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Abstract Broadband USArray recordings of the 21 July 2007 western Brazil earthquake (Mw=6.0;
depth = 633 km) include high-amplitude signals about 40 s, 75 s, and 100 s after the P wave arrival.
They are consistent with S wave to P wave conversions in the mantle beneath northwestern South America.
The signal at 100 s, denoted as S1750P, has the highest amplitude and is formed at 1,750 km depth based on
slant-stacking and semblance analysis. Waveform modeling using axisymmetric, finite difference synthetics
indicates that S1750P is generated by a 10 km thick heterogeneity, presumably a fragment of subducted
mid-ocean ridge basalt in the lower mantle. The negative polarity of S1750P is a robust observation and
constrains the shear velocity anomaly 𝛿VS of the heterogeneity to be negative. The amplitude of S1750P
indicates that 𝛿VS is in the range from −1.6% to −12.4%. The large uncertainty in 𝛿VS is due to the large
variability in the recorded S1750P amplitude and simplifications in the modeling of S1750P waveforms.
The lower end of our estimate for 𝛿VS is consistent with ab initio calculations by Tsuchiya (2011), who
estimated that 𝛿VS of eclogite at lower mantle pressure is between 0 and −2% due to shear softening
from the poststishovite phase transition.

1. Introduction

While seismic tomography has mapped the penetration of subducting lithosphere into the lower mantle on
scales > 100 km (e.g., Fukao et al., 2001; Grand et al., 1997), array recordings of reflected or converted phases
indicate that fine-scale (10–100 km) structure is present in the deep mantle (e.g., Kaneshima, 2016; Shearer,
2007). S-to-P conversions at depth x, denoted as SxP, are excellent probes for detecting layering or localized
heterogeneity in the lower mantle beneath deep-focus earthquakes. These shear wave conversions have been
used to map small-scale seismic structure beneath the Marianas (e.g., Kaneshima & Helffrich, 1998), Tonga
(e.g., Kaneshima, 2013; Li & Yuen, 2014; Yang & He, 2015), Indonesia (e.g., Kaneshima & Helffrich, 1994; Niu &
Kawakatsu, 1997; Vanacore et al., 2006; Vinnik et al., 1998), South America (e.g., Castle & van der Hilst, 2003;
Kaneshima & Helffrich, 2010), and northeast China (Niu, 2014). Kaneshima and Helffrich (1999) interpreted
these small-scale, deep-mantle heterogeneities as fragments of subducted oceanic crust.

We inspected Transportable Array (TA) and Canadian National Seismic Network (CNSN) waveforms from 41
deep-focus (>300 km) earthquakes in South America since 2007. We detected high-amplitude Sx P conversions
only in recordings of the 21 July 2007 Mw =6.0 (latitude = 8.1∘S; longitude = 71.3∘W; depth = 633 km) western
Brazil earthquake (the Brazil earthquake from hereon). The Brazil earthquake had a dip-slip source mecha-
nism with optimal downward radiation of SV-polarized shear waves. The absence of clear S-P conversions in
waveform data from other events is likely due to the unique focal mechanism of the Brazil earthquake.

Previous studies have modeled the amplitude and polarity of SxP conversions (e.g., Kaneshima & Helffrich,
1999; Niu, 2014; Vinnik et al., 1998). In this paper we analyze broadband regional network waveforms by
2-D finite difference modeling at periods longer than 2 s. The broadband recording of S1750P at stations from
the TA and CNSN elucidates the signal polarity and amplitude. By forward waveform modeling, we put con-
straints on the thickness and the shear velocity of the anomalous structure in the deep mantle responsible for
generating S1750P.
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Figure 1. (top) Source-receiver geometry of the 10 July 2007 western Brazil earthquake. The star indicates the epicenter.
The triangles indicate the locations of stations from the Transportable Array (TA) and the Canadian National Seismic
Network (CNSN) used in the analysis. The black line is the great-circle arc through the Brazil event and the western U.S.
The white circles on top are drawn every 15∘. P wave and SV wave radiation patterns are shown on the lower right.
Green circles on the radiation pattern indicate the S1750P takeoff direction. Yellow circles on P and SV radiation patterns
indicate P and S wave takeoff directions, respectively. (bottom) Geometric raypaths of P (solid line) and S1750P (dashed
line) for an epicentral distance of 65∘. The raypaths are superposed on a NW-SE oriented cross section of the S40RTS
model (Ritsema et al., 2011) through the Brazil event and the TA and CNSN stations. Note that S1750P is formed within a
high-velocity anomaly in the lower mantle beneath South America.

