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S U M M A R Y 

Ultra-low velocity zones (ULVZs) have been identified as regions of extremely low velocity 

anomalies in the Earth’s lowermost mantle using seismic observations from reflected, refracted 

and diffracted arrivals along the mantle side of the core–mantle boundary. Estimation of ULVZ 

geometrical (i.e. shape and size) and elastic (i.e. velocity and density) parameters with uncer- 
tainties is crucial in understanding the role of ULVZs in the ongoing dynamic processes within 

the Earth’s mantle; ho wever , these parameters are still poorly known due to uncertainties and 

tradeoffs of the seismically resolved ULVZ geometries and elastic parameters. Computation 

of synthetic waveforms for 2-D and 3-D ULVZs shapes is currently computationally feasible, 
but past studies utilize higher dimensional waveform modelling of mostly only low-frequency 

dif fracted w av es. Most studies focusing on high-frequenc y core-reflected wav eforms (e.g. ScP) 
still use 1-D modelling approaches to determine ULVZ properties. This approach might lead to 

wrong results if the imaged structures have inherently 3-D geometries. This study investigates 
high-frequency synthetic ScP waveforms for various 2.5-D ULVZ geometries showing that 
additional seismic arri v als are generated even when the ScP geometrical ray path does not 
directly strike the location of the ULVZ. The largest amplitude additional phases in the 2.5-D 

models are post-cursor arri v als that are generated at the edges of the finite-length ULVZs. 
These ne wl y identified ScP post-cursors can arrive within the ScsP post-cursor time window 

traditionall y anal ysed in 1-D ULVZ studies. These post-cursors might then be misidentified 

or constructi vel y/destructi vel y interfere with the ScsP post-cursor, leading to incorrect esti- 
mation of ULVZ parameters. In this study we investigate the bias introduced by the 2.5-D 

morphologies on the 1-D estimated ULVZ elastic properties in a Bayesian waveform inver- 
sion scheme. We further expand the Bayesian method by including the data noise covariance 
matrix in the inversion and compare it to an autoregressive noise model that was utilized in 

previous studies. From the application to the observed ScP data, we find that the new approach 

con verges faster , particularly for the in v ersion of data from multiple ev ents, and the new al- 
gorithm retrieves ULVZ parameters with more realistic uncertainties. The inversion of 2.5-D 

synthetic ScP waveforms suggests that the retrieved ULVZ parameters can be misleading 

with unrealistically high confidence if we do not consider the data noise covariance matrix in 

the inversion. Our new approach can also retrieve the shape of a multidimensional Gaussian 

ULVZ if its length is 12 

◦ or longer in the great circle arc direction. Ho wever , 2.5-D synthetic 
waveforms show additional wav eform comple xity which can constructi vel y interfere with the 
ScP w avefield. Hence, in man y cases the estimation of ULVZ properties using 1-D forward 

modelling can provide incorrect ULVZ parameters. Hence previous ULVZ modelling efforts 
using 1-D parameter estimation methods may be incorrect. 

Key wor ds: Bay esian inference; Body waves; Computational seismology; Core-mantle 
boundar y; Wavefor m inversion. 
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1  I N T RO D U C T I O N  

Ultra-low velocity zones (ULVZs) are thin structures, with ex- 
tremely low seismic velocities, sitting on the top of the core–mantle 
boundary (CMB). ULVZ lateral extent is reported as short as ∼10 ′ s 
of km to as long as more than 1000 km on the CMB (e.g. Rost 
et al. 2005 ; Thorne et al. 2013 ). What defines these structures is 
the reported strong decrease in shear ( S )-wave velocity ( δV S ) of up 
to 50 per cent (e.g. Havens & Revenaugh 2001 ; Rondenay & Fis- 
cher 2003 ), a strong reduction in compressional ( P )-wave velocity 
( δV P ) up to 25 per cent (e.g. Thybo et al. 2003 ), and an increase 
in density ( δρ) up to 20 per cent (e.g. Koper & Pyle 2004 ). Al- 
though ULVZs are identified as relati vel y small structures in the 
lowermost mantle, they can play a crucial role in ongoing pro- 
cesses in the Earth’s interior. For example, multiple studies have 
suggested that ULVZs might represent the root of upwelling man- 
tle plumes (e.g. Rost et al. 2005 ; Cottaar & Romanowicz 2012 ; 
Jenkins et al. 2021 ; Krier et al. 2021 ; Cottaar et al. 2022 and Yuan 
& Romanowicz 2017 ). This scenario has traditionally inv oked par - 
tial melting to explain ULVZ occurrence (e.g. Williams & Garnero 
1996 ; W illiams et al. 1998 ), ho wever , multiple recent studies have 
shown that increasing iron content in lower mantle minerals is also 
a viable method to generate ULVZ properties (e.g. Mao et al. 2006 ; 
Wicks et al. 2010 ). If ULVZs are compositional heterogeneities, 
geodynamic modelling efforts have demonstrated that ULVZs are 
one of the most dynamically active features in the lowermost mantle 
and may be acti vel y moving across the CMB (e.g. McNamara et al. 
2010 ; McNamara 2019 ). If large low velocity provinces (LLVPs) 
signify compositional heterogeneities, ULVZs should accumulate 
along their boundaries (e.g. McNamara et al. 2010 ; Li et al. 2017 ) 
which may in turn be linked to the locations of plume upwellings 
(e.g. Thorne & Garnero 2004 ). Alternati vel y, e ven if the LLVPs do 
not represent thermochemical structures, ULVZs should ultimately 
conv erge and congre gate at locations of activ e mantle upwelling 
(e.g. Li et al. 2016 ). 

Determining the origin of ULVZ material has remained specu- 
lative with multiple viable scenarios being proposed. For example, 
ULVZs may arise through ongoing processes such as melting of 
Mid-Ocean Ridge Basalt (MORB) material in down-going slabs 
(Andrault et al. 2014 ) or are being acti vel y generated through core–
mantle reactions (e.g. Kanda & Stevenson 2006 ). But they could 
also be extremely long-lived features and represent the remnants 
of a basal magma ocean that formed after the differentiation of 
our planet (Labrosse et al. 2007 ; Pachhai et al. 2022 ). Discriminat- 
ing between these scenarios is not possible at this time due to the 
uncertainties and tradeoffs of the seismically derived ULVZ param- 
eters, uncertainties in the mineral physical properties of lowermost 
mantle materials and the small-scale structure of ULVZ making 
geodynamical and seismic modelling difficult. A recent global sur- 
v e y of ULVZ locations (Thorne et al. 2020 ; Thorne et al. 2021 ) 
has demonstrated that ULVZs exist in all major provinces of the 
lowermost mantle, including LLVP regions and the circum-Pacific. 
Thus, the origin of ULVZ features may not necessarily arise from 

just one mechanism, or ULVZs in different locations are mani- 
festations of a single phenomenon at different stages of their life 
cycle. 

ULVZs were first discovered three decades ago (Garnero et al. 
1993 ) and have subsequently been studied using a wide variety of 
seismic observations. The earliest studies solely made inferences 
on δV P , which were determined to be ∼-5 to -10 per cent, with 
respect to the PREM model (Dziewonski & Anderson 1981 ), con- 
centrated in zones that were likely a few 10 ′ s of km thick (Garnero 
et al. 1993 ; Garnero & Helmberger 1995 ; Mori & Helmberger 1995 ; 
Garnero & Helmberger 1996 ). The first suggestion that the low ve- 
locities encountered in ULVZs may be composed of partial melt 
was provided in Garnero & Helmberger ( 1996 ) and subsequently 
expounded upon in Williams & Garnero ( 1996 ) with the predic- 
tion of a ratio of 3:1 for δV S to δV P , meaning that δV S could be 
as large as -15 to -30 per cent. Evidence for such large S -wave 
velocity drops was first presented in Revenaugh & Meyer ( 1997 ). 
Ho wever , from the onset it was recognized that strong tradeoffs in 
the model space make determination of elastic parameters uncer- 
tain (Garnero & Helmberger 1998 ). Approximately 30 per cent of 
published ULVZ studies to date have utilized diffracted waveforms 
such as those originally used to infer ULVZ presence (e.g. P diff , S diff , 
SP diff KS, SKP diff S and PKKP diff ) (see Yu & Garnero 2018 for a re- 
view). But more than half of all ULVZ studies conducted have used 
core-reflected waveforms (PcP and ScP). One of the most alluring 
aspects of using these phases is that, if found, pre- and post-cursor 
arri v als of fer the potential of constraining all ULVZ elastic parame- 
ters (see e.g. Mori & Helmberger 1995 ; Garnero & Vidale 1999 ) and 
potential internal structure (Rondenay & Fischer 2003 ; Thybo et al. 
2003 ; Idehara 2011 ; Pachhai et al. 2022 ). In contrast, diffracted 
phases such as SP diff KS/SKP diff S or Sdiff, are relatively insensitive 
to such internal layering which makes studying the reflected phases 
attractive. 

In order to infer ULVZ properties, the earliest studies utilized 1-D 

waveform modelling techniques such as generalized ray theory and 
the reflectivity technique, regardless of seismic phases used (e.g. 
Mori & Helmberger 1995 ; Garnero & Helmberger 1996 ; Reasoner 
& Re venaugh 2000 ). Howe ver, modelling seismic w aveforms for 
the long period SP diff KS seismic phase in 2-D models began as 
early as the late 1990 ′ s using hybrid techniques (Helmberger et al. 
1998 ; Wen & Helmberger 1998 ). The 2-D and 2.5-D modelling 
of SP diff KS waveforms for ULVZs became widespread in the last 
decade (e.g. Rondenay et al. 2010 ; Jensen et al. 2013 ; Thorne et al. 
2013 ; Vanacore et al. 2016 ) and 3-D modelling has just recently 
become practical (Krier et al. 2021 ; Thorne et al. 2021 ). Modelling 
of long period S diff waveforms has also e xtensiv ely utilized 2-D or 
3-D waveform modelling techniques (e.g. Cottaar & Romanowicz 
2012 ; Yuan & Romanowicz 2017 ; Cottaar et al. 2022 ). Sun et al. 
( 2019 ) present modelling of ScS waveforms at higher frequency for 
various shapes (triangle, boxcar and Gaussian) of ULVZ. But for 
high frequency arri v als such as ScP and PcP concurrent modelling 
still existed only in the 1-D model space (e.g. Rost et al. 2010 ; 
Idehara 2011 ; Thorne et al. 2021 ; Pachhai et al. 2022 , 2023 ). The 
first 2-D modelling of ScP, albeit for longer period w aveforms, w as 
explored in Brown et al. ( 2015 ). But forward waveform modelling 
capabilities now make it possible to model these waveforms at high 
frequency using 2-D or 3-D techniques. A recent paper (Pachhai 
et al. 2023 ) also laid the groundwork for modelling ScP at high 
frequencies for 2.5-D model geometries and presented an initial 
analysis of 2.5-D seismic waveforms. In the presence of a 2-D 

boxcar ULVZ additional arri v als due to likel y dif fraction at the 
edge boundaries exists. The amplitudes and arri v al times of these 
additional phases depend on the ScP bounce point and the edge 
location of the ULVZ. We present more details of these arri v als in 
this paper. 

The importance of considering higher dimensional ULVZ mor- 
phology is implicit as additional post-cursor arrivals may be gener- 
ated, even if the ScP wave does not directly strike the ULVZ along 
the geometric ray path. Sev eral ke y features of the seismic wave- 
forms shown in Pachhai et al. ( 2023 ) make additional investigation 
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mportant, especially when considering characteristics of observed
LVZ signatures. 
Fig. 1 summarizes where ULVZs have and have not been de-

ected using ScP in a relati vel y small region beneath the Coral Sea.
hese lateral variations of detected/undetected ULVZ locations at

he CMB are due to the ScP observations that show a wide variation
f ScP waveforms sampling within a few tens of kilometres at the
MB. Some events show waveforms without complexity (i.e. lack
f both pre- and post-cursor signal) while others show complex
cP w aveforms, i.e. w aveforms with precursors and multiple post-
ursors. As can be seen in Fig. 1 (b), there is a high degree of overlap
etween the regions showing and not showing ULVZ signature (fig.
b; Rost & Revenaugh 2003 ; Rost et al. 2005 , 2006 ; Idehara 2011 ;
rown et al. 2015 ). Many of these seemingly conflicting observa-

ions could be explained by higher dimensional ULVZ structure that
as not pre viousl y been considered. For example, as shown in Pach-
ai et al. ( 2023 ), we see that ScP post-cursors (but no precursors)
ay exist when the ScP geometric ray does not strike the ULVZ

ue to the finite frequency of the seismic wave. Also, strong con-
tr uctive/destr uctive interference effects between ScsP post-cursor
nd additional post-cursor arri v als may exist for 2-D/3-D ULVZ,
aking the ScsP post-cursor increase dramatically in amplitude or

ven cease to be obser vable. Fur ther more, if ULVZs contain sharp
dges then multipath arri v als could complicate the picture even fur-
her. These highly variable ScP characteristics have not only been
bserved beneath the east of Australia (e.g. Pachhai et al. 2023 ) but
lso beneath other areas such as the Philippines (e.g. Idehara 2011 ).
n some cases, ScP post-cursors have been observed without any
ccompanying precursors (e.g. Rost & Revenaugh 2003 ; Rost et al.
005 ). 

