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[1] Estimating the current sources and sinks of carbon and projecting future levels of CO2

and climate require biospheric carbon models that cover the landscape. Such models
inevitably suffer from deficiencies and uncertainties. This paper addresses how to quantify
errors in modeled carbon fluxes and then trace them to specific input variables. To date,
few studies have examined uncertainties in biospheric models in a quantitative fashion that
are relevant to landscape‐scale simulations. In this paper, we introduce a general framework
to quantify errors in biospheric carbon models that “unmix” the contributions to the total
uncertainty in simulated carbon fluxes and attribute the error to different variables. To
illustrate this framework we apply and use a simple biospheric model, the Vegetation
Photosynthesis and Respiration Model (VPRM), in boreal forests of central Canada, using
eddy covariance flux measurement data from two main sites of the Canadian Carbon
Program (CCP). We explicitly distinguish between systematic errors (“biases”) and random
errors and focus on the impact of errors present in biospheric parameters as well as driver
data sets (satellite indices, temperature, solar radiation, and land cover). Biases in downward
shortwave radiation accumulated to the most significant amount out of the driver data
sets and accounted for a significant percentage of the annually summed carbon uptake.
However, the largest cumulative errors were shown to stem from biospheric parameters
controlling the light‐use efficiency and respiration‐temperature relationships. This
work represents a step toward a carbon model‐data fusion system because in such systems
the outcome is determined as much by uncertainties as by the measurements themselves.
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1. Introduction

[2] Since the beginning of the Industrial Revolution, con-
centrations of carbon dioxide (CO2) in the atmosphere have
increased by about 30% [Keeling and Whorf, 1994; Crutzen
and Stoermer, 2000]. CO2 is a key greenhouse gas, and
changes in its biosphere‐atmosphere fluxes under climate
change play an important role in controlling future green-
house concentrations and providing feedbacks to the climate
system [Friedlingstein et al., 2006; Dufresne et al., 2002].

[3] Understanding biosphere‐atmosphere exchanges of
CO2 is essential for predicting future climate trends. Terres-
trial ecosystems absorb large amounts of atmospheric carbon
dioxide through photosynthesis and release it through respi-
ration and other microbiological processes. Using models
to simulate and scale‐up biosphere‐atmosphere carbon
exchanges is necessary when predicting carbon exchange
over large regions and when projecting carbon fluxes into the
future. Therefore, it is critical to examine the strengths and
weaknesses associated with these models. This is particularly
important in light of results from model intercomparison
studies [Amthor et al., 2001; Kicklighter et al., 1999], which
showed considerable differences in predicted carbon exchange
by a variety of biospheric models. For instance, Kicklighter
et al. [1999] compared global carbon biospheric models in
which significant divergences in model simulations were
found for summer uptake in boreal forests and during dry
seasons of tropical evergreen forests.
[4] Although model intercomparison studies broadly iden-

tify the times and locations of divergences between different
models, intercomparisons alone cannot provide quantitative
assessment of model uncertainties. Determining uncertainties
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requires a more detailed lookwithin individual models.While
numerous modeling studies have included uncertainty con-
siderations, few studies have systematically quantified the
uncertainties in biospheric models in a way that is relevant for
landscape‐scale carbon studies. The shortcomings of previ-
ous analyses include.
[5] 1. Lack of single framework that considers all error

sources: Previous uncertainty analyses have frequently
entailed simple sensitivity analyses in which values of a small
number of parameters or model formulations have been
altered to observe their respective impacts [e.g., Schaefer
et al., 2008; Kucharik et al., 2006]. While this is an important
first step, there is an urgent need for a single analysis
framework that attempts to consider all of the errors in a
comprehensive manner. We attempt to do exactly this in the
current paper, dividing the total error into contributions from
various factors (Figure 1).
[6] 2. Lack of consideration for errors in driving environ-

mental variables: Key environmental drivers such as tem-
perature and solar radiation are often treated as perfectly
known, or otherwise taken from observed values [Zhou et al.,
2008; Sacks et al., 2006;Davi et al., 2005]. Such observations
are not available over the entire landscape, so when upscaling
biospheric simulations, modeled values with their attendant
errors need to be considered.
[7] 3. Neglecting errors in applying site‐level parameters

at larger scales: This issue is related to the classical problem
of scaling in ecology [Schulze et al., 1994; Ehleringer and
Field, 1993]. Since observations of numerous parameters
are available only at intensive research sites, parameter values
are not known when the model is applied at other sites in
spatial scaling applications. Numerous recent biospheric
models rely heavily on site‐level data, however. Examples
include Williams et al. [1998], Amthor et al. [2001], Grant
et al. [2006], and Sun et al. [2008]. Consequently, biospheric

models have been evaluated mostly at the site level, dis-
regarding uncertainties involved in upscaling [Williams et al.,
2009]. Thus there is a need to either explicitly incorporate
uncertainties in such parameters or use simple models that
include less parameters.
[8] 4. Lack of distinction between random and systematic

errors (biases): Random and systematic errors behave and
influence results very differently, with systematic errors bias-
ing estimates from model‐data fusion systems while random
errors simply increasing the posterior uncertainties [Williams
et al., 2009]. Although the impact of random versus sys-
tematic error differs, modeling studies have mostly consid-
ered only errors that are random [e.g., Sacks et al., 2006;Davi
et al., 2005].
[9] The purposes of this paper are twofold. First, in

response to the previously mentioned lack of relevant
uncertainty studies, we introduce a general framework
(Figure 1) to quantify errors in simulating biospheric carbon
fluxes over the landscape. The framework methodically
“unmixes” contributions to the total uncertainty in simulated
carbon and attributes the total error to different factors. We
apportion the total observed error into contributions from
(1) driving data sets; (2) model parameters; (3) observations;
and (4) model misrepresentation.
[10] Second, we show a specific application of the error

analysis framework in the boreal forest region of central
Canada, using eddy covariance flux measurement data from
two main sites of the Canadian Carbon Program (CCP). We
explicitly distinguish between systematic errors (i.e., “biases”)
and random errors. Special emphasis is placed upon exam-
ining the impact of biases, since over longer, annual time
scales over which uptake and release cancel to a great extent
to determine the net flux, biases are the errors that accumulate.
However, random errors still act at subdaily time scales and
would be relevant for quantifying deviations between models

