
Final Technical Report
DE-NA0002375

PSAAP-II Historical Report

The UQ-Predictive Multidisciplinary
Simulation Center for High Efficiency

Electric Power Generation with Carbon
Capture

April 1, 2014 through December 31, 2020

Carbon Capture Multidisciplinary Simulation Center
The University of Utah

Philip J. Smith, Principal Investigator
philip.smith@utah.edu 801-585-3129

Issue Date: March 31, 2021



Table of Contents
1 Abstract / Executive Summary 1
2 Description of Overarching Problem 2
3 Capstone Project 5

3.1 HPC Simulations 6
3.2 V/UQ (ML) 10
3.3 Optimization (AI) 12

4 Key Accomplishments 15
4.1 Computer Science 16

4.1.1 Uintah Computational Framework 16
4.1.2 Data Management 18
4.1.3 Radiation Integration 19

4.2 Computational Physics 21
4.2.1 LES Integration 21
4.2.2 Particle Physics 24
4.2.3 Multi-Phase Combustion Chemistry Models 25
4.2.4 Deposition Models 27

4.3 Hierarchical Validation and Uncertainty Quantification 27
4.3.1 The CCMSC V/UQ Methodology 27
4.3.2 Development of Instrument Models 33
4.3.3 Boiler Simulation Facility (BSF) 36

5 Laboratory Interactions 37
5.1 Internship and Student Lab Visit Record 37
5.2 Post-Degree Employment 38

6 Educational Impact 40
7 Adoption of Center Results 42
8 List of Publications 42
References 66



Final Technical Report
DE-NA0002375

April 1, 2014 through December 31, 2020

Carbon Capture Multidisciplinary Simulation Center
Institute for Clean and Secure Energy–The University of Utah

1 Abstract / Executive Summary

The University of Utah Multidisciplinary Simulation Center was established in April of
2014 by the United States Department of Energy, National Nuclear Security Administra-
tion (NNSA) for the purpose of developing and demonstrating the use of formal uncertainty
quantification (UQ) methodologies in conjunction with scalable and portable high perfor-
mance computing (HPC) strategies for solving large practical problems. Faculty, staff and
students from the University of California, Berkeley, and Brigham Young University par-
ticipated with those from the University of Utah in The Carbon Capture Multidisciplinary
Simulation Center (CCMSC). The application selected by the Center was the demonstra-
tion of positive societal impact of HPC with UQ for the deployment of low-cost, low-carbon
energy solutions for power generation. To accomplish this mission, we developed a multi-
physics, large-eddy simulation (LES) code (Arches/Uintah) to run at scale on world-class
computational resources made available to us by NNSA. To guide our application we part-
nered with two industrial collaborators, General Electric (GE Power) and Ontario Power
Generation (OPG). Seventy-eight engineers and scientist worked together in three teams to
complete the Center mission: the computer science team, the computational physics team,
and the UQ team.

Our CCMSC industrial partners and their applications provided purpose and focus to
the methodologies developed in the Center. With GE Power, our objective was to demon-
strate the advantages of HPC with hierarchical UQ in design decisions by predicting the
heat flux profile to a validated level of uncertainty for a full-scale, pulverized coal, ther-
mal power generation boiler. We completed our capstone project in partnership with OPG,
where we deployed all the methodologies of the Center to demonstrate dynamic, online arti-
ficial intelligence (AI) for operating a biomass-fired power generation boiler. The Atikokan
Digital Twin starts with a large suite of our validated, multi-physics, LES simulations run
on HPC resources. We selected these simulations from a design of experiments covering
the full potential operational space for the power boiler. We then abstracted this suite of
Arches/Uintah simulations into surrogate models for all quantities of interest (QOI). The
digital twin AI uses our science-based Bayesian machine learning (ML) methods to com-
bine these surrogate models with online power-plant measurements to produce real-time
(3-5 minute updates) operational set points for continuous optimization of the biomass
boiler in the presence of uncertainty.

A demonstration of the digital twin is accessed at https://chpc.utah.edu/∼DigitalTwin.
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(a) boiler infrastructure (b) heat flux to boiler surfaces

Fig. 1. The 1200MW GE Power ultra-supercritical boiler: (a) the geometrical scale of the boiler
showing the computed temperature profile, and (b) the heat flux distribution, the QOI for the
CCMSC overarching problem.

2 Description of Overarching Problem

We created CCMSC to demonstrate positive societal impact of extreme computing by ac-
celerating deployment of low-cost, low-carbon energy solution for power generation from
pulverized solid fuels. The Center has been driven by the mission of predicting the heat
flux profiles for the design of new technologies for full-scale, pulverized solid-fuel, thermal
power generation boilers to a proven level of uncertainty using LES on the largest compu-
tational resources available to us (see Fig. 1). Our overarching problem then, our intended
use of the simulation, has been to predict fireside performance of coal and biomass boilers
to within a quantified uncertainty level of 5%.

The boiler design studies were conducted in conjunction with GE Power and included
oxy-combustion, supercritical and ultra-supercritical boilers that employ exotic and expen-
sive metal alloys to allow much higher steam temperatures than traditional boilers. These
elevated steam temperatures increase the efficiency of the boiler significantly, thus “captur-
ing” carbon by reducing the carbon footprint by an amount commensurate with the increase
in efficiency. We also studied fuel switching from coal to biomass for reducing carbon
footprints. In the capstone project performed in partnership with OPG (see section 3, we
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(a) schematic of geometry (b) gas temperature field

Fig. 2. The GE Power BSF: (a) A schematic showing blue inlet pipes for coal and air, and
geometric components for the heat transfer surfaces around and in the boiler. The different colors
depict different material thermal properties for each component. For scale, this boiler is four
stories tall. (b) A volume-rendered image of the gas temperature field. The color depicts
temperatures ranging from 800K-1800K. This image shows the scale of the turbulent eddies
resolved by the Arches/Uintah LES code.

explored optimize operations in the presence of uncertainty for this carbon-negative solid
fuel.

While the design boilers produced power ranging from 350-1200MW, our industrial
partner (GE Power) provided data for a small-scale (15MW) boiler simulation facility
(BSF) as shown in Fig. 2. More data were available for the BSF than for the full-scale
system. The objective was to use these data, along with laboratory- and bench-scale ex-
periments on specific components of the physics, to produce uncertainty that could be ex-
trapolated to full scale. This UQ extrapolation problem became one of the Center’s major
missions and accomplishments: the development of an overarching methodology to ex-
trapolate uncertainty. The problem was to ensure that we were interpolating physics while
extrapolating scale, so that we could have confidence in our validation and uncertainty
quantification (V/UQ) at scale.
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The Center developed an hierarchical V/UQ methodology to guide decisions about re-
search project selection, continuation and termination. Section 4.3 discusses the evolution
of the CCMSC hierarchy. The objective was to identify sources of error and remove the
largest sources as the program evolved. We constructed and changed the hierarchy in or-
der to identify model form uncertainty and ritually improve the parts of the multi-physics
model that contributed most to the uncertainty in our QOI. As the uncertainty diminished,
the year-to-year changes in the hierarchy diminished.

Fig. 3. For the capstone biomass boiler project,
the uncertainty distributions are shown as violin
plots for the average heat flux incident on the
boiler walls in 20 horizontal bands around the
boiler.

Figure 3 shows the uncertainty in the
overarching QOI, the heat flux profile, for
the capstone project, the biomass boiler.
These uncertainty distributions show that
we were able to achieve our overarching
goal of achieving nominally 5% uncer-
tainty or less in the heat flux distribution for
a full-scale industrial power boiler.

Accomplishing this overarching mis-
sion required advances in our three core
disciplines: computer science, computa-
tional physics and V/UQ. To help visual-
ize this overarching problem (see Fig. 1
and 2), we present images generated with
the visualization tools developed by the
computer science team. To reach our ob-
jectives, the computer science and com-
putational physics teams developed the
Arches/Uintah multi-phase combustion ap-
plication code[1] and built it on the Uintah
computational framework (UCF) [2, 3] to
run efficiently on HPC platforms. Uintah’s
adoption of MPI+Kokkos and Hypre adds
run-time parameters that allow users to op-
timize performance. We have shown strong
and weak scaling for Uintah to 256k cores
with 16k GPUs on a range of production
machines from Titan through Mira. The
V/UQ process employed at the Center, de-
veloped by the V/UQ team, has evolved as
a hybrid of Bayesian and Bound-to-Bound
methodologies for reducing the model bias
in both the simulation models and the in-
strument models used to produce the experimental measurements. The accomplishments
in these three disciplines are described in section 4.
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Over the life of the Center, 78 faculty, staff and students participated in completing
the Center objectives. The faculty and staff participants are shown in Fig. 4. The student
participants, together with their laboratory internships and their post-CCMSC employers,
are listed in section 5.

Fig. 4. CCMSC faculty and staff participants.

3 Capstone Project

In our capstone project, completed in partnership with OPG, we deployed all the method-
ologies of the Center to demonstrate dynamic, online AI for operating a biomass-fired
power generation boiler. Since the inception of the Center, coal has fallen further out of
favor as a thermal fuel for power generation. With the global search for carbon-neutral
electric power generation, many countries, including the USA, are turning to biomass, a
carbon-negative fuel, as an alternative to fossil fuel sources. Wood pellets have become
the biomass feedstock of choice for their fuel handling and feeding advantages. An added
benefit is that for existing coal-fired power plants that are older than 35 years or are fully
paid for, “even with [biomass] pellet fuel 2.9 times more expensive per million BTU than
coal, a converted coal plant generating power with pellets creates electricity at a rate that is
less than one-third of a cent more expensive per kilowatt-hour than natural gas [4].” OPG,
the first and only jurisdiction in North America to eliminate coal by converting to wood
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Fig. 5. Schematic of the Atikokan Digital Twin information flow.

pellets, agreed to join CCMSC to provide experience, data, and a platform (the Atikokan
Power Station) for the demonstration of our capstone project.