2. SxP Conversions in the Lower Mantle Beneath South America
2.1. Wave Geometry
SxP is formed when the downward propagating S wave converts to a P wave at a discontinuity or heterogeneity
in seismic velocity at depth x below the earthquake source. Beneath the Brazil earthquake, Sx P conversions
form in a high-velocity structure that we interpret as the Nazca lithosphere subducted beneath western South
America (Figure 1). We can distinguish Sx P from crustal reverberations and reflections off boundaries above
the earthquake (i.e., p410P and s410P) or beneath the receivers (e.g., P410s and P660s) when its slowness can be
determined using recordings from a wide-aperture network.

2.2. Waveforms From North America
More than 250 TA and CNSN stations in western North America recorded the Brazil earthquake between 56∘

and 73∘. The record section of vertical component traces in Figure 2a shows the ground velocity after align-
ment on the P wave (at time 0). The seismic phases PcP and pP are reflections off the outer core and Earth’s
surface, respectively. Three Sx P signals at about 45 s, 75 s, and 100 s after the P arrival are visible throughout
the section. The signals at 45 s, which may interfere with p410P, and at 75 s are S950P and S1250P, respectively.
These conversions were formed about 3∘ off the great-circle path and have complex waveforms (see Figure S1
in the supporting information). We interpret the impulsive arrival at 100 s as S1750P. Its arrival time decreases
with increasing epicentral distance with respect to P, as expected for a Sx P conversion.

The vespagram in Figure 2b indicates that the slowness of S1750P is about 0.2 s per degree higher than pre-
dicted for a standard 1-D seismic model. This suggests that the S1750P conversion point is located farther from
the earthquake hypocenter than expected for a 1-D wave speed model. Semblance is a measure of coherent
energy in a stack of data arriving from a common conversion point. By semblance analysis, following
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Figure 2. (a) Record section of velocity waveforms of the Brazil event aligned on the P wave arrival (at time 0).
Labeled on top are the arrival times of the major phases P, PcP, pP, pPcP, and S-P conversions at 950 km, 1,250 km,
and 1,750 km depth. The conversion depths of S950P and S1250P are shallower depths than expected for 1-D models
because these phases propagate off azimuth for the Brazil earthquake (see Figure S1). (b) Vespagram of the absolute
amplitude of the sum of waveforms as a function of time and signal slowness. The Sx P slowness branch is indicated by a
dashed line. (c) Map view of semblance coefficients computed for a 0.5∘ × 0.5∘ × 50 km grid at 1,650 km, 1,700 km,
1,750 km, and 1,800 km depth. The warmest colors indicate where semblance values are the highest. The dashed lines
represent the station azimuth range of the TA and CNSN stations with clear S1750P signals. The red circle at 1,750 km
depth is the S1750P conversion point computed for a 1-D velocity structure.
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Figure 3. (a) Record section and (b) stacked displacement waveforms
centered on S1750P from 30 TA and CNSN stations. The large-amplitude
signal moving out with increasing distance is pP. (c) Sum of the
displacement waveforms. The gray envelope is two standard deviations
wide and indicates amplitude variability present in the data.

Kaneshima and Helffrich (2003), we locate the conversion point of S1750P
between 1,700 and 1,750 km depth within the sector of source azimuths of
the TA and CNSN stations but about 400 km to the NW of the 1-D predicted
conversion location (Figure 2c). This is consistent with the S1750P slowness and
traveltime observed in Figure 2b.