Figure 1. Schematic diagram of error analysis framework.
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and observations for “model‐data fusion” purposes (see
paragraph below).
[11] The specific biospheric model used as illustration of

the error analysis framework is the Vegetation Photosyn-
thesis and Respiration Model (VPRM) [Mahadevan et al.,
2008], a simple, data‐driven diagnostic biosphere carbon
fluxmodel. VPRMhas a simplemathematical structurewith a
minimum number of parameters. However, it has been shown
that VPRM explains a significant percentage of observed
variability (60–80% of hourly variability) at numerous sites,
even given its simplicity [Mahadevan et al., 2008]. This
simplicity is important and enables partial derivatives that
represent sensitivities of simulated carbon fluxes to various
variables to be formulated easily.
[12] This study is envisioned as a step toward a “model‐

data fusion” approach to deriving carbon fluxes [Raupach
et al., 2005; Williams et al., 2009]. A model‐data fusion
approach, also known as “data assimilation”, makes correc-
tions to models based on available observations. In this way,
it attempts to calculate optimal estimates and provides esti-
mates even when measurements are unavailable, in effect
interpolating between observations in both space and time.
As part of model‐data fusion, prior estimates of errors play
an important role, since they define the amount of anticipated
deviance between observations and models [Rodgers, 2000].
It has been shown that inaccurate error estimates result in
biased, erroneous estimates [Raupach et al., 2005]. The
framework discussed in this paper provides the error esti-
mates in a quantitative fashion that can be used in model‐data
fusion systems.

2. Vegetation Photosynthesis and Respiration
Model

[13] The Vegetation Photosynthesis and RespirationModel
(VPRM) [Mahadevan et al., 2008] is a diagnostic biospheric
carbon flux model driven by satellite data, which provides
independent information on the spatial and phenological
variations of gross primary production using the Enhanced
Vegetation Index (EVI) and Land Surface Water Index
(LSWI), both from MODIS‐Terra.
[14] VPRM calculates the net exchange of CO2 between

the atmosphere and the terrestrial biosphere (“Net Ecosystem
Exchange”; NEE) for 12 main vegetation classes in each grid
square separately, then scaled by vegetation fraction. Below,
we introduce the governing equations in VPRM (section 2.1),
the environmental driver data (section 2.2), the MODIS sat-
ellite indices (section 2.3), and then the land cover data
(section 2.4).

2.1. VPRM Model Equations

[15] The Net Ecosystem Exchange (NEE) is the net dif-
ference between the photosynthetic uptake (GEE; “gross
ecosystem exchange”) and respiration (R) terms:

NEE ¼ �GEE þ R ð1Þ

following the sign convention that uptake of CO2 by plants is
a negative flux (removal) from an atmospheric perspective.
[16] Following Mahadevan et al. [2008], GEE is modeled

as a product between the light‐use efficiency (LUE), the
photosynthetically active radiation (PAR), and the fraction

of PAR absorbed by the photosynthetically active foliage in
the canopy (FAPAR):

GEE ¼ LUE � FAPAR� 1

1þ PAR=PAR0ð Þ � PAR ð2Þ

where PAR0 is the half‐saturation value. PAR in this study is
derived from shortwave radiation (SW) using a conversion
factor � (see section 2.2):

PAR ¼ � � SW ð3Þ

Xiao et al. [2004] have shown that the satellite‐derived
index EVI serves as a good proxy for FAPAR. In essence,
EVI measures the “greenness” of the terrestrial biosphere
and serves as a proxy for the amount of photosynthetically
active foliage in the canopy. Following equation (9) in the
work of Mahadevan et al. [2008], GEE is modeled as:

GEE ¼ LUE � EVI � 1

1þ PAR=PAR0ð Þ � PAR ð4aÞ

where LUE ¼ �� Tscale � Pscale �Wscale ð4bÞ

l is the maximum LUE (a.k.a. quantum yield). Tscale, Pscale,
andWscale vary between 0 and 1.0 and represent the effect of
temperature, leaf phenology, and canopy water content,
respectively, on LUE by the photosynthetic mechanism. See
Mahadevan et al. [2008] for details regarding Tscale.
[17] LSWI is used as an indicator of phenology and canopy

water content:

Pscale ¼ 1þ LSWI

2
ð5Þ

Wscale ¼ 1þ LSWI

1þ LSWImax
ð6Þ

where LSWImax is the maximum LSWI within the growing
season for each pixel.
[18] Ecosystem respiration R is a simple linear function of

temperature T:

R ¼ �� T þ � ð7Þ

To capture the continued small amount of soil respiration
during the winter, T is set to Tlow when T ≤ Tlow. Tlow is the
soil temperature that is decoupled from the much colder air
temperature in the presence of snow cover.
[19] The VPRM parameters and their values adopted in this

study are summarized by Mahadevan et al. [2008, Table 2].
These values have been derived by fitting the model equa-
tions against eddy covariance data at sites associated with
different land cover types (e.g., Harvard Forest for deciduous
forest, Howland Forest for mixed deciduous/coniferous
forest, and NOBS for evergreen boreal forest). Note that the
two sites presented in this study for quantifying model
uncertainties are not the same ones used originally for fitting
parameters, thereby preserving the independence of model‐
data comparisons.
[20] The VPRM simulations are carried out at grids of

1/4° longitude by 1/6o latitude. However, subgrid‐scale
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contributions from different vegetation types are preserved,
as the grid‐scale NEE is simulated by weighing contributions
from different vegetation types (fk):

NEE ¼
X
k

fkNEEk ð8Þ

where fk is the fractional areal coverage by vegetation type k.
f
k is derived from 1 km resolution vegetation data described in
section 2.4.

2.2. NLDAS Radiation and Temperature

[21] To run VPRM, radiation and temperature data need
to be combined with vegetation and water indices to cal-
culate carbon fluxes. Hourly temperature (T) and incident
shortwave radiation (SW) data have been retrieved from the
North American Land Data Assimilation System (NLDAS)
[Cosgrove et al., 2003; Mitchell et al., 2004]. The NLDAS‐
derived SW and T were downloaded in grid cells of 0.125°
and then aggregated to grid cells of 1/4° longitude by 1/6°
latitude.
[22] SW from NLDAS (in [W/m2]) was converted to PAR

(in [mmole photons/m2/s]), since the rate of photosynthesis
depends upon the rate of absorption of photons [Nobel, 1999].
We adopted a conversion factor (�) of 1.98 between SW and
PAR, following Mahadevan et al. [2008]. This is typical of
ecosystem models, and the value of 1.98 falls within the range
used by different ecosystem models [Amthor et al., 2001]. An
independent assessment of � by regressing measured PAR
against SW confirmed that the assumed value was close to the
observed, with values of 1.96 and 1.98 at the Québec and
Ontario sites (see section 5), respectively.