In this paper, we explore the nature of ScP arri v als generated
y 2.5-D ULVZ model geometries. We first compute a set of syn-
hetics for a variety of ULVZ morphologies, identifying the new
rri v als observed in the synthetic wav efield. We ne xt use these syn-
hetics to invert for ULVZ structure using state-of-the-art Bayesian
av eform inv ersion methods (P achhai et al. 2014 , 2015 , 2023 ).
ere we further enhance our Bayesian inversion method to assess
nder what circumstances the 1-D inversion results may be appli-
able and how 2.5-D ULVZ structure may bias those results. In
ur past Bayesian inversion of ScP waveforms, we parametrized
he data noise covariance matrix by two parameters in an autore-
ressive model (width of the noise correlation represented by AR1
oefficient and the standard deviation of the noise). In general, a
igher value of the AR1 coefficient is linked to the wider band
orrelation matrix. Ho wever , in this study we consider the full data
oise covariance matrix in the inversion without any approxima-
ion. Past ULVZ studies (e.g. Pachhai et al. 2014 , 2015 ) did not
onsider this approach as parametrization of noise covariance ma-
rix using two parameters is more efficient than computing the co-
 ariance matrix, particularl y when we consider a single event in
he inversion. We also examine the effects of inverting for ULVZ
arameters, using the most state-of-the-art 1-D inversion scheme,
o gain a first-order estimate as to how much previous study re-
ults ma y ha ve been af fected b y w aveform ef fect due to higher
imensional ULVZ properties. Our synthetic experiments suggest
hat the inclusion of the noise covariance matrix in the likelihood
unction retrieves more meaningful ULVZ properties in compari-
on to those obtained using the AR1 coefficient in previous studies,
ut that 2.5-D ULVZ morphology adds considerable differences
o the ScP wavefield making recovery of true ULVZ parameters
hallenging. 
 S Y N T H E T I C  DATA  

n nearly all previous ScP studies, forward modelling waveforms
ave been computed using 1-D modelling, assuming ULVZs are flat
ayered structure (e.g. Garnero & Vidale 1999 ; Reasoner & Reve-
augh 2000 ; Rost & Revenaugh 2003 ; Idehara 2011 ; Pachhai et al.
022 ). This approximation has been used to predict and interpret the
re- and post-cursors of ScP waves in terms of ULVZ parameters.
o wever , the literature is virtually absent on 2-D or 3-D effects on

he seismic wavefor ms, par ticularly for high frequenc y wav efields
uch as ScP that has dominant period of 1 s. Here we explore the
ffect of 2.5-D ULVZ models on the ScP wavefield by comput-
ng synthetic seismograms using the PSVaxi technique (e.g. Jahnke
009 ; Jensen et al. 2013 ; Thorne et al. 2013 ). The PSVaxi technique
s a finite difference method for solving the seismic wave equation.

odel geometries are input on a 2-D grid, and the grid is virtually
otated around a line passing through the source and the centre of
he Earth. This provides correct 3-D geometrical spreading effects,
lbeit for 2-D input models. Computation of full 3-D synthetic seis-
ograms is now possible (Leng et al. 2020 ), but that does not allow

s to compute synthetics for many models. The PSVaxi applied here
s computationall y ef ficient than the other existing methods such as
-D spectral-element method (SEM; Komatitsch & Tromp 2002 ),
xisymmetric SEM3D (Leng et al. 2016 ) and allows us to compute
ynthetics for various ULVZ shape and size in a reasonable time. 

We calculate synthetic seismograms using three types of 2.5-D
odel geometries: (1) Boxcar, (2) Tukey window (hereinafter re-

erred to as just Tukey) and (3) Gaussian shaped ULVZs. In contrast
o 1-D ULVZ properties, 2.5-D ULVZs are defined by geometric and
lastic parameters. The geometric parameters are defined by shape
ith sharp or smoothed edges, length and its edge locations. Similar

o 1-D ULVZs, the elastic parameters are defined by a percentage
ecrease in S -wav e v elocity ( δV S ), a percentage decrease in P -wave
elocity ( δV P ) and a percentage increase in density ( δρ) with re-
pect to a 1-D Earth model. Example ULVZ shapes and defining
arameters are shown in Fig. 2 (a). In this paper, all synthetic seis-
ograms are computed for a dominant period of 2.5 s and source

epth of 500 km, and we only show synthetics at an epicentral dis-
ance of 40 ◦ which has no other contaminating arri v als. Although it
s computationally feasible to compute synthetics at shorter periods
e.g. 1 s) this dramatically increases the computational resources
equired and would significantly reduce the number of models we
an explore. 

.1 2.5-D synthetic ScP w av ef orms f or Box car ULVZ 

he geometric parameters, for a boxcar ULVZ, are defined by a
onstant height ( h max ) within the box and zero outside the box
eq. 1 ). 

 

( θ ) = 

{
0 , θ 〈 l 1 or θ 〉 l 2 
h max , l 2 ≥ θ ≥ l 1 

}
, (1) 

here l 1 is the leading edge of the ULVZ and l 2 is the terminating
dge of the boxcar ULVZ (Fig. 2 ). For boxcar shaped models we
efine the length of the ULVZ in the great-circle path as l . Therefore,
istance of the terminating edge of ULVZ from the source becomes

l 2 = l 1 + l. 
The bounce point on the CMB for an ScP arri v al at 40 ◦ for a

00 km source depth occurs at an angular distance of 11.1 ◦ away
rom the source. This means that if a boxcar ULVZ is located with
ts leading edge l 1 = 11.1 ◦, the ScP bounce point on the CMB
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Figure 1. (a) ULVZ strength beneath the Coral Sea estimated by Pachhai et al. ( 2023 ). Stars with different colours represent the bins that are analysed in this 
study using noise covariance matrix in the inversion to compare with the results from Pachhai et al. ( 2023 ). (b) Strong and weak ULVZs detected in Pachhai 
et al. ( 2023 ) overlayed on previous studies reported detected (Rost & Revenaugh 2001 , 2003 ; Rost et al. 2005, 2006 ; Idehara 2011 ; Brown et al. 2015 ; Pachhai 
et al. 2022 ), and undetected (Rost & Revenaugh 2003 ; Rost et al. 2005 , 2006 ) ULVZ using ScP data. 

Figure 2. (a) Geometry of 2.5-D ULVZ models. Models are for boxcar (red), Tukey window (blue) or Gaussian (green) shaped ULVZ. The parameters are: 
l —the length of the ULVZ in the great circle arc distance, l 1 –the angular distance to the leading edge of the ULVZ from a line passing through the source and 
the centre of the Earth and l 2 —the angular distance to the trailing edge of the ULVZ. The maximum height of ULVZ is h max = 20 km, with edge l 1 = 10 ◦
and length l = 6 ◦. (b) Boxcar ULVZ geometry positioned at three different l 1 edge locations (4 ◦—cyan, 5 ◦—black and 8 ◦—blue) relative to the source. Same 
as (b) but for the (c) Tukey and (d) Gaussian shape of ULVZ. ULVZ with h max = 20 km and l = 6 ◦ are overlain for a ScP ray path for an epicentral distance 
of 40 ◦. The x -axis shows the angular distance to the l 1 edge of the ULVZ. By changing the l 1 edge position, where the down going ScP ray interacts with the 
ULVZ changes. 
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would coincide with the ULVZ boundary. A depiction of where the 
ScP bounce point occurs with respect to ULVZ models explored 
in this study is shown in Fig. 2 (b). This figure shows an example 
ULVZ with a length of 6 ◦. For example, if l 1 = 8 ◦ (depicted by a 
blue rectangle) then the ScP ray traverses approximately through 
the centre of the ULVZ which is depicted by the black ScP ray that 
has a bounce point shown corresponding to the l 1 = 8 ◦ position. 
If l 1 = 4 ◦ (depicted by a cyan rectangle), the ScP bounce point is 

art/ggae285_f1.eps
art/ggae285_f2.eps
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ocated on the far-side of the ULVZ (right-hand side of the ULVZ—
yan rectangle in Fig. 2 b). If l 1 = 5 ◦ (black rectangle), the ScP
ounce point would occur near the l 2 edge of the ULVZ. 

The elastic parameter perturbations are fixed inside the boxcar
nd are set to zero outside the bo x. F ig. 3 shows synthetic seismo-
rams for a boxcar ULVZ model with h max = 25 and 15 km, δV S 

 -20 per cent, δV P = -10 per cent, δρ = 5 per cent with respect
o the PREM model (Dziewonski & Anderson 1981 ), and l = 6 ◦

or a variety of leading-edge positions ( l 1 ). At the bottom of the
gure, the blue trace shows the PREM prediction, which consists
f a single ScP arri v al which we refer to as ScP 

PREM (Fig. 4 for ray
ath). The red trace shows the prediction for the 1-D ULVZ model.
n the 1-D model, ScP delays as it traverses through the ULVZ, and
e refer to this arri v al as ScP 

ULVZ to distinguish it from the earlier
rriving ScP 

PREM (Fig. 4 for ray path). In addition, we see the ScsP
ost-cursor and the SPcP pre-cursor for 1-D ULVZ model (Fig. 4
or ray path). The SdP precursor (Fig. 4 for ray path) amplitude is
oo low to be observed for this model. The black traces in Fig. 3
how predictions for the 2.5-D models for 25 different l 1 positions.
he grey shaded region outlines the predictions where the 1-D ray
rediction for ScP would have its bounce point inside of the ULVZ
i.e. between l 1 = 5.1 ◦ and l 1 = 11.1 ◦). The waveforms for the 2.5-D
ynthetics look significantly different than that for the 1-D models
s we explain below. 

For models where the ScP bounce point does not occur within the
LVZ (e.g. roughly from, 2 ◦ ≤ l 1 ≤ 4 ◦ and 12 ◦ ≤ l 1 ≤ 14 ◦), we
bserve an ScP arri v al that is coincident in time with ScP 

PREM . Sim-
larly, for models where the ScP bounce point is within the ULVZ
e.g. 6 ◦ ≤ l 1 ≤ 10 ◦), we observe an ScP arri v al that is coincident in
ime with ScP 

ULVZ . Near the ULVZ boundaries (e.g. l 1 ∼= 

5 . 1 ◦ and
 1 

∼= 

11 . 1 ◦, we observe multipathing of the ScP arri v al and two ScP
rri v als exist with ScP 

PREM and ScP 

ULVZ arri v al times. The SPcP
re-cursor is most conspicuously observed when the ScP bounce
oint occurs within the ULVZ. Ho wever , its timing does not al wa ys
oincide with the 1-D prediction, and it also exists for ULVZ models
here the ScP bounce point is within ∼1 ◦ of the ULVZ boundary.
he ScsP post-cursor is also most conspicuous when the ScP bounce
oint occurs within the ULVZ and in this case the timing of this
ost-cursor agrees well with the 1-D prediction. Yet an apparent
csP post-cursor appears to exist for all 2.5-D models shown in this
gure, although its amplitude likely drops below the noise level as

he ScP bounce point gets further away from the ULVZ. Nonethe-
ess, the amplitude of the ScsP post-cursor for bounce points within
he ULVZ is heavily modulated by interference from two new ar-
i v als that we refer to here as S l 1 P and S l 2 P. These ne w arri v als are
redicted in 2-D ULVZ models and do not exist in the 1-D scenario.
hese are named as such because they are generated at the l 1 and l 2 
oundaries (see Fig. 4 ) of the ULVZ as described below. 

In all the synthetic tests we have performed, the S l 2 P arri v al has
he largest amplitude and may be the more important of these two
ew post-cursors. To further understand where this arrival origi-
ates, we conducted parameter sensitivity tests and viewed anima-
ions of the 2.5-D ScP wavefield in the vicinity of a ULVZ provided
s supplements to Thorne et al. ( 2021 ). Sensitivity tests for the S l 2 P
rri v al are shown in Fig. 5 . Here we use the same model as shown
n Fig. 3 , but we focus on models near the l 1 = 13 ◦ edge where
he S l 2 P arri v al is well separated from other arri v als. The following
bservations are obtained from the sensitivity analysis. 

(1) The onset of S l 2 P arri v al does not change if we change the
V S (Fig. 5 a), change the δV P (Fig. 5 b) or the l 1 position (Fig. 5 d).
n the latter test for l 1 position, we vary the length of the ULVZ such
hat the l 2 position al wa ys remains the same. 

(2) The onset of S l 2 P arri v al v aries slightl y if we change the
LVZ height (Fig. 5 c), specifically, increasing the ULVZ thickness

lso increases the S l 2 P arri v al time. 
(3) The most significant variation in arrival time occurs if we

ary the l 2 position (Fig. 5 e). The farther the l 2 edge is from the
ource the more delayed the S l 2 P arri v al is. 

(4) The S l 2 P amplitudes are unaf fected b y P -w av e v elocity
Fig. 5 b), l 1 edge location (Fig. 5 d) and l 2 edge location (Fig. 5 e). 

(5) The amplitude of S l 2 P is significantly altered by ULVZ height
larger ULVZ heights give a larger amplitude arri v al—Fig. 5 c) and
ith changes in δV S (larger reductions in S -wave velocity give larger

mplitude arri v als—Fig. 5 a). 

