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Abstract

Synchrotron X-ray computed microtomography (CmT) is a non-destructive technique for imaging porous and

compositionally heterogeneous samples in three dimensions at the microscale. In this study, we report a package of

FORTRAN algorithms for digital image optimization and three-dimensional analysis of porosity, pore connectivity,

and pore structure within a CmT volume. The algorithm Tomo optimize optimizes digital data by utilizing a series of

matrix filters and contrast transforms. Tomo classify labels individual voxels within the data set as solid, internal pore

space, or external void space, thus defining virtual volume boundaries. Tomo analysis calculates total porosity, porosity

from interior pores (completely surrounded by solid), and porosity from connected pores (open to external void space),

and provides an output of each pore and its pore size (number of voxels per pore). The algorithms were tested on two

natural samples from hydrothermal vent chimneys. Physical volume was 116 and 72mm3 for each sample and CmT
spatial resolution was estimated to be 57mm. Porosity determined by the CmT algorithms was 14.1% and 15.4%,

respectively. The majority of porosity (>98%) was due to connected pores rather than isolated pores, and most of the

pore volume contributing to total porosity of both samples (>90%) was from one large interconnected pore. While

total porosity was similar for both samples, three-dimensional visual reconstructions showed a more channelized pore

structure in one sample. Sensitivity analyses were performed to test the effect of different cut-off values for air, internal

pore space, and solid entered by the user before and after image processing on porosity calculations. These algorithms

provide an integrated image processing and analysis package for synchrotron CmT data that should be useful for the

analysis of microporous structures as this technique gains popularity.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Synchrotron X-ray computed microtomography

(CmT) imaging and data processing are powerful new

methods for the analysis of three-dimensional digital

data sets of physical volumes. Synchrotron CmT is

similar to laboratory or industrial computed tomogra-

phy in which a sample is imaged by passing X-rays

through it over a 180� rotation, collecting the trans-

mitted intensity (which is a function of material

composition and density), and mathematically recon-

structing the three-dimensional sample volume. Use of

synchrotron X-rays has several advantages compared to

laboratory or industrial X-ray sources. These include:

(i) a high photon flux permits measurements at high

spatial resolution; (ii) the X-ray source is tunable, thus
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allowing measurements at different energies; (iii) the X-

ray radiation is monochromatic, which eliminates beam-

hardening effects; and (iv) the beam is flat (line

scanning), which simplifies the reconstruction. Methods

and applications of synchrotron and conventional

computerized X-ray tomography are reviewed in Well-

ington and Vinegar (1987), Bonse and Busch (1999),

Rivers et al. (1999), and Ketcham and Carlson (2001).

A number of studies have examined natural and

synthetic samples using synchrotron X-ray CmT with

materials science, geological, and chemical applications.

For example, bulk properties of sandstones, such as

porosity, chord-length distribution, pore-size distribu-

tion, and coarseness, were determined by extracting

correlation functions from the images and applying

them to statistical analyses of the sample (Coker et al.,

1996). Other studies have used synchrotron CmT to

image void space and solid in different sandstones,

vesiculated basalt, and Danish chalk on scales of 5–

20mm voxel resolution (Spanne et al., 1994; Lindquist

et al., 1996, 2000; Lindquist and Venkatarangan, 1999).

Algorithms calculating pore space and degree of pore

connectivity have been developed for the analysis of

physical properties related to fluid flow dynamics (e.g.,

Coker et al., 1996; Lindquist et al., 1996; Proussevitch

and Sahagian, 2001). One of the first algorithms was the

medial axis technique developed by Lindquist et al.

(1996), in which an axis or backbone is created through

the central portions of channels to form vectors

representing flow paths. Other algorithms fit spheres to

pore spaces or use peel-off techniques to determine

object morphology (Delerue et al., 1999; Proussevitch

and Sahagian, 2001).

Previous CmT studies of geologic materials have

typically analyzed a binary system of void space and

solid with mostly silica and silicate minerals of similar

density (e.g., sandstone). Volumes with heterogeneous

mixtures of minerals of different density, such as

mixtures of sulfides and sulfates or carbonates, have

different absorption coefficients and thus non-uniform

X-ray attenuation. In addition, synchrotron radiation

allows volume collection at different energies and

volume subtraction to enhance contrast. This variability

in materials and collection methods leads to a wide

range of grayscale values within and among data sets.

