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Abstract. We analyze the potential for inferring spatially re-
solved surface fluxes from atmospheric tracer observations
within the mixed layer, such as from monitoring towers, us-
ing a receptor oriented transport model (Stochastic Time-
Inverted Lagrangian Transport model – STILT) coupled to
a simple biosphere in which CO2 fluxes are represented as
functional responses to environmental drivers (radiation and
temperature). Transport and biospheric fluxes are coupled on
a dynamic grid using a polar projection with high horizon-
tal resolution (∼20 km) in near field, and low resolution far
away (as coarse as 2000 km), reducing the number of surface
pixels without significant loss of information. To test the sys-
tem, and to evaluate the errors associated with the retrieval
of fluxes from atmospheric observations, a pseudo data ex-
periment was performed. A large number of realizations of
measurements (pseudo data) and a priori fluxes were gen-
erated, and for each case spatially resolved fluxes were re-
trieved. Results indicate strong potential for high resolution
retrievals based on a network of tall towers, subject to the
requirement of correctly specifying the a priori uncertainty
covariance, especially the off diagonal elements that control
spatial correlations. False assumptions about the degree to
which the uncertainties in the a priori fluxes are spatially cor-
related may lead to a strong underestimation of uncertainties
in the retrieved fluxes, or, equivalently, to biased retrievals.
The framework presented here, however, allows a conserva-
tive choice of the off diagonal elements that avoids biasing
the retrievals.

Correspondence to:C. Gerbig
(cgerbig@bgc-jena.mpg.de)

1 Introduction

Climate predictions are currently hampered by the inabil-
ity to characterize feedback between a changing climate and
sources and sinks of greenhouse gases such as CO2 and
methane (Friedlingstein et al., 2003). A prerequisite for de-
velopment of a predictive capability is the understanding of
current trace gas budgets. At hemispheric scales, a major
source of information has been data from the CO2 observing
network (e.g. GLOBALVIEW-CO2, 2002), which are used
by atmospheric transport models in inversions to derive flux
estimates. However, at the smaller scales of continents, coun-
tries or ecosystems, at which climate anomalies (droughts,
anomalies in rainfall, temperature, etc.) as well as human in-
tervention (land use change) influence biosphere-atmosphere
exchange, large uncertainties remain (IPCC, 2001; Schimel
et al., 2001). Regional scale budgets have recently become a
research focus (Wofsy and Harriss, 2002); they are a require-
ment for any carbon trading, such as might be implemented
under international agreements like the Kyoto protocol.

Continental scale inversions based on global observational
networks provide only a weak constraint on fluxes, due to
the remoteness of such observations from the land (Gloor
et al., 2000). In principle, information about regional scale
biosphere-atmosphere exchange is contained in mixing ra-
tios of CO2 over the continent, in proximity of biospheric
activity. Gerbig et al. (2003a) (in the following referred to as
G03a) demonstrated large biospheric signals in atmospheric
profiles of CO2 over the North American continent, with a
significant spatial variability that closely reflects spatial vari-
ability in surface fluxes (Gerbig et al., 2003b, in the following
referred to as G03b).

Published by Copernicus GmbH on behalf of the European Geosciences Union.



540 C. Gerbig et al.: What can tracer observations in the PBL tell about fluxes? 

Year

24
-h

r F
lu

x

1994 1996 1998 2000 2002

-8
-4

0
4

C
O

2

32
0

36
0

40
0

C
O

2 
D

iff

-2
0

0
10

20
30

Year
24

-h
r F

lu
x

2000.0 2001.0 2002.0 2003.0

-6
-2

2

C
O

2

32
0

36
0

40
0

C
O

2 
D

iff

-2
0

0
10

20
 

 

 

Figure 1. Concentrations of CO2 at the Harvard Forest tower compared to remote station and 

aircraft data. (left)(upper) Hourly CO2 (ppm) at 30m [• ], midday values [O], 10-day medians 

of the midday data [——], and 10-day medians from Bermuda East[——] and Mauna Loa 

[——]. (middle) Difference (ppm) between midday Harvard Forest concentrations and 

Bermuda E, color-coded by the sign of the CO2 flux (green=uptake, red=emission). (lower) 

10-day median of the daily mean CO2 flux at Harvard Forest (µmole m-2s-1). Same as left, 

expanded time axis, with addition of data from 3 km altitude from aircraft sampling over 

Harvard Forest [---].  [Bermuda, Mauna Loa, and aircraft data from T. Conway, NOAA 

Climate Monitoring and Diagnostics Laboratory, 2004]. 

 25

Fig. 1. Concentrations of CO2 at the Harvard Forest tower compared to remote station and aircraft data. Upper left: hourly CO2 (ppm) at
30 m [grey dots], midday values [black circles], 10-day medians of the midday data [blue line], and 10-day medians from Bermuda East
[orange line] and Mauna Loa [red line]. Middle left: difference (ppm) between midday Harvard Forest concentrations and Bermuda E, color-
coded by the sign of the CO2 flux (green=uptake, red=emission). Lower left: 10-day median of the daily mean CO2 flux at Harvard Forest
(µmole m−2 s−1). Right collumn: same as left, expanded time axis, with addition of data from 3 km altitude from aircraft sampling over
Harvard Forest [black line dotted]. (Bermuda, Mauna Loa, and aircraft data from T. Conway, NOAA Climate Monitoring and Diagnostics
Laboratory, 2004).

Long-term observations of CO2 in the continental bound-
ary layer with sufficient accuracy are available from tall tow-
ers (Bakwin et al., 1995) as well as from a number of CO2
eddy flux towers (Fig. 1), and the spatial density of this net-
work of sites is increasing (Wofsy and Harriss, 2002). These
data are closely related to regional fluxes of CO2, especially
when they can be compared to observations from above the
planetary boundary layer (PBL) and/or remote stations at
similar latitudes (Fig. 1, compare middle and lower panels).
Unfortunately, the large spatial as well as temporal variabil-
ity of the fluxes limits the usefulness of these data in current
models used for inversions, and interpretation of the obser-
vations requires quantitative understanding of transport pro-
cesses affecting the PBL. Most inversions so far have used a
representation of surface fluxes where surface grid elements
are aggregated to large regions (typically 10–20 globally)
(Gurney and al., 2002), and PBL processes are not accurately
represented; these inversions are subject to additional repre-
sentation errors (the so-called “aggregation error”; Kaminski
et al., 2001). G03b showed that changes in CO2 concentra-
tions over the continent are directly related to spatial varia-
tions of surface fluxes in the near field of the measurement
locations. To quantitatively extract the information, aggre-
gation to coarse spatial scales should be avoided. Otherwise

the aggregation error has to be accounted for in the inversion,
and (as G03b argued) this might involve not just a random er-
ror but also a bias term.