From these analyses and examination of animations of the seismic
a vefield, w e conclude that this arrival occurs when the downgoing
 -wave energy interacts with the l 2 boundary of the ULVZ. The
raveltime is consistent in ray tracing with a downgoing S wave
hat goes to the upper-right hand corner of the ULVZ at the l 2 
oundary, traverses down the right-hand edge of the ULVZ and
hen converts to a P wave at the CMB. The ray path for this ar-
i v al is shown in Fig. 4 and appears to be a surface diffraction
long the right-hand boundary of the ULVZ, e.g. Schwarz ( 2019 ).
his arri v al is not an edge diffraction from the ULVZ corner as
an be seen by the dependence on traveltime with ULVZ thickness
see Fig. 4 for ray path). If the arri v al were an edge diffraction,
 thicker ULVZ would result in an earlier S l 2 P arri v al. Howe ver,
hat is observed is exactly opposite of that, in that a thicker ULVZ

esults in a more delayed S l 2 P arri v al as the actual ray path trav-
ls down along the boundary of the ULVZ before converting to a
 wave. 
Similar to the sensitivity test shown above, we also conducted

 sensitivity test for the S l 1 P arri v al, which are shown in Fig. 6 .
gain, we use the same model as shown in Fig. 3 , but we focus on
odels near the l 1 = 4.5 ◦ edge. This sensitivity analysis reveals the

ollowing observations. 

(1) The onset of S l 1 P arri v al time is unaffected by S -wave velocity
Fig. 6 a) and onl y minorl y af fected b y ULVZ thickness (Fig. 6 c).
here appears to be a slight delay due to thickness, but in going

rom h max = 15 km to h max = 35 km, the S l 1 P arri v al is onl y delayed
y a few tenths of seconds. 

(2) The arri v al time of S l 1 P is af fected b y P-w av e v elocity. The
arger the P-wav e v elocity decrease the more delayed S l 1 P becomes
Fig. 6 b). 

(3) The arri v al time of S l 1 P is most strongl y af fected b y l 1 -edge
osition (Fig. 6 e). The closer the l 1 -edge is to the source, the more
elayed S l 1 P is. 
(4) The amplitude of S l 1 P is af fected b y P - and S -wave velocity

Figs 6 a and b). The larger the P - or S -wave velocity decrease the
arger the S l 1 P amplitude becomes. In addition, the S l 1 P amplitude
ncreases as l 1 -edge moves further away from the source (Fig. 6 d). 

The origin of the S l 1 P arri v al is unclear. Ray tracing an edge
if fracted arri v al from the l 1 -edge matches the traveltime moveout
f S l 1 P but does not perfectly match the absolute arrival time. There
xists a small dependence on P -wave velocity and ULVZ thickness
n the arri v al time (Fig. 6 ), that suggests the arri v al may convert
rom S-to-P on the outside of the ULVZ and travel a small distance
nside the ULVZ, perhaps refracting as a P wave inside the ULVZ
see Fig. 4 for ray path). The exact ray path for this arri v al is unclear,
ut it is most strongly related to the top left-hand position of the
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Figure 3. (a) Synthetic seismograms for PREM (blue) and a 1-D ULVZ model (red) with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent and 
h = 25 km. The 2.5-D boxcar ULVZ synthetics (black) are shown for models with the same elastic parameters as the 1-D model, a length l = 6 ◦, and edge 
positions l 1 from 2.0 ◦ to 14.0 ◦. The 1-D ScP ray path directly hits the ULVZ for l 1 positions between 5.1 ◦ and 11.1 ◦, which is indicated by the grey shaded 
area. Red dashed lines indicate the arri v al times for standard ULVZ phases (SPcP, ScP ULVZ and ScsP) associated with 1-D ULVZ models. Green dashed lines 
show approximate arri v al for edges (S l 1 P and S l 2 P) of 2.5-D ULVZ. The arri v al time of ScP phase in PREM is indicated by the blue line (ScP PREM ). All 
seismog rams are ver tical component displacement aligned on the PREM predicted ScP arri v al time and normalized to unity. (b) Same as (a), except the ULVZ 

model has a reduced thickness of h = 15 km. 
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ULVZ. In Fig. 4 , we draw the ray path to the left-hand boundary of 
the ULVZ and back up from there, but we do not understand the 
details. 

The example ULVZ model with a thickness of h max = 25 km 

shown in Fig. 3 serves as an excellent example to describe the seis- 
mic arri v als observ able in 2.5-D models. This example clearl y shows 
the multipathed ScP arri v als. Howe ver, ULVZs encountered within 
the Earth may not have such large thicknesses, and likely do not 
have boxcar shapes. This will result in waveforms that look slightly 
different than what we observe in Fig. 3 . For example, Fig. 7 shows 
synthetic predictions for a thinner ULVZ model ( h max = 15 km) 
but for Tukey and Gaussian shapes. The predictions for this model 
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Figure 4. Ray paths for S l 1 P, ScP, S l 2 P and other converted phases (SdP, 
SPcP, ScP ULVZ and ScsP present in the case of 1-D structure as well) due 
to a ULVZ at an epicentral distance of 40 ◦. The ray paths are shown for a 
zoomed in region near the core–mantle boundary for a 20-km thick ULVZ 

with a length of l = 6 ◦. The S -wave portion of the ray path is drawn in black 
and the P -wave portion of the ray path is drawn in green. 
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re similar to that shown in Fig. 3 , except instead of a clear sep-
ration of the ScP 

PREM and ScP 

ULVZ multipathed waveforms these
rri v als are not w ell-separated. Instead, w e observe what appears to
e a broadened ScP pulse when the ScP bounce point is near to the
LVZ boundaries due to the reduced time separation between the

wo multipathed arri v als. Otherwise, all the general characteristics
f the thicker boxcar ULVZ model are retained, including the exis-
ence of the S l 1 P and S l 2 P arri v als. We note that in some cases (e.g.
 1 ≥ 9 ◦) that the S l 2 P arri v al is predicted to have a larger amplitude
han the ScsP post-cursor. 

.2 2.5-D synthetic w av ef orms f or Tuke y ULVZ 

n the case of a Tukey shaped ULVZ, the ULVZ elastic parame-
er perturbations are set to zero outside the edges and are constant
ithin the ULVZ. The ULVZ height changes as a function of dis-

ance from the source location ( θ ) given by 

 ( θ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 [ θ 〈 l 1 or θ 〉 l 2 ] 
1 [ θ > cond 1 and θ < cond 2 ] 

h max 
2 

(
1 + cos 

(
π

(
2 ( θ−l 1 ) 

βl − 1 
)))

[ θ ≤ con d 1 and θ > l 1 ] 

h max 
2 

(
1 + cos 

(
π

(
2 ( θ−l 1 ) 

βl − 2 
β − 1 

)))
[ θ ≥ con d 2 and θ ≤ con d 1 ] 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

, 

(2) 

here β = 0 . 5 , con d 1 = l 1 + 

βl 
2 and con d 2 = l 1 + l( 1 − β

2 ) . In
ontrast to boxcar ULVZ, the leading and terminating edge have
ymmetrical smoothing defined by last two expressions in eq. ( 2 ).
n example of this ULVZ shape is shown in Figs 2 (a) and (c), and
.5-D synthetic waveforms for a Tukey shaped ULVZ with h max =
5 km, δV S = -20 per cent, δV P = -10 per cent and l = 6 ◦ are
hown in Fig. 7 (a). The waveforms look similar to those of the
oxcar ULVZ models, except that the ScsP post-cursor becomes
ess prominent. There is also some broadening of the ScP pulse due
o multipathing. Both S l 1 P and S l 2 P arri v als are visible, but their
mplitude is weaker than in the case of boxcar ULVZ (Fig. 7 a). 

.3 2.5-D synthetic w av ef orms f or Gaussian ULVZ 

n the case of Gaussian shape of ULVZ, the ULVZ elastic parameter
arameters are set to zero outside the edges and are fixed within the
L VZ. The UL VZ height increases as a function of distance from

he left edge and reaches its maximum at the centre of the ULVZ
ength, then decreases symmetrically until its height reaches to zero
t the terminating edge of the ULVZ as defined in eq. ( 3 ). 

 

( θ ) = h max e 
− 1 

2 ( απ
l ) 2 , (3) 
here α = l 1 + 

l 
2 − θ . Example shape of Gaussian ULVZ is shown

n Figs 2 (a) and (d), and example waveforms for the same elastic
arameters in the case of Gaussian ULVZ are shown in Fig. 7 (b). In
ontrast to boxcar and Tukey ULVZ models, the ScsP post-cursor
s invisible except in the case when ScP bounce near the centre of
he Gaussian ULVZ (Fig. 7 b). Ho wever , both S l 1 P and S l 2 P arri v als
re observable and the amplitude of S l 2 P in the case of Gaussian
LVZ is similar to that of the Tukey ULVZ case, but S l 1 P is even
eaker in the case of Gaussian shaped ULVZ in comparison to other
odels. Multipathing of ScP pulse also disappears in the case of

he Gaussian model. 
Examination of the 2.5-D synthetic seismograms shown above,

e veal marked dif ferences from the 1-D ULVZ model. In particu-
ar, we observe major amplitude variations in the ScsP post-cursor
epending on model shape and due to constr uctive/destr uctive in-
erference with the S l 1 P and S l 2 P arri v als. In addition, we see the
dditional S l 1 P and S l 2 P arri v als, that could be incorrectly inter-
reted as ScsP. In some cases, we also see the existence of a ScsP
ost-cursor even when the 1-D ScP ray path does not directly strike
he ULVZ. These amplitude variations and potential misinterpreta-
ion of arri v als could significantl y impact the interpretation of ULVZ
hickness and S -wave velocity perturbations. It is possible that all
re vious ef for ts at deter mining ULVZ elastic parameters using ScP
ave been impacted by these higher dimensional waveform effects.
n the next section we present a Bayesian inversion approach that
onsiders the noise covariance matrix in the inversion to provide
etter estimates of the ULVZ elastic properties using 1-D forward
odelling. 

 B AY E S I A N  I N V E R S I O N  U S I N G  N O I S E  

OVA R I A N C E  M AT R I X  

n Bayesian inference, we consider posterior probability density
PPD) as a solution to the inverse problem, and PPD is defined by
he probability of a model vector ( m ) given the data vector ( d ) (i.e.
p( m | d ) ). The PPD can be proportional to the product of the prior
nformation and data information (incorporated through likelihood)
hrough Bayes’ theorem as: 

p ( m | d ) ∝ p ( d | m 

) p ( m 

) , (4) 

here p( d | m ) is the probability of data given the model parameter,
lso known as the likelihood, and p( m ) is the prior probability of
odel parameters. For a 1-D ULVZ model, the modelled ULVZ

arameters are layer thickness ( h ), P -wave velocity ( δVp ), S -wave
elocity ( δVs ) and density perturbations ( δρ). 

.1 Likelihood with covariance matrix and AR1 
arametrization 

n geophysical inversion the data are fixed, therefore, the likelihood
unction in eq. ( 4 ) is only a function of m . In that case, the likelihood
unction can be represented as L ( m ), which introduces data infor-
ation to the inversion and is one of the most important components

n Bayesian inversion. Likelihood is proportional to the negative ex-
onential of the misfit function; therefore, it must be derived from
n assumption about the statistical distribution of the data errors.
he data errors are typically unknown but can be approximated by

esidual errors (i.e. the difference between the observed data and
he synthetic prediction). These errors combine both measurement
e.g. errors due to noise in the recordings) and theory errors (e.g.
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Figure 5. Sensitivity tests for S l 2 P arri v al. In all panels the vertical component displacement seismograms are shown aligned on the PREM theoretical 
traveltimes for ScP. All seismograms are multiplied by a constant scaling factor so that absolute amplitudes are preserved. (a) Sensitivity to S -wave velocity 
per turbations. Synthetic seismog rams are shown for a boxcar ULVZ model with δV P = -10 per cent, δρ = + 5 per cent, h max = 25 km, l = 6 ◦, and l 1 = 13.0 ◦. 
In this case we changed S -wave velocity of the ULVZ from δV S = -10 per cent (red trace) to -30 per cent (blue trace) in 5 per cent increments. (b) Sensitivity to 
P -wav e v elocity per turbations. Synthetic seismog rams are shown for a boxcar ULVZ model with δV S = -20 per cent, δρ = + 5 per cent , h max = 25 km, l = 6 ◦
and l 1 = 13.0 ◦. In this case we changed P -wav e v elocity of the ULVZ from δV P = 0 per cent (red trace) to -15 per cent (blue trace) in 5 per cent increments. 
(c) Sensitivity to ULVZ thickness. Synthetic seismograms are shown for a boxcar ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per 
cent, l = 6 ◦ and l 1 = 13.0 ◦. In this case we changed the thickness of the ULVZ from h max = 15 km (red trace) to 35 km (blue trace) in 5 km increments. (d) 
Sensitivity to l 1 edge position. Synthetic seismograms are shown for a boxcar ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent 
and h max = 25 km. In these models l 2 position is held fixed at l 2 = 19 ◦. So, the models vary from l 1 = 12 ◦ and l = 7 ◦ (red trace) to l 1 = 14 ◦ and l = 5 ◦ (blue 
trace) in 0.5 ◦ increments, such that the only parameter that varies is the l 1 position. (e) Sensitivity to l 2 edge position. Synthetic seismograms are shown for a 
boxcar ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent, h max = 25 km and l 1 = 13 ◦. The lengths ( l ) are changed such that we 
vary the l 2 position from 18.0 ◦ (red trace, l = 5 ◦) to 20.0 ◦ (blue trace, l = 7 ◦) in 0.5 ◦ increments. In each panel the green shaded region shows a zoomed in 
view of the S l 2 P arrival. 
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Figure 6. Sensitivity tests for S l 1 P arri v al. In all panels the vertical component displacement seismograms are shown aligned on the PREM theoretical 
traveltimes for ScP. All seismograms are multiplied by a constant to preserve absolute amplitude information. (a) Sensitivity to S -wave velocity perturbations. 
Synthetic seismograms are shown for a boxcar ULVZ model with δV P = -10 per cent, δρ = + 5 per cent, h max = 25 km, l = 6 ◦ and l 1 = 4.5 ◦. In this case 
w e changed S -wa v e v elocity of the ULVZ from δV S = -10 per cent (red trace) to -30 per cent (blue trace) in 5 per cent increments. (b) Sensitivity to P -wave 
velocity perturbations. Synthetic seismograms are shown for a boxcar ULVZ model with δV S = -20 per cent, δρ = + 5 per cent, h max = 25 km, l = 6 ◦ and 
l 1 = 4.5 ◦. In this case we changed P -wave velocity of the ULVZ from δV P = 0 per cent (red trace) to -20 per cent (blue trace) in 5 per cent increments. (c) 
Sensitivity to ULVZ thickness. Synthetic seismograms are shown for a boxcar ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent, 
l = 6 ◦ and l 1 = 4.5 ◦. In this case we changed the thickness of the ULVZ from h max = 15 km (red trace) to 35 km (blue trace) in 5 km increments. (d) Sensitivity 
to l 1 edge position. Synthetic seismograms are shown for a boxcar ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent and h max = 