The 200MW Atikokan tower boiler, fired with white biomass pellets, is located in
Atikokan, Ontario, Canada and is owned by OPG. The plant, originally fired with lignite
coal, was converted to fire 100% biomass (2012-2014) and became fully operational with
biomass in September 2014. Because the boiler produces electricity on demand, it is not
operating at full production throughout the day. While the cycle of operation varies from
40-200MW, generally only two of five mills are in operation with a resulting power gen-
eration range of 40-100MW. Each mill provides fuel to one level of burners; there are five
levels in all with three burners per level. We focused our digital twin on the lower power
generation range resulting from operation with only two mills (e.g. two burner levels) at a
time.

The Atikokan Digital Twin starts with a large suite of our validated, multi-physics,
LES simulations selected from a design of experiments covering the full potential opera-
tional space for the power boiler and run on HPC resources. We then abstract this suite
of Arches/Uintah simulations into surrogate models for all QOIs. The digital twin AI uses
our science-based Bayesian ML methods to combine these surrogate models with power-
plant measurements to produce real-time (3-5 minute updates) operational set points for
continuous optimization of the biomass boiler in the presence of uncertainty. This process
is represented schematically in Fig. 5.

3.1 HPC Simulations

We performed simulations of the boiler in 420 specific operating states determined by a de-
sign of experiments. OPG provided geometry specifications (e.g. size and location of the
tube banks, type and location of the burners), heat transfer characteristics (e.g. tube wall
thermal conductivity, tube wall temperature) and operating condition data (e.g. biomass
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flow rate, air flow rates, air temperatures, three measurements of oxygen at the boiler out-
let, net power, gas temperature prior to the convective zone, several water temperatures).
Additionally, OPG provided a biomass fuel sample from which we obtained physical (e.g.
particle size distribution, particle true density) and chemical (e.g. proximate analysis, heat-
ing value, ash composition) properties that were needed in the simulations.

We used the Arches/Uintah LES code[1] for the simulations. Arches/Uintah has been
used in several gas and coal-fired systems [5–10] and in several V/UQ studies [11, 12].
The various submodels used in the simulations are listed in Table 1. Throughout the Center
history, we have developed models to simulate a range of solid fuel types. As can be seen in
Fig. 6, wood is a continuation of heating value and composition properties of various types
of solid carbonaceous fuels. We collected laboratory data on the performance of the wood
pellets used at Atikokan and tested our models on this new fuel type. The extrapolation
of these models to include wood happened without incident and is another demonstration
of the strength of the hierarchical model development strategy. We tested and debugged a
base simulation with these models until it was stable and at steady state.

Fig. 6. Higher Heating Value (HHV), volatile matter, fixed
carbon and oxygen content of a range of solid
carbonaceous fuels.

To reduce the time for func-
tion evaluations (e.g. simulation
output) in the digital twin from
days to fractions of a second, we
used surrogate models that were
created from data extracted from
the suite of 420 simulations. To
determine this suite, we first con-
sidered the six operating knobs for
each two-mill (e.g. two-burner-
level) pair. Our computational re-
sources required that we limit the
degrees of freedom to four: total biomass flow rate (assume equal split between levels),
total secondary air flow rate (assume equal split between levels), tramp air split (percent of
secondary air fed through burners not firing biomass), and percent flue gas recycle (FGR)
back into the boiler. We eliminated the biomass and secondary air splits between levels.
Based on OPG data, we determined the operating range for each of these four parameters
and performed an optimized design (42 samples) in this four-dimensional space. Figure
7 shows the 42 points in the design. Each of the symbols represents a simulation that we
performed for a given pair of burner levels (e.g. levels 1&4 or levels 2&5). We performed
42 simulations for each of 10 level pairs for a total of 420 simulations. This design was
constructed to satisfy stoichiometric constraints and to provide space-filling coverage. The
number of points was increased iteratively in three stages: initially 20 points, a second set
of 20, and the final two (shown in blue). Since the simulations require significant compu-
tational resources, the results of the UQ analysis in each iteration influenced the selection
of points in subsequent iterations. For example, the the results of the first two iterations
influenced expanding the bounds for the third iteration.
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Table 1. Arches submodels used in Atikokan simulations

Physics Description of the model Reference
Fluid mechanics LES with a dynamic Smagorinsky model. [7, 9, 13]

Multi-phase flow

Direct quadrature method of moments with 4 en-
vironments. Transporting weights, particle ve-
locities, raw coal, char mass, particle enthalpy,
maximum particle temperature.

[7, 9, 14,
15]

Radiation Discrete ordinates with S8 (80 directions). [16]
Spectral properties of
CO2/H2O mixtures

Model with 4 bands. [17]

Gas-phase reactions

Equilibrium tabulated as a function of heat loss
and 2 mixture fractions. Transport equations for
mixture fraction define elemental composition,
enthalpy yields a heat loss.

[11, 18]

Wall heat transfer

1D steady state model. Three regime model en-
ables deposits to transition among dry, dry and
wet, or wet based on incident heat flux and tem-
perature.

Emissivity model
Computes emissivity of deposits based on spec-
tral properties of ash oxides. Includes sintering
effects.

[19]

Ash deposition model
Calculates probability of particle deposition
based on particle viscosity and maximum parti-
cle temperature.

[10]

Particle drag
Computes drag for each of 4 environment sizes
based on gas-particle velocity difference.

Devolatilization
Yield and rate model which includes a high tem-
perature yield modification.

[20]

Char oxidation

Pore and surface reactions, including O2 oxida-
tion, CO2 and H2O gasification. Particle shrinks
as surface reactions proceed. Devolatilization of
products inhibits heterogeneous reactions.

[21, 22]
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Fig. 7. Design points for the Atikokan simulations projected to various two-dimensional parameter
spaces. Design satisfies the constraints discussed in sec. 3.3 and optimization was performed for
space-filling and low-discrepancy. Existing 40 (red stars) points from the first two iterations are
distinguished from the additional 2 (blue squares) points for the third and final iteration.

Most of the 420 simulations were run on Quartz at Lawrence Livermore National Labo-
ratory (LLNL); approximately 20 simulations were run on HPC resources at the University
of Utah. Each simulation required 1164 processors for 5-7 days to reach steady state. In
addition, we had to run all cases for additional time due to model modifications and to
generate sufficient images for movie-making. Because of the sheer volume of simulations,
we developed tools to automate the job submission and data management processes. We
also requested and received a large allocation (Tier-3) on LLNL scratch space. At the end
of 2021, we had 455 TB of data and more than 41 million files.

The set of simulation output data required for the digital twin grew over time to include
60 variables grouped into three general categories:

• Variables measured at the plant: O2 outlet concentration, gas temperature at the top
of the boiler and at the outlet, net power, flame scanner signal strength (15 total, one
per burner)

• Variables needed for constraint and optimization of the digital twin based on feed-
back from OPG personnel: CO concentration at the top of the boiler and at the outlet),
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NOx outlet concentration, maximum surface temperatures of tube banks in boiler and
in convective pass

• Other variables of interest: wall heat flux profile (20 total), mass deposition on walls,
total flue gas flow rate.

We developed an instrument model for each type of data that we extracted. For example,
we computed the gas temperature at the top of the boiler by averaging the temperatures
along a line of sight through the computational domain. We computed the outlet species
concentrations by averaging across the outlet plane. We extracted the flame scanner data
as the radiative intensity arriving from the orthogonal direction at a location just above the
burner inlet. All data were averaged over the last 4 s of simulation time with the exception
of the levels 1&2 cases, which were averaged over a residence time (from 8-28 s depending
on the case).

We also generated a series of three-dimensional images for visualization purposes that
span a range of variables and visualization types: slice (horizontal and vertical), surface
(on all surfaces within the boiler), and volume (volume-rendered image of entire domain
or with two cutting planes through the domain). This ”Simulation Visualizer” is part of the
digital twin and is accessed at https://chpc.utah.edu/∼DigitalTwin. The user may query any
two-level set/case combination, select the visualization type, and then choose a variable to
visualize from the drop-down menu. The chosen variable can be viewed as a still or as an
animated gif.

3.2 V/UQ (ML)

The primary advantages of our digital twin is its ability 1) to predict key process behavior
with uncertainty even when the operating conditions are extrapolated beyond a region of
previous operations, and 2) to achieve continuous optimization of plant operating param-
eters to meet a specified objective function. The accomplishment of the first advantage
is described here in section 3.2. The second advantage is discussed in the following sec-
tion 3.3.

Our validation methodology uses Bayesian ML to quantify the uncertainty in our boiler
simulations. This validation process ties the physics-based HPC models (Arches/Uintah)
together with experimental observations. The experimental data is of two types: the tar-
geted validation experiments (TVE) which were used in the six years of the Center to
achieve heat flux predictivity within 5%, and the online process data used to inform the
boiler-specific, multi-physics model parameters. We used both of these experimental data
types for model-form validation. First, we performed validation offline, using the TVEs, for
each submodel identified by the top-down sensitivity/screening over the history of the Cen-
ter. Second, for the integrated multi-physics model, we perform validation continuously
and dynamically in the online digital twin. This overall dataflow was shown schematically
in Fig. 5 (‘online’ ML).

A unique feature of our digital twin is that it is continuously learning simultaneously
from experimental data as well as from the hierarchically validated, science-based, HPC
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Fig. 8. The Bayes Diagram for the Atikokan Digital Twin.

