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Abstract Geometric spreading of Pn and Sn waves in a spherical Earth model is
different than that of classical headwaves and is frequency dependent. The behavior
cannot be fully represented by a frequency-independent power-law model, as is com-
monly assumed. The lack of an accurate representation of Pn and Sn geometric spread-
ing in a spherical Earth model impedes our ability to characterize Earth properties
including anelasticity. We conduct numerical simulations to quantify Pn and Sn
geometric spreading in a spherical Earth model with constant mantle-lid velocities.
Based on our simulation results, we present new empirical Pn and Sn geometric-
spreading models in the form G�r; f� � �10n3�f�=r0��r0=r�n1�f� log�r0=r��n2�f� and
ni�f� � ni1�log�f=f0��2 � ni2 log�f=f0� � ni3, where i � 1, 2, or 3; r is epicentral
distance; f is frequency; r0 � 1 km; and f0 � 1 Hz. We derive values of coefficients
nij by fitting the model to computed Pn and Sn amplitudes for a spherical Earth model
having a 40-km-thick crust, generic values of P and S velocities, and a constant-ve-
locity uppermost mantle. We apply the new spreading model to observed data in Eur-
asia to estimate average Pn attenuation, obtaining more reasonable results compared
to using a standard power-law model. Our new Pn and Sn geometric-spreading models
provide generally applicable reference behavior for spherical Earth models with con-
stant uppermost-mantle velocities.

Introduction

Seismic phases Pn and Sn are refracted waves that tra-
verse the uppermost mantle and are typically the first P and S
arrivals at distances from ∼200 to ∼1500 km. These phases
are commonly characterized as being conical headwaves
based on considerations of wave interactions with planar
constant-velocity layered structures. However, the propaga-
tion of Pn and Sn in the actual spherical Earth is much more
complex. In addition to the effects on Pn and Sn propagation
of uppermost-mantle velocity complexities such as mantle-
lid radial velocity gradients, lateral velocity heterogeneities,
and depth variation of the Moho discontinuity, the curvature
of both the Moho and the Earth’s surface (the sphericity)
alters Pn and Sn amplitudes profoundly from that of a head-
wave. Textbook treatments of the propagation of conical
headwaves in plane crustal-layer-over-half-space models
(e.g., Lay and Wallace, 1995; Aki and Richards, 2002) hold
for a spherical Earth model only in the unlikely situation of a
precisely critical negative velocity gradient below the Moho.
Lesser negative velocity gradients, constant velocities, or po-
sitive velocity gradients in the mantle will all produce com-
plex frequency-dependent behavior of Pn and Sn that is not
the same as that of a conical headwave. At relatively short
epicentral distances (less than a few hundred kilometers), the
sphericity effects are negligible. But as epicentral distance
increases, Pn and Sn behavior is strongly influenced by

the sphericity, and one cannot ignore the need for formal
mapping between plane-layered structures and spherical
velocity structures. The effects of the sphericity must be ac-
counted for when interpreting regional-phase seismic mag-
nitudes, source-type discriminants using Pn and Sn, and
frequency-dependent measures such as the attenuation of
Pn and Sn. In this study, we quantify the sphericity effects
on Pn and Sn geometric spreading through detailed numer-
ical modeling.

The behavior of Pn and Sn in a spherical Earth model
has been studied both theoretically and numerically since the
1960s. Buldyrev and Lanin (1965) and Hill (1973) investi-
gated the propagation of Sn and Pn in and around an elastic
spherical body by solving the wave equation using asymp-
totic methods. Červený and Ravindra (1971) used the ray
method to characterize the phenomenon of Pn traveling in
a plane-layered medium with a constant-velocity gradient
in the mantle, which can be related to models with spherical
boundaries through the Earth flattening transformation (EFT)
(e.g., Chapman, 1973; Müller, 1977). Sereno and Given
(1990) conducted numerical simulations of Pn waves in a
plane-layered Earth model generated from a spherically sym-
metric Earth model with the EFT. The conclusions from these
studies using different approaches are that (1) the geometric
spreading of Pn and Sn in a spherical Earth model differs
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significantly from that of conical headwaves for plane-
layered structures; (2) the spreading cannot be accurately re-
presented for all ranges by a simple power-law model; and
(3) the spreading is frequency dependent, which is not the
case for classic headwaves.

In spite of these conclusions, seismologists commonly
use a frequency-independent power-law model to approxi-
mate Pn geometric spreading in the real Earth when analyz-
ing observed data (e.g., Sereno et al., 1988; Zhu et al., 1991;
Taylor et al., 2002). Occasionally, researchers combine Pn

geometric spreading and attenuation into a single dis-
tance-decay term in order to avoid the difficulty of isolating
Pn geometric-spreading effects (e.g., Chun et al., 1989; Tin-
ker and Wallace, 1997). Because of the apparent incompat-
ibility between the behavior of Pn in the real Earth and its
power-law geometric-spreading representation, Taylor et al.
(2002) postulated that the use of a frequency-independent
power-law spreading model might be the reason for difficul-
ties encountered in fitting the Pn spectra in their study. The
common practice of representing Pn geometric spreading in
the real Earth with a frequency-independent power-law mod-
el may simply be a choice of convenience due to the unavail-
ability of a more accurate, easy-to-use, frequency-dependent
Pn geometric-spreading model, even for a simple reference
velocity structure. Although there exist theoretical solutions
of waves propagating in an elastic body with spherical sym-
metry (Buldyrev and Lanin, 1965; Hill, 1973), they only de-
scribe high-frequency asymptotic wave behavior. These
solutions are also too complex to be of general use in prac-
tical applications.

