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L11 – Fortran Programming - Part 3 
 
1. Dealing with Characters 
 
The key data type we have thus far ignored are characters.  In general Fortran is not all that nice 
about handling characters, but does provide rudimentary tools for dealing with them.  To start, we 
need to know how to declare characters.  This is slightly different than our declarations of 
integers or real numbers.  For example: 
 
CHARACTER(LEN=1) :: A 
CHARACTER(LEN=80) :: mystring 
 
In the above example we have declared two variables: (1) A that will only store 1 character [as 
defined by LEN=1], and (2) mystring that will store 80 characters. 
 
With character strings we have to define how many characters the variable can store, but we don’t 
have to fill up all the characters.  For example, I may want to use a variable month that stores the 
current month. I may want to give the variable a length of LEN=9 so it will hold the name of the 
month with most number of characters (September).   
 
Declaration of characters is done similarly as regular numbers.  The following example shows 
how to read in a character input from the user: 
 
PROGRAM readuser 
IMPLICIT NONE 
CHARACTER(LEN=80) :: window_function 
 
!write a query to standard output 
write(*,*) “What type of window function would you like to use?” 
write(*,*) “ [E.g., ‘Boxcar or Blackman’]” 
 
!Now read in the users response 
read(*,*) window_function 
 
!Now write back out the user’s response 
write(*,*) “ “ 
write(*,*) “You selected the: “, window_function, “ function…” 
 
END PROGRAM readuser 
 
 
There are also operators and intrinsic functions that work on characters.  The most important 
operator is the concatenation operator which is two forward slashes: //.  That is, I may want to 
join two characters together.    For example, to combine two characters into one: 
 
CHARACTER(LEN=5) :: A, B 
CHARACTER(LEN=10) :: C 
A = ‘one’ 
B = ‘test’ 
C = A//B 
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Try concatenating operators in the above example.  What happens? 
 
As you may have noticed there are a number of spaces between the two characters.  This may not 
be desirable, so there are the useful intrinsic functions TRIM and ADJUSTL.  The ADJUSTL 
function shifts all the characters to be left justified, and the TRIM function trims off all the 
trailing blanks. Try the concatenation again with the following line: 
 
C = TRIM(ADJUSTL(A))//TRIM(ADJUSTL(B)) 
 
It is often necessary to also convert integers and real numbers to characters.   However, there is 
no intrinsic function in Fortran to do this.  To do this we need to use a minor Fortran trick.  Let’s 
assume we want to loop through an integer (say from 1 to 10) and append the number of the loop 
to a character string.  The following example shows the way 
 
PROGRAM aa 
IMPLICIT NONE 
INTEGER(KIND=4) :: J 
CHARACTER(LEN=3) :: Jstr 
CHARACTER(LEN=10) :: output 
 
output = ‘example_’ 
 
DO J=1,10 
   
  ! Convert integer J into a character Jstr with 3 columns 
  write(Jstr,”(I3.3)”) J 
 
  write(*,*) TRIM(ADJUSTL(output))//Jstr 
 
ENDDO 
 
END PROGRAM aa 
 
Note that we have to write our variable J into the variable Jstr. 
 
 
2. Intro to Arrays 
 
Arrays are the last data type we will talk about in this class.  Note, there are also logical and 
complex data types that may be important for some of your work, but arrays are definitely the 
most important. 
 
Arrays allow us to store and manipulate many values with a single variable name.  For example, 
we may have 4 measurements of seismic S-wave velocity and we want to store all of those 
measurements in the single variable called Vs.   The following example shows us how we can 
hard wire these measurements into a single variable name: 
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PROGRAM arrays 
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(4) :: Vs 
 
Vs(1) = 7.26 
Vs(2) = 3.48 
Vs(3) = 2.50 
Vs(4) = 2.48 
 
write(*,*) Vs 
write(*,*) Vs(3) 
 
END PROGRAM arrays 
 
The above example demonstrates the following points: 
 

• When we declare an array variable we need to specify its size.  In this case, we want to 
store 4 real numbers, so we declare the variable as being REAL, and that we will give it a 
DIMENSION of 4. 

 
• The position of each element in the array is given by a number inside parentheses.  This 

is called the array index.  Here, the third element of the variable Vs [denoted by Vs(3)] 
is 2.50. 