2.3. MODIS‐Derived EVI and LSWI

[23] Multiyear satellite images from the MODIS sensor
aboard the Terra satellite are processed to be used in VPRM.
MODIS views the entire surface of the Earth every 1–2 days,
measuring 36 spectral bands at 250 or 500 m resolution
between 0.405 and 14.385 mm [Mahadevan et al., 2008].
Eight day composite MODIS surface reflectances have been
acquired to calculate the corresponding EVI and LSWI
indices, which are then smoothed and linearly interpolated
down to daily values [Mahadevan et al., 2008].

2.4. Land Cover Data

[24] Following the application of VPRM over northeastern
U.S. and southern Québec byMatross et al. [2006], we adopt
the 1 km resolution Global Land Cover Characterization
(GLCC) 2.0 land cover product [Loveland et al., 2000]. The
GLCC 2.0 data are then binned into 11 classes (10 vegetation +
1 water body). The 10 vegetation classes include: grassland,
cropland, savanna, shrubland, mixed forest, deciduous forest,
subtropical evergreen, dry temperate evergreen, wet temper-
ate evergreen, and boreal evergreen [Matross et al., 2006].
The 1 km resolution data are summed to yield fk, the fractional
areal coverage by vegetation type k in grid cells of 1/4° lon-
gitude by 1/6 o latitude (equation (8)).

3. Error Analysis Framework

[25] Here we introduce the analysis framework that quan-
tifies and attributes errors. Note that most of the following

discussion is general and applies to all biospheric models,
except for the part where variables specific to VPRM are
considered.
[26] First, we consider that the simulated carbon flux Fsim

deviates from the true flux Ftrue by an error ":

Ftrue ¼ Fsim � " ð9Þ

The negative sign is adopted in front of " in order to pre-
serve the commonly used definition of systematic errors and
biases referring to (simulated – true) rather than (true –
simulated). Note that " can derive from both measurement
(e.g., instrument errors) or model sources.
[27] If time is discretized into bins, the index i can be used

to indicate a specific time bin:

Ftrue;i ¼ Fsim;i � "i ð10Þ

We adopted a time bin of 3 h in this study since autocor-
relation of errors in simulated NEE was > (1/e) at time scales
within 3 h, suggesting that error characteristics within a
3‐hourly time bin can be considered together as an unit when
examining diurnal patterns in uncertainties.
[28] We explicitly distinguish between systematic errors

(biases; Di) versus random errors (di), together which
comprise "i:

"i ¼ Di þ �i ð11Þ

Following Figure 1, we partition the bias and random error
into (1) the contribution caused by processes that are already
incorporated into the model (sim); (2) that due to missing
processes or misrepresentation in the model structure (mis);
and (3) the error in the observations (obs):

"i ¼ "sim;i þ "mis;i þ "obs;i ¼ Dsim;i þ �sim;i þDmis;i þ �mis;i

þDobs;i þ �obs;i ð12Þ

Broadly speaking, "sim represents uncertainties that result
from erroneous values for drivers and model parameters.
"mis, on the other hand, refers to the residual uncertainty that
would be present even if “perfect” drivers or model para-
meters are adopted.
[29] Examples of Dsim,i and Dmis,i are as follows. The

respiration term in VPRM is currently modeled as a linear
function of T for T > Tlow. If the simulated T from atmo-
spheric gridded data sets is systematically lower than observed,
this would cause a negative Dsim,i. However, systematic
errors would also arise if the respiration exhibits exponential
dependence on T. The deviation from linear behavior would
then be considered a part of Dmis,i.
[30] Combining equations (10) and (12):

Ftrue;i ¼ Fsim;i �Dsim;i �Dmis;i �Dobs;i � �sim;i � �mis;i � �obs;i

ð13Þ

The systematic error is defined to be a constant offset per-
sisting over a particular period of time. When averaged over
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this time period, indicated by the overbar, the random errors
go to 0, leaving the bias terms:

Ftrue;i ¼ Fsim;i �Dsim;i �Dmis;i �Dobs;i � �sim;i � �mis;i � �obs;i

Ftrue;i ¼ Fsim;i �Dsim;i �Dmis;i �Dobs;i � 0� 0� 0

Fsim;i � Ftrue;i ¼ Dsim;i þDmis;i þDobs;i ð14Þ

We chose an averaging period of 1 month. ThusD represents
the bias terms during a 3‐hourly bin i, over a month. For
brevity’s sake the index i is dropped in subsequent equations.

3.1. Attributing Random Errors to Different Variables

[31] The simulated biospheric flux Fsim is a function of
various environmental drivers and model parameters (xj):
Fsim = f(x1, x2, x3, � � � xj). Under a first‐order approximation,
the simulation error is given by [Taylor, 1997]:

"sim �
X
j

@Fsim

@xj
"xj where "xj ¼ xj;sim � xj;true

� � ð15Þ

The partial derivative represents the “sensitivity” of simu-
lated flux Fsim to variable xj. When arranged in matrix format,
the partial derivatives comprise elements of the Jacobian
matrix.
[32] In the case of VPRM, Fsim is a function of the fol-

lowing variables, broadly divided into drivers and model
parameters:

Fsim ¼ f EVI ; LSWI ; land; T ; SW|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drivers

; �; �; �; �;PAR0 � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
parameters

0
B@

1
CA ð16Þ

where land refers to the fractional land cover fk of different
vegetation types k.
[33] The random simulation error is a sum of the individual

contributions from the various drivers and parameters:

�2
sim ¼ �2EVI þ �2LSWI þ �2land þ �2T þ �2SW þ � � � ð17Þ

The contribution from each variable is estimated as follows:

�EVI ¼ �
@Fsim

@EVI
EVIsim � EVItrue½ �

� �
;

�LSWI ¼ �
@Fsim

@LSWI
LSWIsim � LSWItrue½ �

� �
; � � � ð18Þ

where s(� � �) refers to the standard deviation function.
s(land) = 0, since the error in vegetation cover persists
throughout the simulation and should thus be considered as
a bias term.
[34] Due to simplicity of the VPRM’s governing equa-

tions the partial derivatives can be analytically derived with
ease. For instance, starting from equation (4) and taking the
partial derivative with respect to PAR:

@Fsim

@PAR
¼ �@GEEsim

@PAR
¼ �1

�

@GEEsim

@SW

¼ ��� Tscale � Pscale �Wscale � EVI

� 1

1þ PAR=PAR0ð Þ �
PAR

PAR0 1þ PAR=PAR0ð Þ2
" #

ð19Þ

In the case of more complicated models the partial deriva-
tives can be calculated with numerical simulations. In the
case above, PAR would be first perturbed to see the effect on
Fsim.
[35] Since errors in variables like T and land can affect

both GEE and R, we explicitly distinguished the random
errors in −GEE versus R:

�2
sim ¼ �2EVI ;�GEE þ �2LSWI ;�GEE þ �2land;�GEE þ �2land;R

þ �2T ;�GEE þ �2T ;R þ �2SW ;�GEE þ �2SW ;R þ � � � ð20Þ

−GEE rather than GEE is adopted here in order to keep the
same sign convention as Fsim: e.g., an overestimation of SW
would result in Fsim being more negative (more removal
from the atmosphere).