Image and contrast optimization can help to correctly

differentiate solids of different density from each other

and from void space. In tomography studies at low

resolution, difficulty arises in the classification of voxels

that are not completely homogeneous but fall on

boundaries between solid and air, or between solids of

different density (partial volume effect). Some studies,

particularly in the medical field, have used mixture

models to allow for sub-voxel resolution by assigning a

continuum of classification values (e.g., Choi et al., 1991;

Santago and Gage, 1993; Soltanian-Zadeh et al., 1993;

Roll et al., 1994; Ballester et al., 2002). While mixture

models are one approach, in this study we use an

alternate method of image optimization and filtering to

enhance contrast between solid material and void space

in order to improve boundary definition, and then assign

a binary classification of solid or void space based on a

cut-off value chosen by the user. Owing to the high

resolution achievable with synchrotron CmT but the

variability in grayscale, this binary approach simplifies

voxel classification by eliminating errors associated with

partial voxel classification without the introduction of

large errors associated with defining solid edges.

In this paper, we report algorithms for image

optimization, voxel classification, and three-dimensional

analysis of porosity, pore connectivity, and pore

structure of a CmT volume. The algorithms are written

in Fortran 90, are easy to run and modify, and allow

for user input of cut-off values and processing options.

While subroutines in three-dimensional image analysis

programs such as Interactive Data Languages

(Research Systems, Inc.) and Matlabs (Mathworks,

Inc.) can be written to filter and optimize images,

and to calculate and visualize porosity and pore

connectivity, to our knowledge there is not a package

of algorithms that accomplishes all of these steps.

Numerical filters and transforms that reduce variability

between slices within the three-dimensional volume

(Pratt, 1978; Green, 1983) are applied before voxel

classification and porosity analysis. These program

features enable rapid three-dimensional analysis of

heterogeneous geologic and environmental samples

using synchrotron CmT at different spatial resolutions

and incident energies.

2. Methods

2.1. CmT data collection

Two porous seafloor hydrothermal vent chimney

samples (A and B) from the endeavour segment, Juan

de Fuca Ridge were used for analysis (Table 1).

Collection of the samples occurred in the 1998 Sulfide

Recovery Program by the University of Washington,

Seattle (Delaney et al., 2001). The samples came from

two different hydrothermal vent chimneys with dif-

ferent mineral compositions and physical structures.

The volume analyzed by CmT algorithms was

414� 414� 147 voxels (of which 116mm3 was solid

sample) for sample A and 568� 568� 155 voxels (of

which 72mm3 was solid sample) for sample B, which

was a sub-volume of the total CmT sample volume

collected (Table 1). Bulk chemical and X-ray diffraction

analyses showed that sample A was a mixture of

amorphous silica (SiO2), pyrite (FeS2), Zn sulfide

(ZnS), and barite (BaSO4). Sample B was a mixture of
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pyrite, Zn sulfide, and amorphous silica (Ashbridge,

2002). Both samples were visibly porous.

Microtomography data were collected on GeoSoilEn-

viroCARS (GSECARS) Sector 13 bending magnet

beamline at the Advanced Photon Source (Argonne

National Laboratory, IL) with a Si (2 2 0) channel cut

monochromator tuned to 40 keV incident energy. A

fluorescent screen downstream of the sample generated

visible light that was imaged with a zoom lens onto a 12-

bit charge-coupled device (CCD) camera. The readout

was binned by a factor of two in each direction. Pixel

size was 21.6mm after binning.

