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L20 – MPI Example, Numerical Integration 

 

 

1. Numerical Integration 

 

Let’s now consider a real problem to write a parallel code for.  Let’s take the case of 

numerical integration. 

 

In 1-dimension the definite integral is defined as: 

 

𝐸 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

And we can use the mean value theorem to approximate this integral by: 

 

𝐸𝑁 =
(𝑏 − 𝑎)

𝑁
∑ 𝑓(𝑥𝑖)

𝑁

𝑖=1

 

 

Where the points xi should cover the entire interval of integration.  In the limit of large N, EN 

should approach the exact value of E.  But, this is crude. 

 

Instead let’s consider how to do this as a Monte Carlo simulation.  Monte Carlo methods typically 

use random sampling to investigate the problem.  Hence, the term Monte Carlo comes from the 

Monte Carlo casino located in Monaco.   

 

For illustration let’s calculate the integral of: 

 

𝑓(𝑥) =  cos2 𝑥 
 

 
 

Let’s just consider the interval from 0 to π.  We can determine the value of this integral 

analytically as E = π/2 ~ 1.5708. 

 

If we let fmax be the maximum value of the function, and xmax be the maximum range to calculate 

the integral over, we can define a rectangle with area xmax × fmax. 
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The integral of our function would just be the area of this rectangle that occurs under the curve.  

That is the red area in the figure above. To use a Monte-Carlo estimate we basically just hang a 

picture of this function up on the wall and randomly throw darts at it.  Then we tabulate the 

number of darts that fall above the curve and the number of darts that fall below the curve.  For 

example, let’s assume we threw the following 5 darts, marked by circles. 

 

 
 

Here the two red darts fell below the curve, and the three black darts fell above the curve.  We 

would estimate the integral as: 

 

𝐸𝑁 =  
# 𝑏𝑒𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 # 𝑑𝑎𝑟𝑡𝑠
(𝑓𝑚𝑎𝑥 × 𝑥𝑚𝑎𝑥) 

 

⟹ 𝐸𝑁 =  
2

5
(1 × 𝜋) = 1.657 

 

Not a great first guess.  But, let’s keep throwing darts.  Let’s do this a bit more automatically, and 

write a Fortran90 code to do it for us. 
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PROGRAM monte 

IMPLICIT NONE 

 

REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: xrand, yrand 

REAL(KIND=8) :: xmax, fmax, fr, En 

INTEGER(KIND=4) :: N, Kseed, J, Nbelow 

 

N = 1000 

xmax = 3.141592654 

fmax = 1.0 

 

 

ALLOCATE(xrand(N)) 

ALLOCATE(yrand(N)) 

 

Kseed = 1 

CALL RANDOM_SEED(SIZE=Kseed) 

CALL RANDOM_NUMBER(xrand(:)) 

CALL RANDOM_NUMBER(yrand(:)) 

 

xrand(:) = xrand(:)*xmax  

yrand(:) = yrand(:)*fmax  

 

Nbelow = 0 

DO J=1,N 

  fr = (cos(xrand(J)))**2 

  IF (yrand(J) <= fr) THEN 

    Nbelow = Nbelow + 1 

  ENDIF 

ENDDO 

 

!estimate integral 

En = (float(Nbelow)/float(N))*(fmax*xmax) 

write(*,*) En 

write(*,*) Nbelow 

 

OPEN(UNIT=1,FILE='darts.xy') 

DO J=1,N 

  write(1,*) xrand(J), yrand(J) 

ENDDO 

CLOSE(1) 

 

END PROGRAM monte 

 

 

Here are the actual positions using 1,000 darts from the above code: 
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In this case, I got 483 darts below the curve (red darts), and an estimate of the integral as: 

 

⟹ 𝐸𝑁 =  
483

1000
(1 × 𝜋) = 1.5174 

 

Which is a much better estimate, but not quite good enough yet. 

 

Now, try running the code more times and fill in the following table.  Be sure to add to the code 

an estimate of the error. 

 

N EN Error (%) 

1,000   

10,000   

100,000   

1,000,000   

 

Where the error is defined as: 

 

𝐸𝑟𝑟𝑜𝑟 =
|𝐸𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
× 100% 

 

Obviously, to improve on our estimate we need to throw more darts.  So how can we do this 

efficiently?  Well let’s let multiple processors work on the problem simultaneously. 

 

2. Parallel Monte Carlo Approach 

 
So, to write this as a parallel application one needs to think about how to go about the problem.  

In this case, it seems quite simple.  We just let each processor throw the same number of darts at 

the dartboard, making sure that each processor is throwing a different set of darts, and tabulate all 

of the darts thrown that lie under the curve. 

 

First, let’s consider for a brief moment a thing or two about random numbers.  How are they 

generated?  Are they really random?  Well, the answer is in general no, because you need to have 

a program generate the numbers, i.e., an algorithm, and thus the numbers are pseudorandom. For, 

example check out the cellular automaton RULE 30 from Wolfram (just Wikipedia Rule 30), 

which is a pretty simple way of generating random numbers.  