Bayesian inversion methods require as inputs an a priori
estimate of the state (in this case the surface fluxes) and an
associated error covariance matrix that characterizes the un-
certainties in the estimate (Rodgers, 2000). When retrieving
flux information at high spatial resolution, special attention
has to be given to this covariance matrix, most importantly
the off-diagonal elements. This can be illustrated with two
extremes: a) Assuming no correlation between different lo-
cations (i.e. zero off-diagonal elements) implies very small a
priori uncertainties on large scales, since uncorrelated errors
are reduced by factor 1/N−1/2, with N as the number of grid-
cells aggregated. For a large number of independent gridcells
(large degrees of freedom) the atmospheric inversion will be
less successful in constraining fluxes; in fact the problem be-
comes underdetermined (Peylin et al., 2001); b) assuming
perfect correlation between different locations means there
is only one degree of freedom (a bias) to be constrained for
each large scale aggregate by the inversion. Large scale ag-
gregation (such as used in the TransCom studies (Gurney and
al., 2002) is equivalent to the assumption of perfect uncer-
tainty covariance within each aggregate. But, as illustrated
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in Fig. 1, data from continental sites are sensitive to regional
fluxes, and this approach would render these data useless in
the inversion. A realistic covariance of the prior uncertainty
will fall between these two extremes.

A direct way to derive the uncertainty covariance would be
to compare the prior flux estimate to measurements at vari-
ous locations, and to investigate the spatial and temporal cor-
relation of the residuals (differences between measurement
and flux estimate). However, this requires a dense network
of flux measurement sites in a spatial arrangement that al-
lows for spatial statistics, e.g. multiple replica within similar
ecosystems at various distances. Lacking observational con-
straints for the prior uncertainty covariance, one has to make
assumptions about the spatial correlations, e.g. in the form of
a correlation length scale, for example, adopting the spatial
statistics of differences between different biospheric models
(Rödenbeck et al., 2003). Alternatively, correlation length
scales have been estimated by optimization of the model-
data system using a geostatistical approach (Michalak et al.,
2004). Both approaches give only a surrogate for true uncer-
tainties and their spatial covariances. In a recent study on re-
gional scale inversions (Peylin et al., 2005) the assumed cor-
relation length scale was varied between 500 and 2000 km,
yielding significantly different flux distributions.

To investigate the inference of CO2 flux from measure-
ments of CO2 over the continent (e.g. the data in Fig. 1), and
especially the dependence on the assumed error character-
istic, we set up the ROAM (receptor-oriented atmospheric
model) framework described in G03b to retrieve fluxes at
high spatial resolution. ROAM couples a high resolution
transport model (the Stochastic Time-Inverted Lagrangian
Transport model, STILT, Lin et al., 2003) to a simple bio-
sphere flux model intended to capture the temporal and spa-
tial variance over the continent. The flux model used here,
denoted the “Greatly Simplified Biosphere” (GSB), param-
eterizes net ecosystem exchange as a response to radiation
and temperature, similar to G03b, except that here we solve
for temperature and light sensitivities directly rather than for
scaling factors of respiration fluxes and uptake. A further,
but more important difference is that we avoid spatial aggre-
gation errors by using spatially varying sensitivities at a spa-
tial resolution that degrades with increasing distance from
the measurement location. Note that the approach chosen
here differs from the above mentioned studies (Michalak et
al., 2004; Peylin et al., 2005; R̈odenbeck et al., 2003) in that
not spatially resolved fluxes are optimized, but rather their
spatially resolved sensitivities to the dominant environmental
drivers (radiation and temperature) that can after optimiza-
tion be turned into fluxes.

As a step towards high-resolution retrievals of surface
fluxes, we apply this framework to pseudo data generated
for the Harvard Forest Environmental Monitoring Site (Bar-
ford et al., 2001; Wofsy et al., 1993). The advantage in using
pseudo data rather than real data is that we know the truth
in the “pseudo-world”, so we can control exactly what in-

formation we have in terms of the a priori fluxes, and we
can estimate how much additional information is provided
by the mixing ratio measurements. The two main questions
addressed in this paper are: 1) what can we learn, assuming
we know prior uncertainty covariance, and 2) what informa-
tion do we lose, in case we have imperfect knowledge about
the prior uncertainty covariance.

In Sect. 2, we present the model linking spatially varying
biospheric parameters with CO2 mixing ratios. Section 3 de-
scribes the setup of the numerical experiment, including the
generation of pseudo data and a priori parameter fields, and
retrieval of optimized parameters. Results are presented in
Sect. 4, with the achievable reduction in uncertainty of area
averaged fluxes, the spatial resolution of retrievals, and the
impact of false assumptions about the length scales of the a
priori uncertainty covariance.

2 Modeling framework

2.1 Linking observational constraints to flux model param-
eters

We use the ROAM (receptor oriented atmospheric model)
framework described in G03b and by Lin et al. (2004), with
STILT as a transport model coupled to surface fluxes on high
spatial resolution. Following the notation in Lin et al. (2004),
the mixing ratio at the receptor C(xr , tr) (with fixed location
xr) can be written as a sum of signals due to surface fluxes
F(xi , yj , tm) (flux at location (xi , yj ) and timetm) and con-
tributions from model boundariesC(xi ,yj ,zk, t0):

C(xr , tr)=
∑
i,j,m

f (xr , tr |xi, yj , tm)·F(xi, yj , tm)︸ ︷︷ ︸
contribution from sources/sinks

+

∑
i,j,k

I (xr , tr |xi, yi, zk, t0)·C(xi, yj , zk, t0)︸ ︷︷ ︸
contribution from advection of upstream tracer field

(1)

Heref (xr , tr |xi , yj , t) is the footprint (also called surface
influence), that relates surface fluxes atxi ,yj , and timetm
to mixing ratios at receptors located atxr at time tr , and
Ixr ,tr |xi ,yj ,zk, t) is the influence (weighting) of concentra-
tions at the boundary. The summations in principle cover
the globe, but in practice the domain is much smaller, lim-
ited to surface locations and times wheref is finite and
similarly for I . To calculate footprint and influence, STILT
was driven by assimilated meteorological data from EDAS
(ETA Data Assimilation System) (Rogers et al., 1995) sup-
plemented by GDAS (Global Data Assimilation System) (de-
tails see G03b), and run for 15 days backwards in time. The
transport simulation was done for the measurement location
at Harvard Forest every 3 h throughout August 2002, result-
ing in N=248 runs.

Equation (1) can be written using vector notation, with
the mixing ratio at the receptor as vectorC of dimension N
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containing the whole time-series (N discrete points in time
tr):

C︸︷︷︸
observations

= fF︸︷︷︸
contribution from surface fluxes

+ ICb︸︷︷︸
contribution from boundary

+ ε︸︷︷︸
error

. (2)

Now surface fluxes are presented as modeled fluxesF , a
vector of length NF =Nx*Ny*N t containing fluxes at all sur-
face locations and at all times prior to the measurement time,
f is a matrix of footprint elements with dimension N * NF ,
andI , the influence matrix relates mixing ratios from the lat-
eral model boundariesCb to mixing ratios at the receptor.
The error termε describes differences between measured and
modeled values due to uncertainties in transport (f, I ), mea-
surements (C), and boundary fields (Cb).

