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[1] Agricultural census data have been identified as possessing the potential to provide
constraints on modeled carbon uptake by croplands at the regional scale. In this study, we
build on previous efforts and further assess this potential quantitatively by comparing
(1) fractional cropland coverage in southwestern Ontario, Canada, derived from
agricultural statistics against three different remotely sensed land cover maps and
(2) carbon uptakes determined from agricultural data with simulations generated by a
satellite‐data‐driven biospheric model. In addition, we assimilated the census‐data‐derived
carbon uptakes with modeled estimates in a Bayesian inverse approach to determine if
the crop data can provide constraint, as exhibited by uncertainty reductions, and if so,
how much. Uncertainties in census‐data‐derived gross primary production (GPP)
estimates are carefully quantified using a Monte Carlo simulation. In general, results
from the fractional cropland coverage comparison indicate significant value of the
agricultural census data by revealing biases in the spatial distribution of croplands, as
found in all three of the satellite land cover products. However, we find that the carbon
uptake values derived from crop harvested records are still subject to significant
uncertainties that have been underestimated or neglected altogether in past studies. The
Monte Carlo simulation suggests that the largest source of uncertainty can be traced to
errors in the growth efficiency, followed by harvest production records, and then the
harvest index. As a result, attention must be paid to such errors when using the
agricultural census data for carbon accounting purposes or to provide constraints to
simulations of crop carbon uptake.

Citation: Chan, E. C., and J. C. Lin (2011), What is the value of agricultural census data in carbon cycle studies?, J. Geophys.
Res., 116, G03012, doi:10.1029/2010JG001617.

1. Introduction

[2] An increase in atmospheric greenhouse gas (GHG)
concentrations would enhance the radiative energy absorbed
by the Earth’s surface and hence influence the global energy
budget and climate [Crowley, 2000; Karl and Trenberth,
2003]. Among the various kinds of GHGs, carbon dioxide
(CO2) is the most significant in terms of radiative forcing
[Intergovernmental Panel on Climate Change, 2007].
Consequently, understanding how CO2 circulate on Earth
becomes necessary. The global carbon cycle is a biogeo-
chemical pathway characterized by the movement of carbons
between the Earth’s biospheric, oceanic, and atmospheric
pools. An assessment of this pathway is therefore critical
when we wish to determine which system is functioning as a
source or sink of CO2.
[3] Croplands play an important role in the terrestrial

carbon cycle because they cover ∼15 million km2 of the

planet [Monfreda et al., 2008]. Naturally, organic carbons
fixed by vegetation through photosynthesis and subsequent
storage into soils can be regarded as a repository for
atmospheric CO2. In particular, strategically managed agri-
cultural lands that favor the accumulation of carbons in soils
would be considered as an option for mitigating GHG
emissions [Lal, 2004; Desjardins et al., 2005; Kroodsma
and Field, 2006; Hutchinson et al., 2007]. In view of that,
carbon fluxes associated with croplands must be properly
accounted for when quantifying carbon sources and sinks
over the landscape.
[4] Biospheric models [Potter et al., 1993; Ruimy et al.,

1996; Mahadevan et al., 2008] play a central role in helping
us to learn and quantify flows of terrestrial carbon because
they can account for the biophysical processes that determine
the spatiotemporal variations of carbon fluxes [Cramer et al.,
1999]. In the context of carbon cycle studies, there are various
choices of data for constraining these biospheric model out-
puts. For example, inverse (“top down”) analyses of CO2

budgets on regional scales can utilize measurements of
atmospheric CO2 concentrations on tall towers or by aircraft
within the regions where sources and sinks are most active
[Bakwin et al., 1998; Gerbig et al., 2003a, 2003b; Matross
et al., 2006]. However, inverse methods still require work in
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quantifying and understanding the error structure of both
biospheric and atmospheric models [Lin and Gerbig, 2005;
Gerbig et al., 2006; Lin et al., 2011]. Likewise, although
eddy covariance measurements [Baldocchi et al., 2001]
offer details about the dynamics of terrestrial‐atmospheric
CO2 exchange, their capability to estimate carbon sources
and sinks at the regional scale is inadequate because the
localized footprint (∼101 km2 to 102 km2) cannot be reliably
scaled up to regional scales [Jenkins et al., 2001;Matross et al.,
2006]. For scaling up flux estimates in space using satellite
data, significant obstacles arise when field measurements are
not available at the >1–10 km level scale for validation [Lobell
et al., 2002]. Agricultural census data can be regarded as a
possible exception and thus poses as a valuable data set for
constraining the biospheric models over the regional scale, as
they provide two unique sources of information for carbon
cycle science: (1) area covered by croplands at the >1–10 km
scale and (2) a partial measure of total plant production
throughout the growing season and hence potential carbon
uptake.
[5] While numerous studies recognized and attempted to

take advantage of the potential of agricultural census data,
they have yet to do it in a comprehensive manner. They
neither compared the census data against multiple satellite
land cover data sets nor took into account the uncertainties
of the census data. For example, Ramankutty and Foley
[1998], Frolking et al. [1999], and Hurtt et al. [2001]
compared cropland area estimates derived from ground‐
based census data against estimates created from one
satellite‐based land cover product developed using the 1 km
Advanced Very High Resolution Radiometer (AVHRR).
Malmström et al. [1997] and Lobell et al. [2002] used
agricultural census data to test satellite‐based biospheric
models, but both studies only quantified interannual fit

between census‐data‐derived estimates and satellite‐based
modeled fluxes by examining correlation coefficients. Neither
study considered a priori uncertainties in either the agri-
cultural data. When Prince et al. [2001] and Bolinder et al.
[2007] converted agricultural data into primary production,
the authors only took into account the error sources in the
root:shoot ratio and harvest index and neglected uncer-
tainties contributed by other parameters that are required in
the conversion process. In this study, we intend to take a
step beyond these previous efforts to highlight and examine
the value and information content that agricultural census
data bring to carbon cycle studies.
[6] The region of focus in this study is southwestern

