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Abstract. We analyze the potential for inferring spatially re- 1 Introduction

solved surface fluxes from atmospheric tracer observations

within the mixed layer, such as from monitoring towers, us- Climate predictions are currently hampered by the inabil-
ing a receptor oriented transport model (Stochastic Time-ty to characterize feedback between a changing climate and
Inverted Lagrangian Transport model — STILT) coupled to sources and sinks of greenhouse gases such asa@@®

a simple biosphere in which GOluxes are represented as Methane (Friedlingstein et al., 2003). A prerequisite for de-
functional responses to environmental drivers (radiation and/elopment of a predictive capability is the understanding of
temperature). Transport and biospheric fluxes are coupled ofurrent trace gas budgets. At hemispheric scales, a major
a dynamic grid using a polar projection with high horizon- source of information has been data from the;@®serving

tal resolution {20 km) in near field, and low resolution far network (e.g. GLOBALVIEW-CQ, 2002), which are used
away (as coarse as 2000 km), reducing the number of surfadey atmospheric transport models in inversions to derive flux
pixels without significant loss of information. To test the sys- estimates. However, at the smaller scales of continents, coun-
tem, and to evaluate the errors associated with the retrievdfies or ecosystems, at which climate anomalies (droughts,
of fluxes from atmospheric observations, a pseudo data exanomalies in rainfall, temperature, etc.) as well as human in-
periment was performed. A large number of realizations oftervention (land use change) influence biosphere-atmosphere
measurements (pseudo data) and a priori fluxes were gerxchange, large uncertainties remain (IPCC, 2001; Schimel
erated, and for each case spatially resolved fluxes were reet al., 2001). Regional scale budgets have recently become a
trieved. Results indicate strong potential for high resolutionresearch focus (Wofsy and Harriss, 2002); they are a require-
retrievals based on a network of tall towers, subject to thement for any carbon trading, such as might be implemented
requirement of correctly specifying the a priori uncertainty under international agreements like the Kyoto protocol.
covariance, especia”y the off diagona| elements that control Continental scale inversions based on global observational
spatial correlations. False assumptions about the degree f@etworks provide only a weak constraint on fluxes, due to
which the uncertainties in the a priori fluxes are spatially cor-the remoteness of such observations from the land (Gloor
related may lead to a strong underestimation of uncertaintie§t al., 2000). In principle, information about regional scale
in the retrieved fluxes, or, equivalently, to biased retrievals.biosphere-atmosphere exchange is contained in mixing ra-
The framework presented here, however, allows a conservdios of CQ, over the continent, in proximity of biospheric

tive choice of the off diagonal elements that avoids biasingactivity. Gerbig et al. (2003a) (in the following referred to as
the retrievals. GO03a) demonstrated large biospheric signals in atmospheric

profiles of CQ over the North American continent, with a

significant spatial variability that closely reflects spatial vari-
ability in surface fluxes (Gerbig et al., 2003b, in the following
referred to as GO3b).
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Fig. 1. Concentrations of C®at the Harvard Forest tower compared to remote station and aircraft data. Upper left: hopr{pq) at

30m [grey dots], midday values [black circles], 10-day medians of the midday data [blue line], and 10-day medians from Bermuda East
[orange line] and Mauna Loa [red line]. Middle left: difference (ppm) between midday Harvard Forest concentrations and Bermuda E, color-
coded by the sign of the COlux (green=uptake, red=emission). Lower left: 10-day median of the daily mearfl@at Harvard Forest

(umole n2s 1, Right collumn: same as left, expanded time axis, with addition of data from 3 km altitude from aircraft sampling over
Harvard Forest [black line dotted]. (Bermuda, Mauna Loa, and aircraft data from T. Conway, NOAA Climate Monitoring and Diagnostics
Laboratory, 2004).

Long-term observations of COn the continental bound- the aggregation error has to be accounted for in the inversion,
ary layer with sufficient accuracy are available from tall tow- and (as GO3b argued) this might involve not just a random er-
ers (Bakwin et al., 1995) as well as from a number of,CO ror but also a bias term.
eddy flux towers (Fig. 1), and the spatial density of this net- . i ) , o
work of sites is increasing (Wofsy and Harriss, 2002). These Baye3|an Inversion methods require as inputs an a priori
data are closely related to regional fluxes of.Cespecially estlma}te of the state (|.n this case the surface flu>.<es) and an
when they can be compared to observations from above thgssoc_:la_ted_error covariance matrix that characterizes t_he_un-
planetary boundary layer (PBL) and/or remote stations aC€"t@inties in the estimate (Rodgers, 2000). When retrieving
similar latitudes (Fig. 1, compare middle and lower panels).ﬂux mformapon at hlgh spatlc_sll resolut|o.n, specw_ll attention
Unfortunately, the large spatial as well as temporal variabil-12S 1 be given to this covariance matrix, most importantly

ity of the fluxes limits the usefulness of these data in currentN® off-d@gonal elements. This Icap beb|llustratedqffW|th t‘"llo
models used for inversions, and interpretation of the obserEX'éMes: &) Assuming no correlation between different lo-

vations requires quantitative understanding of transport pro-Catlons (i.e. zero off-diagonal elements) implies very small a

cesses affecting the PBL. Most inversions so far have used Briori uncertainties on large scales, since uncorrelated errors
) ' X /2 i id-

representation of surface fluxes where surface grid elementar€ reduced by factor 1/N/2, with N as the number of grid

are aggregated to large regions (typically 10-20 gIobaIIy)Ce"S aggregated. For alarge numberofmdependeptgndcells

(Gurney and al., 2002), and PBL processes are not accurate@/arge degrees of freedom) the atmospheric inversion will be

represented; these inversions are subject to additional repré@SS SUCCESSf(L;I in copst:jalnlnglfluxes;lm fact th.e t[)aroblem t_’e'
sentation errors (the so-called “aggregation error”; Kaminskic0mes underdetermined (Peylin et al., 2001); b) assuming

et al., 2001). GO3b showed that changes in,@Oncentra- perfect correlation between different locations means there
tions over the continent are directly related to spatial varia-'> OEBI’ one deg:ree of freedot;n (‘;’1‘ bl_as) to. be constrameld for
tions of surface fluxes in the near field of the measuremenf@c" 'argé scaLe aggredggteh y the |nver5|on.d'Large scale agd—
locations. To quantitatively extract the information, aggre- gregation (such as used in the TransCom studies (Gurney an

gation to coarse spatial scales should be avoided. Otherwisd-+ 2002) is equivalent to the assumption of perfect uncer-
tainty covariance within each aggregate. But, as illustrated
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in Fig. 1, data from continental sites are sensitive to regionalformation we have in terms of the a priori fluxes, and we

fluxes, and this approach would render these data useless oan estimate how much additional information is provided

the inversion. A realistic covariance of the prior uncertainty by the mixing ratio measurements. The two main questions

will fall between these two extremes. addressed in this paper are: 1) what can we learn, assuming
A direct way to derive the uncertainty covariance would be we know prior uncertainty covariance, and 2) what informa-

to compare the prior flux estimate to measurements at varition do we lose, in case we have imperfect knowledge about

ous locations, and to investigate the spatial and temporal cortthe prior uncertainty covariance.