The general idea of the inversion is that information con-
tained in observations can be translated into information
about fluxes. Here our focus is on biospheric fluxesF bios and
its dependence on environmental drivers such as light (radia-
tive flux) and temperature. Therefore we write the surface
fluxes in Eq. (2) as a sum of biosphere-atmosphere exchange
fluxes F bios and fluxes from combustion processesF comb
(fossil fuel and biomass burning emissions). The biospheric
flux representation was simulated using the GSB, with a light
and temperature response keyed to vegetation class accord-
ing to the IGBP vegetation, and with sensitivities derived
from fitting to FLUXNET data (Baldocchi and al., 2001) (de-
tails see G03b). Here we use a further simplification by only
taking into account linear responses to temperature and ra-
diation. Thus the biospheric flux for a given locationl and
vegetation typev at timet can be written as the sum of gross
ecosystem exchange and respiration flux:

Fbios,l,t,ν = GEEl,t,ν + Rl,t,ν

= νcl,ν

(
λRad,l,ν SWRFl,t + λTemp,l,ν(Tl,t − T0)

)
. (3)

Here vcl,v is the relative coverage of the given vegetation
type in the gridcell at locationl, λRad,l,v andλTemp,l,v are
the radiation and temperature sensitivities (see also Table 1),
SWRFl,t is the shortwave radiative flux, and Tl,t is the tem-
perature. In vector notation this can be written for all times
and locations as

F bios = 8λ , (3a)

where the biospheric flux is written as the product of the pa-
rameters vectorλ (the state vector), that combines the light
and temperature sensitivities for different vegetation types at
the different flux locations, and matrix8, that contains prod-
ucts of relative vegetation cover and temperature or radia-
tion in each grid element at the different times. As in G03b,
temperature and shortwave flux are taken from the assimi-
lated meteorological fields used to drive STILT. Rearranging
Eq. (2) to separate out the biospheric parameters gives

y = Kλ + εy (4)

with y=C–ICb–fF comb as the observational constraint on
biospheric parameters (similar to1CO2,veg in G03b),K=f8
as the Jacobian (sensitivities of measurementsy with respect
to biospheric parametersλ). Note that the error termεy dif-
fers from the error term in Eq. (1) in that it also includes
errors due to uncertainties in the contribution from combus-
tion fluxesf F comband in the representation of the biospheric
fluxes.

By referring toy=C–ICb–fF combas an observational con-
straint, although the only observable is the mixing ratioC,
we made two simplifying assumptions:

1) The contribution from the lateral boundary of the do-
mainICb is assumed to be known. Since here we are us-
ing simulated measurements rather than real world data,
this is not really an assumption. However, in the real
world contributions from the boundary can be estimated
from a climatological model of background mixing ra-
tios (G03b) or by filtering the measured timeseries itself
(Wang, 2003); other possibilities include coupling to a
global model or using frequent aircraft data (cf. Fig. 1).
In general there will be an estimate of this contribution
with an uncertainty that has to be taken into account.

2) Signals from any surface fluxes other than biospheric
fluxes, such as fossil fuel emissions of CO2, are as-
sumed to be known. Again, in a world with simulated
measurements this is not an issue, however, in the real
world this means knowing combustion fluxesF comb or
the signalsfF comb on small spatial scales well enough,
i.e. significantly better than biospheric fluxes or signals.
G03b used a combination of measured CO and emis-
sion ratios to estimate fossil fuel and biomass burning
signals, but considerable uncertainty is associated with
such estimates. Future inversions will need to simul-
taneously solve for combustion fluxes as well as bio-
spheric parameters, and use of multiple tracers (e.g. CO)
may help this task by adding constraints. Here we as-
sume that there are uncertainties associated with fossil
fuel and biomass burning emissions that contribute to
the overall uncertaintyεy .

Given a set of a priori parameter estimatesλprior with uncer-
tainty covarianceSprior, and following the Bayesian synthesis
inversion (a good description of atmospheric inverse methods
is given e.g. in Rodgers, 2000), we estimate the state vector
λ̂ as:

λ̂ =

(
KT S−1

ε K + S−1
prior

)−1 (
KT S−1

ε y + S−1
priorλprior

)
(5)

with error covarianceSε for the measurement errorεy . Equa-
tion (5) improves the (imperfect) prior knowledge about the
parameters (λprior, Sprior) by combining it with the constraint
provided by atmospheric measurements (y, Sε) and coupled
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Table 1. Radiation and temperature sensitivity for biospheric fluxes and the associated uncertainties, from fit to AmeriFlux data (after G03b).
The last column shows the correlation coefficient between radiation and temperature sensitivity.

Vegetation
type

λR σ(λR) λT σ(λT ) cor(λR,λT )

(simplified)

µmol/m2/s/(W/m2) µmol/m2/s/(W/m2) µmol/m2/s/K µmol/m2/s/K

Forest –0.018 0.013 0.14 0.11 –0.74

Cropland –0.027 0.058 0.14 0.58 –0.72

atmospheric transport and biospheric modelK . The a poste-
riori uncertainty forλ̂ is given by

Ŝλ =

(
KT S−1

ε K + S−1
prior

)−1
. (6)

Following Rodgers (2000), we can also write for the poste-
rior estimate of the state vector (Eq. 5):

λ̂ − λprior = A(λ − λprior) + Gyεy (7)

with the so called gain matrix

Gy=

(
KT S−1

ε K+S−1
prior

)−1
KT S−1

ε and the averaging

kernel matrixA=GyK . In Eq. (7) we can interpret a given
column ofA as the response of the retrieval to a perturbation
of the corresponding element of the state vector. This will
be used in Sect. 4.2.

2.2 Reduction in dimension of state space

The simplicity of Eq. (4) hides the complexity and magnitude
of the problem: the representation links light and temperature
sensitivitiesλ of biospheric fluxes (the state vector) from dif-
ferent vegetation types at all times and all surface flux loca-
tions that influence the measurements to an observable con-
strainty. For example, for a spatial domain that roughly cov-
ers North America at a resolution of 20 km there are 120 000
different gridcells, and about 1/4 of these cells are covered by
vegetation. For two vegetation types and two sensitivities (to
light and temperature), each of these 30 000 vegetated cells
requires 4 degrees of freedom at any given time; and if one
is interested in e.g. a one-month duration and allows the sen-
sitivities to vary on daily timescales, the required number of
parameters is about 3.6 million. A retrieval on a grid with
such a number of unknowns is not feasible – e.g., the prior
uncertainty covariance matrix itself will have more than 1013

elements, and plainly there is insufficient information in the
data to constrain so many parameters.

