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L09 – Fortran Programming - Part 1 
 
1. Compiled Languages 
 
Thus far in this class we’ve mostly discussed shell scripting.  Here we bring a bunch of different 
utilities together into a recipe – or a script.  Once we do that we can execute the script and the job 
runs.  This is a very low level style of programming if you can even call it programming.  Note, 
that this Shell scripting relied almost entirely on programs that were developed by other people.  
So, how do people develop these programs?  The answer lies mostly in compiled languages 
(although many programmers today are getting away from compiled languages).  That is, most of 
the programs we used were written in a language like C or Fortran. 
 
Fortran is an example of a compiled language.  What does this mean?  It means that we write 
code in human readable format.  E.g., 
 
IF (variable == 10 ) THEN 
  write(*,*) “The variable is 10” 
ENDIF 
 
But, our computer does not have the capability to read such code.  The shell might, but that takes 
time.  Instead we want to convert the above statement into something that the processor on our 
computer can understand.  Usually, the processor can understand instructions given to it in a 
binary form, that we call machine language or assembly code.  In the old days, one used to have 
to write code in these rather obtuse looking machine languages, some people still do if they are 
seriously interested in making their code run fast.  But, eventually some people started writing 
different codes, called compilers, that can convert a language that is easily readable by humans 
into something that is easily readable by your cpu. 
 
In short, a compiler is like a language translator.  It converts the statements you make in a 
language (a language like Fortran or C) to a language the cpu can speak. 
 
In this class we will focus on the human readable language called Fortran 90.  The reasons are 
partly historical.  In many of the physical sciences (geophysics, meteorology, etc.) most of the 
original work was written in Fortran.  Hence, we have a long history of Fortran codes in our 
disciplines.  But, Fortran still persists as a primary language in these fields.  I have heard many 
computer scientists express their dismay that Fortran is still used with exclamations of, “I thought 
that was a dead language.”  I think it ultimately comes down to the majority of computer 
scientists these days spending their time on web apps instead of serious problems like simulating 
the weather, or seismic wave propagation on the global scale, or gravity wave propagation across 
the universe.  Hence, my standby response, “Fortran still produces the fastest executable code.”  
This makes a serious difference when you are talking about days or weeks of simulation time 
versus months or years when trying to solve the same problem in something like Java.  Fortran is 
also quite simple for trying to solve mathematical problems – that is what it was designed for.  
It’s not fancy.  But it is powerful. 
 
A Brief Fortran History 
 
When we talk about Fortran programming it is important to distinguish which version of Fortran 
we are referring to.  You will see several versions (e.g., f66, f77, f90, f95 etc.) so a brief 
background is in order.  John Backus developed the first Fortran compiler in 1954 – it was the 
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first high-level programming language!  Different versions of Fortran compiler were being 
developed almost from the start and the need for some kind of standard became immediately 
apparent.  The first official ANSI standard was introduced in 1966 and Fortran 66 (f66) was born.  
The next major standard was a huge improvement to the 1966 version and was released in 1978. 
Because the standard was agreed upon in 1977 it was termed Fortran 77 (f77).  This was a major 
improvement to the standard and included much needed program elements such as IF THEN 
ELSE blocks! The majority of older code you will encounter was written with the f77 standard 
(although if you ever get any old seismology related code from Don Helmberger it’s likely still 
written in f66). 
 
Since the 1977 standard was released there was a long 
hiatus before a new standard was released.  A friend of 
mine tells an interesting story of how Sun 
Microsystems was responsible for the hold up.  Alas, a 
much needed new standard was finally issued in 1990 
(f90).  This included a deluge of improvements 
including the free form source (in f77 you had some 
incredibly annoying restrictions as to where you could 
write certain parts of the code).  There were a number 
of bugs in the 1990 standard, which were quickly 
crushed and put into the 1995 standard (f95).  
Reportedly even before the 1995 standard was 
released new improvements were decided upon, which 
ultimately gave way to the current 2003 standard.  But, 
at long last we are in a fluid time in the Fortran history 
and even newer standards are forthcoming. 
 