relation of the residuals (differences between measurement In Sect. 2, we present the model linking spatially varying

and flux estimate). However, this requires a dense networlbiospheric parameters with G@nixing ratios. Section 3 de-

of flux measurement sites in a spatial arrangement that alscribes the setup of the numerical experiment, including the

lows for spatial statistics, e.g. multiple replica within similar generation of pseudo data and a priori parameter fields, and

ecosystems at various distances. Lacking observational comretrieval of optimized parameters. Results are presented in

straints for the prior uncertainty covariance, one has to makesect. 4, with the achievable reduction in uncertainty of area

assumptions about the spatial correlations, e.g. in the form overaged fluxes, the spatial resolution of retrievals, and the

a correlation length scale, for example, adopting the spatialimpact of false assumptions about the length scales of the a

statistics of differences between different biospheric modelgriori uncertainty covariance.

(Rodenbeck et al., 2003). Alternatively, correlation length

scales have been estimated by optimization of the model- .

data system using a geostatistical approach (Michalak et aI.2, Modeling framework

2004). Both approaches give only a surrogate for true uncers,

tainties and their spatial covariances. In a recent study on re-

gional scale inversions (Peylin et al., 2005) the assumed cor-

relation length scale was varied between 500 and 2000 kmyye yse the ROAM (receptor oriented atmospheric model)

yielding significantly different flux distributions. framework described in GO3b and by Lin et al. (2004), with
To investigate the inference of GQlux from measure- gL T as a transport model coupled to surface fluxes on high

ments of CQ over the continent (e.g. the data in Fig. 1), and gpatial resolution. Following the notation in Lin et al. (2004),

especially the dependence on the assumed error charactqfye mixing ratio at the receptor €, 7,) (with fixed location

istic, we set up the ROAM (receptor-oriented atmospheriCy y can be written as a sum of signals due to surface fluxes

model) framework described in GO3b to retrieve fluxes at oy, vj, tn) (flux at location §;, y;) and timer,,) and con-

high spatial resolution. ROAM couples a high resolution yjhytions from model boundarieS(x; 12k 10):

transport model (the Stochastic Time-Inverted Lagrangian

Transport model, STILT, Lin et al., 2003) to a simple bio- €, )= Z Jers telxis yjs tm)-F (Xis ¥j tm)

.1 Linking observational constraints to flux model param-
eters

sphere flux model intended to capture the temporal and spa- Ljm
tial variance over the continent. The flux model used here, contribution from sourcesinks
denoted the “Greatly Simplified Biosphere” (GSB), param-
: ; . I(xy, telxi, Vi, 2k, 10)-C(Xi, Vi, Tks & 1
eterizes net ecosystem exchange as a response to radiation +§;{ (r trlxis Vi 2k, 10)-C (i, 3 2k 10) (1)

and temperature, similar to GO3b, except that here we solve
for temperature and light sensitivities directly rather than for contribution from advection of upstream tracer field
scaling factors of respiration fluxes and uptake. A further,Here f(x,, t/|x;, y;, t) is the footprint (also called surface
but more important difference is that we avoid spatial aggre-influence), that relates surface fluxesxaty;, and timez,,
gation errors by using spatially varying sensitivities at a spa-to mixing ratios at receptors located st at time ., and
tial resolution that degrades with increasing distance fromlIx, t.|x;,y;,z, t) is the influence (weighting) of concentra-
the measurement location. Note that the approach chosetions at the boundary. The summations in principle cover
here differs from the above mentioned studies (Michalak etthe globe, but in practice the domain is much smaller, lim-
al., 2004; Peylin et al., 2005;d&lenbeck et al., 2003) in that ited to surface locations and times whefeis finite and
not spatially resolved fluxes are optimized, but rather theirsimilarly for 7. To calculate footprint and influence, STILT
spatially resolved sensitivities to the dominant environmentalwas driven by assimilated meteorological data from EDAS
drivers (radiation and temperature) that can after optimiza{ETA Data Assimilation System) (Rogers et al., 1995) sup-
tion be turned into fluxes. plemented by GDAS (Global Data Assimilation System) (de-
As a step towards high-resolution retrievals of surfacetails see G03b), and run for 15 days backwards in time. The
fluxes, we apply this framework to pseudo data generatedransport simulation was done for the measurement location
for the Harvard Forest Environmental Monitoring Site (Bar- at Harvard Forest every 3 h throughout August 2002, result-
ford et al., 2001; Wofsy et al., 1993). The advantage in usinging in N=248 runs.
pseudo data rather than real data is that we know the truth Equation (1) can be written using vector notation, with
in the “pseudo-world”, so we can control exactly what in- the mixing ratio at the receptor as vect@rof dimension N
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containing the whole time-series (N discrete points in timewith y=C— C,—fFcomp as the observational constraint on

). biospheric parameters (similar 50CO, ,., in GO3b),K=f®
C _ FF as the Jacobian (sensitivities of measurementith respect
— — to biospheric parameteky. Note that the error terma, dif-
observations  contribution from surface fluxes fers from the error term in Eq. (1) in that it also includes
+ Lcj +£,, : (@) errors due to uncertainties in the contribution from combus-
contribution from boundary €rror tion fluxesf Fcompand in the representation of the biospheric
fluxes.

