
Geophysical Computing L10-1

L10 – Fortran Programming - Part 2

1. Control Structures – DO Loops

Just like any computing language Fortran would be pretty useless without some control
structures. Fortunately they aren’t much different from our C Shell cases, and are trivial to
implement. As always looping is essential; In Fortran we use a DO Loop. There are 3 primary
ways we can do this:

DO Loop Example 1:

The most common way to do this looks as follows:

DO Variable = Start, End, Increment

 your code…

ENDDO

Here is an example code:

PROGRAM doloopexample
IMPLICIT NONE
INTEGER(KIND=4) :: J ! Looping Variable

DO J=1,10

 write(*,*) “J = “, J

ENDDO

END PROGRAM doloopexample

All we have done is:

• Define a loop variable (in this case the variable J which is an integer).
• Let J = 1 at the start.
• Execute all commands that are in between the DO and ENDDO statements
• Increase J by 1 (i.e., J now equals 2) and again execute all statements between the DO

and ENDDO statements but this time with value of J being 2.
• Keep doing this until J = 10.

Note, that in Fortran (as opposed to the C Shell) we do not explicitly need to state that we let J =
J+1. This is assumed by Fortran. But, what if we wanted J to increase by more than 1 at a time?
Then we just need to add an increment. E.g., change the above example code to have the
following line:

DO J=1,101,10

Geophysical Computing L10-2

Note that the Fortran 95 standard states the inclusion of: DO statements using REAL variables.
However, I haven’t seen this implemented in any compilers yet, and we are thus still stuck using
integers as loop variables.

DO Loop Example 2:

This example is akin to the while statement in the C Shell. The basic syntax looks like:

DO WHILE (Some logical expressions)

 your code…

ENDDO

Here is a simple example:

PROGRAM domore
IMPLICIT NONE
REAL(KIND=4) :: X

X = 1.0

DO WHILE (X <= 10.0)

 write(*,*) “X =”, X

 X = X + 0.25

ENDDO

END PROGRAM domore

This example let’s us keep executing the commands inside our DO loop until the value of X has
increased above 10.0.

DO Loop Example 3:

The final way that we can perform a DO loop is as follows:

DO

 your code…

 IF (some logical expressions) EXIT

ENDDO

This final form is very similar to that in Example #2. We could rewrite that example as:

Geophysical Computing L10-3

PROGRAM domore
IMPLICIT NONE
REAL(KIND=4) :: X

X = 1.0

DO
 write(*,*) “X =”, X
 X = X + 0.25

 IF (X > 10.0) EXIT

ENDDO

END PROGRAM domore

2. Control Structures – IF THEN ELSE

If you have the C Shell scripting down, then these will look extremely familiar to you. The
syntax for IF THEN statements in Fortran looks like:

!Basic form of the If statement
IF (some logical expressions) THEN
 your code…
ENDIF

! Or, with some other options…
IF (some logical expressions) THEN
 your code …
ELSEIF (some other logical expressions) THEN
 more code…
ELSE
 even more code…
ENDIF

The key here is that in Fortran we use the following operators in our logical expressions:

Operator Meaning
= = Equal to
/= Not equal to
>= Greater than or equal to
<= Less than or equal to
< Less than
> Greater than

.AND. Logical AND
.OR. Logical OR

.NOT. Logical NOT

Geophysical Computing L10-4

As an example of how we use these, let’s just do a simple test of an angle measured in a Cartesian
space and see which quadrant it lies in:

PROGRAM noname
IMPLICIT NONE
REAL(KIND=8) :: Theta, x, y

!Define x,y coordinates
x = 0.5
y = 0.25

!Determine angle in degrees
Theta = (ATAN2(x,y))*(180.0/3.141592654)

! Let’s check and see which quadrant theta lies in
! based on the angle Theta
IF (Theta >= 0.0 .AND. Theta < 90.0) THEN
 write(*,*) “Theta is in upper right quadrant…”

ELSEIF (Theta >= 90.0 .AND. Theta <= 180.0) THEN
 write(*,*) “Theta is in lower right quadrant…”

ELSEIF (Theta < -90.0 .AND. Theta >= -180.0) THEN
 write(*,*) “Theta is in lower left quadrant…”

ELSEIF (Theta < 0.0 .AND. Theta >= -90.0) THEN
 write(*,*) “Theta is in upper left quadrant…”

ELSE
 write(*,*) “Error: Theta has a nonrealistic value”

ENDIF

END PROGRAM noname

Similar to C Shells Fortran also provides a CASE statement. The syntax can be looked up on any
of the Fortran related web sites.

