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[1] We introduce a tool to determine surface fluxes from atmospheric concentration data in
the midst of distributed sources or sinks over land, the Stochastic Time-Inverted Lagrangian
Transport (STILT) model, and illustrate the use of the tool with CO2 data over North
America. Anthropogenic and biogenic emissions of trace gases at the surface cause large
variations of atmospheric concentrations in the planetary boundary layer (PBL) from the
‘‘near field,’’ where upstream sources and sinks have strong influence on observations.
Transport in the near field often takes place on scales not resolved by typical grid sizes in
transport models. STILT provides the capability to represent near-field influences,
transforming this noise to signal useful in diagnosing surface emissions. The model
simulates transport by following the time evolution of a particle ensemble, interpolating
meteorological fields to the subgrid scale location of each particle. Turbulent motions are
represented by a Markov chain process. Significant computational savings are realized
because the influence of upstream emissions at different times is modeled using a single
particle simulation backward in time, starting at the receptor and sampling only the portion
of the domain that influences the observations. We assess in detail the physical and
numerical requirements of STILT and other particle models necessary to avoid
inconsistencies and to preserve time symmetry (reversibility). We show that source regions
derived from backward and forward time simulations in STILT are similar, and we show
that deviations may be attributed to violation of mass conservation in currently available
analyzed meterological fields. Using concepts from information theory, we show that
the particle approach can provide significant gains in information compared to
conventional gridcell models, principally during the first hours of transport backward in
time, when PBL observations are strongly affected by surface sources and sinks. INDEX
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1. Introduction

[2] Quantitative understanding of the sources and sinks of
chemically and radiatively active trace gases is essential in

order to assess the human impact on the environment
[Heimann and Kasibhatla, 1999; Mooney et al., 1987].
Observations of atmospheric concentrations provide the
basic data for analyzing sources and sinks at the surface.
However, the influences of surface fluxes are strongly
modified by atmospheric transport, which tends to integrate
over regional and continental scales, the relevant spatial
scales needed to formulate policy responses to many of the
anthropogenic perturbations. Thus accurate modeling of
atmospheric transport is critical to quantitatively link ob-
served tracer distributions to surface emissions and address
issues of environmental concern.
[3] Trace gas concentrations in the Planetary Boundary

Layer (PBL) are especially sensitive to surface fluxes, but
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modeling atmospheric transport to interpret observations in
the PBL is inhibited by two main challenges: (1) ‘‘near-
field’’ variability in concentration data associated with
inhomogeneities of the distribution of surface fluxes and
(2) inadequate representation of PBL dynamics and trans-
port in most models. The term near field is used loosely here
to refer to the surface with which PBL air has come in
contact before arrival at the observation location. The
globally averaged ventilation time for the PBL is �4 days
[Cotton et al., 1995]; hence the near-field domain affected
by PBL processes may extend over 102–103 km, i.e.,
regional or even continental scale. There is a strong need
for diagnostic models that can be used to determine surface
fluxes from observations in the PBL.
[4] Lagrangian particle dispersion models have the po-

tential to address the above challenges by simulating
turbulence and capturing subgrid scale transport. Particle
models simulate both advection and dispersion in the PBL
by explicitly incorporating turbulent velocity statistics in the
trajectories of tracer particles [Stohl, 1998; Zannetti, 1990],
expanding beyond traditional mean wind trajectory models
that assume air parcels to be conserved entities [Stohl and
Wotawa, 1993]. Particle locations are distributed without
gridcell restrictions and can thus capture fine structures due
to small-scale inhomogeneities in source distributions that
are unresolved by gridded transport models.
[5] We introduce here a receptor-oriented framework for

inferring surface sources or sinks of trace gases from
atmospheric data in the PBL, the Stochastic Time-Inverted
Lagrangian Transport (STILT) model. STILT simulates up-
stream influences on the observation location (receptor) by
following the evolution of a particle ensemble backward in
time. Analyzed wind fields are interpolated to the location of
each particle, and turbulent motions are simulated by a
Markov chain process based statistically on observed
meteorological parameters.
[6] We examine in detail the physical and numerical

requirements for STILT applicable to any particle model
intended for use in interpreting atmospheric tracer observa-
tions. Empirical assessment of time reversibility provides
key insight into physical and numerical inconsistencies in
model frameworks and associated input data. We also
present a quantitative estimate of the gain in information
obtained from a particle approach over a standard Eulerian
gridcell approach by employing concepts from information
theory. The value of STILT as a near-field tool is illustrated
by interpreting atmospheric data from the CO2 Budget and
Rectification Airborne (COBRA) study over North America.

2. Theoretical Background: Lagrangian Particle
Dispersion Models

[7] Lagrangian particle transport models are based upon
the assumption that turbulent diffusion can be modeled as a
Markov chain, first suggested by Obukhov [1959] and Smith
[1968]. Hanna [1979] has shown from Eulerian and La-
grangian measurements that the Markov assumption is
reasonable, i.e., the particle velocity vector u can be decom-
posed into a mean component u and a turbulent component
u0, with the turbulent component following the relation:

u0 t þ�ð Þ ¼ R �tð Þu0 tð Þ þ u00 tð Þ; ð1Þ

where u00 is a random vector, R is an autocorrelation
coefficient, and �t is the time step. The autocorrelation
coefficient R in equation (1) follows an exponential form
R(�t) = exp(��t/TLi), where TLi is the Lagrangian time-
scale in the i direction (i=u, horizontal; i=w, vertical). TLi is
a decorrelation timescale that determines the degree to
which the particle’s movement behaves like a random walk
(TLi = 0) or like advection by mean wind (large TLi). The
random velocity u00 in equation (1) is defined by the relation:

u00 ¼ L 1� R2 �tð Þ
� �1=2

; ð2Þ

where L is usually drawn from a Gaussian distribution with
a mean of 0 and a standard deviation, si, which
characterizes the spread in the random velocity. The
properties emerging from an ensemble of particle trajec-
tories obtained from integrating equation (1) are used to
characterize the turbulent flow.
[8] Particles transported forward in time provide a

straightforward way for quantifying the effect an emission
source has on downstream concentrations [Lamb et al.,
1979; Ryall et al., 2001]. The total amount of tracer emitted
is divided equally into the number of particles starting from
the emission location, and the particle density at a specified
location (receptor) directly yields the tracer concentration.
Provided the particle transport is time reversible, the back-
ward time run starting from the receptor results in the same
particle number at the emission source. Hence emissions
from upstream regions with more particles cause bigger
changes in concentrations at the receptor. The particle
density from backward time simulations provides the ‘‘in-
fluence density’’: the change in tracer concentration at the
receptor in response to fluxes at the locations and times
where the particles are found in the time-reversed model
[Uliasz and Pielke, 1990]. Backward time particle simula-
tions thus enable implementation of a ‘‘receptor-oriented
framework’’ [Uliasz and Pielke, 1990] that defines upstream
influences on tracer observations at the receptor. The
backward time particle locations map out the influence
function I(xr,tr j x,t), which quantitatively links sources
and sinks S(x, t) to concentrations C(xr, tr) of a conserved
tracer at a receptor located at xr and time tr, following
Holzer and Hall [2000] and Zannetti [1990]:

C xr; trð Þ ¼
Ztr
t0

dt

Z
V

d3xI xr; tr j x; tð ÞS x; tð Þ

þ
Z
V

d3xI xr; tr j x; t0ð ÞC x; t0ð Þ: ð3Þ

I(xr,tr j x,t) has units of density (1 volume�1), and
measurements of C(xr, tr) are given in mixing ratio units
(e.g., ppm), and the source/sink S(x, t) has units of mixing
ratio per unit time (e.g., ppm h�1). I(xr,tr j x,t) specifies the
fraction of a fluid element found at xr and time tr, given that
the fluid element was at x and time t; it is analogous to the
Green’s function in the solution of the tracer continuity
equation [Holzer and Hall, 2000]. The first term on the
RHS of equation (3) denotes the concentration change at the
receptor from sources/sinks in domain V during the time