Building upon the insight provided by the Pn modeling
of Sereno and Given (1990), we perform more detailed and
rigorous numerical simulations in this study to establish ap-
propriate Pn and Sn geometric-spreading relationships for
the important class of continental 1D spherical Earth models
with constant seismic velocities in the uppermost mantle.
Prescribing a constant uppermost-mantle velocity is a com-
mon default given that detailed and reliable velocity structure
and gradients in the mantle lid are either not available or not
general enough to represent many parts of the uppermost
mantle beneath continents. Based on our modeling results,
we first propose a quantitative, frequency-dependent Pn

geometric-spreading model. We then explore the implica-
tions of this new model on attenuation estimation using ob-
served Pn amplitude data. We also investigate the variation of
model parameters, due to variations of crustal thickness,
source depth, and crust/mantle velocity contrast, and the re-
sulting variation of attenuation estimates. Finally, we model
Sn propagation under the same configuration and propose a
similar geometric-spreading model for Sn. Even though our
spreading models cannot account for all the complexities of
Pn and Sn propagation in the real Earth, they serve as better
first-order approximations of Pn and Sn geometric spreading
in a spherical Earth than the standard power-law model.

Methodology

We conduct most of our simulations using the reflectiv-
ity method (Kennett, 1983; Randall, 1994). Results from
reflectivity calculations are compared with results calculated
with a 2D finite-difference code (Xie and Lay, 1994) and a
2.5D axisymmetric spherical finite-difference code, SHaxi
(Igel and Weber, 1995) to confirm that the EFT and layer
discretization required by the reflectivity method do not pro-
duce numerical artifacts.

The reflectivity method generates complete synthetic
seismograms within a specified slowness range for 1D plane-
layered velocity models. In order to use the reflectivity meth-
od for a spherically symmetric Earth model, we apply the
EFT to transform the spherical Earth model to a plane Earth
model. Transformations of velocity v and depth z are (Chap-
man, 1973; Müller, 1977)

vf � R

R � zr
vr and zf � R ln

�
R

R � zr

�
; (1)

where R is the radius of the Earth. Subscript r designates
values in the spherical (radially symmetric) model, and sub-
script f designates values in the plane (flat) model. The den-
sity ρ transformation is

ρf �
�

R

R � zr

�
m

ρr; (2)

which is not unique because m can take any value between
�5 and 1. For regional body waves, the choice of m is not
critical (Müller, 1977). We choose m � �1 for P=SV simu-
lations (Müller, 1977) and m � �5 for SH simulations
(Chapman, 1973). We experimented with different values
of m and the results were basically unchanged. Finally the
transformation of amplitudes calculated from plane-model
simulations back to corresponding amplitudes in the spheri-
cal model is

Ar �
�

Δ
sinΔ

�
1=2

�
R

R � Zr

��m�5�=2
Af; (3)

where Zr is the depth of the source in the spherical model and
Δ is epicentral distance in radians.

We approximate the velocity gradient resulting from the
EFT (equations 1 and 2) with homogeneous layers in the
plane Earth model, as is required by the reflectivity method.
The thickness of these layers affects the accuracy of the ap-
proximation, with thinner layers yielding more accurate re-
sults. We set the thickness of these layers to be about 0.4 of
the minimum wavelength of the waves to be modeled, which
appears to be more than adequate (Chapman and Orcutt,
1985). Further reducing the ratio (e.g., from 0.4 to 0.2 of
the minimum wavelength) does not alter the results appreci-
ably. The total thickness of the gradient zone is set to be more
than 100 km larger than the maximum penetration depth of
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the direct wave in a homogeneous spherical model recorded
at the longest epicentral distance considered. This thickness
guarantees that no Pn or Sn waves observed within the dis-
tance range of interest are affected by the lower boundary
of the gradient zone. Below the gradient zone, the velocity
is constant.

We use the same generic spherical Earth model consid-
ered by Sereno and Given (1990) as the reference model for
our simulations and use the synthetics from the simulation to
derive parameters of the Pn and Sn geometric-spreading
models that we develop. The reference Earth model consists
of a 40-km-thick outer layer, representative of an average
continental crust, with a constant-velocity mantle underneath
(Fig. 1). The model has no anelastic attenuation. The simpli-
city of this model allows us to isolate the effects of the spheri-
city on Pn and Sn geometric spreading. We use an iso-
tropic point source for Pn simulations. The source for
Sn�SH� simulations is a vertical strike-slip source, and the
source for Sn�SV� simulations is a vertical dip-slip source.
For all source types in our main calculations, a delta function
is used as the source time function; source depth is 15 km,
and source strength is 1015 Nm. Three-component synthetic
ground displacements are computed at 33 locations distrib-
uted log-evenly along a linear profile from 200 (1.8°) to
2500 km (22.5°). The Nyquist frequency of the seismograms
is 20 Hz.

We cut Pn and Sn portions of the synthetic seismograms
using fixed-velocity windows. The velocities that we use to
define the widths of the Pn windows are7.6 and 8:2 km=sec,
and those for Sn windows are 4.0 and 4:7 km=sec (Hartse,
et al., 1997). The windows are centered at the peaks of the
phases. We also tested a fixed-window-width method, and
the results remained essentially the same. We window Pn

and Sn�SV� from vertical-component seismograms and
Sn�SH� from transverse-component seismograms. After
Pn and Sn seismograms are windowed, we taper the seismo-
grams with small tapers (between 2% to 20% depending
on the length of the signal relative to the window length)
and Fourier transform the seismograms to obtain the ampli-
tude spectra. We make spectral-amplitude measurements
at 100 frequencies log-evenly distributed between 0.75
and 13 Hz. Amplitude at each frequency fi is calculated