Arches/Uintah model. While interest in ML is experiencing a period of impressive growth,
its most common use is to incorporate large amounts of experimental data and provide
empirical prediction. Within the simulation-science community, the common approach has
been to use simulation data to train a surrogate model. Our UQ ML methodology combines
these two approaches using a Bayesian analysis to perform model-form validation and to
generate posterior predictives (QOIs with quantified uncertainty).

This Bayesian V/UQ, represented in the Bayes’ diagram in Fig. 8, produces both the
learned model parameters with their uncertainty and the posterior predictives of all QOIs
from all surrogate models. The Bayesian analysis of the twin and the resulting inference
can be performed with any set of data taken from the OPG Atikokan power plant. In the
power plant implementation of the digital twin, we would perform this analysis online. For
the capstone project, we performed it offline for one set of plant data then applied it to
any set of operating conditions to produce posterior predictives. This ”Offline Integration”
tool is accessed at https://chpc.utah.edu/∼DigitalTwin. The user may query the ML with a
series of sliders for any set of operating conditions within the operating space of the design
of experiments described in section 3.1.
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3.3 Optimization (AI)

One of the key lessons we learned from interactions with our industry partners is that un-
certainty itself has little value to decision makers unless the tools to make decisions, to
optimize in the presence of uncertainty, are coupled with the uncertainty analysis itself.
This is the objective of our digital twin: to perform calculations in real-time using the sur-
rogate model and the posterior from the Bayesian inverse problem, to make predictions
with uncertainty, and to incorporate formal decision theory to provide optimized decisions
which account for the uncertainty. As shown in Fig. 5, the LES calculations are performed
offline beforehand, the Bayesian inverse problem is solved online at a timescale commen-
surate with the changing dynamics of the plant (in this case on the order of hours), and the
optimization is performed online in near real-time (in this case on the order of minutes).
This section describes the decision theory used in the real-time optimization.

The optimization is performed with the use of a cost function. The cost function trans-
lates the physics QOI (power, NOx concentration, deposit thickness, etc.) to a value to
the decision maker (cost). This cost function is defined in collaboration with the decision
maker and includes the constraints on the decision. However, the cost function alone is
not the final function that is maximized. As E.T. Jaynes said: “An essential thing which is
still missing ...is the rule by which it converts its final probability assignment into a definite
course of action” [23]. This utility function incorporates the risk aversion propensity of the
decision maker. We used the iso-elastic utility function.

For the capstone digital twin, this process is summarized as defining a cost function for
a given risk aversion that will:

• generate a given power output yp (i.e. 64MW)

• maximize boiler tower efficiency

• find the input operating parameters (xlevel,x f ,xsa,xtramp,x f gr)

– xlevel: firing level pair,

– x f : total biomass fuel feed rate,

– xsa: total secondary air feed rate,

– xtramp: total tramp air split,

– x f gr: flue gas recirculation damper position,

• subject to the output constraints:

– power produced within 5MW of yp,

– 6 flame scanners readings >70% for all burners firing biomass,

– mole fraction O2 at the outlet >1.5%,

– mole fraction CO at the outlet <200ppm,
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– all tube metal temps < high-high alarm requirements of OPG,

– no natural gas.

Fig. 9. Atikokan Digital Twin wood mass flow rate operating
conditions for Dec 3, 2019 at 17:40.

This AI methodology is
demonstrated for our cap-
stone project in the ”Online
Optimization” tool, which is
also accessed at https://chpc.
utah.edu/∼DigitalTwin. This
boiler is required to change
load on a five minute dis-
patch. The data show all
of the two-level firing modes
dispatched for the Atikokan
boiler in the month of De-
cember 2019. The user may
query the AI with a series of
sliders for any time in that month. The results show the actual conditions and the optimum
operating conditions recommended by the digital twin for each five minute dispatch.

Fig. 10. Atikokan Digital Twin gross power generated for Dec
3, 2019 at 17:40.

For example, on De-
cember 3, 2019 at 17:40,
the Atikokan boiler was dis-
patched to produce 100MW.
Figure 9 shows the actual
biomass wood firing rate at
the power plant (natural gas
was also fired), the equiva-
lent firing rate of wood plus
natural gas, and the optimum
wood firing rates for each
of the ten possible operating
level pairs as identified by the
digital twin. The power plant

chose to fire biomass on levels 2&3. The color represents the utility or profit in operating
at a given set of conditions with the overall optimum achieved by firing on levels 2&5. The
optimum wood firing rate differs depending on the firing levels chosen.

Given the wood firing rates shown in Fig. 9, the power generated is shown in Fig. 10.
The violin plot shows the uncertainty distribution in this QOI based on the uncertainties
learned from the Bayesian inverse problem. The required dispatched 100MW is achieved
with all optimum level pair firing rates. However, the actual firing rate (shown with the
colored hatched symbol) does not achieve the desired power within the uncertainty of all
measurements and models.

13

https://chpc.utah.edu/~DigitalTwin
https://chpc.utah.edu/~DigitalTwin


Fig. 11. Atikokan Digital Twin boiler tower efficiency for Dec
3, 2019 at 17:40.

The Atikokan boiler tower
efficiency is shown in Fig. 11
for the optimum operating
conditions for each level pair
and for the current operating
conditions. This is the ob-
jective function for the opti-
mization: to maximize this
efficiency subject to the con-
straints. While the over-
all maximum efficiency is
achieved by firing on levels
4&5, under no operating con-
ditions can all the constraints be met as shown by the profit for this level pair. Specifically,
the six flame scanners are not predicted to read above 70% under any operating conditions.
The overall optimum that meets all constraints within what is known about the uncertainty
can be achieved by firing on any of levels 1&2, 2&5, 3&4 or 3&5.

One of the key achievements of the Center was to not only quantify the overall un-
certainty in each QOI, but to produce a methodology that identified the source of these
uncertainties. For example, consider the flue gas temperature at the outlet of the Atikokan
boiler shown in Fig. 12 for the optimum operating conditions for each level pair and for
the current operating conditions. For this QOI, there are continuous measurements made at
the plant. Using this additional data and our errors-in-variables approach in the Bayesian
analysis, we can identify sources of uncertainty due to simulation scenario parameters (dis-
cussed further in section ??).

Fig. 12. Atikokan Digital Twin flue gas outlet temperature for
Dec 3, 2019 at 17:40.

The distribution on the
left side of each violin plot
in Fig. 12 shows the temper-
ature uncertainty at the out-
let produced from all sources,
while the distribution on the
right side of each violin
plot shows uncertainty in the
outlet temperature produced
only from scenario parame-
ters. From this analysis we
learn that the accuracy of the
prediction of the outlet tem-
perature is controlled more by

the inaccuracies in the measured scenario parameters than anything else in the simulation.
Thus, improving model form will not further improve the accuracy of the predicted outlet
temperature.
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Figure 13 further illustrates the information gained by the errors-in-variables analysis.
This figure shows the predictions of and uncertainties in the flue gas temperature inside the
boiler at a flow restriction above all burners called the “nose;” at this location, the flue gas
enters the section containing all the convective tubes.

Fig. 13. Atikokan Digital Twin flue gas optical “nose”
temperature for Dec 3, 2019 at 17:40.

Here the flue gas is hot
and temperature measurements
are hard to acquire. The plant
uses an optical instrument to
continuously measure the av-
erage temperature. The dis-
tributions on the left side of
the violin plots in Fig. 13
show the measurement uncer-
tainty in the optical instru-
ment, whereas the distribu-
tions on the right of each vi-
olin plot show the uncertainty
arising from uncertain sce-
nario parameters. Thus, the measurement error in the observed “nose” temperature domi-
nates the uncertainty. The uncertainty in feed conditions that dominated the outlet temper-
ature uncertainty has little effect on the “nose” temperature uncertainty.

The heat flux distribution for the Atikokan Digital Twin, the CCMSC ultimate QOI, is
seen in Fig. 3 .

4 Key Accomplishments

Over its seven-year lifetime, the achievements of the Center have been accomplished by
78 individuals grouped into three research teams: the computer science, the computational
physics and V/UQ. Significant achievements from these three groups include:

• Improvement in our UQ process for extrapolating uncertainty from the pilot-scale
data to the full-scale prediction by identifying scenario parameter uncertainty and by
propagating both model-parameter and model-form uncertainty into the prediction.

• Reduction of the model form bias in our overarching GE Power simulation from 30%
to 5% by identifying the source of the largest bias, the ash deposition model, and then
reducing that bias by improving the deposition model. These model improvements
included models for particle sintering in the deposit and for the effect of sintering on
surface emissivity.

• Demonstration of an online digital twin for OPG’s Atikokan biomass boiler.

• Running 400 simulations of the Atikokan boiler on the Quartz machine at LLNL
using the Arches/Uintah LES code. There were 10 combinations of burners and a
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42-point design of experiments for each combination to cover the four-dimensional
space of the four input parameters that we varied. Each simulation required 1164
processors for 5-7 days to reach steady state. We ran the remaining 20 simulations
on local HPC resources.

• Demonstration that the Asynchronous Many Task (AMT) runtime system (Uintah)
makes it possible to run complex, multi-phase, multi-physics applications such as the
Atikokan boiler using Arches/Uintah at the largest processor counts available to us.

• Demonstration of strong and weak scaling of the most computationally challenging
task, thermal radiation via ray tracing, and of performance portability by using the
Kokkos system via a machine independent loop layer in Uintah.

• Development of the PIDX data I/O library from a proof of concept prototype to a
fully integrated and supported file format within Uintah.

• Incorporation of in situ visualization in to the Uintah framework using VisIt’s in situ
interface, libsim, by expanding Uintah’s runtime infrastructure in the form of a more
centralized collection of performance data, simulation parameters, debugging mech-
anisms, and runtime controls and by presenting this collection to users via a simula-
tion dashboard. This dashboard allows users to do interactive parameter exploration,
visual debugging, and computational steering.

