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Abstract. Imperfect representation of vertical mixing near 1 Introduction
the surface in atmospheric transport models leads to uncer-
tainties in modelled tracer mixing ratios. When using the Exchange of C@and other greenhouse gases between the
atmosphere as an integrator to derive surface-atmosphere estirface and the atmosphere leaves atmospheric signatures be-
change from mixing ratio observations made in the atmo-hind that can be used to retrieve information about the sur-
spheric boundary layer, this uncertainty has to be quantifiedace fluxes. On regional scales, at which climate anomalies
and taken into account. A comparison between radiosondefdroughts, anomalies in rainfall, temperature, etc.) as well as
derived mixing heights and mixing heights derived from human intervention (land use change) influence biosphere-
ECMWF meteorological data during May—June 2005 in Eu-atmosphere exchange, such information is valuable for inves-
rope revealed random discrepancies of about 40% for thdigating biosphere-atmosphere feedback processes. Further,
daytime with insignificant bias errors, and much larger val- regional scale quantification of greenhouse gas budgets is a
ues approaching 100% for nocturnal mixing layers with biasrequirement for any carbon trading, such as is currently be-
errors also exceeding 50%. The Stochastic Time Invertednd implemented under the Kyoto protocol. Regional scale
Lagrangian Transport (STILT) model was used to propagatdudgets have therefore become a research focus (Dolman et
this uncertainty into C@mixing ratio uncertainties, account- al-, 2006; Lin et al., 2006; Wofsy and Harriss, 2002).
ing for spatial and temporal error covariance. Average val- For CQ, biosphere-atmosphere fluxes can be assessed by
ues of 3 ppm were found for the 2 month period, indicating @ range of methods — each covering specific spatial scales,
that this represents a large fraction of the overall uncertaintyincluding eddy-covariance measurements (Baldocchi et al.,
A pseudo data experiment shows that the error propagatioR001) with flux-footprints extending over1 kn¥, remote
with STILT avoids biases in flux retrievals when applied in sensing driven diagnostic light use efficiency (LUE) models
inversions. The results indicate that flux inversions employ-(Lin et al., 2006; Running et al., 2004) with resolutions of
ing transport models based on current generation meteorcseveral hundred meters, more process based biosphere mod-
logical products have misrepresented an important part of th€ls covering multiple scales (Moorcroft et al., 2001; Run-
model error structure likely leading to biases in the estimateding and Hunt Jr., 1993), but also atmospheric inversions of
mean and uncertainties. We strongly recommend includingneasured trace gas mixing ratios (the so called top-down
the solution presented in this work: better, higher resolutionmethod). Inversions of background stations using global
atmospheric models, a proper description of correlated rantransport models are assumed to constrain fluxes on scales
dom errors, and a modification of the overall sampling strat-Of several thousands of km (Gurney et al., 2002). Measure-
egy. ments from tall towers over continents are claimed to rep-
resent areas of roughly about®1n? (Gloor et al., 2001),
but this strongly depends on the spatial and temporal scales
of the flux information to be retrieved (Gerbig et al., 2006).
However, when combined with prior flux information for ex-
ample from eddy flux measurements and remote sensing, re-
gional scale inversions start to become feasible (Matross et
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modelled and measured values are also caused by uncertain-
ties in the surface-atmosphere fluxes themselves.

Attempts to separate the influence from transport uncer-
tainty as short time scale variability in the residuals from the
longer time scale residuals that are assumed to be caused by
uncertainties in the targeted fluxes are also questionable: co-
variance of the uncertainty in transport with variability of the
fluxes can lead to biases when aggregating to longer time
scales. A famous example for this is the so called “diurnal
rectifier effect” (Denning et al., 1996), where the overesti-

