
Geophysical Computing L16-1

L16 – Povray - Part 2

1. Pigment

In the previous lecture we have briefly introduced pigments. This section should tell you pretty
much everything you need to know about them.

Solid Colors

Our previous examples showed us how to make objects solid colors. To remind us, let’s draw a
sphere and make it red:

camera {
 location <0,0,-10>
 look_at <0,0,0>
}

light_source {
 <5,5,-15>
 color rgb <1,1,1>
}

background {
 color rgb <1,1,1>
}

sphere {
 <0,0,0>, 4
 pigment {color rgb <1,0,0>}
}

We just declared our pigment to be a color with the statement color rgb.

Color Maps

Many of the pigment options that we can use are best used when combined with a color map.
The concept of a color map in POV-Ray is quite similar to that in GMT. Only we usually define
the range of colors to be between 0 and 1 as many of the pigment options act on the 0-1 range of
color maps. Below is an example of how to define a color map in POV-Ray.

// Red-to-Blue through White Color Map
color_map {
 [0.0 color rgb <1,0,0>]
 [0.3 color rgb <1,0,0>]
 [0.5 color rgb <1,1,1>]
 [0.7 color rgb <0,0,1>]
 [1.0 color rgb <0,0,1>]
 }

Geophysical Computing L16-2

As an example of how to use this we can replace the sphere command we used in the above
example by:

#declare Red_Blue =
color_map {
[0.0 color rgb <1,0,0>]
[0.3 color rgb <1,0,0>]
[0.5 color rgb <1,1,1>]
[0.7 color rgb <0,0,1>]
[1.0 color rgb <0,0,1>]
}

sphere {
 <0,0,0>, 4
 pigment { agate
 color_map {Red_Blue}
 }
}

There are three main points to be made from the above example:

• We used the special pigment agate that gives a swirly agate-like appearance to our
sphere.

• The colors that the agate function used were defined by the color map.

• We can use #declare to give names to specific objects (in this case a color map) so we

don’t have to re-type them over and over if we want to use them more than once.

The next table shows the different ways that we can affect the color table.

Pigment Syntax Example
Agate pigment {

agate
}

pigment { agate
color_map {Red_Blue}
}

Bozo pigment {
bozo
}

pigment { bozo
color_map {Red_Blue}
}

Geophysical Computing L16-3

Checker pigment {
 checker
 color color-a
 color color-b
}

pigment {
 checker
 color rgb <1,0,0>
 color rgb <1,1,1>
}

Frequency Frequency controls how
many times the color
map is used over the
0.0 to 1.0 range. E.g.,
Frequency 2 will cause
the color map to repeat
itself 2 times.

pigment { bozo
color_map {Red_Blue}
frequency 5
}

Gradient pigment {
gradient <x,y,z>
}

The vector in this
command is normal to
the direction of the
gradient.

pigment {
gradient <1,1,0>
color_map {Red_Blue}
}

Granite pigment {
granite
}

pigment { granite
color_map {Red_Blue}
frequency 5
}

Hexagon pigment {
 hexagon
 color color-a
 color color-b
 color color-c
}

pigment {
 hexagon
 color rgb <1,0,0>
 color rgb <1,1,1>
 color rgb <0,0,1>
 }

Leopard pigment {
leopard
}

pigment { leopard
color_map {Red_Blue}
frequency 2
}

Mandel Creates a pattern that
looks like the
Mandelbrot set. The
number after mandel
states how many
interations to calculate
in making the pattern.

pigment {mandel 50
color_map {Red_Blue}
scale 2.5
}

Geophysical Computing L16-4

Marble pigment {
marble
}

pigment {marble
color_map {Red_Blue}
}

Onion pigment {
onion
}

Note that the onion
command doesn’t work
well with the sphere
(the sphere would be
only one color)

box {
 <-3,-3,-3>,
 <3,3,3>
 pigment { onion
 color_map
 {Red_Blue}
 }
rotate <-30,-30,0>
}

Phase Offset’s the phase of
the color map.

Range: 0.0 to 1.0

box {
 <-3,-3,-3>,
 <3,3,3>
 pigment { onion
 color_map
 {Red_Blue}
 phase 0.5
 }
rotate <-30,-30,0>
}

Radial pigment {
radial
}

pigment { radial
 color_map
 {Red_Blue}
}
rotate <0,60,0>

Spotted pigment {
spotted
}

pigment {spotted
color_map {Red_Blue}
}

Wood pigment {
wood
}

If you really want
wood, then better not
use the Red_Blud color
table.

pigment {wood
color_map {Red_Blue}
}

Geophysical Computing L16-5

We can also modify our pigment commands with turbulence. What does turbulence do? You
guessed it. It stirs things up a bit. To see its use consider the next two examples:

pigment {wood
color_map {Red_Blue}
turbulence 0.2
}

pigment {wood
color_map {Red_Blue}
turbulence <0.2,0,0>
}

Here we applied the turbulence command to our wood example from above. The first example
applied equal amounts of turbulence (defined in the range from 0.0 to 1.0) in all directions. The
second example only applied turbulence in the x-direction.

Now, perhaps you can see why we waited until the 2nd lecture to give a run down on the basics of
the pigment command. Namely, it took almost 5 pages to do it.

2. Height Fields

Height fields are one of the most useful objects for visualizing real data in POV-Ray. To
demonstrate how to use height fields let’s look back at an example of visualizing elevation data.
Lecture #7 discussed making GMT .grd files from Digital Elevation Model (DEM) data. In the
material for the current lecture I include a .grd file generated for the Zion National Park area.
Download that file now as we will use it to generate a height field in POV-Ray.

