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ABSTRACT

A quasi-inverse linear method has been devel oped to study the sensitivity of forecast errorstoinitial conditions
for the National Centers for Environmental Prediction’s (NCEP) global spectral model. The inverse is approx-
imated by running the tangent linear model (TLM) of the nonlinear forecast model with a negative time step,
but reversing the sign of friction and diffusion terms, in order to avoid the computational instability that would
be associated with these terms if they were run backward. As usually done using the adjoint model integrations,
the quasi-inverse TLM is started at the time of the verified forecast error and integrated backward to the
corresponding initial time.

First, anumerical experiment showsthat this quasi-inverse linear estimation is able to trace back the differences
between two perturbed forecasts from the NCEP ensemble forecasting system and recover with good accuracy
the known difference between the two forecasts at the initial time. Thisresult shows that both the linear estimation
and the quasi-inverse linear estimation are quite close to the nonlinear evolution of the perturbation in the
nonlinear forecast model, suggesting that it should be possible to apply the method to the study of the sensitivity
of forecast errorsto initial conditions. The authors then cal culate the perturbation field at the initial time (estimate
the initial error) by tracing back a 1-day forecast error using the TLM quasi-inverse estimation. As could be
expected from the previous experiment, when the estimated error is subtracted from the origina analysis, the
new initial conditions lead to an almost perfect 1-day forecast. The forecasts beyond the first day are also
considerably improved, indicating that the initial conditions have indeed been improved.

In the remainder of the paper, this quasi-inverse linear method is compared with the adjoint sensitivity method
(Rabier et a., Pu et a.) for medium-range weather forecasting. The authors find that both methods are able to
trace back the forecast error to perturbations that improve the initial conditions. However, the forecast improve-
ment obtained by the quasi-inverse linear method is considerably better than that obtained with a single adjoint
iteration and similar to the one obtained using five iterations of the adjoint method, even though each adjoint
iteration requires at least twice the computer resources of the quasi-inverse TLM estimation. Whereas the adjoint
forecast sensitivities are closely related to singular vectors, the quasi-inverse linear perturbations are associated
with the bred (Lyapunov) vectors used for ensemble forecasting at NCEP (Toth and Kalnay). The features of
the two types of perturbations are also compared in this study. Finally, the possibility of the use of the sensitivity
perturbation to improve future forecast skill is discussed, and preliminary experiments encourage further testing
of this rather inexpensive method for possible operational use.

The model used in this study is the NCEP operational global spectral model at a resolution of T62/L28. The
corresponding TLM, and its adjoint, are based on an adiabatic version of the model but include both horizontal
and vertical diffusion.
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Sensitivity of Forecast Errors to Initial Conditions with a Quasi-Inverse Linear Method

1. Introduction

In the last two decades, the skill of numerical weather
prediction has improved enormously and has become
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the essential guidance in most weather forecast centers.
These improvements are due to three main factors: 1)
the use of finer spatial resolution made possible by sub-
stantial increases in computational power and more
efficient numerical techniques, 2) more comprehensive
and accurate representation of the physical processes
within the models, and 3) improved methods for data
assimilation and use of new types of observations re-
sulting in better initial conditions for the atmospheric
models. Recent experience with data assimilation and
forecast experiments suggest that large forecast errors
usually arise from errorsin theinitial conditions rather



2480

than from errors in model formulation, at least in the
extratropics (Reynolds et al. 1994; Simmons 1995; Ra-
bier et al. 1996). Predictability studies such as those
by Simmons et al. (1995) suggest that improvements
in the estimation of the initial state offer the most
promising path to more accurate individual (determin-
istic) forecasts, although there is still scope for benefits
from model improvement and from ensemble fore-
casting.

In recent years a considerable effort has been placed
on the use of advanced data assimilation methods in
order to improve the forecasts initial conditions. The
3D variational techniques have become operationally
feasible and were implemented in 1991 at the National
Centers for Environmental Prediction (NCEP, formerly
the National Meteorological Center) and in 1996 at the
European Centre for Medium-Range Weather Forecasts
(ECMWEF), replacing the optimal interpolation schemes
(Derber et al. 1991, Parrish and Derber 1992; Andersson
et al. 1996). The more advanced 4D variationa data
assimilation method remains very expensive and still
on the edge of feasibility for operational implementation
(Courtier et al. 1994), although Zupanski and Zupanski
(1996) have shown excellent convergence propertiesfor
the NCEP regional Eta Model. Efforts to develop com-
putationally feasible applications of Kalman filtering to
dataassimilation are also under way (Cohn 1994). There
are also studies suggesting improvement of the initial
conditions by using either the forecast error itself, or
the estimation of the growing modes of the atmosphere
to decrease the uncertainty in theinitial conditions (Kal-
nay and Toth 1994; Rabier et al. 1996).

Since it is not easy to exactly separate the errors due
to the initial conditions from those due to model defi-
ciencies, there has been considerable interest in the in-
vestigation of the sensitivity of forecast errorsto initial
conditions. Recent studies with adjoint models in nu-
merical weather prediction (Rabier et al. 1996; Pu et al.
1996, 1997) have shown that the gradient of the short-
range forecast error taken with respect to theinitial con-
ditions, commonly referred to asa '’ sensitivity pattern,”
can be an effective means of identifying structures in
the initial conditions that might cause large forecast er-
rors. Rabier et al. calculated a small perturbation (fore-
cast error sensitivity) in the initial conditions that min-
imized the observed 2-day forecast error over the North-
ern Hemisphere using the adjoint method; the pertur-
bation is obtained as the gradient of an error function
with respect to theinitial condition, multiplied by afixed
step size. Their experiments showed that the sensitivity
forecasts from the adjusted (perturbed) initial conditions
were better than the forecasts from the original (unper-
turbed) initial conditions at the same starting time (2
daysold), but not better than the forecasts from thelatest
available operational initial conditions. Pu et al. (1997)
extended this idea, by first calculating the initial per-
turbation of forecast sensitivity with a single iteration
of conjugate-gradient method for NCEP's global spec-
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tral forecast model, and then using the improved 2-days-
old initial conditions in a second iteration of the NCEP
three-dimensional variational analysis cycle until the
latest initial conditions are reached. Their results dem-
onstrated that the method enhances the future medium-
range weather forecast skill. Since the adjoint minimi-
zation method is an iterative process, Zupanski (1995)
suggested that the sensitivity pattern should also be per-
formed iteratively. Using the NCEP regional model Eta
Model and its adjoint, he showed considerableimprove-
ment in the sensitivity patterns using up to 10 iterations.

In the present study we develop a quasi-inverse linear
estimation of the perturbation in the initial conditions
leading to observed forecast errors as an alternative to
the adjoint (transpose) method used so far. The quasi-
inverse is calculated by integrating the tangent linear
model (TLM) backward and thus tracing back the fore-
cast errors to the initial time. The differences between
the quasi-linear error estimation and the adjoint sensi-
tivity pattern are then presented.

The TLM has been used in the context of sensitivity
studies (Errico and Vukicevic 1992; Lacarra and Tala-
grand 1988; Errico et al. 1993), since it describes the
forward evolution of small perturbations in a forecast
model. In most cases, however, the TLM has been used
to determine the evolution of small perturbations of
fields in a model forecast and, most importantly, in the
development and assessment of the adjoint model. This
| atter application has received much attention in recently
years, since the adjoint model has been extensively ap-
plied in four-dimensional variational data assimilation
(Le Dimet and Talagrand 1986; Derber 1987, 1989; Na-
von et al. 1992; Zupanski 1993; Zou et al. 1992; Zu-
panski and Mesinger 1995) and in sensitivity analyses
(Vukicevic 1991; Zou et a. 1992; Zupanski 1995; Pu
et al. 1997; Rabier et al. 1996). The TLM is always
used to evaluate the level of accuracy of applications
of its corresponding adjoint, because the accuracies of
both models are strongly related, and it is usually easier
to think in terms of a forward model of perturbation
evolution (in a TLM) than a backward model of sen-
sitivities (in an adjoint). In this situation, the TLM is
intended to approximately describe the evolution of the
small differences between two nonlinear model solu-
tions, where one solution begins from perturbed initial
or boundary conditions, or perturbed model parameters.
A TLM may be considered to be accurate as long as
the solution of TLM integration from the perturbation
is a good estimate of the differences between two non-
linear model integrations. There are some studies that
examined the accuracy of specific TLMs in the process
of creating the adjoint (transpose) model (e.g., Errico
et al. 1993, etc.). For this reason, although the devel-
opment of a TLM is not strictly necessary for many of
the adjoint applications, the TLM and the adjoint are
usually developed together.