After CmT data reconstruction, voxel size was

21.6mm� 21.6mm� 21.6mm. Image resolution was esti-

mated to be 57 mm and was determined by measuring the

two nearest distinguishable objects in a two-dimensional

CmT image. Voxel size determines the ability to resolve

the boundary between pore and solid. Sample size is

directly related to voxel size because the detector has a

fixed number of pixels such that the sample will be split

into a fixed number of voxels after reconstruction. Voxel

volume was 10,078 mm3 in this study. Each voxel was

assigned a single attenuation value. Attenuation value is

the measured linear attenuation coefficient times 10,000,

for scaling, and has units of 1/voxel size (for this study

1/mm) that represent the attenuation per voxel. Attenua-
tion coefficients are material specific and relate to the

reduction in X-ray intensity after it passes through the

material (Marshall, 1982). The attenuation value for

each voxel represents the average of all attenuation

values for each material (air and minerals) within that

voxel.

2.2. Digital preprocessing

Preprocessing of CmT data is required in order to

convert the CCD raw data to a three-dimensional

reconstructed volume (Ackerman and Ellingson, 1991;

Kinney et al., 1991; Baruchel et al., 2001). This was done

using IDL software with subroutines written by

GSECARS (Rivers et al., 1999).1 The first step corrects

for the CmT dark current (measured in the absence

of X-rays) and white field (an image taken with X-rays

in the absence of a sample). Non-uniformities in

the white field due to non-uniformities in the X-ray

beam, the scintillator detector response, and the

CCD detector response are removed by normalizing

each image to the white field image. A low-pass filter

is used to remove ring artifacts (drifts or non-linear

responses from detectors) from the sinograms. Conver-

sion of the normalized CCD files into a three-

dimensional volume creates a data set in the form of

[x; y; y], where y is a range from 1� to 180� (view angle).

Tomographic reconstruction was done using a

Fast Fourier Transform algorithm, that converts

the data to an [x; y; z] array of linear attenuation

coefficients.

3. Algorithms for image optimization and porosity

analysis

The algorithms Tomo optimize, Tomo classify, and

Tomo analysis were written to allow user flexibility in

optimizing image contrast, classifying pore space and

solid, and calculating porosity and pore connectivity in

CmT volumes. All of the programs were written in

Fortran 90. The algorithms were programmed to double

precision and executed on a SUN Ultra 10 workstation

with an UltraSPARC-IIt processor. Each algorithm

prompts the user for required inputs.
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Table 1

Sample descriptions, porosity, and pore connectivity results from CmTa analysis

Sample A B

Physical description Visibly porous with few large channels Visibly porous with several larger

channels

Mineral description 25% amorphous silica (SiO2), 28% pyrite

(FeS2), 46% Zn sulfide (ZnS), 1% barite

(BaSO4)

11% pyrite (FeS2), 52% Zn sulfide (ZnS),

37% amorphous silica (SiO2)

CmT sample size (mm) 5.5� 7.0� 3.5 6.0� 15.0� 4.0

Total CmT sample volume (mm3) 135 360

CmT analysis sample volume (mm3) 116 72

CmT porosityb 14.173.2% 15.472.8%

CmT interior pore porosity 0.370.0% 0.270.0%

CmT connected pore porosity 13.873.2% 15.272.6%

aCmT porosity calculated using Tomo analysis algorithm.
bCmT porosity includes porosity contributions from pore volumes greater than and equal to 30,233mm3.

1GSECARS Tomography Processing Software. http://

cars9.uchicago.edu/software/tomography.html
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3.1. Image optimization

The range of grayscale associated with synchrotron X-

ray tomography data is variable because it can be

collected at different energies and it contains artifacts

from non-uniformities in the X-ray beam, scintillator

detector, and CCD detector. Because of this variability,

the first program enables digital image processing of

CmT data in order to maximize contrast between

neighboring voxels in the image and to increase the

range of attenuation values of the entire volume (Pratt,

1978; Green, 1983). For the two volume data sets

analyzed here, the lowest attenuation value was different

because voxels outside the tomographic area of recon-

struction were included in the data (discussed below). As

a first step, the lowest attenuation value was set to zero

for both sets. A histogram showing number of voxels per

intensity value was generated for sample A (Fig. 1A).

Since voxels have been shifted and will be filtered from

this step forward, voxel values no longer represent

original attenuation values. Therefore, arbitrary units of

intensity value (I.V.) are assigned. The first algorithm,

Tomo optimize was written to perform the following

five operations:

(1) Assign a user-determined intensity cut-off value for

air versus solid.

