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S U M M A R Y
We extended a high-order finite-difference scheme for the elastic SH-wave equation in axisym-
metric media for use on parallel computers with distributed memory architecture. Moreover, we
derive an analytical description of the implemented ring source and compare it quantitatively
with a double couple source. The restriction to axisymmetry and the use of high performance
computers and PC networks allows computation of synthetic seismograms at dominant peri-
ods down to 2.5 s for global mantle models. We give a description of our algorithm (SHaxi)
and its verification against an analytical solution. As an application, we compute synthetic
seismograms for global mantle models with additional stochastic perturbations applied to the
background S-wave velocity model. We investigate the influence of the perturbations on the SH
wavefield for a suite of models with varying perturbation amplitudes, correlation length scales,
and spectral characteristics. The inclusion of stochastic perturbations in the models broadens
the pulse width of teleseismic body wave arrivals and delays their peak arrival times. Coda
wave energy is also generated which is observed as additional energy after prominent body
wave arrivals. The SHaxi method has proven to be a valuable method for computing global
synthetic seismograms at high frequencies and for studying the seismic waveform effects from
models where rotational symmetry may be assumed.

Key words: Body waves; Computational seismology; Wave scattering and diffraction; Wave
propagation.

1 I N T RO D U C T I O N

Despite the ongoing increase of computational performance, full

3-D global seismic waveform modelling is still a challenge and far

from being a routine tool for understanding the Earth’s interior. Yet,

for teleseismic distances, a substantial part of the seismic energy

travels in the great circle plane between source and receiver and can

be approximated assuming invariance in the out of plane direction.

This motivates algorithms which take advantage of this invariance

with a much higher efficiency compared to full 3-D methods. A

straightforward realization is to ignore the out of plane direction

and compute the wavefield along the two remaining dimensions. For

example, Furumura et al. (1998) developed a pseudospectral scheme

in cylindrical coordinates and invariance in the direction parallel to

the axis of the cylinder for modelling P–SV wave propagation down

to depths of 5000 km. This geometry corresponds to a physical
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F-67084 Strasbourg Cedex, France.

3-D model with the seismic properties invariant along the direction

not explicitly modelled. As a consequence, the seismic source is a

line source having a substantially different geometrical spreading

compared to more realistic point sources.

A different approach which circumvents the line source problem

is the axisymmetric approach. Here the third dimension is omitted

as well, but the corresponding physical 3-D model is achieved by

virtually rotating the 2-D domain around a symmetry axis. Seismic

sources are placed at or nearby the symmetry axis and act as point

sources maintaining the correct geometrical spreading. Since such a

scheme can be seen as a mixture between a 2-D method (in terms of

storage needed for seismic model and wavefield) and a 3-D method

(since point sources with correct 3-D spreading are modelled) such

methods are often referred to as 2.5-D methods.

A variety of axisymmetric approaches have been used in the last

decades (e.g. Alterman & Karal 1968). Axisymmetric wave propa-

gation for SH-waves in spherical coordinates with a FD technique

was implemented by Igel & Weber (1995) to calculate seismograms

for global earth models and also by Chaljub & Tarantola (1997) to

study frequency dependent effects of S and SS waves. Furumura

& Takenaka (1996) applied a pseudospectral approach to regional

applications for distances up to 50 km. Igel & Gudmundsson (1997)

also used a FD method to study frequency dependent effects of S
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and SS waves. Igel & Weber (1996) developed a FD approach for

P–SV wave propagation. Thomas et al. (2000) developed a mul-

tidomain FD method for acoustic wave propagation and applied the

technique to studying precursors to the core phase PKPdf . Recently,

Toyokuni et al. (2005) developed a scheme based on the algorithm

of Igel & Weber (1996) with extension to non-symmetric models

for modelling a sphere consisting of two connected axisymmetric

half-spheres. Recently, Nissen-Meyer et al. (2007) presented a 2-D

spectral-element method for axisymmetric geometries and arbitrary

double-couple sources.

The main purpose of this paper is to (1) extend the axisym-

metric FD approach of Igel & Weber (1995) for modelling SH-

wave propagation (SHaxi) for use on parallel computers with dis-

tributed memory architecture, (2) examine the properties of the im-

plemented ring source and to show that it can be compared with

a double-couple source and (3) as an application, to model the in-

fluence of whole mantle scattering on the seismic SH wavefield.

We furthermore present an application of the SHaxi method to

modelling the SH-wavefield in models of whole mantle random

S-wave velocity perturbations. In a companion paper (Thorne et al.
2007) we make an extensive comparison of SHaxi generated seis-

mograms with results from recent data analyses of lower-mantle

structure. The SHaxi source code is available at: http://www.spice-

rtn.org/library/software.

2 T H E A X I S Y M M E T R I C

F I N I T E - D I F F E R E N C E S C H E M E

2.1 Formulation of the wave equation

The general 3-D velocity stress formulation of the elastic wave equa-

tion in spherical coordinates is given by Igel (1999). The coordinate

system is shown in Fig. 1. The relevant equations for pure SH-wave
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Figure 1. Spherical coordinate system used in the formulation of the wave

equation and the source description. All properties are invariant in the φ-

direction. The distance from the Earth’s centre is denoted by r, and θ is the

angular distance from the symmetry axis, γ is the take-off angle, and s is

the source–receiver distance.
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where σ ij is stress tensor, vφ is ϕ-component of velocity, f ϕ is ex-

ternal force, ε ij is strain tensor and ρ is density.