So far, only the adjoint model has been used in the
analysis of the sensitivity of forecast error to initial con-
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ditions, and although this application does not require
the use of the TLM, it still contains the basic assumption
of the TLM, namely, that the error dynamics are linear.
The studies of the sensitivity of forecast errors to the
initial conditions have been done by defining an objec-
tive forecast error function, and trying to find a solution
that minimizes this function, and therefore required the
adjoint model to calculate the gradient of the function.
However, in studies of the behavior of initial pertur-
bations growing in a forecast model, there has been
evidence that the TLM can be directly used to estimate
the amplitude of this growing perturbation up to 1-2-
day forecasts. Lacarra and Talagrand (1988) experi-
mentally showed that the barotropic time evolution of
a small perturbation (with amplitude comparable to
analysis errors) can be described by its linear approx-
imation if the time interval is not longer than 2—3 days.
Vukicevic (1991) investigated the linearity of initial er-
ror evolution using a primitive equation limited-area
model and demonstrated that the major portion of initial
forecast error (with magnitude comparable with analysis
errors) can be described by the tangent model solutions
for periods of about 1.5 days. Buizza (1994), comparing
subjectively the time evolution of integrations, started
adding and subtracting the same structure to the control
initial condition with amplitude comparable to (optimal
interpolation) analysis error estimates, and concluded
that nonlinear effects are small up to forecast day 2 but
they can be quite large after forecast day 4. From these
experiments we can conclude that we can estimate the
initial error evolution by the time integration of the
TLM. If this is the case, we should consider whether
we can use directly the TLM to estimate theinitial error
from the forecast error.

In this paper we address the following two questions.
1) Is it possible to estimate the initial errors from ob-
served (perceived) short-range forecast errors through
a backward integration of the TLM, and 2) can we use
this method to improve operational forecasts? We de-
velop a quasi-inverse linear method to estimate the ini-
tial errors leading to observed forecast errors. The nu-
merical experiments are performed using the NCEP op-
erational global spectral model with full physics, with
T62 (horizontal triangular truncation of 62 waves) and
28 vertical sigma levels, and the simplified correspond-
ing TLM based on an adiabatic version (Navon et al.
1992) but including horizontal diffusion and vertical
mixing (Pu et al. 1997).

The paper is organized as follows. In section 2, we
describe the mathematical formulation and the projec-
tion operator used to obtain the quasi-inverse linear es-
timation. In section 3, the nonlinear, linear, and adjoint
models are described. A numerical experiment with two
members of the NCEP operational forecast ensembleis
performed in order to assess the accuracy of the linear
forward model (propagator) and of its quasi-inverse op-
erator. Section 4 contains numerical experiments show-
ing the impact of the linear estimate of the initial error
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(inverse of the perceived forecast error) on the forecast
and a comparison of thisimpact with that obtained with
the adjoint sensitivity patterns. In section 5, we further
compare the differences of the estimates of the initial
error of the quasi-inverse TLM estimation and adjoint
method. Their respective relationship to the bred (Lya-
punov) and singular vectors is also discussed in section
5. In section 6, the possibility of improving future fore-
cast skill by using the initial error estimate is tested.
Section 7 is a summary and discussion. The appendix
discusses some properties of growing and decaying per-
turbations in Hamiltonian systems such as the inviscid
adiabatic dynamics of the model.

2. Mathematical formulation of the quasi-inverse
method

Consider a nonlinear forecast model M that computes
the evolution of the model atmosphere from its initial
state X at timet = O, to its state at time t:

Xy = M(Xo)- 1)

The corresponding tangent linear model L propagates
a perturbation of the initial state 6X, forward in time:

M(X, + 8Xy) = M(X,) + L6X, + O(8Xy)2 (2)
Then, given a finite initial perturbation 6X,, and its
evolution through any finite time interval t, the TLM

approximation can be considered reasonably accurate
for as long as

M(X, + 6Xo) — M(Xy) = L8X,. (3)

As indicated in the introduction, for realistic atmo-
spheric models, and for initial perturbations with am-
plitudes characteristic of the estimated atmospheric
analysis errors, past research experience indicates that
the approximation (3) remains acceptable for about 1—
3 days.

If the atmospheric model M contained only adiabatic
frictionless dynamics, it would be a reversible Hamil-
tonian system (see the appendix). In that case, the linear
tangent model would also be adiabatic and nondissi-
pative and, therefore, reversible. A reversible model M
can be easily inverted by running it backward in time:

Xo = M‘l(Xt), (4)

which is simply carried out by starting M from the **fi-
nal” conditions X, and changing the sign of the time
step At. The same exact inversion (running backward
in time) can be applied to a reversible TLM .2

A model written with a time-centered scheme can be inverted
exactly. If the time scheme is noncentered, it is not exactly reversible,
and the inversion will introduce errors of the order of the time step
even for nondiffusive dynamics. For example, the NCEP global model
is based on a semi-implicit leapfrog time scheme (centered in time),
but with a Robert time filter, which slightly damps the highest fre-
quencies. The latter effect will be acting both in the forward and in
the backward integrations but is a small effect that does not affect
the meteorologically meaningful components of the integration.
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In reality, of course, comprehensive atmospheric
models contain heating and frictional terms, and, like
the real atmosphere, are not reversible. Nevertheless,
the successful experience of early numerical weather
prediction, which was based on quasigeostrophic, re-
versible dynamics, suggests that, at least for short-range
forecasts, the evolution of the atmosphere is dominated
by the reversible atmospheric dynamics. In fact, the lin-
ear tangent models (and their adjoints) successfully used
at the ECMWEF in the development of their ensemble
forecasting system originally only contained quasi-
geostrophic reversible dynamics (Molteni and Palmer
1993). Later, the primitive eguations were adopted for
the TLM and its adjoint, again containing only revers-
ible dynamics with the exception of asimple linear sur-
face friction and vertical diffusion, which were added
in lieu of the full parameterization of irreversible phys-
ical processes (Buizza et al. 1993). This simplified ad-
joint was also used by Rabier et al. (1996) in their fore-
cast sensitivity studies. A similar TLM with just the
linearized reversible atmospheric dynamics of the NCEP
global model, but including asimple linear surfacefric-
tion and vertical diffusion asirreversible processes, was
used by Pu et al. (1997), Pu (1996), and in the present
work.

The dominance of the reversible dynamics in the
short-range forecasts, and the success of the simple
TLM in describing the evolution of small perturbations,
suggests that, if it was computationally feasible back-
ward integration in time of the TLM would provide a
fairly good approximation of its inverse and, therefore,
allow tracing of forecast errors backward in time and
approximate determination of the corresponding anal-
ysis errors. We know that dissipative terms are com-
putationally unstable if they are integrated backward in
time, so we have a simple choice: either not to include
them at all in the approximate inverse of the TLM, or,
if the backward integration without friction becomestoo
noisy, to include them with the sign reversed. Note that
if their sign isreversed, dissipative termswould be han-
dled exactly as in an adjoint model. In any case we
expect the effect of these terms to be small, except per-
haps near the surface.

In summary, we approximate the inverse of the TLM
L;* by integrating the TLM backward in time, that is,
with a negative time step, without the dissipative terms
(which are small except near the surface), or by chang-
ing the sign of these terms during the backward inte-
gration. If this approximate inverse is accurate, we
should be able to approximately recover the initial per-
turbation X, from two model solutions at time t:

Xy = L M(Xp + 8Xo) — M(X)], (%)
where Lt represents the approximate or quasi inverse
of L.