25 km. In these models the l 2 position is held fixed at l 2 = 10.5 ◦. The models vary from l 1 = 3.5 ◦ and l = 7 ◦ (red trace) to l 1 = 5.5 ◦ and l = 5 ◦ (blue trace) 
in 0.5 ◦ increments, such that the only parameter that varies is the l 1 position. (e) Sensitivity to l 2 edge position. Synthetic seismograms are shown for a boxcar 
ULVZ model with δV S = -20 per cent, δV P = -10 per cent, δρ = + 5 per cent, h max = 25 km and l 1 = 4.5 ◦. The lengths ( l ) are changed such that we vary the 
l 2 position from 9.5 ◦ (red trace, l = 5 ◦) to 11.5 ◦ (blue trace, l = 7 ◦) in 0.5 ◦ increments. In each panel the green shaded region shows a zoomed in view of the 
S l 2 P arri v al. 
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Figure 7. Same as in Fig. 3 , except the ULVZ model has a shape of (a) a Tukey window, or (b) a Gaussian shape. 
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errors due to mathematical approximations in the forward calcu- 
lations). Here, we assume a Gaussian form of data errors for ScP 

waveforms, therefore, the likelihood function becomes proportional 
to the ne gativ e e xponential of the L2-norm misfit function. For data 
from nev number of events, the likelihood function can be written 
as 

L 

( m 

) = 

nev ∏ 

i= 1 

1 ∣∣C d i 

∣∣exp 

[
−(

d obs 
i −d i ( m 

) 
)T 1 

C d i 

(
d obs 

i −d i ( m 

) 
)]

, 

(5) 
where C d i is the noise covariance matrix that incorporates both 
cor related and uncor related noise for data from i -th event, | C d i | is 
the determinant of the noise covariance matrix, d obs 

i is the observed 
ScP waveforms from i -th event and d ( m ) is the theoretical prediction 
of ScP waveforms for models ( m ). These predictions are obtained 
by convolving the source-time function (STF) with the Green’s 
functions computed using the WKBJ method (Chapman & Orcutt 
1985 ), i.e. d i ( m ) = G i ( m ) ∗ ST F i . In the case of observed data, we 
used the stack of P waveforms at each array to obtain the empirical 
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TF for each event which is also referred as P wavelet or source
avelet. 
In eq. ( 5 ), the noise covariance matrix can be approximated by the

tandard deviation of the residual errors if the noise is uncorrelated,
.e. C d i = σ 2 

i I , where σi is the standard deviation of noise for i -th
vent. In that case, the likelihood function can be written as 

L 

( m 

) = 

nev ∏ 

i= 1 

1 (
2 πσ 2 

i 

)N i / 2 
exp 

[
− 1 

2 σ 2 
i 

∣∣d obs 
i − d i ( m 

) 
∣∣2 

]
, (6) 

here N i is the number of data points for i -th event. 
Ho wever , noise can be strongly correlated due to several pro-

essing steps (e.g. filtering and stacking) involved in the data pre-
rocessing and microseismic noise present in the seismograms. Past
LVZ studies (e.g. Pachhai et al. 2014 , 2015 ) account for corre-

ated noise using a first-order autore gressiv e (AR1) noise model. In
utore gressiv e model, the data noise or residual ( r = d obs − d ( m ) )
t current time ( r t ) can be predicted by the residual at previous time
oint t − 1 (i.e. r t−1 ) expressed in the following form. 

 t = c + a r t−1 + ε t , (7) 

here, c is the mean, a is the AR1 coefficient and ε t is uncorrelated
oise at time point t . The covariance matrix can be obtained from
he autocovariance ( A ), which can be expressed in terms of AR1
oefficient ( a) and standard deviation of noise ( σ ) (e.g. Dettmer &
osso 2012 ). 

A l = 

σ 2 

1 − a 2 
a | l | , (8) 

here l is the lag, and σ is the standard deviation of uncorrelated
oise ( ε ). Figs 8 and 9 show examples of autocovariance and co-
ariance matrix, respectively, for synthetic noise. 

Therefore, for the AR1 model, the noise covariance matrix can be
arametrized by two parameters: correlation width (represented by
R1 coefficient, a) and standard deviation of the errors. The like-

ihood function for AR1 noise model is expressed in the following
orm. 

L 

( m 

) = 

nev ∏ 

i= 1 

1 (
2 πσ 2 

i 

)N i / 2 
exp 

[ 
−∣∣d obs 

i − d i ( m 

) − d i ( a i ) 
∣∣2 

] 
, (9) 

here d i ( a i ) are the AR1 predictions for AR1 coefficient repre-
ented by a i . This is the noise parametrization we used in our past
LVZ studies. But this study considers the inversion of covariance
atrix in eq. ( 5 ) as well and compares results from both parametriza-

ion of noise. 

.2 Computation of the noise covariance matrix 

hen analysing real data, we do not know the true noise, there-
ore, the data noise is approximated by the residuals, which is the
ifference between observed data and theoretical prediction. The
arametrization of noise model using AR1 model (presented in
qs 7 to 9 ) works well when the real data noise is explained by
hat we assume here as autore gressiv e model, but the noise char-

cteristics are unknown and change from event to event. Therefore,
oise characteristics are challenging to characterize with a few pa-
ameters. In particular, the 2.5-D synthetic seismograms (Figs 3 , 4
nd 7 ) show more information (i.e. arri v als) than those for 1-D
ynthetics due to full wavefield present in the 2.5-D synthetics and
dditional phases generated from ULVZ edges. The true theoretical
oise model (i.e. autocorrelation of the difference between 2.5-D
ynthetic and 1-D synthetic data) can be different than the auto-
orrelation of noise model parametrized through AR1 coefficient.
his difference is highlighted in Figs 8 and 9 . Fig. 8 shows exam-
le statistical noise models prepared using the AR1 noise model
ith various AR1 coefficient. To prepare these noise models, we
enerated 1000 random realizations of noise using various AR1
oefficients (from 0.6 to 0.98) and calculated the autocorrelation of
he noise which are shown in Figs 8 a–f (grey lines). The average is
hown (black line) compared to that for true theoretical noise model
green line). Although it may be possible to match the theoretical
oise using an AR1 model, it is highly dependent on the selection
f the random seed, which is not typically sampled in the inversion.
ence, the average AR1 model is insufficient to describe the noise
resent in the full waveform synthetics. 

Fig. 9 shows the noise covariance matrix computed for the en-
emble average of the AR1 models and the true theoretical noise
odel. There are differences in these noise models, particularly the

ide lobes of the autocorrelation function, which is in part due to
orrelated noise in the full waveform synthetics. Therefore, we pro-
ose to use a more general representation of the noise as in eq. ( 5 ).
hus, we compute the covariance matrix, C d , from the theoretical

esiduals and use that covariance matrix in the inversion. 
The noise covariance matrix can be computed from the data

esiduals r = d obs − d ( m ) . The j -th element of the autocovariance
unction is given by (e.g. Dettmer et al. 2007 ) 

 i, j = 

1 

N 

N− j−1 ∑ 

k= 0 

(
r i, j+ k − r i 

)
( r i,k − r i ) , (10) 

here r i is the mean of the data residuals. Every term in c i, j is
sed to build the j -th diagonal of the initial data covariance matrix

C d . This builds a Toeplitz or banded matrix such that every lag has
 constant correlation parameter (Fig. 9 ). This approach has been
re viousl y applied in geoacoustics (e.g. Dettmer et al. 2007 ). 

.3 Bayesian inversion with parallel tempering 

nv ersion of ScP wav eforms for ULVZ parameters is a non-linear
roblem, and there exist no analytical solutions for the PPD de-
ned in eq. ( 4 ). Therefore, a numerical sampling algorithm such
s Markov Chain Monte Carlo (MCMC) is considered to estimate
he PPD numerically. Sampling algorithms such as MCMC can be
nefficient for highly non-linear problems, particularly when two
r more high probability regions are separated by a low probability
egion. In that case, MCMC may explore local minima without con-
erging to the global minima. To improve the sampling efficiency
nd converge to the global minima, we apply interacting MCMC,
lso known as parallel tempering. In parallel tempering, a ULVZ
odel is randomly proposed from a uniform prior in each iteration.
hen the proposed model is accepted or rejected with probability
 α). If q( m 

′ , m ) is the distribution for a proposed transition from
he current model ( m ) to a new model ( m ), the proposed model is
hen accepted or rejected using the following probability. 

= min 

[ 

1 , 
p ( m 

′ ) 
p ( m 

) 

(
L 

( m 

′ ) 
L 

( m 

) 

)β q ( m , m 

′ ) 
q ( m 

′ , m 

) 

] 

, (11) 

here β is the tempering parameter used for parallel tempering
nd is the reciprocal of the temperature width (d T ). In eq. ( 5 ), the
riors do not change, i.e. p ( m 

′ ) = p ( m ) , and proposals ( q( m , m 

′ 
) ,

nd q( m 

′ , m ) ) are symmetric, therefore, the acceptance/rejection

robability becomes ( L ( m 

′ ) 
L ( m ) ) 

β

. 



602 S. Pachhai, M. S.Thorne and S. Rost 

Figure 8. Autocorrelation function for AR1 coefficients of (a) 0.6, (b) 0.7, (c) 0.8, (d) 0.9, (e) 0.95 and (f) 0.98 compared with the ensemble average of 1000 
noise models (black line), and the theoretical noise (green line). We define true theoretical noise as the difference between the ScP waveforms obtained using 
1-D forward and 2.5-D forward computation. 

Figure 9. Covariance matrix computed from (a) the ensemble average of the noise computed for AR1 = 0.98, and (b) from the theoretical errors presented in 
Fig. 8 . Colourbar represents the normalized covariance. 
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In parallel tempering, MCMC are performed on a series of chains 
with dif ferent β-v alues. The chains with lower v alues of β decrease 
the likelihood function in eq. ( 5 ) resulting in wider exploration of 
the parameter space while chains with high β-values preferentially 
sample high posterior probability regions. To get the unbiased sam- 
ples from the PPD, parameter inferences are made based on a chain 
with β = 1 . Parameters from randomly selected chain pairs are 
proposed to swap/exchange between chain pairs after performing 
MCMC sampling within-chain. For example, suppose m 

i 
t are the 

parameters of the chain i and m 

j 
t are the parameters of the chain j 
at t -th iteration. Then parameter swap between two chains i and j 
is proposed which is accepted or rejected based on the Metropolis 
Hasting acceptance probability ( αβ ; Gilks & Roberts 1996 ) defined 
by; 

αβ = min 

⎛ 

⎝ 1 , 
p i 

(
m 

j 
t 

)
p j 

(
m 

i 
t 

)
p i 

(
m 

i 
t 

)
p j 

(
m 

j 
t 

)
⎞ 

⎠ , (12) 

where p i ( m ) is tempered target distribution gi ven b y, p i ( m ) = 

[ p( m ) ] βi . 