3. Waveform Modeling

The S1750P signal is recorded above noise level in 30 vertical displacement seis-
mograms from the TA and CNSN. Figure 3 shows these waveforms and their
sum after they have been aligned and scaled such that the SV wave, which
converts into S1750P, has an amplitude equal to 1. The S1750P signal in each
of these 30 records is composed of a negative and a positive pulse separated
by about 2 s, with varying amplitudes. The mean value of the peak-to-peak
amplitude is 4.4% of the SV amplitude on the vertical component, and the
two standard deviation of the amplitude is 3.4%.

Computed waveforms indicate that the waveform shape of S1750P is due to the
interference of two S-to-P conversions at the upper and lower boundaries of
a narrow velocity structure. These two conversions have opposite polarities.
We model the heterogeneity that produces S1750P as a block centered on the
ray-theoretical S1750P conversion point beneath the earthquake (Figure 4a).
The block has a thickness h and makes an angle 𝛼 with the equatorial plane.

We choose long blocks to avoid wave diffraction around them. We expect
diffraction to reduce the amplitude of S1750P, but it must be studied in 3-D.
The S wave velocity contrast with respect to the ambient mantle is 𝛿VS.
Our synthetics indicate that anomalies in the P wave velocity and density do
not affect the S1750P waveform significantly (see Figure S2).

We model the stack of the 30 high-amplitude S1750P waveforms using syn-
thetics computed with the PSVaxi method (e.g., Thorne et al., 2013), a finite
difference method similar to the SHaxi method developed by Jahnke et al.
(2008). PSVaxi allows us to compute the full seismic wavefield of P-SV motions
with the correct 3-D geometric spreading for a model of seismic struc-
ture in the plane of the great-circle arc. The 2-D grid of heterogeneity is

expanded to 3-D spherical geometry by rotating it around the radial axis passing through the seismic source.
Our PSVaxi synthetics include signals up to frequencies of 0.5 Hz (i.e., shortest dominant period of 2 s) but
due to the assumed axisymmetry, signals from off-azimuth wave propagation or SH-to-P conversions cannot
be modeled.

We compute synthetics for the PREM seismic model and for a 3-D model in which the block heterogeneity at
1,750 km depth is embedded within PREM. In the PREM model, we replace the 220 km, 400 km, and 670 km
discontinuities by smooth gradients to suppress reflections and conversions produced in the upper mantle.
We subtract the PREM and 3-D waveforms to isolate the S1750P signals.

Figures 4b and 4c compare the recorded S1750P signal (see Figure 3c) to synthetic waveforms for different block
thicknesses h and shear velocity anomalies 𝛿VS. The block thickness h controls the traveltimes of the entry and
exit conversions and, therefore, the pulse width of S1750P. The synthetics for h=2 km and h=20 km clearly
underestimate and overestimate the recorded pulse width, respectively (Figure 4b). We find the best match
for h=10 km and use this value in our modeling. The shear velocity anomaly 𝛿VS of the block determines the
polarity of 𝛿VS. A negative value for 𝛿VS is required to reproduce the down-and-up swing of S1750P (Figure 4c).

Figure 5 compares the recorded peak-to-peak amplitude of 4.4 ± 3.4% to predicted amplitudes when vary-
ing 𝛿VS (in Figure 5a) and block angle 𝛼 (in Figure 5b). The amplitude of S1750P depends linearly on 𝛿VS.
A value of 𝛿VS = −7% produces a match between the computed and recorded mean peak-to-peak amplitude
of S1750P, but values of 𝛿VS between −1.6% and −12.4% match the amplitude within its uncertainty range.
The amplitude of S1750P depends on 𝛼 in a nonlinear manner. The predicted S1750P amplitude is highest when
𝛼 ≈ 10∘. Changing 𝛼 by 20∘ decreases the S1750P amplitude by as much as 30%.
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Figure 4. (a) Illustration of the model. The heterogeneity responsible for forming S1750P is modeled as a block at
1,750 km depth with a thickness h that makes an angle 𝛼 with the equatorial plane. It has a velocity contrast 𝛿VS with
respect to the ambient mantle. (b) Synthetic waveforms for h=2 km, h=10 km, and h=20 km. 𝛿VS =−10% in these
simulations. (c) Synthetic waveforms for 𝛿VS =10%, 𝛿VS =−10%, and 𝛿VS =−5%. h=10 km in these simulations. For all
simulations in Figures 4b and 4c, 𝛼=0∘ , the epicentral distance is 65∘ , and the gray waveform is the stack of the
recorded S1750P waveforms.