Similarly, we can consider the perceived forecast er-

ror at timet given by
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E = M(Xo) — X3 (6)

where X2 is the verifying analysis valid at time t. Note
that thisis the perceived, and not the true, error, because
the verifying analysis also contains errors, but beyond
12 h these are generally much smaller than the forecast
errors. We would like to find a perturbation 86X, that
would correct the forecast

M(Xo + 8Xo) = M(X,) + LdX, = X2, (7)

so that we use the approximate inverse of the TLM to
obtain

Xo = Lt [XgE = M(X)]. (8)

Here 86X, will be denoted as ‘‘initia error estimate’
from the quasi-inverse linear method. It is the solution
obtained when we (approximately) trace the short-range
perceived forecast error back to the initial time. Since,
as discussed above, the small dissipative terms are ir-
reversible and we cannot invert the TLM exactly, we
denote our approximation of the inverse of the TLM as
a ‘‘quasi inverse.” In section 3, we present numerical
experiments that test the accuracy of both the linear
tangent model and of its quasi inverse for the particular
model used in the present study. We have to address at
least two questions: 1) Is the linear evolution of the
analysis error in the TLM close to the evolution of the
analysis error in the nonlinear model, and 2) how ac-
curate is the quasi-inverse linear error estimate, and, in
particular, what is the impact on the quasi inverse of
the simplified physical processes, which cannot be in-
tegrated backward?

3. The accuracy of the quasi-inverse linear error
estimate for the NCEP global spectral model

a. The NCEP global spectral model, its TLM, and

adjoint

The nonlinear atmospheric model used in this study
is a lower-resolution version of the operational NCEP
global spectral model, with horizontal triangular trun-
cation of T62 and T28 vertical sigmalevels. This model
is based on the primitive equations formulated with a
spectral discretization in the horizontal and an Arakawa
quadratic conserving finite differencing in the vertical
(Sela 1980; Sela et al. 1988; Kanamitsu et al. 1991). In
order to take advantage of the spectral technique in the
horizontal, a vorticity and divergence representation of
the momentum equations is used to eliminate the dif-
ficulties associated with the spectral representation of
vector quantities on a sphere. A semi-implicit time-in-
tegration scheme is applied to the divergence, temper-
ature, and surface pressure equations. The vorticity
equations are integrated explicitly except for zonal ad-
vection, which is treated implicitly. The model has a
full set of physical parameterizations. New formulations
of the cumulus convection and PBL parameterization
were recently implemented (Pan and Wu 1995; Hong
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and Pan 1996). The model used in this study isthe T62/
L 28 version of the T126/L28 operational model imple-
mented in January 1995, which is also used in the en-
semble forecasting system and in the NCEP-National
Center for Atmospheric Research 40-yr reanalysis (Kal-
nay et al. 1996).

The tangent linear model is a simplified adiabatic
version (Navon et al. 1992), but it includes surfacefric-
tion, horizontal diffusion, and vertica mixing. With
these dissipative processes the TLM was shown to rep-
resent well the evolution of small perturbations in the
nonlinear model with full physics (Pu et al. 1997). The
full nonlinear model was used in the computation of the
trajectory (basic state) used for all the linear and adjoint
model integrations. The adjoint model was developed
from this tangent linear model.

b. Test of the accuracy of the linear and quasi-
inverse models

Since the analysis errors are not known, we cannot
use forecast errors to test the accuracy of the quasi-
inverse TLM method. Instead we chose arbitrarily two
members of the operational T62 ensemble forecasting
system starting from 1200 UTC 28 February 1996 (Toth
and Kalnay 1993, 1996) for which we know exactly
both the initial and the 24-h forecast differences. These
known differences, which we can interpret as ‘‘ errors,”
allow us to test the accuracy of the quasi inverse of the
TLM and the success of the method in correcting initial
errors.

The forward TLM has been used by Pu et al. (1997),
in the context of an adjoint sensitivity study. They
showed that the agreement between the perturbation
field from the linear and nonlinear integrations is good,
and the results indicated that the dry-adiabatic linear

e =
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model with surface friction and vertical diffusion can
reproduce fairly well the nonlinear perturbations of the
model with full physics for short-range forecast.

In order to test the accuracy of the quasi-inverse TLM,
the 24-h forecast difference between the two ensemble
forecast members (at 1200 UTC 29 February 1996) was
taken as the initial condition for the inverse integration
and the TLM was integrated backward until the cor-
responding initial time (1200 UTC 28 February 1996)
was reached, as discussed in section 2. Figure laillus-
trates the solution of this quasi-inverse, backward in-
tegration. It shows the linear perturbation at the initial
time for the temperature and the u and v wind com-
ponents at sigma level 13 (about 500 mb). Figure 1b
shows the corresponding exact differences between the
two ensemble members at forecast initial time. The two
figures are in very good agreement, indicating that the
guasi-inverse method is successful in tracing back the
forecast differences to the initial condition differences
in this case, at least above the lower boundary layer.

We also carried out the same experiments using the
TLM without the diffusive terms, but the results showed
that both the forward TLM and the quasi-inverse TLM
become unstable without diffusion within a 1-day in-
tegration and, therefore, that these terms are needed to
maintain computational stability.

Finally, we then took the linear estimate of the initial
error obtained from the quasi-inverse method (asin Fig.
1) and integrated it forward 24 h with the TLM: Fig.
2a shows the obtained linear perturbation field at sigma
level 13 (about 500 mb), and the corresponding 24-h
fully nonlinear forecast difference is shown in Fig. 2b.
The agreement between the two figuresis still excellent,
showing that the quasi inverse is a good approximation
of the true inverse of the TLM.

We also compute an energy relative error measure of
the combined quasi-inverse and TLM integration:

IM(Xo + 6Xo) — M(Xo)|

where the || || denotes the kinetic energy norm [Buizza
et al. 1993; also see (10) in section 5a]. Figure 3 shows
the vertical variation of the kinetic energy error ratio.
There is a relatively large error in the lowest layer
(almost 25%), indicating the effect of the friction term,
whose sign was changed in the quasi-inverse TLM in
order to maintain computational stability. For most of
the atmosphere, however, the combined linear and quasi-
inverse procedure is accurate to better than about 90%
in the 1-day sensitivity test. We also computed the errors
using the total energy norm, and the relative errorswere
very similar to those obtained using the kinetic energy

©)

norm (Fig. 3), indicating that the TLM and quasi inverse
maintain a state of quasigeostrophic balance.

4. Sensitivity of forecast error to initial conditions
with quasi-linear inverse estimation

In the previous section we tested the accuracy of the
linear and quasi-inverse approximations by comparing
them with known differences between nonlinear inte-
grations. In this section we test their ability to estimate
errors and compare the linear and adjoint forecast sen-
sitivity.
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a. Quasi-linear and adjoint forecast sensitivity

We first tested the use of the quasi-inverse TLM to
obtain improved initial conditions starting from an ar-
bitrarily chosen analysis corresponding to 0000 UTC 24
March 1995. The 1-day perceived forecast error field
(analysis minus forecast at 0000 UTC 25 March 1995)
is used as an initial condition for the TLM backward
integration. Note that only one backward integration is
needed to obtain the TLM linear initial perturbation and
that, unlike the adjoint sensitivity perturbation that pro-
vides the gradient of an error cost function, the results
are not dependent on either the choice of a norm or on
the amplitude that multiplies the gradient field.

In order to compare the inverse TLM estimation with
the adjoint sensitivity, we performed the experiment us-
ing the two methods for the same case. The adjoint
method isused asin Pu et al. (1997): a sensitivity initial
perturbation minimizing the norm of the 1-day forecast
error. The minimization processis performed iteratively
using a conjugate-gradient method. Note that the cost
of each adjoint iteration depends on the method used to
estimate the optimal step size. If the step size is fixed
at a value appropriate for many different cases, as in
Rabier et al. (1996), the cost of each adjoint iteration
beyond the first one is equivalent to about two times
the cost of the quasi-inverse TLM iteration. If an optimal
value of the step sizeis determined for each case (Derber
1987), then each iteration is about three times as costly
as the quasi-inverse total computation. In this experi-
ment we have followed the latter procedure.?