 

If we call the random number generator in Fortran as we did above, 
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CALL RANDOM_NUMBER(xrand(:)) 

 

This will return the same numbers every time.  But, calling it again and again, will produce new 

sets of numbers.  Hence, for our parallel application we will try multiple random number calls. 

 

OK, so let’s set up the problem. If we were doing this on four processors we might think about 

this as follows: 

 

 
 

I did this as above for 4 cases, each with 1,000 dart throws with a different random seed in each 

case and got the # of darts below the curve as indicated. 

 

Then, the integral estimate would be: 

 

⟹ 𝐸𝑁 =  
(483 + 489 + 509 + 516)

(1000 + 1000 + 1000 + 1000)
(1 × 𝜋) = 1.5684 

 

Which is a minor improvement.  So, let’s pursue this in a more generalized sense, and write a 

code that allows us to use a variable number of processors.  We will just modify the code above 

to achieve this. 

 
PROGRAM monte 

USE mpi 

IMPLICIT NONE 

 

REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: xrand, yrand 

REAL(KIND=8) :: xmax, fmax, fr, En 

INTEGER(KIND=4) :: N, Kseed, J, Nbelow, Ntotal, Nbtemp 

INTEGER(KIND=4) :: mpi_ierr, nprocs, myrank 

INTEGER(KIND=4) :: mstatus(MPI_STATUS_SIZE) 

 

! Initialize the MPI environment 

!---------------------------------------------------------------------! 

CALL MPI_Init(mpi_ierr) 

CALL MPI_Comm_size(MPI_COMM_WORLD,nprocs,mpi_ierr) 



Geophysical Computing  L20-6 

CALL MPI_Comm_rank(MPI_COMM_WORLD,myrank,mpi_ierr) 

!---------------------------------------------------------------------! 

 

! Initialize parameters 

!---------------------------------------------------------------------! 

N = 1000 

xmax = 3.141592654 

fmax = 1.0 

!---------------------------------------------------------------------! 

 

!Allocate memory 

!---------------------------------------------------------------------! 

(xrand(N)) ALLOCATE

(yrand(N)) ALLOCATE

!---------------------------------------------------------------------! 

 

! Populate random numbers differently for each rank 

!---------------------------------------------------------------------! 

Kseed = 1 

 J 1,(myrank+1) DO =

  CALL RANDOM_SEED(SIZE=Kseed) 

  CALL RANDOM_NUMBER(xrand(:)) 

  CALL RANDOM_NUMBER(yrand(:)) 

ENDDO 

 

xrand(:) xrand(:) xmax   = *

yrand(:)  yrand(:) fmax  = *

!---------------------------------------------------------------------! 

 

!Now calculate Nbelow on each processor 

!---------------------------------------------------------------------! 

Nbelow = 0 

DO J=1,N 

  fr = (cos(xrand(J)))**2 

  IF (yrand(J) <= fr) THEN 

    Nbelow = Nbelow + 1 

  ENDIF 

ENDDO 

 

!write out value of Nbelow for each rank 

write(*,*) "myrank= ", myrank, "Nbelow= ", Nbelow 

!---------------------------------------------------------------------! 

 

! Now tabulate all of the Nbelows and total throws onto rank 0 

!---------------------------------------------------------------------! 

! First send the messages 

IF (myrank > 0) THEN 

  CALL MPI_Send(Nbelow,1,MPI_INTEGER,0,myrank,MPI_COMM_WORLD,mpi_ierr) 

ENDIF 

 

! Now receive them on rank 0 

IF (myrank == 0) THEN 

  Ntotal = N 

  DO J=1,(nprocs-1) 
    CALL MPI_Recv(Nbtemp,1,MPI_INTEGER,J,J,MPI_COMM_WORLD,mstatus,mpi_ierr) 

    Ntotal = Ntotal + N 

    Nbelow = Nbelow + Nbtemp 
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  ENDDO 

  write(*,*) "Ntotal= ", Ntotal, "Nbelow= ", Nbelow 

ENDIF 

!---------------------------------------------------------------------! 

 

!estimate integral 

!---------------------------------------------------------------------! 

IF (myrank == 0) THEN 

  En = (float(Nbelow)/float(Ntotal))*(fmax*xmax) 

  write(*,*) "En= ", En 

ENDIF 

!---------------------------------------------------------------------! 

 

CALL MPI_Finalize(mpi_ierr) 

 

END PROGRAM monte 

 

 

3. Homework 

 

Calculate the following integrals: 

 

a) ∫ sin2(𝜋 cos 3𝜃)
𝜋

0
cos2 𝜃𝑑𝜃 

 

b) ∫
𝑥3

𝑥4+16
𝑑𝑥

10

0
 

 

c) ∫ sin4(3𝑥)
𝜋

0
𝑑𝑥 

 