Therefore it is necessary to reduce the state space di-
mension significantly (both spatially and temporally), ideally
without losing any information. We know that for a given
measurement location the spatial differences in surface fluxes
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Fig. 2. STILT derived footprint for the Harvard Forest Monitor-
ing Site on 17 August 2002 at 15:00 GMT, for different times
backwards and integrated over 3 h (i.e. –12 h denotes the interval
from 12 to 15 h prior to the release time). As the area of the foot-
print at a given time increases, the dynamic resolution from STILT
chooses coarser pixels to represent the footprint. The footprints
for different resolutions are rescaled to the finest resolution grid
(1/6◦lat×1/4◦lon) to avoid the trivial dependence on grid area.

at some far away small surface area does not affect local mix-
ing ratios and need not be (indeed, cannot be) accounted for
separately from surrounding surface elements. The reason
for this is that the size of the footprint f(xr , tr |x, t) for a
measurement made at locationxr and timetr increases with
elapsed timetr−t due to atmospheric mixing, and the mag-
nitude of the elements off correspondingly decrease, as il-
lustrated in Fig. 2. The footprint-area at 3 days prior (–72 h)
is more than 10 times larger than the footprint-area at 1 day
prior to arrival. Figure 2 also illustrates our approach to en-
large the grid size with increasing footprint area, “dynamic
grid resolution” as described in G03b. This dynamic reso-
lution was necessary due to the limited number of particles

www.atmos-chem-phys.net/6/539/2006/ Atmos. Chem. Phys., 6, 539–554, 2006



544 C. Gerbig et al.: What can tracer observations in the PBL tell about fluxes?
 

distance from receptor [km]

gr
id

ce
ll 

ar
ea

 [
km

2 ]

0 2000 4000 6000 8000

0*
0

50
0*

50
0

10
00

*1
00

0
15

00
*1

50
0
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Fig. 3. Gridcell area vs. distance from the receptor location. The
dynamic resolution from STILT is shown as solid gray line (50%ile
of influence) and dotted gray line (10%ile of influence). The solid
black line indicates the spatial resolution of the polar projection
with 32 sectors and 30 radial segments, with each symbol repre-
senting a radial segment. Note that the square root of the gridcell
area is plotted as y-axis.

representing the airmass. Results using high resolution foot-
prints throughout (20 km up to 15 days, with 4000 parti-
cles) rather than dynamically adjusted resolution (also with
4000 particles) showed only minor differences (rms error
∼3% of the biosphere signal, or a factor of 4 smaller than the
uncertainty due to the limited number of 100 particles repre-
senting the airmass, see G03b). From this we can conclude
that spatial variations in surface fluxes on scales smaller than
the resolved scale at a given time (with dynamic grid res-
olution) have no significant impact on mixing ratios at the
receptor.

Here we need a grid with a resolution that decreases with
distance from the receptor, and that does not change with
time, thus defining an appropriate state space for a given re-
ceptor. Hence we use a simple polar projection, with 32 sec-
tors and 30 radial discs to represent the footprints. The grid
was chosen so that the area for each grid-cell as a function of
distance from the receptorr behaves similar to the dynamic
grid (Fig. 3), with a grid cell area increasing proportional
to r2, increasing the radial step-size proportional tor, start-
ing with a minimum step-size of 20 km. Since the dynamic
grid resolution changes (in time) for a givenr, the 10%ile
(50%ile) of the gridcell area is shown in Fig. 3, i.e. 10%
(50%) of the influence was represented with a higher reso-
lution, respectively. The grid-cell area of the chosen polar
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Figure 4. Same footprint as figure 1, but represented using polar coordinates. 
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Fig. 4. Same footprint as Fig. 2, but represented using polar coordi-
nates.

grid representation falls between the 10%ile and the 50%ile
curve of the dynamic grid, i.e. has appropriate resolution in
far more than 50%, but not quite 90% of the time. As an ex-
ample the footprints shown in Fig. 2 are recalculated in polar
coordinates, and than transformed back to Cartesian coordi-
nates for visualization (Fig. 4). The relevant spatial structure
in the footprint is well represented on the polar coordinates.

The parametersλ are allowed to vary spatially, with reso-
lution given by the polar grid, reducing the size of the state
vectorλ by a factor of about 60 compared to the Cartesian
grid (Lat-Lon), without significant loss of information. Since
we are here interested primarily in the spatial scales, we
made the simplifying assumption that the parametersλ are
constant over one month, reducing the state space dimension
by another factor of 30 compared to daily varying param-
eters. This choice thus makes a retrieval of the remaining
2048 elements ofλ feasible.

3 Experiment setup

The experiment consists of the following steps:

1) Pseudo data are generated from a set of parameter fields
(the “truth”, Sect. 3.1).

2) A number of a priori parameter fields are generated,
with spatial covariance decaying with different decorre-
lation length scales (and encapsulated in the uncertainty
covariance matrix) (Sect. 3.2).

3) A posteriori parameter fields are retrieved based on
the prior and an assumed prior uncertainty covariance
which may differ in its decorrelation length scale from
the true uncertainty covariance of the prior (Sect.3.3).
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4) Fluxes based on the retrieved and the true parameter
fields are calculated for different scales of spatial av-
eraging (Sect. 3.4).

3.1 Generation of pseudo data

Pseudo data for biospheric signalsyt are calculated after
Eq. (2) from “true” parameter fieldsλt that are assumed to
be spatially constant for simplicity (spatially uniform light
and temperature sensitivity for forests and croplands after
Table 1). Even though the parameters fields are spatially
constant, strong gradients in surface fluxes result from the
different responses for different vegetation types, and from
gradients in the environmental drivers temperature and radi-
ation. A realization of the error termεy was created based
on a Gaussian sample with standard deviation of 2 ppm. This
uncertainty is meant to account for (a) uncertainty in the mea-
surements themselves (less than 0.5 ppm at Harvard Forest),
and errors in the modeling framework such as (b) inability
to reproduce eddies in the atmosphere (ranging from 0.2 to
2 ppm – G03a), (c) uncertainties in fossil fuel signals (or-
der of ppm – G03a), (d) uncertainties in the tracer boundary
fields (∼1 ppm after G03a), and (e) errors in the biospheric
model formulation (true fluxes are affected by factors other
than temperature and radiation). The 2 ppm assumed un-
certainty is a lower limit, or the information content of the
measurements derived here represents an upper bound, since
uncertainties related to imperfect transport are not included.
The transport error for the current framework is on the or-
der of 2 ppm for the Harvard Forest site, following methods
discussed in Lin and Gerbig (2005); however, we did not in-
clude this since it can be assumed that in future models this
will improve.

The simulated CO2 signals using values for the biosphere
flux parameters from G03b (not including the measurement
error) are shown in Fig. 5, together with observed CO2. The
simulations have a lot of similarity with the measurements,
with a pronounced diurnal and synoptic variability. Diurnal
maxima are not well represented due to the inability of the
model to reproduce a shallow nocturnal boundary layer: the
modeled boundary layer height is often too high, causing the
footprint to cover a larger area (due to larger wind speeds
in the deeper layer) and the biospheric signal from nocturnal
respiration to be too small (due to the vertical dilution in a
deeper layer). This underestimation of respiration signals in
the pseudo data means that processes dominating the day-
and night-time fluxes (assimilation and respiration) will not
be as separable as in the real world. Also shown in Fig. 5 are
the simulated CO2 signals using the Cartesian grid, nearly
indistinguishable from the version based on the polar grid
(standard deviation of differences 0.6 ppm), supporting our
claim that no significant loss of information occurred in the
regridding from Cartesian to Polar coordinates.
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Figure 5. Simulated CO2 mixing ratios at Harvard Forest from biospheric fluxes using 

dynamic gridsize (gray line), and polar grid (thin black line). Also shown as dashed line are 

observations on the same scale, shifted for better readability (right vertical axis). 
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Fig. 5. Simulated CO2 mixing ratios at Harvard Forest from bio-
spheric fluxes using dynamic gridsize (gray line), and polar grid
(thin black line). Also shown as dashed line are observations on the
same scale, shifted for better readability (right vertical axis).