Ontario, Canada (Figure 1), because it is one of the major
field crop producing regions in the country, accounting for
55.2% of the total national production of corn and 60% of
winter wheat [Statistics Canada, 2006]. Given such signif-
icance, understanding how Ontario’s croplands contribute to
the regional carbon cycle is of great importance to resource
managers and policy makers when managing risks and
opportunities arising from climate change. For this study, we
will use agricultural census data collected by the Canadian
federal and provincial agencies to determine the fractional
cropland coverage and primary production estimates. With
the cropland fractions, we will compare them against three
sets of satellite‐based vegetation classification maps for
verification. Then, in estimating the primary production, we
will apply a Monte Carlo simulation to calculate their asso-
ciated uncertainties and their sensitivity to the assumed
parameters required for their estimation. These carbon
uptake estimates and their uncertainties will later be assim-
ilated with outputs generated by a biospheric model in a
Bayesian inversion approach to obtain “optimal” posterior
estimates (i.e., expected values of the posterior) for all
subprovincial jurisdictions in southwestern Ontario. The
reduction in uncertainties, presented as the percentage
differences between prior and posterior uncertainties, will
be analyzed to determine if/how much the agricultural data
constrained the modeled fluxes.

2. Method and Data

2.1. Field Crop Statistics From Agricultural Census
Data

[7] To determine cropland fraction and carbon uptake,
annual harvested field crop area and yield production
information of each county in southwestern Ontario are
retrieved from the Ontario Ministry of Agriculture, Food
and Rural Affairs (OMAFRA) (http://www.omafra.gov.on.
ca/english/stats/crops/index.html). According to OMAFRA,
these data are compiled from telephone, mail‐in, and enu-
merative surveys of farmers, with additional information
supplied by government field officers, agribusiness person-
nel, and farm marketing boards.
[8] For comparing fractional cropland coverage, we used

harvested area estimates reported for all field crops listed on
the OMAFRA field crop statistics Web page. However,
when determining crop GPP, we only focused on the
dominant field crops such as winter wheat, spring wheat,
grain corn, fodder corn, soy, hay and barley because rele-
vant data sets such as moisture content, harvest index and

Figure 1. Map of census divisions in southwestern Ontario.
Region 1 is southern Ontario (in gray); Region 2 is western
Ontario (in black).
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root:shoot ratio of other field crops required for the con-
version process (equation (6)) are not available. Neverthe-
less, the selected field crops represent over 90% of the total
harvested area and over 95% of the total harvested pro-
duction among all reported field crops in Ontario during
2004 [Statistics Canada, 2004].
[9] Data for uncertainty analysis (section 2.5) are

extracted from other Canadian government publications like
the Field Crop Reporting Series [Statistics Canada, 2004] and
the Census of Agriculture [Statistics Canada, 2006], because
these records included essential data accuracy evaluations that
are needed to determine subprovincial level uncertainties.
Every 5 years, the Census of Agriculture collects information
on agricultural operations across Canada, including institu-
tional farms, community pastures, Indian reserves, etc. The
Census of Agriculture provides a list of farms and their crop
areas from which a probability sample for production esti-
mates is selected [Statistics Canada, 2004].
[10] County‐level uncertainties associated with harvested

area and production are calculated through downscaling the
corresponding values reported at larger (higher level) jur-
isdictions (section 2.5). For uncertainties associated with
crop production, we used the Canadian national level
uncertainty reported in the November 2004 issue of the
Field Crop Reporting Series [Statistics Canada, 2004]. For
uncertainties related to harvested area we used the provincial
level uncertainty reported in the Census of Agriculture 2006
[Statistics Canada, 2006]. In the latter case, we assumed no
significant differences in data quality between 2004 and
2006.

2.2. Satellite‐Based Land Cover Maps and Cropland
Fractional Coverage

[11] Cropland area derived from the agricultural census
data is used to evaluate the performance of three satellite‐
based land cover products: (1) a reclassified International
Geosphere‐Biosphere Programme Data and Information
System land cover (IGBP‐DISCover) map [Loveland et al.,
2000;Mahadevan et al., 2008], (2) the SYNMAP [Jung et al.,
2006], and (3) the Ontario Land Cover (OLC) database
[Ontario Ministry of Natural Resources, 2002]. In particu-
lar, two of the data sets (IGBP‐DISCover and SYNMAP)
are commonly used in terrestrial carbon modeling studies. A
brief description for each product is provided below, and
readers are encouraged to refer to the original publications
for further details.
2.2.1. IGBP‐DISCover Data Set
[12] The original IGBP‐DISCover data set, consisting of

17 classes, was developed from the monthly global nor-
malized difference vegetation index (NDVI) composites
taken from the 1 km AVHRR data covering 1992–1993
[Loveland et al., 2000]. During the creation of a new
satellite‐based biospheric model for estimating terrestrial
carbon fluxes, Mahadevan et al. [2008] reclassified the
original data set into 12 classes because the calibration and
validation data for that model were not available for each of
the 17 classes. Accordingly, an important feature with the
Mahadevan et al. [2008] land cover map was the lumping
of the “cropland/natural vegetation mosaic” class into the
“grasslands” class. In this study, the reclassified IGBP‐
DISCover map is used because we use the Mahadevan et al.

[2008] model (VPRM) in another section. For brevity’s sake
we would refer to this land cover data set as “IGBP” from
this point on.
2.2.2. SYNMAP
[13] SYNMAP is an enhanced 1 km land cover data set

that was developed through synthesizing the Global Land
Cover Characterization Database (GLCC), the Global Land
Cover 2000 (GLC2000) and the MODIS land cover product
[Jung et al., 2006]. According to Jung et al. [2006], SYNMAP
is a desirable data set because it should be more accurate
than existing global land cover products since it blends and
makes use of their individual strengths to achieve a possibly
better signal‐to‐noise ratio. Owing to its possible better
performance over IGBP, we included SYNMAP in this
study.
2.2.3. Ontario Land Cover Database
[14] Finally, the Ontario Land Cover (OLC) database

was initiated by the Ontario Ministry of Natural Resources
(OMNR) and was derived from digital, multispectral
LANDSAT Thematic Mapper (TM) data recorded on a
range of dates between 1986 and 1997. It consists of 28 land
cover classes mapped across the entire province of Ontario
[Ontario Ministry of Natural Resources, 2002]. We included
it in this study because it has a 30 m resolution, much higher
than that of the previous two products, and should provide
the best land cover description of Ontario.
[15] To calculate cropland fractions with the census data,

we first took the harvested areas from the census records and
directly mapped them onto a 1/96° by 1/96° spatial resolu-
tion grid, in which cell areas are determined by using the
great circle formulation. Then, cropland fractions are simply
calculated through dividing the harvested areas by the grid
cell areas. In the end, we compared the various fractional
cropland coverage estimates by aggregating all maps into a
spatial resolution of 1/6° (latitude) by 1/4° (longitude). The
census‐data‐derived cropland fractions map becomes the
benchmark to evaluate the performance of the satellite
products.