ACH 2 - 2 LIN ET AL.: PARTICLE MODELING OF SURFACE INFLUENCES



interval between initialization time t0 and tr. The second term
refers to the contribution to the receptor concentration from
advection of tracers from the initial tracer field C(x, t0).
[9] The connection between influence function I(xr,tr j

x,t) and particle locations is formally established as follows.
I(xr,tr j x,t) is represented by the density r(xr,tr j x,t) of
particles at (x,t) which were transported backward in time
from (xr,tr), normalized by the total particle number Ntot:

I xr; tr j x; tð Þ ¼ r xr; tr j x; tð Þ
Ntot

¼ 1

Ntot

XNtot

p¼1

d xp tð Þ � x
� �

; ð4Þ

where the delta function in equation (4) simply represents
the presence or absence of particle p at location x. The fields
of I(xr,tr j x,t) and S(x, t), continuous in space and time, are
in practice resolved only at finite resolution with a discrete
volume (�x, �y, �z) and finite time interval (t). The
influence function, integrated over the finite volume and
time elements and applying equation (4), is given by:

Ztmþt

tm

dt

Zxiþ�x

xi

dx

Zyjþ�y

yj

dy

Zzkþ�z

zk

dz I xr; tr j x; tð Þ

¼ 1

Ntot

Ztmþt

tm

dt

Zxiþ�x

xi

dx

Zyjþ�y

yj

dy

Zzkþ�z

zk

dz r xr; tr j x; tð Þ

¼ 1

Ntot

XNtot

p¼1

�tp;m;i;j;k : ð5Þ

Thus the time- and volume-integrated influence function is
simply quantified by tallying �tp,m,i,j,k, the total amount of
time each particle p spends in a volume element i,j,k over
time step m. Equation (5) provides source-receptor matrix
elements that link sources at finite temporal and spatial
resolutions directly to receptor concentrations through
equation (3).
[10] The connection between ‘‘surface’’ fluxes F(x,y,t) in

units of (moles time�1) to S(x,t), a volume source/sink in
units of (mixing ratio time�1) can be established by diluting
the surface tracer flux into an atmospheric column of height
h, below which turbulent mixing is strong enough to
thoroughly mix the surface signal during a time step:

S x; tð Þ ¼
F x; y; tð Þmair

hr x; y; tð Þ for z 	 h

0 for z > h

;

8><
>: ð6Þ

where r is the average density below h and mair is the molar
mass of air. Given discretized surface fluxes F(xi, yj, tm),
‘‘footprint’’ elements f(xr, tr j xi, yj, tm) linking the surface
fluxes to concentration changes at the receptor �Cm,i,j(xr, tr)
can be derived as follows. Equation (6) is substituted for
S(x,t) in the first term on the RHS of equation (3) and
integrated over discrete volume and time elements yielding

�Cm;i;j xr; trð Þ

¼ mair

hr xi; yj; tm
� � Ztmþt

tm

dt

Zxiþ�x

xi

dx

Zyjþ�y

yj

dy

Zh

0

dz I xr; tr j x; tð Þ

2
64

3
75


 F xi; yj; tm
� �

¼ f xr; tr j xi; yj; tm
� �

F xi; yj; tm
� �

: ð7Þ

For surface flux F(xi, yj, tm) in units of (mmol m�2 s�1) and
�C in (ppm), f(xr, tr j xi, yj, tm) is in units of (ppm (mmol�1

m2 s)): given a unit surface flux of 1 mmol m�2 s�1 at
(xi, yj,tm) persisting over a time interval t, f(xr, tr j xi, yj, tm)
gives the concentration change �C in ppm at the receptor.
The f(xr, tr j xi, yj, tm) can be derived from particle locations
by combining equation (5) and the expression in brackets in
equation (7):

f xr; tr j xi; yj; tm
� �

¼ mair

hr xi; yj; tm
� � 1

Ntot

XNtot

p¼1

�tp;i;j;k : ð8Þ

[11] Backward time particle simulations enable adoption
of a receptor-oriented framework like equation (3) in an
efficient way. A single backward time particle ensemble
starting at a given (xr, tr) provides both the spatial and
temporal dependence of I(xr,tr j x,t). The alternative
approach of modeling transport forward in time from
potential upstream influence areas incurs a much larger
computational cost; no a priori method exists to decide
which sources would influence the receptor, and forward
time transport starting from the entire model domain V
needs to be simulated (Figure 1) for each time step
between t0 and tr. To resolve a 1000 km � 1000 km
domain at 50 km resolution for 2 days at 30 min
resolution, the forward time simulation incurs a computa-
tion effort that is 104 times larger than the backward time
simulation.
[12] Forward and backward time simulations can be

interpreted as selecting for different subsets of the ‘‘trajec-
tory space’’: the collection of trajectories from all starting
locations at all time steps within a temporal window. A
forward simulation starting at source region (xi

0,yi
0,zi

0)
selects for the subset of particle trajectories with (xi

0,yi
0,zi

0)
as the starting point, while the backward simulation starting
at receptor location xr = (xr,yr,zr) selects for the subset of
particle trajectories arriving (viewed forward in time) at the
receptor. The upstream influence on air at the receptor is
determined precisely by air parcels that arrive at the
receptor, so the backward time run selects for the appropri-
ate air parcels in a single simulation. In contrast, only a
small fraction of forward time particles starting at (xi

0,yi
0,zi

0)
arrives at the receptor, so multiple simulations starting at
different (xi

0,yi
0,zi

0) are needed to identify all trajectories that
reach the receptor. Demonstration of time reversibility in the
model would then show that a single backward time
simulation generates the same I(xr,trjx,t) as numerous for-
ward time runs, leading to significant savings in computa-
tional effort.
[13] Lagrangian particle models have been used by nu-

merous researchers in the forward time sense to model
atmospheric transport [Fay et al., 1995; Luhar and Britter,
1989; Ryall et al., 2001; Stohl et al., 1998]. Few studies to
date have used backward time particle dispersion models to
interpret and understand atmospheric tracer observations.
Uliasz and Pielke [1990] pioneered the use of backward
time particle models to derive influence areas that provide
quantitative measures of the effects of different emissions
on the air quality at receptor sites. Uliasz [1996] compared
methylchloroform measured at receptor sites with values
from the dispersion model, we are not aware of other studies
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coupling observations with a backward time turbulent
particle transport to derive source information.

3. Physical Requirements for Realistic Simulation
of Source-Receptor Relationships

[14] Realistic simulations of transport and upstream in-
fluence by particle models must satisfy the following
criteria: (1) well mixedness; (2) simulation of the close
interaction between windshear and vertical turbulence;
(3) high temporal resolution to resolve the decay in the
autocorrelation of u0; (4) consistent representation of par-
ticles as air parcels of equal mass in both the mean and
turbulent transport components of the model.