Fig. 1. Daytime mixing heights derived from radio soundings (left) mation of mixing height (_jurlng _nlght, when G@s relegsed_
and from ECMWF short term forecasts (right), averaged over thedue to respiration, combined with little or no overestimation
May—June 2005 period. Sounding locations are indicated by ope®f daytime mixing heights, when GQs taken up by pho-
circles, with filled circles showing the location of high resolution tosynthesis, leads to strongly biased (underestimated) 24 h
sounding data. Crosses indicate stations near coasts not selected faveraged near-surface concentrations.
further statistical analysis. Interpolation for the contour plot was  First attempts to directly quantify transport uncertainties
done with inverse distance weighting. based on uncertainties in winds have been made by Lin
and Gerbig (Lin and Gerbig, 2005), where wind errors in-
Measurements of atmospheric mixing ratios can providecluding their spatial and temporal correlations, derived from
strong constraints, but this puts strong demands on the agnodel - radiosonde comparisons, have been propagated us-
curacy of atmospheric transport modelling. In case 0bCO ing the STILT model (Lin et al., 2003) to yield uncertain-
one is for example interested in small imbalances of oth-ties in simulated C@ The approach utilized the ability of
erwise large fluxes of opposing sign, ecosystem respirationhe Lagrangian particle dispersion model STILT to model
R and photosynthesis GEE. During growing season the negnsembles that correspond to not just turbulence, but also
ecosystem exchange NEE (=R+GEE), i.e. the biosphereto wind errors. These uncertainties due to advection errors
atmosphere flux, has a diurnal amplitude that is already abouimounted to 5 ppm during a summer period with active veg-
an order of magnitude larger than the diurnal average, and aitation, largely exceeding measurement uncertainties, which
least 2 orders of magnitude larger than the annual to decad@urrently are targeted at 0.1 ppm. However, this is by far not
imbalances that contain the most relevant information on thehe only uncertainty in transport modelling. As mentioned
processes involved in climate change (Goulden et al., 1996)above in reference to the rectifier effect, the imperfect rep-
Thus the transport model needs to provide a very tight retesentation of vertical mixing processes near the surface can
lationship between fluxes and concentrations, with resultingcause significant biases. Mixing within the planetary bound-
biases over the relevant timescales (annual) of only a fewary layer (PBL) vertically redistributes the influence from
percent or less of the corresponding fluxes. Similarly, strongsurface fluxes to an atmospheric column, whose thickness is
spatial variability in biospheric fluxes causes strong variabil-described as mixing height. Uncertainties in this scale pro-
ity in mixing ratios (Gerbig et al., 2003a; Lin et al., 2004a). portionally affect the transport from a source at the surface to
This variability has to be represented in transport modelsa measurement site located within the PBL.
with very little bias in order to utilize the information con-  This paper addresses uncertainties in transport related to
tained in atmospheric point measurements. this uncertainty in vertical mixing. Recently a comparison
This requires uncertainties in atmospheric transport to bewith airborne CQ measurements revealed that all models
investigated quantitatively. So far, uncertainties in transportused for global scale inversions, at least the ones investigated,
have been investigated mostly through model intercomparmisrepresent vertical mixing, since none was able to simul-
ison studies such as Transcom 3 for global scale transpotineously reproduce the annual average and the seasonal cy-
(Gurney et al., 2003). However, the tempting assumptioncle of measured vertical gradients (Stephens et al., 2007).
that the spread of the model-ensemble represents the trugén important part of this misrepresentation is probably the
uncertainty in the transport is false: there are many com-depth of the mixing layer. It has been widely discussed that
mon sources of uncertainty in different models due to thethe determination of mixing heights is associated with sig-
large similarity in spatial discretisation and subgrid param-nificant uncertainty, see for example the review by Seibert et
eterizations (IPCC, 2001). Furthermore, there is the natual. (2000).
ral tendency in modelling communities to “improve” mod-  Here, in an approach similar to Lin and Gerbig (Lin and
els that are outliers rather than those close to the averag&erbig, 2005), we use comparisons of model and radiosonde
which reduces the range of the ensemble. Other methderived mixing heights to investigate uncertainties and their
ods to derive uncertainties in modelled transport use a dispatial and temporal covariances. This information is then
rect comparison of modelled mixing ratios with measure-used to propagate the uncertainty into mixing ratio uncer-
ments (Mahowald et al., 1997), however residuals betweerainties using STILT, and a pseudo data experiment is set up
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to test the usefulness of the approach for atmospheric inver- relative bias [%]
50 0

100

relative uncertainty [%]
sions. For the experiment the STILT model is set up for a do- e
main covering most of Europe and for the time period May—
June 2005 that covers the CarboEurope Regional Experiment
Strategy (CERES)(Dolman et al., 2006).

The outline of this paper is as follows: the methodology
is presented in the next chapter, starting with the analysis of
mixing height uncertainties (Sect. 2.1) and spatio-temporal
covariances (2.2), followed by the error propagation using
STILT (2.3). Results as well as the application to atmo- ¥
spheric inversions in form of a pseudo data experiment are
presented in Sect. 3, and are discussed in Sect. 4 with some fongitude [deg W) longitude deg W]

recommendations for dealing with the uncertainty in mixing.
Fig. 2. Left: temporally averaged daytime residuals between
ECMWEF based and radio sounding based mixing heights, normal-

atitude [deg N]
50 55 60

lati
45

2 Methodology ized by the radio sounding based estimate. Right: standard devia-
tion of daytime residuals, normalized by the radio sounding based
2.1 Analysis of uncertainties in mixing heights estimate. Symbols are the same as in Fig. 1.