by taking the average of the amplitudes between frequen-
cies fi=

���
2

p
and

���
2

p
fi (Bowman and Kennett, 1991; Hartse

et al., 1997).
To accurately assess the geometric spreading of seismic

phases, the propagation medium used for the simulation
should have no attenuation. However, in order to avoid a
computational singularity, the reflectivity method requires
a nonzero amount of attenuation for the medium. We take
an asymptotic approach similar to that used by Yang (2002)
to derive Pn and Sn amplitudes for an elastic model without
attenuation from amplitudes calculated for a group of anelas-
tic models. We first make 20 calculations for models that
have attenuation quality factor Q log-linearly increasing
from 10,000 to 100,000. For each calculation, a single Q
is used for both P and S waves and for all parts of the model.
Amplitudes at each frequency and each epicentral distance
from these calculations are then fit by a quadratic polynomial
as a function of 1=Q. The limit of the polynomial as Q ap-
proaches infinity is taken as the amplitude at that frequency
and distance for the elastic model.

Pn Modeling Results

Figure 2 plots the vertical synthetic Pn seismograms
from the reference-model simulation at selected epicen-
tral distances. Q used in this simulation is 100,000. The
seismograms are low-pass filtered below 10 Hz to suppress
numerical noise near the Nyquist frequency. The figure re-
veals several interesting characteristics of Pn traveling in a

40
 km

vp = 6.5 km/sec
vs = 3.75 km/sec
ρ = 2.7 g/cm3

vp = 8.1 km/sec
vs = 4.45 km/sec
ρ = 3.32 g/cm3

Figure 1. Reference Earth model used for Pn and Sn simula-
tions and the development of new Pn and Sn geometric-spreading
models. Quality factor Q is infinite throughout the model.
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Figure 2. Synthetic Pn seismograms from reference-model cal-
culations. The seismograms are filtered below 10 Hz. Travel time is
reduced by 8:2 km=sec. Only every other trace calculated is plotted
to enhance clarity. r is the epicentral distance in kilometers.
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spherical Earth model with constant mantle velocities. Due to
the sphericity, the apparent Pn velocity is not constant but
varies with epicentral distance. As is predicted by theory
(e.g., Červený and Ravindra, 1971), the pulse shape of Pn

evolves from that of the impulse source at distances close
to the critical distance (about 0.8° for the reference model
and a 15-km-deep source) to the shape of a far-field body
wave, which is the time derivative of the source pulse, at
farther distances. The amplitude of the phase changes in a
complex manner, first decreasing and then increasing, within
this distance range. At about 10° to 12°, the first pulse sepa-
rates from the rest of the Pn wave packet, and somewhere
between 16° and 19°, a second pulse separates.

For high-frequency Pn at distances away from the cri-
tical distance, Červený and Ravindra (1971) offer a detailed
description of the signal behavior from ray theory. Although
Červený and Ravindra (1971) describe the phenomenon for a
plane-layered Earth model with a positive and constant-
velocity gradient in the mantle, their description and conclu-
sions are applicable to the spherical Earth model situation as
well because the spherical model can be mapped, through the
EFT, into a plane-layered model with an approximately con-
stant-velocity gradient in the uppermost mantle. Following
Červený and Ravindra (1971), the Pn phase at distances be-
tween about 5° and 10° in Figure 2 can be thought of as the
superposition of individual waves reflected n times (n � 0,
1, 2, …) from the underside of the Moho. The superposed
wave is termed interference headwaves by Červený and
Ravindra (1971) and is likened to the “whispering gallery”
phenomenon by Menke and Richards (1980). As distance
increases, individual components of the interference head-
wave start to separate from the wave packet due to their in-
creasingly shorter path lengths compared with path lengths
of the remaining waves in the wave packet. The first wave to
separate is the wave that has no reflection at the Moho (the
direct or diving wave). This is evidenced as the separation of
the first pulse in Figure 2. The second separated pulse in the
figure is the wave that is reflected once from the Moho. From
ray theory, the epicentral distance at which the k-time re-
flected wave separates from the interference headwave pack-
et is (Červený and Ravindra, 1971, equation 6.4)

rk � �2H � d� vc�����������������
v2m � v2c

p

�
�
32v3mT�1� k�2�1� 1

2
k�2

g2�1� 2
3
k�

�
1=3

; (4)

where H is the crustal thickness; d is the source depth; vc is
the P-wave velocity of the crust; vm is the P-wave velocity at
the top of the mantle; T is the pulse width of the wave, and g
is the velocity gradient (dv=dz) at the top of the mantle re-
sulting from the EFT. From equation (4) and for the reference
model, a wave with a pulse width of about 0.1 sec (10 Hz)
that undergoes no reflection at the Moho will separate at
about 9.8°, and the wave that has one reflection will separate

at about 16.6°. These predictions are consistent with the syn-
thetics in Figure 2.

Figure 3 shows the amplitude spectra of synthetic Pn at
the same epicentral distances as those in Figure 2 from the
Q � 100; 000 computation. The figure illustrates the evolu-
tion of the Pn spectrum from being proportional to the source
spectrum to being proportional to the time derivative of the
source spectrum.

As was described in the last section, we use an asymp-
totic method to derive spectral amplitudes for an elastic mod-
el from amplitudes obtained using anelastic simulations.
Figure 4 gives an illustration of the method. Plotted in the
figure are Pn amplitudes at different frequencies measured
from calculations using different quality factors. The ampli-
tudes are computed at 22.5° epicentral distance and are nor-
malized by the maximum amplitude in the figure. Quadratic
polynomial fits of the amplitudes are plotted as solid lines.
The polynomial fits are almost perfect, indicating that our
approach is appropriate. Amplitudes at other distances are
fit as well as those shown in Figure 4.