• Creation of a coupled simulation-machine layout, making it possible to identify com-
putational bottlenecks that would otherwise be difficult to diagnose.

An elaboration of key accomplishments by team follows.

4.1 Computer Science

4.1.1 Uintah Computational
Framework

Our key accomplishments are described in the publications
listed at the end of this report and summarized here.

We determined how to run efficiently with Uintah as-is on Intel’s first generation Xeon
Phi, Knights Corner, using Uintah’s most complex standalone problem, a simulation of
radiative heat transfer using reverse Monte-Carlo ray tracing (RMCRT). Through detailed
studies, we also demonstrated how to manage thread placement and identified node-level,
many-core domain decomposition challenges [24].

We performed the first study to support task scheduling and execution on GPUs within
an AMT framework. We demonstrated how the Uintah AMT runtime can be adapted, mak-
ing it possible for complex multi-physics applications with radiation to scale on current
petascale and emerging exascale architectures. For Uintah, which uses a directed acyclic
graph to represent the computation and associated data dependencies, we achieved these
aims through: 1) using an AMT runtime; 2) adapting and leveraging Uintah’s adaptive
mesh refinement support to dramatically reduce computation, communication volume, and
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nodal memory footprint for radiation calculations; and 3) automating the all-to-all commu-
nication at the runtime level through a task graph dependency analysis phase designed to
efficiently manage data dependencies inherent in globally coupled problems. We modified
the Uintah infrastructure to support these algorithms at large scale and achieved excellent
weak and strong scaling for RMCRT up to 262,144 CPU cores and 16,384 GPUs, through
a unique and novel application of Uintah’s AMR support, specifically the aggressive coars-
ening of the global radiation mesh as problem size increases. We achieved efficient, auto-
mated halo management within an AMT runtime for globally coupled problems. Lastly,
we demonstrated these ideas on an industrial-size production boiler problem, running on
the largest petascale architectures available.

We implemented semi-coarsening algorithms for a ”black box” Kokkos-based multigrid
solver designed for problems discretized on structured meshes [25].

We ran with Kokkos::OpenMP at the node-level using a simple standalone problem. We
performed detailed studies identifying what levels of performance Kokkos might offer Uin-
tah and demonstrating node-level performance improvements up to 2.4x when refactoring
for portability.

Next, we ran with Kokkos::OpenMP at both the node-level and at scale using RMCRT.
We ported multiple RMCRT algorithms to Kokkos, implementing a MPI+Kokkos::OpenMP
task scheduler to allow for parallel execution of individual tasks to address many-core do-
main decomposition challenges. We demonstrated good strong scaling of the resulting task
scheduler to 65,536 threads across 256 Knights Landing processors on TACC’s Stampede
2 and node-level performance improvements up to 3.0x when refactoring for portability.

We then ran with Kokkos:: OpenMP and Kokkos::CUDA at the loop-level using the
most complex Arches/Uintah loop, which models the char oxidation of coal particles, and
at scale using RMCRT. To do this, we ported the Arches/Uintah infrastructure and its most
complex loop to Kokkos. We demonstrated node-level performance improvements up to
2.7x when refactoring for portability and up to 2.6x when more efficiently using a node via
newly enabled parallel execution of individual tasks. We demonstrated good strong scal-
ing of the MPI+Kokkos::OpenMP task scheduler to 442,368 threads across 1,728 Knights
Landing processors on TACC’s Stampede 2. Most importantly, we shared an extensive col-
lection of good practices and lessons learned through our Kokkos porting efforts with the
HPC community.

The evolution of the UCF required code modernization efforts with updates to the mem-
ory subsystem, MPI communication layers, and GPU data warehouse. Our resulting efforts
yielded a reduction of code by moving to the C++11 standard library. In addition, we have
distributed and managed the UCF through a Github branch, maintaining a portable version
of Uintah that consists of tens of thousands of lines of changes across hundreds of files
to enable use of OpenMP and CUDA via Kokkos in Uintah’s infrastructure, standalone
example problems, and Arches simulation component.
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Fig. 14. Compression of 900 GB DNS dataset from turbulent mixing simulation (top-left) in a
streamable format.

4.1.2 Data Management Over the history of the center, we have been working on scal-
able I/O strategies. One of our major contributions has been

the development of a new data model that subsumes a number of traditional approaches
by providing hierarchical data layouts that also include precision and resolution. Figure 14
shows one of our most recent results - a very high quality approximation is retrieved using
only 1/1,000 of the 1 TB dataset. This new data model extends the current IDX used in
the PIDX and OpenViSUS libraries and allows many progressive decodings that modulate
incremental improvements in precision and/or resolution. The diagram at the bottom-left
of Fig. 14 shows the 2D precision-resolution space where a progressive decoding can be
traced as a curve (monotonic both in X and Y) starting from the origin (empty data set) and
ending in the top-right corner (full resolution/precision data). The test dataset in Fig. 14 has
a spatial resolution of 10240x7680x1536 and a numerical precision of float64. A coarse
approximation (bottom-right) of resolution 640x480x96 and low precision is obtained by
reading only 7.4 MB from the top of the hierarchy in the data layout. A medium approxi-
mation (middle-right) with improved resolution (1280x960x192) and precision is obtained
by continuing to read up to 112 MB. A high-quality approximation (top-right) of further
improved resolution (2560x1920x384) and precision is obtained with 956 MB of data de-
coded.

Our adaptive approach is able to improve write and read performance for imbalanced
I/O workloads. Figures 15 and 16 provide empirical evidence of the effectiveness of our
adaptive approach using a number of performance metrics.

With respect to interactive rendering, we have developed new strategies for low mem-
ory rendering of large scale particle data through the P-k-d tree; developed novel AMR data
reconstruction strategies for volume and isosurface rendering which are now available to
users through the OSPRay software framework; and explored how new GPU hardware can
be leveraged to accelerate rendering of unstructured volumes. In the space of distributed
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Fig. 15. Adaptive (solid) vs. fixed (dashed) I/O write performance on the Boiler Injection time
series on 1536 ranks. Our adaptive approach is able to improve write and read performance for
imbalanced I/O workloads.

rendering, we have done work in support of the VisIt system, which can now leverage
OSPRay for scalable, high-quality distributed rendering and PIDX for fast I/O. We have
also made advancements in fundamental distributed rendering and compositing algorithms,
achieving scaling and absolute performance over IceT. These algorithms are easily accessi-
ble to users through OSPRay’s MPI module, and we have demonstrated their effective use
for in situ applications.

We have explored lightweight strategies for decoupled, asynchronous, in situ visualiza-
tion and analysis. In contrast to larger libraries (e.g., Catalyst, LibSim), we have focused
on small libraries which are easy to integrate and have minimal impact on the simulation.
The simulation impact is further reduced by enabling asynchronous, in transit visualization,
where the client can be run on a separate set of nodes to avoid slowing down the simulation
process. With our approach, we have demonstrated integrations in Uintah, LAMMPS and
DNS, and have evaluated impact on the simulation and client performance for rendering
tasks using OSPRay. Although our focus has been on lightweight libraries and integra-
tions, they can also be used as the base data transport layer for more full-featured systems
such as SENSEI.

4.1.3 Radiation Integration One of the greatest challenges for CCMSC has been the
cost of solving for the radiative heat flux divergence for

thermal radiation transport. Initially, over one third of the computational cost of a simu-
lation was consumed in the radiation solver alone. Our Center pursued both a sweeping
algorithm for discrete ordinates and an RMCRT method to solve this problem. Sweeping
discrete ordinates (SDO) is 5 to 50 times faster, depending on problem scale and optical
properties, than using the linear solver. With the adoption of Kokkos and an inner-loop
rewrite, we saw a 30x speed-up with RMCRT via an integrated effort from the compu-
tational physics and computer science groups. We accomplished an 8x speed-up via uti-
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(a) Adaptive IO (b) Fixed IO

Fig. 16. Breakdowns of I/O on the Boiler Injection, 8MB target size. The improved load balance
achieved by our approach reduces the time spent in the major components of the pipeline,
improving write performance.

lization of the Kokkos scheduler and the reduction of memory reads and a 4x speed-up
by reformulating the ray-tracing algorithm. Even with this dramatic improvement of effi-
ciency, SDO still appears to out-perform RMCRT for heavy patch loading. However, for
small patches, RMCRT may outperform discrete-ordinates radiation due to its impressive
strong scaling ability. In the end, SDO was the most efficient method by orders of magni-
tude given the same accuracy constraints. This sweeping method resolved the issue to such
a level that the radiation costs are now low enough that the pressure projection and other
physics solvers dominate the cost of an Arches/Uintah computation.

With the development of SDO, we reduced radiation compute costs enough to explore
spectral radiative effects. We added solver support for spectral radiation transport into
Arches/Uintah. The radiation solver works in tandem with a new radiative properties model
for five grey gases in Arches. This model works across all modes of operation within the
code, with and without particles as well as with and without scattering physics. We have
ported SDO to a Kokkos implementation, promising even more computational efficiency
when Kokkos support is available for the entire framework.

The RMCRT approach for radiation modeling originally comes from the heat transfer
and oncology communities, but it had never been modified or adapted for use at large scale.
Our extensive work in implementing RMCRT is summarized here.