3.1. Well Mixedness

[15] The well-mixed criterion specifies that models of
turbulent dispersion must retain an initially well-mixed

particle distribution and not spuriously unmix particles
[Thomson, 1987], a consequence of the Second Law of
Thermodynamics. The well-mixed criterion can be violated
due to inconsistencies in both the turbulent and mean wind
transport components. Turbulent parameterizations that
inadequately account for the ‘‘drift velocity’’ associated
with spatial gradients in turbulence variables cause par-
ticles to become trapped in low-turbulence regions [Legg
and Raupach, 1982]. Mean wind fields that violate mass
conservation also bring about the unmixing of particles.
Mass conservation requires the amount of mass entering a
gridbox to equal the one exiting it. Wind fields that
spuriously create or destroy atmospheric mass lead to
artificial dilution or concentration of particles and cause
deviation from well mixedness (Figure 2).
[16] Thomson [1987] has theoretically demonstrated the

equivalence of the well-mixed criterion to time reversibility.
Thus the influence function I(xr,tr j x,t) derived from an

Figure 1. Comparison of backward time and forward time simulations. A single backward time release
of particles marks out the potential source region that influences the receptor, yielding the spatial and
temporal dependence of the influence function I(xr,tr j x,t), while numerous forward time runs from the
entire model domain at multiple time steps are necessary. An empirical test for assessing time reversibility
of the STILT model was carried out by simulating particles back in time from a box centered at the
receptor location xr = (xr,yr,zr). Then numerous forward time runs were conducted, starting from each
potential source region (xi

0,yi
0,zi

0). The number of particles from the backward run which end up in the
source box is compared with the number from the forward run that is found in the receptor box, after
taking into account the differences in air density at the source and the receptor. If the backward run yields
similar information as the forward run, then the particle numbers should be comparable.
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ensemble of particle trajectories running forward in time is
expected to be the same as I(xr,tr j x,t) derived backward in
time only if the well-mixed criterion is satisfied. Problems
causing deviation from well mixedness introduce asymme-
tries into the forward and backward time simulations.
Inconsistencies in turbulence parameterization which lead
to particles being trapped in low-turbulence regions cause
particle transport to be time irreversible: if forward particles
were started in a low-turbulence region at the source, and
the receptor was in a high-turbulence region, then few
forward time particles would reach the receptor, whereas
lots of backward time particles would become trapped in
low-turbulence regions and end up at the source. The time
asymmetry arising from mass violation can be traced to the
fact that the effect of mass violation on particles, whether
dilution or concentration, depends on the direction of time.
The time asymmetry can be understood by considering a
simple one-dimensional flow, shown in Figure 2. Forward
in time, mass creation causes unphysical dilution of par-
ticles and fewer reach the receptor box as a result. Under
time reversal, mass destruction causes the particles traveling

backward from the receptor to be concentrated, and a
greater number of particles reach the source box.
[17] Hence violation of the well-mixed criterion causes

both forward and backward time results to be wrong.
Comparison of forward and backward results is thus an
effective way to reveal deficiencies in the model and has
been conducted for the STILT model (see below).

3.2. Simulation of Interactions Between Windshear
and Vertical Turbulence

[18] Dispersion is the result of the close coupling between
the mean wind field and turbulent deviations from the mean
field. The rapid vertical transport due to turbulent vertical
velocity w0 displaces air parcels to different altitudes in the
PBL, and the shear in mean wind causes air parcel trajec-
tories at different altitudes to diverge from one another.
Lagrangian particle models usually split the transport oper-
ator acting on particles into the mean and turbulent compo-
nents. Implementation of transport operator splitting
without capturing this tight coupling results in unrealistic
simulations; particles are transported up and down in the
turbulence module without being advected horizontally by
mean wind, while particles are advected by the mean
transport module without being redistributed vertically.

3.3. High Temporal Resolution to Resolve the Decay of
the Autocorrelation in u0

[19] Proper simulation of the Markov process given by
equation (1) depends upon adequate resolution of the decay in
autocorrelation ofu0 from the previous time step. The variable
which dictates the timescale over which the autocorrelation
persists is TL, the Lagrangian timescale. A time step which is
too large (�TL) means that the particle motion is not affected
by enough random velocity components, as the same u0

persists through the entire time step instead of decaying.
Wilson and Zhuang [1989] have suggested that a time step
that is smaller than 10% of the local TL should be used.

3.4. Consistent Representation of Particles as Air
Parcels of Equal Mass

[20] Particles advected by mean wind vectors are treated
as air parcels of equal mass; they are concentrated and
diluted while being transported lower and higher in the
atmosphere, in accordance with the large vertical gradients
in air density. The model’s turbulent parameterization must
take into account the atmosphere’s vertical density gradient
to maintain consistent treatment of the particles. Neglecting
the density gradient will systematically underestimate tracer
concentrations near the surface and overestimate concen-
trations at higher altitudes [Stohl and Thomson, 1999].

4. Model Description: STILT Model

[21] The STILT model is built upon source code from the
Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) system [Draxler and Hess, 1998], using the
mean advection scheme from HYSPLIT but employing a
different turbulent module. The HYSPLIT mean trajectories
have been evaluated by comparison with neutral balloon
paths [Draxler and Hess, 1998]. The turbulence parameter-
ization is described below.
[22] The horizontal Lagrangian timescale TLu is assumed

to be 3 hours velocity [Draxler and Hess, 1998]. The

Figure 2. Schematic illustrating the unmixing of particles
and time asymmetry introduced by mass violation in the
driving wind fields. (a) Mass-conserving, one-dimensional
flow. (b) Creation and (c) destruction of mass cause dilution
and concentration of particles, respectively, and the effect on
particles depends on the direction of time, leading to
asymmetry between forward and backward time simulations.
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parameters TLw and sw controlling vertical turbulence are
represented, following Hanna [1982], as functions of the
PBL height, roughness length, Monin-Obukhov length,
convective velocity scale, and frictional velocity. The
parameterization for PBL height, necessary because the
general unavailability of PBL height in meteorological
fields, has been modified from the simple ‘‘parcel method’’
in HYSPLIT, which specifies the PBL height as the level
where the virtual potential temperature is greater than the
surface value by 2�K. The new parameterization is a
modified Richardson number method that generalizes to
unstable, neutral, and stable conditions [Vogelezang and
Holtslag, 1996]. A comparison of modeled PBL heights
against radar observations at a tall tower in Wisconsin [Yi
et al., 2000] and aircraft tracer-derived observations (C.
Gerbig et al., Constraining regional and continental fluxes
of CO2 with atmospheric observations over a continent: A

receptor oriented analysis of the COBRA data concentra-
tion measurements, submitted to Journal of Geophysical
Research, 2002, hereinafter referred to as Gerbig et al.,
submitted manuscript, 2002) shows that the new parame-
terization has significantly reduced the bias in the predicted
PBL height (Figure 3).
[23] STILT adopted a unique way for transporting par-

ticles between vertical levels in order to satisfy the well-
mixed criterion. It is important to note that most numerical
treatments violate the well-mixed criterion in an environ-
ment with inhomogeneous turbulence, allowing initially
well-mixed particles to accumulate in low-turbulence
regions. A ‘‘drift correction’’ to address this problem was
described by Legg and Raupach [1982], albeit it was later
shown that this simple correction does not strictly satisfy the
well-mixed criterion [Rodean, 1996; Thomson, 1984]. We
initially adopted the drift correction and conducted tests to