(2) Apply an edge enhancement, 3-voxel by 3-voxel,

non-unity-weight matrix filter.

(3) Apply a linear contrast transform.

ARTICLE IN PRESS

Fig. 1. Two-dimensional slices through a CmT volume and intensity value histograms after each step of Tomo optimize. (A) Original

volume histogram showing air peaks at 4500 I.V. and 6000 I.V. and a solid peak at 15,000 I.V., (B) original data after threshold

determination of 10,000 I.V. and data shift to 10,000 I.V., (C) application of edge enhancement filter, (D) linear contrast transform

using a 1.5 slope, (E) application of low-pass filter, and (F) voxels separated into solid or void space using a threshold of 17,400 I.V.
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(4) Apply a low-pass, 3-voxel by 3-voxel, unity-weight

matrix filter.

(5) Assign a user-determined intensity cut-off value for

void space versus solid.

Each of these steps is explained briefly below.

(1) The two samples in this study consist predomi-

nately of sulfide minerals, which have high linear

attenuation coefficient values. Void space and minerals

have very different intensity values as indicated by the

distinct peaks in Fig. 1A. There are two ‘‘air peaks’’

present in Fig. 1A. The peak at 6000 I.V. is air that

surrounds the sample while the peak at 4500 I.V.

represents voxels outside the area of tomographic

reconstruction. Since voxels present in the peak at

4500 I.V. are lower in value than the voxels in the air

peak (6000 I.V.), they will be below the intensity cut-off

value between air and solid and therefore have no effect

on volume analysis. An intensity cut-off value is chosen

by maximum likelihood to separate air from solid

material. There are several methods of choosing a cut-

off value (also called thresholding) such as global or

local thresholding (Oh and Lindquist, 1999). The

program is written such that the user determines the

method of thresholding and inputs the chosen cut-off

value into the algorithm. All voxels equal to or less than

the intensity cut-off value are set to that value (Fig. 1B).

(2) The second step of the algorithm is application of

a two-dimensional edge enhancement, 3-voxel by 3-

voxel, non-unity weight matrix filter. The edge enhance-

ment procedure magnifies intensity value gradients

between neighboring voxels within each z slice of the

volume. Filtering is done in two dimensions rather than

three dimensions because the matrix filter uses non-unity

weighting to enhance contrast between solid and void

space voxels. There is less averaging of voxels in two

dimensions (9 voxels) compared to three dimensions

(27 voxels) for which a greater range of grayscale voxels
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is averaged. Accentuation of gradients between solid

and void space makes the image appear more pixilated,

as seen by comparison of Figs. 1B and C.

(3) In the third step of the algorithm, a linear contrast

stretch increases the range of intensity values in the

entire volume by stretching the original intensity range

over a larger range. The linear stretch was performed

with a slope of 1.5 and intercept equal to 0, although any

slope value can be entered into the program. Contrast

increases with larger slope values. The edge-enhanced

intensity values are set to the linearly stretched values.

Comparison of the histograms in Figs. 1C and D shows

an increase in the number of intensity values from the

edge-enhanced range (26,863 I.V.) to the stretched range

(40,294 I.V.), which increases contrast by spreading the

voxels over a range that is 150% larger.

(4) The fourth step of the algorithm smooths the

image by application of a two-dimensional low-pass, 3-

voxel by 3-voxel, unity-weight matrix filter which

computes the average value of a voxel based on its

surrounding voxels for each z slice in the volume. The

image in Fig. 1E appears less pixilated; however, edges

between solid material and void space remain pro-

nounced. The histogram of intensity values after

smoothing shows a better-defined peak for solid voxels

(Fig. 1E).

(5) Finally, a cut-off value determined by the user

from the histogram in Fig. 1E is input into the program

to assign a void space-solid cut-off value. We have

chosen to use a binary classification where each voxel in

the digital data set is assigned to one of two categories,

either void space which includes voxels less than and

equal to the cut-off value, or solid which includes voxels

greater than the cut-off value (Fig. 1F). The sensitivity

of this approach is discussed in Section 3.4.