To visualize the Pn amplitude decay in a spherical Earth
model, we plot 10-Hz Pn amplitudes for the reference model
in Figure 5. We extend the epicentral-distance range to be-
tween 135 (1.2°) and 8000 km (71.9°) for this particular si-
mulation in order to better depict the evolution of Pn waves.
Amplitudes at distances beyond about 20° are measured from
the direct wave that has been completely separated from the
interference headwaves. The amplitudes are corrected for the
free-surface effect (the Appendix), which is only important
at teleseismic distances. Also plotted in the figure are the
amplitude decay of a conical headwave in a plane one-
layer-over-half-space model (Aki and Richards, 2002; equa-
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tion 6.26) and the amplitude decay of a infinite-frequency
direct wave in a spherical Earth model from ray tracing.
At distances close to the critical distance, Pn geometric
spreading behaves like that of a conical headwave. As dis-
tance increases, Pn spreading starts to deviate from that of
the headwave, and at about 5°, Pn amplitudes begin to in-
crease. As was mentioned before, 10-Hz direct-wave energy
would separate from the rest of the interference headwave at
about 10°. It seems from the figure that this separation is
manifested in a change in the smoothness of the Pn ampli-
tude variation followed by a reduced rate of amplitude
increase. In the range beyond the critical distance and before
the direct-wave separation, Pn evolves from a wave similar
to a conical headwave to the interference headwave, which is
a superposition of multiple waves reflected from the Moho.
As the epicentral distance approaches teleseismic distances,
the direct-wave spreading approaches that of the infinite-
frequency wave from ray tracing results, as is expected.
The direct wave dominates the whole Pn wave packet at long
distances. We do not see a significant difference between
spectral amplitudes obtained by windowing the whole Pn

wave packet and those obtained by windowing just the direct
wave after its separation from the packet. This is consistent
with theoretical predictions (Červený and Ravindra, 1971).

Pn geometric spreading in a spherical Earth model is not
only different from that of a head wave, as is shown in Fig-
ure 5, but also is frequency dependent. Figure 6 shows the
Pn amplitude-variation surface as a function of distance and
frequency for the reference model. The strong frequency

dependence of the amplitudes is apparent. Amplitudes at
higher frequencies are affected more by the sphericity than
are lower-frequency amplitudes. The separation distance of
the direct wave from the interference headwaves becomes
shorter as frequency becomes higher (equation 4).

A New Pn Geometric-Spreading Representation
for a Spherical Earth Model

Figures 5 and 6 illustrate that a frequency-independent
power-law model cannot accurately represent Pn geometric
spreading in a spherical Earth model. Such a representation
would plot as a straight line in Figure 5, which is clearly in-
appropriate for modeling Pn geometric spreading over a
wide distance range. In addition, a power-law model with
a constant exponent does not take into account the frequency
dependence of Pn spreading shown in Figure 6. Based on
the Pn amplitude-decay behavior shown in Figures 5 and
6, we propose a new empirical Pn geometric-spreading
model that fits the synthetic data much better and that also
results in more reasonable anelastic-attenuation estimates
from observed data, as we will discuss in more detail in
the next section.

The amplitude spectrum of Pn can be parameterized as

A�r; θ; f� � K�f�M0R�θ�G�r; f� exp
�
� πf
Q�f�v r

�
S�f�;

(5)
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Figure 4. An illustration of how elastic results are obtained from anelastic calculations. Circles are amplitudes at 22.5° epicentral distance
for different frequencies plotted against Q used in their calculations. The amplitudes are normalized by the maximum amplitude in the plot,
which is the 10.03-Hz amplitude from the Q � 100; 000 calculation. Solid lines are corresponding quadratic polynomial fits of the am-
plitudes. Numbers on the right are the limits of normalized amplitudes at corresponding frequencies as Q approaches infinity.
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with the new geometric-spreading model expressed as

G�r; f� � 10n3�f�

r0

�
r0
r

�
n1�f� log�r0=r��n2�f� �r0 � 1 km�

(6)

and

ni�f� � ni1

�
log

�
f

f0

��
2

� ni2 log
�
f

f0

�
� ni3

�i � 1; 2; 3; f0 � 1 Hz�: (7)

In equation (5), K is a frequency-dependent scaling factor;
M0 is the source moment; R is the source radiation pattern;Q
is the Pn quality factor; v is the Pn velocity; S is the receiver
site response; r is the epicentral distance; θ is the azimuth
angle, and f is frequency. r0 and f0 are included in equa-
tions (6) and (7) in order for the new model to have the same
dimension as standard power-law models (e.g., Street et al.,
1975; Sereno et al., 1988). The main differences between the
new geometric-spreading model (equations 6 and 7) and
the standard frequency-independent power-law model are
the addition of the first term in the exponent and the
frequency dependence of parameters ni. In the logarithm
domain, the new model is a quadratic function of log-
distance, whereas the power-law model is linear. The reason

for choosing a log-quadratic function is to keep the parame-
terization as simple as possible while providing a good fit to
the synthetics. The adoption of a quadratic functional form
for ni (equation 7) is based on the behavior of ni versus the
frequency obtained by fitting equation (6) to synthetic Pn

amplitudes at individual frequencies.
If we take the common logarithm of equation (6), sub-

stitute equation (7) into the result, and let r0 and f0 equal
one, we obtain

log�G�r; f�� � n11�log f�2�log r�2 � n12 log f�log r�2
� n13�log r�2 � n21�log f�2 log r
� n22 log f log r � n23 log r� n31�log f�2
� n32 log f� n33; (8)

