

The Great Salt Lake Summer Ozone Study John Horel, Erik Crosman, Alex Jacques, Brian Blaylock, Ansley Long, University of Utah

Seth Arens, Utah Division of Air Quality; Randy Martin, Utah State University and John Sohl, Weber State University

Why is ozone a concern along Wasatch Front?

- Background ozone levels in the west are high and likely to increase
 - Distant, regional, local emissions and transport
 - Increased wildfires
- Prior field & modeling studies by Utah Division of Air Quality (DAQ) indicated high ozone concentrations over & near the Great Salt Lake

Objectives of this pilot study...

- Determine the distribution of ozone near the Great Salt Lake during summer
- 2. Improve understanding of the meteorological processes that control ozone concentrations over and surrounding the Lake during summer
- 3. Contribute to improved ozone forecasts by Utah DAQ

Cost-effective pilot field study

- Small budget from Utah DAQ leveraged by other funds
- Used existing infrastructure in our own backyard to reduce costs
- Real-time data collection and analysis: 1 June 31 August 2015
- Summer study allowed for more graduate & undergraduate student participation

Great Salt Lake Causeway

Leveraging Existing Resources

Real-time Ozone Measurements During the 2015 Great Salt Lake Summer Ozone Study Jacques et al., Paper 7.2 18th Symposium on Meteorological Observation and Instrumentation

Instruments	Resource	
DAQ Fixed Site Ozone Monitors	DAQ Ozone Monitors - part of regular monitoring network	
Temporary Fixed Site Ozone Monitors	DAQ and UofU temporary deployments, some adjacent to existing UofU weather stations and available in real-time	
Weather Observations	MesoWest (<u>http://mesowest.utah.edu</u>) MesoWest API (<u>http://mesowest.org/api</u>)	
Mobile Ozone Observations	UTA TRAX Light Rail Car (continuous) KSL-TV "Chopper" 5 (often late afternoon) UofU Nerdmobile (IOPs) UofU Additional Vehicles (IOPs)	
Boundary Layer Air Quality Observations	USU UAV WSU Tethersonde	
Boundary Layer Remote Sensing	UofU Sodars, Lidar, and Ceilometers	

Mobile Ozone Observations

- Continuous real-time monitoring via instrument deployed on Utah Transit Authority (UTA) TRAX Light Rail Car
- Intermittent deployment of mobile units with real-time cellular communications deployed in vehicles and on KSL-TV "Chopper 5" helicopter

Mobile Observations June-August 2015 Repeated Routes Morgan

N

Salt Lake TRAX

Davis

led Line

Chopper: Opportunistic flights June-August 2015

Davis

Salt Like

N

Real-Time Ozone Processing and Display

- Data collected from logging devices in real-time
- Processed into MesoWest database (fixed sites) or HDF5 (mobile)
- Data synthesized on website: http://meso2.chpc.utah.edu/gslso3s

Daily 8-h Maximum Ozone in Salt Lake Valley (Hawthorne) during summer

Synoptic Ridge

Wildfire Smoke

Station	# 2015 Summer Days > 70 ppb		
Farmington Bay	19		
Salt Lake Valley (Hawthorne)	18		
Badger Island	17		
Saltaire	16		

In-Situ Observations at 5-min intervals

Nocturnal titration reduced at remote Badger Island relative to Farmington Bay located between Lake and urban areas

Persistent cross-lake easterly flow Dominated by nocturnal land breezes and Daytime lake breezes (replace with daytime only one?) 1

Intensive Observing Periods (IOPs) and Other Periods of Interest

Period	Conditions	Ozone (ppb)	Field Notes	
3 June	Evening Thunderstorm	Over 70 ppb at Salt Lake Valley stations	<u>June 3</u>	
17 June - 3 July	Ridging & hotter than normal	Peak ozone over 70 ppb somewhere every day	<u>Chopper 5</u>	
IOP 1: 17 - 18 June	Strong lake breeze front on 18th	Ozone concentrated along frontal boundary aloft	<u>IOP 1</u>	Next talk: Brian Blaylock
IOP 2: 15 - 16 July	Well mixed, deep boundary layer up to 550 mb with afternoon convection	Peak concentrations barely exceeding 70 ppb	<u>IOP 2</u>	
IOP 3: 10 -12 August	Monsoonal conditions	8 h avg over 70 ppb in Salt Lake Valley	<u>14 August</u> Daily Summary	
16 - 24 August	Regional smoke transport	Elevated ozone and PM2.5 concentrations	<u>Smoke Week</u>	

Wasatch Front: Crossroads of the Smoky West

- 15-24 August 2015
- Cessation of summer monsoon; dry NW flow advected smoke from Pacific Northwest and California wildfires
- Elevated ozone and particulate levels obscured visibility

18 August: Chopper 5 asked to fly above smoke in boundary layer

Summary

- Even though a pilot study, the Great Salt Lake Summer Ozone Study was the most extensive field study ever undertaken related to summer air quality along the Wasatch Front
- We utilized existing infrastructure, temporary deployments, and sensors on diverse mobile platforms
- Real-time data collection and web displays helped us target how to collect the data as well as allow quick-look analyses
- Access the data and preliminary analyses from meso2.chpc.utah.edu/gslso3s/

Incompletely answered issues and questions

- Wet spring on low-lying and hillside vegetation possibly leading to generation of biogenic ozone precursors
- Early season shallow lake thermocline leading to shallow Lake boundary layer and higher ozone
- Why were the highest ozone concentrations near the margins of the Lake rather than further offshore?
- What was the influence of enhanced albedo from the exposed salt flats on ozone formation?
- What are the direct and secondary roles of the Great Salt Lake on ozone production including chlorine chemistry?
- How does the intensity and duration of nocturnal titration along the shores of the Great Salt Lake depend on other pollutants (NOX, etc.)?
- How are the ozone concentrations affected by the relative strength, intensity, and timing
 of land and lake breezes compared to those of concurrent mesoscale and synoptic-scale
 circulations?
- What are the impact of canyon flows and other terrain-circulations on ozone and precursor transport along the Wasatch Front?
- To what extent did the regional transport of wildfire smoke and its impacts on particulate concentrations affect ozone production?

Acknowledgements

Funding provided by the Utah Division of Air Quality

Field study participants:

- **UofU:** Luke Leclair-Marzolf, Will Howard, Jeff Jenkins, Allyson Dugan, Sebastian Hoch, Susan Bush, Xia Dong, Nola Lucke, Taylor McCorkle, Dillon Ulrich, Tom Gowan, Chris Galli, Fahad Alotaibi
- DAQ: Seth Arnes, Munkh Baassandorj
- USU: Randy Martin and group
- WSU: John Sohl and group

- Case discussed further in the next talk by Brian Blaylock
- Here: 1 km horizontal resolution surface analyses of ozone and vector wind

• Ca