3.2. Voxel classification

Within the optimized volumes, we have chosen three

possible voxel classifications: external void space, solid

material, and internal pore space, which allows

us to determine connected and internal pores for a

sub-volume of any size. Difficulty arises at a sample edge

because in some cases the boundary contains pore space

that should be included in the porosity calculation

regardless of whether the edge is a physical boundary or

a virtual edge. For this study, both samples were

sectioned with a diamond saw, and therefore the edges

were artificially straight. The edges of the volume

selected for analysis, however, can be either physical

edges (rough or smooth), or virtual edges. In order to

classify a voxel as solid, internal pore space, or external

void space, the program Tomo classify first forms a

bounding box completely encompassing the volume

(data set input file) selected by the user for analysis

(Fig. 2A). The input file may be the entire tomographic

file or a smaller sub-volume file. Only voxels determined

to be void space from the optimization program are

considered. Void space is examined one voxel, one y

column, and one z-slice at a time (voxels numbered 1–43

in order of consideration in Fig. 2A). Each edge voxel

potentially has 6 linear connections in three dimensions

(7x; 7y; and7z) to the bounding box that can only be

interrupted by voxels classified as solid. Voxels with 0, 1,

2, or 3 uninterrupted linear connections to the bounding

box are classified as internal pore space based on the

criterion that a voxel which is half or more surrounded

by solid-classified voxels in three dimensions is part of

the pore structure. Voxel 33 in Fig. 2A has one linear

connection to the bounding box in the þz direction,

therefore it is classified as internal pore space. Voxel

numbers 9 and 30 are classified as internal pore space

and have two linear connections to the bounding box

(Fig. 2A). An example of an internal pore space with

three linear connections to the bounding box is shown in

voxel numbers 28 and 31 (Fig. 2A).

Voxels with 4, 5, or 6 uninterrupted linear connections

to the bounding box are classified as external void space.

An example of a voxel with four linear connections to

the bounding box is shown in voxel numbers 35 and 36

(Fig. 2A). Voxel number 37 in Fig. 2A has five linear

connections to the bounding box and voxel 6 in Fig. 2A

has six linear connections to the bounding box (7x;7y;
and 7zÞ: All of the aforementioned voxels are classified

as external void space. Total porosity is calculated based

on this criterion of three or less connections classified as
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Fig. 2. (A) Solid, external void space, and internal pore space are determined using Tomo classify which first forms a bounding box

around the volume (shown for a two z-slice volume). Only voxels that are void space are considered. Void space is examined one voxel,

one y column, and one z slice at a time (voxels numbered 1–43 in order of consideration). Each voxel has a potential of 6 linear

connections with the bounding box (7x;7y;7z). Linear connections to bounding box are only interrupted by solid sample voxels.

Voxels with 0, 1 (voxel 33), 2, or 3 linear connections to bounding box are pore space and voxels with 4, 5, or 6 (voxel 6) linear

connections to bounding box are outside air voxels. (B) Individual pores within the sample are determined by Tomo analysis. Only

voxels determined to be pore space by Tomo classify are considered. Analysis for a four z-slice volume is shown. Algorithm begins in

the bottom left corner of z ¼ 1 and progresses by y columns (a–f). At each pore space voxel (x; y) voxels in (x � 1) and (y � 1) position

are examined. If those voxels are pore space then (x; y) voxel is assigned the same number (n). If not, then voxel is assigned a new

number (n þ 1 at z ¼ 1). When algorithm progresses to z ¼ 2; (x � 1), (y � 1), and (z � 1) in (x; y) position are considered. At z ¼ 4

pore 1 is connected to pore 2. (C) Pore is relabeled as 1 and entire pore is shown to be 13 voxels in size. (D) Pore voxels connected to

external void space are labeled as connected (*) and pore voxels that are not connected to external void space are interior pores.
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internal void space. However, the criterion can be easily

modified in the Fortran program. Output includes total

porosity and the number of voxels in the entire volume

that are classified as external void space, solid, and

internal pore space. Note that if the user chooses a sub-

volume in which all sides are not surrounded by outside

air, the only voxel classifications in the output will be

internal pore space and solid because the next algorithm

depends on the classification of external void space to

calculate pore connectivity.