Now surface fluxes are presented as modeled flu#kes
vector of length N=N,*N*N containing fluxes at all sur- By referring toy=C— C,,~f F compas an observational con-
face locations and at all times prior to the measurement timeStraint, although the only observable is the mixing rafio
f is a matrix of footprint elements with dimension N *\  We made two simplifying assumptions:
andl, the influence matrix relates mixing ratios from the lat-
eral model boundarie€', to mixing ratios at the receptor. 1) The contribution from the lateral boundary of the do-
The error terme describes differences between measuredand ~ mainl C;, is assumed to be known. Since here we are us-

modeled values due to uncertainties in transpfort)( mea- ing simulated measurements rather than real world data,
surements(’), and boundary fields(;,). this is not really an assumption. However, in the real
The general idea of the inversion is that information con- ~ world contributions from the boundary can be estimated
tained in observations can be translated into information ~ from a climatological model of background mixing ra-
about fluxes. Here our focus is on biospheric flukggs and tios (GO3b) or by filtering the measured timeseries itself

its dependence on environmental drivers such as light (radia-  (Wang, 2003); other possibilities include coupling to a
tive flux) and temperature. Therefore we write the surface  global model or using frequent aircraft data (cf. Fig. 1).
fluxes in Eq. (2) as a sum of biosphere-atmosphere exchange In general there will be an estimate of this contribution
fluxes Fhios and fluxes from combustion processﬁgomb with an Uncertainty that has to be taken into account.
(fossil fuel and biomass burning emissions). The biospheric

flux representation was simulated using the GSB, with a light 2) Signals from any surface fluxes other than biospheric
and temperature response keyed to vegetation class accord- fluxes, such as fossil fuel emissions of &Qre as-
ing to the IGBP vegetation, and with sensitivities derived sumed to be known. Again, in a world with simulated
from fitting to FLUXNET data (Baldocchi and al., 2001) (de- measurements this is not an issue, however, in the real
tails see GO3b). Here we use a further simplification by only world this means knowing combustion flux&gsomp or
taking into account linear responses to temperature and ra- the signald Fcomp 0n small spatial scales well enough,

diation. Thus the biospheric flux for a given locatiband i.e. significantly better than biospheric fluxes or signals.
vegetation type at timer can be written as the sum of gross GO03b used a combination of measured CO and emis-
ecosystem exchange and respiration flux: sion ratios to estimate fossil fuel and biomass burning

signals, but considerable uncertainty is associated with

Fpios =GEE R . . . . .
bios,Lt,v L + R such estimates. Future inversions will need to simul-

= very (ARadt,w SWRFL; + Atempt,v (T — To)) - (3) taneously solve for combustion fluxes as well as bio-
Herevq , is the relative coverage of the given vegetation ~ Spheric parameters, and use of multiple tracers (e.g. CO)
type in the gridcell at locatio, Arads,, and Atemps,» are may help this task by addmg constraints. Here_ we as-
the radiation and temperature sensitivities (see also Table 1), Sume that there are uncertainties associated with fossil
SWRF, is the shortwave radiative flux, and,Tis the tem- fuel and biomass burning emissions that contribute to

perature. In vector notation this can be written for all imes ~ the overall uncertainty, .

and locations as _ o _ _
Given a set of a priori parameter estimakggor with uncer-

Fpios = P4, (3a) tainty covarianc&yrior, and following the Bayesian synthesis
where the biospheric flux is written as the product of the pa-inversion (a good description of atmospheric inverse methods
rameters vectok (the state vector), that combines the light is given e.g. in Rodgers, 2000), we estimate the state vector
and temperature sensitivities for different vegetation types at as:

the different flux locations, and matrik, that contains prod-

ucts of relative vegetation cover and temperature or radiaj — (K SK+st )*1 (K sty + s Xprior) (5)

tion in each grid element at the different times. As in GO3b, prior : ror
temperature and shortwave flux are taken from the assimi-
lated meteorological fields used to drive STILT. Rearranging
Eqg. (2) to separate out the biospheric parameters gives

with error covarianc&, for the measurement errey. Equa-
tion (5) improves the (imperfect) prior knowledge about the
parametersAprior, Sprior) by combining it with the constraint
y=K\i+e, (4) provided by atmospheric measurementsS;) and coupled
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Table 1. Radiation and temperature sensitivity for biospheric fluxes and the associated uncertainties, from fit to AmeriFlux data (after GO3b).
The last column shows the correlation coefficient between radiation and temperature sensitivity.

Vegetation AR a(AR) AT o(Ar) COr(AR,AT)
type
(simplified)

pwmol/m2/s/(W/mf) pumol/im2/s/(W/me) umol/im?/s/K wmol/m?/s/K
Forest -0.018 0.013 0.14 0.11 -0.74
Cropland -0.027 0.058 0.14 0.58 -0.72

atmospheric transport and biospheric mddelThe a poste-
riori uncertainty for is given by

60

1 w
& Te-1 —1 —
S =(K'S™K +50) - (6) 5
3 wE
Following Rodgers (2000), we can also write for the poste- - °
rior estimate of the state vector (Eq. 5): S . s
S g =g
A — Aprior = A(A — Aprior) + Gy ey (7) é © 8
8 w g
with the S0 called gain matrix 3 _E
-1 T8
G,= (KTS;1K+SEri10r> KTs;! and the averaging u g
kernel matrixA=G,K. In Eq. (7) we can interpret a given Q ®
column ofA as the response of the retrieval to a perturbation 4
of the corresponding element of the state vector. This will
be used in Sect. 4.2. -140 -120 -100 -80 -60

longitude/[deg]
2.2 Reduction in dimension of state space
Fig. 2. STILT derived footprint for the Harvard Forest Monitor-

The simplicity of Eq. (4) hides the complexity and magnitude ing Site on 17 August 2002 at 15:00 GMT, for different times
of the problem: the representation links light and temperaturebackwards and integrated over 3h (i.e. =12 h denotes the interval
sensitivitiesk of biospheric fluxes (the state vector) from dif- from 12 to 15 h prior to the release time). As the area of the foot-
ferent vegetation types at all times and all surface flux loca-print at a given time increases, the dynamic resolution from STILT
tions that influence the measurements to an observable corf100ses coarser pixels to represent the footprint. The footprints
strainty. For example, for a spatial domain that roughly cov- for dlfferentoresolutlons_ are re_sgaled to the finest re_solutlon grid
ers North America at a resolution of 20 km there are 120 000(1/6O|at>< 1/4°lon) to avoid the trivial dependence on grid area.
different gridcells, and about 1/4 of these cells are covered by
vegetation. For two vegetation types and two sensitivities (to
light and temperature), each of these 30 000 vegetated cellst some far away small surface area does not affect local mix-
requires 4 degrees of freedom at any given time; and if onéng ratios and need not be (indeed, cannot be) accounted for
is interested in e.g. a one-month duration and allows the senseparately from surrounding surface elements. The reason
sitivities to vary on daily timescales, the required number offor this is that the size of the footprintsf(, ¢.|x, ) for a
parameters is about 3.6 million. A retrieval on a grid with measurement made at locatiopand timet, increases with
such a number of unknowns is not feasible — e.g., the priorlapsed time, — due to atmospheric mixing, and the mag-
uncertainty covariance matrix itself will have more thad®0 nitude of the elements of correspondingly decrease, as il-
elements, and plainly there is insufficient information in the lustrated in Fig. 2. The footprint-area at 3 days prior (=72 h)
data to constrain so many parameters. is more than 10 times larger than the footprint-area at 1 day