where r is in kilometers and f is in hertz. To derive coeffi-
cients nij, we fit equation (8) to synthetic Pn amplitudes
shown in Figure 6 in a least-squares sense. Pn amplitudes
are corrected for M0 used in the simulation (1015 Nm)
and K before the fitting. Because the source that we use in
the simulation has a flat spectrum, K is frequency indepen-
dent. We use K � �4πρv3��1 (Denny and Johnson, 1991),
where ρ is the density and v is the P-wave velocity of the
source region. Source radiation and site response are unity.
We use Pn amplitudes at epicentral distances beyond 300 km
(2.7°) and before the start of the direct-wave separation to fit
the model. We use 300 km as the lower distance limit be-
cause reliable Pn observations are typically made at some
distances beyond the Pg crossover distance (∼200 km).
The choice of 300 km is also to avoid possible long-period
numeric-noise contamination at short distances, as is indi-
cated in Figure 6. The upper distance limits are based on
the observation that within these distances Pn is the result
of the interference of all of its components including the di-
rect wave. At larger distances, the direct wave separates from
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Figure 5. 10-Hz synthetic Pn amplitude decay in a spherical
Earth model with constant mantle velocities. The solid line depicts
the theoretical amplitude decay of a conical headwave in a plane
one-layer-over-half-space Earth model. The dashed line is the am-
plitude decay of the infinite-frequency direct wave in a spherical
homogeneous Earth model from ray-tracing calculations. Because
we are interested in comparing only the decay of the amplitude
curves, they are shifted in the vertical direction arbitrarily (normal-
ized) so that they overlap.

Figure 6. Synthetic Pn amplitudes as a function of epicentral
distance and frequency.
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the rest of the wave packet, and the characteristics of Pn be-
come different. The Pn amplitude decay within the defined
distance range also has a smooth pattern and thus is easier to
fit by a simple mathematical model. The upper distance lim-
its vary from 7.3° to 17.3° for the frequency range between
13 and 0.75 Hz. Within the specified distance limits, the new
spreading model is applicable. Because at about 15° Pn in the
real Earth is overtaken by upper-mantle triplications resulting
from reflections and refractions at 410- and 660-km discon-
tinuities (e.g., Lay and Wallace, 1995) and is no longer the
first arrival, Pn is usually used within the distance range
where the new spreading model is valid for frequencies be-
low about 2 Hz. For higher frequencies, the range of applic-
ability of the new model is shorter, but observationally high-
frequency signals are generally only detectable above the
noise level at shorter distances. Coefficients nij (i � 1, 2,
3; j � 1, 2, 3) from the fitting are listed in Table 1. The
inclusion of r0 and f0 in the model also guarantees that,
even though the values of the coefficients are derived using
equation (8) with r in kilometers and f in hertz, they are valid
for r and f in any units as long as r0 and f0 are converted
accordingly.

Figure 7 compares the new geometric-spreading model
and a power-law model with synthetic Pn amplitudes. The
power-law model has an exponent of �1:3 (Sereno et al.,
1988). The difference between the new spreading model
and synthetic Pn amplitudes is almost indistinguishable.
On the other hand, the power-law model deviates from syn-
thetic Pn amplitudes significantly.

Application to Observed Data

The key value of any mathematical model of the phy-
sical world is for the model to be able to provide physically
reasonable descriptions of observed data. To test the validity
and usefulness of the new Pn geometric-spreading model, we
correct a set of observed Pn spectral amplitudes for geo-
metric spreading with the new model and estimate the aver-
age medium attenuation. We then compare the results with
those published in the literature.

We represent observed Pn amplitudes by equation (5).
For the purpose of testing the new Pn geometric-spreading
model, we simplify equation (5) by assuming that site re-
sponse is unity for all stations and source radiation patterns
can be ignored. We presume that errors introduced by these
simplifications are random and should not affect average-
attenuation estimates systematically. With known or esti-
mated source moments, an assumed scaling factor K, and
a Pn geometric-spreading model, we can estimate the aver-
age-attenuation quality factor at each frequency by least-

squares fitting the logarithm of source and geometric-
spreading corrected spectral amplitudes as a function of epi-
central distance.

The observed Pn amplitudes are measured on vertical-
component ground-displacement data recorded by stations in
and around China and in southern Europe for events in the
same region. The same windowing method as the method we
employ to measure the synthetic Pn amplitudes is used. Ana-
lyst picks reported in global catalogs (from the International
Seismological Centre, the U.S. Geological Survey, the Inter-
national Data Center of the Preparatory Commission for the
Comprehensive Nuclear-Test-Ban Treaty Organization, etc.)
are used to center the Pn windows. Randall et al. (2006) give
a more detailed description of the amplitude dataset. We de-
rive source moments from body-wave magnitudes (mb) re-
ported in the catalogs using the relationship developed by
Geller (1976). We use amplitudes only from events with
mb equal to or smaller than 6 to avoid magnitude saturation.
We use a simplified version of the scaling factor K expressed
as K�f� � f4πρv3�1� �f=fc�2�g�1 using crustal P-wave
velocity and the density of the reference Earth model as v
and ρ. The source corner frequency fc is calculated from
the source moment using the relationship logM0 � 17:08 �
3:24 log fc derived by Xie and Patton (1999) from Pn am-
plitude data recorded in central Asia. For comparison, we use
both the new Pn geometric-spreading model and the power-
law model with two different exponents, �1:1 (Walter and
Taylor, 2002) and �1:3, in the attenuation estimation. When
the new spreading model is used, we limit the epicentral
distances of the amplitudes used in the estimation to within
the distance range where the model is valid. For power-law
model corrections, we use amplitudes between 300 (2.7°)
and 1668 km (15°). Attenuation is estimated at 0.75, 1.0,
2.0, 4.0, and 6.0 Hz. Figure 8 plots the 1-Hz Pn amplitudes
after source and geometric-spreading corrections. The new
spreading model is used in the correction. Although the
amplitudes show a large scatter, a linear decay trend due
to realistic values of medium attenuation is discernible.