Offline transport simulations use profiles of temperature, hu-When the bulk Richardson number method did not find a sta-
midity, and horizontal winds from forecasted or analyzed ble layer starting from the surface upward, the observation
meteorological fields to determine the profile of turbulent was not used. Thus only easily identifiable situations were
mixing within the boundary layer, or simply to determine the compared.

mixing height, which can be regarded as the altitude up to The general patterns of mixing heights show agreement
which surface fluxes are mixed on short (hourly) timescalesbetween radiosonde and ECMWF derived values for daytime
For a convective boundary layer this mixing height is equiv- (between 11:00 and 17:00 GMT, mostly at 12:00 GMT), with
alent to the mixed layer height, which can be readily diag-low mixing heights over oceans and locations with oceanic
nosed from temperature and humidity profiles. Under sta-influence, and high mixing heights for dry and hot regions
ble conditions, mixing is often incomplete, making it more (Fig. 1). However, a closer look at the differences (Fig. 2)
difficult to derive mixing heights. A method that has been shows both bias and random differences between the two
suggested for both, stable and convective boundary layers idatasets. Relative biases, i.e. the mean of the differences
the bulk Richardson number method (Vogelezang and Holt-between mixing heights based on ECMWF fields and those
slag, 1996). In order to assess the quality of mixing heightsbased on radio soundings normalized by the mean radiosonde
as they are use in offline transport models, we compare mixéderived mixing heightsiz,(ECMWF)-z(RS)/(z;(RS)), cal-

ing heights diagnosed from analyzed meteorological fieldsculated for each station, are in the rangetd0% for most
with mixing heights diagnosed from radio soundings. Herestations in central and western Europe, except for a few sta-
we analyze mixing heights; (RS) derived from radiosonde tions mostly located at coastal sites. Relative random errors
data from May and June 2005 for temperature, humidity,stdev(z(ECMWF)—z(RS))/z;(RS) are in the general range
and winds [ttp://raob.fsl.noaa.goyfrom 98 radiosonding from 25% to 50%, with some stations in coastal areas show-
stations using the bulk Richardson number method with aing random errors of 80% and more. Overall statistics of the
critical Richardson number of Ri0.25. This radiosonde differences indicate large differences also for nighttime data
based estimate is compared to mixing heigh{fE ZMWF) (Table 1), with biases of 50%, and standard deviations of the
derived from short-term forecasted data from the ECMWFresiduals nearly approaching 100%. Excluding coastal sites
(12 h and 24 h, hybrid-level output), fields which are used infrom the analysis has only a minor impact (see Table 1, “se-
many transport simulations in order to simulate global andlected”).

regional transport. The same method was applied to both We need to exclude trivial causes for the observed dif-
datasets (radio soundings and ECMWF fields) to avoid anyferences, namely insufficient vertical resolution in both, ra-
methodological bias. This largely isolates the effect of a cho-diosonde profiles and ECMWF fields. Most radiosonde pro-
sen approach to derive mixing heights (which can have largdiles contain more than 30 levels below 3 km, i.e. the error
biases e.g. during night time stable conditions) from effectsdue to regridding can be estimated to less than 50 m. To prop-
due to differences in the meteorological profiles themselveserly test if vertical resolution of the radiosonde data poses a
(which will cause differences in vertical mixing in offline problem, we compared (RS) based on standard radiosonde
models, no matter how good the diagnostic method is). Thedata to z(RS,,) based to high vertical resolution-(0 mm)
ECMWEF profiles are interpolated to the location of the radio radiosonde data obtained from UKMO via the

soundings.
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Table 1. Average values for relative bias and relative standard deviation between radiosonde and ECMWF derived mixing heights, separated

by day/night and by data selection (all data vs. selected data, excluding coastal locations).

Time Data used relative bias  relative stdev
[%0] [%0]

Daytime ECMWEF vs. radiosonde, -0.9 42
all

Daytime ECMWEF vs. radiosonde, 6 39
selected

Daytime high resolution vs. standard radiosonde 0.2 7
standard radiosonde

Nighttime ECMWF vs. radiosonde, 58 91
all

Nighttime ECMWEF vs. radiosonde, 53 83
selected

Nighttime  high resolution vs. standard radiosonde 16 72

standard radiosonde

BADC database (UKMeteorologicalOffice, 2006) as well 2.2 Spatial and temporal covariances
as from Meteo-France (Joel Noilhan, personnel communica-

tion 2006) for a small subset of stations. The results (alSorqr 4tmospheric transport of tracers it is not only important
shown in Table 1) indicate that vertical re;olutlon in the ra- quantify the error in mixing heights at a specific location
diosonde data can be excluded as a dominant cause for the, 4 time, but it matters how these errors are spatially and

discrepancy between radiosonde and ECMWF data deriveghynoraily correlated. A long correlation would cause bias

mixing heights. Somewhat of an exception are nighttime ran-g s jn the source-receptor relationship for larger regions or