Figure 3. Comparison between observed and predicted values of PBL height using two different
parameterizations: (1) the original parcel method used in HYSPLIT; result of orthogonal distance
regression: PBLpred = 1.20PBLobs + 167.5; and (2) the new modified Richardson number method that
yields predictions closer to observed values; result of orthogonal distance regression: PBLpred =
1.09PBLobs � 55.1. Solid symbols refer to observations derived from aircraft tracers, while open symbols
denote observations using radar in Wisconsin.
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verify adherence to the well-mixed criterion in the model.
We turned off mean advection and prescribed time invariant
vertical profiles of TLw (vertical) and sw, released particles
evenly throughout the atmosphere, and monitored for signs
of improper convergence. Particles remained well mixed for
simple profiles with TLw and sw varying linearly with height
in the PBL. But when more complicated profiles of TLw and
sw were prescribed, particles accumulated in low-turbulence
regions. Thomson et al. [1997] outlined a reflection/trans-
mission scheme for Gaussian turbulence that preserves well-
mixed distributions for particles moving across interfaces
between step changes in turbulence parameters. We adopted
this approach to satisfy the well-mixed criterion in the
strongly inhomogeneous environment of the PBL, where
the simple drift correction does not work. Vertical variations
of sw and TLw in STILT are approximated as discontinuous
layers with constant values. A typical configuration in
STILT has 17 layers below the altitude of 10 km, with
denser coverage near the ground (five layers below 1 km).
A particle with vertical velocity wi and approaching from
below an interface between lower (zi�) and upper (zi+)
layers is randomly transmitted with probability a and
velocity wt or otherwise reflected with �wi [Thomson et
al., 1997], where

wt ¼ wi

sw ziþð Þ
sw zi�ð Þ ; a ¼ sw ziþð Þr ziþð Þ

sw zi�ð Þr zi�ð Þ : ð9Þ

The same scheme is applied for a particle traveling
downward and approaching the interface from above by
reversing the lower and upper variables. The air density is
represented as r; this term is added to the formulation of
Thomson et al. [1997] because particles in STILT are treated
as air parcels with constant mass, and changes in air density
have to be taken into consideration in order to conserve the
amount of mass each particle represents as it is transported
vertically. Equation (9) ensures that initially well-mixed
particles in an environment with Gaussian turbulence
remain well mixed. Our tests for well mixedness showed
no spurious accumulation for model run times of over
72 hours.
[24] STILT is currently driven by archived meteorological

data from the Eta data assimilation system (EDAS) at the
National Centers for Environmental Prediction [Black,
1994]. EDAS has a 32 km, 45 level grid and archives data
in 3 hourly intervals with 80 km horizontal resolution and
22 vertical levels. Gridded variables in EDAS were inter-
polated in time and space to each particle location. Surface
fluxes of momentum and sensible heat from EDAS were
used in the parameterization of TLw and sw [Hanna, 1982].
EDAS winds were directly used for the mean (nonstochas-
tic) velocity u. Meteorological variables were linearly inter-
polated between the 3 hourly intervals in EDAS and
extracted at 1 min time steps. We implemented operator
splitting, using finer time steps to properly resolve disper-
sion. Wind vectors from EDAS were passed onto the
dispersion module to capture the interaction between wind-
shear and vertical turbulence: particles are mixed by vertical
turbulence to various heights, and the differing mean wind
vectors at those heights advect the particles in differing
directions and speeds. Particle locations were updated in the
dispersion module at time steps set at 10% of the local TLw

in the vertical profile to adequately resolve the decay in
autocorrelation [Wilson and Zhuang, 1989]. TLw can vary
from �1 s to hundreds of seconds, so the dispersion time
steps can vary correspondingly from 0.1 s to tens of
seconds.

5. Empirical Assessment of Time Reversibility

5.1. Comparison Between Forward and
Backward Time Simulations

[25] An empirical test of time reversibility was conducted
for the STILT model as an effective way to probe the
model’s deficiencies, revealing deviation from the well-
mixed criterion through a comparison between the forward
and backward time directions. The time reversibility tests
also represent a practical, unique method to examine com-
pliance with the well-mixed criterion in three dimensions;
the alternative method of initializing particles well mixed
throughout the entire atmosphere and tracking them to look
for spurious convergence over time is not feasible, given the
huge computational expense this entails. Furthermore, es-
tablishment of time reversibility enables the forward time
results to be derived with backward time simulations,
potentially allowing significant savings in computational
effort.
[26] The test of time reversibility was conducted as

follows. Time reversibility requires I(xr,tr j x,t) derived
from an ensemble of particle trajectories running either
forward or backward in time to be the same. Values of
I(xr,tr j x,t) are derived from particle density (equation (4))
or, when integrated over a finite volume element, the
number of particles in the volume element (equation (5)).
Thus given that Ntot particles are released from the receptor
location xr = (xr,yr,zr) at time 0 and transported backward in
time for t hours, and a three-dimensional box centered at
(xi

0,yi
0,zi

0) encloses n particles, a release of Ntot particles from
(xi

0,yi
0,zi

0) at time �t should also yield n particles in a box
with the same dimensions centered at (xr,yr,zr) after +t hours
(Figure 1), after taking into account differences in air
density at (xr,yr,zr) and (xi

0,yi
0,zi

0). The dependence on air
density follows from the fact that particles are treated as
air parcels with mass, so the number of particles found in a
volume at the source and receptor will depend on the local
air density at the receptor and source locations.
[27] For our test we set the receptor location (xr,yr,zr) to

the WLEF television station tall tower monitoring station in
Wisconsin [Bakwin et al., 1996]. Particle trajectories were
simulated using Nested Grid Model (NGM) meteorological
fields [Hoke et al., 1989], due to the 180 km NGM fields’
coarser resolution relative to EDAS and smaller associated
computational expense. Eight starting times were randomly
selected in 1996, when 15,000 particles were released from
a box centered at 250 m above ground level (AGL) and
transported 48 hours backward in time. The source region
defined by the particle locations at �48 hours was divided
into boxes centered vertically at 50 m AGL, and the number
of particles found in each box was counted. The box size
was chosen to have a vertical dimension of 100 m, and
horizontal dimensions were selected to roughly divide the
source region into 100 boxes. The horizontal dimensions
ranged from 0.5� longitude by 0.2� latitude to 5� longitude
by 1� latitude between the eight starting times. We released
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15,000 particles from a subset (25%) of the boxes, trans-
ported them 48 hours forward in time, and tallied the
particles ending up in the receptor box. The particle density
in the source box was then compared with the
corresponding number in the receptor box. Subgrid level
heterogeneities in particle density not resolved by the source
and receptor boxes were removed by distributing the start-
ing locations of particles uniformly throughout the boxes for
both the forward and backward simulations.
[28] Comparison for a single starting time, at 0800 UT on

10 April, is shown in Figure 4a as an example of the results.
The backward time particle densities were correlated with
their forward time counterparts (R2 = 0.80), but the com-
parison exhibited large amounts of scatter, with a significant
bias toward higher particle densities in the backward sim-

ulations; the slope given by a weighted orthogonal distance
regression was 1.85 ± 0.11. The weights (1/error) in the
regression were assigned by treating errors in particle
numbers to follow Poisson statistics, as confirmed by
bootstrap analysis. Comparisons for all eight starting times
are shown in Table 1. The regression slopes were statisti-
cally different from 1 for almost all the days examined,
suggesting temporal asymmetry in the NGM particle
simulations.

