
Geophysical Computing L15-1

L15 – POV-Ray - Part 1

1. What is POV-Ray?

POV-Ray stands for the Persistance of Vision Raytracer. POV-Ray
belongs to a class of programs called ray tracers. For you seismologists
this concept should be quite familiar. This has nothing to do with ray
tracing seismic ray paths, but is essentially the same thing. Here we are
creating an image by ray tracing light paths from an object to an observer
or camera. You can generate some really incredible images using this tool.
The cover art for Peter Shearer’s new seismology text was designed using
POV-Ray by Gunnar Jahnke (of LMU, Munich). For some really nice
examples of what you can do check out the POV-Ray Hall of Fame:

http://hof.povray.org

In this class we will use POV-Ray on the Windows side of the computers. However, POV-Ray
can be run on almost any system. The reason is that POV-Ray is a very basic program that
doesn’t include any graphics. It can produce images, but relies on other software available on any
computer system to view these images. In this sense POV-Ray is similar to the Generic Mapping
Tools (GMT). To create an image in POV-Ray we create a text file in the POV scene
description language and then we render this image in POV-Ray. Just as in GMT we will be
writing out our scenes in a text file which tells POV-Ray where the camera, lights, and objects
are.

2. Getting Started

To launch POV-Ray: Start > Programs > POV-Ray for Windows

Now let’s create a new text file to describe our scene:

File > New File

Here is a simple example you can type in:

// This is a simple sphere

// first, the camera position
camera {
 location <0,8,-15>
 look_at <1,0,5>
}

// now add some light
light_source {
 <5,10,-15>
 color rgb <1,1,1>
}

Geophysical Computing L15-2

plane { // the floor
 y, 0 // along the x-z plane (y is the normal vector)
 texture {
 pigment { color <0,0,1> } // checkered pattern
 normal { ripples 20 }
 }
}

sphere {
 <1,3,-5>, 3
 pigment {
 marble
 turbulence 1
 color_map {
 [0.0 color <1,0,0>]
 [0.25 color <0,0,1>]
 [1.0 color <0,1,0>]
 }
 scale 3
 }
 finish { reflection 0.2
 refraction 0.8
 ior 1.5
 phong 1 }
}

First we need to save the file: File > Save As… Let’s just save the file name as sphere.pov.

And now we can render the image by hitting the Run button:

The following image should be rendered. Note that POV-Ray will save the image as sphere.bmp
in the same location as you saved the sphere.pov file.

Geophysical Computing L15-3

Note that we can change the size of the rendered image by going to Render > Edit
Settings/Render and selecting a different size (e.g., 1024 × 768).

Initialization files (.INI files) contain information such as the resolution of the rendered image. If
you need a resolution that is not included in the QUICKRES.INI file you can change them by
going to: Tools > Edit resolution INI file.

3. Camera Angle

The example in the previous section shows a few key points about what is necessary in a POV-
Ray file: (1) camera location, (2) lighting location, and (3) some objects to display (in this case a
plane and a sphere).

To understand where to place the camera we need to first understand the POV-Ray coordinate
system. POV-Ray uses a simple Cartesian coordinate system that looks like this:

The two easiest attributes to use of the camera object is as shown in the first example. Namely
the location and look_at attributes. In our above example we used:

camera {
 location <0,8,-15>
 look_at <1,0,5>
}

Where the location just gives us the x-, y-, and z- coordinates of where the camera is located (x =
0, y = 8, z = -15), and we stated we wanted it to look at the position x = 1, y = 0, and z = 5. We
could make a change and say we want to look directly at the origin by changing the look_at
attribute:

look_at <0,0,0>

It’s more fun now to change the location attribute. Try a few changes, for example:

location <0,10,-50>
location <0,5,-10>

Geophysical Computing L15-4

4. Lighting

Adding lighting to our scene is very similar to that of how we describe the camera position. The
simplest light source is just a point light source.

light_source {
 <5,10,-15>
 color rgb <1,1,1>
}

Here we first specify that we want the light placed at position x = 5, y = 10, and z = -15. We next
state we want to use a white light. We use a RGB vector to describe the color of the light, but
note that in GMT our RGB colors ranged from 0 to 255, in POV-Ray our colors range from 0 to
1. So, the vector <1,1,1> would be the same as 255/255/255 in GMT. In general it’s best to use a
white light source, but you are not restricted to it.