In these lectures we will refer to programming in f90.  
This is because the major improvements were all made 
with the f90 standard.  Although, it should be noted sometimes we will talk about things that are 
actually parts of the newer f95 and f2003 standards.  
 
 
Fortran Compilers 
 
There are several different Fortran compilers on the market today.  Some are free and others are 
commercially developed.  Their primary differences are related to (1) which features of the most 
recent standard are included, and (2) how good are the optimizations (we will discuss what this 
means in a later lecture).  Some common compilers available on our systems are: 
 

Compiler Developer Cost Website 
g95  free http://www.g95.org/ 

gfortran GNU Fortran free http://gcc.gnu.org/fortran/ 
ifort Intel $$$ http://software.intel.com/en-us/intel-

compilers/ 
pgf90 Portland Group $$$ http://www.pgroup.com/ 

pathf95 Pathscale $$$ http://www.pathscale.com/ 

 
A computing hero!  John Backus. 
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2. Your first Fortran code 
 
So, let’s dive in with a really quick example.  Open up a new file called myprog.f90 and type in 
the following: 
 
PROGRAM first 
IMPLICIT NONE 
 
write(*,*) “I am a fortran program.” 
 
END PROGRAM first 
 
This is about as simple of a Fortran code as can be written.  The important points are: 
 

• A new program must be given a name with the PROGRAM statement. 
 
• The end of the program must be specified with END PROGRAM. 
 
• IMPLICIT NONE is not required before the main part of the code is written, but it is 

terrible, terrible practice to leave it out.  More on this later! 
 
• write(*,*) says to write something to standard output (a fancy way to say write it out to 

the screen). 
 
So, how do we run this code?  Well as noted above, it cannot be run until we compile it.  In this 
class we will use the g95 Fortran compiler.  So, at the command line type: 
 
>> g95 myprog.f90 
 
What happens is that a new file called a.out is created (on some systems this may be named 
a.exe).  This new file which is created is in binary format (you cannot open it up with your text 
editor and view its contents) and is an executable file.  To run the program just type: 
 
>> ./a.out 
 
Before we move on, let’s introduce our first compile flag: the –o flag. 
 
>> g95 myprog.f90 –o myprog.x 
 
The –o flag let’s us name the executable file that is created.  In this case we have a new file called 
myprog.x.  Note, Fortran 90 programs require a .f90 extension or else some compilers assume 
the code is written with the f77 standard.  The .x extension above is just my preferred extension to 
let me know that I have an executable file.  So, there you have it.  You are now a Fortran 
programmer. 
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3. Numeric Variables 
 
Creating variables in f90 programs is slightly more complicated than in Shell scripts.  This is 
because we have a few different types of variables we can use.  The three main types you need to 
worry about now are: 
 

• INTEGER – These are just the set of integers (e.g., 0, 1, 2, 3, -1, etc.).  Use integers for 
counting, but don’t for example use integers to do math like 1/3 because the result is not 
an integer. 

 
• REAL – The set of real numbers (for your normal mathematical operations).   

 
• CHARACTER – Text strings. 

 
There are other types of variables you may decleare as well (e.g., Complex) but most of what you 
will do revolves around those three types. 
 
In a f90 program we define our variables at the beginning of the program.  For example: 
 
IMPLICIT NONE 
REAL(KIND=8)       :: arg    ! argument for trig functions 
INTEGER(KIND=4)    :: J      ! looping variable 
 
In this example we named two variables:   
 
 (1) The first is named arg and is a real number,  
 
 (2) The second is named J and is an integer.   
 
Note that in f90 programs we start writing comments with the exclamation point!  We will 
discuss what the KIND statement means in Section 5 of this lecture.  But first, let’s create a new 
example and see how to assign variables. 
 