5.2. Effect of Mass Violation

[29] The asymmetry between backward and forward
simulations in Figure 4a can be traced to mass violation
in the driving meteorology, implying significant errors in
source-receptor influence functions for both forward and
backward models. Mean wind trajectories simulated by
STILT are reversible with negligible errors (<1 km horizon-
tal,<2 m vertical over 48 hours), suggesting that the advec-
tion scheme on its own is not the source of the asymmetry.
Furthermore, when mean advection was switched off, the
turbulence parameterization by itself was reversible, satis-
fying the well-mixed criterion. These results strongly sug-
gest that the problem likely resides in the driving winds
instead of the numerical representation of particle transport
in the model. Asymmetry under time reversal due to mass
imbalances can be introduced via spurious dilution and
concentration of particles, as discussed earlier (Figure 2).
[30] The wind fields from numerical weather prediction

centers could violate mass conservation due to coordinate
transformations during the postprocessing procedure or
due to the data assimilation process itself [Byun, 1999].
Trenberth [1991] has shown that large mass imbalances
can arise from the way in which model variables are
postprocessed and archived, e.g., mass imbalances can
arise from interpolation of variables to individual levels
rather than averages over entire layers. Degradation of
spatial resolution during the postprocessing and archiving
process can clearly introduce mass violation, especially
when grid points are simply omitted instead of used in an
averaging scheme over the coarser grid. Conversions
between vertical coordinate systems can introduce addi-
tional errors [Hoerling and Sanford, 1993].
[31] The NGM meteorological files used in the time

reversibility tests were degraded from a spatial resolution

Figure 4. (a) Comparison of particle densities from
48 hour backward and forward time model runs starting
on 10 April 1996 at 0800 UT. The triangles denote particle
densities after application of a first-order mass correction, in
which particles traveling through regions of mass creation
receive heavier weight while particles in regions of mass
destruction receive lighter weight (see text). (b) Comparison
of forward and backward time model runs when a
simplified, mass-conserving wind field is used.

Table 1. Results of the Empirical Tests for Time Reversibility

That Compare 48 Hour Backward and Forward Time Simulations

of the STILT Model (See Text)a

Day
Hour,
UT

Regression
Slope

Regression Slope
(First-Order Mass Correction)

28 Jan. 0900 1.01 ± 0.06 0.96 ± 0.06
4 March 2000 0.68 ± 0.05 0.80 ± 0.07
7 March 1800 1.03 ± 0.07 0.98 ± 0.07
1 April 1700 0.68 ± 0.07 0.67 ± 0.07
10 April 0800 1.85 ± 0.11 1.13 ± 0.07
20 Feb. 0100 0.18 ± 0.03 0.52 ± 0.03
25 March 0700 0.97 ± 0.07 0.96 ± 0.06
10 May 2100 1.17 ± 0.07 0.91 ± 0.06

aThe slope (backward/forward) is derived from an orthogonal distance
regression. The last column refers to the regression slope after applying a
first-order correction for mass violation in the NGM fields that assigns
weights to particles depending the cumulative mass violation that they have
experienced during their transport history.
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of 90–180 km during the archival procedure. We quantified
mass violation in the NGM fields by directly calculating
imbalances in the continuity equation using wind vectors
and pressure changes from the NGM fields. Horizontal and
vertical mass divergence terms were calculated from differ-
ences in mass fluxes between adjacent grid points. Large
values of mass violation were observed, with as much as
15% of mass in a gridcell being created or destroyed per hour
at the lowest model level and 2% at higher model levels.
[32] A first-order correction for the NGM particle simu-

lations was carried out by tallying the cumulative mass
violation experienced by each particle during its transport
history. We then allowed particles traveling through regions
of mass creation in the meteorological field to become
correspondingly ‘‘heavier’’; conversely, particles in regions
of mass destruction become ‘‘lighter.’’ Each particle is
assigned a weight according to its fraction of the total mass
of the particle ensemble at a particular time step. Mass
creation giving rise to particle dilution and an underestima-
tion of particle density would be partially corrected by the
greater weight assigned to the resulting heavier particles,
while particle concentration associated with mass destruc-
tion would be corrected by deemphasizing the lighter
particles (Figure 2). This method provides only a first-order
correction effective only if the particle ensembles follow
similar paths traveling to the receptor and the source; errors
arising from mass violation can be amplified due to hetero-
geneity in the three-dimensional wind field as particle
dilution/concentration forces particles to take forward time
paths that are different from their backward time counter-
parts.
[33] Application of the mass correction to the comparison

between forward and backward time simulations generally
resulted in a decrease in the temporal asymmetry (Figure 4a
and Table 1), with the regression slope shifting closer to 1.0
for five out of the eight starting times. The improvement in
correspondence resulting from a correction incorporating
mass considerations supports the view that mass violation in
the driving wind field introduces asymmetries into the
particle results.
[34] As further investigation into the effects of mass

violation on particle simulations, we constructed a simpli-
fied, mass-conserving atmosphere by prescribing winds
with simple linear dependence on altitude and no horizontal
divergence (@u/@x = @v/@y = 0). The vertical mean wind
w was set to 0 everywhere. A sinusoidal temporal depen-
dence of the v wind was prescribed to cause horizontal
dispersion of particles. Both air density and ground height
were set to constant values throughout the model domain.
Turbulence parameters were taken directly from the NGM
meteorological fields without simplification, retaining the
diurnal variations in PBL height and vertical mixing. When
the same comparison between forward and backward time
simulations was conducted using the mass conserving wind
field described above, the bias was no longer observed
(slope = 0.98 ± 0.03), with R2= 0.97 (Figure 4b). This
suggests that particle transport as modeled by STILT is time
reversible, provided the particles are transported by mass
conserving wind fields.
[35] We then examined qualitatively the effect of large

mass violation on time reversibility in the simplified
atmosphere described above by prescribing a wind field

with mass violation of 15% h�1 below 1800 m AGL by
setting vertical divergence to a nonzero value (@w/@z =
�15% h�1). Thus particles traveling forward in time
below 1800 m experience mass destruction, as the linear
increase in subsidence velocity is not balanced by hori-
zontal divergence. Vertical velocity at higher levels was set
to zero, with the velocity linearly decaying to zero
between 1800 m and the next model level at �2200 m.
This is a region of significant mass creation (>100% h�1)
for forward time particles.
[36] The effect of this extensive deviation from mass

conservation is clearly manifested in backward and forward
time particle runs showing particle number as a function of
altitude and time (Figures 5a and 5b). The backward time
simulation (Figure 5a) shows dilution of particles in the
lower atmosphere, where mass creation occurs, and accu-
mulation of particles in a thin layer near 2000 m, where
extensive mass destruction takes place. The strong effect of
mass violating winds is only partially counteracted during
hours of more extensive vertical mixing, coinciding with
higher PBL heights. In contrast, the forward time simulation
(Figure 5b) shows particles being trapped near the ground,
where mass destruction of 15% h�1 takes place. The
dependence of mass destruction and creation on the direc-
tion of time has led to asymmetries in particle simulations
(Figure 2). Consider a receptor and source that are both
located near the ground; few particles traveling backward
would be found at the source, while many more particles
traveling forward would reach the receptor.
[37] The combination of (1) lack of a significant bias in

the forward-backward comparison in the simplified, mass
conserving atmosphere and (2) the large effect of mass
violation further supports the view that the observed time
asymmetry in Figure 4a and Table 1 is mostly due to mass
violation in the NGM winds. Evidently, inconsistencies in
archived wind fields leading to mass violation must be
addressed to obtain accurate results using STILT or any
other offline transport model.

