
Geophysical Computing L14-1

L14 – Supercomputing - Part 2

1. MPI Code Structure

Writing parallel code can be done in either C or Fortran. The Message Passing Interface (MPI)
is just a set of subroutines that has bindings in either language. That is, we write our codes as
normal and use the MPI subroutine set to handle the details of communication between
processors for us. We just need to worry about when that communication takes place and what is
said.

MPI has many subroutines (125 total functions), however it is really easy to work with and many
programs can be written using just 6 functions.

The six main functions of MPI are:

1) MPI_Init – Initialize MPI environment
2) MPI_Finalize – Finalize MPI environment
3) MPI_Comm_size – Determine total number of processors
4) MPI_Comm_rank – Determine the rank of the current processor
5) MPI_Send – Send a message
6) MPI_Recv – Receive a message

All MPI programs will have the same basic structure. The main elements are organized as
follows:

PROGRAM example_mpi
USE mpi
IMPLICIT NONE
INTEGER :: mpi_ierr, nprocs, mpi_rank

CALL MPI_Init(mpi_ierr)

CALL MPI_Comm_size(MPI_COMM_WORLD, nprocs, mpi_ierr)

CALL MPI_Comm_rank(MPI_COMM_WORLD, mpi_rank, mpi_ierr)

! Do your calculations here, i.e., the main program elements

CALL MPI_Finalize(mpi_ierr)

END PROGRAM example_mpi

Note that what we do is:

• We start out by initializing the MPI environment. This is done with just the MPI_Init
subroutine. All this does is say start up MPI. We have designated the variable mpi_ierr
to tell us about the status of each MPI action we perform.

Geophysical Computing L14-2

• Next we find out how many processors we are actually using. Here we use the
subroutine MPI_Comm_size and place the result into the variable nprocs.

• Next we find out which processing rank we are. We use the subroutine

MPI_Comm_rank and place the result into the variable mpi_rank.

• Now the MPI environment is completely set up and we can write the main part of the

code.

• Once everything is done we need to close off the MPI environment with the subroutine

MPI_Finalize.

2. Your First Parallel Code

Often times when we start to write code our first code is a Hello program. We will do this with
MPI because it is a little more interesting than in the normal case. Our examples will be shown
for the environment of the University of Utah’s Center for High Performance Computing
(CHPC). Most of you will have an account on one of CHPC’s computers (if not join up with
someone who does for this exercise) and log in now to sanddunearch:

>> ssh –X –l username sanddunearch.chpc.utah.edu

Our basic hello world program is mpiexample.f90:

PROGRAM example
USE mpi
IMPLICIT NONE
INTEGER :: mpi_ierr, nprocs, mpi_rank

! initialize MPI environment
CALL MPI_Init(mpi_ierr)
CALL MPI_Comm_size(MPI_COMM_WORLD, nprocs, mpi_ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD, mpi_rank, mpi_ierr)

! just have rank 0 state how many processors we are using
IF (mpi_rank == 0) THEN
 write(*,*) nprocs, “processes have been requested.”
ENDIF

! Here is the hello world part...
write(*,*) “Hi, I am Rank: “, mpi_rank

CALL MPI_Finalize(mpi_ierr)

END PROGRAM example

Compiling MPI Codes

The first thing we may now note is that we can’t compile MPI code with just the standard g95
type of call. Instead we need to use a Fortran 90 compiler built for MPI. Usually this is called

Geophysical Computing L14-3

mpif90. On sanddunearch we have several flavors (similar to all the different flavors of f90).
You can see the list of all the compilers CHPC supports on their web page

http://www.chpc.utah.edu/docs/manuals/user_guides/arches/

Here we will use the pathscale mpif90 compiler since it is my favorite. Hence, to compile we
need just to know the path to this compiler:

>>/uufs/sanddunearch.arches/sys/pkg/mvapich/std/bin/mpif90
mpiexample.f90 –o mpiexample.x

Executing MPI Codes

Note that now you should have an executable file called mpiexample.x but that we can NOT just
type ./mpiexample.x to execute this code.