3.3. Porosity and pore connectivity

The program Tomo analysis determines the number

of individual pores, individual pore volumes, total

porosity (number of internal pore voxels divided by

the number of solid voxels plus internal pore voxels),

and pore connectivity. The first step determines the

number of voxels within a pore. Only voxel connections

between any of the 6 faces of a voxel are considered. For

any voxel there are 6 faces, 12 edges, and 8 corners. The

spatial resolution of these two data sets (57 mm) is not
high enough to assume that a connection between voxel

corners or edges is a valid one, although this criterion

could be modified for higher resolution data sets. Shared

corners have only one point of contact and shared edges

have only one 21.6 mm long length of contact, whereas

shared faces have a 466.6mm2 area of contact. All pore

space was assigned a value of 0 in Tomo classify. The

volume is searched upwards (from z ¼ 1 to 4) in the y

direction (Fig. 2B) until the first 0 value voxel is found

and assigned a value of n; where n ¼ 1 initially. When

the algorithm reaches the next 0-value voxel (x; y; z), it
examines the (x � 1; y; z), (x; y � 1; z), and (x; y; z � 1)

voxels. If any of these are 0-value voxels, the (x; y; z)

voxel is assigned the same label n: If all of them are not

0-value voxels then a value of n þ 1 is assigned because

there is no connection with a previously analyzed pore

voxel. This procedure continues until all pore space

voxels are assigned a label n greater than 0. Next,

Tomo analysis proceeds to pass through the sample

volume again. At each (x; y; z) pore voxel the algorithm

looks at the (x71; y; z), (x; y71; z), and (x; y; z71)

voxels. If any of those voxels are pore space and have a

label n less than the (x; y; z) voxel, the (x; y; z) voxel is
relabeled with the smaller n label. At the end of each

pass through the sample, the algorithm again looks at

the (x71; y; z), (x; y71; z), and (x; y; z71) voxels and

compares it to the (x; y; z) voxel. If the face-connected

pore spaces all contain the same n label, the algorithm

proceeds, or else it will begin to make passes through the

sample again, until all face-connected pores are labeled

the same (Fig. 2C). After having labeled the pore space

voxels, the algorithm determines which pores are

connected to the volume exterior. A pore is considered

connected if any voxel within the pore has a shared face

with a voxel of external void space. An interior pore is

defined as a pore enclosed in all 6 directions by solid

voxels. Thus the algorithm has successfully identified the

pore in Fig. 2B as a single connected pore (Fig. 2D).

The second part of Tomo analysis does the following:

(1) Tabulates the total number of interior pores and

connected pores.

(2) Calculates the total porosity of interior pores and

the total porosity of connected pores.

(3) Output consists of three files: one file for uncon-

nected pores, one file for connected pores, and one

file for the whole data set. The unconnected and

connected files give the label assigned to each

unconnected/connected voxel in one column. The

label file gives the label assigned to each voxel in the

data set (either unconnected pore, connected pore,

solid, or external void space).

Porosity results from Tomo analysis performed on

samples A and B are shown in Table 1. Sample A has a

porosity of 14.173.2% and sample B has a porosity of

15.472.8%. For both samples A and B, the majority of

total porosity (>90%) is from one large connected pore.

A sub-volume from each CmT sample volume was

extracted and interior pores were plotted (Fig. 3). The

physical pore space in sample A (Fig. 3A) has irregular

shapes and sizes throughout the sub-volume. Sample B

has one large irregular channel (Fig. 3B) with several

smaller pores surrounding the channel. The large open-

ing of the channel is shown on the right side of Fig. 3B.

The channel branches in several directions in the middle

of the volume and again at the left side of the volume.

Even though both samples have similar total porosity,

visualization in three dimensions points out differences

in their physical structures.