dom differences, where resolution can explain about half oft 15nger time periods. In order to assess the temporal and
the observed discrepancy. This relates to the low nighttimeypatia| scale over which the random error in mixing height
mixing heights, in comparison to which the vertical spacing g correlated, a variogram analysis was performed, similar to
and thus resolution becomes more important. Vertical reso, o analysis of wind errors in (Lin and Gerbig, 2005). A var-
lution of the ECMWF fields used for the analysis can simi- j5qam is the variance of the difference of a spatial variable,
larly be excluded as a major cause for the discrepancy, sincg,’ var(R(x)=R (x+h)) for the variabler, as a function of the
the profiles have about 17 levels below 3km, with increasindjistancen (Cressie, 1993). The variogram and the covari-
density near the surface providing a spacing that starts at lesg, -« giffer only in sign and a constant, namely the variance
thans0m. _ _ of the variable itself. Here we use the variogram of the resid-
What remains as a possible cause is that the way thegis p=7 (ECMWF)-z(RS). Due to the large difference in
yveather pred|ct|on model assw_nllates temperatures, hum'dfnixing heights a separation into day and night time was nec-
ity and winds measured by radiosondes does not ensure thesqary A expected, the difference in residuals increases
same shape in the vertical profile. For example, the level i, jncreasing distance for both, day and night (Fig. 3),
at which an inversion is found in the assimilated data (andyjith smaller variogram values indicating spatial correlation
thus also in forecasts) is not necessarily the level at which af, ghort gistances. In order to estimate the associated corre-
inversion was observed. Specific reasons are probably iMp;ion |ength scale, an exponential variogram model was fit-
perfection of the boundary layer scheme within the ECMWF (o The exponential variogram is the one of several possible
model, land surface model, or also soil moisture fields. variogram models that provides the best fit to the data. For

For the rest of this paper, we regard the random componenfjisiances larger than about 1300 km the variogram estimates
of the residuals between the more model basGMWF)  gia 1t increasing, which is probably related to the fact that the

and the measurement base(RS) as an estimate of the rela- e orological profiles are located within a different synop-
tive error in mixing heights, i.eoz; re=Stdev(Z(ECMWF)~ i system. These distances were therefore excluded from
zi(RS))Az:(RS). Further, we neglect the bias component .« it 1o allow an estimation of the local correlation scale.
due to its relatively small size compared to the random part. tha correlation scale for daytime is about 100 km, which is
in the range of the smallest distances of the radiosonde net-
work. This scale is thus not very well constrained; however,
it is obvious that the error in mixing height is not just local.
This is supported by the enhanced variogram values at larger
distances. The correlation length scale during nighttime of
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Fig. 3. Variogram of mixing height residuals ECMWF)-z (RS) for day (left) and night (right). The lines show a fit with an exponential
variogram, for which distances larger then 1300 km where excluded.

230 km is somewhat better constrained, again indicating thaand 12:00 UTC analysis fields are combined with short term
it is not just a local effect. Given that both scales are signif-forecasts to provide 3-hourly fields. STILT trajectory ensem-
icantly larger than the horizontal resolution of the ECMWF bles are coupled to surface fluxes on high spatial resolution (a
fields with about 35 km, we attribute the larger part of this Cartesian grid with 1/121/8 grid (lat. x lon.), corresponding
difference to the ECMWF model rather than to a represen-+to about 1610 kn?), with biosphere-atmosphere exchange
tation error caused by small scale variability in the mixing as the dominant surface flux represented with the Greatly
heights. Simplified Biosphere model (GSB (Gerbig et al., 2003b)) as

A similar analysis was performed to derive the temporal temperature and radiation response keyed to different vege-
covariance scale aof; errors — i.e., the covariance of errors tation types, using the SYNMAP land cover product at 1 km
over time at a particular location. The temporal covarianceresolution (Jung et al., 2006). For simplicity only the domi-
scale was found to be 10 h for daytime, and 16 h for nighttimenant vegetation classes forest and crop (Fig. 4) are used sim-
data. Again, these scales are not well constrained due to thiér to the approach in Gerbig et al. (2006), and the nonlinear
lack of high frequency data within the radiosonde network; part of the light response is neglected. Thus the only parame-
standard sites have 2 soundings per day. ters (the elements of the state vectdmithin the GSB used

In general, the correlation scales indicate that there is nd'€re are four scaling factors to adjust the light response of
regional coherence of several hundreds of kilometers, or #hotosynthesis and the temperature response of respiration

temporal coherence of several days scale, but it is also not ¥ the two vegetation classes. The initial light and tempera-
spatially and temporally local effect. ture response and their uncertainty was taken from Gerbig

et al. (2006), which resulted from a fit to eddy flux data.
Since the largest effect is expected for signals from surface-
atmosphere exchange in the near-field, i.e. near the measure-
ment site, lateral boundary conditions are neglected and only
anomalies due to regional fluxes are considered.