In the axisymmetric system, eq. (1) can be further simplified by

assuming the external source and model parameters are invariant in

the ϕ-direction. The resultant equations are:
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r
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(
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)
. (2)

Due to axisymmetry, spatial properties vary solely in the r and

θ -directions. Hence the computational costs of this formulation are

comparable to 2-D methods, while the correct 3-D spreading of

the wavefield is still preserved, in contrast to purely 2-D methods,

provided the source is centred at the symmetry axis. Due to the cot(θ )

term in eq. (2), SH motion is undefined directly on the symmetry

axis and the seismic source can not be placed there. We discuss the

seismic source below.

A staggered grid scheme was used for the discretization of the

seismic parameters, so the stress components and the velocity are

calculated at different locations. A schematic representation of the

grid is shown in Fig. 2. In addition to the gridpoints which define the

model space, auxiliary points were added above the Earth’s surface,

below the core–mantle boundary (CMB) and beyond the symmetry

axis (θ < 0◦ and θ > 180◦) for the calculation of the boundary

conditions (discussed below).

2.2 The properties of the SH ring source

Due to axisymmetry it is not possible to implement sources which

generate the SH portion of an arbitrary oriented double couple.

Moreover, exact point sources are not possible since SH motion is

not defined directly at the axis but can be approximated when the

wavelength of interest is made sufficiently larger than the grid size.

We will discuss the properties of the implemented axisymmetric SH
source and show that its displacement far-field is proportional to

that of an appropriately oriented double-couple source.

2.2.1 Ring source expression

The SH ring source corresponds to the one used by Chaljub &

Tarantola (1997) which found that the relative amplitude of the

source depends on the take-off angle γ as sin(γ ). However, the

complete source solution was not given although this is essential to

perform a quantitative comparison of numerical and analytical so-

lution. In order to derive the analytical solution of an SH ring source
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Figure 2. The staggered grid scheme used in the SHaxi algorithm. The origin of the coordinate system is placed at the Earth’s centre. The symmetry axis

(θ = 0◦) is horizontally aligned as labelled at the origin. The model boundaries (surface, CMB and symmetry axis) are framed with thick lines. The additional

points outside the model space are used for implementation of the boundary conditions. The symbols representing the wavefield properties vϕ , σ rϕ and σ θϕ

are labelled in the unit grid-cell shown in the top left corner of the figure.

of infinitesimal size in a homogeneous isotropic elastic media, it is

convenient to use eq. (4.29) of Aki & Richards (2002), which gives

the displacement field due to couples of forces, each of moment Mpq.

We start by noting that the ring source can be seen as the summation

of individual couples of forces F over half the perimeter of a circle

(see Fig. 3), keeping in mind that the radius R ultimately tends to

0 and the forces tend to +∞, so as to have a finite moment (this is

analogous to the discussion p. 76 of Aki & Richards 2002).

Projecting the forces on the axes x1 and x2, we can write that the

moment due to this couple is

dM(ψ) = 2F cos(ψ) R cos(ψ) − 2F sin(ψ) R sin(ψ), (3)

where F = | �F |, and � the orientation of the individual couple of

forces F (see Fig. 3).

Obviously, the total moment M 0 due to the ring force is M 0 =
2πFR, so the contributions from M 21 and M 12 are (M 0/π ) cos2(�)

and – (M0/π ) sin2(�), respectively. Inserting those expressions in

eq. (4.29) of Aki and Richards (2002), and further integrating from

0 to π , provides the full displacement field of an SH ring source of

infinitesimal size:

vRing
ϕ (s, γ, t) = sin(γ )

−βM0(t − s/β) + s Ṁ0(t − s/β)

8πρβ3s2
, (4)

where vRing
ϕ is ϕ-component of displacement, ρ is density, β is

S-wave velocity, M 0(t), Ṁ0(t) are seismic moment and moment rate,

t is S-wave traveltime, s is source–receiver distance and γ is take-off

angle (see Fig. 1). This source will be compared with the far-field

term of a strike-slip source (in the x1/x3 plane with slip along x1)

in the nodal plane for P radiation (φ = 0). Using the equations

analogous to eqs (4.32) and (4.33) of Aki & Richards (2002) (with
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Figure 3. Illustration of the ring source used in the SHaxi algorithm. The

origin of the coordinate system corresponds to the symmetry axis. The ring

source can be thought as a superposition of single forces F acting perpen-

dicular to the radius vector R(ψ).
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appropriate permutation of axis) we get:

vDC (s, γ, t) = sin(γ )
Ṁ0(t − s/β)

4πρβ3s
. (5)

We see that the far-field terms in eqs (4) and (5) only differ by a

factor 2. Hence, in the nodal plane for P radiation and for distances

where the near and intermediate term can be neglected (i.e. more

than a few dominant wavelengths, which is fulfilled for teleseismic

investigations), the wavefield of the SH ring source of infinitesimal

size can be compared to that of the corresponding strike-slip source.

In contrast to the infinitesimal SH ring source described by eq. (4),

the source implemented in SHaxi is a finite ring. Yet, as we show in

Section 3, the similarity between seismograms calculated for either

source is close enough that the approximation of an infinitesimal

ring source can be made.