2.3. Calculating GPP From Crop Attributes
and Agricultural Census Data

[16] Several studies [Prince et al., 2001; Lobell et al., 2002;
Hicke and Lobell, 2004; Huang et al., 2007; Bolinder et al.,
2007] have used agricultural census data and crop attri-
butes to study the spatial and temporal variations of primary
production in croplands. In particular, an approach followed
by Prince et al. [2001] and Hicke and Lobell [2004] trans-
lated harvested production and area to net primary produc-
tion (NPP):

NPP ¼
XN
i¼1

Pi � 1�MCið Þ � C

HIi � fAGi � HAi
; ð1Þ

where index i denotes different crops. Pi represents the
harvested production (g) and HAi is the harvested area (m2).
The crop attributes are as follows: MCi is the typical harvest
moisture content (mass water/mass harvest; g g−1); HIi is the
harvest index which specifies the ratio of yield mass to
aboveground biomass (unitless); C converts harvested mass
to carbon mass (approximately 0.45 g C g−1) and is assumed
constant between different crops; fAGi is the fraction of
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production allocated aboveground (unitless). Since fAGi is
defined as the ratio shoot:(root + shoot), it is closely related
to the root:shoot ratio:

fAG ¼ shoot

rootþ shoot
¼ 1

root : shootþ 1ð Þ : ð2Þ

By definition, NPP refers to the rate at which primary pro-
ducers capture and accumulate phytomass, minus the rate at
which they respire for growth and maintenance (autotrophic
respiration, Ra):

NPP ¼ GPP� Ra: ð3Þ

Because VPRM, the biospheric model used in this study,
partitions net ecosystem exchange between gross ecosystem
exchange (GEE) and total respiration (autotrophic +
heterotrophic; section 2.4), when we compare the agricultural
census‐derived production estimates against simulated
values we must take an extra step to convert NPP into GPP.
[17] Growth efficiency (GE) is a parameter that quantifies

the role of respiration to a crop’s carbon balance by
accounting for the loss of CO2 during crop growth and
maintenance [Amthor, 1989]:

GE ¼ 1� Ra

GPP
: ð4Þ

By combining equations (3) and (4), GPP can be expressed
as a function of NPP and GE:

GPP ¼ NPP

1� Ra=GPPð Þ½ � ¼
NPP

GE
: ð5Þ

Combining equations (5) and (1), we have

GPP ¼
XN
i¼1

Pi � 1�MCið Þ � C

HIi � fAGi � HAi � GEi
: ð6Þ

The agricultural census data provide input for P and HA,
and equation (6) serves as the basis on which to quantify
GPP. The values of crop attributes (MC, HI, fAG, and GE)
are taken from the literature for crops grown in Canada and
are summarized in Table 1.
[18] VPRM simulates hourly values of gross ecosystem

exchange (GEE), details of which are given in section 2.4.
GPP estimates derived from equation (6) can thus be com-
pared against the model by summing GEE over an entire
year:

GPP ¼ NPPþ Ra

� P1year
GEEt

: ð7Þ

2.4. Vegetation Photosynthesis and Respiration Model

[19] The Vegetation Photosynthesis and Respiration
Model (VPRM) is a data‐driven, diagnostic biospheric
carbon flux model developed for regional to global‐scale
inverse analysis [Mahadevan et al., 2008]. It assimilates
satellite information with meteorological data and eddy flux
measurements to model variations in atmosphere‐terrestrial
biosphere carbon flux exchange. VPRM is chosen in this
study because its simple structure required less para-
meterizations and parameters that vary with space and time,

Table 1. Crop‐Specific Attributes Used for Calculating Gross Primary Production (GPP) Estimates and Their Associated Uncertainties

Crop Attributes Values Source

Winter wheat Moisture content (%) 13–23 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.32–0.6 de Jong et al. [2001], Falk et al. [2007]

fAG 0.82–0.87 Bolinder et al. [2007]
Growth efficiency 0.37–0.79 Amthor [1989]

Spring wheat Moisture content (%) 13–23 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.32–0.6 de Jong et al. [2001], Falk et al. [2007]

fAG 0.82–0.87 Bolinder et al. [2007]
Growth efficiency 0.37–0.79 Amthor [1989]

Grain corn Moisture content (%) 11–22 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.45–0.55 O’Neill [2005], Bolinder et al. [2007]

fAG 0.89–0.92 Bolinder et al. [2007]
Growth efficiency 0.31–0.83 Amthor [1989]

Fodder corn Moisture content (%) 65–70 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.55–1 O’Neill [2005], Bolinder et al. [2007]

fAG 0.89–0.92 Bolinder et al. [2007]
Growth efficiency 0.31–0.83 Amthor [1989]

Barley Moisture content (%) 15–20 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.32–0.54 Bolinder et al. [2007]

fAG 0.63–0.69 Bolinder et al. [2007]
Growth efficiency 0.51–0.52 Amthor [1989]

Soy Moisture content (%) 14 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 0.23–0.4 Morrison et al. [1999], Rollefson et al. [2004], Bolinder et al. [2007]

fAG 0.68–0.89 Bolinder et al. [2007]
Growth efficiency 0.25–0.55 Amthor [1989]