After one iteration of the adjoint method the initial
error cost function was reduced by about 20%, and after
five iterations by about 50%. Figure 4 shows the initial
perturbation at 0000 UTC 24 March 1995 for the
500-mb geopotential heights, obtained from one adjoint
iteration (Fig. 4a), five adjoint iterations (Fig. 4b), and
the quasi-inverse TLM (Fig. 4c). The amplitudes of the
adjoint perturbations are considerably larger after five
iterations than after one iteration but are even larger for
the quasi-inverse TLM perturbation (note that no zero
line is plotted and a larger contour interval was used
for the TLM perturbation). Close inspection of these
fields reveals that there are many areas of the world
where the shapes of the perturbations from the five-
iteration adjoint and the inverse TLM methods are sim-
ilar, although the amplitude of the latter tends to be
larger (e.g., southeast Australia, southeast of South
America, Alaska, Asia north of India, and others). On
the other hand, there are other areas where the shape of

2|n aroutine operational context, the first adjoint iteration requires
only a backward integration of the adjoint (assuming that the am-
plitude that multiplies the resulting sensitivity pattern is chosen using
other information). Thisis because the 1-day error isalready available
as part of the operational suite, so that the first adjoint iteration costs
about the same as the quasi-inverse method. Succesive adjoint iter-
ations require the computation of the updated 1-day error.
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the five-iteration adjoint and the inverse TLM pertur-
bation are quite different, and even areas where the
shape of the one- and five-iteration adjoint perturbations
are also different. As discussed later in section 5d, it is
not surprising that different perturbation patterns are
obtained with the two methods, because the first itera-
tion of the adjoint method retrieves patterns correspond-
ing only to the fastest growing singular vectors, whereas
the inverse TLM method recovers both growing and
decaying vectors.

To assess the quality of the three different initial error
estimates, that is, the extent to which they capture the
origins of the forecast errors, we performed nonlinear
model integrations from the corresponding perturbed
(corrected) initial conditions to 0000 UTC 25 March
1995 and compared them with the original unperturbed
(control) forecast. Figure 5 shows the 1-day forecast
error (difference between the forecast and analysisfield,
at 0000 UTC 25 March 1995) for the 500-mb geopo-
tential heights from these nonlinear model integrations
starting from (@) the control analysis without correc-
tions, and the analyses corrected with the initial errors
estimated by (b) the inverse TLM error estimation, (c)
the one-iteration adjoint sensitivity; and (d) the five-
iteration adjoint sensitivity. Since all the experiments
made use of the 1-day forecast error of Fig. 53, it is not
surprising that they all have achieved areduction in the
1-day error, which was the original goal. It isclear from
the figure that one iteration of the adjoint sensitivity
method succeeds in improving the forecast error with
respect to the control, and that five iterations are much
better than a single adjoint iteration, but that the inverse
TLM method gives by far the best results. A comparison
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of other fields (not shown) yields similar conclusions
(see also the discussion of Fig. 10 in section 5c¢).

Figure 6 shows a vertical east—-west vertical cross
section at 40°N of the height forecast error field for
the control and the three improved initial conditions.
It also indicates that the results from the linear sen-
sitivity are substantially better than those of the adjoint
method, even after five iterations. An examination of
the structure of the error indicates that the quasi-in-
verse linear TLM perturbation reduces very substan-
tially the original forecast error everywhere except at
a few spots near the top of the model where the TLM
may have problems associated with very fast growing
modes (Kalhay and Toth 1996). The adjoint pertur-
bations are able to reduce the forecast error in some
areas, but they actually increase significantly the orig-
inal error in other areas (e.g., near 150°E avery large
new error structure is introduced with the one-iteration
adjoint perturbation and only partially removed by the
five-iteration perturbation). Similar results were ob-
served for the wind forecasts (not shown). The reasons
for this error may be due to the adjoint sensitivity
method itself: As shown by Rabier et a. (1996), the
first iteration in the sensitivity patterns is strongly re-
lated to the fastest growing singular vectors, each of
which grows during both the backward (adjoint) and
the forward integrations, so that they appear with am-
plitudes proportional to the square of their growth rate.
On the other hand, within the adjoint method, which
provides the gradient of the cost function, a single
optimal step size must be chosen, which Rabier et al.
selected to optimize the reduction of error correspond-
ing to the fastest growing singular vector. The use of
a single optimal step size cannot be optimal for al the
dominant singular vectors and, therefore, may lead to
a reduction of errors for some singular vectors but to
an increase for others. The adjoint sensitivity will de-
pend on the definition of the function and minimization
technique.

Since the 1-day analysis is only an estimate of the
true state of the atmosphere, and the perceived 1-day
error was used in these calculations, it is hecessary to
make longer forecasts to test whether the apparent im-
provement in the forecast error is really meaningful.

b. Impact of estimates of the initial errors on
medium-range forecasts

A medium-range weather forecast was performed
from each of the perturbed initial conditions discussed
above. Table 1 compares the 1-5-day sensitivitieswith
the control forecasts' 500-mb heights anomaly corre-
lation scores, verified against the corresponding anal-
ysis fields. We find that the sensitivity forecasts not
only improve the 24-h forecast, but also improve the
rest of the 5-day forecasts. The quasi-inverse TLM
estimation results in the best forecasts, although, with
five iterations, the adjoint sensitivity is close to it, es-
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pecialy in the Southern Hemisphere, where analysis
errors are larger, and therefore the perceived forecast
error may belessreliable (seeaso Fig. 10). Theimpact
of the analysis errors on the perceived 24-h forecast
errors is probably the reason why the forecast im-
provements introduced by the TLM are equivalent to
about 36 h in the NH and only about 12 h in the SH.
The results are similar for the five-iteration adjoint cor-
rection, but note that each adjoint iteration requires
about 2-3 times the computations required by the TLM
in total.

c. Improvements in original forecast quality from the
estimates of the initial error

In order to further test the impact of the TLM inverse
estimation and to compare the method with the adjoint
approach, 14 consecutive cases from 0000 UTC 18
March 1995 to 0000 UTC 31 March 1995 were chosen
for a comparison. For each case, we use the 1-day fore-
cast error at 0000 UTC to trace back the error in initial
condition at 0000 UTC the day before by quasi-inverse
TLM estimation and by the adjoint method. Asin Rabier
et a. (1996) and in Pu et al. (1997), we performed only
oneiteration for the adjoint method in order to minimize
the computational cost. The 5-day forecasts starting
from linear sensitivity initial conditions and from the
sensitivity of one iteration adjoint method were com-
pared with the original control forecast. Figure 7ashows
the anomaly correlation scores verified against the cor-
responding control analysis for 500-mb geopotential
heights in the extratropics (20°-80°), and Fig. 7b shows
the root-mean-square error for 200- and 850-mb wind
speeds for the tropical area (20°N-20°S). The results
show that in the extratropics the linear estimation meth-
od improves the original forecast in all but one case in
each hemisphere and is also better than the one-iteration
adjoint sensitivity forecast in all but 7 of the 28 cases.
In the Tropics, the adjoint forecast tends to be close to
the control, because tropical perturbations tend to be
slowly growing and, therefore, do not dominate the ad-
joint perturbation (see Figs. 1-5), and the quasi-inverse
TLM perturbation provides the best forecast in the ma-
jority of cases.

5. Characteristics of the different estimates of the
initial errors

a. Total and kinetic energy

In section 3, the amplitude of the initial estimate of
the initial error from quasi-inverse TLM estimation was
compared with both one- and five-iterations adjoint ini-
tial sensitivity perturbations for 500-mb geopotential
height fields. In this section, we compare the amplitude
of the different initial perturbations at different vertical
sigma levels for a single case. An energy norm is used
to measure the amplitude of initia perturbations:
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TaBLE 1. Comparison of the forecast anomaly correlation scores for geopotential height field
(1-20 waves, from 0000 UTC 24 March 1995).
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Northern Hemisphere 500 mb

Southern Hemisphere 500 mb

Adjoint Adjoint Adjoint Adjoint
Day Control one iter. five iter. TLM Control one iter. five iter. TLM
1 0.9887 0.9933 0.9953 0.9964 0.9804 0.9884 0.9903 0.9953
2 0.9649 0.9724 0.9823 0.9831 0.9516 0.9595 0.9712 0.9702
3 0.9286 0.9462 0.9656 0.9776 0.9119 0.9316 0.9413 0.9348
4 0.8800 0.9058 0.9449 0.9559 0.8471 0.8687 0.8960 0.8820
5 0.8520 0.8437 0.8988 0.8998 0.7691 0.7514 0.7860 0.7980
5-day forecast 5-day sensitivity forecast
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Fic. 7a. The 5-day forecast anomaly correlation scores for 500-mb
geopotential heights. For control forecast (solid line), sensitivity fore-
cast from adjoint one iteration (short-dashed line), and sensitivity
forecast from inverse linear estimation (long-dashed line). Dates on
the horizontal axis denote the starting dates of forecasts.
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Fic. 7b. The 5-day forecast root-mean-sguare error for 850- and
200-mb wind speeds. For control forecast (solid line), sensitivity
forecast from adjoint one iteration (short-dashed line), and sensitivity
forecast from inverse linear estimation (long-dashed line). Dates on
the horizontal axis denote the starting dates of forecasts.
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where {, D, T, and II stand for the perturbations of
vorticity, divergence, temperature, and surface pressure;
m is the vertical coordinate; T, is a reference tempera-
ture; and R, and C are thermodynamic constants. Here
E is the total energy norm, and the first two terms in
square brackets are the rotational and the divergent parts
of the kinetic energy norm.