Therefore it is necessary to reduce the state space dpprior to arrival. Figure 2 also illustrates our approach to en-
mension significantly (both spatially and temporally), ideally large the grid size with increasing footprint area, “dynamic
without losing any information. We know that for a given grid resolution” as described in GO3b. This dynamic reso-
measurement location the spatial differences in surface fluxekition was necessary due to the limited number of particles

www.atmos-chem-phys.net/6/539/2006/ Atmos. Chem. Phys., 6 55392006
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Fig. 3. Gridcell area vs. distance from the receptor location. The
dynamic resolution from STILT is shown as solid gray line (50%ile grid representation falls between the 10%ile and the 50%ile
of influence) and dotted gray line (10%"8 of influence). The solid curve of the dynamic grid, i.e. has appropria‘te resolution in
black line indicates the spatial resolution of the polar projection t3r more than 50%, but not quite 90% of the time. As an ex-
with 32 sectors and 30 radial segments, with each symbol reprez 6 the footprints shown in Fig. 2 are recalculated in polar
senting a radial segment. Note that the square root of the grldcell:oordinates, and than transformed back to Cartesian coordi-
area is plotted as y-axis. nates for visualization (Fig. 4). The relevant spatial structure
in the footprint is well represented on the polar coordinates.
The parameterk are allowed to vary spatially, with reso-
representing the airmass. Results using high resolution foottion given by the polar grid, reducing the size of the state
prints throughout (20km up to 15 days, with 4000 parti- vectora by a factor of about 60 compared to the Cartesian
cles) rather than dynamically adjusted resolution (also withgrig (Lat-Lon), without significant loss of information. Since
4000 particles) showed only minor differences (rms errorye are here interested primarily in the spatial scales, we
~3% of the biosphere signal, or a factor of 4 smaller than themade the simplifying assumption that the parametesse
uncertainty due to the limited number of 100 particles repre-constant over one month, reducing the state space dimension
Senting the ail‘maSS, see G03b) From this we can ConC|ud§y another factor of 30 Compared to da”y Varying param-
that spatial variations in surface fluxes on scales smaller thagters. This choice thus makes a retrieval of the remaining
the resolved scale at a given time (with dynamic grid res-2048 elements of feasible.
olution) have no significant impact on mixing ratios at the
receptor.

Here we need a grid with a resolution that decreases wit
d_istance from_ the receptor, a_nd that does not change Wiﬂ:"he experiment consists of the following steps:
time, thus defining an appropriate state space for a given re-
ceptor. Hence we use a simple polar projection, with 32 sec- 1) Pseudo data are generated from a set of parameter fields
tors and 30 radial discs to represent the footprints. The grid  (the “truth”, Sect. 3.1).
was chosen so that the area for each grid-cell as a function of
distance from the recepterbehaves similar to the dynamic
grid (Fig. 3), with a grid cell area increasing proportional
to r2, increasing the radial step-size proportionat tstart-
ing with a minimum step-size of 20km. Since the dynamic
grid resolution changes (in time) for a giventhe 10%ile 3) A posteriori parameter fields are retrieved based on
(50%ile) of the gridcell area is shown in Fig. 3, i.e. 10% the prior and an assumed prior uncertainty covariance
(50%) of the influence was represented with a higher reso-  which may differ in its decorrelation length scale from
lution, respectively. The grid-cell area of the chosen polar the true uncertainty covariance of the prior (Sect.3.3).

B Experiment setup

2) A number of a priori parameter fields are generated,
with spatial covariance decaying with different decorre-
lation length scales (and encapsulated in the uncertainty
covariance matrix) (Sect. 3.2).

Atmos. Chem. Phys., 6, 53954, 2006 www.atmos-chem-phys.net/6/539/2006/
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4) Fluxes based on the retrieved and the true parameter o]
fields are calculated for different scales of spatial av- A

i simulated, cartesian

eraging (SeCt. 34) ' — simulated, polar -

o | i ) —-- observed
™

400

390

3.1 Generation of pseudo data

T
380

observed CO, (ppm)

Pseudo data for biospheric signals are calculated after
Eqg. (2) from “true” parameter fields, that are assumed to
be spatially constant for simplicity (spatially uniform light
and temperature sensitivity for forests and croplands after
Table 1). Even though the parameters fields are spatially
constant, strong gradients in surface fluxes result from the
different responses for different vegetation types, and from
gradients in the environmental drivers temperature and radi-
ation. A realization of the error term), was created based L
on a Gaussian sample with standard deviation of 2 ppm. This 8 x x x x x \
uncertainty is meant to account for (a) uncertainty in the mea- 0 5 10 15 20 25 30
surements themselves (less than 0.5 ppm at Harvard Forest), Day in august 2002

and errors in the modeling framework such as (b) inability

to reproduce eddies in the atmosphere (ranging from 0.2 td&ig. 5. Simulated CQ mixing ratios at Harvard Forest from bio-
2ppm — G03a), (c) uncertainties in fossil fuel signals (or- spheric flux_es using dynamic gridsize (_gray line), and polar grid
der of ppm — G03a), (d) uncertainties in the tracer boundar)ﬂth'n black Ilne): Also shown as dashgq Ilng are observatlpns on the
fields (~1 ppm after G03a), and (€) errors in the biosphericsame scale, shifted for better readability (right vertical axis).

model formulation (true fluxes are affected by factors other

than temperature and radiation). The 2ppm assumed un3-2 Generation of a priori parameter fields

certainty is a lower limit, or the information content of the o _ _ )
measurements derived here represents an upper bound, sinfégriori parameter fields are created by adding noise to the
uncertainties related to imperfect transport are not included. 'U€” parameter values, with the same variance as the prior
The transport error for the current framework is on the or-uncertainty (Table 1), and with a variety of decorrelation

der of 2 ppm for the Harvard Forest site, following methods €ngth scaledye ranging from 10 to 15000km. The spa-
discussed in Lin and Gerbig (2005); however, we did not in-tial covariance was assumed to decay exponentially with dis-

clude this since it can be assumed that in future models thi¢ance. Thus a covariance matrix was constructed with diag-
will improve. onal elements as prior uncertainties (from GO03b), and off-

) ) . ) diagonal elements decaying with &xql/ly,0), With d as
The simulated C@signals using values for the biosphere the distance between the grid cells. Parameter fields were
flux parameters from GO3b (not including the measurementhen generated as a realization of the noise using spectral

error) are shown in Fig. 5, together with observed:CThe  gecomposition of this covariance matrix (see e.g. Cressie,
simulations have a lot of similarity with the measurements, 19g3).