PROGRAM variables 
IMPLICIT NONE 
! Define my variables 
REAL(KIND=8)    :: A, B           ! some real numbers 
INTEGER(KIND=4) ::  J, K          ! just a lowly integer 
 
! Declaring Real Numbers 
A = 10.0      
B = 20.0 
C = A*B – (A/B) 
write(*,*) “C = “, C 
 
! Declaring integers 
J = 10 
J = J + 10 
write(*,*) “J =”, J 
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! Improper use of an integer -- see what happens 
K = J + 0.1 
write(*,*) “K =”, K 
 
END PROGRAM variables 
 
The above example shows a very important point: 
 
Never declare a real number without a decimal point in it!  For example, we declared A = 10.0, 
Never do this as A = 10 (without the decimal point).  Why?  Some Fortran compilers are buggy 
and will give you A=10.2348712410246287 or some kind of similar garbage if you don’t put the 
decimal point there. 
 
Another key point is that in Fortran variable names are not case sensitive: 
 
PROGRAM casesense 
IMPLICIT NONE 
REAL(KIND=8) :: gH 
 
gH = 10.0 
 
! All these version of ‘gh’ are treated the same 
write(*,*) gH, GH, Gh, gh 
 
END PROGRAM casesense 
 
Another fine point to make here is that in the older styles of Fortran programming (f77) one 
didn’t have to declare their variables at the start of the program.  There were specific rules one 
could follow.  For example, if you created a variable name that started with an i then it was taken 
to be an integer.  Do Not do this.  Writing code like this is an example of the worst of 
programming practices.  Always declare your variables at the beginning of the code.  This will 
trap many errors (some with very subtle effects) that may go unnoticed otherwise.  In fact, writing 
in the IMPLICIT NONE statement at the beginning assures that you will have to, as the 
IMPLICIT NONE statement means that the compiler should expect all variables to be declared. 
 
 
4. Arithmetic 
 
In the examples above we already showed a slight arithmetic example.  Just to clarify our options 
in Fortran the following are out arithmetic operators: 
 

Operation Fortran Symbol 
Addition + 
Subtraction - 
Division / 
Multiplication * 
Exponentiation ** 
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There are also many intrinsic functions that we can use: 
 
Function Action Example 
INT convert real number to integer J = INT(X) 
REAL convert integer to a real number X = REAL(J) 
ABS absolute value X = ABS(X) 
MOD remainder of I divided by J K = MOD(I,J) 
SQRT square root X = SQRT(Y) 
EXP exponentiation [ex] Y = EXP(X) 
LOG natural logarithm [ln (y)] X = LOG(Y) 
LOG10 common logarithm [ log10(y)] X = LOG10(Y) 
SIN sine X = SIN(Y) 
COS cosine X = COS(Y) 
TAN tangent X = TAN(Y) 
ASIN arcsine Y = ASIN(X) 
ACOS arccosine Y = ACOS(X) 
ATAN arctangent Y = ATAN(X) 
ATAN2 arctangent(a/b) Y = ATAN2(A,B) 
 
Important Note:  In Fortran (as in most programming languages) the arguments to the 
trigonometric functions are expected to be in radians.  If your arguments are in degrees you need 
to first convert them to radians!  For example:  To take the sine of 45°: 
 
PROGRAM example 
IMPLICIT NONE 
REAL(KIND=8) :: argument, answer    
REAL(KIND=8) :: pi 
 
pi = 3.141592654   !Define pi 
argument = 45.0    !My argument is 45 deg 
 
argument = argument*(pi/180.0)   !Convert from deg to rad 
 
answer = SIN(argument)           !Take the sine 
 
write(*,*) answer                !Print out the answer 
 
END PROGRAM example 
 
One should at this point be excited.  Remember how challenging it was to do math inside a shell 
script.  By comparison this is downright easy in Fortran. 
 
5. Numeric Types 
 
In our examples we have specified the naming of our variables in terms of KIND=4 or KIND=8.  
What this means is that we use numbers that are stored with either 4- or 8-bytes.  Let’s take a 
look at the following example to see what this means: 
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PROGRAM simpletest 
IMPLICIT NONE 
INTEGER(KIND=1) :: J 
 
J = 0 
 
DO 
  write(*,*) J 
  J = J + 1 
  IF (J < 0) EXIT 
ENDDO 
 
END PROGRAM simpletest 
 
This isn’t a very complicated program, although we haven’t looked at DO or IF statements yet.  
The program starts out with the variable J = 0, and starts a loop.  It adds 1 to J at each step.  So 
that J = 0, then J = 1, then J = 2, etc. 
 