Table 2 lists estimated average quality factors using dif-
ferent geometric-spreading corrections from observed Pn

amplitudes. Using the power-law spreading model results
in some negative values at low frequencies. At high frequen-
cies, the power-law model yields estimates that range from
over 1000 to over 5000. On the other hand, Q estimates
using the new spreading model are positive and below
700 at all frequencies. These values can be compared with
published P-wave quality factors in the mantle lid, as we dis-
cuss in the following paragraphs.

Table 1
Coefficients of the New Pn Geometric-Spreading Model

n11 n12 n13 n21 n22 n23 n31 n32 n33

�0:217 1.79 3.16 �1:94 8.43 18.6 �3:39 9.94 20.7
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Using theory, observed body-wave spectra, and wave-
form modeling, Lundquist and Cormier (1980) derive gen-
eric absorption-band P-wave Q models for the mantle. The
Q values of these models range from about 100 to 500 for
frequencies between 0.7 and 6.0 Hz in the depth range of
45 to 200 km. In their article, Lundquist and Cormier
(1980) also cite results of some other Q studies that use

free-oscillation data, long-period surface waves, and high-
frequency (1–5 Hz) body waves. The frequency-independent
P-wave Q models from these studies have values from about
100 to 250 for depths between 50 and 150 km. Der et al.
(1986) construct a P-wave Q model for the Eurasian Shield
using a large set of teleseismic body waves. Their model has
values between about 350 and 900 for frequencies between
0.3 and 10 Hz at depths between 100 and 200 km. Above
100 km, Q values increase to between 600 and 1500 for
the same frequency range.

More recently, some studies make direct PnQ estima-
tions. Sereno et al. (1988) and Sereno (1990) obtain PnQ
models for Scandinavia and eastern Kazakhstan, respec-
tively, by inverting broadband Pn spectra. The 0.75- to
6-Hz PnQ values that they estimated are between 283 and
768 for Scandinavia and between 260 and 735 for eastern
Kazakhstan. Although Sereno et al. (1988) and Sereno
(1990) assume a power-law Pn geometric-spreading model
with an exponent of �1:3, their PnQ estimates are more in
line with the average PnQ estimates that we obtain using the
new Pn spreading model than with those from power-law
model corrections (Table 2). A possible explanation for this
observation is that the majority of their data are recorded
within 1000-km epicentral distance. At short distances,
the power-law spreading model has a gentler slope than
the new spreading model does (Fig. 7) and therefore would
yield smallerQ estimates from short-distance data. However,
for a broader distance range such as the distance range that
our dataset covers, the power-law model yields larger, some-
times negative, Q estimates because of the steeper slope of
the model at long distances (Fig. 7). The implication is that if
a power-law Pn spreading model with a specific exponent is
used, it will be applicable only as an approximation in a lim-
ited distance range, and models with different exponents are
needed for different distance ranges. Our parameterization
remedies this failing.

Comparing Q values in Table 2 with those published
in the literature, we conclude that the new Pn geometric-
spreading model yields Q estimates that are generally
consistent with published results over the broad region of
Eurasia. The Q estimates with power-law model corrections,
on the other hand, have values that are either negative or
seem to be too large. It should be noted that Q values esti-
mated in this fashion represent only the average Pn attenua-

Figure 7. A comparison between synthetic Pn amplitudes, the
new Pn geometric-spreading model, and a power-law spreading
model with an exponent of �1:3. The meshed surface is synthetic
Pn amplitudes. The white, semitransparent surface bounded by the
thick line is the new model. The surface outlined by dashed lines is
the power-law model.
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Figure 8. Observed 1-Hz Pn amplitudes corrected for source
and geometric spreading. Geometric spreading is corrected for
using the new spreading model.

Table 2
Average Pn Quality Factor Estimated Using Different

Geometric-Spreading Models

Data Frequency (Hz)

0.75 1.0 2.0 4.0 6.0

New model 440 338 312 557 678
Power-law model 1* �1669 9241 1206 2204 3450
Power-law model 2† �734 �2153 1850 3260 5246

*Model with exponent of �1:1.
†Model with exponent of �1:3.
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tion behavior over the broad region of Eurasia. They may not
be accurate for any particular region due to the deviation of
the uppermost-mantle velocity structure, including velocity
gradient and/or heterogeneity, from the constant-velocity
structure that we use to develop the geometric-spreading
model. The fact that we obtain reasonableQ values from data
spanning a large region indicates that the new spreading
model at least provides better average behavior than power-
law models do and does not result in any peculiarities such as
negative Q values.

Variation of Model Parameters Due to
Variations of Earth-Model Properties

The new Pn geometric-spreading model is derived by
fitting synthetic amplitude data calculated for the reference
Earth model. The synthetic Pn amplitudes, and thus the
spreading-model parameters, are dependent on the Earth
model used in the simulation, as is the case for most general
geometric-spreading representations. In order to gauge the
dependence of the spreading-model parameters on the varia-
tion of 1D Earth-model properties, we conduct additional si-
mulations with different crustal thickness, source depth, and
crust/mantle velocity contrast configurations.