with a pronounced diurnal and synoptic variability. Diurnal

maxima are not well represented due to the inability of the3.3 Retrieval of parameter fields

model to reproduce a shallow nocturnal boundary layer: the

modeled boundary layer height is often too high, causing thePosterior fluxes and associated uncertainties are retrieved
footprint to cover a larger area (due to larger wind speeddrom the pseudo data and the prior parameter fields follow-
in the deeper layer) and the biospheric signal from nocturnaing Eq. (5). As mentioned before, the decorrelation length
respiration to be too small (due to the vertical dilution in a scale for the assumed prior errdy €an be different from
deeper layer). This underestimation of respiration signals inthe one used to create the prior parameter figlgt), since

the pseudo data means that processes dominating the daiy the real world this length scale is not necessarily known.
and night-time fluxes (assimilation and respiration) will not Also, the aim of this work is to test how results depend on
be as separable as in the real world. Also shown in Fig. 5 ar¢his knowledge. Therefore fluxes are retrieved for 9*9 differ-
the simulated C@ signals using the Cartesian grid, nearly ent combinations of assumed prior decorrelation staled
indistinguishable from the version based on the polar gridtrue decorrelation scalg,e. To allow statistical sampling of
(standard deviation of differences 0.6 ppm), supporting ourthese retrievals, 500 different realizations of prior parameter
claim that no significant loss of information occurred in the fields were used, resulting in a total number of 40500 re-
regridding from Cartesian to Polar coordinates. trievals.
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Fig. 6. Monthly averaged footprint for Harvard Forest daytime (18:00 and 21:00 UT, top left) and nighttime measurements (06:00 and
09:00 UT, top right), as well as vegetation coverage (bottom). The map is centered around the Harvard Forest Monitoring Site with a radius
of 1500 km. Note that the footprint maps are rescaled to>a220km grid for comparability with the cartesian grid and to avoid the trivial
dependence on grid area.

3.4 Area averaging aging should be done over areas where the footprint is
strongest, such as in the dominant wind direction upwind of
Results are presented in terms of retrieved fluxes and theithe receptor (see Fig. 6, top). However, for simplicity we use
uncertainties for averages over areas of different sizes rangzircular areas centered at the Harvard Forest site with radii
ing from local to continental scales. Ideally, flux aver- of 100, 514 and 1849 km. In fact, the footprint distribution
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Fig. 7. Uncertainty reduction (in %) for 100 km prior uncertainty correlation scale for the different parameters within the state vector. Left
column is for forest, right for crop, top row for light sensitivity (controlling GEE), and bottom row for temperature (controlling R). The map
is centered around the Harvard Forest Monitoring Site with a radius of 1500 km.

seems to coincide with the land/ocean distribution, with low4 Results

influence from the ocean. Given the focus on fluxes from the

terrestrial biosphere, the simple circular averaging seems apthe results of the numerical experiment are presented in the
propriate. To transform the state veciofspatially resolved  following sections related to the two main questions:

light and temperature sensitivities for forests and cropland)
into area and time averaged fluxes, we define the aggregation
operatow:

F=WF =Wox. (8)

e what can we learn, assuming we know prior uncertainty
covariance (i.e. witl=lye), and

o what information can we lose, in case we don't exactly
know the prior uncertainty covariance (i.e. withliyye).

Here ' is the area-averaged flux (scalar) on the polargrld,.l_he first question is addressed in Sects. 4.1 and 4.2, while

F is the sp_atlglly resolved flux, and Qon_taln_s the time av- Sect. 4.3 investigates the extent to which we retrieve false
eraged radiation and temperature distribution to convert th(?nformation by assuming the wrong a priori uncertainty co-
state vector into fluxes as defined in Sect. 2.1. The spatial dis-_ . y 9 gap
. : variance length scale.
tribution of vegetation type (forest and crop) and an example
of the drivers (radiation and temperature) for a specific time4 1 yncertainty reduction
are also given in Fig. 6. The error covariance matriggs
have to be transformed accordingly (Rodgers, 2000): By combining the prior information about the state vector
A with the additional constraint posed by the pseudo mea-
Sp = WSFW' = WS, d'W'’ 9 o . N
F F " ©) surements, the uncertainty in the retrieved state vegtex-
Sr is the covariance matrix for the spatially resolved flux, pressed by the matris,, is expected to be reduced com-

andSy is the variance of the area-averaged flux (a scalar). pared to the prior uncertainty (matlég,rior). The reduction
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Fig. 8. Uncertainty reduction (in %) in the spatially resolved flux (averaged over the month of August 2002) for different prior uncertainty
correlation scales. The map is centered around the Harvard Forest Monitoring Site with a radius of 1500 km.

of the uncertainty for the individual elements bfcan be The resulting reduction of uncertainty for fluxes is shown
expressed as Iposteriofoprior, Where theo’s are the square in Fig. 8 for a range of prior uncertainty correlation scales
root of the diagonal elements of the corresponding covariyye (With I=Iyye). It is obvious that the spatial scale of re-
ance matrices. The uncertainty reductions for the differentrieved information directly reflects the prior uncertainty cor-
elements of the state vector are shown in Fig. 7. Most of therelation scale. For shoftonly a small uncertainty reduction
information contained in the measurement relates to the neds attained in the very near field, while for larg@n uncer-
field of measurement location, and the information contenttainty reduction of nearly 100% is obtained for a large area
decays with increasing distance. This is related to the behavsurrounding the measurement location. This strong depen-
ior of the footprint, which decays strongly with increasing dence on the a priori uncertainty covariance shows that plots
distance from the receptor. Respiration affects concentraef uncertainty reduction are not very useful indicators of the
tions most directly at night, when advection is weak, hencepotential constraint of an observational site on surface fluxes,
the information about R is spatially more concentrated thanthat is without making a disclaimer about the assumed a pri-
about GEE. Since there is no cropland vegetation in the neaori uncertainty covariance length scale.
field of Harvard Forest (see middle right graph of Fig. ),  yncertainties in fluxes for the different averaging scales
there is no local uncertainty reduction for the correspond-(4reas with different radii around Harvard forest) are shown
ing light and temperature sensitivity. The nearest significant, Fig. 9. The prior uncertainty becomes smaller with de-
cropland influence on the mixing ratios is in the Midwest, for creasing, as expected for an average of more and more sta-
which there is a reduction in uncertainty of about 20% andyistically uncorrelated regions. Asncreases beyond the av-
10% for the light and temperature sensitivity, respectively.  graging scale for the flux (indicated by the arrows), the result-
ing prior uncertainty for the averaged flux starts saturating
(e.g. for 516 km averaging scale at about /ArBol/m?/s).
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The reason for this saturation is that {darge compared to
the averaging scale there is only a single degree of freedom
in each parameter, independent of the exact siZe of

