Spatially and temporally varying heat flux without physics WRF v3.2.1

1 Namelist

Set isfflx $=0$ (with tke_drag_coefficient and tke_heat_flux) or 2 (only with tke_heat_flux, model calculates surface drag), sf_sfclay_physics $=0$, sf_surface_physics $=0$, and bl_pbl_physics $=0$ (works only for LES and diff_opt = 2). Set tke_heat_flux to maximum heat flux value (K m s^{-1}) and set tke_drag_coefficient.

2 Modifications to subroutine vertical_diffusion_2

List of variables:

- rt_tendf: θ physics tendency
- heat_flux: namelist defined maximum heat flux (parameter tke_heat_flux)
- heat_flux_min: minimum sensible heat flux (representing "diffuse radiation", 5% of maximum value)
- heat_flux_ij: sensible heat flux at a specific grid point
- slope: slope angle
- slp_azi: slope azimuth
- cosi: cosine of the incidence angle
- coszen: cosine of the sun's zenith angle
- sinzen: sine of the sun's zenith angle
- sazim: sun's azimuth angle
- xtime: time since simulation start in minutes
- mu: total air mass of column
- rdzw: inverse of vertical grid point distance
slope, slp_azi, and xtime in vertical_diffusion_2 are passed from subroutine first_rk_step_part2 (added grid\%slope, grid\%slp_azi, grid\%xtime to arguments in call to subroutine vertical_diffusion_2 in subroutine first_rk_step_part2).

Added declarations:
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: slope, slp_azi
REAL, INTENT(IN) :: xtime
REAL :: heat_flux_min, heat_flux_ij, cosi, coszen, sinzen, sazim

Add calculation of minimum heat flux below hflux: SELECT CASE(config_flags\%isfflx) for CASE (0,2)

```
heat_flux_min = 0.05 * heat_flux
```

before the loop over i and j .
For a heat flux that is constant in time but varies with slope angle and orientation change calculation of rt_tendf in loop over i and j. coszen and sazim determine the slope angle and direction that receives maximum irradiation (the example below uses 60 and 90°) similar to the position of the sun with respect to the topography.

```
coszen = 0.5 ! 60 deg
sazim = 90. * degrad
sinzen = sqrt( 1. - coszen**2 )
cosi = cos(slope(i,j)) * coszen + sin(slope(i,j)) * sinzen * cos(sazim - slp_azi(i,j))
heat_flux_ij = heat_flux_min + (heat_flux - heat_flux_min) * cosi / coszen
rt_tendf(i,kts,j)=rt_tendf(i,kts,j) &
    +mu(i,j)*heat_flux_ij*rdzw(i,kts,j)
```

For a time-varying sensible heat flux replace

```
heat_flux = config_flags%tke_heat_flux
```

with your time-varying definition (example below uses sine curve over 12 h with maximum value $=$ config_flags\%tke_heat_flux starting after 60 min)

```
IF (xtime .lt. 60) heat_flux = 0.
IF (xtime .ge. 60) THEN
    heat_flux = sin( (xtime-60.) / (60.*12.) * 3.1415926 ) * config_flags%ttke_heat_flux
ENDIF
```

For a spatially varying maximum sensible heat flux ("varying sun's azimuth and zenith angle") replace azimuth angle sazim and coszen with time-varying funtion, e.g.
sazim $=(90 .+0.25 *$ xtime $) *$ degrad

