time Evolution During IOP-5 1-10 January 2011

Summary

- PCAPS provides diverse cases to examine persistent cold-air pools
- Hourly surface analyses and vertical profiles available to characterize key aspects of PBL evolution during PCAPS
- RMIN serves as a metric of cold-air pool structure to help identify multiple stable layers and provide estimate of surface mixed layer depth
- See <u>http://pcaps.utah.edu</u> for more information

And thanks to all of our participants

A Good Day: MSI Camera

"00 UTC 12/25"

PCAPS: CPIN(J/kg)

PCAPS: CPIN(J/kg)

+ estimate of top of mixed layer defined by lowest minimum in CPIN above surface

PCAPS: $\theta({\ensuremath{\mathsf{K}}})$ with estimate of mixed layer height

Salt Lake Valley CPIN (J/kg): 2006-2011 Winters Averaged within layer from surface to crest (2400 m) NWS GPS High Resolution Sondes

PCAPS: Salt Lake Valley

Terrain Surrounding Salt Lake Valley

Elevation Profile of the Perimeter of the Salt Lake Valley