Introduction

- Utah residents in basins susceptible to cold air pools (CAPs) often affected by: (1) high wintertime ozone concentrations due to oil and gas development; (2) high particulate concentrations in urban areas
- CAPs are difficult to simulate correctly
- Research underway at the University of Utah and Utah Division of Air Quality to improve modeling capabilities

Land Use Sensitivity

- 3 nested domains (12, 4 and 1.33 km)
- Simulations studies focus on innermost domain
- 40 eta (terrain following) vertical levels
- YSU PBL scheme
- No nudging
- Thompson bulk or WRF Single Moment (WSM) microphysics schemes
- USGS, MODIS, or NLCD 2006 land use

Microphysics Sensitivity

- WRF model runs are sensitive to land use and issues arise from the following:
 - Land use categories (different snow heights cover certain vegetation vs different land use)
 - Year of data set (varying Great Salt Lake size and outdated representation)
 - Modeling of cold air pools is highly sensitive to initialization time
 - Initialize before the cold air pool onset in order to let the model simulate the CAP build-up
 - NAM meteorological input fields poor first guess
 - Microphysics scheme and cloud cover
 - Less spurious cloud cover when WSM3 scheme used compared to Thompson, but that is not a general solution (see also Neemann et al. 2014)
 - Enhanced nighttime cooling with less clouds

Future Work

- Simulating partial CAP mix-outs
- Testing ice fog and aerosol-aware Thompson microphysics schemes to improve modeled clouds (Kim et al. 2014; Thompson & Eidhammer 2014)
- Targeted large-eddy simulations
- More research regarding albedo snow interaction w/ vegetation, land use, and initialization

References

White et al., 2015: Laser ceilometer investigation of persistent wintertime cold-air pools in Utah’s Salt Lake Valley, submitted to Journal of Applied Meteorology and Climatology

Summary

- Differences in Great Salt Lake size cause the largest differences between runs, but so do differences in land use categorization.

Initialization Sensitivity

- IOP5 Simulation Period:
 - 00 UTC 1 Jan, 2011 to 00 UTC 10 Jan 2011
 - Figure 1: Panel 1: ceilometer back scatter during PCAPS (PCAPS), 1–10 Jan 2011. Panel 2: PM$_{2.5}$ concentration at the center of the Salt Lake Valley, data courtesy of USGS (James et al. 2013, Young & Whiteman 2015)

Figure 2

- Map of three WRF domains. Pictured are those of USGS, MODIS, and NLCD land use respectively.

Figure 3

- Map of terrain height (m) in WRF domain 3 plotted with location of station sites used for validation.

Figure 4

- Maps of land use type by category for WRF model domain 3. Pictured are those of NLCD, MODIS, and NLCD land use respectively.

Figure 5

- Time series of temperature and relative humidity at Vernal (VER), left, and Salt Lake City (SLC), right, from observations and USGS, MODIS, and NLCD WRF model runs.

Figure 6

- Average 2 m temperature of domain 3 from 1-9 Jan 2011, USGS run minus MODIS run.

Figure 7

- Average albedo of domain 3 from 1-9 Jan 2011, USGS run minus MODIS run.

Figure 8

- Time-height diagram of potential temperature in the Salt Lake basin for the USGS run from 1-9 Jan 2011. Pictured are the first 20 vertical levels from the WRF model run. Black contours plotted every 5 K.

Figure 9

- Time series of temperature and relative humidity at Vernal (VER) from observations and USGS and early initialization WRF model runs.

Figure 10

- Differences in Great Salt Lake size cause the largest differences between runs, but so do differences in land use categorization.

Figure 11

- Time-height diagram of potential temperature difference (K) due to initialization data. WRF run minus NAM initial condition.

Figure 12

- Time-height diagram of potential temperature difference (K) from observations and WRF and early initialization runs.

Figure 13

- Time-height diagram of difference in temperature between early initialization and USGS run in central Uintah Basin.

Figure 14

- Time-height diagram of potential temperature difference (K) due to initialization data. WRF run minus NAM initial condition.

Figure 15

- Average 2 m temperature of domain 3 from 00 UTC 1 Jan to 00 UTC 9 Jan 2011, early initialization run minus USGS run.

Figure 16

- Time-height of cloud mixing ratio (g/kg) in central Uintah Basin, early initialization run.

Figure 17

- Time-height of cloud mixing ratio (g/kg) in central Uintah Basin, WRF run.