2.3 Boundary conditions

At the symmetry axis, the free surface, and the CMB, adequate

boundary conditions must be applied. For the horizontal surfaces

(the CMB can be treated similarly to the free surface since SH
waves reflect totally at both boundaries) the boundary condition is

given by the zero-stress condition which requires σ rϕ = 0 for the

surface (e.g. Levander 1988; Graves 1996). Due to the staggered

grid scheme σ rϕ is not defined exactly on the free surface but a half-

grid spacing below the surface (Fig. 2). Therefore, the zero-stress

condition is realized by giving the auxiliary σ rϕ gridpoints above

the surface the inverse values of their counterparts below the surface

at each time step (Fig. 4). This results in a vanishing stress com-

ponent at the surface in a first order sense. For the symmetry axis,

the boundary conditions are derived from geometric constraints: all

gridpoints beyond the axis are set to the values of their partners in-

side the model space, meaning that the fields are extended according

to the axisymmetry condition. Directly at the axis vϕ and σ rϕ are

set to zero since both values are undefined here according to eq. (2).

In general, the number of rows of auxiliary gridpoints which have

to be added correspond to half the length of the FD operator used

for the boundary condition. This enables the FD operator to operate

across the boundary and calculate a derivative for gridpoints resid-

ing directly at the boundary. For the simulations shown here a FD

operator length of 2 at the model boundaries corresponding to one

row of extra gridpoints is added. For the boundary at the symmetry

axis this choice is crucial because convergence to the analytical so-

lution is achieved only for the two-point FD operator. We do not yet

understand why higher order operators fail here. For the gridpoints

off of the boundaries a four-point FD operator is used.

+
+

+

Symmetry Axis 
(  = 0o,180o)
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Surface

v    
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ϕ
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Figure 4. Detail of the top left-hand corner of the SHaxi grid where the free surface and symmetry boundaries are encountered. The interior gridpoints (region

underlain in grey) are part of the physical model space. To fulfil the boundary conditions, gridpoints outside of the physical model space (region not underlain

in grey) must be added to the total grid. These outer points are updated at each time step by corresponding values of grid elements inside the physical model

space, as indicated by the arrows and the plus (+) and minus (−) symbols.
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Figure 5. Schematic illustration of the domain decomposition used for parallelization of the SHaxi algorithm. The model space is divided into multiple domains

(here shown for three domains) which are each processed by an individual node. After each time step the gridpoints at the boundaries of the domain (gridpoints

underlain in grey) are copied to the corresponding gridpoints of the adjacent domain. The lateral size of the grey regions correspond to half the FD operator

length.

2.4 Parallelization

Actual high performance computers or workstation clusters usu-

ally consist of several units of processors (nodes) each having their

own private memory. These nodes work independently and are in-

terconnected for synchronization and data exchange. In order to

take advantage of such systems the model space is divided horizon-

tally in several ‘domains’. Each domain can now be autonomously

processed by a single node. Fig. 5 shows such a ‘domain decom-

position’ for a total number of three domains. Similarly to the im-

plementation of the boundary conditions described above, auxil-

iary gridpoints are added adjacent to the domain boundaries for the

communication between the nodes. This communication is imple-

mented using the Message Passing Interface (MPI) library. The val-

ues of these auxiliary points are updated at each time step from their

counterparts in the adjacent domain as indicated by the arrows in

Fig. 5 (points with identical column indices—underlain in grey).

The number of columns of the auxiliary points must be equal to

half of the FD operator length. We use a four-point FD operator

inside the model; therefore, the auxiliary regions must be 2 points

wide.

Table 1. Example SHaxi parameters and performance—Linux Cluster.

Grid size Number of time steps Memory usagec (Mb) Dominant periodd (s) Run timee

nptsa (θ ) dθb (km) Npts (r) dr (km) S S SS SS
(40◦) (80◦) (120◦) (160◦)

5000/24 4.0/2.2 1000 2.9 16 894 17 16 18 25 30 19 m

10 000/24 2.0/1.1 1800 1.6 33 785 52 10 12 17 19 2 h 9 m

15 000/24 1.3/0.7 2900 1.0 50 758 122 8 10 12 15 7 h 39 m

20 000/24 1.0/0.5 3800 0.76 67 649 210 6 8 10 11 17 h 33 m

30 000/24 0.7/0.4 5200 0.55 101 512 428 5 6 8 9 2 d 6 h 21 m

aValues are: total number of gridpoints/number of processors used.
bValues are: dθ (at Earth surface)/dθ (at CMB).
cMemory is reported as total memory (code size + data size + stack size) for one processor. Code size is ∼800 kb.
dDominant Period based on phase and epicentral distance listed for a source depth of 500 km.
eTotal run time is based on 2700.0 s of simulation time.