3.2. Attributing Biases to Different Variables

[36] To determine the contribution to the simulation error
from biases, equation (15) is time averaged � � �ð Þ:

"sim ¼ Dsim �
X
j

@Fsim

@xj
"xj where "xj ¼ xj;sim � xj;true

� � ð21Þ

Similar to equations (17) and (20), the total simulation bias
Dsim can be partitioned into contributions from different
variables:

Dsim ¼DEVI þDLSWI þDland þDT þDSW þDLUE þDPAR0 þ � � �
Dsim ¼ DEVI ;�GEE þDLSWI ;�GEE þDland;�GEE þDland;R

þDT ;�GEE þDT ;R þDSW ;�GEE þDLUE;�GEE

þDPAR0;�GEE þ � � � ð22Þ

The terms found on the RHS of equation (22) are the ones
specifically considered in this study. We consider the effect
of biases in LUE rather than attempting to further distin-
guish errors in its subcomponents in equation (4b) (l, Tscale,
Pscale, and Wscale).
[37] To determine each of the terms in equation (22), the

time‐averaging operator is applied to the product between
the partial derivative and the error in a particular variable.
For instance, DT is given by:

DT ¼ @Fsim

@T
Tsim � Ttrueð Þ ¼ @ �GEE þ Rð Þ

@T
Tsim � Ttrueð Þ

¼ @ �GEEð Þ
@T

Tsim � Ttrueð Þ þ @R

@T
Tsim � Ttrueð Þ

DT ¼ @ �GEEð Þ
@T

Tsim � Ttrueð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DT ;�GEE

þ � Tsim � Ttrueð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
DT ;R

ð23Þ

Because xtrue is not known, we approximated "xj = (xj,sim −
xj,true) with the difference between simulated and observed
values:

"xj � xj;sim � xj;obs
� � ð24Þ

Where possible we attempted to account for the measure-
ment error:

�2 xj;sim � xtrue
� � ¼ �2 xj;sim � xj;obs

� �� �2 xj;obs � xj;true
� � ð25Þ
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Measurement errors were considered for eddy covariance
data (section 4.1). For T and SW, however, we did not
include such error estimates, with the assumption that the
simulation errors in these cases likely dominate the mea-
surement errors. In any case, neglecting the measurement
error provides an upper limit estimate of the random error.

4. Method for Estimating Errors in Different
Variables

4.1. Errors in Eddy Covariance Measurements

[38] The eddy covariance method provides a direct mea-
surement of the net exchange of fluxes between a vegetated
surface and the atmosphere and has significant advantages
in that it allows continuous data collection over a spatial
region over hundreds of meters [Baldocchi, 2003].
[39] Random errors of eddy covariance measurements

have been found to be a function of wind speed, decreasing
linearly as wind speed increases [Hollinger and Richardson,
2005]. We follow this formulation and adopt the empirically
derived relationship at a mixedwood forest in Maine, USA
(growing season: sobs = 3.76 − 0.43u; nongrowing season:
sobs = 0.86 − 0.056u) fromHollinger and Richardson [2005].
These authors also pointed out that the eddy covariance
errors follow a double‐exponential rather than a Gaussian
distribution.
[40] Missing data at eddy covariance sites arise from data

rejections or instrument malfunction [Falge et al., 2001].
Due to the necessity to sum the eddy covariance data to obtain
time‐integrated fluxes over periods of months or years
(section 6.6), the missing data have to be accounted for with
gap‐filling procedures. The procedure has been standardized
within Fluxnet‐Canada to enable intersite comparisons.
[41] The standard Fluxnet‐Canada gap‐filling protocol,

explained in detail by Barr et al. [2004], separately accounts
for gaps during daytime (photosynthesis + respiration) and
nighttime (respiration), as the relevant controlling variables
are different for photosynthesis and respiration. Gaps in
respiration are filled using an empirical function of T using a
logistic relationship; gaps in photosynthesis are accounted
for with measured PAR using a hyperbolic equation. The
Barr et al. [2004] methodology also uses a moving window
approach, thus incorporating time‐varying parameters in the
empirical fits.
[42] We only used the directly measured (non‐gap‐filled)

NEE to evaluate uncertainties in the simulations. The gap‐
filled values are used solely to assess errors in the cumu-
lative carbon budget summed over monthly to annual time
scales (section 6.6).

4.2. Errors in MODIS Satellite Indices

[43] Satellite measurement errors arise from sources such
as “sensor noise, calibration drift, orbital decay, and incorrect
geolocation” [Raupch et al., 2005].
[44] For the MODIS surface reflectance‐derived EVI and

LSWI, noises would originate from contributing uncertainties
in theMOD09 product such as aerosol optical thickness error,
aerosol model error, and reflectance approximation error as
well as calibration error [Vermote and Vermeulen, 1999;
Vermote and Saleous, 2006]. Considering the final EVI
values, 93.64% of globally retrieved EVI values fall within

the theoretical MODIS 1‐sigma error bar, meaning that the
error in a given index value is 0.02 plus 2% of the index
value [Vermote and Kotchenova, 2008]. The LSWI error
should also conservatively fall within ± (0.02 + 0.02 LSWI),
given the similarities in its mathematical formulation with
EVI and NDVI as well as the theoretical calculation given
by Vermote and Kotchenova [2008].