6. Application of STILT to Atmospheric
Observations: COBRA Experiment

6.1. Need for a Near-Field Tool to Interpret CO2

Observations

[38] We illustrate the usefulness of applying STILT for
interpreting aircraft observations of CO2. Terrestrial sources
and sinks of CO2 are widely distributed at the surface,
where the biosphere acts as a sink during daytime and a
source during nighttime. The direction of surface fluxes is
correlated in time with the PBL depth, rendering interpre-
tation of CO2 observations in the PBL difficult without
adequate representation of PBL dynamics [Denning et al.,
1996]. The CO2 signal in the lower atmosphere shows
significant variability even down to length scales of 10 km
(Gerbig et al., submitted manuscript, 2002), suggesting that
gradients due to variable sources and sinks of CO2 have not
been averaged out by dispersion and mixing. These char-
acteristics call for a tool like STILT, which can interpolate
wind fields down to the subgrid scale and adequately
resolve near-field transport in the PBL.
[39] The data analyzed here derive from test flights of the

COBRA study. COBRAwas designed to address the current
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gap in knowledge of terrestrial carbon fluxes at the regional
to continental scales [Stephens et al., 1999]. We ran STILT
in the backward time mode to interpret CO2 observations
during the 1999 COBRA test flights, as part of which the
University of North Dakota Cessna Citation aircraft ac-
quired a time series of vertical profiles in the vicinity of the
WLEF tall tower on 8 June (Figure 6). The airborne CO2

instrument used in COBRA is a nondispersive infrared
gas analyzer based on the design of the Harvard University
ER-2 CO2 analyzer [Andrews et al., 1999; Boering et al.,
1994]. In-flight and laboratory calibrations indicate that the

uncertainty of the CO2 observations during COBRA was
±0.25 ppm [Daube et al., 2002]. A distinct decrease of CO2

near WLEF over the day can be seen in Figure 6, presum-
ably due to biospheric uptake.
[40] Similar observations have been used to calculate

regional CO2 uptake with a boundary layer budget method
by assuming horizontal advection of tracers into the atmo-
spheric column to be small [Denmead et al., 1996; Kuck et
al., 2000; Levy et al., 1999; Lloyd et al., 2001], essentially
assuming that upstream regions influencing the observa-
tions are identical in both the morning and the afternoon,

Figure 5. Particle runs driven with mass-violating wind fields in a simplified atmosphere. Particle
simulations (a) backward and (b) forward in time, driven by winds with 15% mass violation below
1800 m above ground level and >100% between 1800 and 2200 m.
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with the tracer decrease reflecting daytime uptake by that
same upstream region. The boundary layer budget can be
understood from a receptor-oriented perspective by inte-
grating equation (3) vertically to the top of a column and
treating C as the vertically integrated column tracer amount.
The difference in column tracer amount at the receptor (�C)
during two times (tr1, tr2) is then

�C ¼ C xr; tr2ð Þ � C xr; tr1ð Þ

¼
Ztr2
t0

dt

Z
V

d3xI xr; tr2 j x; tð ÞS x; tð Þ

2
4 Z

V

d3xI xr; tr2 j x; t0ð ÞC x; t0ð Þ
#

�
Ztr1
t0

dt

Z
V

d3xI xr; tr1 j x; tð ÞS x; tð Þþ
Z
V

d3xI xr; tr1 j x; t0ð ÞC x; t0ð Þ

2
4

3
5:

ð10Þ

BymakingtheassumptionthatI(xr,tr2jx,t)=I(xr,tr1jx,t)I(xr,tr
I(xr,tr j x,t), which corresponds to the assumption that
footprints are similar at times tr1 and tr2 and that horizontal
advection is negligible from a Eulerian perspective, terms
involving the initial field C(x,t0) cancel, and �C can be

linked directly to �S� the spatially and temporally
averaged source emission, in a simple framework:

�C ¼
Ztr2
t0

dt

Z
V

d3xI xr; tr j x; tð ÞS x; tð Þ

�
Ztr1
t0

dt

Z
V

d3xI xr; tr j x; tð ÞS x; tð Þ

¼
Ztr2
tr1

dt

Z
V

d3xI xr; tr j x; tð ÞS x; tð Þ ¼ tr2 � tr1ð Þ � S � : ð11Þ

The assumption of I(xr,tr2 j x,t) = I(xr,tr1 j x,t) must be
critically assessed. Heterogeneities in land cover may be
associated with large differences in S(x,t) that translate into
concentration differences at the receptor. This situation is
particularly important in the near field of observations,
where sources/sinks have strong influence on tracer
concentrations, and where atmospheric dispersion and
mixing have not yet averaged over multiple vegetation
types. Whether air traveled over corn fields or the forest
during the previous 24 hours prior to arriving at WLEF, for
instance, is important for interpreting the CO2 observations.
We use STILT to generate particle distributions that can
exhibit detailed structures in the near field and quantita-
tively resolve I(xr,tr j x,t). By linking I(xr,tr j x,t) to the
footprint of an receptor observation, the sensitivity of an
observation to upstream surface fluxes (equation (8)), the
relative importance of different vegetation types upstream
of the receptor can be assessed, providing the capability to
examine whether horizontal advection can be neglected.

6.2. Derivation of the Footprint

[41] Particle trajectories were used to generate the foot-
print elements f(xr, tr j xi, yj, tm), which provide spatially
resolved, quantitative information linking upstream surface
fluxes with the receptor. We released particles at five heights
(50, 500, 1000, 1500, and 2000 m AGL; Ntot = 8464, 8000,
7696, 7308, and 5604 particles, respectively) over WLEF
during the hours when the aircraft was conducting vertical
profiles, and particles were transported back in time for
24 hours using the EDAS meteorological field. Ntot at each
release height was scaled according to air density such that
the I(xr,tr j x,t) generated by all the particles is representa-
tive for the entire vertical profile. The f(xr, tr j xi, yj, tm) was
quantified from particle locations using equation (8). The
above first-order mass correction was applied in an attempt
to minimize artifacts in the simulations arising from mass
violation in the EDAS fields. Simulated footprints from
STILT were found to be insensitive to the exact value of
column height h between 10 and 100% of the PBL height
(Gerbig et al., submitted manuscript, 2002); we simply
equated h to the PBL height here.
[42] The footprints generated by STILT for 0800 LT and

1600 LT at �6, �12, and �24 hours are shown in
logarithmic scale in Figure 7, with surface fluxes in regions
indicated by dark squares causing a greater concentration
change at the WLEF receptor. These results show that the
regions influencing the WLEF receptor changed between
the morning and afternoon. Westerly/northwesterly winds at

Figure 6. CO2 vertical profiles over WLEF at different
local times on 8 June 1999 during the COBRA test flight
series. The scatter in data points for 1530 LT near 1500 m
can be attributed to eddies that entrained air from above the
mixed layer, as seen in the similarities in tracers such as CO,
H2O, and q with the air above the mixed layer. Gaps in the
vertical profiles resulted from in-flight calibrations.
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0800 LT shifted to southwesterly winds by 1600 LT.
Possible evidence of a wind shift can also be seen in the
free tropospheric value of CO2, which increased from 368
to 369 ppm during the day (Figure 5). Evidently, advective
influences cannot be neglected in this example, and changes
in CO2 do not simply reflect contributions from surface
sources and sinks.
[43] We examined the consequence of the wind shift on

relative influences from different vegetation types on the
receptor concentration. The footprint simulated by STILT
was superimposed on the 1 km International Geosphere
Biosphere Program land classification grid [Belward et al.,
1999], regridded to 1/6� latitude by 1/4� longitude. Foot-

prints from the four dominant vegetation classes at each
hour of transport during the day prior to arrival at WLEF (at
0800 LT and 1600 LT on 8 June) are plotted in Figure 8. The
rapid decay in footprint strength during the first hours
moving backward from 0800 LT was due to strong vertical
winds, which lofted particles above the shallow nocturnal
PBL. The shift in winds seen in Figure 7 translated into
differences in vegetation footprints during the 24 hours
before arrival at WLEF. Air arriving at 1600 LT was heavily
influenced by mixed forests and the cropland/natural veg-
etation mosaic during the day, while daytime mixed forest
footprint was not as strong for 0800 LT. Cropland footprint
was high during the entire night for the 1600 LT air as it was
transported back in time, whereas cropland footprint for the
0800 LT air did not increase until the previous day’s
afternoon.
[44] Accurate footprints f(xr, tr j xi, yj, tm) generated by a