The RMCRT model requires all-to-all communication of the radiative properties, which
is the single biggest drawback of the algorithm. We reduced the cost of the RMCRT all-
to-all communication phase and the nodal memory footprint by using an adaptive mesh
refinement (AMR) approach to achieve scaling. The AMR fine mesh is used only locally,
and a coarse mesh is used elsewhere for the RMCRT ray-marching algorithm. Although
the AMR methods used in this work are not new, the application of these methods to radia-
tive heat transfer algorithms and their scalability is novel. We also investigated the impact
of varying the number of rays per cell and the distance a ray would travel before moving
to a coarser grid on a different level (halo distance). We implemented four additional tech-
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niques for reducing the communications costs: 1) casting the communicated variables as
floats instead of doubles, 2) utilizing Uintah’s AMR infrastructure to communicate a coarse
representation of the radiative properties, 3) temporal scheduling by constructing multiple
taskgraphs with each taskgraph containing a different set of tasks and communication de-
pendencies, and 4) spatial scheduling of the tasks that allows the developer to execute tasks
on a subset of the domain. These temporal and spatial scheduling contributions have made
Uintah the only AMT runtime offering auto MPI message generation and scalable task
graphs when considering problems with global data dependencies.

We addressed complexity involved with Uintah task graphs at scale for RMCRT with
task graph compilation and automated MPI message generation with global halos. We also
introduced novel nonblocking, thread-scalable data structures for managing asynchronous
MPI communication requests, replacing previously problematic Mutex-protected vectors
of MPI communication records.

We developed RMCRT for the CPU and GPU, testing the framework and algorithm
with simplistic scenarios. However, once we started running realistic production calcu-
lations, we encountered memory leaks/fragmentation issues in addition to excessive and
expensive communication on non-radiation calculation timesteps, so we focused on clean-
ing these up.

We performed a strong scalability study on ALCF:Titan using the MPI/threaded sched-
uler and the AMR capabilities of the RMCRT algorithm for solving the radiative transfer
equation. Our results showed good strong scaling characteristics up to 262K cores on three
problem sizes (1283, 2563 and 5123 on highest resolved level) on a grid consisting of two
levels with a refinement ratio of two. Using the INCITE award on Titan (71M SUs), we
performed a suite of verification tests for both the CPU and GPU versions of RMCRT on
8K, 16K, 32K, and 128K cores. We compared the QOIs (divergence of heat flux and wall
heat flux) against simulations that used the discrete ordinates radiation model; the quali-
tative agreement of the QOIs was very good. Overall, the results from the INCITE runs
demonstrated that RMCRT is a viable and competitive radiation model.

We also extracted the RMCRT virtual radiometer capability from the core RMCRT
code and re-implemented it for use directly in the Arches component in conjunction with
the discrete ordinates radiation solver. The virtual radiometer mimics a physical radiome-
ter instrument. The computational cost of the radiometer code is a small fraction of the
overall cost. We generalized the code so any number of radiometers can be specified. Each
radiometer can be located anywhere in the domain and has unique properties (orientation,
solid angle and number of rays).

4.2 Computational Physics

4.2.1 LES Integration The creation of the LES Integration Group (LESI) is an example
of a key lesson learned in the execution of our multi-disciplinary

project. Individuals at the interface of the three major disciplines of the Center (computer
science, computational physics, V/UQ) were essential to the integration needed for success-
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ful accomplishment of the Center’s multi-disciplinary goals. LESI orchestrated the move
to exascale coding paradigms within the application code, Arches/Uintah, while ensuring
software quality through regression testing and both code and solution verification. LESI
also served to bridge the computer science and computational physics within the Center.
Physics model development occurred directly within LESI or in tight collaboration with
model developers. Finally, LESI helped to ensure successful completion of large numbers
of full-scale simulations on internal and external computational resources for the V/UQ
effort.

Adopting an exascale approach within the Center was a highly collaborative effort be-
tween the LESI and computer science teams. LESI adopted a few principles in moving
exascale code constructs to the Arches/Uintah physics code: 1) minimize disruption to the
production UQ effort, 2) introduce more flexible code design within Arches, 3) provide ca-
pability for new physics to adopt new code constructs for immediate use in production runs
on CPU-only and future heterogeneous architectures, and 4) provide a generic interface for
the two approaches originally under consideration (Kokkos and DSL). This effort led to
the development of an intermediate layer which served to buffer the physics development
from the evolving exascale effort in the framework. The software layer was tailor-made
for the Arches component and leveraged knowledge of the LES algorithm to simplify the
layer. An unintended but positive outcome was that the software layer served as an in-
termediate framework for the computer science and LESI teams to communicate and to
transfer design ideas because of the centralization of touch-points between the physics
component and the framework. Another benefit was that the layer reduced lines of code
within the physics models by encapsulating UCF boilerplate required for framework task
scheduling and variable access. The layer also provides flexibility in how Arches physics
tasks are packaged and scheduled through the UCF. This flexibility, in theory, may allow
us to combine lightweight physics tasks that do not require ghost-cell exchange, potentially
amortizing data movement costs in the cases of GPU portability.

After some exploration of the DSL and Sandia’s Kokkos project, we adopted Kokkos as
the performance portability approach. We have overcome several hurdles but several more
still exist to demonstrate full portability for the target boiler problem. These challenges
reside within the framework and physics efforts. The benefit of the approach, however, has
been demonstrated on single-physics problems and some combined-physics problems.

At the inception of CCMSC, the Arches/Uintah physics component maintained one of
the first deployments of solid fuel (coal) combustion in an LES paradigm. The extent of the
physical modeling for the Center’s primary goal was insufficient, however, for the required
UQ bounds on key QOIs. Hence, over the lifetime of the Center, our team made several
key physics contributions to coal modeling, from the fundamental particle scale through
to the integrated, large-scale simulation. The following list highlights some of the key
developments:

• Improvement to radiation modeling by exploring two radiation models, RMCRT and
radiation sweeps
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• Improvements to coal particle reaction modeling, devolatilization and char oxidation
oxidation, from the detailed single-particle perspective to the integrated LES scale

• Improvements to the direct quadrature method of moments (DQMOM) implementa-
tion

• Development of a novel solid fuel NOx model

• Development of a conjugate heat transfer model, including ash particle deposition

• Soot modeling

• Inclusion of particle size effects such as swelling and shrinking

• Expansion of the suite of turbulence models options within Arches.

These and other improvements to the multi-physics capability in Arches/Uintah have
led to the improved predictability of Arches/Uintah for solid-fuel systems at a massive
scale. However, with the addition of more tightly coupled physics, we needed to engineer
a stable and robust algorithm in the LES context. The flow field within a solid-fuel-fired
boiler is a highly turbulent system of multi-phase combustion reactions and intense ra-
diative heat transfer. While many QOIs are time-averaged, non-linear, short-time-scale
information impacts fundamental outcomes of the boiler operation. By using the LES code
as the computational fluid-dynamics framework developed by CCMSC, we have been able
to compute as many of these temporal and spatial scales as is both possible on an HPC
machine and necessary for the prediction as measured by formal V/UQ.

The turbulence in the solid-fuel boiler is characterized by the turbulent length scales
(wavenumber), k (1/length scale), and the turbulent kinetic energy spectra, EU(k). Re-
solving all turbulent scales in the boiler is intractable, even at exascale, given the size and
complication of the target application. In LES modeling, a low-pass filter is applied to the
governing equations, resulting in a portion of the energy spectrum that is resolved and a
portion that requires modeling approximations to account for the eventual dissipation of
energy at the smallest scales. In general, we have been able to capture a significant portion
of the energy-containing eddies directly (>80%). The frequency location where the hand-
off occurs between grid-resolved and subgrid-modeled is the cut-off frequency. With the
significant HPC resources available for this project, we added more resolution to a fixed
problem, decreasing both the filter width and the dependence on the subgrid model. We
created an approach which leverages resolved LES information for large length- or long
time-scale phenomena. Our technique, which we call “rate clipping,” involves a relaxation
to equilibrium conditions at the unresolved scales below the cut-off frequency; that is, we
clip the rate to equilibrium for time scales not resolved on the mesh. Each modeled phys-
ical phenomena has a unique relaxation. We exploited this technique in the Center for all
multi-physics, subgrid modeling occurring in the solid-fuel boiler simulations. With this
approach, we can use Arches/Uintah to address problems of interest at time scales ranging
from 1e-6 to 1e4 seconds. Our approach is tightly integrated into the numerical algorithm
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and has proven to be robust and reliable. Indeed, the final algorithm resolved many stabil-
ity and efficiency issues seen in Year 1 of the Center. This key accomplishment allows for
computational scaling as the HPC resources scale, greatly aiding in the accuracy of LES
models. LESI led efforts to assess simulation quality and to test assumptions regarding the
equilibrium assumptions.

For example, Arches/Uintah makes use of. DQMOM [14, 15, 26]. DQMOM solves
the moment equations on an Eulerian mesh and avoids the potential number-of-particles-
squared scaling of computational work that can be required for particle-particle interac-
tions in a Lagrangian particle tracking method. DQMOM calculates the particle position,
diameter, and composition, which in turn is used by the radiation modeling effort. The
particle-dynamics submodels, including drag, devolatilization, char oxidation, and mois-
ture evaporation, all appear as source terms in the DQMOM equations. Pulverized-fuel
combustion in the boiler naturally has a wide range of length and time scales. LES mod-
eling of this system at the scales of interest allows direct representation of several of these
time scales - or at least resolution of a significant portion of these scales - which in turn
allows the reduction of modeling dependency. This concept has been applied to the particle
reactions (devolatilization, char oxidation, NOx and CO formation) over the lifetime of this
project.

4.2.2 Particle Physics The particle size distribution of pulverized fuel in our overarching
problem exhibits a spectrum of physical behavior. The smallest

particles behave as tracers for all of the resolved scales. Therefore, the drag of particles
in this unresolved regime should be modeled in the subgrid-scale flux. In the extreme of
zero Stokes number, the subgrid-scale flux is often modeled using gradient diffusion. In-
creasingly larger particles are in a regime such that they are ballistic with regard to all the
unresolved scales – their trajectories are essentially unaffected by the presence or absence
of the unresolved scales. For this reason, particles in the resolved regime should be mod-
eled using the drag directly, as done in direct numerical simulations. As the scale of the
computational effort increases, the Nyquist cut-off moves to smaller lengths, resulting in
particles of smaller size moving from one regime to another. This regime change, when
described by an appropriate change in modeling approach, results in more accurate and
higher fidelity computations. The advantage of an HPC LES simulation is that with in-
creasing computational power, more of the particle drag effects are resolved directly rather
than being modeled.

