
Geophysical Computing L04-1

L04 – C Shell Scripting - Part 2

1. Control Structures: if then else

Last time we worked on the basics of putting together a C Shell script. Now, it is time to add to
this the control structures that actually make scripting useful.

The following example shows the three primary examples of how to test conditionally.

#!/bin/csh

echo “Enter a number between 1 and 10… “
@ number = $<

if ($number == 6) then
 echo “that’s the lucky number!”
endif

if ($number > 5 && $number < 7) then
 echo “that’s the lucky number!”
else
 echo “you lose. try again.”
endif

if ($number > 0 && $number < 5) then
 echo “a low pick.”
else if ($number >= 7 && $number <= 10) then
 echo “a high pick.”
else if ($number == 6) then
 echo “that’s the lucky number!”
else
 echo “you didn’t pick a number between 1 and 10!”
 echo “follow the instructions and try again...”
endif

Remember though, when testing numbers in a C Shell script, it can not handle real numbers!

2. Control Structures: goto

I shudder to actually write down the goto statement. It is, in my opinion, an abomination. It was
relegated obsolete back in the 60’s, yet here it is, still in existence in a handful of languages.
Here are a couple of quick examples on how to use it, and then I wash my hands of it!

First, let’s just look at the example given above, and put a goto statement in, such that if you
choose a number outside of the range 1 to 10 the script will force you to re-pick a number.

Geophysical Computing L04-2

#!/bin/csh

select:
echo “Enter a number between 1 and 10… “
@ number = $<

if ($number > 0 && $number < 5) then
 echo “a low pick.”
else if ($number >= 7 && $number <= 10) then
 echo “a high pick.”
else if ($number == 6) then
 echo “that’s the lucky number!”
else
 echo “you didn’t pick a number between 1 and 10!”
 echo “follow the instructions and try again...”
 goto select
endif

The following example shows how one could test for the proper usage of a C Shell script:

#!/bin/csh

Example script requires 2 command line arguments
1) the name of an input file, 2) the name of an output file

if ($#argv < 2) goto usage

set ifile = $argv[1]
set ofile = $argv[2]

exit 1
usage:
echo “Usage: myprog input_file output_file”

My hands are clean.

3. Control Structures: loops

Once you can loop you are pretty much set. There are two main ways to loop in a C Shell: either
with a while or a foreach statement. Examples of each are given below.

Geophysical Computing L04-3

Example of using a while statement:

#!/bin/csh

#Example of looping through a list of files.

e.g., imagine I have a bunch of SAC files that all end with the
suffix .R
i.e., I have them all rotated to the radial component.
Now I want to do something with those files, in this example
use SAC to cut them.

#make a temporary file listing all of my .R files
ls *.R >! file_list

find out how many files I have
@ nr = `awk ‘END {print NR}’ file_list`

@ n = 1 # define a looping variable

start the loop
while ($n <= $nr)

#grab nth file name from the list
set if = `awk ‘NR == ‘$n’ {print $1}’ file_list`

echo “cutting file $if ..”

sac << eof
r $if
cuterr fillz
cut 0 200
r
w over
q
eof

@ n = $n + 1 #increase n by one
end # end loop

clean up temporary files
rm file_list

Geophysical Computing L04-4

Example of using a foreach statement:

#!/bin/csh

set phase_list = (ScP PcP P)
set depths = (100.0 200.0 300.0 400.0 500.0 600.0)

loop through all seismic phases and depths set above
foreach phase ($phase_list)
 foreach depth ($depths)
 echo $phase $depth
 end
end

4. Control Structures: Switch Case

This is a really nice structure that is similar to an if then type of structure. Suppose I wanted to
do some action based on what kind of seismic arrival I was looking at. So, if I was interested in a
PKP arrival I could write some code that did tests like:

if ($some_string == ‘PKP’) then
 do something…
else if ($some_string == ‘SKS’) then
 do something else
else
 do another something else
endif

OK, a more elegant way to do this is to use the Switch Case structure:

#!/bin/csh

set input_phase = PKP

switch ($input_phase)

 case PKP:
 echo “PKP arrival”
 breaksw

 case SKS:
 echo “SKS arrival”
 breaksw

 case SPdKS:
 echo “SPdKS arrival”
 breaksw

endsw

Geophysical Computing L04-5

5. Control Structures: if then else revisited

Sometimes to make your scripts more robust it is useful to do some checks before you actually
implement some action. For example, no sense in trying to move the file named blah, if the file
blah doesn’t even exist.

To see how this works, create a temporary file named: example.txt and a temporary directory
named: ExampleDir.

So, let’s do some tests on these temporary files (in the Linux system directories are really just
files as well).

#!/bin/csh

set if = example.txt # so we don’t have to type out the
 # filename a bunch of times.
set id = ExampleDir # as above…

if (-e $if) then
 echo “the file $if exists!”
endif

if (-e $id) then
 echo “$id exists!”
endif

if (-f $id) then
 echo “$id is a normal file”
else
 echo “$id is NOT normal.”
endif

if (-d $id) then
 echo “$id is a directory!”
endif

The table below shows all of the attributes one may search for relating to files:

Letter Attribute
d The file is a directory file.
e The file exists.
f The file is an ordinary file.
o The user owns the file.
r The user has read access to the file.
w The user has write access to the file.
x The user has execute access to the file.
z The file is 0 bytes long.

