
Geophysical Computing L20-1

L20 – MPI Example, Numerical Integration

1. Numerical Integration

Let’s now consider a real problem to write a parallel code for. Let’s take the case of

numerical integration.

In 1-dimension the definite integral is defined as:

𝐸 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

And we can use the mean value theorem to approximate this integral by:

𝐸𝑁 =
(𝑏 − 𝑎)

𝑁
∑ 𝑓(𝑥𝑖)

𝑁

𝑖=1

Where the points xi should cover the entire interval of integration. In the limit of large N, EN

should approach the exact value of E. But, this is crude.

Instead let’s consider how to do this as a Monte Carlo simulation. Monte Carlo methods typically

use random sampling to investigate the problem. Hence, the term Monte Carlo comes from the

Monte Carlo casino located in Monaco.

For illustration let’s calculate the integral of:

𝑓(𝑥) = cos2 𝑥

Let’s just consider the interval from 0 to π. We can determine the value of this integral

analytically as E = π/2 ~ 1.5708.

If we let fmax be the maximum value of the function, and xmax be the maximum range to calculate

the integral over, we can define a rectangle with area xmax × fmax.

Geophysical Computing L20-2

The integral of our function would just be the area of this rectangle that occurs under the curve.

That is the red area in the figure above. To use a Monte-Carlo estimate we basically just hang a

picture of this function up on the wall and randomly throw darts at it. Then we tabulate the

number of darts that fall above the curve and the number of darts that fall below the curve. For

example, let’s assume we threw the following 5 darts, marked by circles.

Here the two red darts fell below the curve, and the three black darts fell above the curve. We

would estimate the integral as:

𝐸𝑁 =
𝑏𝑒𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 # 𝑑𝑎𝑟𝑡𝑠
(𝑓𝑚𝑎𝑥 × 𝑥𝑚𝑎𝑥)

⟹ 𝐸𝑁 =
2

5
(1 × 𝜋) = 1.657

Not a great first guess. But, let’s keep throwing darts. Let’s do this a bit more automatically, and

write a Fortran90 code to do it for us.

Geophysical Computing L20-3

PROGRAM monte

IMPLICIT NONE

REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: xrand, yrand

REAL(KIND=8) :: xmax, fmax, fr, En

INTEGER(KIND=4) :: N, Kseed, J, Nbelow

N = 1000

xmax = 3.141592654

fmax = 1.0

ALLOCATE(xrand(N))

ALLOCATE(yrand(N))

Kseed = 1

CALL RANDOM_SEED(SIZE=Kseed)

CALL RANDOM_NUMBER(xrand(:))

CALL RANDOM_NUMBER(yrand(:))

xrand(:) = xrand(:)*xmax

yrand(:) = yrand(:)*fmax

Nbelow = 0

DO J=1,N

 fr = (cos(xrand(J)))**2

 IF (yrand(J) <= fr) THEN

 Nbelow = Nbelow + 1

 ENDIF

ENDDO

!estimate integral

En = (float(Nbelow)/float(N))*(fmax*xmax)

write(*,*) En

write(*,*) Nbelow

OPEN(UNIT=1,FILE='darts.xy')

DO J=1,N

 write(1,*) xrand(J), yrand(J)

ENDDO

CLOSE(1)

END PROGRAM monte

Here are the actual positions using 1,000 darts from the above code:

Geophysical Computing L20-4

In this case, I got 483 darts below the curve (red darts), and an estimate of the integral as:

⟹ 𝐸𝑁 =
483

1000
(1 × 𝜋) = 1.5174

Which is a much better estimate, but not quite good enough yet.

Now, try running the code more times and fill in the following table. Be sure to add to the code

an estimate of the error.

N EN Error (%)

1,000

10,000

100,000

1,000,000

Where the error is defined as:

𝐸𝑟𝑟𝑜𝑟 =
|𝐸𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
× 100%

Obviously, to improve on our estimate we need to throw more darts. So how can we do this

efficiently? Well let’s let multiple processors work on the problem simultaneously.

2. Parallel Monte Carlo Approach

So, to write this as a parallel application one needs to think about how to go about the problem.

In this case, it seems quite simple. We just let each processor throw the same number of darts at

the dartboard, making sure that each processor is throwing a different set of darts, and tabulate all

of the darts thrown that lie under the curve.