To execute this code there are two basic ways: (1) through interactive mode, or (2) through the
batch system. Typically we will execute our codes through the batch system.

To enter the interactive mode you would type:

>> qsub -I -l nodes=1:ppn=4,walltime=10:00

Before we go on, note that we are requesting to use 1 node and 4 processors (ppn = processor
per node) for a total time of 10:00 minutes.

But it is preferable to just create a script that we can submit through the batch system.

To run this code we need to use the program mpirun. But, we also need to use the same version
of mpirun that was set up for the version of mpif90 that we used above:

>> /uufs/sanddunearch.arches/sys/pkg/mvapich/std/bin/mpirun_rsh –
rsh –np 4 –hostfile $PBS_NODEFILE ./mpiexample.x

So, to run this job lets create a file: run_mpi.pbs

#!/bin/bash

#PBS –N testjob
#PBS –A tj-sda
#PBS –l qos=thorne
#PBS –l walltime=00:10:00
#PBS –o test.out
#PBS –e test.err
#PBS –l nodes=4

cd $PBS_O_WORKDIR

/uufs/sanddunearch.arches/sys/pkg/mvapich/std/bin/mpirun_rsh –rsh
–np 4 –hostfile $PBS_NODEFILE ./mpiexample.x

Geophysical Computing L14-4

We can now submit the job to be run by typing:

>> qsub run_mpi.pbs

Note that the output we wrote to screen is written to the file test.out. You can see what the
program output is by examining this file. This is an example of how to use the batch system to
run jobs. We will discuss this further in Section 5, but note that there are directives in this script:
tj-sda and qos=thorne which specifically state to run on my personal nodes. This is fine in the
confines of this class, but please don’t use my nodes for your personal jobs.

This is of course a really simple example, but note that we got a response from each processor.
Now let’s take a look at how to pass information between processors.

3. Basic Communication Routines (Send/Receive)

Let’s think of a simple example where we want to send a real number to the rank immediately to
the right (or wrap around if we are at the farthest right processor). The situation may look like:

Rank 0 Rank 1 Rank 2

Recv (1)

Send (2)

Send (0)

Recv (2)

Send (1)

Recv (0)

The first thing we may want to do is define a variable we will call torank that defines which
processor rank we want to send information to:

IF (myrank > 0) torank = myrank – 1
IF (myrank == 0) torank = 2

To actually send this information we use the MPI_Send subroutine. The basic format of this
subroutine looks like:

MPI_Send (buf, count, datatype, dest, tag, comm, ierror)

Where,
buf = the actual variable to send.
count = the number of elements to receive
datatype = the type of data to send
dest = the rank of the process to send the message to
tag = an integer number identifying the message
comm = the communicator (e.g., MPI_COMM_WORLD)
ierror = the fortran return code.

Hence, if the real number we wanted to send was in the variable data we would do:

CALL MPI_Send(data,1,MPI_REAL,torank,tag,MPI_COMM_WORLD,mpi_ierr)

Geophysical Computing L14-5

So far we have told which processor where to send its data to. But, we haven’t specified which
processors should be listening for data. To receive the data being sent we need to add an
MPI_Recv call. For our above example:

IF (myrank < 2) fromrank = myrank + 1
IF (myrank == 2) fromrank = 0
CALL MPI_Recv(rec,1,MPI_REAL,fromrank,tag,MPI_COMM_WORLD, &
mpi_status,mpi_ierr)

The MPI_Recv subroutine is quite similar to the MPI_Send subroutine:

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)

Where,
buf = the actual variable to send.
count = the number of elements to receive
datatype = the type of data to send
source = the rank of the process to receive the message from
tag = an integer number identifying the message
comm = the communicator (e.g., MPI_COMM_WORLD)
status = message status
ierror = the fortran return code.