This distribution of Stokes numbers as a function of particle size and eddy size results
in a segregation of particles in the pulverized fuel boiler. Extreme computing with LES can
capture this effect. Figure 17 shows volume-rendered images of the particle number density
for two different particle sizes at the same timestep in the corner-fired GE Power boiler. The
larger particles (blue color) concentrate along edges of eddies of much different size than
the smaller particles, which, while still concentrating along edges of coherent structures,
are much more uniformly dispersed than the larger particles. For the computations of the
capstone project, we were able to resolve all of the particle drag effects for all relevant
particles (all particles > 10 microns in diameter) in the system.
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(a) 90 micron particles (b) 30 micron particles

Fig. 17. Volume-rendered images of the particle number density field for two different particle
sizes from the full particle size distribution in the GE Power BSF. These images show the particle
size segregation in the turbulent field of the boiler. For this HPC LES simulation, we are resolving
all of the particle drag effects for all relevant particles (> 10 microns in diameter) in the system.

4.2.3 Multi-Phase Com-
bustion Chemistry Mod-
els

We have developed an open-source, solid-fuel database in the
PrIMe cyberinfrastructure, archiving 1100 data records for de-
volatilization, char oxidation, and nitrogen release. Experi-
ments span across 269 types of solid fuels including fossil,

chars, biomass and blends. Using a cloud-based infrastructure, which supports crowd-
sourcing, Sandia National Laboratory (Livermore) contributed additional data records, in-
cluding coal oxidation experiments from their Combustion Research Facility.

We proposed several forms of the char oxidation model to better agree with validation
data. We performed the V/UQ for these models using the tools and methods of Bound-to-
Bound Data Collaboration (B2BDC). We encountered two major difficulties when applying
our standard validation strategies: 1) challenges in fitting surrogate models to the computer
code, and 2) significant ambiguity in the reported data and experimental setup. To over-
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come the first challenge, we developed a new strategy for constructing piecewise quadratic
surrogate models with a more intelligent subdivision rule based on B2BDC’s consistency
measure. This new strategy demonstrated a significant reduction in the number of domain
partitions required to accurately represent the char oxidation model. To address the second
challenge, we conducted separate analyses based on two different assumptions about the
data: 1) the particle diameter was initialized at the mean sieved bin size and 2) there was
an ensemble of particle diameters based on a distribution (fit from the data). Our piecewise
strategy demonstrated that the first analysis led to inconsistency; i.e., disagreement with the
data. In contrast, the second analysis led to a consistent dataset with quantified uncertain-
ties. We concluded that the model was tentatively valid as the second analysis made better
use of the available data. Critically, however, this result calls for new experiments focusing
on the characterization of the initial particle sizes.

Total volatiles yield is a principal QOI in large-scale coal combustion simulations.
Complex and accurate pyrolysis models are too computationally expensive, so we devel-
oped and tested simpler model forms that would accurately describe total volatiles and tar
yields as a function of residence time, temperature, and heating rate. We chose a two-step
global model with series-type distributed activation energy based on simplicity and accu-
racy. Our next step was to provide simple ways to better describe the chemistry of the
volatiles versus the char. The elemental composition of volatiles is higher in hydrogen and
oxygen than the resulting char. We gathered elemental composition data for coal char and
the corresponding tar from the literature and correlated it as a function of coal type, heating
rate, and final temperature. Use of these elemental correlations in simulations can improve
the predicted concentrations of O2 and CO2 in a boiler. We are working to correlate the
heating value of the tar and char produced from pyrolysis in order to improve the energy
distribution during coal pyrolysis and char conversion in large-scale simulations.

With respect to char conversion, our original goal was to investigate char conversion
in oxy-fired environments. We curve-fit the best available data with a comprehensive char
conversion model that included intrinsic reaction, pore diffusion, annealing, and changes
in particle diameter and density. Our analysis showed that the particle temperature data
were biased, with not enough sensitivity to particles that had burned out. We performed a
sensitivity analysis to determine which processes were most important to the rate of char
conversion. Other than the intrinsic kinetic rates, we found thermal annealing, which de-
creases the reaction rate as a function of residence time and temperature, to be the most
important factor. We developed an improved, generalized thermal annealing model based
on a much larger dataset than was available in previous modeling efforts. Our improved
model is one way to train simpler global models of char conversion for use in large-scale
simulations.

In coal and biomass systems, soot forms mainly from tar species. We developed a
generalized soot model for both coal and biomass based on a previously-developed empir-
ical soot model. The model depends on the accurate prediction of tar yield and molecular
weight distribution during pyrolysis. We found gasification of soot to be important in oxy-
fuel environments due to the high concentration of CO2. We used the generalized model
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to develop a reduced-order model of soot formation and conversion that is more compati-
ble with large-scale simulations. We developed an open-source soot library that treats soot
from gas, coal, and biomass combustion, including a number of chemical mechanisms and
soot size distribution models.

4.2.4 Deposition Models Wall [27] showed that the total, or hemispherical, emissivity
decreases with the temperature up to the point where particle

agglomeration influences the scattering behavior of the formed structure. After that point,
the emissivity increases with higher temperatures. We proposed a sintering model to rep-
resent particle agglomeration that could be coupled with the emissivity model and provide
a better understanding of the effects of thermal radiation inside the boiler [28]. The pro-
posed model is based on the works of Pokluda [29], which works for viscous sintering; we
added the capability to work with systems of many particles. We applied this model to the
sintering of the synthetic slags prepared by Boow and Goard [30]. Their work outlines the
most relevant behavior of slag emissivity in presence of particle sintering.

The viscosity of slags is a critical quantity that influences the sintering behavior of par-
ticles and ultimately impacts the thermal radiation in the boiler. In the model we developed,
we estimate the slag’s viscosity using complex equilibrium models [31] for the solid-liquid
equilibria of the oxides that are contained in various coals/biomass used in the CCMSC hi-
erarchy. We then modify the Urbain viscosity model [32] by estimating model parameters
from the computed equilibria for the oxides. These parameters, part of several UQ cycles
over the six years of the Center, have an important role in the description of the wall heat
transfer.

We created an ash emissivity model based on the works of Goodwin [33] and Ebert [34]
that relies on the computation of the spectral emissivity of deposited ash which, in turn,
requires knowledge of the optical properties of the deposits. The algorithm uses different
correlations at specific wavelengths to compute the complex index of refraction based on
a large dataset of measurements. The index of refraction is used to compute absorption,
scattering and extinction properties for the particles via Mie Theory calculations [35] for
single scatters.

We also created a thermal conductivity model to account for the morphology of the
structures left by the ashes when they deposit on the walls. These structures form pores
which affect the rate and efficiency of the heat transfer through the wall. Our model is
based on the work of Hadley[36] and takes porosity of the structure as a model parameter.

4.3 Hierarchical Validation and Uncertainty Quantification

4.3.1 The CCMSC V/UQ
Methodology

The philosophy behind our Center’s V/UQ methodology is
founded in the context of epistemological skepticism and the
scientific method at large. That is to say that all human at-

tempts to understand truth are abstractions which can only approximate reality. These
abstractions (models & theory) can only be informed through empiricism (experiments &
observation) as illustrated in Fig. 18), and by their nature they cannot be proven to be
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Fig. 18. Graphical diagram of the critical elements of the scientific method as incorporated in our
Center’s V/UQ methodology.

exactly correct. Our V/UQ approach provides tools to learn about reality in spite of our
inherent limitations. First, we quantitatively compare an experimentally observed value,
ye, to a theoretically modeled value, ym, which are both attempting to represent the same
reality, yR.

yR = ye +be (1)
yR = ym +bm (2)

⇒ ye− ym = bm−be = b. (3)

Here, the be and bm represent the bias in the experiment and model respectively. While
making a single observation cannot reveal the associated experimental bias, comparison
with theory can reveal the combined bias, b ≡ bm− be. Repeated measurements only re-
veal that there is uncertainty in the bias for each individual observation. Furthermore, this
comparison is complicated when calculation of the model requires knowledge of uncertain
model parameters, xm.

In our methodology, uncertainty is represented using probability theory — while we
may not know the Platonic reality, the potential that each value might be true is identified
by a probability distribution function. Wider distributions represent more uncertainty and
narrower distributions represent less. In the context of probability theory, Bayes’ law pro-
vides a rigorous mechanism for learning from experimental observation (see Fig. 19). In
addition to the foundations of univariate and multivariate probability theory, we incorporate
stochastic processes, Gaussian-process inference, machine learning (comparing artificial-
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neural networks to Gaussian-process regression), surrogate modeling, artificial intelligence
(through decision theory and maximization of expected utility) and Markov-chain Monte
Carlo sampling.

Often1 the physical model ym is a function of both uncertain scenario (z) and model
(xm) parameters; that is, ym = f (z;xm). The model parameters distinguish themselves from
the scenario parameters by not being directly manipulated in the experiment. Additional
uncertainty in ym requires modeling latent physical phenomena which may occur uniquely
for each measurement, and these effects are grouped into the parameter σy. The model
and measurement parameters are collectively called x; that is, x = (xm,σy). Common ap-
plication of Bayes’ law assumes that there are no errors in the scenario parameters, z. We
address these types of errors, termed ‘errors-in-variables,’ at the end of this section.

p(x |y) = p(x) × p(y |x)
p(y)

observations

hy
po

th
et

ic
al

 
re

al
ity

posterior,  
p(x |y)

likelihood, 
p(y |x)

implied joint distribution 
p(x) × p(y |x) = p(x, y)

prior, 
p(x)

Fig. 19. A depiction of the information flow from prior to posterior
knowledge through the likelihood with Bayes’ law: the prior (what is
known about the uncertain parameter x before learning from the
observations), likelihood (what might be observed, y, in the
hypothetical reality that a given x is true, e.g. 0.25, 1.25, 2.25),
observed data (the concrete experimental results, y) and the resulting
posterior (what is known about the uncertain parameter x after
learning from the observations).