3. Outputting Results – Writing Files

Writing variables to files in Fortran involves the following steps:

1) OPEN up a file to write with an associated UNIT number.

2) WRITE the data to that file.

3) CLOSE the file.

Geophysical Computing L10-5

The following examples will show the basic procedure which varies slightly if you want to write
out ASCII formatted files (normal situation) or if you want to save time and space and write out
binary files.

Writing ASCII Files

In our previous examples of writing our output to the screen (standard out) we used a write(*,*)
statement. You may have been asking what are the *’s for? These are essentially short cuts for
the UNIT and FORMAT statements, which we will describe below.

Our first step is to OPEN up files: The simplest way to do this is:

OPEN(UNIT=1,FILE=’myfile.dat’)

Here I have associated a UNIT Number = 1, with the file I just created called myfile.dat.

I can open up more files at the same time if I want to, but then I need to use a different UNIT
Number. E.g., to open up another file:

OPEN(UNIT=2,FILE=’anotherfile.xyz’)

Now, whenever we refer to either of the above two files we refer to them by their Unit Number.
For example, now if I want to write out the variable X into the file unit 1, I can do:

write(UNIT=1,*) X

I don’t actually have to type out UNIT every time and just say:

write(1,*) X

I could similarly write out the variable Y to file unit 2:

write(2,*) Y

Once we are done writing to our files we need to CLOSE off the files:

CLOSE(1)
CLOSE(2)

A full code example showing how to write an ASCII file is shown here:

PROGRAM asciiexample
IMPLICT NONE
REAL(KIND=4) :: X
INTEGER(KIND=4) :: J

X = 10.0 !Initialize a variable X

Geophysical Computing L10-6

!Open up a new file called test.data
OPEN(UNIT=1,FILE=’test.data’)
DO J=1,10 !Loop 10 times

 write(1,*) J, X !write out J and X to unit 1

 X = X/2.0

ENDDO
CLOSE(1) !We are done writing so close off Unit 1

END PROGRAM asciiexample

In the above example we have the Unit=1, and Format=*. In Section 5 we will discuss the
Format statement further.

Writing Binary Files

Writing binary files can be accomplished with the open statement as follows:

OPEN(UNIT=1,FILE='filename',FORM='unformatted')

No format statement can be included when writing, so writing is done as follows:

WRITE(1) “what ever you want to write”, variables

Hence, writing binary files is easier than writing formatted files; however, special care must be
taken when reading back in unformatted data. In particular, the exact kind type used to write out
the file must be used when reading back in the data, or else you will read in pure garbage. The
following code example shows how to write out data in binary format:

PROGRAM bin
IMPLICIT NONE
INTEGER(KIND=4) :: I, nr

OPEN(UNIT=1,FILE='bin_test',FORM='unformatted')
nr = 10

WRITE(1) nr
DO I = 1,10

 WRITE(1) I

ENDDO
CLOSE(1)

END PROGRAM bin

Geophysical Computing L10-7

Options with the OPEN statement

Our above examples are quite simplistic, but encompass 99% of what you will want to do with
writing output files. However, sometimes you may want to do something a little more advanced
such as append to a file that already exists. There are some additional actions that may be done
with the OPEN statement. For example:

To only write to a file if it doesn’t already exist:

OPEN(UNIT=1,FILE=’myfile.dat’,STATUS=’new’,IOSTAT=ios)

To check and see if a file already exists and append to it:

OPEN(UNIT=1,FILE=’myfile.dat’,STATUS=’old’,POSITION=’append’)

Notice we have used the IOSTAT (Input/Output status) variable ios. Here we need to declare ios
at the beginning of our code:

INTEGER(KIND=4) :: ios

This can help in error detection. Imagine the first situation, where we only want to open the file
if it doesn’t already exist.

Create a file called testing.dat and then try the next code example:

PROGRAM testio
IMPLICIT NONE
INTEGER(KIND=4) :: ios

OPEN(UNIT=1,FILE=’testing.dat’,STATUS=’new’,IOSTAT=ios)

write(*,*) ios

END PROGRAM testio

A common problem is that not all Fortran compilers return the same value for IOSTAT
depending on whether a file exists or not. But, if you know what value your compiler returns you
can then do something useful such as give the user a warning that the file isn’t being opened
because it already exists. But, beware, the code may not be portable to different machines.