Hay Moisture content (%) 12–18 Ontario Ministry of Agriculture, Food and Rural Affairs [2009]
Harvest index 1 Hicke and Lobell [2004]

fAG 0.52–0.77 Bolinder et al. [2007]
Growth efficiency 0.51–0.67 Amthor [1989]
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making it a straightforward yet useful tool for upscaling and
regional carbon prediction [Mahadevan et al., 2008].
[20] VPRM calculates the net ecosystem exchange (NEE)

for 12 main vegetation classes as the difference between
GEE and total ecosystem respiration (R): NEE = −GEE + R.
Note that R here includes both the autotrophic and hetero-
trophic components. Following sign convention, negative
fluxes represent the removal of CO2 from the atmosphere by
vegetation [Matross et al., 2006]. GEE is assumed to be a
function of the MODIS Enhanced Vegetation Index (EVI):

GEE ¼ �� Tscale � Pscale �Wscale � 1

1þ PAR=PAR0

� �� �� PAR� EVI;

ð8Þ

where PAR is the photosynthetically active radiation; PAR0

is the half‐saturation value; l represents the overall light use
efficiency of the ecosystem; Tscale, Pscale and Wscale are
scalars ranging in value between 0 and 1 that signify the
effect of temperature, leaf phenology and canopy water
content, respectively.
[21] R is represented as a linear function of the ambient

temperature given by

R ¼ �� T þ �; ð9Þ

where a captures the dependence of R on air temperature
when air temperatures are above a minimum temperature
Tmin; b represents the basal respiration rate; T = Tlow when
T ≤ Tlow to account for the persistence of soil respiration in
winter when air temperatures are very cold but soils remain
warm.
[22] The resulting full VPRM model equation is

NEE ¼ ��� Tscale � Pscale �Wscale � 1

1þ PAR=PAR0

� �� �
� PAR� EVIþ �� T þ �: ð10Þ

The a priori estimates of the four calibration parameters l,
PAR0, a and b, one set per vegetation type, were calibrated
by optimizing against un‐gap‐filled eddy covariance NEE
measurements taken from their 11 corresponding AmeriFlux
and Fluxnet‐Canada sites, with a turbulent intensity filter
applied to eliminate unrepresentative observations. Specifi-
cally, they were optimized via nonlinear least squares
(Newton‐Raphson, tangent linear approximation) and esti-
mated confidence intervals assuming Gaussian error for both
model and tower data [Mahadevan et al., 2008]. At each
calibration site, Mahadevan et al. [2008] generated hourly
data from the smoothed time series of vegetation indices
(EVI and LSWI) and obtained measurements of air tem-
perature and PAR from the tower sites. For calibration
results of the model parameters, please refer to Mahadevan
et al. [2008, Table 2]. For validation results, please refer to
Mahadevan et al. [2008, Table 3]. In general, cropland
parameters were calibrated at a maize‐soybean agroecosys-
tem from Mead, Nebraska and modeled NEE estimates were
validated at a maize‐soybean cropland from Champaign,
Illinois [Mahadevan et al., 2008].
[23] NEE, GEE, and R estimates generated by the VPRM

are gridded on a grid of 1/4° longitude by 1/6° latitude for
every hour [Matross et al., 2006]. Sub‐grid‐scale con-

tributions from different vegetation types are preserved as
grid‐scale carbon fluxes by weighing contributions from
various vegetation types k:

NEE ¼ �GEEþ R ¼
X
k

fk �GEEk þ Rkð Þ; ð11Þ

where fk is the fractional areal coverage by vegetation type k
and is currently determined from the IGBP 1 km resolution
land cover scheme (section 2.2). In this study, we extracted
carbon fluxes solely from croplands in VPRM and ignored
flux contributions from other vegetation types by consider-
ing croplands as the only land cover input.

2.5. Uncertainty Analysis of GPP Estimated
From Crop Attributes and Agricultural Census Data

[24] In calculating carbon uptake in crops from agricul-
tural census data and crop attributes with equation (6), we
adopted a Monte Carlo approach to assess the GPPs’ asso-
ciated uncertainties and their sensitivity to the assumed
parameters in equation (6), as recommended by the IPCC
Good Practice Guidance [Intergovernmental Panel on Climate
Change, 2000]. For each parameter we assigned a probability
density function (PDF) from which 10,000 random values
are selected and used to calculate the carbon uptakes for
each county in southwestern Ontario. The underlying PDF
was chosen depending on our prior knowledge: if we can
identify a range of probable values for a parameter but
cannot decide which value is most likely to occur, a uniform
distribution was assumed to maximize information entropy
(i.e., minimal prior knowledge) [Jaynes, 1968]. As such, HI,
fAG, MC and GE are assigned uniform distributions because
we do not have adequate information on the standard
deviations associated with the crop‐specific attributes to
appropriately generate Gaussian random values. Table 1
summarizes the ranges of values for the uniform distribu-
tions for each crop‐specific attribute.
[25] Eventually, after generating 10,000 random values

for each parameter and calculating the GPP estimates, an
average is determined along with the standard deviation that
quantifies the associated uncertainty.
[26] For HA and P, their uncertainties are associated with

errors in gathering the agricultural census data. Since we do
not have uncertainty estimates at the county level, our only
option is to scale the associated variance of the provincial
estimates down to the county levels through the following
steps. To begin, we considered that the harvested area (HA)
for county i is a multiple of an arbitrary unit harvested
area (a):

HAi ¼ nia; ð12Þ

where ni is the number of unit harvested areas in a par-
ticular county. Applying the same logic, the total provincial
harvested area (HAprov) can be considered as a sum of
numerous county harvested areas:

HAprov ¼
X
i

HAi ¼
X
i

nia ¼ Na; ð13Þ

where the total provincial harvested area is composed of N
units. Since a larger agricultural area is more difficult for
the census to capture exhaustively, it is reasonable to expect
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that the estimation error increases with the area. If the
uncertainty‐induced variance for a unit area can be charac-
terized statistically by s2, and the uncertainties from unit to
unit are statistically independent, then the individual var-
iances would simply add [Taylor, 1997], and the resultant
variance for HAi would be