To change our light source so that it is looking directly down on our object try a position:
<0,15,0>

You can also add additional light sources. E.g., just add another line group:

light_source {
 <-20,0,0>
 color rgb <0.5,1,1>
}

5. Simple POV-Ray Objects

Defining a camera position and light source are great, but they serve no purpose unless you have
something to look at. The simplest thing one can do as a new comer to POV-Ray is learn how to
manipulate some of the basic POV-Ray shapes. In general primitive POV-Ray objects are
described as:

Object_Name {
 Object_Parameters
 Some_Simple_Attribute
 Some_Complicated_Attribute {
 Some_Attribute
 }
}

5.1 Sphere

We already saw an example of a sphere above. The basic form of drawing a sphere is as follows:

sphere {
 <center>, radius
}

But, we should add some color to it with the pigment attribute. An example is:

Geophysical Computing L15-5

sphere {
 <0,0,0>, 3
 pigment {
 color rgb <0, 0, 1>
 }
}

To make sure we understand how these objects work let’s create a simple pov-ray file that we can
play with:

// Make Some Simple Objects

camera {
 location <0,10,-10>
 look_at <0,0,0>
}

light_source {
 <5,10,-15>
 color rgb <1,1,1>
}

// Simple Sphere
sphere {
 <0,0,0>, 3
 pigment {
 color rgb <0, 0, 1>
 }
}

There are several classes of basic objects we can use in POV-Ray. The next table shows the basic
syntax for some of the most important.

Object Syntax Example
Box box {

 <corner-1>,
 <corner-2>
}

box {
 <0,0,0>, <3,3,3>
 pigment {
 color rgb <0,0,1>
 }
}

Cone cone {

 <center-1>,
radius-1
 <center-2>,
radius-2
}

cone {
 <0,0,0>, 3
 <0,4,0>, 0
 pigment {
 color rgb <0,0,1>
 }
}

Geophysical Computing L15-6

Object Syntax Example
Cylinder cylinder {

 <center-1>,
 <center-2>,
 radius
}

cylinder {
 <0,0,0>, <0,4,0>,
 3
 pigment {
 color rgb <0,0,1>
 }
}

Disc disc {

 <center>,
 <normal>,
 radius
 [, hole radius]
}

disc {
 <0,0,0>,
 <1,1,0>,
 3, 2
 pigment {
 color rgb <0,0,1>
 }
}

Plane plane {

 <normal>,
offset
}

plane {
 <0,1,0>, 1
 pigment {
 color rgb <0,0,1>
 }
}

Just a plane surface!

Sphere sphere {

 <center>, radius
}

sphere {
 <0,0,0>, 3
 pigment {
 color rgb <0,0,1>
 }
}

Torus torus {

 major radius,
 minor radius
}

torus {
 3, 0.5
 pigment {
 color rgb <0,0,1>
 }
}

Triangle triangle {

 <corner-1>,
 <corner-2>,
 <corner-3>
}

triangle {
 <0,0,0>,
 <1,0,0>,
 <0.5,1,0>
 pigment {
 color rgb <0,0,1>
 }
}

Geophysical Computing L15-7

6. Finish

An objects finish describes how the objects interact with light. For example, how much light they
reflect. To play with the finish attribute let’s look at our simple sphere example again. We can
make our object shine a bit by having our light source hit the sphere and giving it the phong
finish:

camera {
 location <0,10,-10>
 look_at <0,0,0>
}

light_source {
 <5,5,-15>
 color rgb <1,1,1>
}

// create a checker board surface
plane {
 <0,1,0>, -5
 pigment { checker color <1,0,0> color <1,1,1>}
}

// Simple Sphere
sphere {
 <0,0,0>, 3
 pigment { color rgb <0, 0, 1>}
 finish { phong 0.8}
}

The next table describes the primary ways we can apply finish to our objects.

