to substantial errors, as the formulas and calculations reported here indicate. For the pulse-jet experiments used as real examples, the error would have been less than 10%, but greater heterogeneity would lead to larger effects.

Acknowledgment

The assistance of our colleague Dr. Michael J. Ellenbecker is appreciated.

References

Figure 1. Distribution of dust layer thicknesses (g/m²) from Ellenbecker's experiments (central bag cleaned last, face velocity of 75 mm/s).

Conclusions

Failure to take inhomogeneity into account in predicting flow rate or pressure drop through filters or in using flow rate or pressure drop to infer cake thickness or pore size can lead

Dr. Cooper and Mr. Riff are with the Harvard School of Public Health, Department of Environmental Science and Physiology, 877 Huntington Avenue, Boston, MA 02115.

Technique for Elevated Release of Sulfur Hexafluoride Tracer

C. David Whiteman and Donald W. Glover

Pacific Northwest Laboratory
Richland, Washington

Study of the dispersion of atmospheric pollutants has benefited greatly in the past from the use of artificial tracers. Such air motion tracers are released into the atmosphere and are then sampled and measured at distances downstream from the source, thus providing direct information on atmospheric transport and diffusion processes. In the past it has been difficult to conduct elevated tracer releases except where smokestacks or other elevated structures already exist. A number of experiments have been conducted with sulfur hexafluoride (SF$_6$) releases from existing structures. Other experiments used aircraft for elevated SF$_6$ releases. These releases are generally made while the aircraft is executing tight turns over the location desired. This method cannot simulate a point source well, due to the finite size of the flight circle and the difficulty of maintaining a position over the desired site. In recent years, a number of investigators have used tethered balloons which carry one end of a hose aloft, through which gaseous tracer can be dispensed. One such method which has recently undergone field tests is described in this paper. The method relies on lightweight tethered balloons that are now available commercially and can be handled easily by two or three people. The operating characteristics of this system are described and several modifications are suggested to meet the needs of other experimenters. The tracer release system can be used to simulate pollutant releases from industrial smokestacks or other elevated sources and could be used to release other gaseous tracers that are dispersed from high pressure cylinders. This paper is written to document the results of field tests in a form that is readily available to other investigators who may wish to use the tracer release system.

Equipment

A diagram for the manifold layout of the SF$_6$ release system is shown in Figure 1. The system consists of three "K" size pressurized SF$_6$ cylinders which are connected to a heated and insulated manifold. Flow from the manifold is controlled by a valve and regulator. The operator of the release system adjusts the flow to obtain the desired flow rate using a flow meter.

Copyright 1983 - Air Pollution Control Association

Journal of the Air Pollution Control Association
that has been calibrated with SF₆. At the completion of the release, the valves on the SF₆ cylinders are closed and a compressed air flush tank is used to force the remaining SF₆ from the release system.

Other ground based components of the release system include a wooden wire storage spool for the 1/2 inch O.D. polyethylene hose through which the tracer is released and an army surplus, level wind, hand operated winch used for the tether line.

SF₆ flow rate, and can purge the hose and manifold of SF₆ before the balloons are retrieved. At the beginning and completion of each release the SF₆ cylinders must be weighed to determine the actual mass of SF₆ released.

Performance

The described SF₆ release system was used in an atmospheric tracer experiment conducted in the Brush Creek Valley of Western Colorado in August 1982. In these experiments, SF₆ was released in down-valley drainage flows within the deep, narrow valley (base elevation, 1700 m MSL) from near sunrise to the time of temperature inversion destruction (approximately 0930 MST). Winds at balloon height ranged up to 8 m/s. SF₆ manifold temperatures were adjusted over the range of 25–40°C during the course of the experiments. Release rates were varied from experiment to experiment within the range of 2.9–9 kg/h. Higher release rates could be attained with the system described. Where relatively low release rates are desired, a smaller diameter hose may be used. Since the maximum achievable height depends primarily on the cumulative weight of the hose and tether line, a higher elevation release should then be possible. Similarly, a higher elevation release should be possible at lower altitudes where the free lift of the balloon is greater.

![Figure 1. Diagram of the ground based portion of the SF₆ release system. SF₆ is dispensed from 3 "K" size cylinders (2) into a heated, insulated manifold (3). A temperature gauge on the manifold monitors the manifold temperature. Tracer is released from the manifold through a two-stage pressure regulator and a heated, insulated coil. The flow rate is adjusted to maintain a constant setting on an accurate flowmeter (4). After release the SF₆ cylinder valves are closed and the release system is purged by opening the pressure regulator on a compressed air cylinder (1).](image)

The airborne portion of the system is illustrated in Figure 2. The lift for the release hose is provided by a tandem balloon system, in which two 7.5 m³, helium filled urethane plastic balloons (0.038 mm plastic) are connected together (approximately 2 m apart) at the 6 tether points on each balloon. These lightweight balloons have a high free lift to volume ratio. Their small size and mass make them relatively easy to handle—a great advantage over balloons used in some previous investigations. The tandem balloon system is tethered to a winch by a 1/2 inch nylon line attached to the front two tether points of the lower balloon. The release hose is suspended from the four rearmost tether points of the lower balloon and is supported by a light nylon line. The polyethylene hose has hose connectors at 30 m intervals. A sufficient length of hose is suspended directly from the rear tether points to cause the tail of the balloon to sink slightly relative to the nose, thus providing an angle of attack which produces additional aerodynamic lift in moderate or strong ambient wind conditions. The remaining hose is attached to the tether line by nylon wire ties.