We2 can see the value
of this approach (physi-
cal modeling of the pro-
cess of interest with Bay-
esian learning using cali-
bration data) by contrast-
ing it with two common
engineering approaches:
(1) using physical mod-
eling of the process with
standard error propaga-
tion to determine mea-
surement uncertainty, and
(2) using a purely em-
pirical, least-squares re-
gression to learn from
the calibration data. First,
the standard engineer-
ing practice is to es-
timate QOI uncertain-
ties using error propaga-
tion through the forward
problem alone. Con-
sider that as a model
is made more sophisti-
cated, more parameters
are introduced, and each
carries its own uncer-
tainty. The result is that, for the forward problem, the uncertainty in the QOI increases

1The information in this paragraph has been adapted from our paper [37]
2ibid.
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as the uncertainty in the model form decreases. Conversely, when the inverse problem is
performed using Bayes’ theorem, the uncertainty in the model form and thus in the QOI
decreases as the model form improves – as it should. The better the instrument model,
the less the uncertainty in the QOI prediction. We emphasize that the simple propagation
of error does not allow one to learn from the calibration experiments, while least squares
(and more generally Bayesian methods) do. Second, the empirical, curve-fitted calibration
(e.g. using Taylor’s series) may produce similar results to our Bayesian methodology for
the measured QOI if the selected basis functions are flexible enough. However, without
the physical underpinnings, all uses of the instrument in application (measurement) sce-
narios that differ from the calibration scenario are suspect. In contrast, the physics-based
model allows the users of the instrument to understand its applicability and limitations for
measurements in conditions other than in the calibration scenario. That is to say, empirical
models cannot be trusted to extrapolate while physically based models may be extrapolated
within their domain of applicability.

Model Form Uncertainty: Neither3 of these two common engineering approaches ad-
dresses model-form uncertainty, nor does either propagate that uncertainty to the predicted
quantities. While Bayesian calibration of a particular model form does propagate the un-
certainty to the measurement, the calibration alone cannot eliminate model-form errors.
This limitation is illustrated by recognizing that the scientific method employs only two
approaches as it attempts to identify the Platonic reality, yR: observation and theory. Each
of these approaches has inherent error and uncertainty – be for the experimental bias (poten-
tially varying from replicate to replicate), and bm for the model bias (or model-form error).
Momentarily putting aside any uncertainty in either the model or scenario parameters, the
comparison of these two is performed through the defect (Eq. 3). With a single instrument,
the model-form error cannot be uniquely identified from the experimental bias; we can only
measure the difference between these two, b. Increasing model-form complexity to reduce
model-form bias cannot be justified once the analysis has reached the limit where the ex-
perimental bias overshadows the model-form bias. Since the calibration experiment itself
cannot explicitly identify the model form, it is necessary for the engineer to apply existing
scientific knowledge, to make inductive leaps, and to apply appropriate approximations to
provide the form. All the calibration can do is “reduce the uncertainty in the inputs in a
manner consistent with the measured data” [38]. As E.T. Jaynes said, “In physics, we learn
quickly that the world is too complicated for us to analyze it all at once... Nobody knows if
there is some natural end to this process, or whether it will go on indefinitely... We shall feel
that progress is being made if we are able to construct ideal mathematical models which
reproduce a few of its features” [23]. We are satisfied when we reach a level of complexity
in the model form that meets our needs for the level of uncertainty in the desired QOI.

There are two Bayesian approaches that seek to identify and/or reduce the model-form
bias to levels consistent with the overall uncertainty:

(1) Starting with a simple model form, identify the uncertainty in the QOI. Increase
the model complexity and repeat the Bayesian V/UQ with the parameters appropriate to

3ibid.
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Fig. 20. Evolution of Center hierarchy in years 1 through 7.

the new model. Terminate this process when sufficiently diminishing returns are achieved.
We follow this procedure for minimizing model-form uncertainty in the Bayesian analysis
in our methodology. The model we present is the terminus of an iterative process. This
Bayesian approach exhibits the following limiting behavior: if the model form is poor or it
requires too many parameters (over fitting), then the propagation to the predicted quantities
will correctly express larger uncertainty.

(2) Given sufficient experimental data of the correct type, identify a general functional
form for the bias error in a given model form. This approach has been documented by
Bayarri et al. [39].

A realistic perspective of the uncertainty provides the opportunity to retain simplicity
in the physical modeling – of course it would wasteful to add features to the model which
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involve code that is difficult to maintain and requires significant computational resources
when the additional predictive accuracy it offers is negligible compared to the uncertainty.
On the other hand, when the modeler desires to improve the fidelity of the physical mod-
eling, the analysis of the uncertainty can indicate where the best opportunities exist. This
is done through the impact factor, which is the product of sensitivity and uncertainty. As
additional modeling is added, it may be natural to subdivide the physical phenomena being
modeled. This leads to a hierarchical abstraction. Our hierarchy and the evolution of its ab-
straction over the period of the center is provided in Fig. 20. The objective of the hierarchy
is to identify the requisite level of modeling for the overarching QOI and ensuring that we
were encircling the application space so as to interpolate physics while extrapolating scale.
This hierarchically driven problem solving gave us confidence in our V/UQ at scale.

Errors-in-Variables: Another aspect of indirect measurement is the error in the more
directly-measured quantities. In the most common inverse calibration problems, e.g. or-
dinary linear regression, the scenario parameters, z, are specified as part of a design of
experiments, and the associated errors in z are considered negligible. For linear regression,
this neglect is not egregious because any errors in z propagate linearly into the QOI and the
user most often evaluates uncertainty with an R-squared value. However, non-linearities
often present in physics-based models necessitate a distinction between the errors in z and
the errors in y (the QOI) as part of the analysis when they are not negligible. In Bayesian
analysis, this complication is managed as errors-in-variables [40, 41], where measurement
errors in the independent variables (the scenario parameters z) are accounted for by includ-
ing them in the uncertain parameter set for the calibration.

In execution, each calibration measurement (at each scenario condition) contributes a
unique error value to each scenario value, z, in the design of experiments. If each of these
errors were included in the Bayesian analysis, the number of parameters in the distribution
would become intractable – even exceeding the number of unique measurement values.
This is the difficulty of including errors-in-variables. To address this problem, we used a
local linearization of the non-linear physical model to analytically marginalize these pro-
liferating variables as nuisance parameters. While a global linearization would negate the
value of the non-linear modeling, a unique linearization at the point of each measurement
value is sufficiently accurate as long as the measurement error is small relative to the global
behavior of the model.

B2BDC: In the development of the theory, Bayes’ law provides for the full shape of the
posterior distribution. However, in practice, a reduced description of that posterior such as
the confidence interval bounds are easily sufficient for subsequent analysis. To this end,
we developed the B2BDC framework. The key feature is to directly calculate the bounds
on the uncertainty given the constraint that the model must maintain consistency with all
observed data.

The vector consistency measure (VCM) is a recent addition to the B2BDC framework
that we developed during the course of this Center. This new tool aims at resolving in-
consistency, i.e., disagreements between models and experimental observations. The VCM
can be considered an extension of a previous tool, the scalar consistency measure (SCM).
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Our works have demonstrated that the VCM approach is advantageous over B2BDC’s
sensitivity-based usage of the SCM when addressing inconsistency. This is particularly
true when dealing with massively inconsistent datasets, i.e., datasets with numerous con-
tributors to the inconsistency. In addition, we have established a new B2BDC workflow for
model validation utilizing vector consistency. This workflow currently forms the founda-
tion for how we are validating char oxidation models and model form uncertainty.

We have also incorporated model discrepancy into the B2BDC framework in order to
resolve dataset inconsistency and perform prediction [42]. The addition of this discrepancy
term is well motivated when the inconsistency is believed to be due to an inadequate model
rather than incorrectly specified experimental bounds. In our framework, the discrepancy
is formulated as a linear combination of basis functions depending only on the scenario
parameters. This structure leads to an extended feasible set in the space defined by the
uncertain model parameters and discrepancy coefficients.

We have continued our work in investigating similarities between techniques such as
Bayesian history matching and B2BDC. In particular, we adopt the formalism of history
matching’s “waves” to iteratively assemble datasets in B2BDC. This strategy prioritizes
accurate representation of QOIs in that only QOIs that can be accurately fit with B2BDC
surrogates (quadratic/polynomial and rational quadratic models) are included during each
iteration. As the iterations progress, QOIs are fit over the current stage’s feasible set. Those
that have accurate surrogate models are then incorporated into the dataset (with the corre-
sponding experimental data) as model-data constraints, thus reducing the feasible region
for the next iteration. We also included minimum volume ellipsoids as a way of incorpo-
rating sample-based feasibility criteria into B2BDC.

4.3.2 Development of
Instrument Models

Both4 simulation and experimental data collection are modeling
activities. All experimental data are uncertain and all data collec-
tion involves models [43]. The models we employ in experimen-

tal data collection, instrument models, range from purely empirical to purely theoretical,
keeping in mind that physically based theory is itself only an abstraction of all previous em-
piricism. As an example of a simple empirical model, we measure temperature by record-
ing a voltage signal from a thermocouple and then converting that voltage to a temperature
via a polynomial calibration specific to the material. A more complex instrument model is
required to measure radiative intensity and/or radiant heat flux in high-temperature (1200–
2200 K) environments such as furnaces, boilers, and fires.