Then it makes a test that says if J is less than 0 let’s exit the program. 
 
Run this program and write down that last value of J before it becomes < 0:_________________ 
 
That’s some odd behavior for sure.  We keep adding a positive number to J and eventually J 
becomes negative. 
 
Now let’s change the KIND type in the above program: 
 
INTEGER(KIND=2) :: J 
 
Now what was the number we got to before J became < 0:_______________________________ 
 
Definitely a bigger number.  The important point is that we actually have to specify how much 
memory to use to store the numbers.  In the above two examples we used 1 or 2 bytes per integer 
number.  Recall that there are 8 bits per byte and that a bit is either a 1 or 0.  So, a 1-byte or 8 bit 
number might look like: 
 
10010110, 
 
Which would actually represent the number: 
    
 1×27 + 0×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 0×20 = 150 
 
The largest possible 8 bit number is: 
 
11111111 =   1×27 + 1×26 + 1×25 + 1×24 + 1×23 + 1×22 + 1×21 + 1×20 = 255 
 
However, we haven’t considered sign (i.e., + or -).  So we need to use one bit to store the 
numbers sign.  Hence, the largest number we can store in an 8-bit integer is: 
 
1×26 + 1×25 + 1×24 + 1×23 + 1×22 + 1×21 + 1×20 = 127 
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The largest 2-byte (16 bit) number possible is 32767, and so on.   
 
Hence, if we are expecting to do some math with large numbers it is important to realize what the 
biggest number our memory can hold.  Real numbers are another story and we need to be 
concerned with our precision.  Remember that a true real number like 1/3 is 0.33333… where we 
extend off into infinity.  Well, a computer does not have infinite memory so we don’t have true 
real numbers in the computers representation, but just an approximation to them.   
 
In general when doing mathematical operations we want to store our real numbers with 8-bytes 
(KIND=8) or else we will start to notice some real precision problems – especially when working 
with trigonometric functions.  However, programs will run faster with smaller storage space per 
number (e.g., KIND=4) as we aren’t spending as much time writing numbers into memory.  So, 
we don’t always want to go all out and use the largest KIND type available to us. 
 
Fortran does provide an easy way to see what the largest available number is for the KIND type 
you are using by supplying the HUGE intrinsic function.  For example, in the example program 
add the statement: 
 
write(*,*) HUGE(J) 
 
What is the largest number available for 8-byte integers?  How about 8-byte reals? 
 
 
 
6. More Information 
 
It is not possible in these tutorials to describe all aspects of Fortran, or even to show you all of the 
intrinsic functions that are available.  Fortunately there are several good web sites available.  A 
couple are listed below: 
 
 
Numerical Recipes in Fortran:  http://www.nrbook.com/institutional/ 
 
Fortran Language Reference: 
http://h21007.www2.hp.com/portal/download/files/unprot/fortran/docs/lrm/dflrm.htm 
 
Michael Metcalf’s Fortran tutorials: 
http://wwwasdoc.web.cern.ch/wwwasdoc/f90.html 
 
 
7. Homework 
 
1) Write a program that allows you to define the latitude and longitude at a point on the Earth’s 
surface and will return the x-, y-, and z- Cartesian coordinates for that point.  Assume the positive 
z-axis goes through the geographic spin axis (N pole).   Make sure your coordinate system is right 
handed. 
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2) By definition of the dot product we can find the angle between two vectors from the formula: 
 

θcosba=⋅ba  
 
Write a program that will let you define the x-, y-, and z- coordinates of two vectors in a 
Cartesian space and find the angle between the two vectors. 
 
3)  Combining the programs you wrote above write a program that will allow you to input two 
latitude and longitude coordinates on the Earth’s surface and will return the angular distance 
between the two points in degrees.  Assume the Earth shape to be a sphere with radius = 6371.0 
km.  Also have the program return the distance (in both km and miles) between the two points on 
the surface.  This distance is the great circle arc distance. 
 
 