art/ggae285_f8.eps
art/ggae285_f9.eps


Investigating the effect of ULVZ morphologies on ScP waveforms 603 

 

n  

p  

i  

T  

r
 

o  

s  

o  

w  

r  

i  

w  

w  

T  

f  

r  

i  

(  

i  

a  

m  

d  

o  

(  

a  

o  

r  

(  

i  

i

4
I
C

T  

o  

p  

1  

i  

(  

t  

d  

s  

s  

W  

m  

t  

r  

p  

o  

C  

p  

t  

t  

l  

i  

 

f

a  

r  

S  

(  

u  

p
 

t  

I  

s  

r  

n  

c  

W  

δ  

p  

u  

w  

T  

u
 

i  

h  

a  

c  

0  

U  

s  

t  

i  

R  

f  

t  

i  

δ  

p  

t  

a  

a  

i  

a  

i  

u  

e  

t  

u  

r  

r  

m  

i  

t  

w  

t  

t  

I  

b  

t  

b  

p
 

c  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/591/7733828 by guest on 04 Septem

ber 2024
Parameter values are exchanged and updated to proceed for the
ext iteration if the proposed swap is accepted. In contrast, the
arameter values are retained in both chains if the proposed swap
s rejected. Then the sampling is proceeded for the next iteration.
his procedure allows the algorithm to take advantage of the various

anges of exploration scales without biasing the PPD. 
In this paper, we start inversion with an arbitrary model in each

f 12 cores with the logarithmic spacing of the tempering levels
et to 1.35. All parallel tempering chains are repeatedly refocused
n the best model and final samples are collected from one chain,
hich is not tempered and provides unbiased sampling. For each

andomly drawn model, synthetic ScP waveforms are computed us-
ng the WKBJ method (Chapman & Orcutt 1985 ) and convolved
ith the STF, and the likelihood values are computed in a 20-s
indow around the central peak of ScP (5 s before and 15 after).
he likelihood for the current model is compared to the likelihood

or the previous model scaled by the tempering parameter. Then a
andom number between 0 and 1 is drawn. If that random number
s smaller (greater) than the likelihood ratio, the model is accepted
rejected). We update the model and continue for the next iteration
f the proposed model is accepted. In contrast, we retain the model
nd propose again if the model is rejected. This process is iterated
any 100 ′ s of thousands of times and the first 1/3 of the samples are

iscarded as burn-in period to remove the dependence of MCMC
n the starting point. For more details, we refer to previous studies
Pachhai et al. 2014 , 2015 , 2023 ). Samples after the burn-in period
re considered for parameter inference. We monitor the convergence
f the algorithm by examining the sampling history for various pa-
ameters by comparing inferences for the first third of PPD samples
from post burn-in) to inferences for the last third. When no signif-
cant differences exist in the marginals of parameters, the sampling
s considered to have converged. 

 F E A S I B I L I T Y  O F  B AY E S I A N  

N V E R S I O N  U S I N G  N O I S E  

OVA R I A N C E  M AT R I X  

o test the feasibility of using the covariance matrix representation
f noise we conducted several synthetic experiments. In the first ex-
eriment, we computed a synthetic ScP waveform for a 20-km thick
-D ULVZ with a 10 per cent decrease in V P , a 30 per cent decrease
n V S and a 10 per cent increase in density with respect to the ak135
Kennett et al. 1995 ) 1-D model using the WKBJ method. Then
he correlated noise with AR1 parameter 0.95 and noise standard
e viation 0.05 w as added to the synthetic ScP data. The synthetic
eismograms with and without noise and their autocorrelations are
hown in Fig. 10 (a), which shows a strong correlation of residuals.
e calculated the covariance matrix using eq. ( 10 ). The covariance
atrix is shown in Fig. 10 (b), and this covariance matrix is used

o compute the likelihood in eq. ( 5 ). Fig. 10 (c) shows the inversion
esults in terms of profile marginal densities for different ULVZ
arameters. Profile marginal densities are obtained by considering
nly the parameter of interest as a function of height above the
MB while integrating out all other parameters in the PPD. In this
rocess, the height above the CMB is discretized and we choose
o normalize each depth interv al indi viduall y. Fig. 10 (c) indicates
hat the true model parameters (indicated by b lack and w hite dashed
ines) are well recovered with wider uncertainties for density due to
ts weaker sensitivity to the ScP in comparison to other parameters.

For our second feasibility test, we considered synthetic ScP wave-
orms computed for a 2.5-D boxcar shaped ULVZ of length l = 6 ◦
nd edge positioned at l 1 = 2 ◦ and l 1 = 8 ◦. When l 1 = 2 ◦, the ScP
ay does not directly hit the ULVZ while in the case of l 1 = 8 ◦ the
cP ray hits the ULVZ near the centre of the boxcar from the top
Fig. 2 b). The waveforms are shown in Fig. 3 . We test both cases
sing the AR1 model and the covariance matrix method of noise
arametrization. 

Inversion results using covariance matrix and AR1 parametriza-
ion of noise are shown in Fig. 11 for 2 ◦ and 8 ◦ edge locations.
nversion results using both approaches, for a ULVZ with l 1 = 2 ◦,
how that the ULVZ parameters are highly uncertain as the ScP
ay does not hit the ULVZ (Figs 11 a and b). Regardless of which
oise model is used, the S -wave velocity recovered is near 0 per
ent and the ULVZ height is spread out over the range of priors.
hen l 1 = 8 ◦, the inversion recovers the ULVZ height, δV S , and

V P when using the noise covariance matrix. In this case the density
erturbation is highly uncertain (Fig. 11 d). In contrast, the inversion
sing the AR1 model recovers incorrect ULVZ model parameters
ith a thin ( ∼5 km) and δV P ≈ -10 per cent and δV S ≈ -40 per cent.
he AR1 model gives much narrower uncertainties than when we
se the noise covariance matrix in the inversion. 

We further explore the feasibility of our inversion approach us-
ng synthetics for a boxcar shaped ULVZ model. The ULVZ model
as elastic parameters of δV S = -20 per cent, δV P = -10 per cent
nd δρ = + 5 per cent. This ULVZ has a height of 20 km with a
onstant length of l = 8 ◦ and l 1 edge positions from 2 ◦ to 14 ◦ in
.5 ◦ increments. For this model the ScP ray path directly strikes the
LVZ for edge positions l 1 from ∼3.5 ◦ to 11.5 ◦. We followed the

ame procedure described earlier to invert these synthetics using
w o in version approaches (AR1 and covariance matrix) presented
n Section 3 . The inversion results are presented in Figs 12 (a)–(d).
esults from both inversion methods show narrower uncertainties

or h and δVs in comparison to that for δρ and δVp . This is due
o the weaker sensitivity of ScP to those parameters. As discussed
n Pachhai et al. ( 2023 ), the ScP waveforms are most sensitive to
V S and h , and thus we focus our discussion in the rest of this pa-
er on those parameters and present the results for δρ and δVp in
he supplementary material (Figs S1 –S6 ). Supplementary material
lso shows the comparison of inversion results using AR1 approach
nd covariance matrix approach for all the 2-D models presented
n Table 1 (Figs S1 –S6 ). Although the uncertainties are smaller for
ll ULVZ parameters when we consider AR1 noise model in the
nversion, the true values for those parameters are not within the
ncertainties of the recovered models in most cases. ULVZ param-
ters are not recovered even when the ScP ray directly strikes the
op of the ULVZ (Fig. 12 ). For the covariance matrix method, the
ncertainties are larger and typically encompass the true elastic pa-
ameters when the ScP ray directly strikes the ULVZ. When the ScP
ay is near the ULVZ boundaries ( ∼3.0 ◦ and 11.0 ◦) the covariance
atrix method also cannot recover the true parameter values. This

s because of the multipathed ScP arri v als observed for these posi-
ions. In this example there is an additional edge location ( ∼6.5 ◦),
here the inversion does not recover the ULVZ parameters due to

he constructive interference of S l 2 P with the ScsP phase. Overall,
he covariance matrix method outperforms the AR1 based method.
n what follows, we focus our discussion on just the covariance-
ased method, and similarly to Pachhai et al. ( 2023 ), we perform
he inversion using multiple seismic traces in a joint inversion to
est determine how well this method can be used to recover ULVZ
arameters 

In the synthetic experiments presented above (Figs 10 –12 ), we
arried out the inversions assuming a known noise covariance ma-
rix. Ho wever , we do not know the true noise covariance matrix

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data


604 S. Pachhai, M. S.Thorne and S. Rost 

Figure 10. (a) Synthetic data with (black line) and without (red line) noise and autocorrelation of correlated noise prepared for AR1 = 0.95 and standard 
deviation ( σ = 0.01). (b) Noise covariance matrix computed using eq. ( 6 ) for the AR1 noise. (c) Inversion results expressed in terms of posterior probability 
of interface, δV P , δV S , and δρ as a function of height of ULVZ above the CMB. The black and white dashed lines indicate the true model. 
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when inverting real data. Therefore, our final feasibility experiment 
is performed with an unknown covariance matrix. For this exper- 
iment, we first computed a predicted ScP waveform for the same 
ULVZ model considered in the first experiment, but we did not add 
any noise to the synthetics. Then the noise covariance matrix in eq. 
( 10 ) was computed using residuals between the true model predic- 
tion and the predictions for the ak135 model. In other words, we 
start out by forcing the ULVZ-related waveform features to be con- 
sidered as noise in the covariance matrix. Then we run the inversion 
using this wrong covariance matrix in the inversion. 

The inversion results, in Fig. 13 (a), show that the recovered mod- 
els are broadly distributed within the prior range for δVp and δρ. 
The true ULVZ parameters are within uncertainties for δV S and 
h that are narrower than that for the other two parameters but still 
widely uncertain. We next extracted the maximum-likelihood model 
from the first inversion and updated the covariance matrix using the 
residuals between the observation (i.e. true ULVZ model prediction 
in this case) and the maximum-likelihood model predictions. The 
inversion results for this second inversion are shown in Fig. 13 (b). 
In the second inversion all of the ULVZ parameters are recovered 
with reasonable uncertainties (Fig. 13 b), but we note that the un- 
certainties are smaller than those of the first experiment (Fig. 10 c) 
because there is no additional noise in this experiment. This ex- 
periment illustrates this method can recover the true model using 
an iterative approach to updating the noise covariance matrix, even 
when the starting noise covariance matrix is far from the true noise 
covariance matrix. 

5  2 . 5 - D  S H A P E  E F F E C T S  O N  T H E  

I N V E R S I O N  O F  U LV Z  PA R A M E T E R S  

To further assess how 2.5-D ULVZ shapes affect the estimation 
of ULVZ parameters using 1-D modelling, we computed ScP syn- 
thetic seismograms for a series of 2.5-D ULVZ models of various 

art/ggae285_f10.eps
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Figure 11. Inversion results for a boxcar ULVZ of 6 ◦ length with left edge located at 2 ◦ (a) using noise covariance matrix and (b) using AR1 noise model in 
the inversion. Other ULVZ parameters are: h = 25 km, δVs = -20 per cent, δVp = -10 per cent and δρ = 5 per cent. (c) and (d) Same as (a) and (b) but for a 
ULVZ with left edge located at 8 ◦. 
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engths and edge locations presented in Table 1 . Because of the high
omputational cost of computing high frequency ScP waveforms,
e concentrate this study on just a handful of models, focusing on
hanging the ULVZ length in the great circle arc direction ( l = 4 ◦,
 

◦, 8 ◦ or 12 ◦) and on ho w shapes (boxcar , Tukey or Gauss) affect
he solutions. The elastic parameter of these ULVZs are δV S = -20
er cent, δV P = -10 per cent and δρ = + 5 per cent and are the
ame as those inferred, using a 1-D approach, beneath the Coral Sea
Pachhai et al. 2023 ). We use these elastic parameters as a basic test
ase so that we can compare results from this study to the previous
ata analysis. 

In the previous section we analysed the effect of 2.5-D ULVZ
orphologies on the inversion results using single ScP waveform

rom one edge location (see Figs 11 –12 ) and applied both inversion
pproaches for all the ULVZ models presented in Table 1 . Ho wever ,
achhai et al. ( 2023 ) found more robust estimation of ULVZ pa-
ameters when multiple waveforms are simultaneously considered
n the inversion. Here we consider waveforms from three edge lo-
ations simultaneously with edge locations within 1 ◦ of each other
reating them as if the multiple events strike the ULVZ at different
dge locations. For example, three ScP synthetic waveforms with
dge locations l 1 = 2.0 ◦, 2.5 ◦ and 3.0 ◦ are used to perform the in-
 ersion for representativ e edge location l 1 = 2.5 ◦. Similarly, three
aveforms from l 1 = 2.5 ◦, 3.0 ◦ and 3.5 ◦ are considered for the in-
ersion of l 1 = 3.0 ◦. The simultaneous inversion of three waveforms
rom 1 ◦ separation of edge locations was determined by the size of
he ScP Fresnel zone of 1 ◦ across and is the size of the geographic
ins used in Pachhai et al. ( 2023 ). 

.1 Effect of Boxcar shape 

o examine how well the inversion techniques can recover ULVZ
arameters when the wavefield is computed for 2.5-D finite length
LVZ models, we perform the inversion with two different setups

or the noise covariance matrix. In the first setup we assume the
rue 1-D ULVZ model prediction to use in computing the noise co-
ariance matrix. In the second setup, we make no assumptions and
erform the inversion iterati vel y, starting with ak135 predictions.
he first setup tests our ability to recover ULVZ parameters in the
est-case scenario. And thus, challenges encountered here are inher-
nt to challenges associated with the 2.5-D wavefield. The second

art/ggae285_f11.eps
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Figure 12. The inversion results for (a) thickness, (b) S -wav e v elocity perturbation ( δVs ), (c) P -wave velocity perturbation ( δVp ) and (d) density perturbation 
( δρ) with 2 standard deviations retrieved for the boxcar (B4, see Table 1 ) model using AR1 noise model (black) and covariance noise model (green) in the 
inversion. Results using noise covariance matrix are slightly shifted right for visualization purpose only. Horizontal light-blue colour dashed lines represent 
the true values of ULVZ parameters and vertical dashed lines indicate the l 1 edge boundaries within which ScP hits the ULVZ. The black and green error bars 
represent the ULVZ parameters recovered within a region of boxcar where ScP strikes the ULVZ while the magenta and red colour error bars represent the 
ULVZ parameters recovered from the regions where ScP does not strike the ULVZ including edges. 