4.3. Errors in Land Cover Data

[45] We quantified errors in the GLCC 2.0 land cover
product by comparing against the high‐resolution Ontario
Land Cover database (http://www.lib.uoguelph.ca/resources/
data_resource_centre/geospatial_data_resources/ontario_
provincial_land_cover_database.cfm). [Ontario Ministry of
Natural Resources, 2002]. The Ontario Land Cover data-
base is a high‐quality land cover product derived from the
LANDSAT Thematic Mapper satellite data (30m spatial res-
olution) using a supervised classificationmethod, informed by
field knowledge. The 28 classes are regrouped to the same
11 classes as was the GLCC and summed to yield the same
fractional area occupied by each class within a 1/4° longitude
by 1/6° latitude grid cell.
[46] In aggregate, the standard deviation of the difference

between GLCC and the Ontario Land Cover database was
0.27, meaning that the GLCC deviated from the Ontario
Land Cover database by 27% for a particular vegetation class,
on average. The Ontario product itself possessed residual
errors, with approximate 90% accuracy for forest classes (see
http://www.lib.uoguelph.ca/resources/data_resource_
centre/geospatial_data_resources/components/documents/
landcover_readme.pdf), translating into a remaining error of
10%. Since the aggregate standard deviation of 27% includes
errors in the Ontario product, error incurred by adopting the
GLCC land cover database, then, is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:272 � 0:102

p
= 0.25,

or 25%. Note that this is likely a conservative (over) estimate
of the land cover error, since the 10% error in a small grid
cell of 30 m would be decreased due to error cancellation
once these are aggregated to 1/4° × 1/6°.

4.4. Errors in PAR0, LUE

[47] The eddy covariance sites yield estimates of GEE by
combining direct measurements of daytime NEE and a tem-
perature function describing R [Bergeron et al., 2007]. GEE
estimates (all non‐gap‐filled) were regressed against observed
PAR to determine “measured” PAR0 and LUE, which were
compared against the model’s values of PAR0 and LUE to
quantify the model’s errors in these biospheric parameters
(section 6.3). However, these two parameters are difficult to
determine separately from eddy covariance data: a large
value for PAR0 is compensated by a lower LUE, producing the
same flux. Due to this strong negative correlation [Hollinger
and Richardson, 2005], we carefully consider the confidence
intervals and interpret the results accordingly.
[48] Specifically, the following steps were adopted to

derive PAR0 and LUE from eddy covariance measurements:
[49] 1. “Measured” PAR0 was determined for each site

by carrying out a nonlinear least‐squared fit between eddy
covariance‐derived GEE and PAR/(PAR + PAR0) for the
months of May–September.
[50] 2. The 95% confidence intervals of PAR0 were

extracted from the statistical fit in Step 1.
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[51] 3. Monthly values of “measured” LUE were calcu-
lated as the linear regression slope between GEE and [EVI ×
PAR/(1 + PAR/PAR0)], following equation (4).
[52] 4. Due to the negative correlation between PAR0 and

LUE Step 3 was repeated for the upper and lower limits of
the 95% confidence interval in PAR0, to provide an indi-
cation of the ranges that these two parameters can take. The
upper and lower ranges of PAR0 and LUE will be carried
through in subsequent analyses (sections 6.3 and 6.6.2).

5. Study Area and Flux Stations

[53] We illustrate the application of the error analysis
framework in central Canada. Observations made in 2004
from two eddy covariance flux measurement sites in Ontario
and Québec are used for the error analysis. These two stations
are representative of central and eastern Canadian boreal
forests and are core sites in the Canadian Carbon Program
(CCP). The CCP and its predecessor, Fluxnet‐Canada
(FCRN), are composed of a national network of flux tower
sites distributed across an east‐west transect in Canada’s
southern boreal region. Over the past several years, CCP/
FCRN has made important contributions to knowledge of
the Canadian carbon cycle [Coursolle et al., 2006; Margolis
et al., 2006]. Canada plays a significant role in the global

carbon budget, since the Canadian landscape contains about
10% of the world’s forests [Kurz and Apps, 1999].

5.1. Site Description: Québec Eastern Old Black
Spruce (“QC”)

[54] The Québec Eastern Old Black Spruce Forest site
represents a dominant cover type in the boreal forests of
North America [Bergeron et al., 2007]. This site (49.692° N,
74.342°W) is located 30 km south of Chibougamau, Québec,
and lies about halfway between the southern and northern
(treeline) limits of the boreal forest. The flux footprint (90%
isopleths in the along‐wind direction) corresponds to an
approximate 500 m radius centered on the tower and is mainly
covered by black spruce (Picea mariana (Mill.) B.S.P.), with
a small amount of jack pine (Pinus banksiana) and tamarack
(Larix laricina). Most of the study area was burned between
1885 and 1915. For further details of site characteristics and
instrumentations, see Bergeron et al. [2007].

5.2. Site Description: Ontario Mixedwood

[55] The old mixedwood site at the Ontario flux station
(a.k.a. “Groundhog River Flux Station”), is representative
of a mature mixedwood boreal forest. The site (48.217° N,
82.156° W) is a typical boreal mixedwood forest located
approximately 80 km southwest of Timmins in northern

Figure 2. Average diurnal cycle of shortwave radiation (SW) at the Québec (QC; red) and Ontario (ON;
black) study sites for all 12 months of 2004. Observed values are shown with solid lines, while the modeled
data from NLDAS are indicated with dashed lines. Hour of day is in UTC.
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Ontario. The forest regenerated after high‐grade logging in
the 1930s. For further details of instrumentation and site
characteristics, see McCaughey et al. [2006] or Pejam et al.
[2006].
[56] Hereafter we will refer to the Ontario and Québec

sites as “ON” and “QC”, respectively.

6. Results

6.1. Environmental Driver Comparisons

[57] In Figures 2–3, we compare the NLDAS‐modeled
environmental drivers (SW, T) versus the observed values as
average diurnal cycles over the entire 12 months of 2004. At
both QC and ON a systematic overestimation (sunny bias) is
observed during the afternoon. The overestimation is espe-
cially pronounced during the spring and fall months: March–
May and October–November in QC; March–April and
October–November in ON.
[58] At ON, overestimation of T (warm bias) during the

afternoon of the peak growing season of June–August is
observed. A significantly larger cold bias is observed during
the winter nighttime at both sites: January–February in QC
and January–March in ON.
[59] The sunny bias in NLDAS can be traced to the

GOES‐based radiation product, particularly at low zenith

angles [Mitchell et al., 2004]. The problem is exacerbated at
angles below 75 degrees, when the GOES product is sub-
stituted with radiation in EDAS, which exhibits even larger
biases [Betts et al., 1997]. We currently do not know the
source of the T bias in NLDAS.
[60] The implications of the aforementioned biases on

simulated NEE will be explored in sections 6.2, 6.5, and 6.6.