3.2 Generation of a priori parameter fields

A priori parameter fields are created by adding noise to the
“true” parameter values, with the same variance as the prior
uncertainty (Table 1), and with a variety of decorrelation
length scalesltrue ranging from 10 to 15 000 km. The spa-
tial covariance was assumed to decay exponentially with dis-
tance. Thus a covariance matrix was constructed with diag-
onal elements as prior uncertainties (from G03b), and off-
diagonal elements decaying with exp(−d/ltrue), with d as
the distance between the grid cells. Parameter fields were
then generated as a realization of the noise using spectral
decomposition of this covariance matrix (see e.g. Cressie,
1993).

3.3 Retrieval of parameter fields

Posterior fluxes and associated uncertainties are retrieved
from the pseudo data and the prior parameter fields follow-
ing Eq. (5). As mentioned before, the decorrelation length
scale for the assumed prior error (l) can be different from
the one used to create the prior parameter field (ltrue), since
in the real world this length scale is not necessarily known.
Also, the aim of this work is to test how results depend on
this knowledge. Therefore fluxes are retrieved for 9*9 differ-
ent combinations of assumed prior decorrelation scalel and
true decorrelation scaleltrue. To allow statistical sampling of
these retrievals, 500 different realizations of prior parameter
fields were used, resulting in a total number of 40 500 re-
trievals.
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Figure 6. Monthly averaged footprint for Harvard Forest daytime (18:00 and 21:00 UT, top 

left) and nighttime measurements (6:00 and 9:00 UT, top right), vegetation coverage (middle) 

and an example of environmental driver fields for fluxes, temperature (bottom left) and 

radiation (bottom right) on 24th of August 2004. The map is centered around the Harvard 

Forest Monitoring Site with a radius of 1500 km. Note that the footprint maps are rescaled to 

a 20x20 km grid for comparability with the cartesian grid and to avoid the trivial dependence 

on grid area. 

 30

Fig. 6. Monthly averaged footprint for Harvard Forest daytime (18:00 and 21:00 UT, top left) and nighttime measurements (06:00 and
09:00 UT, top right), as well as vegetation coverage (bottom). The map is centered around the Harvard Forest Monitoring Site with a radius
of 1500 km. Note that the footprint maps are rescaled to a 20×20 km grid for comparability with the cartesian grid and to avoid the trivial
dependence on grid area.

3.4 Area averaging

Results are presented in terms of retrieved fluxes and their
uncertainties for averages over areas of different sizes rang-
ing from local to continental scales. Ideally, flux aver-

aging should be done over areas where the footprint is
strongest, such as in the dominant wind direction upwind of
the receptor (see Fig. 6, top). However, for simplicity we use
circular areas centered at the Harvard Forest site with radii
of 100, 514 and 1849 km. In fact, the footprint distribution
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Figure 7. Uncertainty reduction (in %) for 100 km prior uncertainty correlation scale for the 

different parameters within the state vector. Left column is for forest, right for crop, top row 

for light sensitivity (controlling GEE), and bottom row for temperature (controlling R). The 

map is centered around the Harvard Forest Monitoring Site with a radius of 1500 km. 
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Fig. 7. Uncertainty reduction (in %) for 100 km prior uncertainty correlation scale for the different parameters within the state vector. Left
column is for forest, right for crop, top row for light sensitivity (controlling GEE), and bottom row for temperature (controlling R). The map
is centered around the Harvard Forest Monitoring Site with a radius of 1500 km.

seems to coincide with the land/ocean distribution, with low
influence from the ocean. Given the focus on fluxes from the
terrestrial biosphere, the simple circular averaging seems ap-
propriate. To transform the state vectorλ (spatially resolved
light and temperature sensitivities for forests and cropland)
into area and time averaged fluxes, we define the aggregation
operatorW:

F = WF = W8λ . (8)

HereF is the area-averaged flux (scalar) on the polar grid,
F is the spatially resolved flux, and8 contains the time av-
eraged radiation and temperature distribution to convert the
state vector into fluxes as defined in Sect. 2.1. The spatial dis-
tribution of vegetation type (forest and crop) and an example
of the drivers (radiation and temperature) for a specific time
are also given in Fig. 6. The error covariance matricesSλ

have to be transformed accordingly (Rodgers, 2000):

SF = WSF Wt
= W8Sλ8

tWt (9)

SF is the covariance matrix for the spatially resolved flux,
andSF is the variance of the area-averaged flux (a scalar).

4 Results

The results of the numerical experiment are presented in the
following sections related to the two main questions:

• what can we learn, assuming we know prior uncertainty
covariance (i.e. withl=ltrue), and

• what information can we lose, in case we don’t exactly
know the prior uncertainty covariance (i.e. withl 6=ltrue).

The first question is addressed in Sects. 4.1 and 4.2, while
Sect. 4.3 investigates the extent to which we retrieve false
information by assuming the wrong a priori uncertainty co-
variance length scale.

4.1 Uncertainty reduction

By combining the prior information about the state vector
λ with the additional constraint posed by the pseudo mea-
surements, the uncertainty in the retrieved state vectorλ̂, ex-
pressed by the matrix̂Sλ, is expected to be reduced com-
pared to the prior uncertainty (matrix̂Sprior). The reduction

www.atmos-chem-phys.net/6/539/2006/ Atmos. Chem. Phys., 6, 539–554, 2006



548 C. Gerbig et al.: What can tracer observations in the PBL tell about fluxes?
 

0
20

40
60

80
10

0

cov. scale 10 km

0
20

40
60

80
10

0

cov. scale 100 km

0
20

40
60

80
10

0
cov. scale 1000 km

0
20

40
60

80
10

0

cov. scale 15000 km

 

 

 

Figure 8. Uncertainty reduction (in %) in the spatially resolved flux (averaged over the month 

of August 2002) for different prior uncertainty correlation scales. The main map is centered 

around the Harvard Forest Monitoring Site with a radius of 1500 km, the inserts have a radius 

of 150 km. 
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Fig. 8. Uncertainty reduction (in %) in the spatially resolved flux (averaged over the month of August 2002) for different prior uncertainty
correlation scales. The map is centered around the Harvard Forest Monitoring Site with a radius of 1500 km.

of the uncertainty for the individual elements ofλ can be
expressed as 1–σposterior/σprior, where theσ ’s are the square
root of the diagonal elements of the corresponding covari-
ance matrices. The uncertainty reductions for the different
elements of the state vector are shown in Fig. 7. Most of the
information contained in the measurement relates to the near
field of measurement location, and the information content
decays with increasing distance. This is related to the behav-
ior of the footprint, which decays strongly with increasing
distance from the receptor. Respiration affects concentra-
tions most directly at night, when advection is weak, hence
the information about R is spatially more concentrated than
about GEE. Since there is no cropland vegetation in the near
field of Harvard Forest (see middle right graph of Fig. 6),
there is no local uncertainty reduction for the correspond-
ing light and temperature sensitivity. The nearest significant
cropland influence on the mixing ratios is in the Midwest, for
which there is a reduction in uncertainty of about 20% and
10% for the light and temperature sensitivity, respectively.