�2
HAi

¼ ni�
2; ð14Þ

while the variance at the provincial level would be

�2
HAprov

¼
X
i

�2
HAi

¼
X
i

ni�
2 ¼ N�2: ð15Þ

Combining equations (14) and (15), we have

�2
HAi

¼ ni
N
�2
HAprov

; ð16aÞ

�HAi ¼
ffiffiffiffi
ni
N

r� �
�HAprov : ð16bÞ

Thus, the uncertainty in harvested area at the county level is
simply the uncertainty at the provincial level multiplied by
the square root of the ratio in the areas. For the value of
sHAprov

, we used the uncertainty estimate reported in the
Census of Agriculture [Statistics Canada, 2006], which
stated the standard error of farmland area in Ontario as
0.3%.
[27] For harvested production P, we first assumed that the

provincial level uncertainty, reported as the coefficient of
variation (CV), is equivalent to the national level uncertainty
reported in the November 2004 issue of Field Crop Reporting
Series [Statistics Canada, 2004]. According to Statistics
Canada, the potential error introduced by probabilistic sam-
pling for crop production estimates was given by the CV,
which ranged from 1% to 5% for the major crops at the
national level [Statistics Canada, 2004]. Since the CV is
calculated by sProdprov/xProdprov, where xProdprov is taken to be the
provincial crop production, the uncertainty (standard devia-
tion) of the county level crop production is therefore

�Prodi ¼
ffiffiffiffiffiffiffiffiffi
ni

Nnatl

r� �
�Prodprov : ð17Þ

where sProdprov = CV × xProdprov. In this study, an average of 3%
error was used, and equation (17) follows the same logic that
led to equation (16b) above.

2.6. Bayesian Inversion to Optimize GPP Estimates

[28] In order to acquire insights on how the agricultural
census‐data‐derived GPP improves knowledge about the
VPRM‐modeled GPP, we performed a Bayesian optimiza-
tion [Rodgers, 2000]. Census‐data‐derived GPP can be
related linearly to the VPRM‐modeled GPP through

y ¼ Kxþ e; ð18Þ

where y is the vector of census‐data‐derived GPP values,
with each entry representing a value for each census division
(Figure 1); x is the vector of VPRM GPP, with each entry
signifying the modeled GPP estimate in each 1/6° by 1/4°
grid cell; and K is the matrix that relates the census‐data‐

based GPP to VPRM’s GPP. Each entry in K denotes the
fraction of a census division covered by each 1/6° by 1/4°
grid cell; e is an error vector accounting for uncertainties in
both the census‐based estimates and VPRM simulations.
The optimal posterior GPP estimates are then obtained by
minimizing the cost function J using a standard least squares
formulation [Rodgers, 2000; Raupach et al., 2005]:

J xð Þ ¼ y�Kxð ÞTS�1
e y�Kxð Þ þ x� xprior

� �T
S�1
prior x� xprior

� �
;

ð19Þ

where S" is the error covariance matrix of inventory‐based
estimates with diagonals corresponding to variances calcu-
lated from the Monte Carlo simulation for each census
division (section 2.5, Table 4); xprior refers to the a priori
GPP estimates simulated by the VPRM; and Sprior is the
associated error covariance matrix of the VPRM estimates in
which diagonal elements are derived by multiplying average
percentage uncertainties between modeled and observed
fluxes for soy and corn reported by Mahadevan et al. [2008,
Table 3] and the VPRM‐generated primary productions in
model grid cells. Off‐diagonal elements of both error
covariance matrices are assumed to be zero.
[29] The expected values of the posterior “optimal” GPP

estimates expressed as xpost is calculated by

xpost ¼ KTS�1
" K þ S�1

prior

	 
�1
KTS�1

" yþ S�1
priorx

	 

ð20Þ

and accordingly, the uncertainty of xpost, expressed as the
posterior error covariance matrix Spost, is given by

Spost ¼ KTS�1
" K þ S�1

prior

	 
�1
: ð21Þ

3. Results and Discussion

3.1. Comparison of Cropland Fractions Against
Satellite Land Cover Maps

[30] Figure 2a displays the cropland distributions in
southwestern Ontario as described by the agricultural census
data. Uncertainties associated with these cropland fractions
(sFrac in Table 2) are calculated by dividing the sHA
(section 2.5) by the total area of each county. From the values
of sFrac, it is evident that the uncertainties in the cropland
fractions derived from the agricultural census data are small.
According to OMAFRA, counties including Chatham‐Kent,
Essex, Elgin, Middlesex, Lambton and Oxford of southern
Ontario together with Huron, Perth and Waterloo of western
Ontario can be regarded as agriculturally productive, since
cropland fractions within these counties are at least 0.5 or
above (Table 2).
[31] However, this is not the case in the IGBP “croplands”

map (Figure 2b), which shows severe underestimation in
cropland areas in all of western Ontario and most of
southern Ontario, except for Chatham‐Kent, where a small
overestimation is observed. Overall, the IGBP “croplands”
map has an average of 70% underestimation in cropland
fractions (Table 2). This outcome is likely due to the fact
that “cropland/natural vegetation mosaic” was combined
into the “grasslands” class by Mahadevan et al. [2008]
rather than the “croplands” class. In order to examine how
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Mahadevan et al.’s [2008] reclassification scheme affected
land cover representation (section 2.2.1), we merged the
modified IGBP “croplands” class with the “grasslands” class
to construct a new “croplands+grasslands” map. This new
map (Figure 2d), when compared to the IGBP “croplands”
map, seems to better capture the extent of cropland areas in
the south and parts of the west but still significantly over-
estimates cropland fractions, by 76%, on average (Table 2).
[32] SYNMAP’s “croplands” map (Figure 2c) shows an

improved performance over that of IGBP as it is capable of
displaying which counties in the region are relatively more
cultivated. Nevertheless, significant overestimations of
cropland fractions also exist in this land cover map, on
average by 62%. Finally, although the OLC database
(Figure 2e) gives the most comparable pattern of cropland
distribution among all the examined satellite land cover data
sets, it too overestimates cropland fractions by 50%.
[33] Discrepancies between the satellite‐based land cover

maps and the census data can be attributed to numerous
sources. For the IGBP “croplands” map, disagreements are
likely a result of losing “croplands” pixels when the
“cropland/natural vegetation mosaic” class, the least reliable