Geophysical Computing L04-6

6. The Dialog utility

Let’s wrap up our lectures on C Shell scripting with an entertaining utility. Perhaps you want to
impress your advisor and make him/her think you’ve already developed these mad hacking skills.
Well, try asking for input using the dialog utility. I guarantee that you will impress the entire
faculty in this Dept. (with the exception of me of course).

As a quick demo:

#!/bin/csh

dialog --title “----- WARNING -----“ \
--infobox “This computer will explode \
unless you press a key within the next 5 seconds!” 7 50;
set exit_status = $?

The dialog utility uses the following syntax:

dialog --title {title} --backtitle {backtitle} {Box options}

where Box options can be one of the following (other options also exist
if you check out the man page)
 --yesno {text} {height} {width}
 --msgbox {text} {height} {width}
 --infobox {text} {height} {width}
 --inputbox {text} {height} {width} [{init}]
 --textbox {file} {height} {width}
 --menu {text} {height} {width} {menu} {height} {tag1} item1}...

Here is an example of how to create a yes/no box:

#!/bin/csh

set ifile = ‘blah.txt’

dialog --title “----- Yes/No Example -----“ \
 --yesno “Do you want to delete file $ifile” 7 60

set exit_status = $? # get the dialog utilities exit status

echo “ “

switch ($exit_status)

 case 0:
 #user selected ‘yes’
 echo “Deleting file $ifile”
 rm $ifile
 breaksw

Geophysical Computing L04-7

 case 1:
 #user selected ‘no’
 echo “Saving file $ifile”
 breaksw

 case 255:
 #user hit escape key
 echo “Operation Canceled…”
 breaksw

endsw

As a final example of the dialog utility, let’s use it to grab some text from the user. In this
example we will prompt the user to type in a file name to delete:

#!/bin/csh

dialog -- title “----- Text Input Example -----“ \
 -- inputbox “Enter the name of the file you want to delete” \
 7 60 ‘file’ \
 --stdout > temp_menu.txt

set exit_status = $? #get the dialog utilities exit status

#get the string that the user typed in the input box
set ifile = `cat temp_menu.txt`

echo “ “

switch ($exit_status)

 case 0:
 #A file name was entered
 echo “Deleting file $ifile”
 breaksw

 case 1:
 #The cancel button was pressed
 echo “Cancel button pressed”
 breaksw

 case 255:
 #User hit the escape key
 echo “Escape key pressed”
 breaksw

endsw

rm temp_menu.txt #get rid of temporary files

Geophysical Computing L04-8

7. Debugging C Shell Scripts

There are two quick ways in which one can debug a C Shell script. The script can either be run
from the command line as in one of the following two examples:

>> csh –x myscript
>> csh –v myscript

or, the top most line of the script can be written as follows:

#!/bin/csh –x
#!/bin/csh –v

The –x option echoes the command line after variable substitution.
The –v option echoes the command line before variable substitution.

8. Homework

1) Write a C Shell script that will loop through a list of files, and add a counter to the beginning
of the filename. For example, if I have 10 files named:

 a.txt
 b.txt
 c.txt
 …
 j.txt

The code should move the files to be named:

 01_a.txt
 02_b.txt
 03_c.txt
 …
 10_j.txt

This kind of utility is often needed in naming files. Especially, as we will see in later lectures
when automatically generating animations or movie files.

2) Write a C Shell script that will repeat a command many times. We will call this script:
forever. For example, sometimes I want to see if a job I submitted to the supercomputer has
started yet. To do so I would type qstat –a. Well, I’m anxious to see if it starts, so I will keep
typing qstat –a until I get confirmation that indeed the job did start. Instead I want to type
forever qstat –a, and what should happen is that qstat –a keeps getting invoked (after a couple
seconds delay) until I decide to cancel it. Your script should be able to take any Unix command
as input. For example, it should work as forever ls, or forever ls –la, or forever cat inputfile,
etc.

Geophysical Computing L04-9

3) In the C Shell one can not do floating point operations. That is, you can not do math with real
numbers. However, it is sometimes necessary to do so. A quick work around is to do the math
inside a program like the basic calculater (e.g., use: bc -l). Write a shell script that will allow
you to do a simple calculation on floating point numbers. Take as input a coordinate position in
polar coordinates (Radius, and angle theta in degrees) and output the equivalent Cartesian
coordinate position.

4) Write a C Shell script using the dialog utility to create a menu box. The menu box should
provide several options of actions you want to carry out on a seismogram. For example, the
menu box may have options as follows:

Please choose an Action to be performed on Seismogram:

 1 Flip Polarity of Seismogram
 2 Low Pass Filter Seismogram
 3 Make Time Picks on Seismogram
 4 Discard Seismogram

The script doesn’t actually have to perform any actions on a seismogram file, but is aimed at
getting you to write a script using the dialog utility. Output, in the form of some kind of
recognition of which option was chosen should be provided in the code.