As expected, the posterior uncertainties are significantly
smaller than the a priori uncertainties, with an uncertainty
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tainty reduction. Thus the resulting posterior uncertainty for « | ¥ 8
area averaged fluxes shows a maximum near the averagin - 3
scale. In different words, for smallwe already have a lot 7 ) L o

of prior knowledge about the flux (many independent errors
in small regions), and the information from the atmosphere
doesn’t help that much, while for largeéhere are effectively
only a few degrees of freedom that can easily be constrained C’H,
by atmospheric observations.
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4.2 Averaging kernel: How sharply can a tower see param-
eter fields? Fig. 9. Prior (light grey) and posterior uncertainties (medium grey)
vs. length scale of prior error covariande=(;,,.) for averaging
Here we investigate how local changes in the parameter fielgc@les of 100km (continuous lines), 516km (dashed lines) and
can be resolved with the retrieval based on the combinatio 849 km (dotted lines). Also shown is the reduction in uncertainty
- black lines, right vertical scale).
of CO, measurements and a set of a priori parameters. A
introduced at the end of Sect. 2.1, a given column of the av-

graging kernel matriA. describes the retrieval of a perturba- tivity (bottom of Fig. 10): the cross-talk is minimal, the max-
tion of the corresponding state vector element (see Eq. 7). Affym of the retrieved flux is located correctly, but there is a
_example for t_h's is shown in Fig. 1_0' where the light se_nsmv- large flux close to the tower with opposite sign. In addition
ity for forest is perturbed at the gridcell located at a d'Star_‘CGthere is also some cross-talk between forest and crop sensi-
of 50 km to the south-west of Harvard Forest. A perturbationyisies (not shown). These results indicate that the method

of the size of the a priori uncertainty of the parameter wasjg canaple of retrieving local changes in the parameter field,
applied, given by the square root of the corresponding diagy, ¢ not without some aliasing, both spatially and (as cross-

onal element in the prior uncertainty covariance matrix. The,y ) hetween the temperature and radiation sensitivity. The
map presented in Fig. 10 shows the corresponding retrieved, ,oq 51k is principally not avoidable; it is related to the fact
flux du_e to the ch.an.ge of light and temperature sensitivity forihat the measured CGsignal does not contain the full in-
forest in the proximity of Harvard Forest, weighted by forest o, mation about the different sensitivities at the different lo-
coverage. _ _ . cations. The magnitude of the cross-talk depends on the a
deally, the Averaging kernel would be a diagonal matrix, riori knowledge: If the a priori knowledge about respiration

and the retrieval would only show a response at the locafyes (i.e. temperature sensitivity) would be comparable to
tion of the perturbation. However, the loss of information 5t apout uptake fluxes (light sensitivity), there would be

due to atmospheric mixing causes the response to be spreggss cross-talk from light to temperature sensitivity, but more
out around the exact location. In addition, the length scale;,oss-talk in the other direction.

of the a priori uncertainty covariandealso influences the

spreading of the response. The retrieval suggests also a sig-3 The case of unknown correlation scale for prior uncer-
nificant change in temperature sensitivity for a perturbation tainty

in the light sensitivity (“cross-talk”), this is related to the fact

that CQ signals caused by respiration (temperature sensitiv-The above results refer to the reduction in uncertainty that
ity) and by assimilation (light sensitivity) are not completely can be achieved if we knowye, the true prior uncertainty
independent. In fact the retrieved flux due to cross-talk (topcorrelation scale. Now we investigate what happens when it
right of Fig. 10) shows a response that varies with distancas not known, i.e. whe#s£le. Figure 11 shows the ratio of
from the tower, with maximum values that are even largerthe standard deviation of the 500 flux retrievals (based on dif-
than the direct response (top left of Fig. 10). This is relatedferent realizations of the a priori parameter fields for a given
to the much larger posterior uncertainty in the temperaturdye), to the assumed posterior uncertainty (based on an as-
sensitivity (about a factor 7 when expressed in fluxes). Thesumed prior uncertainty correlation scjgefor an averaging
situation is different for a perturbation in temperature sensi-scale of 516 km (radius of the circular area around Harvard
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Fig. 10. Response of the retrieval in flux units (left: forest light sensitivity, right: forest temperature sensitivity) to a local perturbation of
the size of the a priori uncertainty in the parameter field at the gridcell 50 km to the SW of Harvard Forest (top: perturbation in forest light
sensitivity, bottom: perturbation in forest temperature sensitivity). Note the difference in scale between top and bottom.
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Forest). If this ratio of actual over assumed uncertainty (i.e.fall within the error bars given by the posterior uncertainty,
the uncertainty underestimation), is larger than one, a falsdut would be much closer to the value than indicated by the
reduction of uncertainty is the result. For example, if the trueposterior uncertainty, thus information would be unused.

scalelyye is 100 km (the gray curve in Fig. 11 with the filled
circle at 100km), and the assumed sdaig 10 km, the de- Experiments with different averaging scales (100 km and
rived posterior uncertainty is a factor of 10 too small (value 1849 km circle around Harvard Forest, not shown) generally

of the curve at 10km). In this situation the true flux would Show a similar behavior: if the prior uncertainty covariance
not fall within the range given by a single retrieval and the SCa@l€/trueis shorter than the averaging scale, arlghjé is un-

assumed uncertainty estimate, but can only be expected to yerestimated//ie), the posterior uncertainty is more and
within a 10-e range around the estimate. Similarly, if in the mMore underestimated. This is related to the significant under-

same casd =100 km) we assume a scdlef 15000km,  estimation of the prior uncertainty: by assuming a too small
the uncertainty is underestimated by a factor of 4. On thedecorrelation scale, the many uncorrelated errors in the prior
other hand, for a scalge of 10 km, the uncertainty is over- cancel out as ¥/N, with N as the number of independent
estimated for assumed scales smaller than about 1000 km. Iegrees of freedom within the averaging area. Similarly, if

these cases of uncertainty overestimation the true flux willthe prior uncertainty covariance scaige is larger than the
averaging scale, and ifye is overestimated/ & lyye), the
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posterior uncertainty is also more and more underestimated.
This effect is similar to the aggregation error: a too large
correlation scale in the prior serves as an aggregation of the _ | \
information into only a few degrees of freedom (a few large
scale bias errors).