2.3 Propagating uncertainties in mixing heights into mix-
ing ratios

To propagate the uncertainty in mixing heights to derive un-
certainties in C@ mixing ratios, we use the STILT (stochas-  The approach to propagate the transport error is similar to
tic time inverted Lagrangian transport) framework describedthe one used in (Lin and Gerbig, 2005). Here we give only
in (Gerbig et al., 2003b) and in (Lin et al., 2004b). STILT give a brief description, and the reader is referred to Lin and
was set up for a domain covering most of Europe (see Fig. 45Gerbig (2005). We use the stochastic nature of STILT to
and run for the Bialystok tall tower in eastern Poland as aimplement errors in mixing heights as a stochastic process
receptor over the period May and June 2005. The towerwithin the transport model run. Standard runs of STILT pro-
located at 5314 N and 2301 E at an altitude of 180m is vide a distribution of mixing ratios for an ensemble of trajec-
an instrumented, 300 m tall tower close to the city of Bia- tories, in which the different members differ in their realiza-
lystok, and has been operated by the Max Planck Institute fotion of turbulent winds, i.e. turbulence is the only stochastic
Biogeochemistry since 2005 for continuous measurement oprocess. The widtbco, wrh 0f the CG mixing ratio distri-
several biogeochemical trace gases. As meteorological inbution then reflects the combined effect of turbulence mod-
put for STILT we used the ECMWEF fields, where the 00:00 ifying the path of each trajectory and spatial variability of
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Bialystok tall tower 2005-06—13 06:00:00 bined with different wind shear. However, we regard the
modified dilution of surface fluxes into a mixing layer col-
umn with different top as the dominant effect, which provides

- a lower bound for the overall error. Footprints very close to

the measurement site matter most (see e.g. Fig. 5 of Gerbig

et al., 2003), during the first day the spatially integrated foot-
print values drop by about 30%. In this near-field the foot-
print simply scales with 1/z(1-D case), with deeper vertical
mixing causing smaller atmospheric signals given the same
surface fluxes. Here our implementation of the uncertainty
is fully appropriate. At upstream locations, one or several
days before the measurement time, the plume of influence
can be separated into two classes: a “PBL- plume” of parti-
cles that contribute to the signal from surface fluxes ( within
the mixing layer, with the chance to be mixed into the sur-
face influence zone), and particles in the residual layer or in
the free troposphere, that do not contribute (the “FT-plume”).

The PBL-plume will be diluted, thus will get less surface in-

longitude[deg] fluence, when the mixing height is increased. This part is
correctly represented in our approach of rescaling footprints.

Fig. 4. Example of a footprint for the Bialystok tall Tower, cal- The FT-plume will be entrained and contribute to surface flux

culated using STILT driven by ECMWF meteorology. Inserts show signals when the mixing height is increased. This leads to

the fractional land coverage with forests (left) and croplands (right). 5y increase of footprint values, which is not represented in
our approach. However, usually these two classes of plumes

CO; surface fluxes. We then run the model a second time llow diff hs d indsh h fthe mi
with an additional stochastic process to describe the ef'fec{0 ow different paths due to windshear at the top of the mix-

from errors in mixing heights: for each trajectory and each'"9 layer. Taking a Sm/s wind shear near the PBL top, after

time step a random number is drawn from a Gaussian disg3 hours the PBL-plume and the FT plume are separated by

tribution with a mean of one and a standard deviation corre"°"® than 100 km, the decorrelation scale for mixing height

sponding to the relative error in daytime mixing heightrel, :arror. Thus tr]ese opposing effects on the “FT-plume” and the
estimated from stdev(EECMWF)-z (RS))(z (RS) as 40% PBL-.pIur'n.e can not really compensate ggch other. Thus
(Table 1, selected data not including coastal stations). undyr S|mpI|_f|cat|on just neglected one additional error term
likely cases of values below zero are setto zero. This randont"e entrainment Of_ formerly F'I_'-par_t|cles), thus f“”hef un-
number is then used to rescale the footprint (local sensitivityde.res“mat'm‘:J the final unc_ert.amty in the modelled mixing
of mixing ratio to surface fluxes). Temporal and spatial cor- ratio. In the real world this is slightly more complicated

relations are taken into account by decorrelating the randorT‘fiue to the strong diurnal variation of mixing height, but here

numbers exponentially using the spatial and temporal varive argue that we can reasonably only treat uncertainties in

ogram models, with a timescale of 12 h and spatial scale oﬂ
100 km as derived from the daytime mixing height residuals.
This second STILT run then provides a distribution of £O

mixing ratios with an increased widdco, trb+zi, that re-

flects the effect of turbulence plus the effect of the error in
mixing heights. The mixing ratio error due to mixing height o i )
uncertainty can then be calculated from the broadening of thé  Results and application to inversions
mixing ratio distribution, assuming statistical independence:
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aytime mixing layer. Uncertainties in night-time mixing
eights are by far larger, and more difficult to properly con-
sider due to the much larger biases. However, this makes our
estimate of uncertainty in modelled mixing ratios due to un-
certainties in mixing heights even more a conservative one.