First, let’s consider for a brief moment a thing or two about random numbers. How are they

generated? Are they really random? Well, the answer is in general no, because you need to have

a program generate the numbers, i.e., an algorithm, and thus the numbers are pseudorandom. For,

example check out the cellular automaton RULE 30 from Wolfram (just Wikipedia Rule 30),

which is a pretty simple way of generating random numbers.

If we call the random number generator in Fortran as we did above,

Geophysical Computing L20-5

CALL RANDOM_NUMBER(xrand(:))

This will return the same numbers every time. But, calling it again and again, will produce new

sets of numbers. Hence, for our parallel application we will try multiple random number calls.

OK, so let’s set up the problem. If we were doing this on four processors we might think about

this as follows:

I did this as above for 4 cases, each with 1,000 dart throws with a different random seed in each

case and got the # of darts below the curve as indicated.

Then, the integral estimate would be:

⟹ 𝐸𝑁 =
(483 + 489 + 509 + 516)

(1000 + 1000 + 1000 + 1000)
(1 × 𝜋) = 1.5684

Which is a minor improvement. So, let’s pursue this in a more generalized sense, and write a

code that allows us to use a variable number of processors. We will just modify the code above

to achieve this.

PROGRAM monte

USE mpi

IMPLICIT NONE

REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: xrand, yrand

REAL(KIND=8) :: xmax, fmax, fr, En

INTEGER(KIND=4) :: N, Kseed, J, Nbelow, Ntotal, Nbtemp

INTEGER(KIND=4) :: mpi_ierr, nprocs, myrank

INTEGER(KIND=4) :: mstatus(MPI_STATUS_SIZE)

! Initialize the MPI environment

!---!

CALL MPI_Init(mpi_ierr)

CALL MPI_Comm_size(MPI_COMM_WORLD,nprocs,mpi_ierr)

Geophysical Computing L20-6

CALL MPI_Comm_rank(MPI_COMM_WORLD,myrank,mpi_ierr)

!---!

! Initialize parameters

!---!

N = 1000

xmax = 3.141592654

fmax = 1.0

!---!

!Allocate memory

!---!

(xrand(N)) ALLOCATE

(yrand(N)) ALLOCATE

!---!

! Populate random numbers differently for each rank

!---!

Kseed = 1

 J 1,(myrank+1) DO =

 CALL RANDOM_SEED(SIZE=Kseed)

 CALL RANDOM_NUMBER(xrand(:))

 CALL RANDOM_NUMBER(yrand(:))

ENDDO

xrand(:) xrand(:) xmax = *

yrand(:) yrand(:) fmax = *

!---!

!Now calculate Nbelow on each processor

!---!

Nbelow = 0

DO J=1,N

 fr = (cos(xrand(J)))**2

 IF (yrand(J) <= fr) THEN

 Nbelow = Nbelow + 1

 ENDIF

ENDDO

!write out value of Nbelow for each rank

write(*,*) "myrank= ", myrank, "Nbelow= ", Nbelow

!---!

! Now tabulate all of the Nbelows and total throws onto rank 0

!---!

! First send the messages

IF (myrank > 0) THEN

 CALL MPI_Send(Nbelow,1,MPI_INTEGER,0,myrank,MPI_COMM_WORLD,mpi_ierr)

ENDIF

! Now receive them on rank 0

IF (myrank == 0) THEN

 Ntotal = N

 DO J=1,(nprocs-1)
 CALL MPI_Recv(Nbtemp,1,MPI_INTEGER,J,J,MPI_COMM_WORLD,mstatus,mpi_ierr)

 Ntotal = Ntotal + N

 Nbelow = Nbelow + Nbtemp

Geophysical Computing L20-7

 ENDDO

 write(*,*) "Ntotal= ", Ntotal, "Nbelow= ", Nbelow

ENDIF

!---!

!estimate integral

!---!

IF (myrank == 0) THEN

 En = (float(Nbelow)/float(Ntotal))*(fmax*xmax)

 write(*,*) "En= ", En

ENDIF

!---!

CALL MPI_Finalize(mpi_ierr)

END PROGRAM monte

3. Homework

Calculate the following integrals:

a) ∫ sin2(𝜋 cos 3𝜃)
𝜋

0
cos2 𝜃𝑑𝜃

b) ∫
𝑥3

𝑥4+16
𝑑𝑥

10

0

c) ∫ sin4(3𝑥)
𝜋

0
𝑑𝑥