![Figure 2. Diagram of the airborne portion of the SF₆ release system. The balloons are approximately 7 m long and 2 m in diameter. The SF₆ hose falls about 60 m before being attached to the tether line by plastic wire ties.](image)

Operation

The tethered balloon release system can be operated by two people at a remote site. A source of electrical power is necessary, however, to heat the SF₆ manifold. This can be provided by a portable gasoline or propane powered 115V AC generator.

The most labor intensive operation is the inflation and handling of the tandem balloon system. Under gusty wind conditions or in darkness this may require more than two people. When the balloon system is at altitude, a single operator can monitor and adjust the manifold temperature and

The text continues with various technical details and descriptions relevant to the use of SF₆ in atmospheric experiments, highlighting the practical considerations and operational aspects of the release system.
deviation of 4.2 m. The winds at balloon height during this period were measured with an independent tethered balloon sounding system which made four vertical profiles through the elevation of the tandem balloon system. Winds at release height were nearly constant in direction (322°-326°) but were decreasing in speed from 7.4-6.4 m/s. Although the data series is rather short, there is some indication that the balloon height decreases as the windspeed at balloon height decreases. This suggests that the aerodynamic lift of the balloon system (as distinct from the free lift) is an appreciable factor in determining balloon performance.

The tandem tethered balloon system described above handled well in the field trials. Experience was also gained with other balloon configurations before the field trials. In one set of dual balloon tests a single balloon was used to lift the hose and tether line and a second balloon was attached to the main tether line when the lift of the first balloon became insufficient to carry additional mass. Difficulties encountered with this system included potential damage to the lower balloon due to collisions with the main tetherline (especially under low wind speed conditions with a short tether line on the lower balloon) and twisting and constriction of the hose when independent wind direction reversals occurred at the lower or upper balloon.

From the field tests it was concluded that the tandem balloon system is useful in atmospheric tracer experiments where a single balloon has insufficient lift to provide a release at the desired elevation. The release system proved to be portable, easy to use, and suitable for simulating continuous elevated pollutant releases. Further field testing should be conducted, however, to determine the maximum dispensing rate of SF6 and the behavior of the tandem balloon system under turbulent or variable wind conditions.

Acknowledgments

Mr. Al Morris of Ambient Analysis, Inc. and Mr. Bob McBeth of the National Center for Atmospheric Research provided helpful suggestions used in testing balloon configurations. Mr. Roger Schreck provided help in operating the balloon system and in collecting supporting meteorological data. The work was supported by the U.S. Environmental Protection Agency through Interagency Agreement AD-89-F-2-097-0 with the U.S. Department of Energy. Comments on the manuscript by Mr. Rich Fisher, EPA Region VIII meteorologist, and Mr. Alan Huber, EPA Project Officer, are appreciated.

References

Dr. Whitman is a Senior Research Scientist, and Mr. Glover is a Senior Technical Support Specialist in the Geosciences Research and Engineering Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352. Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL01830. This note manuscript was reviewed.
The Costs and Benefits of Sulphur Oxide Control
A critique of a 1981 OECD study is presented as a contribution to the debate over SOx control.
R. A. Barnes, G. S. Parkinson, A. E. Smith 737

EPRI—The First Decade
A description of the Electric Power Research Institute's ten-year history shows how the Institute has adapted to the forces which shape energy supply and demand.
742

TECHNICAL PAPERS

The Coefficient of Haze as a Measure of Particulate Elemental Carbon
G. T. Wolff, C. M. Stroup, D. P. Stroup 746

Factors Influencing the Emissions of Nitrated-Polynuclear Aromatic Hydrocarbons (Nitro-PAH) from Diesel Engines
D. Schuetzle, J. M. Perez 751

Charged Fog Technology—Part II: Prototype Tests of a New Charged Fog Generator for Fugitive Emission Control
C. V. Mathai 756

Analysis and Modeling of Air Quality at Street Intersections
J. P. Noll, A. D. Massina, J. A. Bullin 760

Comparison of Three Methods for the Extraction of Selected Anions from Media Used for the Collection of Airborne Particulates
D. R. Jenke 765

APCA NOTE-BOOK

Air Pollution in the Republic of China (Taiwan)
J. C. Chow, J. G. Watson, C. Y. Chaung 768

Predicted Effects of Filter Inhomogeneities on Flow Rate and Pressure Drop
D. W. Cooper, M. Riff 770

Technique for Elevated Release of Sulfur Hexafluoride Tracer
C. D. Whiteman, D. W. Glover 772

Pollution Variability and the Shape of the Dose-Response Curve
B. A. Forster 774

Odor Character Profiling
A. Dravnikas 775

CONTROL TECHNOLOGY NEWS

A Study of the PSD Permitting Process in EPA Region X
R. F. Weiner, D. A. Jaffe 797

DEPARTMENTS

APCA News .. 786
Business Briefs .. 782
Calendar ... 802
Classified .. 804
The Computer Corner ... 792
Control Technology News 797
Current Literature .. 787
Debut ... 791
IGCI Newsletter ... 734
Index to Advertisers .. 806
Insight ... 731
Institutional Notes .. 783
Legal Briefs .. 805
Manpower Abstracts .. 804
MVM Newsletter .. 736
News Focus .. 780
Personalia .. 785
Programs ... 803
Professional Development 730
Washington Report .. 730

Volume 33 Number 8
August 1983