Uncertainties for CQ mixing ratios are calculated using the
above mentioned framework for the May—June 2005 period
(Fig. 5). oco,,zi was on average 3.5 ppm, or 30% of the sim-
This uncertaintyco,,zi is computed for every measurement ulated CQ from biospheric fluxes within the near-field (up to
time, providing time dependent uncertainties that can be use8 days prior to the measurements, or limited by the regional
quantitatively in atmospheric inversions. model domain). This is expected for a relative uncertainty in

To a first order, this captures the effect of a changedmixing heights ¢z ref) 0of 40% and a decorrelation scale of
mixing height on mixing ratios within the boundary layer. 100 km that is somewhat smaller than the footprint area (see
Not included with this method are secondary effects suchFig. 4), allowing the effective uncertainty in mixing ratios
as changes in advection, which are expected with differento become smaller due to the aggregation over the footprint
mixing heights and thus different turbulence profiles com- area.

2 2 2
080,21 = OCO, turb+Zi — OCO, turb 1)
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Fig. 5. (a) Time series of the C@signal due to biosphere-atmosphere exchange within the model domain (“biospheric signal”) for a 2 week
period in May 2005. Pseudo data are shown as blue line (“Obs”). Simulated values are shown in black (“Model”) on top of the grey band
indicating the propagated transport error (“TransErr”). Also the prior errors are shown as green band (“PrifiETithe series of CQ

signals due to different flux components from the different vegetation classes. Abbreviations: R denotes respiration, GEE denotes gross
ecosystem exchange.

In order to test the application of transport errors due tousing a JacobiaK with unmodified mixing heights, and us-
uncertainties in vertical mixing to atmospheric inversions, ing a priori scaling factors (state vectbgrior) that are dif-
we make the following steps: first pseudo data are generferent from the “truth”, is also shown in Fig. 5. As a pri-
ated based on a “true” mixing height field different from the ori values forA we use for each element a random number
one assumed in the standard model, then these pseudo datken from a Gaussian distribution with the prior uncertainty
are used for an inversion to retrieve the state vextaithin as the width. The forward model is strongly correlated with
the GSB (i.e. the light and temperature responses of the biothe true signal, but it is different due to the prior uncertainty
spheric fluxes). The inversion is done for two cases: caséhere a case of a stronger biospheric fluxes) as well as due
1), where the state vector is retrieved without consideratiorto the transport uncertainty. The prior error is calculated as
of the propagated transport uncertainties, which corresponda projection in measurement space (the product of Jacobian
to the standard case applied in other inversions, and case 2 with the prior uncertainty in state space) and shown in
where we take the transport uncertainty into account. FinallyFig. 5. It is obvious that during times with larger differences
we compare the retrievals from both cases with the knownbetween the forward model and the truth, the uncertainties
truth. are large, while small uncertainties are usually only found

Pseudo data are generated using a realization of relativéor periods with small differences.
errors in mixing heights that is consistent with the spatial and The different components df show different temporal
temporal covariances found in the statistical analysis abovepatterns (Fig. 5b): signals due to fluxes from crop areas
This was used to create the “true” mixing height field, and usually dominate over forest signals, photosynthesis signals
these fields were used by STILT to calculate pseudo data fodominate over respiration signals. There is a high degree of

CO;, mixing ratios, following the equation correlation between all four signals, indicating a strong com-
mon influence through the modulation by transport. How-
Yps = Kuruertrue 2 ever, there are also significant differences left that allow sep-

aration of the different components in an inversion.

with y s as the pseudo datiiyrue as the "true” Jacobian (sen- Now we retrieve the state vectbibased on the pseudo ob-

sitivities of measurementg with respect to the biospheric . .
. . servations, which are related through the measurement equa-
parameterd.), and the state vect@tye. Kirue is the combi- tion
nation of the “true” transport operator and the operator relat-
ing biospheric parameters to fluxes (i.e. radiation and tem-,, = KA + ey,
perature). As “true” fluxes we use the GSB model with all _ _
scaling parameters set to 1. Resulting pseudo data are showHth € accounting for errors. Althougé, is often referred
in Fig. 5 as time series, with typical synoptic variations of 0 as "measurement error”, it can incorporate errors not re-