Due to the high density of sulfide and sulfate minerals

composing hydrothermal vent chimneys, data were

collected at 40 keV incident X-ray energy, compared

with 17–18 keV typically used for sandstones (Coker

et al., 1996; Lindquist et al., 2000). Spatial resolution

decreases as the energy increases much above 30 keV due

to scattering and penetration in the scintillator screen.

Therefore, achieving high spatial resolutions is more

difficult with denser samples and small samples are

preferable.

3.4. Algorithm sensitivity and computational efficiency

In the image optimization performed by the first

algorithm, Tomo optimize, input includes two intensity

cut-off values determined by the user. These two values

are entered into the program as the first cut-off value

between air and solid (Fig. 1A), and a second value as a

cut-off between void space and solid sample in the last

step (Fig. 1F). Since the values are user-selected based
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on intensity value histograms, they contribute to

sensitivity and accuracy of the porosity and pore

connectivity calculation. For this study, our method of

choosing cut-off values was to use the intensity value

histograms and maximum likelihood to determine cut-

off values between peaks. First, a histogram of the

original volume was created. The first cut-off value was

determined and entered into Tomo optimize while

entering an arbitrary second cut-off value (a value must

be entered for the program to run). At the completion of

Tomo optimize, an intensity value histogram was

created from the low-pass filtered data set and the

second cut-off value was determined by maximum

likelihood. Tomo optimize was run again using both

user-determined cut-off values to get a final optimized

volume.

In order to test algorithm sensitivity to the user-

determined cut-off values, a range of intensity cut-off

values was used in Tomo optimize. As the first cut-off

intensity value for the original data is increased above

the air peaks (Fig. 4A), the amount of porosity also

increases because some of the previously defined solid

voxels are now included as air voxels (Fig. 4B). An

increase in porosity from 9% to 44% occurs when the

cut-off value is increased from 8000 I.V. to 12,000 I.V.

The most dramatic increase in porosity occurs with cut-

off values greater than 11,000 I.V. because those values

are clearly part of the original data solid peak in Fig. 4A.

Sensitivity to the initial cut-off value is especially severe

for heterogeneous samples that have a wide range of

mineral attenuation and therefore intensity values. In

such cases, the difference in intensity values between air

and solid will be small and peak overlap will increase,

making it more difficult to determine a cut-off value.

In order to test the capability of the algorithm to

resolve the smallest pores, pore volume from individual

pores was compared to percentage of total porosity for

both samples (Fig. 5). Each sample contains one large

connected pore that contributes over 90% to the total

porosity. Plots in Fig. 5 were enlarged to focus on pores

that were from 1 to 280 voxels in size. Pore volumes

composed of three voxels or less in both samples (pore

volumes of 10,078–30,233 mm3) contribute a slightly

larger amount to overall porosity (0.5–0.9%) than the

contribution to overall porosity of larger pores (pores

from 4 to 280 voxels in size), which each contribute less

than 0.1% to the total porosity. Porosity from pores

that are one, two, and three voxels in size was

consistently 0.5–0.9% of the total porosity over the

range of cut-off intensity values. The consistency in

contribution from this pore volume range to total

porosity, independent of the cut-off value, shows that

the algorithms are capable of resolving pores that are

equal to one voxel in size and that these small pores are

not simply ‘‘noise’’. Resolution of small pores is

accomplished by removing noise and artifacts (irregula-

rities) and by the binary classification done in

Tomo optimize. However, since two-dimensional spatial

resolution was 57 mm for this study, porosity from pores

o4 voxels (o1% of total porosity) was omitted from

the results. This sensitivity test indicates that the

algorithms are capable of resolving pores that are

greater than and equal to one voxel in size, and that

the porosity calculation is most sensitive to the cut-off

value chosen for air versus solid in the first step.