Let’s put this altogether into a program:

PROGRAM mpisendexample
USE mpi
IMPLICIT NONE
REAL :: X, Y
INTEGER :: mpi_ierr, nprocs, myrank, mpi_status
INTEGER :: torank, fromrank, tag

! Initialize the MPI environment
!---!
CALL MPI_Init(mpi_ierr)
CALL MPI_Comm_size(MPI_COMM_WORLD,nprocs,mpi_ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD,myrank,mpi_ierr)
!---!

! Let's Make the variable X be something specific to each processor:
!---!
X = 10.0*float(myrank)
!---!

!---!
! Now let's read the value of X from the rank to the right
! and store it in the variable Y
!---!

Geophysical Computing L14-6

!First let's send the data
!---!
IF (myrank > 0) torank = myrank - 1
IF (myrank == 0) torank = nprocs - 1
tag = 1

write(*,*) "myrank: ", myrank, "sending to rank: ", torank

CALL MPI_Send(X,1,MPI_REAL,torank,tag,MPI_COMM_WORLD,mpi_ierr)
!---!

!We will add a barrier here, not because its necessary but so that our
! output comes in a more reasonable fashion for this example
!---!
CALL MPI_Barrier(MPI_COMM_WORLD,mpi_ierr)
IF (myrank == 0) write(*,*) "--------------------------"
!---!

!Now Let's receive it!
!---!
IF (myrank < (nprocs-1)) fromrank = myrank + 1
IF (myrank == (nprocs-1)) fromrank = 0

write(*,*) "myrank: ", myrank, "receiving from rank: ", fromrank

CALL
MPI_Recv(Y,1,MPI_REAL,fromrank,tag,MPI_COMM_WORLD,mpi_status,mpi_ierr)
!---!

!We will add a barrier here as well
!---!
CALL MPI_Barrier(MPI_COMM_WORLD,mpi_ierr)
!---!

! Now let's report what do we have
!---!
IF (myrank == 0) write(*,*) "--------------------------"
write(*,*) "On rank: '", myrank, "'; X =", X, " and Y = ", Y
!---!

CALL MPI_Finalize(mpi_ierr)

END PROGRAM mpisendexample

It is useful to note here that in our send and receive messages we had to specify that we were
sending a real number with MPI_REAL. The primary data types you will use in Fortran are:

MPI_REAL
MPI_INTEGER
MPI_CHARACTER

Geophysical Computing L14-7

4. Some useful MPI functions

The above example utilized another function called MPI_Barrier. The action of the Barrier
function is to synchronize processes. That is it essentially halts the program until all of the
processors have reached the Barrier call. We used it above so that the output would be written in
a little more sequential manner. Nonetheless, it wasn’t necessary.

As noted there are over 100 MPI functions. You can find what they are and their syntax at the
following web page:

http://www.dei.unipd.it/~addetto/manuali_online/SP/MPISubRef/d3d80mst02.html

But, let’s review a couple of the most useful here so you can see how these functions work in
general.

MPI_BCAST – Which is short for BroadCAST. With the broadcast command one processor
sends the same message to a number of recipients with a single operation.

Let’s look at a simple example that reads in some information to rank 0 and then broadcasts that
information to all other processors.

Let’s first create a file input.txt with some information to read in (a character, an integer, and a
real number):

my_input_example
10
13.567

Our code might look like:

PROGRAM mpisendexample
USE mpi
IMPLICIT NONE
REAL :: realnum
INTEGER :: nr
INTEGER :: mpi_ierr, nprocs, myrank, mpi_status
CHARACTER(LEN=30) :: title

! Initialize the MPI environment
!---!
CALL MPI_Init(mpi_ierr)
CALL MPI_Comm_size(MPI_COMM_WORLD,nprocs,mpi_ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD,myrank,mpi_ierr)
!---!

! Read in file from standard input on rank 0
!---!
IF (myrank == 0) THEN
 read(*,*) title
 read(*,*) nr
 read(*,*) realnum
ENDIF
!---!