6.2. NEE Comparisons

[61] Comparisons between simulated and observed hourly
NEE over the entire year in 2004 yielded R2 = 0.58 (ON)
and R2 = 0.63 (QC). The average diurnal NEE cycles are
shown in Figure 4. In these plots, observed values are not
plotted when > 50% of hourly observations are missing
within a 3‐hourly time bin in a given month.
[62] At both sites, the winter months (December, January,

and February) are quiescent with regards to carbon dynamics,
with a low level of carbon efflux persisting throughout those
months. VPRM captures this low level of “background”
carbon efflux, despite the observed cold bias, because respi-
ration is simulatedwith Tlowwhen T ≤ Tlow, so the lower‐than‐
observed T would not bias by itself the simulated wintertime
respiration.
[63] During the summer months of June–August a pro-

nounced diurnal cycle is observed, with nighttime release

Figure 3. Average diurnal cycle of temperature (T) at the Québec (QC; red) and Ontario (ON; black)
study sites. Similar to Figure 2.
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and daytime uptake of CO2. The diurnal amplitude is larger
at ON. VPRM underestimates the afternoon uptake at ON in
May–June but overestimates it in July–August. Such errors
are much smaller at QC. In fact, the large afternoon sunny
bias in May at QC did not translate into an excess of uptake.
This was because the magnitude of −@GEE

�
@SW

was still
small in May.
[64] During the next few sections, we will examine the

factors contributing to the observed model‐measurement
deviances.

6.3. LUE and PAR0 Comparisons

[65] Because VPRM is based on the light‐use efficiency
(LUE) paradigm (equation (4)), understanding errors in the
relationship between GEE and light (PAR) is fundamental to
evaluating errors in the model. This is carried out in two
steps: by first evaluating PAR0 and then the LUE.
[66] PAR0 derived empirically from the eddy covariance

data using a nonlinear fit (section 4.4) was compared against
the value in VPRM. Since assumed PAR0 differed between
vegetation types, the model’s value was calculated as a
fractional coverage‐weighted average between the assumed

values for different vegetation types. Values of PAR0, in
[mmole/m2/s], are as follows: 269 (obs) versus 431 (model)
at QC; 420 (obs) versus 606 (model) at ON. The resulting
curves, which include the confidence intervals for the non-
linear fit, are shown in Figure 5. The higher PAR0 assumed
in the model resulted in greater GEE for a given PAR for
both sites.
[67] Comparisons between measured LUE and simulated

values are shown in Figure 6. At QC, the simulations
underestimated LUE throughout the entire growing season.
At ON, the underestimation of LUE was also present
except when the drop in observed LUE during the months
of July–September, resulted in a temporary overestimation.
[68] The importance of vapor pressure deficit (VPD) in

diminishing GEE, particularly pronounced during the sum-
mer daytime, at the ON site has been pointed out by
McCaughey et al. [2006]. We examined the potential impact
of VPD by introducing another scalar ranging between 0 and
1.0 that lowers LUE with higher VPD. The parameterization
follows the MODIS Land Algorithm [Heinsch et al., 2003]: a
linear ramp function that decreases from 1.0 to 0 between
VPDmin = 650 Pa and VPDmax = 2500 Pa. These parameter

Figure 4. Average diurnal cycle of Net Ecosystem Exchange (NEE) of carbon at the Québec (QC; red)
and Ontario (ON; black) study sites for all 12 months in 2004. Observed values are shown with solid
lines, while simulated values from the VPRM biospheric model are indicated with dashed lines. The sign
convention is such that negative values indicate net removal of carbon from the atmosphere by the bio-
sphere, indicative of carbon uptake by photosynthesis. Observations are not plotted when >50% of hours
within a 3‐hourly time bin are missing.
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values characterize evergreen needleleaf forest and mixed
forest in the look‐up table used by the same MODIS Land
Algorithm [Heinsch et al., 2003].
[69] At ON, including a VPD effect reduced the simulated

LUE between the months of June–September. At QC, the
seasonal pattern in simulated LUE exhibited closer resem-
blance to the observed pattern when VPD was accounted
for, by especially lowering the July LUE. However, since
the VPD effect serves only to lower LUE, it alone cannot
explain the significant underestimation of LUE by the model.
[70] Because of the central role played by LUE in VPRM,

systematic errors in LUE generally correspond to systematic
differences in NEE (Figure 4): months when the model

underestimated daytime carbon uptake matched months
when LUE was also underestimated, and vice versa. The
underestimation of LUE was partly counteracted by the
overestimation of PAR0 (Figure 5). The accumulated impact
of biases in PAR0 and LUE on carbon fluxes over multimonth
to annual time scales will be examined in section 6.6 and
compared against the impact of other variables.

6.4. Comparisons of Respiration‐Temperature
Relationships

[71] The dependence of R on T was compared between the
model and observations. The measured relationship was
derived by fitting a, b, and Tlow (section 2.1) against night-

Figure 5. The observed GEE versus PAR relationship and the nonlinear fit to the data (solid lines), fol-
lowing equation (4), for (a) QC and (b) ON. The three solid lines indicate the fitted as well as the 95%
confidence interval for the fitted relationship; QC: 236 ≤ PAR0 ≤ 311; ON: 348 ≤ PAR0 ≤ 508. The
assumed relationship simulated by VPRM is shown as the dashed line.

Figure 6. Comparison of monthly averaged light‐use efficiency (LUE) between simulations (dashed
line) and eddy covariance‐derived values (solid line; section 4.4), at (a) QC and (b) ON. The simula-
tions modified with VPD effect (dotted line) are also shown. The shaded region indicates the range of
LUE values that results from the range in fitted PAR0 (Figure 5): due to the negative correlation between
“observed” PAR0 and LUE fitted from eddy covariance fluxes, a PAR0 in the upper range results in the
lower range of LUE.
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Figure 7. The T dependence of R at (a) QC and (b) ON. The nonlinear fit to the data is shown as the
solid line, while the VPRM’s assumed relationship is shown as the dashed line. Note that T is set to Tlow
when T ≤ Tlow, so during wintertime conditions R is a constant ( = a × Tlow + b).