land cover category [Jung et al., 2006], was originally
incorporated within the “grassland” class. Noises caused by
the presence of aerosols and clouds may also interfere with
the data retrieval procedure. Loveland et al. [2000] identi-
fied IGBP North American croplands to be highly affected
by “noise contamination,” with dryland croplands and irri-
gated crop fields having ∼27% and ∼42% such contamina-
tion. Likewise, Vogelmann et al. [2001] proposed that
hardware calibration errors might lead to the degradation of
radiometric accuracy of the LANDSAT Thematic Mapper
(TM) satellite data and cause the OLC database, which was
derived from the LANDSAT data covering dates between
1986 and 1997, to have an accuracy of approximately 85% for
agricultural lands [Ontario Ministry of Natural Resources,
2002]. The use of obsolete retrieved data might also lead to
deviations in the fraction estimates as remotely sensed data
acquired at different times may not correctly present the
needed land cover status [Jung et al., 2006].
[34] Further, in heterogeneous landscapes where crop-

lands are highly intermixed with other vegetation types such
as grasslands or scrublands, the target pixel might not be
correctly classified [Wulder et al., 2004; Jung et al., 2006;

Figure 2. Fractional coverage of croplands and other vegetation derived from various data sets: (a) agri-
cultural census data from Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA); (b) Inter-
national Geosphere‐Biosphere Programme Data and Information System land cover (IGBP‐DISCover)
“croplands”; (c) SYNMAP “croplands”; (d) IGBP‐DISCover “croplands+grasslands” (which includes
“cropland/natural vegetation mosaic”); and (e) Ontario Land Cover Database “croplands.”
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Herold et al., 2008; Wu et al., 2008]. Loveland and Belward
[1998, p. 689] pointed out that in the IGBP data set, a pixel
would be classified as “cropland/natural vegetation mosaic”
when “no [single vegetation] component comprises more
than 60% of the landscape.” As a result, some croplands
may be disregarded and thus give an underestimated total
cropland area. Such inability to correctly classify a target
pixel that contains several vegetation types may be viewed
as a general problem of optical remote sensing [Jung et al.,
2006], and accordingly, we can expect higher accuracies for
areas in with homogeneous cropland coverage and lower
accuracies in areas with sparse patches of cropland [Jung
et al., 2006; Wu et al., 2008]. Indeed, this phenomenon is
evident in the current study, as the magnitude of the relative
error in the cropland fraction decreases as the cropland
fraction increases for all four satellite land cover maps
examined here (Figure 3).

3.2. Monte Carlo Uncertainty Analysis for Agricultural
Census‐Derived GPP Estimates

[35] Several sources of uncertainties are present when
estimating GPP from agricultural census data and crop
attributes. Figure 4 illustrates results from a Monte Carlo
analysis. In this analysis, we randomized one attribute at a
time to evaluate the sensitivity of the estimated GPP to
uncertainties in the individual variables. Finally, all of the
variables are randomized to examine the aggregate effect of
their errors. The average error resulting from all of the
variables was ∼20% of the GPP value (Table 4). As seen in
Figure 4, the growth efficiency (GE), harvested production
(P), and harvest index (HI), in decreasing order of signifi-
cance, are the three largest sources of uncertainties in esti-
mating GPP. Here we discuss each in turn.
[36] Amthor [1989] pointed out that estimating GE

requires accurate but difficult measurements of respiration

and photosynthesis (or changes in dry phytomass). For
instance, measuring GE on the basis of 14C labeling is
dependent on the time of day the labeling takes place
because crops would refixate respired CO2 depending on
time. In addition, the crop’s stage of development matters as
well [Amthor, 1989, p. 114]: “Labeling with 14C later in the
development of a crop will tend to underestimate the actual
loss of carbon to respiration over the course of a growing
season while labeling early in the season will tend to
overestimate total respiratory losses.”Under such limitations,
large discrepancies in GE values can therefore be expected.
When randomizing GE alone in equation (6), the average
uncertainty in GPP across all counties is 127 g C m−2 yr−1.

Table 2. Comparison of Cropland Fractions Derived From Different Sourcesa

Counties

OMAFRA IGBP Croplands
IGBP

Croplands+Grasslands SYNMAP
Ontario Land
Cover Database

Cropland
Fractions sFrac

Cropland
Fractions

%D From
Census Data

Cropland
Fractions

%D From
Census Data

Cropland
Fractions

%D From
Census Data

Cropland
Fractions

%D From
Census Data

BRAN 0.45 1.01E‐02 0.17 −62 0.9 100 0.93 107 0.72 60
CHAT 0.72 7.58E‐03 0.75 4 0.83 15 0.83 15 0.78 8
ELGI 0.59 8.83E‐03 0.26 −56 0.89 51 0.88 49 0.73 24
ESSE 0.6 7.88E‐03 0.6 0 0.73 22 0.72 20 0.7 17
HALD 0.42 6.20E‐03 0.09 −79 0.82 95 0.81 93 0.64 52
HAMI 0.3 7.80E‐03 0.07 −77 0.66 120 0.69 130 0.56 87
LAMB 0.65 6.94E‐03 0.29 −55 0.83 28 0.86 32 0.75 15
MIDD 0.55 6.33E‐03 0.23 −58 0.97 76 0.96 75 0.82 49
NIAG 0.29 6.41E‐03 0.01 −97 0.68 134 0.58 100 0.47 62
OXFO 0.67 9.43E‐03 0.15 −78 0.99 48 0.98 46 0.85 27
BRUC 0.35 4.68E‐03 0 −100 0.62 77 0.46 31 0.45 29
DUFF 0.33 7.22E‐03 0.02 −94 0.5 52 0.59 79 0.57 73
GREY 0.25 3.26E‐03 0 −100 0.67 168 0.26 4 0.46 84
HALT 0.26 7.75E‐03 0.01 −96 0.54 108 0.57 119 0.5 92
HURO 0.64 7.06E‐03 0.25 −61 0.88 38 0.9 41 0.78 22
PEEL 0.25 7.18E‐03 0.01 −96 0.45 80 0.39 56 0.46 84
PERT 0.66 8.89E‐03 0.38 −42 0.97 47 0.99 50 0.89 35
SIMC 0.21 3.27E‐03 0.01 −95 0.46 119 0.32 52 0.39 86
WATE 0.53 9.76E‐03 0.1 −81 0.91 72 0.87 64 0.73 38
WELL 0.47 6.76E‐03 0.05 −89 0.8 70 0.84 79 0.69 47
Average 0.46 7.17E‐03 0.17 −70.60 0.76 76.00 0.72 62.10 0.65 49.55

aThe first four letters of the counties’ names, as indicated in Figure 1, are used as abbreviations. Value sFrac is the uncertainty in cropland fractions
(section 3.1).