The resulting reduction of uncertainty for fluxes is shown
in Fig. 8 for a range of prior uncertainty correlation scales
ltrue (with l=ltrue). It is obvious that the spatial scale of re-
trieved information directly reflects the prior uncertainty cor-
relation scale. For shortl only a small uncertainty reduction
is attained in the very near field, while for largel an uncer-
tainty reduction of nearly 100% is obtained for a large area
surrounding the measurement location. This strong depen-
dence on the a priori uncertainty covariance shows that plots
of uncertainty reduction are not very useful indicators of the
potential constraint of an observational site on surface fluxes,
that is without making a disclaimer about the assumed a pri-
ori uncertainty covariance length scale.

Uncertainties in fluxes for the different averaging scales
(areas with different radii around Harvard forest) are shown
in Fig. 9. The prior uncertainty becomes smaller with de-
creasingl, as expected for an average of more and more sta-
tistically uncorrelated regions. Asl increases beyond the av-
eraging scale for the flux (indicated by the arrows), the result-
ing prior uncertainty for the averaged flux starts saturating
(e.g. for 516 km averaging scale at about 1.5µmol/m2/s).
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The reason for this saturation is that forl large compared to
the averaging scale there is only a single degree of freedom
in each parameter, independent of the exact size ofl.

As expected, the posterior uncertainties are significantly
smaller than the a priori uncertainties, with an uncertainty
reduction exceeding 50% for prior uncertainty correlation
scalesl larger than 300 km. The behavior of prior uncertainty
for area averaged fluxes withl (decreasing with decreasingl)
is partly compensated by the opposite behavior of the uncer-
tainty reduction. Thus the resulting posterior uncertainty for
area averaged fluxes shows a maximum near the averaging
scale. In different words, for smalll we already have a lot
of prior knowledge about the flux (many independent errors
in small regions), and the information from the atmosphere
doesn’t help that much, while for largel there are effectively
only a few degrees of freedom that can easily be constrained
by atmospheric observations.

4.2 Averaging kernel: How sharply can a tower see param-
eter fields?

Here we investigate how local changes in the parameter field
can be resolved with the retrieval based on the combination
of CO2 measurements and a set of a priori parameters. As
introduced at the end of Sect. 2.1, a given column of the av-
eraging kernel matrixA describes the retrieval of a perturba-
tion of the corresponding state vector element (see Eq. 7). An
example for this is shown in Fig. 10, where the light sensitiv-
ity for forest is perturbed at the gridcell located at a distance
of 50 km to the south-west of Harvard Forest. A perturbation
of the size of the a priori uncertainty of the parameter was
applied, given by the square root of the corresponding diag-
onal element in the prior uncertainty covariance matrix. The
map presented in Fig. 10 shows the corresponding retrieved
flux due to the change of light and temperature sensitivity for
forest in the proximity of Harvard Forest, weighted by forest
coverage.

Ideally, the Averaging kernel would be a diagonal matrix,
and the retrieval would only show a response at the loca-
tion of the perturbation. However, the loss of information
due to atmospheric mixing causes the response to be spread
out around the exact location. In addition, the length scale
of the a priori uncertainty covariancel also influences the
spreading of the response. The retrieval suggests also a sig-
nificant change in temperature sensitivity for a perturbation
in the light sensitivity (“cross-talk”), this is related to the fact
that CO2 signals caused by respiration (temperature sensitiv-
ity) and by assimilation (light sensitivity) are not completely
independent. In fact the retrieved flux due to cross-talk (top
right of Fig. 10) shows a response that varies with distance
from the tower, with maximum values that are even larger
than the direct response (top left of Fig. 10). This is related
to the much larger posterior uncertainty in the temperature
sensitivity (about a factor 7 when expressed in fluxes). The
situation is different for a perturbation in temperature sensi-
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Figure 9. Prior (light grey) and posterior uncertainties  (medium grey) vs. length scale of prior 

error covariance (l=ltrue) for averaging scales of 100 km (continuous lines), 516 km (dashed 

lines) and 1849 km (dotted lines). Also shown is the reduction in uncertainty (black lines, 

right vertical scale). 
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Fig. 9. Prior (light grey) and posterior uncertainties (medium grey)
vs. length scale of prior error covariance (l=ltrue) for averaging
scales of 100 km (continuous lines), 516 km (dashed lines) and
1849 km (dotted lines). Also shown is the reduction in uncertainty
(black lines, right vertical scale).

tivity (bottom of Fig. 10): the cross-talk is minimal, the max-
imum of the retrieved flux is located correctly, but there is a
large flux close to the tower with opposite sign. In addition
there is also some cross-talk between forest and crop sensi-
tivities (not shown). These results indicate that the method
is capable of retrieving local changes in the parameter field,
but not without some aliasing, both spatially and (as cross-
talk) between the temperature and radiation sensitivity. The
cross talk is principally not avoidable; it is related to the fact
that the measured CO2 signal does not contain the full in-
formation about the different sensitivities at the different lo-
cations. The magnitude of the cross-talk depends on the a
priori knowledge: If the a priori knowledge about respiration
fluxes (i.e. temperature sensitivity) would be comparable to
that about uptake fluxes (light sensitivity), there would be
less cross-talk from light to temperature sensitivity, but more
cross-talk in the other direction.

4.3 The case of unknown correlation scale for prior uncer-
tainty

The above results refer to the reduction in uncertainty that
can be achieved if we knowltrue, the true prior uncertainty
correlation scale. Now we investigate what happens when it
is not known, i.e. whenl 6=ltrue. Figure 11 shows the ratio of
the standard deviation of the 500 flux retrievals (based on dif-
ferent realizations of the a priori parameter fields for a given
ltrue), to the assumed posterior uncertainty (based on an as-
sumed prior uncertainty correlation scalel), for an averaging
scale of 516 km (radius of the circular area around Harvard
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igure 10. Response of the retrieval in flux units (left: forest light sensitivity, right: forest 

light sensitivity, bottom: perturbation in forest temperature sensitivity). Note the difference in 
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scale between top and bottom. 
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Fig. 10. Response of the retrieval in flux units (left: forest light sensitivity, right: forest temperature sensitivity) to a local perturbation of
the size of the a priori uncertainty in the parameter field at the gridcell 50 km to the SW of Harvard Forest (top: perturbation in forest light
sensitivity, bottom: perturbation in forest temperature sensitivity). Note the difference in scale between top and bottom.