Table 1. Various 2-D ULVZ models computed for 1-D inversion test. 

Model 
δV S (per 

cent) 
δV P (per 

cent) h max (km) 
δρ (per 
cent) l l 1 edge Shape 

B1 −20 −10 25 + 5 6 ◦ 2 ◦–14 ◦ Boxcar 
B2 −20 −10 15 + 5 6 ◦ 2 ◦–14 ◦ Boxcar 
B3 −20 −10 15 + 5 4 ◦ 2 ◦–14 ◦ Boxcar 
B4 −20 −10 15 + 5 8 ◦ 2 ◦–14 ◦ Boxcar 
T1 −20 −10 15 + 5 4 ◦ 2 ◦–14 ◦ Tukey 
T2 −20 −10 15 + 5 6 ◦ 2 ◦–14 ◦ Tukey 
T3 −20 −10 15 + 5 8 ◦ 2 ◦–14 ◦ Tukey 
T4 −20 −10 15 + 5 12 ◦ 2 ◦–14 ◦ Tukey 
G1 −20 −10 15 + 5 6 ◦ 2 ◦–14 ◦ Gaussian 
G2 −20 −10 15 + 5 12 ◦ 2 ◦–14 ◦ Gaussian 
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setup tests our ability to recover ULVZ parameters in the worst-case 
scenario, and also more similar to what is encountered when invert- 
ing real data, where we know nothing about the structures and the 
noise covariance matrix a priori. 

5.1.1 Boxcar shaped ULVZ with known noise covariance matrix 

To study the effect of various boxcar shapes, we first computed the 
synthetic waveforms for a 1-D ULVZ with the same elastic prop- 
erties and height for the ULVZ edge locations where ScP directly 
strikes the ULVZ. For ULVZ edge locations where ScP does not hit, 
we computed synthetics using the ak135 model. Then the difference 
between the 1-D and 2.5-D synthetics was computed followed by 
the computation of the covariance matrix using eq. ( 10 ). The 2.5- 
D synthetic data were considered as data, and 1-D ULVZ elastic 
parameters and height were sampled in the inversion. We then ran 
inversions of three 2.5-D synthetic waveforms (from three edge lo- 
cations) simultaneously using the covariance matrices computed for 
those three waveforms. As described earlier in Section 5 , the wave- 
forms from three edge locations represent the central edge location. 
For example, three ScP synthetic waveforms with edge locations 
l 1 = 2.0 ◦, 2.5 ◦ and 3.0 ◦ are used to perform the inversion for repre- 
sentative edge location l 1 = 2.5 ◦. Similarl y, three w aveforms from 

l 1 = 2.5 ◦, 3.0 ◦ and 3.5 ◦ are considered for the inversion of l 1 = 3.0 ◦. 
Fig. 14 shows the inversion results for h and δV S for the four boxcar 
models considered in this study (see Table 1 ). Results for δVp and 
δρ are shown in the supplementary material (Fig. S7 ). 
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Figure 13. (a) Same as Fig. 10 (c) but using wrong covariance matrix (computed from the difference between the predictions of true ULVZ and non-ULVZ 

models) in the inversion. (b) Same as (a) but using the covariance matrix computed from the difference between predictions of the true ULVZ model and the 
MAP model extracted from the first inversion in (a). True models are indicated by black and white dashed lines. 
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In Fig. 14 the edge locations where ScP directly hits the ULVZ
rom the top is represented by the blue dashed line boxcar. The
ecovered ULVZ parameters with uncertainties are plotted in black
red) colour for ULVZ parameters within (outside including edges)
he ScP hitting area. For example, in Fig. 14 (a), the ScP bounce
oint strikes the ULVZ between ∼5.0 ◦ and ∼11.0 ◦ (for ULVZ of
 = 6 ◦), whereas in Fig. 14 (e), the ScP bounce point strikes the
LVZ between ∼7.0 ◦ and ∼11.0 ◦ (ULVZ of l = 4 ◦). In general, we

ee that when the ScP bounce point strikes the ULVZ we recover
he correct ULVZ parameters with small error bounds. Exceptions
ccur when the S l 1 P arri v al constructi vel y interferes with the ScsP
ost-cursor (e.g. Fig. 14 a l 1 = 8.5 ◦, and Fig. 14 g l 1 = 7.5 ◦). In this
ame distance range, we also recover the correct S -wave velocity
or most models. The S -wave velocity is recovered better for larger
odel lengths (e.g. Fig. 14 h, with l = 8 ◦ as opposed to Fig. 14 f with
 = 4 ◦). In all these positions, SPcP precursors are observed in the
ynthetics. 

When the ScP bounce point is on the opposite side of the ULVZ
the smallest edge positions, e.g. l 1 = 2 ◦, 3 ◦, etc.) and does not
trike the ULVZ, the wavefield still interacts with the ULVZ and
e observe a weak ScsP post-cursor for most distances. There also
ppears to be a low amplitude ne gativ e polarity post-cursor just
fter ScP (Fig. 3 ). As a result, our inversions suggest a non-zero
LVZ thickness and δV S in many cases. For both h and δV S the
ncertainties are much larger than in the areas where ScP directly
its the ULVZ with some exception. For example, 2.5 ◦ edge loca-
ion in the case of B1 and B2 and 2.5 ◦–5.5 ◦ edge locations in the
ase of B3 models ha ve narrow er uncertainties for thickness due
o the similarities between the three waveforms from three nearest
dge locations which are simultaneously considered in the inversion
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Figure 14. (a, c, e, g) Thickness (h) and (b, d, f, h) S -wav e v elocity per turbation ( δVs ) with their uncer tainty (2-standard de viation) retrie v ed from the inv ersion 
of 2.5-D synthetic seismograms prepared for four boxcar models of various width and edge locations presented in Table 1 using full noise covariance matrix in 
the inversion. The edge locations along the x-axis in all subplots represent the average over three consecutive edge locations. The horizontal light blue dashed 
lines represent the true values of ULVZ parameters and vertical dashed lines indicate the l 1 edge boundaries within which ScP strikes the ULVZ. The black 
error bars represent the ULVZ parameters recovered within a line where ScP hits the ULVZ while the red color error bars represent the ULVZ parameters 
recovered from the line where ScP does not directly hit the ULVZ including edges. 
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and due to similarity between the 2.5-D synthetics and non-ULVZ 

model prediction. When the ScP bounce point is on the near side 
of the ULVZ (largest edge positions with l 1 ≥ 11.5 ◦) the upgo- 
ing P wave from ScP interacts with the ULVZ generating more 
post-cursor arri v als. Similar to the previous case, we recover non- 
zero h and δV S with larger uncertainty for most edge positions. We 
note that in these cases we do not observe SpcP pre-cursors in the 
synthetics. 
5.1.2 Boxcar shaped ULVZ with unknown noise covariance matrix 

We fur ther inver ted for all boxcar ULVZ models using the iterative 
approach with the ak135 model predictions used to initialize the 
noise covariance matrix. We did two iterations, where the second 
iteration was run using the covariance obtained for the residuals 
between the observations (2.5-D ULVZs in this case) and maximum- 
likelihood model predictions from the first inversion. The inversion 
results for the first iteration are not shown here, but the results for 
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he second iteration are shown in Fig. 15 for h and δVs and in Fig. S8
or δρ and δVp . The inversion results outside of the boxcar do not
hange significantly, but results (both maximum-likelihood model
nd uncertainties) inside the boxcar are different than those using
he true noise covariance matrix. This is because the 1-D ULVZ
ike signals resulting from the 2.5-D ULVZs were mapped as noise
n the covariance matrix in the case when we consider true noise
ovariance matrix. 

When we use the iterative approach, the inversion occasionally
ecovers the thickness and S -wave velocity decrease ( δVs ) (Figs 15 a
nd b) but is strongly affected by the additional multipathing and
dge arri v als. The ULVZ parameters are best recovered for the thin-
er, larger length ( h = 15 km, l = 12 ◦, Figs 15 g–h) models. As the
ength decreases the effects of the extra multipath arri v als and inter-
erence with edge arri v als becomes more prominent, with a general
endency to underpredict the ULVZ thickness with a general in-
rease in S-wav e v elocity. The sharp boxcar morphology generates
he strongest multipath arri v als and most impulsive edge arri v als.
ut it is unlikely that ULVZs exhibit the sharp boxcar morphology

n the real Earth, so this case may represent the end member scenario
f what we can recover in the worst case. 

.2 Effect of Tukey shape 

.2.1 Tukey window shaped ULVZ with known noise covariance 
atrix 

e also computed synthetic seismograms for ULVZ models with
ukey shapes (Table 1 ). We inverted these models for ULVZ param-
ters as described in Section 5.1 . Fig. 16 shows the inversion results
or h and δVs and Fig. S9 shows the inversion results for δρ and δVp
hen we used the known covariance matrix in the inversion. For the

hortest length model (model T1 with l = 4 ◦, Figs 16 a and b), the
Vs is poorly retrieved (Fig. 16 a) even at the edge locations where
cP strikes the middle of the ULVZ. This is due to the existence of
ultipath ScP arri v als, S l 1 P and S l 2 P, all of which are interfering
ith ScsP in this case. But as we increase the length of the Tukey
odel (going from l = 4 ◦ in Fig. 16 a to l = 12 ◦ in Fig. 16 g), the
LVZ parameters are better recovered. Similar to the boxcar shaped
odels, smaller uncertainties in parameters are recovered when the
cP ray hits the flat part of the ULVZ from the top. But when the ScP
ay misses the ULVZ or is in the transition zone up to the flat part,
e still retrieve ULVZ structure, albeit with larger uncertainties, in

he inversion due to the persistent existence of ULVZ post-cursor
nergy in the wavefield. Again, SPcP precursors are also observed
hen the ScP ray path directly hits the flat part of the ULVZ from

bove. The true values of the models are well recovered for the
ongest models (approaching a reasonable 1-D approach), except
t the boundaries where the ULVZ edges have a large slope. These
ocations are dominated by large uncertainties. 

.2.2 Tukey window shaped ULVZ with unknown noise covariance
atrix 

he inversion results for the Tukey shaped window are shown in
ig. 17 for h and δVs and Fig. S10 for δρ and δVp . For the Tukey
haped models, the iterative inversion approach recovers thinner
LVZ and stronger δVs for almost all cases where the ScP bounce-
oint is within the ULVZ (Figs 17 a–d). Here the post-cursor is am-
lified because of constructive interference between the post-cursor
nd conversions from l 1 and l 2 edges (i.e. S l 1 P, S l 2 P, see Fig. 7 a for
he waveforms). The shape of the Tukey window generates longer
eriod edge arri v als than the impulsi ve arri v als generated b y the
oxcar model. As the inversion fits a larger amplitude post-cursor,
he ULVZ height must become thinner in the 1-D inversion. This
ffect is reduced when the length of Tukey ULVZ becomes larger
Figs 17 e–h) because the ScsP post-cursor and post-cursors related
o edge locations (S l 1 P and S l 2 P) start to separate. 

.3. Effect of Gaussian shape 

.3.1 Gaussian shaped ULVZ with known noise covariance matrix

e also tested the inversion against the Gaussian shaped ULVZ
odels, and the inversion results are shown in Fig. 18 for h and

Vs and in Fig. S11 for δρ and δVp . For the 6 ◦ length model the
LVZ thickness matches the maximum height of the Gaussian shape

rom l 1 = 7 ◦ to 10 ◦ which is a reasonable approximation of the
verall ULVZ width. One might interpret this as a flat topped ULVZ
o wever , with little indication of the Gaussian shape. Outside of
his edge range, the uncertainty in thickness increases significantly
s there is no post-cursor like signal. The S -wave velocity is well
ecovered for all edge positions, with a small increase in uncertainty
or edge positions that miss the ULVZ. For a Gaussian ULVZ with
 12 ◦ length, the ULVZ parameters recovered for edge locations
rom l 1 = 3 ◦ to 11 ◦ are particularly good. This case looks more
imilar to the boxcar and Tukey window shaped ULVZs presented
re viousl y, where the uncertainty becomes quite large when the ScP
ouncepoint is outside of the ULVZ. As in those cases, we observe
n SPcP precursor for the Gaussian shaped ULVZ models when the
cP ray directly strikes the ULVZ. 

.3.2 Gaussian shaped ULVZ with unknown noise covariance 
atrix 

e also performed inversion of all the 2.5-D Gaussian synthetics
sing the iterative approach. The inversion results are shown in
ig. 19 for h and δVs . The inversion results for δρ and δVp are
hown in Fig. S12 . In contrast to the boxcar and Tukey window,
Vs is well recovered for both Gaussian models (Figs 19 b–d). The
hickness and the 2-D shape of the Gaussian ULVZ is closely re-
overed for 12 ◦ length (Fig. 19 c). Ho wever , the thickness of the
horter Gaussian ULVZ is poorly recovered (Fig. 19 a), particularly
or shorter edge locations below 8 ◦. This is because there are no
isible post-cursors like signals before the 8 ◦ edge locations. The
aussian shaped ULVZs still generate S l 1 P and S l 2 P arri v als, but

hese are lower amplitude than in the boxcar or Tukey shaped UL-
Zs and do not provide as strong a constructive interference in the
ost-cursor wavefield. 