Finish Description Example
ambient How much of the lighting

comes from ambient light
(i.e., light that bounces off
other objects).

Range {0.0 to 1.0}

0.0 means that objects that
are not directly lit will be
black.

Higher values will make
an object appear to glow.

finish {
 ambient 1.0
}

Geophysical Computing L15-8

brilliance How much of the lighting
from direct light sources
will bounce off of the
object.

Range {0.0 to ??}

Large numbers can make
an object more metallic
looking. Numbers less
than 1.0 make the object
look softer.

finish {
brilliance 0.5
}

crand Used to make an object

appear to have a rough
surface.

Range: {0.0 to 1.0}

The larger the number the
rougher the surface.

finish {
 crand 0.5
}

diffuse Similar to the ambient

keyword, but how much of
the lighting will come
from diffuse (direct) light
sources.

Range: {0.0 to 1.0}

finish {
 diffuse 1.0
}

phong Create a highlight on the

object.

Range: {0.0 to 1.0}. The
larger the number the
brighter the highlight.

finish {
 phong 1.0
}

phong_size Describes size of phong

highlight.

Range: {1.0 to 250.0}
The larger the number the
smaller (tighter) the
highlight

finish {
 phong 1.0
 phong_size 1
}

Geophysical Computing L15-9

metallic Only works in conjuction
with phong and specular
finishes. Highlight on
object takes on color
associated with object and
not just on the light color.

finish {
 phong 1.0
metallic}

reflection Using reflection will give

the surface a mirrored
finish.

Range: {0.0 to 1.0}.

A value of 0.0 turns
reflection totally off. The
larger the number the more
reflective the surface is.

finish {
 reflection 1.0
}

specular This is similar to phong, in

that it is used to create a
highlight on the object.
This is purportedly more
realistic than phong.

Range: {0.0 to 1.0}.

The larger the number the
brighter the highlight.

finish {
 specular 1.0
}

roughness This controls the size of

the highlight used in the
specular command.

Range: {0.0005 to 1.0}

The smaller the number
the smoother the object is.

finish {
 specular 1.0
 roughness 1.0
}

refraction Refraction only works if

your objects are partly
transparent. This can be
changed in the pigment
statement. For example:

pigment {
 color rgbf
 <0,0,1,0.8>
}

Will partially transparent
objects light can now
refract through them.

finish {
 refraction 1
}

Geophysical Computing L15-10

Refraction = 0 means to
turn off refraction.

Refraction = 1 means to
turn on refraction.

ior Stands for index of

refraction. By default the
ior = 1.0 which means no
refraction (speed of light is
the same inside and
outside of the object).
This allows us to change
lights index of refraction
for an object

finish {
 refraction 1
 ior 1.5
}

Now that we know all about finish, just for fun try out the following:

// Simple Sphere
sphere {
 <0,0,0>, 3
 pigment { color rgbf <1, 1, 1, 0.8> }
 finish {
 reflection 0.1
 refraction 1.0
 ior 1.5
 phong 0.8
 }
}

For even more fun start adding in texture statements:

// Simple Sphere
sphere {
 <0,0,0>, 3
 texture {
 pigment { color rgbf <1, 1, 1, 0.8> }
 normal { bumps 1/2 scale 1/6 }
 finish {
 reflection 0.1
 refraction 1.0
 ior 1.5
 phong 0.8
 }
 }
}

Geophysical Computing L15-11

7. Image Overlays

In our next lecture we will go over the different uses of the pigment command in detail. But, for
now let’s look at one of the most useful keywords: image_map. On the course web page the
material for this lecture contains a file called: Earth Surface, Clouds & Ocean. Download this
file into the directory where you are keeping your .pov files. Unzip these files and note that these
are just .png images of the Earth. Now, see how simple it is to overlay this on a sphere in POV-
Ray using the pigment command:

// Earth Sphere
sphere {
 <0,0,0>, 3
 pigment {image_map {png "./Earth/03_Earth_Land.png"
 map_type 1 interpolate 2 }}
}

Of course, we don’t necessarily need to restrict ourselves to a spherical Earth…

box {
 <-3,-3,-3>, <3,3,3>
 pigment {image_map {png "./Earth/03_Earth_Land.png"
 map_type 1 interpolate 2 }}
}

The most important modifier is map_type:

• map_type = 0: This is a planar mapping. We will describe it more below.

• map_type = 1: This is the spherical mapping. The image is wrapped around the origin.

• map_type = 2: This is a cylindrical mapping. The image is wrapped around the y-axis.

• map_type = 5: This is a toroidal mapping. Fantastic if you ever find the need to wrap

an image on a donut.

For plotting maps onto spheres we will typically want to use the map_type 1 modifier. But it is
often useful to paste planar images onto surface.

For example the following image of a nebula is taken from the Hubble telescope:

Geophysical Computing L15-12

This image is of size 1024 × 831 pixels. It might make a really nice background image. So, let’s
create a plane surface in the x-y plane and image_map this onto it:

plane {
 <0,0,1>, 50
 pigment {image_map
 {png "./Hubble/04_Hubble.png" map_type 0 interpolate 2 }
 }
 }

What you get is the next image. It’s not too useful. The problem is that the normal image map
takes any image no matter what it’s size and maps it onto the interval from 0-1 (for both axes).
So, not only does the image turn out small it is also now stretched. It also repeats the image over
and over.

The key is to start scaling the image. Since the image wider than it is tall we can use different
scales for the different axes. For example,

camera {
 location <0,0,-40>
 look_at <20,18,-5>
}

light_source {
 <5,5,-15>
 color rgb <1,1,1>
}

plane {
 <0,0,1>, 50
 pigment {image_map {png "./Hubble/04_Hubble.png" map_type 0
 interpolate 2 once}
 scale <123,100,0>
 }
}

Using the once key word will turn off wrapping the image. The image below shows that we can
build up perspective views of our image maps for nice effects.

Geophysical Computing L15-13

8. Translation and Rotation

If you play around with image mapping onto spherical objects POV-Ray only seems to behave
well if you place the sphere at the plot origin. That isn’t very useful if you want multiple objects.
Luckily, we have the translate function.

Translate basically just tells us by how much in the x-, y-, and z- directions to move our object
by. E.g., for our example of the Earth we can move it over in the positive x-direction by:

camera {
 location <0,0,-10>
 look_at <0,0,0>
}

light_source {
 <5,5,-15>
 color rgb <1,1,1>
}

sphere {
 <0,0,0>, 3
 pigment {image_map {png "./Earth/03_Earth_Land.png"
 map_type 1 interpolate 2 }}
 translate <5,0,0>
}

Rotate is really useful for our image maps mapped to spheres. We could change our look_at
parameter for our camera. But, it would be easier just to rotate the sphere. The rotate command
looks like:

rotate <x angle, y angle, z angle>

Which tells us how many degrees to rotate our object around one of the principal axes. For
example, change our earth plot to:

Geophysical Computing L15-14

sphere {
 <0,0,0>, 3
 pigment {image_map {png "./Earth/03_Earth_Land.png"
 map_type 1 interpolate 2 }}
 rotate <30,180,0>
}

9. Homework

1) On the course web page there is a large tar file called Solar System Objects. This file contains
surface maps of many of the bodies in our solar system. This is my collection of image maps,
and is not complete, but about as complete and as current as you will find anywhere I think. Use
these images to do something creative in POV-Ray that utilizes at least 2 objects. Print out a
copy of your image and bring to the next class. We will vote on the best image with the winner
taking home a prize! Here is an example image I created in about 15 minutes. Now, good luck
and have fun!