tool like STILT are essential for interpreting atmospheric
observations and determining the applicability of an one-
dimensional budget approach. The footprints link fluxes
from upstream sources/sinks with the tracer observations.
Instances with changes in footprint (Figure 7) can be
identified when a simple framework like equation (11) to
derive fluxes from directly differencing tracer amounts
cannot be applied. Footprint change, correlated with spatial
heterogeneity in vegetation cover, translated into different
vegetation types influencing the receptor (Figure 8). Be-
cause characteristics of nighttime release and daytime
uptake of carbon may differ significantly between vegeta-
tion types, the shift in vegetation footprint on this day
means that a well-defined �S� cannot be calculated from
simple differences in tracer profiles. Furthermore, the
change in wind direction would lead to different values in
the initial field C(x,t0) to be advected to the receptor
location, as suggested by the observed increase in the free
tropospheric value of CO2 (Figure 6). It follows that one
cannot assume that terms involving the initial field C(x,t0)
cancel, and the simplified framework (equation (11)) does
not apply.

6.3. Alternative Approach to Estimating Fluxes:
‘‘Influence-Following’’ Experiments

[45] Alternative measurement approaches from a simple
one-dimensional boundary layer budget may be necessary
to derive fluxes during times when the assumption of a
constant I(xr,tr j x,t) between two sampling times does not
hold. Chou et al. [2002] adopted a pseudo-Lagrangian
framework to derive fluxes of CO2 from an atmospheric
budget, made possible by the availability of numerous
vertical profiles over multiple weeks during the ABLE-2B
mission and the vast extent of the Amazonian rain forest.
Furthermore, more flexible flight planning would enable an
experiment which samples C(xr,tr) and C(x,t0) that, com-
bined with knowledge of I(xr,tr j x,t), imposes direct
constraints on the spatially integrated flux between t0 and
tr (equation (3)). C(x,t0) refers to the initial tracer field over
a large domain, but only the subdomain where I(xr,tr j x,t) is
nonzero, i.e., where upstream air parcels influencing the
receptor are found, needs to be characterized. An observa-
tional strategy that tracks air parcels in the atmosphere, and
particles in STILT, can characterize C(x,t0). Note that this is
not a simple ‘‘air mass following’’ experiment, because

Figure 7. Footprints derived from particle locations
generated by STILT model at �6, �12, and �14 hours
upstream from WLEF (asterisk) on 8 June 1999 at
(a) 0800 LT and (b) 1600 LT. Particles were released
over altitudes covering the aircraft vertical profile
observations shown in Figure 6, such that the footprints
are applicable for the entire vertical profile. The greyscale
shows the logarithm (base 10) of the footprint in each 1/6�
latitude by 1/4� longitude gridcell. Darker areas denote
regions where a unit surface flux leads to a greater change
in concentration at WLEF. A clear shift in transport history
of air arriving at WLEF can be seen over the day between
0800 LT and 1600 LT.
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windshear and dispersion can cause air parcels arriving at
the receptor to originate from different air masses, but an
‘‘influence-following’’ experiment to capture upstream
influences. Implementing an influence-following experi-

ment requires the upstream influences I(xr,tr j x,t) to be
generated ahead of time in order to plan flight tracks that
cover all of the relevant domain. STILT, driven with
forecasted meteorology from the Eta model, served as an

Figure 8. Time series of footprints due to the four main vegetation classes during the 24 hours prior
to arrival on 8 June 1999 at (a) 0800 LT and (b) 1600 LT. Shaded portions denote nighttime periods.
At each time step, particle locations were mapped onto the IGBP 1 km resolution vegetation data,
regridded to 1/6� latitude by 1/4� longitude resolution. At the particle locations, footprints from
different vegetation classes were quantified according to equation (8), with the time interval t set to
1 hour. An unit flux of 1 mmol m�2 s�1 by a particular vegetation class persisting over an hour would
lead to the change in CO2 concentration at WLEF specified by the vegetation footprint. See color
version of this figure at back of this issue.
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operational flight planning tool for determining I(xr,tr j x,t)
in the COBRA flights of August 2000. Flights were planned
to sample the locations marked out by particles modeled
with STILT. A comprehensive analysis of the COBRA
influence-following experiments will be presented in a later
publication (J. C. Lin et al., manuscript in preparation,
2003).

7. Information Gain From Application of
Near-Field Tool

[46] Since STILT interpolates winds down to the subgrid
scale and tracks air parcels upwind to reveal influences, it is
expected to provide information more detailed and realistic
than a Eulerian approach, where the influence on a receptor
comes from upwind areas which may only be poorly
resolved by Eulerian grids. The gain in information is
particularly important in the near field, where surface
influence on the receptor is strong (Figure 8) and where
influence areas can show detailed structures at the subgrid
scale (Figure 7).
[47] We draw ideas from information theory to provide a

quantitative comparison of information about influence
areas provided by the time-reversed Lagrangian particle
approach versus the conventional Eulerian gridcell ap-
proach. Information can be expressed mathematically as a
reduction in uncertainty [Brillouin, 1956], where uncertain-
ty is quantified by the Shannon entropy H [Shannon and
Weaver, 1963] as follows:

H ¼
X
i

pi log2
1

pi

� �
: ð12Þ

Here pi denotes the probabilities of various outcomes i of a
random variable. The base 2 in the logarithmic function
treats the unit of information as the ‘‘bit,’’ such that
information can be thought of as the minimum number of
binary digits required to encode it [Renyi, 1984].
[48] Applied to influence areas, H quantifies the uncer-

tainty about the potential emission source and its location in
the area, and pi represents the probability of the emission
source coming from a region i. Atmospheric dispersion and
mixing cause increases in H (or losses in information),
reflected in the spread of the influence region over larger
and larger regions. Given a specific size of an influence
region, the value of H is largest when pi is uniform, i.e.,
when influence is spread out evenly over the entire influ-
ence area, there is greater uncertainty about the source than
if influence were concentrated in small subregions. Eulerian
simulations spatially resolve influence areas at the grid
scale. Lagrangian particles can resolve influences at the
subgrid scale, so greater uncertainty (less information)
about the emission source is associated with the Eulerian
result. Note that the information gain calculated here is the
reduction in uncertainty in the location of the source as
given by the influence region; quantifying Igain for ‘‘specific
tracers’’ will require a more involved calculation that takes
into account not just the influence area, but also the spatial
variability of sources/sinks in the influence area that give
rise to tracer variations.
[49] We define the information gain (Igain) from adopting

a Lagrangian particle approach as the reduction in Shannon

entropy from Eulerian model results (HE) to the particle
results (HL):