 R E S U LT S  F O R  O B S E RV E D  DATA  

rom our synthetic experiments, we found that the inversion of
LVZ parameters works better if we incorporate the noise covari-

nce matrix in the inversion in comparison to that parametrized
sing the AR1 model and when we include multiple events in the
nversion. We then applied both approaches to observed data from
hree geographic bins sampling the CMB beneath the Coral Sea
hat were pre viousl y anal ysed in Pachhai et al. ( 2023 ). Bin loca-
ions considered in this study are indicated by stars with different
olours in Fig. 1 (a). Indi vidual ScP w aveforms for each e vent were
andpass filtered with corners at 0.5 and 1.5 Hz. Then the P and

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae285#supplementary-data
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Figure 15. Same as Fig. 14 , but the inversion was run using the covariance matrix computed for the residuals between 2.5-D ULVZ predictions and predictions 
for the maximum-likelihood model obtained from the first inversion. The first inversion was run using the covariance matrix computed for the residuals between 
2.5-D ULVZ predictions and predictions for AK135 model. 

arri v als. Bins 37 and 41 are located within 1 of each other. We 
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ScP wa veforms w ere aligned and stacked using the adaptive stack- 
ing approach (Rawlinson & Kennett 2004 ), separately. Then the 
events were grouped into bins based on their sampling at the CMB. 
We refer to Pachhai et al. ( 2023 ) for more details on the data pro- 
cessing. 

We selected these specific bins as they have been pre viousl y 
presented and analysed in Pachhai et al. ( 2023 ), and we wanted to 
compare the results from the previous study that parametrizes noise 
covariance matrix using the AR1 model to the results from this study, 
which includes full data noise covariance matrix in the inversion. 
The ScP wavelets and P wavelets (considered as STF) for three bins 
are shown in Fig. 20 . Bins 37, 24 and 41 have waveforms from 14, 13 
and 27 events, respectively. In all of these bins, ScP waveforms are 
more complex than the P wa velet, how ev er, the lev el of comple xity 
is dependent on the event. Bin 41 shows simple waveforms that 
appear well explained by the direct P wavelet. Whereas Bins 24 
and 37 appear to show low amplitude ScP pre- and post-cursor 

◦
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Figure 16. (a, c, e, g) Thickness ( h ) and (b, d, f, h) S -wav e v elocity per turbation ( δVs ) with their uncer tainty (2-standard de viation) retrie v ed from the inv ersion 
of 2.5-D synthetic seismograms prepared for two Tukey shape models with various edge locations presented in Table 1 using full noise covariance matrix in 
the inversion. The blue dashed lines represent the true values. The edge locations along the x-axis in all subplots represent the average over three consecutive 
edge locations. 
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nv ert ScP wav eforms from all events in each bin jointly including
he attenuation parameter ( t ∗) as an unknown parameter (Pachhai
t al. 2023 ). 

We first apply both approaches to a single ScP waveform from
in 37 (i.e. 0-th waveform in Fig. 20 a) and compare this to the
oint inversion using all events for this bin. When using real data,
he noise covariance matrix is initially unknown. Therefore, we
roceeded by first performing the inversion assuming that noise is
ncorrelated, therefore, parametrizing the data noise using the stan-
ard deviation of noise (see eq. 6 ) (i.e. the noise standard deviation
s also sampled as additional parameter). After convergence, we
xtract the maximum-likelihood model. The difference between the
aximum-likelihood model prediction and observed data is con-

idered as data noise and is used to compute the noise covariance
atrix using eq. 10 . This covariance matrix is then used in the

econd iteration of the inversion. Figs 21 (a) and (b) shows the in-
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Figure 17. Same as Fig. 16 , but the inversion was run using the covariance matrix computed for the residuals between 2.5-D ULVZ predictions and predictions 
for the maximum likelihood model. 
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version results when the AR1 model and covariance matrix methods 
are used, respecti vel y. The inversion results are also summarized in 
Table 2 . The inversion results for all the parameters are different 
other than that for δV s. Even for δV s, the uncertainties are larger 
when we consider the noise covariance matrix in the inversion. For 
other parameters, not only the uncertainties are large but also the 
parameter values are different (Table 2 and Fig. 21 ). For example, 
the ULVZ interface height and density are overestimated when AR1 
parametrization is considered compared to that using a noise covari- 
ance matrix when we consider a single event (Table 2 and Figs 21 a 
and b). 

We then applied both approaches to all the ScP waveforms within 
bin 37 (see Fig. 20 a for waveforms), and inversion results are shown 
in Figs 21 (c) and (d). In the case of AR1 inversion, not only do the 
uncertainties become narrower but also the ULVZ parameters are 
close to that using covariance matrix in the inversion of a ScP 

waveform from a single event (Table 2 and Fig. 21 ). In contrast, the 
ULVZ parameters are not significantl y dif ferent when considering 
1 event or 14 events simultaneously in the case when the full data 
noise covariance matrix is considered in the inversion. Of course, 
the uncertainties become lower as we add more ScP waveforms 
from 14 events. This is because we have more data information to 
constrain the same ULVZ structure. 

We also applied the same approach for ScP waveforms from two 
other bins. Inversion results for those bins are shown in Fig. 22 . In 
the case of Bin 24, the inversion results do not change significantly 

art/ggae285_f17.eps


Investigating the effect of ULVZ morphologies on ScP waveforms 613 

Figure 18. (a, c) Thickness ( h ) and (b, d) S -wave velocity perturbation ( δVs ) with their uncertainty (2-standard de viation) retrie ved from the inversion of 2.5-D 

synthetic seismograms prepared for two Gaussian models with various edge locations presented in Table 1 using full noise covariance matrix in the inversion. 
The horizontal lines represent the true values. The edge locations along the x-axis in all subplots represent the average over three consecutive edge locations. 

Figure 19. Same as Fig. 18 , but the inversion was run using the covariance matrix computed for the residuals between 2.5-D ULVZ predictions and predictions 
for the maximum-likelihood model obtained from the first inversion. The first inversion was run using the covariance matrix computed for the residuals between 
2.5-D ULVZ predictions and predictions for AK135 model. The blue dashed lines represent the true shape Gaussian ULVZs. 
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etween tw o in versions other than uncertainties, but in the case
f Bin 41, not only the parameter uncertainties are small but also
he multiple modes appear when we consider AR1 parametrization
f noise. When we consider the noise covariance matrix in the
n version, in version retrieves a single model, which is one of the
odels in the inversion with AR1 parametrization of noise. 
e  
 D I S C U S S I O N  A N D  C O N C LU S I O N S  

his study addresses some of the challenges inherent in waveform
odelling deep mantle seismic arri v als, particularl y in terms of the

ffect of 2.5-D ULVZ shape and morphology on ScP waveforms.
rom the 2.5-D synthetic ScP wa veforms, w e found two arrivals
merging from the edges of the ULVZ (S l 1 P and S l 2 P). In many
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Figure 20. ScP waveforms considered as observed data (black lines) and P waveforms represented as STF (orange lines) waveforms from three different bins 
at the CMB, represented by stars in Fig. 1 (a). Each waveform represents the stack of observed data (ScP) or P waveforms (i.e. STF) recorded by all the stations 
in a seismic array in Australia for an individual earthquake. 
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cases, the amplitude of the S l 2 P arri v al is larger than that for the 
ScsP post-cursor and can interfere with the ScP and ScsP phases and 
in some cases can be misidentified as ScsP. The interference caused 
by these additional arrivals can create errors in the estimated ULVZ 

properties using a 1-D forward modelling approach. Whether or not 
these additional post-cursors cause interference is primarily depen- 
dent on the location of the ULVZ boundaries, which is typically 
unknown. Additionally , the precursor energy , particularly coming 
from the top of the ULVZ is not present when the ScP wavefield 
only interferes with 2.5-D ULVZ without hitting the ULVZ. This 
can have no control over the δVp and δρ as these parameters are 
mostl y constrained b y precursors, but the thickness and δV S can 
be different than the true ULVZ parameters. There is a chance that 
we can still retrieve correct ULVZ parameters, particularly for S - 
wav e v elocity and thickness if ScP hits the location of the ULVZ, 
but that also depends on the size and shape of the ULVZ as the 
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Figure 21. Posterior probability density of ULVZ height interface above the CMB, P -wave velocity ( δVp ), S -wave velocity ( δVs ) and density ( δρ) perturbations 
as a function of ULVZ height when a ScP waveform from a single event is used (a) assuming AR1 noise model (b) assuming full noise covariance matrix in 
the likelihood. (c) and (d) Same as in boxes (a) and (b) but for ScP waveforms from 14 events from Bin 37 in Fig. 1 (a). 

Table 2. ULVZ parameters with 2 standard de viations retrie ved from the inversion of ScP waveforms from a single event 
and 14 events using AR1 noise model and full noise covariance matrix in the inversion in the case of bin 37. 

h ± 2std (km) 
δV s ± 2std (per 

cent) 
δV p ± 2std (per 

cent) 
δρ ± 2std (per 

cent) 

1 event (using AR1 noise model) 10 . 2 ± 0 . 5 −21 . 2 ± 2 . 0 −14 . 7 ± 2 . 6 13 . 4 ± 4 . 0 
1 event (using covariance matrix) 8 . 1 ± 1 . 4 −23 . 5 ± 4 . 0 −7 . 7 ± 9 . 6 0 . 4 ± 8 . 8 
14 events (using AR1 noise model) 7 . 9 ± 0 . 2 −21 . 6 ± 0 . 8 −2 . 72 ± 0 . 9 0 . 1 ± 0 . 2 
14 events (using covariance matrix) 8 . 0 ± 0 . 4 −20 . 8 ± 1 . 6 −3 . 8 ± 3 . 0 0 . 2 ± 2 . 4 
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csP post-cursor can constructi vel y/destructi vel y interfere with the
hases coming from the edges (Figs 3 –7 ). 

To better understand these effects, we further developed a non-
inear Bayesian inversion approach for ULVZ structure from ScP
aveforms so that correlated data errors are fully accounted through

he likelihood function (eq. 5 ). P ast ULVZ studies dev eloped
he Bayesian inversion approximating the noise covariance matrix
hrough the AR1 model for a single ev ent (P achhai et al. 2014 , 2015 )
nd multiple events (Pachhai et al. 2023 ). In the AR1 model, the
utocov ariance decays exponentiall y on two sides from the diago-
al element (Fig. 8 ). Ho wever , we note that the retrieved parameter
ncertainties depend strongly on the noise model. For example,
he Boxcar model shows well pronounced energy coming from the
ight edge of ULVZ which can be mis-identified as ScsP if we just
se the AR1 noise model, thereby providing unrealistically high
onfidence on the estimated ULVZ parameters constrained by that
ost-cursor (e.g. Figs 11 –12 and Figs S1 –S6 ). It can also overesti-
ate the S -wave velocity perturbation and the density and P -wave

elocity perturbation with narrow uncertainties when we consider
-D forward computation in the inversion. When we use the full
oise covariance matrix in the inversion, the uncertainties become
arger, but those inversions also do not recover true values in some
ases, particularly when 1-D prediction can explain some of the
ost-cursor like features resulting from the interaction of ScP with
he edges of the boxcar ULVZ. This effect is even more evident
hen we consider the iterative approach as the inversion tries to fit
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Figure 22. Posterior probability density of ULVZ height interface above the CMB, P -wave velocity ( δVp ), S -wave velocity ( δVs ) and density ( δρ) perturbations 
as a function of ULVZ height when all the ScP waveform from Bin 24, in Fig. 1 (a), are used (a) assuming AR1 noise model (b) assuming full noise covariance 
matrix in the likelihood. (c) and (d) Same as in boxes (a) and (b) but for Bin 41 in Fig. 1 (a). 
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1-D like signals using 1-D forward computation thereby overesti- 
mating/underestimating the ULVZ parameters depending on where 
the ScP strikes the ULVZs and where the ULVZ edges are located. 
Ho wever , these effects are minimal when we consider longer ULVZ 

and smoother edges, for example, Tukey and Gaussian ULVZs. 
An important point of this paper is that reliable estimation of the 

PPD of the ULVZ parameters requires the specification of a phys- 
ically meaningful likelihood function. The er ror cor relations must 
be quantified and included in the inversion employing data covari- 
ance matrices. Inversion of 2.5-D synthetics show that the ULVZ 

parameters are recovered close to the true parameters with wider, 
more realistic, uncertainties when we consider the data noise co- 
variance matrix. But there are still a couple of cases when the ULVZ 

parameters are not well recovered. The first case is when the noise 
is non-stationary. This means that the standard deviation and corre- 
lation of noise changes as a function of time which is possible when 
analysing real data. Here we assume that the noise is stationary, 
which we think is fair in the short time windows we are examining. 
To account for non-stationary noise, we could consider scaling the 
autocovariance as a function of moving windows. The second case is 
when the S l 1 P and S l 2 P arri v als interfere constructi vel y or destruc- 
ti vel y with the ScsP phase. In some cases, these arri v als make it 
appear that ScsP has a much larger amplitude which is not captured 
by the covariance matrix. Our inclusion of multiple events helps 
us to reduce the overestimation of ULVZ parameters in this case, 
but we cannot fully eliminate this problem using only 1-D forward 
modelling approaches, and it is not yet computationally feasible to 
use 2.5-D methods in the Bayesian approach. 