2.5 Computational costs

Compared to 3-D modelling techniques the resources necessary for

SHaxi simulations are comparatively low. Simulations with rela-

tively long periods ∼10–20 s can be done on a single PC within a

couple of hours. For shorter periods the required memory and pro-

cessing time increases strongly. The highest achievable dominant

frequency f DOM of the seismograms is inversely proportional to the

grid spacing dx, whereas the time increment between two iterations

is proportional to dx. Thus the memory needed to store the (2-D)

grids is proportional to f 2
DOM and the time needed to perform a

simulation is proportional to f 3
DOM. A further performance increase

can be achieved by limiting the model space in θ -direction by the

maximum epicentral distance of interest. This reduces the number

of gridpoints and consequently the needed memory and simulation

time. The requirements on the system used for the simulations in this

study give an idea about the achievable frequencies on supercom-

puters and PC clusters. The 24-node, 2.4 GHz PC-cluster located at

Arizona State University is capable of computing dominant periods

down to 6 s for S waves at 80◦ distance (Table 1). For a simulation

time of 2700 s the run time was about 21/4 d and each node needed

C© 2008 The Authors, GJI
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Table 2. Example SHaxi parameters and performance—‘Iceberg’ supercomputer.

Grid sizea Number of nodesb Simulation time = 1800 s Simulation time = 2700 s

npts (θ ) npts (r) Number of time steps Run time Number of time steps Run time

5000 1000 4 11 281 13 m 16 921 21 m

10 000 1800 4 22 560 1 h 31 m 33 840 2 h 16 m

10 000 1800 8 22 560 57 m 33 840 1 h 24 m

15 000 2900 8 33 838 3 h 2 m 50 758 4 h 24 m

15 000 2900 12 33 838 2 h 20 m 50 758 3 h 32 m

20 000 3800 12 45 099 5 h 46 m 67 649 8 h 14 m

20 000 3800 16 45 117 4 h 30 m 67 676 6 h 23 m

30 000 5200 16 67 675 12 h 26 m 101 512 17 h 38 m

aCorresponding grid spacing is listed in Table 1.
bEach node consists of an IBM p655+ node, with 8 processors per node, and 16 Gb shared memory. Processor speed is 1.5 GHz.

Table 3. Simulation parameters used in SHaxi verification.

Parameter Linear array Circular array

VS 2000 m s−1 2000 m s−1

Density (ρ) 2000 kg m−3 2000 kg m−3

dr 77.5 m 38.7 m

Rdθ 48.9 m 24.4 m

T dom 1.0 s 0.6 s

λdom 2000 m 1200 m

Points per wavelength 20 (radial) 40 (lateral)

Receiver spacing 976 m 13.5◦
Source–receiver distance Varies 5859 m

428 Mb of memory. The 5 TFlop s–1 system of the Arctic Region

Supercomputing Center ‘Iceberg’ needed for the same run about

15.5 hr (Table 2). In general, on current supercomputer systems

with peak performances well beyond 1 TFlop s–1 dominant periods

below 1 s can be achieved.

3 C O M PA R I S O N W I T H T H E

A N A LY T I C A L S O L U T I O N

A first comparison of axisymmetric FD methods was done by Igel

et al. (2000). Good waveform fits of single seismograms were

achieved for body waves, although the SH source was not exam-

ined in detail. In order to show that the SHaxi method provides the

correct wavefield we compare synthetic seismograms for two re-

ceiver setups with the analytical solution of a ring source (eq. 4)

in an infinite homogeneous media, with parameters shown in Table

3. The size of the numerical model was chosen so that reflected

waves from the model boundaries were significantly delayed and,

therefore, not interfering with the time window of interest. To quan-

tify the difference between synthetic seismograms computed using

SHaxi with the analytic solution, the energy misfit of the seismo-

grams was computed. The energy misfit E of a time-series xi with

respect to a reference series yi is given by:

E =
∑

(xi − yi )
2∑

y2
i

, (6)

(e.g. Igel et al. 2001). Good agreement between the seismograms

and the analytic solution can be said to be attained if the energy misfit

is below 1 per cent. Two receiver configurations, shown in Figs 6(a)

and 7(a), were used for the following purposes: (1) a circular array

consisting of 15 evenly spaced receivers placed on a half circle

with the source in its centre. This setup covers the whole range of

possible take-off angles and is optimally suited for investigating the
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Figure 6. (a) Source–receiver setup of the circular array used to examine the angular variation of the radiation pattern. In this setup the entire range of take-off

angle is covered. (b) Numerical FD (red solid line) and analytical (black solid line) seismograms for the array. The dashed line on top shows the difference

trace for receiver no. 8 scaled by a factor of 25. (c) The maximum FD amplitudes of all traces (red filled circles) are plotted on top of the analytical curve (solid

line). (d) The energy misfit of the FD solution with respect to the analytical solutions. Receivers 01 and 15 are on the nodal SH plane and the energy misfit is

undefined. The energy misfit across all receivers is less than 0.3 per cent.
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Figure 7. (a) Source–receiver setup of the linear array used to examine the

geometrical spreading of the wavefield. The receiver spacing corresponds

to 0.6 dominant wavelengths (1.2 km) in the simulation. (b) Numerical FD

(red solid line) and analytical (black solid line) seismograms for the array.

(c) The maximum FD amplitudes of all traces (red filled circles) are plotted

on top of the analytical curve (solid line). (d) The energy misfit between the

FD and analytical solutions. The misfit is below 0.8 per cent for the entire

section.

angular source radiation and (2) a linear array with the receivers

placed on a straight horizontal line originating from the source.