We test the effects of crustal thickness on spreading-
model parameters by simulating Pn propagation in Earth
models with crustal thickness changing from 20 to 70 km,
a range of typical of continental crusts (Lay and Wallace,
1995). To test the effects of source depth on the spread-
ing-model parameters, we put the source at depths from
10 to 39 km in a series of simulations. We also vary the crust/
mantle velocity contrast to test its effects on the spreading-
model parameters. We change the mantle P-wave velocity
from 7.6 to 8:6 km=sec with crustal P-wave velocity fixed
at 6:5 km=sec. Mantle S-wave velocity and density are
adjusted in a similar way. Changing crustal velocities and
densities to achieve the same contrast range yields simi-
lar results.

Figure 9 shows variations of coefficients nij relative to
reference-model results due to variations of crustal thickness,
source depth, and crust/mantle velocity contrast. Most of the
large variations of the coefficients are caused by crustal-
thickness variation. The effect of the source-depth change
is moderate. Crust/mantle velocity contrast has the least ef-
fect on the coefficients. Among the coefficients, ni1 are the
most sensitive, though they are least important in contribut-
ing to the spreading model due to their relatively small
absolute values (Table 1). Although the coefficients vary
considerably due to Earth-model property variations, the
overall behavior of the spreading model G�r; f� remains
stable. The maximum variation of G�r; f� resulting from
coefficient variations shown in Figure 9 is less than 4%
for a crustal thickness less than 60 km and less than 10%
for a thick crust. Figure 10 plots the variation of Q estimated
from observed Pn data due to variation of the coefficients.
The plot again shows the relative importance of different

Earth model properties in affecting the spreading model.
The majority of Q variations are within 10% to 20%.
The only large Q variations occur for very thick crust and
at long periods.

Sn Simulations

In addition to simulating Pn propagation in a spherical
Earth model, we also simulate Sn propagation in the same
reference model. Except for different source types and dif-
ferent slowness integration limits, other modeling parameters
in the Sn simulation are kept the same as those used in the Pn

simulation. Figure 11 plots the Sn�SH� seismograms low-
pass filtered below 10 Hz. Compared with Figure 2, the be-
havior of Sn in a spherical Earth model is very similar to the
behavior of Pn waves. The only difference is that the separa-
tion of individual waves from the interference wave packet
occurs at shorter distances for Sn. This difference can be pre-
dicted using equation (4), although the equation was origin-
ally derived only for Pn waves. Sn�SH� spectral amplitudes
also form a surface with a shape similar to that of the Pn

amplitude surface shown in Figure 6.
Because of the similarities between Pn and Sn propaga-

tion in a spherical Earth model with constant mantle veloci-
ties, we propose an Sn geometric-spreading model that has
the same functional form as that of the new Pn spreading
model (equations 6 and 7). We derive the values of the coef-
ficients nij by fitting synthetic Sn�SH� amplitudes. Sn�SV�
amplitudes are severely contaminated by P-wave energy up
to 1000 km and thus are not suitable for fitting. Beyond
1000 km, Sn�SV� and Sn�SH� amplitudes decay similarly.
This suggests that the Sn spreading model developed by fit-
ting Sn�SH� amplitudes is also suitable for describing
Sn�SV� geometric spreading.

We correct synthetic Sn�SH� amplitudes for the source
moment, the source radiation pattern using takeoff angles
calculated with the method described in the Appendix,
and the scaling factor K before the fitting. We use K �
�4πρv3��1, but now v is the S-wave velocity of the crust.
We again set the lower-distance limit to 300 km (2.7°) for
amplitudes used in the fitting. The upper distance limits
are from 6.2° to 14.4° for frequencies from 13 Hz to
0.75 Hz. The limits set the distance range within which
the Sn spreading model is valid. Table 3 lists the coefficients
nij for the Sn geometric-spreading model from the fitting.

Discussion

The continental uppermost mantle, where the main por-
tions of the Pn and Sn travel paths are located, is one of the
most complex regions in the Earth. The geometric and elastic
complexities of the uppermost mantle that affect Pn and
Sn geometric spreading include the variation of Moho
depth, the mantle-lid velocity gradient, and lateral velocity
heterogeneities. Some of these complexities may have com-
parable or larger effects on Pn and Sn geometric spreading
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than the Earth’s sphericity does in some regions of the world.
For example, Xie and Patton (1999) attribute the large Pn

amplitude variation across a small-aperture seismic array
in central Asia to the varying Moho depth in the region. Zhao
(1993) obtain a mantle-lid P-wave velocity gradient of 8:0 ×
10�4 sec�1 for the Basin and Range province in the United
States. Using the same method, Zhao and Xie (1993)
estimate a P-wave mantle-lid velocity gradient of 3:1×
10�3 sec�1 for the Tibetan Plateau region in China. The
average uppermost-mantle P-wave velocity gradient for
northern Eurasia that Morozova et al. (1999) derive from
the Russian Deep Seismic Sounding data is on the order
of 4 × 10�3 sec�1. For comparison, the reference-model

P-wave velocity gradient resulting from the EFT, which
causes the geometric spreading of Pn and Sn to deviate
significantly from that of the conical head waves, is
1:3 × 10�3 sec�1 at the top of the mantle.

Whereas strong positive mantle-lid velocity gradients
constrained from observed data are reported in some regions
of the world, there are also studies with different results and
conclusions. Hill (1971) infers from seismic data and labora-
tory measurements that a negative crustal and upper-mantle
velocity gradient is likely to exist in high heat-flow regions
like the Basin and Range province. Tittgemeyer et al. (2000)
argue that, from a petrological and petrophysical point of
view, a widespread positive velocity gradient in the upper
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mantle is not expected and that the observation of teleseismic
Pn in the Russian Deep Seismic Sounding data can be ex-
plained by the existence of lateral velocity heterogeneity
in the uppermost mantle. This model is in contrast with
the model advocated by Morozov et al. (1998) and Nielsen
and Thybo (2003) that the presence of the strong positive
upper-mantle velocity gradient and lower-crust velocity het-
erogeneity is the reason for the observed teleseismic Pn.

