
Geophysical Computing L02-1

L02 – Awk, Cut, Paste, and Join

1. Awk

Awk will be your best friend. If you know how to use awk
you can just throw Excel in the trash and ponder why anyone
ever decided it was a good idea to write Excel in the first
place. So, now that you know how I feel, what is awk?

Awk is a programming language. However, in the
geosciences it is typically used on the command line to
process text-based data. The name awk, comes from its
authors names: Alfred Aho, Peter Weinberger, and Brian
Kernighan.

This lecture is aimed at giving you a basic working
knowledge of awk. This document should just be viewed as
an awk primer, for more info on all the things you can do
with awk there are a ton of amazing resources available on
the web. To get started let’s create a simple example file to play around with. Using your
favorite text editor create the following file named: example.txt.

Note: in awk we refer to each line in the file as a record, and each column as a field. So, in the
above example file we have 5 total records and 4 fields. Awk works by scanning through each
line of text (or record) in the file and carrying out any instructions you tell it on that line.

In awk we access fields using syntax like: $1 or $2. $1 indicates that you are referring to the first
field or first column.

Example 1 - Printing fields:
What is the output for the following examples?

>> awk ‘{print $2}’ example.txt

>> awk ‘{print $1, $4}’ example.txt

>> awk ‘{print $4, $2}’ example.txt

>> awk ‘{print $1$2}’ example.txt

>> awk ‘{print $0}’ example.txt

>> awk ‘{print $1$2”-->$”$4}’ example.txt

The O’Reilly book features an
auk on the cover.

File: example.txt
1 shear 5 20.00
2 compressional 10 2.00
3 anisotropy 30 3.50
4 perovskite 2 45.50
5 olivine 25 33.19

Geophysical Computing L02-2

We can also do some simple arithmetic with awk.

Example 2 – Simple arithmetic on fields

>> awk ‘{print ($1*$3)}’ example.txt

>> awk ‘{print ($4 - $3), ($1 + $1)}’ example.txt

>> awk ‘{print ($3/$1), $2, (2*3.14*$1)}’ example.txt

>> awk ‘{print int($4)}’ example.txt

The last example shows that in addition to the simple arithmetic commands, awk also has some
useful numeric functions, such as sin, cos, sqrt, etc. To see the full list check out the awk man
page.

A real useful ability is to be able to search within the files. First, let’s introduce some of the
variables that are built into awk:

awk Variable name What it stands for
FILENAME Name of current input file
RS Input record separator (Default is new line)
OFS Output field separator string (Blank is default)
ORS Output record separator string (Default is new line)
NF Number of fields in input record
NR Number of input record
OFMT Output format of number
FS Field separator character (Blank & tab is default)

These may not all make sense right now, but we’ll come back to some of them later.

Example 3 – Simple sorting routines

Try these examples on for size:

>> awk ‘NR > 3 {print $0}’ example.txt

>> awk ‘NR <= 3 {print $2}’ example.txt

>> awk ‘$3 >= 10 {print $0}’ example.txt

>> awk ‘$2 ~ /perov/ {print $0}’ example.txt

>> awk ‘$2 !~ /perov/ {print $0}’ example.txt

Geophysical Computing L02-3

The comparison operators that awk allows are:

< Less than.
< = Less than or equal.
= = Equal.
! = Not equal.
> = Greater than or equal.
> Greater than.
~ Contains (for strings)
! ~ Does not contain (strings)

To make things even more interesting we can add some logic to our conditionals! In the
following examples && is the AND operator and || is the OR operator.

Example 4 – sorting with logic

>> awk ‘NR > 2 && NR < 5 {print $0}’ example.txt

>> awk ‘$3 > 10 && $4 > 2.5 {print $0}’ example.txt

>> awk ‘$2 ~ /aniso/ || $2 ~ /oliv/ {print $0}’ example.txt

>> awk ‘NR >= 2 && $2 ~ /aniso/ || $2 ~ /oliv/ {print $0}’ example.txt

You can also specify that awk does something either before starting to scan through the file
(BEGIN) or after awk has finished scanning through the file (END).

Example 5 – BEGIN and END

>> awk ‘END {print $0}’ example.txt

>> awk ‘END {print NR}’ example.txt

>> awk ‘END {print NF}’ example.txt

>> awk ‘BEGIN {print NF}’ example.txt

>> awk ‘BEGIN { OFS = “_”} {print $1, $2}’ example.txt

>> awk ‘BEGIN { FS = “o”} {print $1, $2}’ example.txt

>> awk ‘BEGIN {print “Example #5”} {print $2} END {print “End of Example”}’
example.txt

You can also set variables in awk and do operations with them. Occasionally it comes in handy.

Geophysical Computing L02-4

Example 6 – awk variables

Here’s a quick example that sets a variable x = 1 at the beginning and increments the variable by
one at each record, printing the variable out as a new field for each record.
>> awk ‘BEGIN {x=1} {print $0, x++}’ example.txt

This is a slight variation on the above example.
>> awk ‘BEGIN {x=0} {print $0,x+=10}’ example.txt

The following table might help to make the above examples a little more transparent.

Assignment
operator Use for Example Equivalent to

+= Assign the result of
addition

a += 10
d += c

a = a + 10
a = a + c

-= Assign the result of
subtraction

a -= 10
d -= c

a = a - 10
a = a - c

*= Assign the result of
multiplication

a *= 10
d *= c

a = a * 10
a = a * c

%= Assign the result of
modulo

a %= 10
d %= c

a = a % 10
a = a % c

In example #3, we showed an example of using awk with a conditional.