With this linear array the propagation effects and the spreading for

a constant take-off angle and varying source receiver distance can

be investigated. Table 3 lists the simulation parameters for the two

setups. Fig. 6 shows the results for the circular array. In Fig. 6(b)

the computed seismograms (red) together with the analytical traces

(black) are displayed. To make the difference between both solutions

apparent, the topmost trace shows the difference trace for receiver

no. 8 scaled by a factor of 25. Fig. 6(c) shows the radiation pattern

for all computed traces (marked with red circles) together with the

analytical curve f (γ ) = sin(γ ), with γ the take-off angle, plotted

with solid lines. The SHaxi radiation pattern is calculated from the

maximum amplitudes of the individual seismogram traces.

Fig. 6(d) shows the energy misfit between the SHaxi solution and

eq. (4). The energy misfit is well below 0.4 per cent and depends on

the take-off angle. For steep angles the accuracy of the solution de-

creases. This behaviour is caused by the boundary condition for the

symmetry axis which works best for take-off angles perpendicular

to the axis.

In Fig. 7(b) the numerical (red) and analytical (black) seismo-

grams for the linear array are shown. In Fig. 7(c) the geometrical

spreading of both solutions are shown similar to Fig. 6(c). The an-

alytical function is f (r) ∼ 1/r, where r is source–receiver distance.

The bottom right figure shows the energy misfit for the linear array.

Except for receiver 1 the energy misfit is below 0.4 per cent. The

increased energy misfit for locations very close to the source is a

numerical effect caused by the grid discretization. This effect occurs

for source–receiver distances closer than one dominant wavelength

which should be avoided to achieve an acceptable misfit.

In summary, the method is capable of computing the far-field por-

tion of a strike-slip source in the nodal plane for P radiation. Thus, for

teleseismic investigations where the wavefield travels many domi-

nant wavelengths to the receiver SHaxi provides correct seismo-

grams. In the next Section we will show an SHaxi application which

illustrates the potential of this method.

4 A P P L I C AT I O N : S C AT T E R I N G F RO M

T H E W H O L E M A N T L E

Propagating seismic waves lose energy due to geometrical spread-

ing, intrinsic attenuation and scattering attenuation. The scattering,

or interaction with small spatial variations of material properties, of

seismic waves affects all seismic observables including amplitudes

and traveltimes and also gives rise to seismic coda waves. In order to

demonstrate the usability of the SHaxi method at high frequencies

we present a comparison of synthetics computed from purely elas-

tic models that have been stochastically perturbed from the PREM

reference model (Dziewonski & Anderson 1981).

A central question for the interpretation of such axisymmetric

scattering models is how parameters such as perturbation amplitude

and correlation length of the axisymmetric model can be transferred

to the corresponding 3-D perturbations of the Earth’s mantle. Un-

fortunately, no numerical comparison of 3-D versus axisymmetric

scattering models has been performed yet. Such a study would re-

quire extremely high computational resources in order to generate

synthetics for full 3-D geometries at the dominant periods of in-

terest and is beyond the scope of this paper. Nevertheless, the in-

sights would be highly valuable, for example, for the calibration of

other scattering simulation methods. A candidate method for such a

study is the spectral-element method (Komatitsch & Tromp 1999).

Stochastical approaches like the multiphonon method (Shearer &

Earle 2004) may provide a more realistically obtainable compar-

ison. Alternatively, we discuss here the expected influence of ax-

isymmety on the seismic wavefield from plausibility considerations

and by comparison with comparable studies:

For models with no variations perpendicular to the great circle

plane, axisymmetric and 3-D modelling provide the same results.
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However, for the Earth’s mantle a locally varying, arbitrary oriented

structure is plausible which is impossible to parameterize using

an axisymmetric system. Instead, axisymmetric stochastical models

are invariant in out-of-plane direction, resulting in model variations

which are actually ring shaped with the centre at the symmetry axis.

This geometry causes two significant competing effects on the

coda of the seismograms: (1) scattered energy can not get lost by

radiation off the great circle plane which leads to an enhanced con-

tribution to the scattering amplitudes. In opposition to this effect and

(2) in 3-D random media the initial wavefront will encounter more

possible scatterers than in 2-D and thus contributions from off-plane

scattering to the seismogram coda are missing in the axisymmetric

case, which causes a reduction of the scattering amplitudes. It is

unclear which of these two effects is dominant and the authors are

unaware of any studies that have quantified the two effects for 2-D

v. 3-D geometries on the shape and characteristics of the coda wave

train.

For a precise understanding of these effects the aforementioned

3-D calculations have to be performed. However, results from Frenje

& Juhlin (2000) provide indications that the influence on the scatter-

ing coda is negligible. Frenje & Juhlin compared Cartesian 2-D and

3-D finite-difference simulations with single scattering theory. They

found no significant differences between 2-D and 3-D simulations

when measuring scattering attenuation, except that 2-D simulations

provide less stable results of the derived parameters.

This increased instability of 2-D simulations is caused by the

stronger influence of the specific model realization for a given set

of model parameters. The off-plane model variations in the 3-D

case average out the effects of the specific model realization on the

scattering coda, whose properties depend mainly on perturbation

amplitude and correlation length. For 2-D simulations this aver-

aging process does not exist. However, stable model parameters

can be derived by analysing multiple realizations of a set of model

parameters.