When applying our technique to real data, the covariance ma- 
trix can become non-positive definite resulting in a non-invertible 
matrix. To make the covariance matrix invertible, we apply weak 
damping when necessary. Unlike the synthetic data, with real data 
the noise covariance matrix is unknown. In this case we apply an 
iterative approach, where at each iteration we calculate the covari- 
ance matrix from the residuals between the observed data and the 
maximum-likelihood model prediction. This process is repeated un- 
til we find the same covariance matrix in consecutive iterations. We 
found that 2 to 3 iterations are enough for the convergence of the 
cov ariance matrix. Additionall y, the inversion of ULVZ parameters 
is more efficient when we consider the covariance matrix in the 
likelihood, which is especially helpful for the geographic bins with 
a large number of events (e.g. bin 41 considered in this study). 
This is because the previous inv ersion (e.g. P achhai et al. 2023 ) 
samples two additional parameters for the AR1 noise model for 
each waveform. Including these two additional parameters, for each 
w aveform, significantl y increases the number of parameters and the 
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ime to convergence. As the inversion did not conv erge ev en after
unning for weeks, Pachhai et al. ( 2023 ) fixed the t ∗ values based
n the inversion of ScP waveform from individual events. Using
his approach, we retrieved PREM-like ULVZ parameters and the

ajority of waveforms in this bin do not have well pronounced ScP
re- and post-cursors. Fig. 22 (c) also shows multiple modes for
hickness as the inversion is not yet converged. But when we use
he covariance matrix approach, the inversion converges and show
 unique solution with h = 15 km, δVs = ∼- 7 per cent, and δVp
 ∼- 20 per cent, still suggesting weak ULVZ but the δVp is un-

sually large compared to δVs . These controversial results may be
ecause ScP is hitting near a 2-D/3-D ULVZ edge location, thereby
roviding phases that are not present in the 1-D modelling, but
he inversion is trying to fit those phases dif ferentl y when different
pproaches are considered. 

P ast studies hav e also identified ScP wav eforms that show ULVZ-
ike behaviour with large amplitude post-cursors in the absence of
recursors. For example, Garnero & Vidale ( 1999 ) show both pres-
nce and absence of ScP precursors that sample the CMB beneath
he Central Pacific region. Similarly, Persh et al. ( 2001 ) presented
cP observations without precursors that sample the CMB beneath
entral America and Me xico. P ast studies have reported ScP post-
ursors without any precursors in our study region as well (e.g. Rost
 Revenaugh 2003 ; Rost et al. 2005 ). More recently, Idehara et al.

 2007 ) found ScP data without precursors that sample the CMB
eneath the east of Australia, and Pachhai et al. ( 2023 ) also found
vents without precursors. Hence, the ULVZ literature shows sev-
ral examples where our findings in this study are rele v ant. Namel y,
he existence of ScP post-cursors without accompanying precur-
ors appears quite common and is possibly linked to ScP arri v als
hat do not directly strike the ULVZ. Parameters recovered in such
ases must be treated with caution. Moreov er, P achhai et al. ( 2023 )
resented evidence for an additional large amplitude signal several
econds after the ScsP post-cursor. This extra arri v al is consistent
ith additional post-cursor energy generated from ULVZ bound-

ries (S l 1 P and S l 2 P) and may be indicative of the finite size of the
LVZ beneath the Coral Sea, ho wever , more in-depth investigation

s needed for such confirmation. 
In conclusion, 2.5-D synthetic waveforms show additional wave-

orm complexity resulting from the edges of the ULVZs which can
nterfere with the converted phases of ScP. As a result, the estimation
f ULVZ properties using the 1-D forward modelling can provide
isleading ULVZ parameter values, which can lead to the improper

hysical origin of ULVZs. The Bayesian inversion of ScP wave-
orms can constrain ULVZ parameters correctly if the data noise is
orrectly addressed. From the inversion of synthetic data, we found
hat the inversion recovers ULVZ parameters well with wider, more
ealistic, uncertainties if we know the full covariance matrix and
nclude it in the inversion, but addressing data noise through the
R1 model can recover ULVZ parameter values far from the true
alues with unrealistically high confidence. This suggests that mak-
ng a decision just based on the narrowness of the uncertainties
an lead to misinterpretation. Inversion for the observed data also
hows wider uncertainties for all the ULVZ parameters if we con-
ider the noise covariance matrix in the inversion. Additionally, the
LVZ parameters can also be different depending on what noise
odel we consider in the inversion. We believe that the inclusion

f the noise covariance matrix performs better than the AR1 model
ecause that provides more consistent results between the inver-
ion of ScP waveforms from both single event and multiple events.
ur synthetic experiments demonstrate that we can recover ULVZ
arameters accurately for a wide variety of models if the noise
ovariance matrix is known, even when using a 1-D forward mod-
lling approach in the inversion. But when the covariance matrix is
nknown and inversion is performed iterati vel y, we can recover still
ecover ULVZ shape and properties when the ULVZ is large. Our
onfidence in the procedure is significantly enhanced when SPcP
recursors are also identifiable in the waveforms, which indicates
e are directly striking the ULVZ. Application of these techniques

o data collected for ScP waveforms sampling the Coral Sea region
ecover ULVZ parameters with δV s = −20 . 8 ± 0 . 8 per cent and
 = 8 ± 0 . 2 km in the case of bin 37 and δV s = −21 . 7 ± 0 . 8 per
ent and h = 7 . 3 ± 0 . 2 km in the case of bin 24. These values are
etermined using multiple inversion techniques and are here vetted
gainst possible 2-D ULVZ structural complications. The system-
tic application of this approach will allow us to provide better
stimates of ULVZ geometrical and elastic parameters and their
roper physical interpretation. 
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igure S1. (a) Thickness and (b) S -wave velocity perturbation ( δVs )
ith their uncertainty (2-standard deviations) retrieved from the

nversion, using the AR1 model in the likelihood function (eq. 9 ),
f 2-D synthetic seismograms prepared for the Boxcar model of
arious widths and edge locations presented in Table 1 . (c) and (d)
ame as (a) and (b) but using the full data noise covariance matrix
n the likelihood function (eq. 5 ). The horizontal lines represent the
rue values. In these inversions a single waveform was used. 
igure S2. (a) P -wave velocity perturbation ( δVp ) and (b) den-
ity perturbation ( δρ) with their uncertainty (2-standard deviations)
etrieved from the inversion, using AR1 model in the likelihood
unction (eq. 9 ), of 2-D synthetic seismograms prepared for the
oxcar model of various widths and edge locations presented in
able 1 . (c) and (d) same as (a) and (b) but using the full data noise
ovariance matrix in the likelihood function (eq. 5 ). The horizontal
ines represent the true values. In these inversions a single waveform
as used. 
igure S3. (a) Thickness and (b) S -wave velocity perturbation ( δVs )
ith their uncertainty (2-standard deviations) retrieved from the

nversion, using the AR1 model in the likelihood function (eq. 9 ),
f 2-D synthetic seismograms prepared for the Tukey model of
arious widths and edge locations presented in Table 1 . (c) and (d)
ame as (a) and (b) but using the full data noise covariance matrix
n the likelihood function (Eq. 5 ). The horizontal lines represent the
rue values. In these inversions a single waveform was used. 
igure S4. (a) P -wave velocity perturbation ( δVp ) and (b) density
erturbation ( δρ) with their uncertainty (2-standard deviations) re-
rieved from the inversion, using the AR1 model in the likelihood
unction (eq. 9 ), of 2-D synthetic seismograms prepared for the
ukey model of various widths and edge locations presented in Ta-
le 1 . (c) and (d) same as (a) and (b) but using the full data noise
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covariance matrix in the likelihood function (eq. 5 ). The horizontal 
lines represent the true values. In these inversions a single waveform 

was used. 
Figure S5. (a) Thickness and (b) S -wave velocity perturbation ( δVs ) 
with their uncertainty (2-standard deviations) retrieved from the 
inversion, using the AR1 model in the likelihood function (eq. 9 ), 
of 2-D synthetic seismograms prepared for the Gaussian model of 
various widths and edge locations presented in Table 1 . (c) and (d) 
same as (a) and (b) but using the full data noise covariance matrix 
in the likelihood function (eq. 5 ). The horizontal lines represent the 
true values. In these inversions a single waveform was used. 
Figure S6 . (a) P -wav e v elocity perturbation ( δVp ) and (b) with their 
uncertainty (2-standard de viations) retrie ved from the inversion, 
using the AR1 model in the likelihood function (eq. 9 ), of 2-D 

synthetic seismograms prepared for the Gaussian model of various 
widths and edge locations presented in Table 1 . (c) and (d) same 
as (a) and (b) but using the full data noise covariance matrix in the 
likelihood function (eq. 5 ). The horizontal lines represent the true 
values. In these inversions a single waveform was used. 
Figure S7. (a, c, e, g) Density perturbation ( δρ) (h) and (b, d, f, 
h) P -wave velocity perturbation ( δVp ) with their uncertainty (2- 
standard de viations) retrie v ed from the inv ersion of 2.5-D synthetic 
seismograms prepared for four boxcar models of various widths and 
edge locations presented in Table 1 using the full noise covariance 
matrix in the inversion. The edge locations along the x-axis in all 
subplots represent the av erage ov er three consecutive edge loca- 
tions. The light blue dashed lines represent the true values of ULVZ 

parameters and vertical dashed lines indicate the l 1 edge boundaries 
within which ScP strikes the ULVZ. The black error bars represent 
the ULVZ parameters recovered within a line where ScP hits the 
ULVZ while the red color error bars represent the ULVZ param- 
eters recovered from the line where ScP does not directly hit the 
ULVZ including edges. 
Figure S8. Same as Fig. S7 , but the inversion was run using the 
covariance matrix computed for the residuals between 2.5-D ULVZ 

predictions and predictions for the maximum likelihood model ob- 
tained from the first inversion. The first inversion was run using the 
full covariance matrix computed for the residuals between 2.5-D 

ULVZ predictions and predictions for AK135 model. 
Figure S9. (a, c, e, g) Density perturbation ( δρ) (h) and (b, d, f, 
h) P -wave velocity perturbation ( δVp ) with their uncertainty (2- 
standard de viations) retrie v ed from the inv ersion of 2.5-D synthetic 
seismograms prepared for four Tukey window models of various 
width and edge locations presented in Table 1 using full noise 
covariance matrix in the inversion. The edge locations along the 
x-axis in all subplots represent the average over three consecutive 
edge locations. The light blue dashed lines represent the true values 
of ULVZ parameters and vertical dashed lines indicate the l 1 edge 
boundaries within which ScP strikes the ULVZ. The black error bars 
represent the ULVZ parameters recovered within a line where ScP 

hits the ULVZ while the red colour error bars represent the ULVZ 

parameters recovered from the line where ScP does not directly hit 
the ULVZ including edges. 
Figure S10. Same as Fig. S9 , but the inversion was run using the 
covariance matrix computed for the residuals between 2.5-D ULVZ 

predictions and predictions for the maximum likelihood model ob- 
tained from the first inversion. The first inversion was run using the 
covariance matrix computed for the residuals between 2.5-D ULVZ 

predictions and predictions for AK135 model. 
Figure S11. (a, c) Density ( δρ) and (b, d) S -wav e v elocity perturba- 
tion ( δVp ) with their uncertainty (2-standard deviations) retrieved 
from the inversion of 2.5-D synthetic seismograms prepared for two 
Gaussian models with various edge locations presented in Table 1 
using full noise covariance matrix in the inversion. The edge lo- 
cations along the x-axis in all subplots represent the average over 
three consecutive edge locations. The true values for δρ and δVp 
are 5 per cent and -10 per cent, respecti vel y. 
Figure S12. Same as Fig. S11 , but the inversion was run using the 
covariance matrix computed for the residuals between 2.5-D ULVZ 

predictions and predictions for the maximum likelihood model ob- 
tained from the first inversion. The first inversion was run using the 
covariance matrix computed for the residuals between 2.5-D ULVZ 

predictions and predictions for AK135 model. The true values for 
density and δVp are 5 per cent and -10 per cent, respecti vel y. 

Please note: Oxford University Press are not responsible for the 
content or functionality of any supporting materials supplied by 
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DATA  AVA I L A B I L I T Y  

We used ScP waveforms from Pachhai et al. ( 2023 ) that are pub- 
licl y av ailable through uhi v e ( https://hiv e.utah.edu ), Univ ersity of 
Utah Research Data Repository: https://doi.org/10.7278/S50d-a67 
s-y717 . The facilities of IRIS Data Services, and specifically the 
IRIS Data Management Center, were used to access the raw wave- 
forms that are processed and stored in uhive, related metadata and/or 
derived products used in this study. IRIS Data Services are funded 
through the Seismological Facilities for the Advancement of Geo- 
science and EarthScope (SAGE) Proposal for the National Sci- 
ence Foundation under Cooperative Agreement EAR-1261681. The 
Bayesian inversion algorithm applied in this paper is available from 

https://zenodo.org/r ecor ds/7825575 (Pachhai 2023 ). 
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