Figure 3. Comparison of relative uncertainties in cropland
fractions. Relative uncertainties per county are calculated by
dividing the cropland fractions’ differences (i.e., satellite‐
derived fractions minus census‐data‐derived fractions) by
the census‐data‐derived fractions.
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[37] As for P, potential errors are introduced by probabi-
listic sampling and are described by the coefficient of var-
iation (CV), which ranges from 1% to 5% for all major
crops at the national level [Statistics Canada, 2004]. In this
study, when randomizing P alone while adopting CV = 3%
(halfway between 1% and 5%), the mean uncertainty in GPP
is 70 g C m−2 yr−1.
[38] By definition, HI is equal to the seed yield divided by

aboveground biological yield [Donald and Hamblin, 1976],
where biological yield “includes the total dry matter the
plant produces above ground” [Prince et al., 2001, p. 1196].
Physiologically, variability in HI depends on several factors
such as cultivar and the geographical features surrounding
the growing crop [Hay, 1995; Hay and Gilbert, 2001;
Prince et al., 2001; de Jong et al., 2001; Falk et al., 2007;
Bolinder et al., 2007]. For instance, small changes in HI can
be seen during stressed conditions as decreases in yield are
generally accompanied by reductions in crop biomass [Prince
et al., 2001]. When randomizing HI alone, the average
uncertainty in GPP over all counties is 54 g C m−2 yr−1.

3.3. Comparison of Estimated GPP

[39] In general, GPP estimates determined from both the
agricultural census data and VPRM fall into the lower end of
the range of results produced from other studies (Table 3).
[40] Comparisons between the agricultural‐data‐derived

GPP and VPRM‐modeled GPP are shown in Table 4 and
Figure 5. In Figure 5a, the small Pearson correlation coef-
ficient relating the two sets of GPP values signifies some
capability for the VPRM to model agricultural GPP in
southwestern Ontario. A few probable explanations for the
overestimation of GPP by VPRM include the following:
(1) Model parameters such as l, PAR0, a, and b may not be
applicable to Ontario croplands because they are calibrated
among crop fields (soy and corn) in the American Midwest.
(2) The current version of land cover data set used by the
model is not representative of the landscape. (3) The types
of crops used in calibrating VPRM parameters may not fully
resemble those grown on Ontario’s croplands.

Figure 4. Results of Monte Carlo analysis of uncertainties in census‐data‐derived GPP for southwestern
Ontario. Different colors illustrate how randomizing different parameters in the crop‐attribute‐based
model influences the uncertainties in GPP estimates. Green error bars explain how uncertainties in
GPP would change when only the uncertainty in provincial harvested production changes from 1% to
5% discretely. The lower limit of the green error bar illustrates the associated uncertainty when standard
errors were at 1%; the upper limit of the green error bar illustrates the associated uncertainty when stan-
dard errors were at 5%. Prod, harvested production; GE, growth efficiency; HI, harvest index; fAG, frac-
tion allocated above ground; MC, moisture content; and HA, harvested area. The first four letters of the
counties’ names, as indicated in Figure 1, are used as abbreviations.
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Figure 5. Comparison of GPP values between (a) a priori VPRM simulations and crop census data,
(b) Bayesian‐optimized VPRM simulations versus crop census data, and (c) optimized versus a priori VPRM
simulations. The correlation coefficient r is also shown. Error bars associated with the crop‐census‐derived
GPP are constructed from Monte Carlo analysis (section 3.2, Figure 4). The error bars associated with
VPRM simulations are constructed via a method described in section 2.6.

Table 4. Comparison of GPP Estimates and Their Associated Uncertainties Over Southwestern Ontarioa

Counties

GPP (g C m−2 yr−1) Associated Uncertainties (g C m−2 yr−1)

Crop Data VPRM Optimal Crop Data VPRM Optimal D% (Optimal Relative to VPRM)

BRAN 839 1354 1179 194 242 232 −4.53
CHAT 1102 836 853 233 193 191 −1.04
ELGI 1027 1416 1324 203 263 257 −2.28
ESSE 952 743 759 242 175 173 −1.14
HALD 782 753 740 169 188 184 −2.13
HAMI 720 1429 1196 182 262 250 −4.58
LAMB 1016 1184 1163 212 231 229 −0.87
MIDD 978 1460 1369 179 261 259 −0.77
NIAG 700 295 324 172 128 122 −4.69
OXFO 995 1442 1319 182 257 252 −1.95
BRUC 727 NA NA 116 NA NA NA
DUFF 620 613 572 102 171 159 −7.02
GREY 506 NA NA 73 NA NA NA
HALT 762 893 790 211 208 196 −5.77
HURO 1018 1297 1241 183 252 250 −0.79
PEEL 626 1367 1028 125 254 235 −7.48
PERT 936 1514 1335 161 269 264 −1.86
SIMC 662 596 601 107 167 164 −1.8
WATE 852 1627 1255 149 290 273 −5.86
WELL 749 1372 1135 116 263 254 −3.42
Average 828 1122 1010 166 226 219 −3.22

aUncertainties in agricultural census‐derived GPP were determined by randomizing all parameters in a Monte Carlo analysis and assuming 3% uncertainty
in provincial harvest production. See section 2.5 of the main text for details. The first four letters of the counties’ names, as indicated in Figure 1, are used as
abbreviations. NA, removed owing to a lack of croplands in the IGBP‐DISCover satellite land cover map linked to the VPRM (Figure 2b).
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[41] To investigate point 3, we examined the sensitivity of
crop‐based GPP on the crop types included in the calcula-
tion. As seen in Table 5, the highest GPP is found when
only corn and soy are considered. This higher GPP is closer
to VPRM’s, likely because VPRM was calibrated against
eddy covariance data collected over corn and soy. Winter
wheat and hay lower the GPP further, to almost the same
value as the “all crop” case. Clearly, the mismatch in crop
types explains a significant portion of the observed bias in
VPRM GPP.
[42] Therefore, we expect consideration of winter wheat

and hay during parameter calibration for VPRM to improve
its simulation of GPP in Ontario’s croplands. However,
eddy covariance flux measurements for these crops are
lacking, and this observational gap will need to be addressed
in the future.