about 20 ppm. lated to instrument errors, but in the model representation
The result of the “forward” model, (e.g., uncertainties in;). The optimal estimate (Rodgers,
2000) is
Yprior = K>~prior (3)
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Retrieved time series of the state vector components with
their uncertainties (Fig. 6) during the May—June 2005 period
show that there is a strong reduction in uncertainty for both
cases (with and without consideration of the transport error),
with posterior uncertainties that are about an order of magni-
tude smaller than the corresponding prior uncertainties (also
shown in Fig. 6). Although for generation of the pseudo data
no temporal variation in the state vector was imposed, the re-
trievals show variations and differences from the truth. The
retrieved scaling factors for case 1 show significant differ-
ences from the truth, indicated by the fact that the range given
by the posterior uncertainty around the retrieved state (grey
bands in Fig. 6) in most cases does not include the truth value
(a scaling factor of one). Thus the retrieval for case 1 is bi-
ased. In contrast, case 2 has less deviation from the truth,
and also the truth is included in the range of posterior uncer-
tainties (Fig. 6, light blue bands) so that differences between

T By war WS P By s retrieved state and truth are not statistically significant. This

weeks weeks is achieved by an uncertainty for case 2 that is much larger

(by about a factor two) than for case 1), but this is the price to

Fig. 6. Retrieved weekly scaling factors for respiration (left) and pay in order to get a retrieval that is consistent with the truth.

photosynthesis (right) plotted against time for forest (top row) and 4 ig important to note that the bias in the retrieved state
crop (bottom). Abbreviations as in Fig. 5. The “true” scaling factor({
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or case 1 depends on the combination of spatial and tempo-
is one, plotted as red line, prior values are indicated by the dotte P P P

; . - al decorrelation scales in the mixing height uncertainty and

line, and prior uncertainties shown as error bars plotted at the lef . g

side of each graph. Retrievals without consideration of the transport[empo,ral scale of the retrleved parameters that one is inter-

error are plotted as black lines, with posterior uncertainty as greyeSted in. When aggregating paramEterfS or fluxes to tempqral

band; retrievals taking into account the propagated transport erropcales long compared to the decorrelation scale, the resulting

are plotted as blue lines, with posterior uncertainty as light bluebias will diminish. However, given that the mixing height

band. uncertainty that was used in STILT did not account for the
much larger night time error, which included not only a ran-

N 1 dom part, but also a significant bias, the estimation of the

A= <KTS;1K + S;rilor) (KTS;1y + S;rilor)vprior> (4) retrieval bias is on the low side. Inclusion of the bias error
for nocturnal mixing heights would have shown the diurnal

with S, as the error covariance correspondingetg and  rectification effect (Denning et al., 1996).

the prior error covarianceSyrior. The posterior uncer-

tainty of the retrieved state vectdr is calculated from

R -1 4 Discussion and outlook

S=(KTS, K + Spr)

For case 1 that does not take into account any transporSince the uncertainties in mixing heights found in this study
error, we use a diagonal matrix with 2 ppm uncertainty asare quite large, it is appropriate to spend some time in dis-
error covariances, to account for uncertainties such as the cussing potential reasons as well as to examine potential ap-
insufficient grid resolution to resolve heterogeneity in sur- proaches to deal with them. As shown in this analysis, un-
face fluxes (“representation error”). In case 2 that takes intacertainties in mixing heights as used in atmospheric inverse
account the uncertainties in mixing height, we addstoa studies pose a considerable problem when interpreting mea-
transport error with diagonal elements based on Eg. (1) andurements made in the continental boundary layer. An av-
with off-diagonal elements that correspond to a 12 h tempo-erage uncertainty of about 40% for daytime mixing heights
ral covariance scale. results in a corresponding uncertainty in mixing ratios, which

The inversion of the pseudo data was conducted on an case of CQ amounts to several ppm during the growing
weekly time basis, allowing the state vector to adjust weeklyseason, or to 30% of the regional biosphere-atmosphere sig-
to measurements. This reflects the fact that the biospheraals. Together with the uncertainty in advection due to wind
model only accounts for responses to light and temperaturegrrors (Lin and Gerbig, 2005), this is the dominant source
with constant light and temperature response. In the reabf uncertainty in any inverse modelling system targeted at
world the light and temperature response changes for examzontinental measurements (Table 2). Other sources of uncer-
ple due to soil moisture or to changes in the phenology, whichtainty such as the pure measurement uncertainty are gener-
vary on synoptic and longer timescales. ally small compared to these transport model uncertainties.
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Table 2. Typical uncertainties for boundary layer G@ixing ratios in an inverse modeling study.