4.1 Inference of whole mantle scattering

Many techniques have been developed to study the properties of seis-

mic scattering (see Sato & Fehler 1998 for a discussion on available

techniques). Advances in computational speed have allowed numer-

ical methods such as FD techniques to be used in analysing seis-

mic scattering (e.g. Frankel & Clayton 1984, 1986; Frankel 1989;

Wagner 1996). The majority of FD studies had thus far focused on S-

wave scattering in regional settings with source–receiver distances

of just a few hundred kilometres. Thus, these recent advances have

greatly improved our understanding of scattering in the lithosphere

where strong scattering is apparent with VS perturbations on the or-

der of 5 km in length and 5 per cent rms velocity fluctuations (e.g.

Saito et al. 2003).

Recently, small-scale scattering has been observed near the CMB.

Cleary & Haddon (1972) first recognized that precursors to the PKP
phase may be due to small scale heterogeneity near the CMB. Hedlin

et al. (1997) also modelled PKP precursors, with a global data set.

They concluded that the precursors are best explained by small-scale

heterogeneity throughout the mantle instead of just near the CMB.

Hedlin et al.’s (1997) finding suggests scatterers exist throughout

the mantle with correlation length scales of roughly 8 km and

1 per cent rms velocity perturbation. Margerin & Nolet (2003) also

modelled PKP precursors corroborating the Hedlin et al. (1997)

study that whole mantle scattering best explains the precursors, al-

though Margerin & Nolet suggest a slightly smaller rms perturba-

tions of 0.5 per cent on length scales from 4 to 24 km. Lee & Sato

(2003) examined scattering from S and ScS waves beneath central

Asia, finding that scattering from ScS waves may dominate over

the scattering from S waves at dominant periods greater than 10

s and that as much as 80 per cent of the total attenuation of the

lower mantle may be due to scattering attenuation. Because Lee &

Sato (2003) used radiative transfer theory to model the scattering

coefficient, it is not possible to directly translate the scattering co-

efficients determined in their study to correlation length scales or

rms perturbations (Haruo Sato 2005, personal communication) for

comparison with the studies of Hedlin et al. (1997) or Margerin

& Nolet (2003). Nevertheless, their conclusion is important in that

whole mantle scattering is necessary to model their data.

Baig & Dahlen (2004) sought to constrain the maximum allow-

able rms heterogeneity in the mantle as a function of scale length.

Their study also suggests that as much as 3 per cent rms S-wave

velocity perturbations are possible for the entire mantle for scale

lengths less than about 50 km. Baig & Dahlen (2004) also suggest

that in the upper 940 km of the mantle, scattering may be twice

as strong as in the lower mantle. The suggestion of stronger upper-

mantle scattering is also supported by Shearer & Earle (2004). They

find that, in the lower mantle, 8 km scale length heterogeneity with

0.5 per cent rms perturbations can explain P and PP coda for earth-

quakes deeper than 200 km. They also find that shallower earth-

quakes require stronger upper-mantle scattering with 4-km scale

lengths and 3–4 per cent rms perturbations.

Although a growing body of evidence suggests that whole mantle

scattering is necessary to explain many disparate seismic observa-

tions, the characteristic scale lengths and rms perturbations are de-

termined using analytical and semi-analytical techniques which in

many cases are based on single-point scattering approximations and

do not synthesize waveforms. As whole mantle scattering may affect

all aspects of seismic waveforms, it is thus important to synthesize

global waveforms with the inclusion of scattering effects. The first

attempt at synthesizing global waveforms was by Cormier (2000).

He used a 2-D Cartesian pseudo-spectral technique to demonstrate

that the D′′ discontinuity may be due to an increase in the hetero-

geneity spectrum. Cormier (2000) suggests that as much as 3 per

cent rms perturbations may be possible for length scales down to

about 6 km.

In this study, we generate a suite of random models of differ-

ent statistical properties based on PREM. Seismograms of these

models are compared and discussed. Moreover the potential and

the restrictions of the SHaxi method concerning investigations on

whole mantle scattering are discussed.

4.2 Implementation of random velocity perturbations

in SHaxi

Models of random velocity perturbations (referred to as random

media hereafter) are characterized by their spatial autocorrelation

function (ACF), the Fourier transform of which equals the power

spectrum of the velocity perturbations. Construction of random me-

dia for FD simulations is implemented using a Fourier based method

(e.g. Frankel & Clayton 1986; Ikelle et al. 1993; Sato & Fehler 1998)

which can be written as a convolution:

M(xi , yk) = R(xi , yk) ∗ACF(xi , yk), (7)

where xi, yk is coordinates of a Cartesian grid, R(xi,yk) is random

matrix, ACF(xi,yk) is autocorrelation function, M(xi,yk) is the re-

sulting model perturbation and ∗ is the convolution operator. For

performance issues the convolution is replaced by multiplication in
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the Fourier space using the 2-D fast Fourier transform 	 and its

inverse 	−1:

M(xi , yk) = 	−1{	[R(xi , yk)] 	[AC F(xi , yk)]}. (8)

The most popular choices of ACFs are defined in Frankel &

Clayton (1986) as:

Gaussian : ACF(x, y) = e−r2/a2
, (9)

Exponential : ACF(x, y) = e−r/a, (10)

vonKarman : ACF(x, y) = 1

2m−1�(m)

(
r

a

)m

Km

(
r

a

)
, (11)

where r is the offset or spatial lag: r = √
x2 + y2, a is the au-

tocorrelation length (ACL), Km(x) is a modified Bessel function of

the second kind of order m and �(m) is the gamma function. The

power spectrum of an ACF is flat out to a corner wavenumber that

is roughly proportional to the inverse of the ACL. From the corner

wavenumber the power spectrum asymptotically decays. The pri-

mary difference between ACFs is their roughness, which is defined

as how fast the rate of fall off is in the decaying portion of the power

spectrum. The most important factor that the roughness of the ACF

affects is the frequency dependence of scattering (e.g. Wu 1982). We

construct models of random media using the ACFs defined in eqs

(9)–(11), noting that other choices of ACFs also exist (e.g. Klimeš

2002a, b).