3.4. Bayesian Inversion to Optimize GPP Estimates

[43] In order to acquire insights into how the agricultural
census‐data‐derived GPP improves knowledge about the
VPRM‐modeled GPP, we performed a Bayesian inversion,
and results of this exercise are displayed in both Table 4 and
Figure 5. After the inversion, the average optimized GPP
over all counties is 1010 g C m−2 yr−1, and its associated
mean uncertainty is 219 g C m−2 yr−1. This translates to a
mere 3% reduction when compared to the average uncertainty
associated with the VPRM‐modeled GPP (226 g Cm−2 yr−1).
Furthermore, the optimized GPP values are almost identical
to the prior values simulated by the VPRM (Figure 5c). This
result is perhaps not surprising, given the fact that uncer-
tainties in the census‐data‐derived GPP are comparable to
those in VPRM (Figure 5 and Table 4). Hence the “measured”
GPP values from the agricultural census provide only min-
imal constraint on the simulations. It is worth noting,
however, that the exact constraint provided by the agricul-
tural data depends upon the VPRM model’s a priori uncer-
tainties (Sprior; section 2.6). We have already pointed out in
section 3.3 specific deficiencies of the VPRM simulations
used in this study. Owing to uncertainties in the land cover
data set and the model parameters, the model’s prior uncer-
tainties should be larger, in which case there would be a
greater uncertainty reduction after the inversion.

4. Summary and Conclusions

[44] The objective of this study is to highlight and
examine the potential value and information content of
agricultural census data for carbon cycle studies. Specifi-
cally, two pieces of information that can be extracted from
agricultural census data are examined here: (1) the areal
coverage of croplands and (2) carbon uptake by field crops.

[45] This paper has shown that the census data provide a
valuable source of information on the areal coverage of
crops. Cropland fractions calculated from the census data
reveal that all three satellite‐based land cover data sets
provide severely biased estimates of cropland fraction over
southwestern Ontario, Canada. Since relative errors between
census‐data‐derived versus satellite‐based cropland fraction
decrease when the cropland cover increases (Figure 3), this
suggests that the error may be attributed largely to the dif-
ficulty of satellite data in distinguishing croplands embed-
ded within a heterogeneous landscape. As a result, synthetic
maps developed from merging land cover maps and agri-
cultural census data [Cardille et al., 2002; Kerr and Cihlar,
2003; Ramankutty et al., 2008] should be considered for use
in providing more reliable maps of crop coverage.
[46] On the other hand, carbon uptake estimates (GPP)

based on the agricultural census data are subject to large
uncertainties. The biggest sources of uncertainty are (in
order of significance) the growth efficiency (GE), harvested
production (P), and harvest index (HI). Although adopting
NPP rather than GPP removes a large source of uncertainty
(GE), significant errors are still present owing to imperfect
knowledge of HI and P (Figure 4).
[47] Previous studies that only addressed the uncertainties

associated with HI and root:shoot ratio and their effects on
the overall uncertainty in estimating primary production
[Prince et al., 2001; Bolinder et al., 2007] have under-
estimated the errors because they did not consider the pos-
sible impact imposed by uncertainties associated with
harvested production estimates from agricultural census
data.
[48] If the agricultural data are subject to large uncer-

tainties, they simply cannot provide tight constraints to
biospheric carbon models. As the minimal reduction in
uncertainty from the Bayesian inversion suggests, there is
limited information content in the agricultural data. We
point out, however, that this result may be partly attributed
to deficiencies in the VPRM parameters and land cover data
that were not considered in the model’s a priori uncer-
tainties. If the model uncertainties were in fact larger, one
could expect a greater reduction in uncertainty and thus
more “information gain” due to use of the agricultural data.
[49] Ultimately, the uncertainties in agricultural produc-

tion data stem from the fact that primary production,
whether NPP or GPP, is not directly measurable and must be
estimated on the basis of a suite of measurements and var-
ious underlying assumptions [Scurlock et al., 1999; Clark
et al., 2001]. Exactly how losses due to herbivory and dis-
eases are accounted for is another potential source of
uncertainty in these calculations [Ciais et al., 2010].

Table 5. Comparison of Average GPP Estimates When a Subset of Crops is Selected From the Crop Census Dataa

Crop‐Type
Combinations in Calculating
Crop‐Data‐Derived GPP

Average GPP (g C m−2 yr−1) Average Associated Uncertainties (g C m−2 yr−1)

Crop
Data VPRM Optimal

D%
(Optimal Relative to VPRM)

Crop
Data VPRM Optimal

D%
(Optimal Relative to VPRM)

Corn+soy 1030 1122 1092 −1.64 266 226 223 −1.40
Winter wheat+corn+soy 999 1122 1080 −2.41 230 226 222 −1.76
Winter wheat+corn+soy+hay 825 1122 1016 −7.42 171 226 220 −3.01
All crops 828 1122 1010 −7.63 166 226 219 −3.22

aNote that VPRM parameters from the “cropland” class were fitted against eddy covariance fluxes conducted over just two crops: corn and soy
[Mahadevan et al., 2008].
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[50] Undoubtedly, agricultural census data have a signif-
icant role in monitoring crop production, security and sus-
tainability. In the context of carbon cycle studies, they are
likewise important because these spatially explicit data are
crucial in helping to identify the areas where the various
crops are actually grown. In this way, they provide valuable
validation data for satellite land cover maps to enhance
cropland identification and classification [Cardille et al.,
2002]. However, if the census data were used for carbon
accounting purposes, one must be aware of the sources of
errors as well as the underlying assumptions necessary to
estimate the carbon fluxes.
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