 
The above example shows one way to declare the elements of our array.  Here is an equivalent 
example where we use the array index notation to state that we will be declaring the values of 
array elements 1 through 4: 
 
PROGRAM arrays 
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(4) :: Vs 
 
Vs(1:4) = (/ 7.26, 3.48, 2.50, 2.48 /) 
write(*,*) Vs(3) 
 
END PROGRAM arrays 
 
These examples have thus far been confined to vector data (i.e., one column of data) however, our 
arrays do not have to be confined in such a manner.  We can specify an array to have several rows 
and columns of data.  For example if I have 8-rows of data, and 4-columns of data: 
 
Then I can specify this as: 
REAL(KIND=4), DIMENSION(4,8) :: myvariable 
 
In general we prescribe dimensions as DIMENSION(number_columns, number_rows). 
 
Note that this is backwards from Matrix notation (as is used in Matlab) which usually specifies 
array indices as (row,column). 
 
Let’s look at an example in detail here.  Let’s assume we have 4 rows and 2 columns of data.  
This could be depth in the Earth and Seismic wave velocity for example: 
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 column 1 column 2 
row 1 0.0 1.45 
row 2 20.0 6.80 
row 3 40.0 8.10 
row 4 60.0 8.08 

 
Using our index notation we can declare the variable Vp for P-wave velocity in the Earth and 
store both our depth (first column) and velocity (2nd column). 
 
PROGRAM arrays 
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(2,4) :: Vp 
INTEGER(KIND=4) :: J 
 
! Put data values into column 1, rows 1:4 
Vp(1,1:4) = (/0.0, 20.0, 40.0, 60.0/) 
 
! Put data values into column 2, rows 1:4 
Vp(2,1:4) = (/1.45, 6.80, 8.10, 8.08/) 
 
! Write out data one row at a time  
DO J=1,4 
    write(*,*) Vp(:,J) 
ENDDO 
 
END PROGRAM arrays 
 
 
 
3. Reading in array data  
 
A key feature of Fortran 90 that wasn’t available in Fortran 77 or earlier versions is the addition 
of ALLOCATABLE arrays.  With f77 you always needed to declare the size of the array at the 
onset of the program.  However, with the new syntax you can wait until later.  All you have to do 
is declare the shape.  Then at some later point you can decide how many elements will go into the 
array.  The following example shows how to read data from a file into a Fortran array variable.  
The data from the input file may have differing numbers of lines. 
 
PROGRAM aa 
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(:), ALLOCATABLE :: mydata 
INTEGER(KIND=4) :: nr, J 
CHARACTER(LEN=100) :: infile 
 
! Ask the user for some information about the data to be read in 
write(*,*) "Enter the name of the data file to read..." 
read(*,*) infile 
write(*,*) "Enter the number of lines in the input data file..." 
read(*,*) nr 
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! Allocate the memory required in variable mydata 
ALLOCATE(mydata(nr)) 
 
! Open up the file to read 
OPEN(UNIT=1,FILE=infile) 
 
! Now read the file into variable mydata 
DO J=1,nr 
  read(1,*) mydata(J) 
ENDDO 
 
! We are done with the file so now close it out 
CLOSE(1) 
 
! For fun, let's write back out to standard out  
DO J=1,nr 
  write(*,*) mydata(J) 
ENDDO 
 
END PROGRAM aa 
 
The important points to note are: 
 

• We stated that we don’t know how many elements will be in our array with the 
DIMENSION(:), ALLOCATABLE statement. 

 
• We read how many elements to expect from the user into the integer variable nr. 
 
• Once we knew how many elements to expect we reserved space in our memory with the 

ALLOCATE(mydata(nr)) statement.  This just reserved nr elements into our array 
mydata. 

 
• Now that the memory is allocated we can read our data into the array, as is done with the 

read statement.  Note, we loop through the file (after opening it) with a standard DO loop 
letting the loop variable J act as the array index. 

 
Note that sometimes we may want to use the same variable again, but with a different number of 
elements.  In this case we can use the DEALLOCATE statement to clear the memory.  Then we 
can ALLOCATE the variable again with a new size. 
 
IMPORTANT:  Often times when we run one of our programs we will get an error.  A common 
error to see is the much dreaded Segmentation Fault.  If you see this error it is generally because 
you tried to write a value to an array index that doesn’t exist.  For example, I may have an array 
mydata that has DIMENSION(100).  If I try something like mydata(101) = something, then I 
will get an error because I am asking the program to place a value into a memory location that 
doesn’t exist.  OK, you have been warned! 
 