Forest). If this ratio of actual over assumed uncertainty (i.e.
the uncertainty underestimation), is larger than one, a false
reduction of uncertainty is the result. For example, if the true
scaleltrue is 100 km (the gray curve in Fig. 11 with the filled
circle at 100 km), and the assumed scalel is 10 km, the de-
rived posterior uncertainty is a factor of 10 too small (value
of the curve at 10 km). In this situation the true flux would
not fall within the range given by a single retrieval and the
assumed uncertainty estimate, but can only be expected to be
within a 10–σ range around the estimate. Similarly, if in the
same case (ltrue=100 km) we assume a scalel of 15 000 km,
the uncertainty is underestimated by a factor of 4. On the
other hand, for a scaleltrue of 10 km, the uncertainty is over-
estimated for assumed scales smaller than about 1000 km. In
these cases of uncertainty overestimation the true flux will

fall within the error bars given by the posterior uncertainty,
but would be much closer to the value than indicated by the
posterior uncertainty, thus information would be unused.

Experiments with different averaging scales (100 km and
1849 km circle around Harvard Forest, not shown) generally
show a similar behavior: if the prior uncertainty covariance
scaleltrue is shorter than the averaging scale, and ifltrue is un-
derestimated (l<ltrue), the posterior uncertainty is more and
more underestimated. This is related to the significant under-
estimation of the prior uncertainty: by assuming a too small
decorrelation scale, the many uncorrelated errors in the prior
cancel out as 1/

√
N , with N as the number of independent

degrees of freedom within the averaging area. Similarly, if
the prior uncertainty covariance scaleltrue is larger than the
averaging scale, and ifltrue is overestimated (l> ltrue), the
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posterior uncertainty is also more and more underestimated.
This effect is similar to the aggregation error: a too large
correlation scale in the prior serves as an aggregation of the
information into only a few degrees of freedom (a few large
scale bias errors).

5 Discussion and outlook

In this experiment we have addressed the issue of aggre-
gation errors, which occur when inhomogeneous sampling
covaries with fluxes that cannot occur within the statistical
model. The choice of inhomogeneous spatial grid with high
resolution in the near-field of the measurement for biosphere-
atmosphere exchange largely avoids the aggregation error in
its classical sense (Kaminski et al., 2001). A spatial aggre-
gation error is reintroduced in the pseudo experiment when
using a too large covariance length scale for the a priori er-
ror; this represents a reduction of the effective degrees of
freedom. Further, temporal aggregation error is largely re-
duced by choosing a representation of biosphere fluxes in a
very simple diagnostic model, with parameters that control
response to light and temperature and thus allow for diur-
nally varying fluxes. When applying such a model to the real
world, however, it has to be noted that the a priori uncer-
tainty Sprior as well as the measurement errorSε, did not in-
clude temporal correlation. The same basic principles apply
for these temporal correlations as for the investigated spatial
correlations, in that the interplay of averaging time scales, in-
tegrating time scales of the atmosphere, and the differences
in true and assumed temporal correlations can cause biased
results or loss of information. Also structural error due to in-
adequate model parameterization (e.g. changes of light sen-
sitivity with water availability) has not been taken into ac-
count; so for real world applications the model either needs
to be able to resolve resulting variations in fluxes, or it has to
be allowed for in a corresponding uncertainty with the cor-
rect spatial and temporal covariances.

The obtained results can be used to address an impor-
tant question related to regional carbon budgets: how many
observing stations are required for a given accuracy of the
regional budget estimate. A rough approximation for the
achievable accuracy of a flux retrieval based on a network
of tall towers can be based on the range of posteriori uncer-
tainties (0.001–0.023µmoles/m2/s from Fig. 9) for an area of
516 km radius around each tower: with 10 towers the flux of
an area of the size of the contiguous United States could be
determined with an accuracy of 0.14–2.8 Mt C/year (assum-
ing that the uncertainties are uncorrelated between the differ-
ent circles around the sites). In comparison, current global
scale inversions achieve a posterior uncertainty for monthly
fluxes of the order of 1 Gt C/year for temperate North Amer-
ica (Gurney et al., 2004).

Although in this pseudo experiment we have paid attention
to using appropriate magnitudes for the various error terms,
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oints are plotted for l=ltrue. The vertical bar indicates the 

scale for flux averaging (516 km). Values > 1 indicate that the retrieval produces an erroneous 

nderestimation of uncertainty in the posterior parameter values. 
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Fig. 11. Ratio of actual to estimated posterior uncertainty of flux
average plotted against assumed prior covariance scalel. The dif-
ferent lines correspond to differentltrue.(used for creation of prior
realizations), and points are plotted forl=ltrue. The vertical bar in-
dicates the scale for flux averaging (516 km). Values>1 indicate
that the retrieval produces an erroneous underestimation of uncer-
tainty in the posterior parameter values.

there is certainly additional uncertainty in the representation
of biospheric fluxes with simple temperature and light sen-
sitivities, also vertical transport remains uncertain, with po-
tential biases. Further, the assumption of a covariance matrix
with an exponentially decaying spatial correlation might not
be appropriate. However, we do not feel that there is room
for more than an order of magnitude in the posterior uncer-
tainty. Given the 2–3 orders of magnitude larger uncertain-
ties from coarse global inversions, this clearly shows the po-
tential of high resolution transport modelling coupled to di-
agnostic biosphere modelling, and using continuous records
to solve for parameters in the biospheric model. Of course
this potential has yet to be realized in the future by fully cou-
pling the regional to the global scales.

The pseudo experiment also shows that the usefulness
of information from atmospheric trace gas observations de-
pends critically on what we know a priori about the flux dis-
tribution. Of course a large contribution to the reduction
achieved in the posterior uncertainty is from the assump-
tions in the prior, e.g. for a very short correlation length
scale of 10 km for the a priori uncertainty, the flux of the
US would already be determined down to an uncertainty of
0.17 Mt C/year, and not much is added by the network. In
other words, the number of stations needed to constrain the
flux at a given resolution over the whole continent is directly
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related to the reduction of uncertainty presented in the maps
of Fig. 8. With a very short a priori uncertainty correlation
length scale, the information gain only extends over small
patches and reaches, apart from the next proximity of the
tower, less than 20%. The reduction of uncertainty is further
modulated by the tracks of the air masses on their way to the
tower. In the case presented here these footprints were accu-
mulated over a month, so if shorter periods are required, the
regions with information gain are limited to even fewer ar-
eas. On the other hand, for very large scales, a single station
is sufficient to constrain a large area, and the exact location
of the footprints is less important. So the dominant scale
for determining the network density is the scale over which
the priori uncertainty in the parameters (or in the fluxes, if
one solves for fluxes) correlates; the scale of variations in the
footprint becomes important at shorter decorrelation scales.
Similarly, the scale with which local perturbations in the be-
havior of the biosphere can be resolved depends primarily on
the scale of prior error covariance, as plots similar to Fig. 10
but differentltrue indicate (not shown).