Figure 8a shows the vertical cross section of the total
energy norm, and Fig. 8b the kinetic energy norm for
the initial perturbation. It indicates that the magnitude
of the TLM estimate of the initial error is the largest at
all sigma levels. The patterns of the three curves are
very similar, showing the maximum amplitude at mid-
levels. Note that another large change of kinetic energy
appears at the lowest level for the quasi-inverse TLM
estimation, presumably due to the inaccuracy of the quasi-
inverse at this levels, where the surface friction is most
important and its sign has been changed for computa-
tional reasons. The one-iteration adjoint does not show
this effect, but the five-iteration adjoint also has a sub-
stantial increase in both kinetic and total energy near
the surface, which may be a result of the poor physics
of the TLM and its adjoint.

b. Fit of the perturbed initial conditions and
forecasts to rawinsondes

The rms fit and bias of both temperature (K) and
vector winds (m s—%) against rawinsonde data are pre-
sented in Fig. 9. In each figure, the curves on the left
represent the bias, and the curves on the right the rms
difference; the dashed curves indicate the fit of the con-
trol forecast, and the solid curves thefit of the perturbed
forecast. Figure 9a presents the results for the initial
time, and Fig. 9b for the 24-h forecast, for both the
Tropics and the NH extratropics (the results for the SH,
not shown, are similar to those of the NH). At the initial
time the fit of the quasi-inverse analysis to the obser-
vations is worse than the control analysis. For example,
at 300 hPa, the fit to the NH extratropics rawinsonde
winds is about 6 and 7.5 m s~ for the control and the
quasi-inverse analyses, respectively. The assumed ob-
servational error standard deviation for the wind speed
at jet level is about 4.6 m s*. Since the quasi-inverse
procedure does not impose constraints to the fit to the
data, it is not surprising that the fit is worse than in the
control analysis.

In the Tropics, the adjoint method introduces negli-
gible initial differences, even after five iterations. The
quasi-inverse linear perturbations slightly improve the
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FiG. 8. The vertical cross section of the kinetic energy norm (a)
and total energy norm (b) for sensitivity initial perturbation, of one
iteration adjoint (solid), five iterations adjoint (long-dashed line), and
inverse linear estimation (short-dashed line).

bias in the temperatures and winds but result in a sig-
nificantly worse fit to the data compared to the control
analysis, by about 0.1 K and 1 m s~* in the temperature
and wind, respectively. In the extratropics, a single ad-
joint iteration produces very small changes in the mid-
troposphere and essentially no changes in the winds.
After five iterations, the adjoint sensitivity increases by
up to 0.4 K the fit to the data in the lower troposphere
and changes in the wind of the order of 0.5 m s~ but
only below 700 hPa. The effect of the quasi-inverse
linear sensitivity on the initial bias and rms fit in the
extratropics is similar to that observed in the Tropics.
It should not be surprising that the perturbed initial con-



OcTOoBER 1997

a

a- TROPICS  TEMPERATUA 3
1ag: 100-
289’- 298
388: 308

. 108-
S0 see;
s 588-
708 708;
a8 gaa:
980: hed
1908- 'BGLMM
By e s e ve <4 -2 8 « e

I -

TROPICS  TEHPERATUR

PUET AL. 2495

1908
P U S T )
118E——s— > g 1 -

8- TR R 2 NH EX}A?A
189- 108;
280° 288
388~ 306
408" 4o
560- . 588
668" 600
796 786
8g6- ses
900- 900
2 8 2 4 6 8 19

g M EXT] CTO!
. 100-
199: 200
209: 308-
386- 106-
188 5a0-
566 so8"
688- 708- !
788- se8s ‘, !
LLES 988~ /
908 1908° '
1008 1106
B -6 -4 -2 8 2 4 & g 1€
HeE™ "2 6 2 4 6 8 19
III g TROPICS PERATUR . e
189° 108°
289 N 288"
390 ) 306"
4088- 198
599" | 500 !
699 I 688
798: by 700~
888- by aoe-
960 U\ 9908-
19688- N - lamy_'
e~ 2% 2 4 ¢ & 1o [ S 4 6 18 N5 5 2 4 & @ s
I 0. TROPILS, TEMPERATUR 5. TROPICS___YECTOR WI e XTR  TEHRERATUR
1888 100; 100
298° 208: 206;
366 300" 308
ag0- age: 2o
5a0- 500- 580
688~ “s08; sos:
706- 796 o8
869- 808 B8
ot 908" 999:
1989" 1800 :?32:_,_,,_‘_,._._..__;“-_%
e T 4 6 8 e %% -4 2 » PR Ve 208 2 4 6 B0
II 8- TROPT TEHPERATUR g . TROPIC o
108 108 189
208 208 200
386, 30e- 300
480 @8- 488"
sep- 560- 506"
600- I 698"
788 766 780
885 800- 860-
968" ! 986- y 989-
1086: 1898- / 1008-
1186 188" 1186~
6 -4 -2 8 2 4 6 8 19 6. -4 -2 8 -5 -
III 8- s  TROPIC! o-
168 18" < 189:
288 2¢8- 208°
368- 306 308
486 409- 486°
589: 500 sBe-
668" 688 688"
788" 798~ 760
BBe- 808" 808
988: 908 980
1808 1898 1e08:
‘|B>6 -4 -2 9 2 4 6 8 I‘B—Db -4 -2 8 4 ] 19 ‘18—6 ~4

Fic. 9. The root-mean-square error of the sensitivity and forecast field fit the rawinsondes (observations) data. In each plot, the left two
curves represent the bias, and the right two curves represent the rms error. Dashed line for the control field and solid line for the sensitivity
field. The vertical axis denotes the pressure: (1) Adjoint oneiteration (1), adjoint fiveiterations, and (111) quasi-inverse TLM. (a) For sensitivity

initial condition, and (b) for one-day sensitivity forecast.



2496

ditions tend to fit the data worse than the control anal-
ysis, which by definition tries to optimally fit the data
and the first guess.

After 24 h the perturbed forecasts are better than the
control forecastsin both the Tropics and the extratropics,
except for the one-iteration adjoint, which fits the winds
worse than the control in the low levels of the extra-
tropics. The improvement after five adjoint iterationsis
larger than after one iteration, but the TLM improve-
ment is comparable or larger. This relationship is main-
tained after 3 and 5 days (not shown). The improvement
in the bias is aso better for the quasi-inverse linear
sensitivity forecast than for the adjoint forecast.

Checks of thefit of theinitial conditions and forecasts
against other data (aircraft reports, cloud track winds,
satellite temperature soundings, and surface reports)
gave similar results: the linear estimate of the initial
error resulted in afit to the data worse than the control
analysis (which is designed to fit the data well), but the
corresponding forecasts resulted in better fit to the data
than either the control or the adjoint sensitivity fore-
casts.