As a final note:  Check out the Fortran tricks notes that I have put together.  In these notes I show 
how to read data into an array where you never need to specify how many lines of data exist. 
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4. Whole Array Operations  
 
Now we can start to look at the beauty of storing arrays in Fortran90:  whole array operations! 
Doing operations with arrays is similar to doing operations with regular variables.  For example, 
we can add each element of two arrays just by: 
 
C = A + B 
 
Or, we can take the square root of each element in an array: 
 
C = SQRT(B) 
 
Or element by element multiplication: 
 
C = A*B 
 
Note, that the above operation multiplies each element of the array by the corresponding element 
in the other array. 
 
E.g.,  

1 2 
3 4 × 1 2 

3 4 = 1×1 2×2
3×3 4×4

 
If you want to do matrix multiplication instead you can use the MATMUL intrinsic function. 
 
E.g., 
 
C = MATMUL(A,B) 
 
If your arrays are composed of vectors, then there is also an intrinsic function for the dot product: 
 
C = DOT_PRODUCT(Vector_1, Vector_2) 
  
These kinds of features reperesent a huge improvement over f77 in which one would have to 
write DO loops and loop over all of the elements in the arrays, performing the operations element 
by element. 
 
The following example shows the use of a couple of the most useful array intrinsics: 
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PROGRAM minmax  
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(2,8) :: mydata 
REAL(KIND=4), DIMENSION(2) :: maxcolumns 
REAL(KIND=4) :: mydata_max, mydata_min 
 
! Load in some data values to play with 
! --------------------------------------------------------------! 
! Put data values into column 1, rows 1:8 
mydata(1,1:8) = (/0.0, 20.0, 40.0, 60.0, 40.0, 20.0, 0.0, 15.0/) 
 
! Put data values into column 2, rows 1:8 
mydata(2,1:8) =(/1.45, 6.80, 8.10, 8.08, 7.20, 7.00, 9.34, 2.65/) 
! --------------------------------------------------------------! 
 
 
!  Play around with the min/maxval functions 
! --------------------------------------------------------------! 
! Find the Maximum value in mydata 
mydata_max = MAXVAL(mydata) 
write(*,*) "Maximum Value anywhere in array:  ",  mydata_max 
 
! Find the Minimum value in mydata 
mydata_min = MINVAL(mydata) 
write(*,*) "Minimum Value anywhere in array:  ",  mydata_min 
 
! Using a MASK, find the largest value in mydata less than 10.0 
mydata_max = MAXVAL(mydata,MASK=mydata < 10.0) 
write(*,*) "Maximum Value < 10.0:  ",  mydata_max 
 
! Using DIM, find the maximum values in each column 
maxcolumns = MAXVAL(mydata,DIM=2) 
write(*,*) "Maximum Value of column 1: ", maxcolumns(1) 
write(*,*) "Maximum Value of column 2: ", maxcolumns(2) 
! --------------------------------------------------------------! 
 
END PROGRAM minmax 
 
The above example demonstrates two really useful features of many of the whole array intrinsics: 
(1) The ability to limit the operation based on logical expressions using the MASK feature, and 
(2) The ability to perform the same operation distinctly on columns or rows of the array using the 
DIM feature.  Both of these features would have previously required the use of looping but can 
now be done in a single line of code.  Very sexy indeed. 
 
Sometimes what you want to know is not what the maximum or minimum values are, but where 
they occur in an array.  For example, suppose we have a seismogram and we are not concerned 
with what the maximum amplitude is, but at what time the maximum amplitude occurs at.  
Consider the following example: 
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PROGRAM minmax2  
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(2,8) :: seismogram 
REAL(KIND=4) :: time_max, amp_max 
INTEGER(KIND=4), DIMENSION(2) :: time_max_index 
 
! Make a fake very, very short seismogram 
! --------------------------------------------------------------! 
! Put timing information in column #1 
seismogram(1,1:8) = (/0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0/) 
 
! Put amplitude information in column #2 
seismogram(2,1:8)=(/1.45,1.53,1.62,1.73,1.41,1.38,1.33,1.20/) 
! --------------------------------------------------------------! 
 