Figure 8. Random errors in NEE at QC in each 3‐hourly bin over the diurnal cycle in all 12 months of
2004, and the contributions from different sources, following equations (15) and (18).
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time NEE measurements. The data‐derived relationship
(solid) as well as the assumed VPRM relationship simulation
(dashed) are shown in Figure 7.
[72] The relationship between R and T is noisy, particu-

larly at ON. This has already been recognized by previous
researchers [Davidson et al., 2006].
[73] Tlow can be seen as the value of T at which the line

switches from a horizontal line (background R at low T) to a
constant positive slope at higher T. The assumed values of
Tlow were higher than fitted values, with the difference being
bigger at ON, where the low‐level R and release of carbon
persisted even at T < −10°C.
[74] The net result of the discrepancy in the R‐T rela-

tionship is that R is underestimated in VPRM, as already
witnessed in the nighttime simulated NEE being systemati-
cally smaller than measured (Figure 4). In section 6.6 we
will see the implications of this departure on monthly to
annual‐scale carbon exchange.

6.5. Attributing Random Errors to Different
Environmental Drivers

[75] Figures 8 and 9 show the random errors and the
contributions by each driver variable at the hourly time
scale. Fobs was the largest contributor to random errors in
almost all months, suggesting that the discrepancy between the
model and eddy covariance fromhour to hour can be explained

to a great extent by scatter in the eddy covariance measure-
ments. Additionally, T exhibits relatively large effects during
the afternoons of March–May in QC and February–April in
ON. During the growing season months, the contributions
derive from diverse sources, with errors in SW, T, EVI, and
LSWI all contributing.

6.6. Effects of Biases on Monthly and Annual Carbon
Fluxes

[76] In this section, we examine how systematic errors
(biases) accumulate at the monthly to annual time scales.
The interest in monthly to annual carbon fluxes stems from
the fact that due to the diurnal and seasonal sign reversals in
carbon fluxes (Figure 4), the net carbon storage or release is
a small net amount resulting from accumulating the fluxes,
over monthly to annual time scales. Accordingly, the effects
of biases need to be evaluated at such time scales. As shown
in Figure 1, we separate out the impact of biases in envi-
ronmental drivers (section 6.6.1) versus biases in model
parameters (section 6.6.2).
6.6.1. Effects of Biases in Environmental Drivers
[77] Results at QC (Figure 10) indicate that monthly

biases in modeled carbon due to T are small and accumulate
to small values over a year. In contrast, the bias due to SW is
almost identical to the total observed bias of −0.71 t C/ha.
This suggests that the SW bias results in a significant effect

Figure 9. Random errors in NEE for the Ontario (ON) study site. Similar to Figure 8.
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at annual time scales. Due to the small observed annual
uptake of −0.16 t C/ha at QC, almost any source of error
considered here (except for DT,−GEE) would comprise an
important fraction of the annual uptake value.
[78] At ON (Figure 11) the biases due to T are likewise

small, and the sunny bias in SW also resulted in an over-
estimate of carbon uptake of ∼1 t C/ha over a year. None-
theless the bias attributed to SW, at −1.05 t C/ha over a year,
is smaller, at 26% of the total bias. Dland,−GEE and Dland,R

are the biases in NEE resulting from the 25% estimated error
in land cover (section 4.3). These results were derived from
systematically reducing the areal coverage in the evergreen
vegetation class by 25% and increasing by the same amount
in the “mixed forest” class. We see that the impact of land
cover is relatively small in comparison to the total bias.
6.6.2. Effects of Biases in Model Parameters
[79] The largest biases at both QC and ON derive from

biospheric parameters. Due to an erroneous temperature
relationship for R, VPRM systematically underestimated the
carbon efflux from both QC and ON (Figure 7). The under-
estimation in LUE observed at both sites (Figure 6) translated
into positive biases in annual carbon budgets (Figures 10
and 11). Countering the positive bias from LUE was the

bias due to PAR0. The larger value for PAR0 assumed by
VPRM resulted in more efficient carbon uptake for a given
input of PAR (Figure 5).
[80] It is worth bearing in mind, however, that the

“observed” PAR0 and LUE are negatively correlated, resulting
in similar covariances in the determined biases: a bias in the
lower range of DLUE,−GEE is associated with the upper range
of DPAR0,−GEE, thereby translating into smaller absolute
values of biases. Conversely, a bias in the upper range of
DLUE,−GEE is associated with the lower range of DPAR0,−GEE,
enlarging the magnitudes of each of the two bias terms.
[81] If all of the biases have been accounted for, the lines

in Figures 11 and 12 indicating the sum of all considered
biases (dashed black) should be identical to the total observed
bias (black). Thus a comparison between the sum and the total
bias reveals the remaining effect of biases not yet accounted
for in this framework. This remaining bias was ∼1 t C/ha at
QC and ∼2 t C/ha at ON.

6.7. Model Structure Misrepresentation Errors

[82] Residual errors arise from uncertainties due to model
structure misrepresentation (Figure 1). Evidence of the sig-
nificance in such uncertainties include the unexplained

Figure 10. Cumulative biases in NEE (Fsim − Fobs) in 2004 at QC and the contributions from different
error sources. The values indicated at the end of the year quantify the net impact of a bias in a particular
variable on the simulated annual carbon balance.DONland,−GEE andDONland,R have also been introduced to
indicate the smaller biases that would result from adopting a higher‐resolution land cover product like the
Ontario Land Cover data set, with its reported error of 10%. Here DabTlow

,R is an aggregate bias resulting
from assuming the incorrect relationship between T and R (Figure 7). The observed (dark green) and
simulated (light green) cumulative carbon fluxes are also shown, along with the total bias (black), which
is the difference between observed and simulated carbon fluxes. The sum of all biases considered in this
study is shown as the dashed black line. The shaded regions for DLUE,−GEE and DPAR0

,−GEE reflect the
ranges in biases stemming from uncertainties in the fits to eddy covariance fluxes to determine “observed”
PAR0 and LUE and the negative correlations between the two parameters. See section 6.6.2 for explanation.
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fraction of the total variance seen in Figures 8 and 9 as well
as the residual bias at annual scales of ∼1 t C/ha (QC) and
∼2 t C/ha (ON) seen in Figures 10 and 11.
[83] The model misrepresentation error has often been

pointed out as a source of uncertainty in biospheric carbon
simulations. For instance, Amthor et al. [2001] found model‐
to‐model differences in annual CO2 exchange to be larger
than interannual variability in a particular model, suggesting
that differences between model formulations controlled more
of the changes in annual CO2 exchange than interannual
climatic variability.
[84] Errors due to model misrepresentation are more diffi-

cult to estimate than those due to model parameters. Some
biospheric processes missing or misrepresented by the model
can be readily identified: e.g., for VPRM, the VPD effect in
decreasing photosynthesis [McCaughey et al., 2006], as seen
in ON (Figure 6b). In this case, one can explicitly quantify
the error from missing processes by first incorporating the
process and then comparing the result against a simulation
missing the same process, as is shown in Figures 6a and
6b. Other missing processes are simply unknown, hence
their absence from the model. Such errors are considered
explicitly in aggregate as a residual term in the error budget,
but they cannot be decomposed into contributions by specific
processes.