true scale 10 km
true scale 20 km
true scale 40 km
true scale 100 km
true scale 300 km
true scale 1000 km
true scale 2000 km
S true scale 5000 km
true scale 15000 km

tetttt

5 Discussion and outlook

ertainty of average flux

In this experiment we have addressed the issue of aggre-¢
gation errors, which occur when inhomogeneous sampling g
covaries with fluxes that cannot occur within the statistical -
model. The choice of inhomogeneous spatial grid with high =
resolution in the near-field of the measurement for biosphere-
atmosphere exchange largely avoids the aggregation errorin =« +
its classical sense (Kaminski et al., 2001). A spatial aggre-
gation error is reintroduced in the pseudo experiment when
using a too large covariance length scale for the a priori er- - ‘ ‘
ror; this represents a reduction of the effective degrees of S 8 g 8 8
freedom. Further, temporal aggregation error is largely re-
duced by choosing a representation of biosphere fluxes in a
very simple diagnostic model, with parameters that controlrijg. 11. Ratio of actual to estimated posterior uncertainty of flux
response to light and temperature and thus allow for diur-average plotted against assumed prior covariance scdlee dif-
nally varying fluxes. When applying such a model to the realferent lines correspond to differehiye.(used for creation of prior
world, however, it has to be noted that the a priori uncer-realizations), and points are plotted fetlyrye. The vertical bar in-
tainty Sprior as well as the measurement err did not in- dicates the scale for flux averaging (516 km). Valuekindicate
clude temporal correlation. The same basic principles applyhat the retrieval produces an erroneous underestimation of uncer-
for these temporal correlations as for the investigated spatiaf@inty in the posterior parameter values.
correlations, in that the interplay of averaging time scales, in-
tegrating time scales of the atmosphere, and the differences
in true and assumed temporal correlations can cause biasdbere is certainly additional uncertainty in the representation
results or loss of information. Also structural error due to in- of biospheric fluxes with simple temperature and light sen-
adequate model parameterization (e.g. changes of light sersitivities, also vertical transport remains uncertain, with po-
sitivity with water availability) has not been taken into ac- tential biases. Further, the assumption of a covariance matrix
count; so for real world applications the model either needswith an exponentially decaying spatial correlation might not
to be able to resolve resulting variations in fluxes, or it has tobe appropriate. However, we do not feel that there is room
be allowed for in a corresponding uncertainty with the cor-for more than an order of magnitude in the posterior uncer-
rect spatial and temporal covariances. tainty. Given the 2—3 orders of magnitude larger uncertain-
The obtained results can be used to address an impoﬁies from coarse global inversions, this clearly shows the po-
tant question related to regional carbon budgets: how manyential of high resolution transport modelling coupled to di-
observing stations are required for a given accuracy of theagnostic biosphere modelling, and using continuous records
regional budget estimate. A rough approximation for theto solve for parameters in the biospheric model. Of course
achievable accuracy of a flux retrieval based on a networkhis potential has yet to be realized in the future by fully cou-
of tall towers can be based on the range of posteriori uncerpling the regional to the global scales.
tainties (0.001-0.02@moles/nt/s from Fig. 9) for an area of The pseudo experiment also shows that the usefulness
516 km radius around each tower: with 10 towers the flux ofof information from atmospheric trace gas observations de-
an area of the size of the contiguous United States could b@ends critically on what we know a priori about the flux dis-
determined with an accuracy of 0.14-2.8 Mt C/year (assumdribution. Of course a large contribution to the reduction
ing that the uncertainties are uncorrelated between the differachieved in the posterior uncertainty is from the assump-
ent circles around the sites). In comparison, current globations in the prior, e.g. for a very short correlation length
scale inversions achieve a posterior uncertainty for monthlyscale of 10km for the a priori uncertainty, the flux of the
fluxes of the order of 1 Gt C/year for temperate North Amer- US would already be determined down to an uncertainty of
ica (Gurney et al., 2004). 0.17 Mt Clyear, and not much is added by the network. In
Although in this pseudo experiment we have paid attentionother words, the number of stations needed to constrain the
to using appropriate magnitudes for the various error termsflux at a given resolution over the whole continent is directly
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related to the reduction of uncertainty presented in the maps It is important to remember that the spatial scales of the a
of Fig. 8. With a very short a priori uncertainty correlation priori uncertainty correlation are closely related to scales of
length scale, the information gain only extends over smallprocesses that are not included or not properly represented in
patches and reaches, apart from the next proximity of thehe flux model. Thus, as stated in the introduction, the ideal
tower, less than 20%. The reduction of uncertainty is furtherway to define the prior uncertainty covariance matrix would
modulated by the tracks of the air masses on their way to thée to investigate the spatial (and temporal) correlations of
tower. In the case presented here these footprints were accthe residuals between the a priori flux model and such mea-
mulated over a month, so if shorter periods are required, thesurements that went into the flux model development, or in
regions with information gain are limited to even fewer ar- the case of a state vector consisting of sensitivities to envi-
eas. On the other hand, for very large scales, a single statioronmental drivers as presented here, to investigate the spatial
is sufficient to constrain a large area, and the exact locatiorcorrelations of these sensitivities for a given class of vegeta-
of the footprints is less important. So the dominant scaletion. In this regard it is of course helpful if these measure-
for determining the network density is the scale over whichments (flux measurements, process studies) are made in a
the priori uncertainty in the parameters (or in the fluxes, if spatial arrangement that would allow deriving spatial statis-
one solves for fluxes) correlates; the scale of variations in theics properties (e.g. fitting a variogram). If the datasets do
footprint becomes important at shorter decorrelation scalesnot allow this, one has to adopt other ways to derive the a
Similarly, the scale with which local perturbations in the be- priori uncertainty covariance matrix. The simplest option is
havior of the biosphere can be resolved depends primarily orto just assume a certain spatial correlation, as has been done
the scale of prior error covariance, as plots similar to Fig. 10for some global scale inversions cf. Peylin et al. (2001); the
but differentlye indicate (not shown). assumed correlation has to be tested however with respect to
It is important to note that all errors were assumed Gausits impact on the retrieval (at least the posterior uncertainty
sian. When applying such a method to other trace gases, suchould not be underestimated). A step further is to derive
as CO, this assumption is not valid: the distribution of CO in the a priori uncertainty matrix from the spread between dif-
the atmosphere is lognormal, mostly caused by the interacferent models (Bdenbeck et al., 2003); but one has to be
tion of atmospheric transport and the spatial pattern of fluxesaware of the fact that model to model differences don't nec-
(dominated by emissions from localized sources with highessarily have to resemble residuals between a given model
population density). In a similar numerical experiment de- and the truth, given that models often share a similar struc-
signed to infer CO fluxes at high spatial resolution based orture and input data. The assumed correlation could also be
measurements at Harvard Forest and on a priori fluxes frontbased on knowledge of the spatial scales of the processes not
emission inventories (see G03b), the assumption of a Gaugepresented by the model, e.g. by comparing to a more so-
sian a priori uncertainty (50% of the emissions) led to signifi- phisticated model that includes more detailed processes.
cant negative emissions for localized areas with large a priori It is also an option to treat such a length scale as an un-
emissions, even at larger length scalesd.00 km). A similar ~ known, and to optimize not only for fluxes (or sensitivities
problem has to be expected when including fossil fuel fluxesto environmental drivers), but also for these length scales.
for CO; to the state vector. In these cases, a lognormal distri-This was for example suggested by Michalak et al. (2004),
bution has to be assumed, and the optimization is not simplyho used a very simple flux model (the only a priori infor-
a matrix inversion, but has to involve iterative searches, cf.mation was that land and ocean have a different flux), but
Manning et al. (2003). solved for parameters describing the prior covariance model
The results strongly support that specifying the off di- (a length scale and a variance for land and ocean). However,
agonal elements of the covariance matrices is crucial forwhichever method is used to derive the a priori uncertainty
Bayesian flux inversions. An incorrect length scale for the covariance matrix, it is important to ensure these assump-
spatial covariance of the a priori guess usually leads to eitions are conservative in that claimed uncertainties in derived
ther significant under- or overestimation of the posterior un-fluxes (posterior estimates) are not underestimating true un-
certainties. Underestimation of uncertainty is equivalent tocertainties.
overly confident estimates, or biases in the retrievals. Over- Obviously, there is no simple recipe that would allow
estimation of uncertainty is equivalent to not using all avail- defining a length scalg independent of the true length scale
able information, but instead regarding it as noise; in thisiyye, Such that the posterior uncertainty remains conservative
case the retrieval will not be biased, but less accurate. The ban the sense that the retrieval remains unbiased (estimated
sic underlying principle is that when “defining” the off diag- posterior uncertainty not smaller than actual the actual uncer-
onal elements of prior covariance matrices not in accordancéainty, see Fig. 11). A common diagnostic to assess whether
with the factual behavior of the uncertainties, we change thehe correct assumptions about uncertainties went into the op-
information contained in the prior. As shown in Fig. 11, un- timization is the reduceg?, i.e. the cost function (weighted
derestimation of uncertainty occurs in both cases, when usingum of squares at the optimum divided by the numbers of
a too large or a too short length scale compared to the actualegrees of freedom). As expected, redugédsalues close
scale. to 1 are found foi=lye, (Fig. 12, filled circles). For length