Figure 5. Peak-to-peak S1750P amplitude normalized to the radial SV component as a function of (a) 𝛿VS and (b) block
angle 𝛼. The horizontal black line indicates the mean value of the amplitude. Its two gray envelopes are one and two
standard deviations wide. Vertical black bars are predicted amplitudes with error bars estimated from the minimum
and maximum values for a range of epicentral distances.
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4. Discussion and Conclusions

If small-scale heterogeneities that produce high-amplitude SxP signals are indeed fragments of mid-ocean
ridge basalt (MORB) subducted into the lower mantle, the analysis of Sx P waveforms can place important
constraints on the elastic properties and composition of MORB at lower mantle conditions.

There is consensus that the density of MORB is 0.5% to 2% higher than the ambient mantle over the entire
lower mantle range (e.g., Hirose et al., 1999; Irifune & Ringwood, 1987, 1993; Irifune & Tsuchiya, 2007; Litasov
et al., 2004; Ricolleau et al., 2010). However, high-pressure experiments on the elastic properties of MORB are
challenging and available estimates are based on ab initio modeling (e.g., Kawai & Tsuchiya, 2012; Kudo et al.,
2012; Tsuchiya, 2011; Xu et al., 2008).

SiO2 is an important component in MORB and undergoes a phase transition from stishovite to an orthorhombic
CaCl2 structure at midmantle conditions. Karki et al. (1997) first calculated from first principles the elastic
parameters of stishovite and CaCl2 and found a decrease in shear velocity. Tsuchiya et al. (2004) predicted
that silica would exist in the CaCl2 structure at 75 GPa along the geotherm of a subducting slab. If present
in subducting slabs, silica will undergo this phase transition and produce seismic heterogeneities commonly
observed near subduction zones.

Tsuchiya (2011) estimated that VS is between 0 and 2% lower than the shear velocity of a pyrolitic mantle
at a depth of 1,750 km due to a poststishovite transition. He found that VP does not change appreciably.
In constrast, Xu et al. (2008) did not include the effect of poststishovite and reported that VS in a pyrolitic
mantle increases with increasing basalt fraction. The presence of aluminum in silica further softens both
stishovite and CaCl2 (e.g., Bolfan-Casanova et al., 2009; Lakshtanov et al., 2007). Our observation occurs at
75 GPa at a temperature range of 1200–2000 K, well within the P-T conditions of CaCl2 estimated by, for
example, Nomura et al. (2010) and Ono et al. (2002).

The negative polarity of S1750P is a robust observation and implies that the heterogeneity that produces this
arrival has a lower shear velocity than the ambient mantle. The mean amplitude of S1750P indicates that 𝛿VS

is between −1.6% and −12.4%. This estimate is uncertain because the recorded S1750P amplitude is highly
variable and the modeling is influenced by the geometry and orientation of the heterogeneity. However, the
lowest value (i.e., −1.6%) for our estimate of 𝛿VS is consistent with the shear velocity reduction of MORB at
deep-mantle pressures, estimated by Tsuchiya (2011) as shown in Figure 4. We therefore interpret S1750P as a S
wave to P wave conversion by a small-scale, MORB fragment in a subducted slab in the lower mantle beneath
the Brazil earthquake. The relatively low shear velocity of the MORB fragment is evidence for shear softening
due to the postsitshovite phase transition in MORB in the deep mantle.

Seismological modeling of S1750P can benefit from additional broadband recordings to constrain waveform
polarity and amplitude variability. In addition, estimates of the seismic properties of subducted MORB in the
lower mantle will improve if we can consider the effects of off-azimuth wave propagation and SH-to-P wave
conversions contributing to S1750P. This requires computational resources that are currently not available to us.
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