Igain ¼ HE � HL: ð13Þ

[50] The particles provide a straightforward calculation of
H, since the fraction of particles found in a particular gridcell
i over a time interval, as expressed by equation (5), can be
interpreted as pi, the probability of getting influence from
gridcell i. The values of pi for quantifying HE are
calculated by evenly distributing particles found in a
Eulerian gridcell over the entire 80 km � 80 km (EDAS
resolution) surface, as the Eulerian approach does not
resolve influence areas at the subgrid scale. In the case
of HL the idea of ‘‘gridcells’’ is not as clearly defined, but
should reflect the limit in resolution of the Lagrangian
approach, i.e., within the chosen size of the gridcell
particle positions are uncertain, and no further information
could be derived from their positions. Uncertainties in the
Lagrangian approach arise from uncertainties in particle
position associated with interpolating wind fields to derive
the subgrid scale winds in the particle simulations. Stohl et
al. [1995] have found the interpolation error in horizontal
wind (du) to be �0.4 m s�1 when the magnitude u of the
wind is 10 m s�1; this error would cause an error e in
particle position over its travel across the gridcell, given
by e = [�x/(u ± du)]du, where �x is the resolution of the
wind fields. The value of e = 3.3 km is for the 80 km
resolution EDAS data. We chose a gridcell of 20 km �
20 km, an order of magnitude larger, for HL as an upper
bound on uncertainties in particle position associated with
interpolating wind fields to derive a conservative estimate
(lower bound) of information gain.
[51] The information gain provided by a particle approach

at different hours backward in time from the receptor is
shown in Figure 9. The receptor is chosen at WLEF, and
particles were emitted at 1600 LT on 8 June 1999. Possible
overestimation of information gain due to patchy coverage
by a limited number of particles was ruled out by a
sensitivity test doubling the particle number, which yielded
the same results as in Figure 9. Igain is almost as large as
3 bits during the first few hours of transport back from the
receptor, when the influence region is still small relative to
the 80 km resolution Eulerian gridcell. As dispersion
increases the size of the influence region, the Eulerian
gridcells begin to resolve the influence region, leading to
a decrease in Igain. Igain stabilizes but remains at a nonzero
value of �0.3 bits even over longer times. We can see that
the information gain is large during the first �12 hours of
transport backward from the receptor. The initial hours
backward from the receptor are precisely the times when
the additional information provided by a particle approach
is important, due to the strong surface influence (Figure 8).
[52] The above estimate does not account for additional

considerations that would further increase Igain. The vertical
resolution of influence was assumed to remain the same in
both the Eulerian and Lagrangian approaches, whereas
Lagrangian particle distributions can resolve influence
fields at higher vertical resolution than the Eulerian grid
levels. Moreover, numerical diffusion associated with the
Eulerian approach [Odman, 1997] is disregarded when
calculation of HE is derived from distributing particles
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evenly throughout a gridcell at each time step. The Eulerian
approach dilutes tracers throughout a gridcell, and in
subsequent time steps the tracer would be further dispersed
to neighboring gridcells. The net effect is an atmosphere
that is more diffusive than simulated by the particle ap-
proach, resulting in a larger value for HE and a higher Igain
than shown in Figure 8.

8. Conclusions

[53] Time-reversed Lagrangian particle dispersion model-
ing is an effective way to determine the influence functions
of surface sources on atmospheric trace gas concentrations
observed at ground stations or by aircraft. Lagrangian
particle approaches are particularly appropriate for simula-
tion of near-field influence on concentrations by resolving
subgrid scale transport while capturing the essential physics
of turbulent transport in the PBL. The particle ensemble
enables straightforward adoption of a receptor-oriented
framework, providing upstream influences I(xr,tr j x,t) on
observations at the receptor (equations (3)–(5)). Particle
simulations backward in time from the receptor serve as a
particularly efficient way to derive the influence function
I(xr,tr j x,t).
[54] But in order to yield realistic simulations of I(xr,tr j x,t)

particle models have to satisfy physical criteria including the
well-mixed criterion, resolution of the decay in autocorrela-
tion, representation of close coupling between windshear
and vertical turbulence, and consistent treatment of particles
as air parcels with equal mass.
[55] STILT is a near-field tool designed to satisfy the

above physical criteria and simulate turbulent dispersion
and boundary layer transport on diurnal timescales, yielding
upstream influences that quantitatively link observations

with fluxes. The backward time simulation in STILT has
been demonstrated to provide results consistent with its
forward time counterpart. Discrepancies can be traced to
mass violation in the driving meteorological fields, which
can be attributed to the assimilation process or the post-
processing process involving coordinate transformations.
Future work will address the problem of mass imbalance
in STILT by using winds on the native grid of the meteo-
rological model, preserving the original spatial resolution
and vertical coordinate system.
[56] We have shown that a tool like STILT can provide

upstream influences in the near field that can be crucial for
interpreting in situ observations. An information theoretic
calculation for a case study has shown that the particle
approach can yield significant gain in information about the
location of the influence region over a standard Eulerian
gridcell approach at least during the 12 hours before arrival
at the receptor, when the observation is strongly influenced
by surface fluxes and when near-field influence is important
for interpreting the observations (Figure 8). We note that the
exact information gain from a particle approach in specific
situations depends on numerous factors not explored in
Figure 9. The error due to interpolation, necessary in the
Lagrangian approach, is expected to vary between meteo-
rological situations, being larger and reducing the informa-
tion gain during times of convective activity or in locations
with complicated mesoscale circulations. The gain in infor-
mation about tracer fluxes (rather than just the influence
region as shown in Figure 9) depends upon the specific
source/sink spatial distribution: the distance over which
tracer fluxes are spatially correlated (e.g., between similar
vegetation types for biospheric CO2 fluxes) determines
whether Eulerian gridcells can spatially resolve the contri-
butions of tracer fluxes to receptor observations.

Figure 9. Information gain from Lagrangian particle approach over Eulerian gridcell approach as a
function of hours backward from the receptor. The receptor is chosen at WLEF, and particles were
emitted at 1600 LT on 8 June 1999.
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[57] A near-field tool like STILT has the potential to
complement other existing modeling approaches. First,
STILT can be coupled with large-scale models to link tracer
observations at point locations over land with the global
tracer field (‘‘far field’’). An illustration of the linkage
between point observations of CO2 and an oceanic bound-
ary condition C(x,t0) to elucidate carbon fluxes can be
found in the work of Gerbig et al. (submitted manuscript,
2002), who used STILT to link continental CO2 observa-
tions with a climatological, oceanic CO2 boundary condi-
tion generated by propagating surface observations
[Conway et al., 1994] to fit airborne observations higher
in the atmosphere. Global tracer transport models make use
of data at the global scale, providing an alternate means to
generate the crucial far-field information C(x,t0) that can be
coupled with the information provided by a near-field tool
like STILT. Second, STILT complements the ‘‘adjoint
approach,’’ which formally derives adjoint equations from
Eulerian transport models [Giering, 1999; Pudykiewicz,
1998] that provide the sensitivity of model output (e.g.,
concentration) to input variables (e.g., fluxes) at the grid-
scale [Errico, 1997]. Generation of the adjoint model source
code can be a laborious and time-consuming process, which
has to be implemented for each separate transport model.
STILT can be driven off-line using archived winds, provid-
ing a rapid and flexible alternative. Even if the adjoint
model is available, limitations due to finite-sized gridcells
can result in inadequate resolution of the near-field influ-
ence (Figure 9). STILT can complement the adjoint ap-
proach by serving as a module for resolving the subgrid
scale influence regions until dispersion has increased the
influence area to a size which can be adequately resolved by
grids in adjoint models [Uliasz and Pielke, 1990], where the
information gain from adopting the particle method
approaches 0.
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Figure 8. Time series of footprints due to the four main vegetation classes during the 24 hours prior to
arrival on 8 June 1999 at (a) 0800 LT and (b) 1600 LT. Shaded portions denote nighttime periods. At
each time step, particle locations were mapped onto the IGBP 1 km resolution vegetation data, regridded
to 1/6� latitude by 1/4� longitude resolution. At the particle locations, footprints from different vegetation
classes were quantified according to equation (8), with the time interval t set to 1 hour. An unit flux of
1 mmol m�2 s�1 by a particular vegetation class persisting over an hour would lead to the change in CO2

concentration at WLEF specified by the vegetation footprint.

LIN ET AL.: PARTICLE MODELING OF SURFACE INFLUENCES

ACH 2 - 13