! Now let's play with the MAXLOC intrinsic 
! --------------------------------------------------------------! 
! Find the array indices of the max in each column 
time_max_index = MAXLOC(seismogram,DIM=2) 
 
time_max = seismogram(1,time_max_index(2)) 
amp_max = seismogram(2,time_max_index(2)) 
 
write(*,*) "Time to maximum value: ", time_max, " (sec)" 
write(*,*) "Amplitude of maximum value: ", amp_max  
! --------------------------------------------------------------! 
 
! Now let's do it again using the MASK and say we want to find  
!   the next highest amplitude 
! --------------------------------------------------------------! 
time_max_index=MAXLOC(seismogram,DIM=2,MASK=seismogram < amp_max) 
 
time_max = seismogram(1,time_max_index(2)) 
amp_max = seismogram(2,time_max_index(2)) 
 
write(*,*) "Time to next largest value: ", time_max, " (sec)" 
write(*,*) "Amplitude of next largest value: ", amp_max  
! --------------------------------------------------------------! 
 
END PROGRAM minmax2 
 
 
The final array function I wish to discuss is the incredibly versatile WHERE control structure.  
This is similar to IF THEN statements only it applies to entire arrays.  The basic syntax looks 
like: 
 
WHERE ( some logical statements) 
   your code… 
ELSEWHERE ( more logical statements) 
   your code… 
ENDWHERE 
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To make it’s operation clear let’s look at a simple example: 
 
PROGRAM wherestatement 
IMPLICIT NONE 
REAL(KIND=4), DIMENSION(2,8) :: seismogram 
INTEGER(KIND=4) :: J 
 
! Make a fake very, very short seismogram 
! --------------------------------------------------------------! 
! Put timing information in column #1 
seismogram(1,1:8) = (/0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0/) 
 
! Put amplitude information in column #2 
seismogram(2,1:8) = (/1.45,1.53,1.62,1.73,1.41,1.38,1.33,1.20/) 
! --------------------------------------------------------------! 
 
! write out the initial seismogram (time, amplitude) 
! --------------------------------------------------------------! 
write(*,*) " " 
write(*,*) "Initial seismogram" 
write(*,*) "--------------------------------------" 
DO J=1,8 
  write(*,*) seismogram(1,J), seismogram(2,J) 
ENDDO 
write(*,*) "--------------------------------------" 
write(*,*) " " 
 
! Manipulate the amplitude values based on the  
!  time values w/o a Loop! 
! --------------------------------------------------------------! 
WHERE (seismogram(1,:) >= 6.0) 
  seismogram(2,:) = 0.0 
ELSEWHERE (seismogram(1,:) >= 4.0) 
  seismogram(2,:) = 1.0 
ELSEWHERE 
  seismogram(2,:) = 2.0 
ENDWHERE 
 
! write out the final seismogram (time, amplitude) 
! --------------------------------------------------------------! 
write(*,*) " " 
write(*,*) "Final seismogram" 
write(*,*) "--------------------------------------" 
DO J=1,8 
  write(*,*) seismogram(1,J), seismogram(2,J) 
ENDDO 
write(*,*) "--------------------------------------" 
write(*,*) " " 
 
END PROGRAM wherestatement 
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Note that in the above example we can base our logical statements on subarray sections!  In this 
case we based our logic just on the values in the first column of data. 
 
 
5. Optimization Flags  
 
Thus far we haven’t talked too much about compiling our codes.  But, at this point it may be 
prudent to point out that there are tons of flags that we can use during compile.  The compiler 
man page describes these and you should look around to see what is available.  But, as a primary 
note all compilers have a standard Optimization flags.  If I want to compile my code and make it 
run a little faster I might type: 
 
>> g95 mycode.f90 –O2 –o mycode.x  
 
where the –O2 flag says to optimize this code to run a bit faster.  You might get even better 
output from the –O4 flag: 
 
>> g95 mycode.f90 –O4 –o mycode.x  
 
But you need to be a little bit careful to make sure the results still make sense.  Sometimes the 
compiler will perform tricks that will make the code run faster, but at the result of the numerical 
accuracy of the calculations. 
 
In addition to the –O flags most compilers have special flags that let you optimize the code for 
the specific cpu your computer is using. 
 
 
6. Homework 
 
1)  Write a program that will read in a 1-column data set of arbitrary size from a file, and will 
output the average, standard deviation, and variance of the data set.  Recall the definition of 
standard deviation (σ) is: 
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Where N is the total number of samples in the data set, and xi is the ith data sample.  Recall that 
the variance is just = σ2. 
 