¢. Sensitivity corrections and forecast error

We now consider the evolution of the changes in the
initial condition introduced by the sensitivity patterns
and how they improve the nonlinear forecast with re-
spect to the control. This is done by measuring how
parallel the sensitivity correlation is to the control error.
We define as X = A(analysis) — C(control forecast) the
perceived control forecast error, and Y = S(sensitivity
forecast) — C is the sensitivity forecast correction. The
angle between them is (e.g., Gill et al. 1981)

a = cosl—(x’ Y) ,
Iyl

where (,) denotes an inner product and || || isan Euclidian
L, norm, in this case the total energy. If the sensitivity
perturbations were able to perfectly correct the forecast,
the sensitivity forecast correction would remain parallel
to the control forecast error.

Figure 10 shows the variation of the angles with the
forecast day. Note that at t = O the perceived control
forecast error is zero, so that the corrections cannot be
compared. At 24 h the quasi-inverse sensitivity cor-
rection is much more parallel to the control error than
the adjoint one- and five-iteration sensitivity correc-
tions. The advantage for the quasi-inverse method re-
mains clear for the first 2 days, but then the angle
increases quickly and, by day 5, it is close to the angle
between the adjoint sensitivity forecast error and con-
trol error. The advantage of the quasi-inverse method
may be explained by the fact that its perturbation in-
cludes all components of the error, both growing and
decaying, as does the real forecast error, and therefore
the correction and the error are more parallel. The ad-
joint sensitivity perturbations, as shown in Fig. 10, on

(11)
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Fic. 10. The angle between forecast error and correction by sen-
sitivity forecast. For one iteration adjoint (long-dashed line), five-
iteration adjoint (short-dashed line), and quasi-inverse linear esti-
mation (solid).

the other hand, contain only corrections in the fast
growing errors and are therefore less parallel to the
total error. After thefirst day or two, the growing errors
dominate the total forecast error, and the advantages
of the quasi-inverse linear procedure become less dom-
inant. Since the quasi-inverse linear sensitivity recov-
ers both growing and decaying errorsin theinitial con-
ditions, and the adjoint sensitivity recovers only the
fastest growing errors, it is not surprising that the am-
plitude of linear initial estimate of the initial error is
significantly larger than the adjoint sensitivity pertur-
bation (Figs. 8 and 9).

d. Sensitivity patterns, bred vectors, and singular
vectors

To further interpret the different estimations of initial
errors, let us look at formula (8) again. We will show
that the perturbations obtained by the quasi-inverselin-
ear method are strongly related to the bred vectors,
whereas the perturbations obtained by the one-iteration
adjoint are in turn related to the singular vectors [as
shown first by Rabier et a. (1996)]. The quasi-inverse
method attempts to find the initial perturbation 86X, that
inverts the following equation:

LoX, = X, (12)

where the rhs of (12) is the perceived error at time t
(24 h in our experiments):

8X, = X& — M(X,). (13)

Let us assume for the moment that diabatic and dis-
sipative effects can be neglected, which is a reasonable
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assumption for short integrations. The adiabaticinviscid
dynamics of the model are a Hamiltonian system (see
appendix) and have properties that include conservation
of volume in phase space and conservation of total en-
ergy. Other related properties are the fact that eigen-
values of the matrix L appear in sets of 4 and that if A
is an eigenvalue, then 1/A is also an eigenvalue. As an
important consequence, stretching by the dynamics in
a given phase-space direction is always compensated by
a contraction in another direction, preserving the vol-
ume of phase-space elements.

This implies that the most unstable and stable direc-
tions in the phase space of the model dynamics exist
always together: there are no large instabilities without
large decays.

Therefore, an inverse adiabatic TLM model, and its
numerical realization the quasi-inverse TLM, must re-
produce not only the unstable initial perturbation, but
also the decaying initial perturbation that feeds its en-
ergy to the growing structure. A straightforward con-
sequence is that the initial amplitude of the quasi-in-
verse TLM perturbations must necessarily be larger
than if only growing perturbations were included. Note,
however, that this larger amplitude does not shorten the
time interval for which a (linear) TLM integration is
valid, since the decaying initial components dominate
the larger amplitude. These results are anintrinsic prop-
erty of the dynamics of the model, independent of any
choice of coordinates or norm.

The quasi-inverse perturbations are related to the
“bred’” or leading local Lyapunov vectorsused asinitial
perturbations in the ensemble forecasting at NCEP since
1992 (Toth and Kalnay 1993, 1996; Kalnay and Toth
1996). The breeding method used to generate pertur-
bations simulates the development of growing errorsin
the analysis cycle, where errors grow during a 6-h fore-
cast, and then they are **squashed down’ by the anal-
ysis, which combines the short-range forecast with ob-
servations.® The bred perturbations are obtained as the
difference between two nonlinear forecasts; this differ-
ence is carried forward upon the evolving atmospheric
analysis field and scaled down at regular intervals.
Breeding is a nonlinear generalization of the method
used to generate leading Lyapunov vectors, where only
alinear model is used for propagating the perturbations.
Aslong as their amplitude remains small, and the phys-

3 We have done additional experimentation by taking as *‘ analysis
error”’ the difference between an operational and a parallel (experi-
mental) analysis cycle. We found that the backward integration of
the **24-h analysis error” had significant similarity with the (known)
*0-h analysis error”, that is, the difference between the operational
and parallel analyses at t = 0 h. This supports the basic assumption
of the breeding method, which is that, to a large extent, the analysis
errors are carried forward by the model first guess, thus ** breeding’”
Lyapunov vectors into the analysis error. It does not support the
assumption of white noise errors in the analysis, which is used in the
development of singular vectors.
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ical processes are not dominant, the bred vectors gen-
erated by the difference between two nonlinear forecasts
can be considered as the result of a forward integration
of the TLM as in (12). Therefore, to the extent that
forecast errors at timet are dominated by growing errors
(leading local Lyapunov vectors), the inverse method
will result in the Lyapunov vectors at timet = 0. Of
course, in addition to these vectors, there are decaying
vectors as well in the analysis error. These decaying
errors, when integrated backward with the TLM or its
quasi inverse, will result in larger amplitudes at the
initial time than at the final time.

In order to clarify the relationship between the quasi-
inverse and the adjoint perturbations, let us scale the
model variables so that the total energy norm becomes
the Euclidian norm; that is, ||X|[? = X*X. In what follows
we use the same notation for the transformed variables
asthat which was used for the variables before the trans-
formation. If we expand the final perturbation field on
the basis formed by the singular vectors (eigenvectors
of L*L after the model integration to the final time), an
inverse model integration is formally

5 Vi (f)6X
X, = Ltax, = > 0%y g (g
i=1 i
while an adjoint integration is
8Xo = L'8X, = 2 [oV;()OXv,(0),  (15)
i=1

where v,(0), v,(t), i = 1, ..., n denote the singular
vectors at the initial and final times, respectively, and
o; are the corresponding singular values.

Comparing (14) and (15), we see that the adjoint
integration overemphasizes the growing components
and under estimates the role of the decaying components
of the true inverse by a factor of o2 This occurs for
any choice of norm, although the structure of the fastest
growing singular vectorsitself is strongly dependent on
the choice of norm. For this reason, as pointed out by
Rabier et al. (1996), the gradient of the cost function
(error energy) computed by one iteration of the adjoint
method is dominated by the leading singular vectors,
and the structure of the adjoint sensitivity patternisalso
very similar to that of (energy norm) leading singular
vectors, which are used a8 ECMWF as initial pertur-
bations in their ensemble forecasting system (Molteni
et a. 1996).

In general the minimization of a quadratic function
requires multiple iterations, unless the problem is per-
fectly conditioned (all the eigenvalues of the minimi-
zation algorithm are equal). One adjoint minimization
provides the gradient of the cost function, that is, the
shape of a small perturbation that results in a maximum
change of the cost function. But the full adjoint mini-
mization problem needs multiple iterations depending
on the conditioning number (ratio of the largest and
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smallest eigenvalue). If all the eigenvalues o? of L'L
were equal, then the adjoint minimization (15) would
find the same solution as the inverse approach. But in
fact, there are eigenvalues greater and smaller than one,
corresponding to different growing and decaying sin-
gular vectors.

If the model was exactly reversible, then finding the
initial field with zero 24-h forecast error would be a
deterministic problem, and the solution would be
unique. In this case, if the iterated adjoint minimization
converged to thelowest possible minimum (i.e., thefield
that results in a 24-h forecast with zero error energy),
it would have to reach necessarily the same result as
the exact inverse procedure, that is, find the true initial
error.