Geophysical Computing L14-8

! Now let's send this information to all of the other processors
!---!
CALL MPI_BCAST(title, 30, MPI_CHARACTER, 0, MPI_COMM_WORLD, mpi_ierr)
CALL MPI_BCAST(realnum, 1, MPI_REAL, 0, MPI_COMM_WORLD, mpi_ierr)
CALL MPI_BCAST(nr, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, mpi_ierr)
!---!

! Now let's write out the value of one of these variables on the
! other processors to check that it worked
!---!
write(*,*) "On rank: ", myrank, "; title= ", title
!---!

CALL MPI_Finalize(mpi_ierr)

END PROGRAM mpisendexample

Note that to run this code we would direct the input into the code through standard in:

>> mpirun_rsh –rsh –np 4 –hostfile $PBS_NODEFILE ./mpiexample.x <
input.txt

MPI_allreduce – This handy little utility lets you choose a variable and find the minimum or
maximum value of the variable across all ranks and put the output of the action in another
variable. Here’s an example:

PROGRAM mpiredex
USE mpi
IMPLICIT NONE
REAL :: X, MinX, MaxX
INTEGER :: mpi_ierr, nprocs, myrank, mpi_status

! Initialize the MPI environment
!---!
CALL MPI_Init(mpi_ierr)
CALL MPI_Comm_size(MPI_COMM_WORLD,nprocs,mpi_ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD,myrank,mpi_ierr)
!---!
! Make some dummy variable X
!---!
X = 0.5*float(myrank+2)
write(*,*) "Rank: ", myrank, "; X= ", X
!---!
! Find the min and max of X across all ranks and store in the
! variables MinX and MaxX
!---!
CALL MPI_AllReduce(X,MinX,1,MPI_REAL,MPI_MIN,MPI_COMM_WORLD,mpi_ierr)
CALL MPI_AllReduce(X,MaxX,1,MPI_REAL,MPI_MAX,MPI_COMM_WORLD,mpi_ierr)
write(*,*) "Rank: ", myrank, "; MinX= ", MinX
write(*,*) "Rank: ", myrank, "; MaxX= ", MaxX
!---!

CALL MPI_Finalize(mpi_ierr)
END PROGRAM mpiredex

Geophysical Computing L14-9

Obviously there are many more MPI functions we could talk about. But, to be honest, many of
the parallel codes I’ve written haven’t needed to use any other functions than the ones I covered
in this lecture.

5. The Batch System

The final thing we need to talk about is submitting jobs. On the CHPC computers here at UU we
use the Portable Batch System (PBS) for job scheduling. Other supercomputers may use other
systems but they all basically work in the same way although there might be slight differences in
syntax. So, as noted a typical batch script may look as follows:

#!/bin/bash

#PBS –N testjob
#PBS –A tj-sda
#PBS –l qos=thorne
#PBS –l walltime=00:10:00
#PBS –o test.out
#PBS –e test.err
#PBS –l nodes=4
#PBS –M michael.thorne@utah.edu
#PBS –m ab

cd $PBS_O_WORKDIR

/uufs/sanddunearch.arches/sys/pkg/mvapich/std/bin/mpirun_rsh –rsh
–np 4 –hostfile $PBS_NODEFILE ./mpiexample.x

You can find a description of the flags at:

http://www.chpc.utah.edu/docs/manuals/user_guides/arches/#batch

The most important points are:

• We must specify an amount of time (the walltime) that the job will require. If your job
exceeds the walltime it will get killed!

• You must specify how many processors to use. On sanddunearch this is just done with

the nodes option.

• When executing the code, you must again specify how many processors to use. This is
done with the flag –np.

To submit the code we use the qsub command:

>> qsub pbs_script

Once we have submitted the code, we can check its status by just typing showq or qstat.
However, I find this to be a little annoying since it shows everyone’s jobs.

Hence, it is useful to create an alias that might just show your jobs. For example,

Geophysical Computing L14-10

alias q = “qstat –a | grep username”

Where you will obviously substitute in your own username.

6. Homework

This is another buy week as not all students have access to the supercomputing facilities.