Challenges arise in implementing random media in SHaxi as the

Fourier technique (e.g. Frankel & Clayton 1986) is defined on a

Cartesian grid and not on the spherical grid used in SHaxi. Us-

ing this Cartesian grid M(xi,yk) directly as spherical grid in SHaxi

would, therefore, lead to an artificial anisotropy due to the now de-

creasing grid spacing for increasing depth. To avoid this, M(xi,yk)

is first calculated on a very fine Cartesian grid which contains the

SHaxi model space. Then the VS perturbations at the SHaxi grid-

points M(θ i,rk) are interpolated from M(xi,yk) using a near neigh-

bor algorithm. The VS perturbations are then applied to the PREM

background model. VS perturbations are clipped at ±3 times the

rms VS perturbation in order to avoid extreme perturbations that

may affect the finite difference simulations. Analysis of the statisti-

cal properties of the original Cartesian random media M(xi,yk) and

the interpolated random media M(θ i,rk) on SHaxi’s grid show no

significant difference. However, the creation of the very large initial

Cartesian grid and the interpolation to the SHaxi gridpoints makes

this method of model generation unhandy. A promising approach

for a direct model generation using the Karhunen–Loève transform

was recently developed by Thorne et al. (2008). Fig. 8 shows an

example of random media interpolated onto SHaxi’s grid.

Fully 3-D random media cannot be incorporated in SHaxi because

of the axisymmetric approximation. As explained in Section 1.1

model invariance in the φ-direction causes the random perturbations

to effectively be zero in this direction. The effect of this apparent

anisotropic ACF in SHaxi will likely be to produce less scattering

than for fully 3-D models (e.g. Makinde et al. 2005). We compute

synthetic seismograms for a suite of realizations of random media

with ACLs of 8, 16 and 32 km and rms VS perturbations of 1, 3 and

5 per cent. The ACL range corresponds to the scattering regime of

SH waves, which typically have dominant periods in the order of

4 s and an average dominant wavelength of 24 km for the chosen

geometry. We analyse the effect of these random VS perturbations

on S and ScS waveforms in the distance range 65◦–75◦ for a source

depth of 200 km.

4.3 Whole mantle scattering simulation results

The effect of random media on the seismic wavefield is shown in

Fig. 9. The left part displays the seismic wavefield at one snapshot

in time (300 s) for a 200-km-deep event for the unperturbed PREM

Figure 8. Example of SHaxi model for which random VS variations were applied to the PREM background model. In this example a Gaussian autocorrelation

function was applied with a corner correlation length of 32 km. The rms S-wave velocity perturbation is 1 per cent and the maximum perturbation varies

between ±3 per cent. The left model boundary at θ = 0◦ is the symmetry axis.

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS



April 14, 2008 20:18 Geophysical Journal International gji˙3744

10 G. Jahnke et al.

b)  PREM model + Gaussian ACFa)  PREM background model

S

sS

Time = 
300 s

           core mantle boundary

sS

S

Figure 9. (a) The SH velocity wavefield for a 200-km-deep source in the

PREM background model at time = 300 s. The S and sS wave fronts are

labelled. (b) The velocity wavefield at the same time step as in panel (a)

for the PREM model with random VS variations applied. The random vari-

ations were created with a Gaussian autocorrelation function with corner

wavelength of 32 km and 3 per cent rms VS perturbations.

reference model. The wave fronts for the seismic phases S and sS
are labelled. Smaller amplitude arrivals are also apparent, corre-

sponding to reflections from the transition zone and upper-mantle

discontinuities in the PREM model. The right part shows the effect

on the wavefield for the same snapshot in time, when the PREM

model has random VS variations applied. Significant coda wave de-

velopment is observed in the wavefield. Furthermore, the smaller

amplitude arrivals that were clearly visible in the upper panel are

barely discernible within the scattered wavefield.

The frequency dependence of scattering is displayed in Fig. 10.

Here synthetics computed for an epicentral distance of 75◦ are shown

for a Gaussian ACF with 3 per cent rms perturbations and ACL of

16 km overlain on top of synthetics computed for the PREM model.

The effects of scattering are most pronounced for the shortest dom-

inant period synthetics. Here the direct S-arrival is broadened with

a delay of the peak energy of roughly 2 s. A similar effect is ob-

served for the ScS arrival. Substantial energy is also seen between

the S and ScS arrivals that do not appear in the PREM synthetics.

However, for longer period waveforms, these scattering effects be-

come less apparent, and for dominant periods of 20 s, the PREM

and Gaussian ACF synthetics are nearly identical. This is due to the

short-scale length of the random perturbations applied to the model.

As the dominant wavelength of the propagating energy increases to

values significantly greater than the dominant wavelength of the

random media the propagating energy can much easier heal around

the perturbations.