It is important to note that all errors were assumed Gaus-
sian. When applying such a method to other trace gases, such
as CO, this assumption is not valid: the distribution of CO in
the atmosphere is lognormal, mostly caused by the interac-
tion of atmospheric transport and the spatial pattern of fluxes
(dominated by emissions from localized sources with high
population density). In a similar numerical experiment de-
signed to infer CO fluxes at high spatial resolution based on
measurements at Harvard Forest and on a priori fluxes from
emission inventories (see G03b), the assumption of a Gaus-
sian a priori uncertainty (50% of the emissions) led to signifi-
cant negative emissions for localized areas with large a priori
emissions, even at larger length scales (l=100 km). A similar
problem has to be expected when including fossil fuel fluxes
for CO2 to the state vector. In these cases, a lognormal distri-
bution has to be assumed, and the optimization is not simply
a matrix inversion, but has to involve iterative searches, cf.
Manning et al. (2003).

The results strongly support that specifying the off di-
agonal elements of the covariance matrices is crucial for
Bayesian flux inversions. An incorrect length scale for the
spatial covariance of the a priori guess usually leads to ei-
ther significant under- or overestimation of the posterior un-
certainties. Underestimation of uncertainty is equivalent to
overly confident estimates, or biases in the retrievals. Over-
estimation of uncertainty is equivalent to not using all avail-
able information, but instead regarding it as noise; in this
case the retrieval will not be biased, but less accurate. The ba-
sic underlying principle is that when “defining” the off diag-
onal elements of prior covariance matrices not in accordance
with the factual behavior of the uncertainties, we change the
information contained in the prior. As shown in Fig. 11, un-
derestimation of uncertainty occurs in both cases, when using
a too large or a too short length scale compared to the actual
scale.

It is important to remember that the spatial scales of the a
priori uncertainty correlation are closely related to scales of
processes that are not included or not properly represented in
the flux model. Thus, as stated in the introduction, the ideal
way to define the prior uncertainty covariance matrix would
be to investigate the spatial (and temporal) correlations of
the residuals between the a priori flux model and such mea-
surements that went into the flux model development, or in
the case of a state vector consisting of sensitivities to envi-
ronmental drivers as presented here, to investigate the spatial
correlations of these sensitivities for a given class of vegeta-
tion. In this regard it is of course helpful if these measure-
ments (flux measurements, process studies) are made in a
spatial arrangement that would allow deriving spatial statis-
tics properties (e.g. fitting a variogram). If the datasets do
not allow this, one has to adopt other ways to derive the a
priori uncertainty covariance matrix. The simplest option is
to just assume a certain spatial correlation, as has been done
for some global scale inversions cf. Peylin et al. (2001); the
assumed correlation has to be tested however with respect to
its impact on the retrieval (at least the posterior uncertainty
should not be underestimated). A step further is to derive
the a priori uncertainty matrix from the spread between dif-
ferent models (R̈odenbeck et al., 2003); but one has to be
aware of the fact that model to model differences don’t nec-
essarily have to resemble residuals between a given model
and the truth, given that models often share a similar struc-
ture and input data. The assumed correlation could also be
based on knowledge of the spatial scales of the processes not
represented by the model, e.g. by comparing to a more so-
phisticated model that includes more detailed processes.

It is also an option to treat such a length scale as an un-
known, and to optimize not only for fluxes (or sensitivities
to environmental drivers), but also for these length scales.
This was for example suggested by Michalak et al. (2004),
who used a very simple flux model (the only a priori infor-
mation was that land and ocean have a different flux), but
solved for parameters describing the prior covariance model
(a length scale and a variance for land and ocean). However,
whichever method is used to derive the a priori uncertainty
covariance matrix, it is important to ensure these assump-
tions are conservative in that claimed uncertainties in derived
fluxes (posterior estimates) are not underestimating true un-
certainties.

Obviously, there is no simple recipe that would allow
defining a length scalel, independent of the true length scale
ltrue, such that the posterior uncertainty remains conservative
in the sense that the retrieval remains unbiased (estimated
posterior uncertainty not smaller than actual the actual uncer-
tainty, see Fig. 11). A common diagnostic to assess whether
the correct assumptions about uncertainties went into the op-
timization is the reducedχ2, i.e. the cost function (weighted
sum of squares at the optimum divided by the numbers of
degrees of freedom). As expected, reducedχ2 values close
to 1 are found forl=ltrue, (Fig. 12, filled circles). For length
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Figure 12. Reduced χ2 plotted against assumed prior covariance scale l. Grayscales and lines 

are similar to figure 11, with filled circles plotted for l=ltrue. 
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Fig. 12.Reducedχ2 plotted against assumed prior covariance scale
l. Grayscales and lines are similar to Fig. 11, with filled circles
plotted forl=ltrue.

scalesl that are very different fromltrue, reducedχ2 values
increase up to more than 4. This seems to indicate that when
including the lengthscalel in the state vector, there is a po-
tential for optimizing it in the retrieval. However, values of
reducedχ2 around 1 are also found for cases with length
scalesl that are very different fromltrue, for example for
an assumed scale ofl=40 km atltrue=15 000 km. Similarly,
when plotting the underestimation of uncertainty (i.e. the ra-
tio of actual over assumed posterior uncertainty) against the
corresponding reducedχ2 values (Fig. 13), it becomes obvi-
ous that a reducedχ2 value of close to unity is a necessary,
but not a sufficient sign for a correct posterior uncertainty.
Thus the reducedχ2 diagnostics can help to select the appro-
priate prior uncertainty covariance, but it does not guarantee
unbiased retrievals. Therefore, we recommend investigating
different possible combinations of true and assumed length
scales in order to assure that the final choice is a conservative
one.

Next steps will be to use the ROAM framework in this for-
mulation to quantitatively merge top-down constrains from
atmospheric observations with bottom-up constraints. There-
fore the simple flux model GSB will therefore be replaced
by a more sophisticated one such as the VPM (Vegetation
Photosynthesis Model, Xiao et al., 2004), which will result
in significant improvements of the representation of spatial
patterns in biosphere-atmosphere exchange fluxes. Further,
dominant transport model uncertainties such as caused by
inaccuracies in assimilated winds (Lin and Gerbig, 2005),
but also as caused by inappropriate vertical mixing within

 

reduced chi-square

ac
tu

al
 / 

es
tim

at
ed

 u
nc

er
ta

in
ty

 o
f a

ve
ra

ge
 fl

ux

0.
5

1
2

5
10

20

0 1 2 3 4 5 6

true scale 10 km
true scale 20 km
true scale 40 km
true scale 100 km
true scale 300 km
true scale 1000 km
true scale 2000 km
true scale 5000 km
true scale 15000 km

 

 

 

Figure 13. Ratio of actual to estimated posterior uncertainty of flux average plotted against 

reduced χ2. Grayscales and lines are similar to figure 11, and larger filled circles are plotted 

for l=ltrue. 

 

 

 

 37

Fig. 13. Ratio of actual to estimated posterior uncertainty of flux
average plotted against reducedχ2. Grayscales and lines are similar
to Fig. 11, and larger filled circles are plotted forl=ltrue.

the boundary layer (inaccurate mixed layer height, cf. G03b)
need to be (and will be) taken into account via error propaga-
tion; this will finally allow for reliable retrievals of regional
scale biosphere-atmosphere exchange fluxes.
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