>> awk ‘NR > 3 {print $0}’ example.txt

Essentially, this example states:

If the record number is greater than 3 then print out the entire line of the file. Awk also supports
a syntax with if statements. E.g.,

>> awk ‘{if (NR > 3) print $0}’ example.txt

is another way of doing the same thing. However, it is sometimes very useful to also have an else
or else if statement to play around with. The next couple of examples show how to do this.

Example 7 – Control structures

>> awk ‘{if ($1 > 2) print $0;
else print $1}’ example.txt

>> awk ‘{if ($1 > 2) print $0;
else if ($1 > 1) print $2;
else print $1}’ example.txt

Geophysical Computing L02-5

Using the command printf it is possible to format the output from awk. Printf is essentially the
same as that in C. You define the width of the column, whether to left or right justify and the
type of information that will be outputted—such as a string, floating point, or decimal number.

Example 8 – Formatted Output

>> awk ‘{print $1, $2, $3, $4}’ example.txt

>> awk ‘{printf(“%4d %-20s %-5d %-7.2f\n”, $1, $2, $3, $4)}’ example.txt

2. Cut, Paste, and Join

This section describes three utilities that are often used in conjunction with awk for quickly
manipulating fields in files.

Paste

Sometimes you may want to extract columns of information from different files and combine
them into one file. Paste is the perfect utility for this.

Consider the two files:

A.txt

a1
a2
a3
a4
a5

B.txt

b1
b2
b3
b4
b5

We can combine them as follows:

>> paste A.txt B.txt > C.txt

Join

If two separate files share a common field they can combined with join. Consider two files:

A.txt

Vs 7.2
Vp 11.3
Rho 6.6

B.txt

Vs 6.3
Vp 12.4
Rho 5.9

Now try:

>> join A.txt B.txt > C.txt

Geophysical Computing L02-6

Cut

Cut is incredibly useful for chopping up files into fields. Use the –d flag to specify a new
delimiter, and the –f flag to state which fields to print out.

Consider a file as follows (A.txt) that uses underscores to separate fields:

Vs_7.2
Vp_11.3
Rho_6.6

One could just extract the numeric values by:

>> cut –d_ -f2 A.txt

Another place I find cut useful for is in extracting information out of file names. For example,
suppose I have a bunch of SAC files (seismograms) that look as follows:

>> ls

>> HRU.UU.EHZ NOQ.UU.HHZ GMU.UU.EHZ CTU.UU.EHZ

The filename convention here looks like: station_name.network.component

If I want to make a list of just the station names I could do something like:

>> ls *UU* | cut –d. –f1 > stationlist.txt

3. Homework

1) Consider two files given below that each contain a set of Cartesian coordinates. Write an awk
script to compute the distance between these pairs of points. Feel free to use any of the other
commands we learned in this lecture as well.

x1 y1
 0.0 0.0
0.5 0.1
0.75 0.2
1.0 0.3

x2 y2
 0.0 0.0
-0.25 0.1
-0.5 0.2
-1.0 0.3

2) Below is a table of S-wave velocities at the coordinates given by the indicated latitude, and
longitude (φ) in degrees. Create a file exactly as shown below, and write an awk command that
will convert the longitudes given in the file below from the interval: -180° ≤ φ ≤ 180° to the
interval: 0° ≤ φ ≤ 360°. Note: longitudes from 0° to 180° in the original file should not change.
Format your output, such that you have three distinct labeled columns and add a single decimal
place to both the latitude and longitude values.

Geophysical Computing L02-7

Lon Lat dVs
-180 -10 2.3
-135 -10 2.4
-90 -10 2.0
-45 -10 1.8
0 -10 0.0

45 -10 -0.3
90 -10 -1.2

135 -10 -1.5
180 -10 0.0
-180 10 2.4
-135 10 2.6
-90 10 2.1
-45 10 1.6
0 10 -0.1

45 10 -0.4
90 10 -1.0

135 10 -1.0
180 10 0.3

3) Consider a file that looks as follows:

Vs
Vp
Rho
Vs
Vp
Rho
Vs

write an awk command that will print the total number of lines that contain the string Vs.

4) I have a group of SAC files named as follows:

>> HRU.UU.EHZ NOQ.UU.HHZ GMU.UU.EHZ CTU.UU.EHZ

Using awk, how can we change the names of all of these files so that the EHZ or HHZ is replaced
by just Z. So, for example the first file is renamed as: HRU.UU.Z

5) Write an awk command that will print the sum and average of column #1 of a file. The output
should look like:

>> Sum is: X; Average is: X

Geophysical Computing L02-8

awk cheat sheet
get total number of records in a file
awk ‘END {print NR}’

If NR is equal to shell variable ‘n’ print line
awk ‘NR == ‘$n’ {print $0}’

Sum the values along a column (column #2 in this example)
awk ‘{ sum += $2} END {print sum}’

Print the sums of the fields of every line
awk '{s=0; for (i=1; i<=NF; i++) s=s+$i; print s}'

Print out file with double spacing
awk ‘{print ; print “ “}’

Print fields in reverse order
awk '{ for (i = NF; i > 0; --i) print $i }'

if else syntax
awk ‘{if ($1 > 2) print $0;
else print $1}’ file

Concatenate every 5 lines of input, using a comma separator between fields
awk 'ORS=NR%5?",":"\n"' file