7. Summary and Conclusions

[85] This study has introduced a framework to “unmix”
contributions to the total uncertainty in simulated carbon
and to attribute the total error to different factors. This error
analysis framework was applied to a simple biospheric model

(VPRM) at two eddy covariance sites in central Canada,
which revealed the following:
[86] 1. Random errors attributed to environmental drivers

andmeasurement uncertainties at diurnal time scales accounted
for only ≤30% of the observed variance in (obs − sim) during
the peak growing months (June–August).
[87] 2. Out of all driver data sets, biases in downward

shortwave radiation accumulated to the most significant
amount when summed over an entire year.
[88] 3. Relatively small biases in shortwave radiation can

accumulate over a year, such that they account for a sig-
nificant percentage of the annually summed carbon uptake.
[89] 4. The largest biases result from PAR0 and parameters

that determine LUE and R, which can give rise to biases that
are much greater than the observed annual carbon budget.
[90] 5. The total bias is the net sum of terms with large

magnitudes that can differ in sign and cancel one another.
[91] It is important to point out the simplifications adopted

in this paper. Errors in LUE were considered in aggregate
rather than attempting to trace errors to its subcomponents:
l, Tscale, Pscale, and Wscale. Second, no systematic errors in
eddy covariance observations were considered. While
numerous authors have suggested the possibility of biased
measurements, particularly during nighttime conditions [Lee
1998; Sun et al., 1998], currently no agreement exists as to
the exact size of such a bias nor ways to correct such biases.
[92] While by no means exhaustive, this study illustrates

the value of a comprehensive error analysis framework. The
use of the framework allows one to compare the contribution
by specific variables against the total error, thereby eluci-
dating parts of the model that need most improvements and
identifying residual errors in the model.

Figure 11. Similar to Figure 10, for the Ontario (ON) study site.
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7.1. LUE and Respiration Parameterizations

[93] The biases in PAR0, LUE, and R, as witnessed in
Figures 5–7, are symptomatic of the difficulties in spatial
scaling. Such errors can accumulate to extremely large
biases at seasonal to annual time scales (Figures 10 and 11)
that are several times the magnitude of the annual carbon
uptake. The relevant biospheric parameters for QC and ON
were derived from empirical fits to eddy covariance data at
the NOBS site in northern Manitoba and the Howland site in
Maine, respectively [Mahadevan et al., 2008], and spatially
extrapolated to the two sites.
[94] Clearly, additional information is necessary to con-

strain seasonal to annual carbon simulations from a satellite‐
driven model like VPRM. Forestry‐derived yield curves
provide valuable constraints on annual‐scale growth of trees
[Kurz et al., 2009]. Matross et al. [2006] have illustrated
how atmospheric CO2 concentrations can be used in an
inverse framework to derive, at the regional scale, VPRM
parameters controlling LUE and R. The temperature, phe-
nology and water scaling factors that constrain LUE are
difficult to estimate across landscapes. For this reason,
there has been significant interest in using physiologically
based reflectance indices to assess photosynthetic stress. The
Photochemical Reflectance Index (PRI), for example, seems
to track changes in the xanthophylls pigment status that in
turn relate to light‐use efficiency [Grace et al., 2007; Hilker
et al., 2008] and this capability has been demonstrated
from MODIS [Drolet et al., 2008]. Nevertheless, detecting
a useful PRI signal requires accounting for changes in
illumination and sensor angles as well as canopy structure
effects.

7.2. Implications of Biases in Model Driver Data Sets

[95] The role of driver data sets as a significant source of
uncertainties in biospheric carbon modeling has been recog-
nized only in recent few years. Zhao et al. [2006] and Jung
et al. [2007] showed that the use of differing meteorological
data sets is an important source of differences in the resulting
biospheric carbon simulations. Schaefer et al. [2008] pointed
out the sensitivity of biospheric model simulations to errors in
environmental drivers, mentioning specifically the problems
in precipitation and temperature. Medvigy et al. [2010] have
demonstrated the importance of submonthly meteorological
variability in controlling carbon uptake and noted dis-
crepancies between variability in assimilated versus observed
meteorological fields.
[96] It is important to point out that errors in environmental

drivers need to be dealt with by the entire biospheric carbon
modeling community, regardless of the specific model adop-
ted. Basic drivers like temperature and solar radiation (or PAR)
are standard input variables driving simulations of most bio-
spheric carbon models. Errors from drivers persist even if
model parameters are assigned proper values.

7.3. Relevance to Model‐Data Fusion

[97] The framework described in this study and the kind
of uncertainty analysis presented here constitute an impor-
tant step toward a full “model‐data fusion” approach. A
quantitative understanding of uncertainties is critical, since
the outcome of model‐data fusion is determined as much by
uncertainties as by the observations themselves [Raupach

et al., 2005]. Thus “model characterization”, with an anal-
ysis of model uncertainties, is a key step within the multi-
stage process for model‐data fusion [see Williams et al.,
2009, Figure 1].
[98] We urge more comprehensive uncertainty analyses

similar to this study to be conducted in the future and which
have hitherto been lacking. To do so, model sensitivities to
drivers and parameters are needed (equation (15)). While the
sensitivities (partial derivatives) can be analytically derived
for a simple model like the VPRM, they are not so readily
obtained for more complicated biospheric models. In these
cases, direct numerical simulation or a tangent linear approx-
imation [Giering, 2000] is required to obtain the sensitivities.
However, these sensitivities can be precalculated and placed
into a look‐up table to speed up the error analysis [Leoncini
et al., 2008].
[99] Ultimately, exercises like this study will help improve

and quantify uncertainties in the land surface components
of Earth system models. Because of the complexity of soil
and vegetation properties, parameterization of land surface
models as well as evaluating their performance over dif-
ferent regions are essential steps to improving confidence
in global carbon balance simulations. This paper is a step
toward this ultimate objective.
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