With GMT and ImageMagick we can make a plot of the Zion.grd file and then convert this
image to a .gif file. The following script shows an example of how to do this.

#!/bin/csh

Set input/output
set Gridfile = Zion.grd #name of input .grd file to use
set output = Zion_Height.gif #name of output file. Must contain
 # .gif extension

Set map boundaries
set xmin = 300000
set xmax = 339995
set ymin = 4100005
set ymax = 4160000

Geophysical Computing L16-6

Make color palette table to utilize the maximum range of elevations
Note that image should be gray scale. Lowest elevations should
be colored black, ranging to hightest elevations white
gmtset COLOR_BACKGROUND 0/0/0
gmtset PAGE_COLOR 0/0/0
set cscale = `grdinfo -T100 $Gridfile`
makecpt -Cgray -M -Z $cscale >! height.cpt

Generate the postscript file
grdimage $Gridfile -R${xmin}/${xmax}/${ymin}/${ymax} -Jx1:250000 \
 -Cheight.cpt -Qs -E300 -P >! Height.ps

rm height.cpt

Make .gif file for use with POV-Ray height fields
convert Height.ps $output

Show the .gif height field
rm Height.ps
display $output

Running this script will generate a .gif image of Zion National Park that looks like this:

The most important points about this process are:

• To make a height field in POV-Ray we need a .gif image. Other formats are also
supported but the .gif file format is simple to deal with.

• The .gif format allows for a range in gray from 0-255, hence only 256 distinct elevations

are allowable. Hence, we wish to maximize our color palette table to include just the
range of elevations in the .grd file.

• The .gif file should be in gray scale. Noting that the minimum elevations should be color

coded black and ranging up to white for the maximum elevations.

Geophysical Computing L16-7

Now that we have a .gif file as created in the above example it is simple to visualize this in POV-
Ray. The following script shows the simplest (no-frills) way to do this:

camera {
 location <0,5,0>
 look_at <0,0,3>
}

light_source {
 <1,10,0>
 color rgb <1,1,1>
}

height_field {
 gif "Zion_Height.gif"
 smooth
 pigment {color rgb <0,1,0>
 }
 finish {phong 0.4}
 scale <6,0,6>
 translate <-3,0,0>
}

An important note to make is that with POV-Ray we are not limited in where we can place our
camera location whereas in GMT our camera location is constrained to be off at infinity. So, for
example, we can zoom in to very unique views.

In addition, one can now play with all of POV-Ray’s unique finishes, textures, pigments and so
on to create very realistic views, including the addition of clouds and other objects. It is up to
you as an artist at this point.

As another point, almost anything can be turned into a height field. For example, open up Adobe
Photoshop or ImageReady and create a black and white file with some text. For example, I
created the following .gif file where I just typed my name:

Note that if saving a .gif file in Photoshop or ImageReady you need to set Reduction to
Grayscale or it might not work properly. Now we can use this as a height field in POV-Ray:

Geophysical Computing L16-8

As a final note, what you do with this type of height field object is pretty much up to your
creativity. Once you get used to playing around with POV-Ray you stick these height fields on
objects and do all kinds of interesting things (see the next section on bump maps)!

3. Normals

The normal attribute modifies the normal surface vectors to give an appearance of bumpiness.
The next table shows the basic ways this can be done.

Normal Syntax Example
Bumps normal {bumps

bump_size}

bump_size can
range from 0.0 (no
bumps) to 1.0
(maximum size)

sphere {
 <0,0,0>, 4
 pigment {color rgb
<1,0,0>}
 normal {bumps 1.0}
 finish {phong 0.8}
}

Dents normal {dents

dent_size}

dent_size can range
from 0.0 (no dents)
to 1.0 (maximum
size)

normal {dents 1.0}

Ripples normal

{ripples size}

size takes the
standard input
range from 0.0 to
1.0.

box {
 <-3,-3,-3>,
 <3,3,3>
 pigment {color rgb
 <1,0,0>}
 normal {ripples 1.0}
 rotate <-30,-30,0>
 finish {phong 0.8}
}

Waves normal {waves
size}

size takes the
standard input
range from 0.0 to
1.0.

normal {waves 1.0}

Wrinkles normal

{wrinkles
size}

size takes the
standard input
range from 0.0 to
1.0.

normal {wrinkles 1.0}

Geophysical Computing L16-9

Bump Maps

One of the most interesting way to affect the normals is to use the bump_map attribute. This is
like a cross between an image_map and a height_field, allowing us to extrude image information
onto an object. The next example shows how to do this simply with the .gif image of my name
that we generated earlier.

camera {
 location <0,1,-10>
 look_at <0,0,0>
}

light_source {
 <0,0,-20>
 color rgb <1,1,1>
}

sphere {
 <0,0,0>, 3
 pigment {color rgb <1,0,0>}
 normal{
 bump_map {
 gif "Mike_1.gif"
 bump_size 1
 map_type 1
 interpolate 2
 }
 }
 finish {phong 0.8}
 rotate <-20,0,0>
}

4. Homework

(1) Generate a height field image of some region of Utah (e.g., Antelope Island, Twin Peaks
Wilderness, King’s Peak area, etc.). Generate two images: (a) an aerial overview and (b) a
zoomed in view to a specific region of interest. Use the various pigment, finish, and normals
modifiers we have discussed thus far to generate the image. As an example, below is an image I
created looking at the Wasatch Front (Mt. Olympus is in the center of the frame).

Geophysical Computing L16-10