Atmos. Chem. Phys., 6, 53954, 2006 www.atmos-chem-phys.net/6/539/2006/



C. Gerbig et al.: What can tracer observations in the PBL tell about fluxes? 553

true scale 10 km
true scale 20 km
true scale 40 km
true scale 100 km
true scale 300 km
true scale 1000 km
true scale 2000 km
true scale 5000 km
true scale 15000 km

true scale 10 km
true scale 20 km
true scale 40 km
true scale 100 km

IRERRE

true scale 300 km
true scale 1000 km
true scale 2000 km
true scale 5000 km
true scale 15000 km

chi-square
2 3 4 5 6
I I I I
actual / estimated uncertainty of average flux
2 5 10 20
I I I I

|
© 7 IS

T T T T T T T T T T T T T

o o o o o o o o o
— [ < =1 =1 =] o o =] 0 4 5 6

- (3] o o o

— N wn 2

assumed prior covariance length scale [km] reduced chi-square

Fig. 12. Reducedy? plotted against assumed prior covariance scaleFig. 13. Ratio of actual to estimated posterior uncertainty of flux
I. Grayscales and lines are similar to Fig. 11, with filled circles average plotted against redugg#l Grayscales and lines are similar
plotted fori=lirye. to Fig. 11, and larger filled circles are plotted fe#/irye.

scaled that are very different fromyue, reducedy? values the boundary Iaye_r (inaccuratg mixed layer height, cf. GO3b)
increase up to more than 4. This seems to indicate that wheR€€d 0 be (and will be) taken into account via error propaga-
including the lengthscalgin the state vector, there is a po- tion; th|.s will finally allow for reliable retrievals of regional
tential for optimizing it in the retrieval. However, values of SCale biosphere-atmosphere exchange fluxes.
reducedy? around 1 are also found for cases with length Acknowledgementsie gratefully acknowledge T. J. Conway
scales! that are very different frondyye, for examplg for from NOAA CMDL for providing remote station and aircraft data
an assumed scale 6#40 km atlyue=15000km. Similarly,  fom the CMDL network. We also would like to acknowledge
when plotting the underestimation of uncertainty (i.e. the ra-c. Roedenbeck for helpful discussions.
tio of actual over assumed posterior uncertainty) against the
corresponding reducegf values (Fig. 13), it becomes obvi- Edited by: W. E. Asher
ous that a reduceg? value of close to unity is a necessary,
but not a sufficient sign for a correct posterior uncertainty.
Thus the reduceg? diagnostics can help to select the appro-
pria_te prior uncertainty covariance, but it does n<_)t gua_ran'ge%akwin, P. S., Tans, P. P., Zhao, C., Ussler, W. I., and Quesnell,
urlblased retrl_evals. Therefpre, we recommend investigating g . veasurements of carbon dioxide on a very tall tower, Tellus,
different possible combinations of true and assumed length 475 535549, 1995.
scales in order to assure that the final choice is a conservativealdocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D.,
one. Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R.,
Next steps will be to use the ROAM framework in this for-  Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi,
mulation to quantitatively merge top-down constrains from Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard,
atmospheric observations with bottom-up constraints. There- K., Schmid, H. P, Valentini, R., Verma, S., Vesala, T., Wilson,
fore the simple flux model GSB will therefore be replaced - and Wofsy, S.: FLUXNET: A new tool to study the temporal
by a more sophisticated one such as the VPM (Vegetation and spatial variability of ecosystem-scale carbon dioxide, wa-

: . . . ter vapor, and energy flux densities, Bull. Amer. Meteorol. Soc.,
Photosynthesis Model, Xiao et al., 2004), which will result 82(11), 2415-2434, 2001.

in significant improvements of the representation of spatialg_ oq ¢ c. Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle
patterns in biosphere-atmosphere exchange fluxes. Further, g . yrbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D.,
dominant transport model uncertainties such as caused by and Moore, K.: Factors controlling long- and short-term seques-
inaccuracies in assimilated winds (Lin and Gerbig, 2005), tration of atmospheric C&in a mid-latitude forest, Science, 294,
but also as caused by inappropriate vertical mixing within  1688-1691, 2001.
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