The effect of ACL on the waveform shape is demonstrated in

Fig. 11 for models produced with Gaussian ACF’s. The largest

amount of scattering is observed for the largest ACL of 32 km.

Here the absolute amplitude of the S arrival is most significantly

reduced as more energy is robbed from the direct S wave to go into

later arrivals. Significant delay in S-wave peak arrival time is also

apparent which may strongly affect the results of cross-correlation

techniques at picking arrival times.

Note that there is potentially non-uniqueness in determining scat-

tering structure. For many observable properties of the wavefield,

such as delay time of peak arrivals, broadening of the arrivals wave

0 20 40

4.0 s

6.0 s

8.0 s

10.0 s

12.0 s

20.0 s

S ScS

PREM
Gaussian ACF

Relative Time (s)

Figure 10. Frequency dependence of scattering. Shown are SHaxi displace-

ment seismograms for the PREM earth model (dashed line) compared to

seismograms for a stochastically perturbed model with a Gaussian autocor-

relation function created with a rms VS perturbation of 3 per cent and a

16 km corner correlation length superimposed on PREM (solid line). Each

pair of seismograms has been filtered to a different dominant period listed

directly above the seismogram pair. Seismograms are normalized to unity

on the S arrival.

packets, and coda energy, it may be very difficult to distinguish be-

tween various models. For example, A Gaussian ACF with ACL =
8 km and rms = 3 per cent behaves very similarly to an Exponential

ACF with ACL = 32 km and rms = 1 per cent. Ultimately distin-

guishing between these various models will require examination of

data in a range of frequencies.

4.4 Discussion of the scattering simulation results

Scattering in the mantle affects all parts of the seismic waveform and

may account for a significant portion of the total attenuation we map

into the lower mantle. We have implemented scattering in a global

numerical method, but much work needs to be done in comparing

our results with data and in producing more realistic models of

mantle scattering. For example, models with anisotropic ACF’s in

the lateral direction or models with differing ACL’s or ACF’s in

different layers of the mantle may provide better approximations to

the earth structure.

Yet, it is difficult to implement multilayered models using the

Fourier technique to produce random velocity perturbations. Dif-

ferent models have to be constructed on Cartesian grids and then

interpolated onto the SHaxi grid. This will produce undesirable
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Figure 11. (a) The dependence of autocorrelation length (ACL) on SH-wave envelopes. Envelopes of displacement seismograms are shown for the PREM

model (black line) and for the PREM model with three realizations of random S-wave velocity perturbations applied. The perturbations are produced for a

Gaussian autocorrelation function with 3 per cent rms velocity perturbations. Envelopes are shown for random perturbations with ACL’s of 8 km (blue), 16 km

(green) and 32 km (red). (b) Detail of direct S arrival from panel (a).

first-order discontinuities in between layers with different scattering

properties.

SHaxi is a viable technique for which models of whole mantle

scattering can be implemented. Although fully 3-D techniques ex-

ist, it is still impossible to model scattering in 3-D because current

computational limits do not allow for computation of the wavefield

at the small dominant periods where scattering effects are observed

in the Earth. Furthermore, the SHaxi method may provide a better

alternative to finite frequency approximations of scattering since the

entire wavefield is computed and there is no reliance on single-point

scattering approximations. Our results are calculated for elastic ve-

locity models and do not include intrinsic attenuation. Inclusion

of inelasticity may weaken the effects of multiple scattering (e.g.

Yomogida & Benites 1996), yet future efforts should combine both

attenuation mechanisms.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we presented a method to calculate high-frequency

global SH seismograms for axisymmetric geometries. Axisymmet-

ric methods fill the gap between 1-D methods which are often too

limited to explain teleseismic observations and full 3-D methods,

which require very high computational resources. On teleseismic

scales the major portion of the wavefield propagates in the great cir-

cle plane. As a consequence, out of plane variations of the seismic

properties can often be ignored. Although the computational effort

of SHaxi is equivalent to 2-D methods the correct 3-D geometrical

spreading is preserved in contrast to traditional 2-D methods. The

applied ring-source in SHaxi is equivalent to a vertical strike-slip

source for source–receiver distances larger than about five dominant

wavelengths where the near and intermediate wavefields vanish. Al-

though arbitrary sources cannot be modelled and comparisons with

real seismograms cannot be directly made, the method can be used to

probe many teleseismic questions. The method is especially suited

to investigating relative amplitudes and/or traveltimes. Moreover

when the take-off angle of the investigated phases is known, ampli-

tude correction terms can be calculated. The reduction of compu-

tational effort has permitted exploration of teleseismic waveforms

at frequencies where whole mantle scattering may come into play.

For example, determination of the length scales and spatial loca-

tion of small-scale seismic heterogeneity may provide important

geodynamic implications, such as the degree of convective mixing

in the mantle or compositional heterogeneity (e.g. van der Hilst &

Kárason 1999; Davies 2002). Fixing the spatial extent of small-scale

heterogeneity in the mantle may be challenging, however techniques

focused on measuring differential attenuation may prove useful. A

companion paper (Thorne et al. 2007) uses SHaxi to examine the

high frequency waveform effects of recent data analyses for D′′ dis-

continuity structure beneath the Cocos Plate region. As investiga-

tions of whole mantle scattering become more and more prominent,

numerical techniques such as SHaxi that are capable of synthesizing

waveforms with the inclusion of scattering will become important,

as they have for regional scale modelling.
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