A better option is to use the INQUIRE statement. This is a logical function that returns a true or
false answer as to whether your file already exists.

LOGICAL :: file_exists
INQUIRE(FILE=’testing.dat’,EXIST=file_exists)
write(*,*) file_exists

Geophysical Computing L10-8

4. Outputting Results – the Format Statement

So, far we have only specified the output format with an asterisk (*) which doesn’t provide any
formatting information at all. Generally this is all you need to do. However, sometimes you may
want the output to look fancy or you need it to be in a very specific format to be read in by
another computer program. Fortran has a simple method to format output:

1) Somewhere in the code put a FORMAT statement with a reference number. This might
look like:

 100 FORMAT(I3)

 Where the 100 before the FORMAT statement is the reference number. We will
 discuss what goes inside the FORMAT statement later, but suffice it for now to say that
 it includes all of the directions on how the output should look.

2) Use the reference number in place of the asterisk (*) in your write statements. E.g.,

 write(UNIT=1, FMT=100)

Integer Format

The integer format (I) is the easiest to specify. If I say I2 then I want to use two columns to
display my integer. Similary I4 would mean to use four columns. Try the following example:

PROGRAM formatexample
IMPLICIT NONE
INTEGER(KIND=4) :: J

J = 1

100 FORMAT(I2)
write(UNIT=*,FMT=100) J

101 FORMAT(I2.2)
write(UNIT=*,FMT=101) J

J = 100
write(UNIT=*,FMT=100) J

102 FORMAT(I4)
write(UNIT=*,FMT=102) J

END PROGRAM formatexample

Geophysical Computing L10-9

F – Format for Reals

With real numbers we need to concern ourselves with the decimal point. Basically we define
how many total columns we want to use, and then how many of those columns should be
numbers after the decimal point. Imagine the example where we want to write out longitudes
with 2 decimal points. A typical longitude may be a number like lon = -179.50. So, including the
negative sign and the decimal point, we need 7 columns to display this number, and 2 columns
after the decimal point. So, we specify our format as F7.2.

Displaying the number -179.50 with F7.2 Format:

column 1 2 3 4 5 6 7
value - 1 7 9 . 5 0

In our code we just write:

100 FORMAT(F7.2)

A – Alphanumeric Format

We haven’t talked about character strings yet, but the easiest way to specify that we are writing
out characters is:

100 FORMAT(A)

i.e., just use the letter A.

More complicated Output.

Of course all of the above types may be combined into a single format statement. Try the
following example where we use an X to represent the number of spaces in between numbers:

PROGRAM example
IMPLICIT NONE
INTEGER(KIND=4) :: J
REAL(KIND=4) :: x, y

J = 1
x = 1000.5
y = 200.1564

write(*,100) “J, x, y = “, J, x, y

100 FORMAT(A,5X,I1,2X,F7.2,2X,F7.2)

END PROGRAM example

Geophysical Computing L10-10

5. Homework

1) One of the easiest ways to determine how long it takes a code to run is to imbed the
executable between two date commands in a C Shell. For example, suppose I have a code named
mycode.x that I want to determine how long it took to run. I could make a C Shell script like:

#!/bin/csh

date
./mycode.x
date

The only problem with this is that the output might look like:

Tue Aug 3 02:59:27 MDT 2010
Thu Aug 5 03:55:35 MDT 2010

In most circumstances this is easy enough to decipher, but sometimes the code may run for days
and you can not quickly determine how much time it took to run. If you are doing a lot of
benchmarking you might just want to know really quick how many minutes did the code take to
run.

Hence, the solution is to write a code: difdate.f90. This code will read in the two lines from the
date command. [Note that reading formatted input is the same as writing formatted output, i.e.,
use read(*,FMT=100) instead of write(*,FMT=100)].

As output this code will report the difference in time between the two date commands. It will
report the difference in two ways: (1) Total number of decimal minutes – e.g., 50.23 m, and (2)
Total days, hours, minutes, and seconds: e.g, 2 d 13 h 4 m 13.2 s.

The code should work for any combination of dates and times, even if there are years in between
the date commands output.

Hint: The easiest solution may involve converting your year, month and day into an integer
value based on Julian day.