Even though unique and reliable determination of the
detailed uppermost-mantle velocity structure remains chal-
lenging, it is evident that the continental uppermost mantle
generally has complexities that affect, sometimes strongly,

the Pn and Sn propagation including their geometric spread-
ing. The geometric-spreading models that we propose serve
only as first-order approximations that account for the effect
of the Earth’s sphericity for the simple reference model with
constant mantle-lid velocities. Nevertheless, our geometric-
spreading models are more appropriate for representing Pn

and Sn behavior in the real Earth than the standard power-law
model. This conclusion is supported by synthetic simulations
and by our successful application of the model on observed
Pn data spanning wide distance ranges in Eurasia to yield
reasonable attenuation estimates.

The new Pn and Sn geometric-spreading models are use-
ful in common situations where only simple velocity models
with uppermost-mantle structure represented as constant-
velocity half-space are available. If the mantle-lid velocity
gradient is well resolved in a given region, simulations
for that gradient can be performed to obtain appropriate
geometric-spreading corrections. Because the effect of
sphericity is equivalent to the effect of a positive velocity
gradient in a plane-layered model, we anticipate that the
functional form of our geometric-spreading models will re-
main the same for Earth models in which an effective (phy-
sical plus effects of the sphericity) positive velocity gradient
exists. Only the coefficients will differ.

Quantifying the effects of specific mantle-lid velocity
gradients, Moho irregularity and lateral velocity heterogene-
ity in the uppermost mantle on Pn and Sn geometric spread-
ing through 2D and 3D numerical modeling will be the
subject of a separate study. It is reasonable to assume that,
except for velocity gradients, these effects contribute pri-
marily to scatter around the fundamental behavior of our
geometric-spreading models.

Conclusions

We perform detailed numerical modeling to characterize
Pn and Sn propagation in a spherical Earth model with con-
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stant mantle velocities. The results show that Pn and Sn
behave in a complex manner in a spherical Earth model,
which is consistent with theory predictions. The geometric
spreading of Pn and Sn evolves from that of a conical head-
wave in a plane-layered Earth model at distances close to the
critical distance to that of a direct or diving wave at teleseis-
mic distances. More complexities are introduced by the in-
terference of waves reflected at the underside of Moho and
the separation of individual components from the interfer-
ence wave packet, especially the separation of the direct
wave. The complex patterns of Pn and Sn geometric spread-
ing are also frequency dependent with higher frequencies
being more affected by the sphericity.

Based on the modeling results, we propose empirical
frequency-dependent Pn and Sn geometric-spreading models
for a category of spherical Earth models with constant mantle
velocities. The new spreading models accurately capture
synthetic Pn and Sn amplitude behavior. The Pn spreading
model also results in reasonable average-attenuation esti-
mates when applied to observed Pn amplitude data for a
broad region of Eurasia.

Variations of Earth-model properties such as crustal
thickness, source depth, and crust/mantle velocity contrast
within reasonable ranges cause considerable variations of
spreading-model parameters. However, the overall behavior
of the spreading model is insensitive to variations of these
Earth-model properties. Except for long-period waves travel-
ing through very thick crusts, variations of estimated Q from
observed data resulting from variations of model parameters
are within 20%.

If the velocity structure in the uppermost mantle can be
accurately determined for a given region, specific geometric-
spreading relations should be predicted by numerical simu-
lations. Otherwise, our new Pn and Sn geometric-spreading
models provide reference behavior of Pn and Sn spreading
for the common class of spherical Earth models with con-
stant uppermost-mantle velocities. The use of these models
should result in a smaller error in different applications com-
pared with using power-law models.
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Appendix A

Incident (Takeoff)-Angle Calculation and
Free-Surface Effect Correction

We calculate amplitudes of incoming Pn waves by re-
moving free-surface effects from vertical ground-displace-

ment amplitudes recorded at the Earth’s surface. We use
the reflection coefficients for plane interfaces (e.g., Lay
and Wallace, 1995, Table 3.1) to approximate reflection
coefficients for the curved interface. Because we use the cor-
rected amplitudes only for qualitative comparisons (Fig. 5),
this approximation is accurate enough.

Different components of the Pn wave packet have
different incident angles for a given distance. We use the in-
cident angle of the direct-wave component as an approxima-
tion of the incident angle of the whole Pn wave packet at
short distances. Because the direct wave is the main compo-
nent of Pn and the incident angle varies significantly only at
long epicentral distances where we measure Pn amplitudes
from the direct wave, this approximation is justified. Ignor-
ing the velocity gradient in the single-layer crust resulting
from the EFT, equation 6.8 of Červený and Ravindra
(1971) states that the incident angle θ of the direct-wave
component of Pn is related to epicentral distance r as

r � �2H � d� tan θ� 2vm
�����������������������������
v2c � v2m sin2 θ

p
gvm sin θ

: (A1)

The symbols in equation (A1) have the same meanings as
those in equation (4) in the main text. For a certain epicentral
distance r, we can find the corresponding Pn incident angle
at the Earth’s free-surface from equation (A1). Tests have
shown that taking the velocity gradient in the crust from
the EFT, which affects the first term on the right-hand side
of equation (A1), into consideration in calculating the inci-
dent angle yields essentially the same result.

The takeoff angle of Pn at the source is the same as its
incident angle at the free-surface. We assume that equa-
tion (A1) can also be used to calculate the Sn takeoff angle.
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