Source of uncertainty  Type or error Size Reference
Transport Model Advection ~5ppm Lin and Gerbig, 2005
(summertime)
PBL mixing ~3.5ppm This study
(summertime)
Convection No estimate -
Transport Model Grid resolution ~1ppm @ 200 km Gerbig et al., 2003
+ Flux Model (summertime)
Flux Model Aggregation Depending on Gerbig et al., 2006

Aggregation and Model

Measurement Precision, accuracy 0.1 ppm (targeted) WMO

It is important to keep in mind that this analysis does not ad-for other regions and times given that the statistical anal-
dress any methodological biases that arise when the mixingsis to quantify the error covariance for the uncertainty in
height applied in the model is different from the true mix- mixing heights has been extended to cover these times and
ing height even when perfect knowledge of meteorologicallocations. However, it requires running a stochastic model
profiles is used. It only addresses the effect of the use ofuch as STILT in order to propagate the mixing height er-
assimilated or forecasted meteorological profiles for offlineror into a mixing ratio uncertainty. Further, significant care
transport simulations. Especially during night-time stable has to be taken to ensure that the different spatial and tem-
conditions methodological bias errors can be large and arg@oral scales are appropriately characterized. The simple ex-
an open research question (Seibert et al., 2000). ponential decorrelation assumed for the error covariance in
The variogram analysis of mixing height errors (Sect. 2.2,this study might not be true, and it has impact on the corre-
also Fig. 3) shows that although the error is not uncorrelatedgponding scales in the retrieved state vector, especially when
in space, there is a significant random component that is spasolving for spatially explicit fluxes. Retrievals might thus
tially uncorrelated. Spatial variations in mixing heights re- still be biased on given scales due to remaining biases in the
spond in some degree to spatial variations of surface propeftransport representation.
ties such as albedo and wetness, depending on wind speed The second approach (2) means that a transport model has
and on scale of the surface heterogeneity (Mahrt, 2000)to be applied that significantly better reproduces boundary
Scales of a few tens of km are favourable for the forma-layer mixing. This could partly be achieved by using more
tion of mesoscale patterns (Chen and Avissar, 1994), so it iSophisticated boundary layer schemes and a more sophisti-
not really surprising that the ECMWF model at a resolution cated land surface model. However, it is probably inevitable
of around 35 km does not capture the full spatial variability. to use a higher spatial resolution to better represent the at-
Small scale variability in radiosonde derived mixing heights mospheric circulation in the vicinity of the measurements
can also be caused by broken clouds in that in-cloud and clegivan der Molen and Dolman, 2007). Such approaches using
air profiles of temperature etc. are different. On average, thisnesoscale transport models embedded in inversion systems
is represented in the ECMWF model, but since clouds re-are being implemented by different groups now, and first ex-
main unresolved there is a significant variability that is not ploratory applications were performed in the CarboEurope
represented in modelled fields. Regional Experiment Strategy (CERES) (Ahmadov et al.,
There are in general three approaches that have the pote2007; Dolman et al., 2006; Sarrat et al., 2007a, 2007b). Since
tial to mitigate these problems in an inversion system: 1) tothere will never be a perfect model, it is obvious that also for
allow for additional uncertainty by quantifying and propagat- this approach, that seeks to reduce uncertainties by improv-
ing the error, 2) to improve the transport model, or 3) to useing the model, it is obvious that a detailed validation and
an approach that is less sensitive to the transport error. In thanalysis of the remaining uncertainties is required based on
following these approaches and their benefits and limitationextensive comparisons with measurements.
are discussed. Approach 3) could be realized by replacing the point mea-
Approach 1), as has been shown in this paper, can providsurements from tall towers by column observations. Column
unbiased inversion results. It can further be implementedamounts are not as sensitive to the exact height of the mixing
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layer, since to first order a difference between true and mod- What we regard as an indispensable addition for the obser-
elled mixing height just reshuffles air between the free tro-vational system are devices to determine the mixing height
posphere (FT) and the PBL, leaving the column amount conthat are collocated with tall towers and aircraft profiling
stant. Such column observations can be made by aircrafts @ites. Such measurements could be made by remote sens-
with remote sensing techniques. A slight drawback of us-ing systems such as lidars, sodars, RASS, or wind profiling
ing column amounts is that the signature of surface fluxegadars (Clifford et al., 1994). A relatively cheap and opera-
(change in tracer mixing ratio) is diluted over the atmo- tionally feasible method is the use of ceilometers, where the
spheric column. Hence the temporal and spatial variabilitybackscatter profile can be used to retrieve mixing heights un-
of column amounts is not as large, and thus the method isler stable and convective conditions (Eresmaa et al., 2006).
less sensitive to surface fluxes. Profile information would beThese methods give continuous mixing height information,
better in this regard, since then a separation of PBL and FTwhich is very useful to better constrain the temporal covari-
remains possible and the measured vertical distribution camnces discussed in Sect. 2.2. Further, these data could be
be adjusted by reshuffling between PBL and FT (with con-used in the data assimilation framework to improve the rep-
stant column amount) to match the thickness of the PBL inresentation of atmospheric mixing where it is most relevant,
the model. The main drawback is that column or profile mea-at the measurement site.
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