In reality, of course, the model, even if linearized, is
not exactly reversible, as discussed earlier in the paper.
For this reason we are forced to use an approximate
inverse or *‘quasi-inverse’” model, in which the dynam-
ics are maintained exactly as in the true inverse, but
diffusive terms are handled as in the adjoint method.
This approach gives good results, as shown in previous
sections, because during short integrations the role of
dissipation and diffusion is quite small, except near the
surface.

In summary, the adjoint procedure (with a single it-
eration) can be considered optimal, in the sense that by
determining the gradient of the error energy with respect
toinitial perturbations, it finds the smallest perturbation
that results in a maximum decrease of the error energy.
The quasi-inverse integration, on the other hand, finds
a close approximation to the exact initial perturbation
that corrects the perceived 1-day forecast error. If suc-
cessful, the iterated adjoint scheme would converge to
the same exact solution.

6. Possible improvement of future forecast skill
using initial error estimates

Our results showed that the linear sensitivity patterns
can improve substantially the original forecast, even
beyond the period for which the error was computed
(section 3). But a crucial question for the operational
practice is whether we can use this procedure to im-
prove the skill of future forecasts. For possible oper-
ational applications, we should compare the sensitivity
forecast with the regular forecast from latest initial
conditions. This means, in our experiments, that we
should compare the 5-day sensitivity forecast scores
with the 4-day forecast from the original analysisfield,
since the 1-day analysis data needed for the compu-
tation of the sensitivity perturbation introduced a 1-day
delay. Figure 11 compares the anomaly correlation
scores for 500-mb geopotential heights and shows that
although the 5-day sensitivity forecast is much better
that the original 5-day control forecast, it is still worse
than the corresponding 4-day control forecast in most
cases. The same results were also obtained by using
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Fic. 11. The anomaly correlation scores for 500-mb geopotential
heights, for 5-day sensitivity forecast, corresponding 4-day control
(operational) forecast, 5-day control forecast, and for the 4-day fore-
cast from the new cycle (iterated). Dates (March 1995) on the hor-
izontal axis denote the starting dates of forecasts.

the adjoint sensitivity perturbation (Pu et al. 1996,
1977; Rabier et al. 1996). This result suggests that the
latest control forecast, based on the NCEP analysis—
forecast cycle, makes better use of the data available
every 6 h than the sensitivity forecasts, which are 1
day longer and only use the information present in the
latest analysis. However, the fact that the sensitivity
5-day forecasts are better than the original 5-day fore-
casts also indicates that they start from a better initial
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analysis than the control 5-day forecast. In order to
improve the future forecast skill, Pu et al. (1997) sug-
gested a technique that takes advantage of both the
better starting point for the 5-day forecast provided by
the sensitivity analyses and of the use of the data in
the latest day by the analysis—forecast cycle. Thistech-
nique referred to as *'iterated cycle’” can be described
asfollows. (a) At 0000 UTC today, calculatesensitivity
perturbation for initial condition at 1 day ago (t = —24
h) from the present (today) 1-day forecast error. (b)
Adjust the 1-day-old (t = —24 h) initial condition by
using the sensitivity perturbation. (c) Using this ad-
justed new (and presumably better) initial condition at
t = —24 h as a starting point, repeat the NCEP three-
dimensional analysis system SSI cycle every 6 h, until
the present time (0000 UTC today) is reached, so that
anew analysisfield is obtained for today. (d) Perform
the medium-range weather forecast from this new ob-
tained analysis field.# Following this procedure, Pu et
al. showed that the iterated cycle with adjoint sensi-
tivity perturbations was an improvement of the future
forecast skill: the medium-range forecast from the it-
erated cycle was better than the original corresponding
forecast. In a similar way, we now perform an iterated
cycle by using the quasi-inverse TLM initial error es-
timate. As can be seen from Fig. 11, and the new 4-day
forecasts from this iterated cycle are better than the
corresponding control forecasting in several cases, es-
pecially in the Southern Hemisphere. Figure 12 shows
the 14-case average of forecast anomaly correlation
scores, which verified against the control forecast for
|I-5-day forecast 500-mb geopotential heights. The it-
erated cycle leads to a small improvement in the me-
dium-range weather forecasts, especially in the
Southern Hemisphere, indicating that it might be pos-
sibleto usethe quasi-inverse TLM initial error estimate
to improve future forecast skill. However, we have not
addressed here the problem that the background error
covariance should be modified, since we have inserted
new structures (the error corrections) into the back-
ground. The results of the iterated cycle would pre-
sumably improve if this was properly taken into ac-
count.

7. Summary and discussion

We have presented a quasi-inverse linear method to
study the sensitivity forecast errors to initial conditions
for the NCEP global spectral model. The inverseis ap-
proximated by running the tangent linear model (TLM)
of the nonlinear forecast model with a negative time
step, but reversing the sign of friction and diffusion

“The “iterated cycle” (Pu et al. 1996, 1997) is very similar to the
“poor man's 4D VAR developed independently by Huang et al.
(1996) at HIRLAM. At NCER however, it is denoted ‘‘poor wom-
an's.”
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Fic. 12. Comparison of the average anomaly correlation scores of
1-5-day forecast for 500-mb geopotential height between the iterated
cycle (dashed) and control forecast (solid). Starting dates of the fore-
casts ranged from 18 March 1995 to 31 March 1995.

terms (in the same way as in an adjoint integration).
This avoids the computational instability that would be
associated with these terms if they were run backward.
Asdone using the adjoint model integrations, we started
the quasi-inverse TLM at the time of the verified fore-
cast error and integrated backward to the corresponding
initial time. However, instead of minimizing an error
cost function through successive iterations, as donewith
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the adjoint sensitivity method, the quasi-inverse linear
perturbation is obtained by a single, deterministic in-
tegration. This has the advantage that it is faster and
does not depend on the choice of the norm used in the
definition of the error cost function.

A numerical experiment performed using a known
perturbation from the NCEP ensemble shows that this
quasi-inverse linear estimation is able to trace back the
differences between two perturbed nonlinear 1-day fore-
casts and recover with good accuracy the known dif-
ference between the two forecasts at the initial time.
The results show that both the linear estimation and the
quasi-inverse linear estimation are quite close to the
nonlinear evolution of the perturbation in the nonlinear
forecast model, suggesting that we should be able to
apply the method to study the sensitivity of forecast
errors to initial conditions.

We then perform experiments tracing back actual
forecast errors. We calculate the perturbation field at the
initial time (linear initial error estimate) by using per-
ceived 1-day forecast errors as initial conditions for a
backward integration using the quasi-inverse TLM. As
could be expected from the previous experiments, when
the estimated error is subtracted from the original anal-
ysis, the new initial conditions lead to an almost perfect
1-day forecast. The forecasts beyond day 1 are also
considerably improved, indicating that the initial con-
ditions have indeed been improved.

We then compare the quasi-inverse linear sensitivity
method with the adjoint sensitivity method (Rabier et
al. 1996; Pu et al. 1997) for medium-range weather
forecasting. We find that although both methods are able
to trace back the forecast error to sensitivity perturba-
tions that improve the initial conditions, the forecast
improvement obtained by the quasi-inverse linear meth-
od is considerably better than that obtained with asingle
adjoint iteration and similar to the one obtained using
five iterations of the adjoint method. This is true even
though each adjoint iteration (except the first one) re-
quires at least twice the computer resources of the in-
verse TLM estimation. As indicated above, the quasi-
inverse TLM estimation method does not depend on the
definition of a norm, it does not require the estimation
of an optimal step size, and it provides an optimal cor-
rection throughout the globe.

We point out that (as shown by Rabier et al. 1996)
the adjoint forecast sensitivities are closely related to
singular vectors. In fact, the adjoint sensitivities show
several characteristics also observed in the singular vec-
tor behavior (Szunyogh et a. 1997). In the initia per-
turbations, the wind perturbations are rather small com-
pared to the temperature perturbations, and they are
maxima at relatively low levels. After 1 day, however,
the maximum winds of the adjoint perturbations grow
and are observed closer to the tropopause levels.