The second cut-off value applied after the low-pass

filter (Fig. 1E) is a cut-off between solid sample and void

space. To test algorithm sensitivity to the second cut-off

value, movement of each voxel was tracked throughout

the filtering process (before determining the second cut-

off value). Low-pass filtered voxels that were originally

part of the air peaks are shown in red and low-pass

filtered voxels that were originally part of the solid peak

are shown in yellow (Fig. 4C). From 17,200 I.V. to

19,000 I.V., voxels originally included in air intersect the

x-axis. Increasing the cut-off intensity value through this

range, which is much smaller than the range for the first

intensity cut-off, resulted in an increased porosity of
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Fig. 3. Physical images of sub-volume from (A) sample A and

(B) sample B in three dimensions showing pore space. Outer

surfaces of pores are blue and pore interiors are red.
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6.5% because voxels initially classified as solid are now

classified as void space (Fig. 4D). When pores that are

three voxels and less were omitted, porosity increased

with cut-off value by 7.5%. Both user-determined

intensity cut-off values contribute to algorithm sensitiv-

ity, but the algorithms are more sensitive to the first cut-

off value (air or solid) rather than the second cut-off

(void space or solid) because contrast has been enhanced

by Tomo optimize between application of the first and

second cut-off values. Both cut-off intensity values are
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Fig. 5. Pore volume versus percent of total porosity from each pore volume for (A) sample A and (B) Sample B. In this study,

1 voxel=10,078mm3 and is the smallest resolvable volume.
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used to calculate the error reported with the algorithm

porosity results. For this study, we used two extreme

choices of cut-off values (from the range of peak

overlap). The difference in porosity between the two

cut-off values was calculated and reported as the error.

For a volume that is 414� 414� 147 voxels, compu-

tational time for Tomo optimize is 5min, Tomo classify

is 8min, and Tomo analysis is 21min using a SUNUltra

10 workstation with an UltraSPARC-IIt processor.

Output files from Tomo optimize include a filtered data

set that can be processed to create two-dimensional

images of each slice and histogram data for each step of

the filtering process as shown in Fig. 1. Tomo classify

output files include a value for total porosity and a
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Fig. 5 (continued).
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voxel-classified data set that can be manipulated to

create two-dimensional images of each slice. Tomo

analysis output files include the final analyzed data set

in addition to total porosity of connected pores,

total porosity of interior pores, and the number of

voxels that are solid, internal pore space, and external

void space.

4. Conclusions

The algorithms described here are useful, flexible tools

for examining three-dimensional pore structure, poros-

ity, and pore connectivity in structurally and chemically

complex samples using synchrotron CmT. Owing to the

variability in data sets collected at different energies on

different beamlines, image optimization is important to

remove artifacts and increase volume uniformity before

the analysis of porosity and pore connectivity. Our

package of algorithms accomplishes image optimization

based on user input, voxel classification at the voxel

level, and analysis of porosity and pore connectivity on a

generic data volume. They have the flexibility to analyze

total physical volumes or virtual sub-volumes, and allow

the user to visualize the three-dimensional results. The

algorithms are written in Fortran 90, which is an

inexpensive program that is available on all operating

systems and friendly to user editing. These algorithms

are computationally fast:B34min for a 414� 414� 147

voxel volume on a Sun Ultra 10 Workstation with an

UltraSPARC-IIt processor.

In this study, we used a binary classification of solid

or void space based on cut-off values chosen by the user

before and after image processing to enhance contrast

and edge features. Sensitivity tests showed that the

porosity calculation is more dependent on the first cut-

off intensity value for air and solid assigned before

image processing than on the second cut-off. As such,

users may choose to perform their own sensitivity tests

for cut-off values, particularly if intensity values are

clustered. The approach of contrast enhancement and

binary classification, rather than mixed voxel classifica-

tion, is appropriate for the high resolution achievable

with synchrotron CmT. We showed that the algorithms

are capable of resolving pores one voxel in size for the

resolution of this study (B57mm). Because resolution is

limited by sample size in CmT (i.e., a larger sample

volume results in larger voxel size), it is important to

consider the trade-off between the optimum sample

volume and the desired resolution for a particular study.

For natural mineral samples, attenuation values vary

considerably because of differences in mineral composi-

tion and density. Our set of algorithms allows users to

process data sets with a wide range of grayscales,

including subtraction of volumes collected at different

energies, in order to enhance contrast between minerals

in addition to contrast between solid and pore space.

Synchrotron CmT is finding many applications in the

geosciences and its capabilities will continue to increase

with improvements in data collection and analysis

methods.
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