The quasi-inverse linear sensitivities are also related
to ensemble perturbations, the bred (Lyapunov) vectors
used for ensemble forecasting at NCEP (Toth and Kal-
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nay 1993). If the final error is a Lyapunov vector, the
inverse method will also yield an exact Lyapunov vector
(except for the effect of changed sign in the dissipative
terms). However, since the analysis errors also contain
decaying errors, thesewill be magnified during the back-
ward integration. This is the reason why the quasi-in-
verse perturbations are much larger than those obtained
with the adjoint method. We point out that the adjoint
procedure (with a single iteration) can be considered
optimal, in the sense that by determining the gradient
of the error energy with respect to initial perturbations,
it finds the smallest perturbation that results in a max-
imum decrease of the error energy. The quasi-inverse
integration, on the other hand, finds a close approxi-
mation to the exact initial perturbation that corrects the
perceived 1-day forecast error. If successful, the iterated
adjoint scheme would converge to the exact same so-
lution.

Finally, the possibility of the use of the initial error
estimate to improve future forecast skill is discussed,
and preliminary experiments encourage usto further test
this rather inexpensive method for possible operational
use. Although the results are somewhat positive, this
method would have to address the problem that the data
is effectively used twice, and the inverse method intro-
duces perturbationsin essentially all degrees of freedom
in the model, whereas the iterated analysis using adjoint
perturbation method (Pu et a. 1997) only introduced
changes into a few degrees of freedom (the leading sin-
gular vectors).
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APPENDIX

Growing and Decaying Perturbations in
Hamiltonian Systems

The system of the inviscid adiabatic primitive equa-
tions has a Hamiltonian structure (e.g., Shepherd 1990).
We can therefore assume that the local (in phase space)
dynamics of the model is Hamiltonian. On the timescale
used in this paper (24 h) this approximation is quite
realistic for synoptic-scale motions, although it does not
hold in a strict sense due to (i) the presence of diabatic
and dissipative processes, (ii) the lack of Coriolis force
terms related to | =2€) cos¢, and (iii) the application of
non-structure-preserving spatial and temporal discreti-
zation schemes. Some of the considerations discussed
below are valid only for this idealized system, but we
will demonstrate that they describe well the local (in
phase space) qualitative behavior of the GCMs.
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Hamiltonian systems have an amazing variety of sym-
metries, among them that the eigenvalues of the matrix
L appear in quadruples [see in Olver (1993), Theorem
6.22, and Arnold (1989), 226], and that if \ is an ei-
genvalue, then 1/\ is aso an eigenvalue. As an impor-
tant consequence, stretching in a given phase space di-
rection is always compensated by a contraction in an-
other direction, preserving the volume of phase space
elements. The phase spaceisincompressible(Liouville's
theorem). Therefore, the most unstable and stable di-
rections in the phase space are twins; there are no large
instabilities without large decays. If we only take into
account growing directions [as done in the adjoint sen-
sitivity, or in the pseudoinverse approach, it means that
we are creating an expanding phase space, that is, a
forced (but not dissipative) physical system. The in-
trinsic geometry of the phase space, and hence the im-
portant symmetry of the eigenvalues, are generated by
the dynamics, so that they are independent of any free
choice of local coordinates and norm. The time evo-
lution of bred and quasi-inverse TLM perturbations at-
tempts to simulate this norm-independent stretching—
contracting property of the dynamical system.

The quantification of stretching (contraction), how-
ever, requires the use of local Euclidean coordinates and
a corresponding norm. Recall that if | ||, and || ||, are
norms on the space of real n-dimensional vectors %,
then there exist positive constants, ¢, and c,, such that

ClIXla = [IX[l, = clIX]l, (A1)

where XOR. It means that the two norms are equivalent
on R only when the vector is infinitesimally small or
infinitely large, but one may get substantialy different
results with the use of different norms measuring finite-
time instabilities. Indeed, since

COX,lls _ 18Xl _ 8%l
cA8Xolla ~ 18%oll, ~ ool

a perturbation can be growing and decaying at the same
time when it is measured by two different norms.

A quantity whose conservation is closely related to
the preservation of phase volume may appear asarea-
sonable candidate to be a proper norm. The imple-
mentation of this strategy, however, may lead to un-
resolvable difficulties for a particular system. Suppose
that the energy of the system is defined by the quadratic
form X*X, then the quantity (X + 6X)'(X + é6X) —
X*X is conserved but not quadratic, while (8X)"(3X)
is quadratic but not conserved. In other words, the first
candidate is not a useful norm, while the second one
is not conserved. Perhaps the best choice for a norm
is the sum of the kinetic and the available potential
energy of perturbations, the pseudoenergy, which is
guadratic, and also conserved if the basic stateissteady
(Shepherd 1990, 1993). An example of a norm of this
typeisthe total energy, which is an unbiased norm but
still not conserved for a time-dependent background
flow.

(A2)
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These arguments suggest that the one-iteration ad-
joint method may generate unrealistic initial patterns
because the physical quantity used as a norm is not
conserved in the perturbed nonlinear system. However,
there is a less obvious but more important problem.
Toth et al. (1996) computed the most unstable and sta-
ble singular values and vectorsfor the T10 L18 version
of the NCEP Medium Range Forecast Model with re-
spect to the total energy norm [the estimated full spec-
trum is shown in Toth and Kalnay (1996)]. They found
that most of the first and the last few hundred singular
values have the symmetry of being in a reciprocal re-
lation to each other. However, the most unstable sin-
gular vectors were unrealistically far from thermal
wind balance. This suggests that the associated initial
state is a state of the system that is possible but highly
unlikely.

Thisisatypical problem with high-dimensional Ham-
iltonian systems. To show an extreme case of the danger
of obtaining highly unstable but very improbable initial
states through the use of an arbitrary norm, we borrow
an example that Arnold (1989) used to exhibit a para-
doxical conclusion from Poincaré's recurrence theorem:
““If you open apartition separating achamber containing
gas and a chamber with vacuum, then after a while the
gas molecules will again collect in the first chamber.”
The resolution of this paradox is that the gas molecules
can indeed move back to the first chamber, but the prob-
ability of this event occurring is less than 1/(duration
of the solar system’s existence). Let us open the door
between the two chambers and use the number of mol-
ecules in the left chamber as the dynamical variable of
the system. The absolute value of the perturbation of
this number can also be used as the norm of the system.
Intuitively, the most unstable initial perturbation that
such a norm would generate occurs when most of the
molecules are moved to the right chamber, since the
system wants to recreate the the thermal equilibrium
immediately. Thisinitial state might also happen spon-
taneously, but the probability of such an event is again
exceedingly low.

This discussion suggests that an optimal norm should
take into account the probability of the different initial
states. Houtekamer (1995) and J. Barkmeijer (1996, per-
sonal communication) involved information from the
analysis error covariance matrix to achieve this goa in
practice. R. Pasmanter (1996, personal communication)
suggested a norm based on considerations from statis-
tical physics. These norms produce more plausible sin-
gular vectors than the energy norm, but an optimal norm
still does not seem to exist. On the other hand, the
adjoint integration has the formal advantage that the
result always exists and is unique, while the inverse
calculation cannot be performed if any of the singular
values is zero or very small in a finite precision com-
putational environment. This may happen when there
exist initial perturbation patterns that disappear from the
model by the end of the integration or, in other words,
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in the presence of strong dissipation. The solution that
we have adopted in this paper isto use an inverse linear
model that handles the dissipation and the diffusionin a
same way as an adjoint model does. This approach gives
realistic results if the role of dissipation and diffusion is
restricted to the control of numerical and gravity wave
noise. In this case there are no extremely small singular
values and when the adjoint scheme is iterated, it should
eventualy converge (like the quasi-inverse method) to
the exact solution of (12) and, if the linearity assumption
is valid, to the solution of the nonlinear error equation

(4.

One may argue that the atmosphere is a forced/dissi-
pative system rather than Hamiltonian, and therefore
these arguments are not relevant to a GCM. Thisis true
in a global but not in aloca sense, since the Reynolds
number in the free atmosphere is somewhere between
the ssimple and double precision roundoff error and small-
er than the neglected terms of the Coriolis force.
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