One of the lessons learned in the life of the Center is the need to apply the same
methodology used for quantifying the uncertainty in the model to the uncertainty in the
instruments used for the experimental measurements. This is schematically illustrated in
Figure 21. This concept is integrated into our overall strategy as discussed in Section 4.3.1
and schematically represented in Figure 18.

As one example5, we applied this methodology to the measurement of radiative inten-

4ibid.
5ibid.
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sity in a 1.5 MW furnace (the QOI to be indirectly measured). The QOI refers to both ym
and ye where ym is the calculated (modeled) value, and ye is the observed (experimental)
value measured in the calibration experiment. We define the ‘instrument model’ as the
physics-based model that calculates ym as a function of scenario parameters, z, and uncer-
tain model parameters, xm; that is, ym = f (z;xm). We developed an instrument model for a
narrow-angle radiometer, coupled this instrument model with our Bayesian analysis tools
to perform a calibration of the instrument, and then used the results of the analysis to com-
pute quantifiable uncertainties for radiative intensity measurements made in the furnace.
By identifying the uncertainty for each radiative-intensity measurement, we were able to
extract the underlying signature of the temporal variations within the furnace.

Fig. 21. Using V/UQ methodology to learn about bias (b) between
simulation model outputs ym(x) and instrument model outputs ye(x),
in the presence of uncertainty in simulation model parameters xm,
instrument model parameters xim, numerical parameters xn, scenario
parameters xs, and experimentally measured quantities ze.

With Bayesian statis-
tics6, probability repre-
sents our current state of
knowledge; each model
parameter and the data
inputs to the model are
represented by a proba-
bility distribution. We
update our state of knowl-
edge regarding the com-
puter model based on
the data that we col-
lect in some type of ex-
periment. In the case
of experimental-data un-
certainty analysis, the
model is the instrument

model and the data used for updating the model are the observed calibration data. We
emphasize the importance of a physics-based instrument model and recognize that the
instrument model may be different between the calibration and the actual measurement
because they are different scenarios. Cabrera et al. [44] allude to the importance of a
physics-based instrument model when suggesting the need to revisit their one-dimensional,
heat-conduction modeling assumptions to see if they still apply at higher heat fluxes and
longer times.

When collecting experimental data7, we measured the QOI in a calibration experiment
and in a new scenario experiment (a 1.5MW furnace). In the calibration step, we used
calibration experimental data within our V/UQ framework to refine instrument model pa-
rameters. In the new scenario experiment, we used the instrument model with its refined
parameters to predict the distribution of the QOI. In our abstraction, the prediction we
make with the instrument model is the “measurement,” It uses as inputs what was actually

6ibid.
7ibid.
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recorded during the scenario experiment and returns the QOI with an uncertainty distribu-
tion. This measurement can then be used for calibration/validation of a computer model of
the scenario experiment.

We performed other experimental measurements related to the QOI (incident heat flux)
for the lab-scale brick (1.5MW furnace) of the validation hierarchy (see Fig. 20). These
measurements and their instrument models were designed to be used for the V/UQ analysis
of the L1500. These measurements are grouped into the three broad categories as described
below:

Optical heat flux measurements (infrared heat flux, thermal diffusivity, radiative inten-
sity): We used an infrared camera to record incident heat flux in the infrared wavelength
band through one of the optical access ports in the furnace. We used the same camera and
a novel technique to measure the thermal diffusivity of the interior deposits in the furnace
after it was cooled and the burner was removed. This technique involved heating a small
area of deposit with a small precision torch and analyzing how quickly the heat diffused
through the deposit using high-speed infrared video. We also used a narrow-angle radiome-
ter to measure radiative intensity in the 1.5MW furnace and in a full-scale 500MW indus-
trial power plant near Castle Dale, Utah. We pioneered a new technique for calibrating the
radiometers that enabled a significant reduction in the uncertainty of the radiative-intensity
measurements.

Heat absorption measurements (panel and coil heat absorption, multi-depth thermo-
couple heat flux measurements): We modified the first two sections of the furnace to ac-
commodate flat heat flux panels. Due to their vertical, flat design, the panels could be
cleaned during operation (soot blown) or removed for sampling of the surface deposits. We
equipped the redesigned panels with two sets of multi-depth thermocouples as a method of
measuring incident heat flux. We also performed extensive calibrations of the water flow
meters.

Emissivity measurements (room temperature, high temperature, Diffuse Reflectance In-
frared Fourier Transform Spectroscopy (DRIFTS)): As noted in Section 4.2.4, the emissiv-
ity of the ash deposits is a critical parameter in determining heat transfer within a furnace.
We collected deposits after multiple campaigns in the 1.5MW furnace and assisted in mea-
suring the reflectance (directly related to emittance) at room temperature with an FTIR for
400 samples. However, deposit emissivity varies greatly with temperature, so we decided
that emissivity measurements at higher temperatures closer to actual operating conditions
were needed. One of our team members, a graduate student, visited Ruhr University in
Bochum, Germany and used their equipment to measure the deposit emittance at tempera-
tures from 500-1000 °C. The sample deposits tested were taken from the near-burner region
of the 1.5MW furnace. We also took reflectance data using DRIFTS measurements from
room temperature up to 700 °C.
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4.3.3 Boiler Simulation
Facility (BSF)

As part of the validation activities of the Center, we used data
and simulations from the GE Power BSF as a significant brick
in our hierarchy. Within the hierarchy, the BSF sat just below

the full-scale system (see Fig 20). Through a V/UQ analysis of the BSF experimental and
simulation data, we obtained meaningful model parameters for the full-scale systems at the
top of the hierarchy. These BSF validation activities were among our key accomplishments
in the Center.

We ran many sensitivity cycles to determine model parameter sensitivities that could af-
fect the behavior of the models under particular circumstances. Table 2 presents a summary
of the parameters we analyzed during the program with their respective values.

Table 2. Sensitivity analysis.

What follows after a cycle of sensitivity analysis is a cycle of uncertainty quantification
for model parameters. We ran at least six cycles of this nature during the life of the program.
all of them. In order to quantify the multi-dimensional distribution of the model parameter
values, we used Bayesian analysis. In the early stages of the program, we made simplifying
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assumptions related to the surrogate representation of the simulations. We used linear
surrogate models as an interpolating tool to represent the simulation space. As a result,
we could account for a greater number of parameters in the analysis. Figure 22 shows the
uncertainty ranges for a group of parameters.

Fig. 22. Parallel plots for uncertain model parameters in the BSF.

In the latter phases of the program, we used more sophisticated mathematical anal-
yses to represent the multi-dimensional distributions. For instance, we used Markov-
chain Monte Carlo ensemble samplers like the emcee library [45] to sample the multi-
dimensional distributions.

5 Laboratory Interactions

5.1 Internship and Student Lab Visit Record

Our center outreach includes many student internships and lab visits by our professional
staff to all three of the collaborating federal labs. The support of lab personnel has been
exceptional. As you will read in the next section, many of our students and staff are now
contributing to research as members of a national laboratory.

• Kamron Brinkerhoff, Los Alamos National Laboratory, 2020

• Cameron Christensen, Lawrence Livermore National Laboratory, 2014

• Oscar Diaz-Ibarra, Sandia National Laboratory, 2016

• Teri Draper, Sandia National Laboratory, 2016

• Pascal Grossett, Los Alamos National Laboratory, 2014

• Daniel Gunderson, Lawrence Livermore National Laboratory, 2018
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• Arun Hegde, Sandia National Laboratory, 2018

• Duong Thai Hoang, Lawrence Livermore National Laboratory, 2017

• Troy Holland, Los Alamos National Laboratory, 2016

• John Holmen, Sandia National Laboratory, 2016

• Ben Isaac, Los Alamos National Laboratory, 2017

• Alex Josephson, Los Alamos National Laboratory, 2017

• Mokbel Karam, Lawrence Livermore National Laboratory, 2018

• Mark Kim, Lawrence Livermore National Laboratory, 2015

• Pavol Klacansky, Lawrence Livermore National Laboratory, 2016

• Aaditya Landge, Lawrence Livermore National Laboratory, 2014

• Joshua McConnell, Sandia National Laboratory, 2016

• James Oreluk, Sandia National Laboratory, 2018

• J. Camillo Parra-Alvarez, Los Alamos National Laboratory, 2017

• Andrew Richards, Sandia National Laboratory, 2017

• Damodar Saharabudhe, Sandia National Laboratory, 2018

• Kaitlyn Scheib, Los Alamos National Laboratory, 2018

• William Usher, Lawrence Livermore National Laboratory, 2015 and Los Alamos
National Laboratory, 2018

• Minmin Zhou, Lawrence Livermore National Laboratory, 2017

5.2 Post-Degree Employment

To the best of our knowledge, the following former students have employment at the entities
noted. Former students who did not complete internships were paid from non-federal funds
while contributing to the CCMSC research.

• Alexander Abboud, Idaho National Laboratory

• Michael D. Brown, Hi-Rez Studios

• Cameron Christensen, software engineer, University of Utah
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• Oscar Diaz-Ibarra, Lawrence Livermore National Laboratory

• Christopher Earl, Lawrence Livermore National Laboratory

• Babak Goshayeshi, Merck Company

• Pascal Grosset, Los Alamos National Laboratory

• Daniel Gundersen, Big West Oil Refinery

• Arun Hegde, Sandia National Laboratory

• Troy Holland, Los Alamos National Laboratory

• Benjamin Isaac, Lawrence Livermore National Laboratory

• Alex Josephson, Los Alamos National Laboratory

• Mark Kim, Oak Ridge National Laboratory

• Aaron Knoll, Intel

• Siddharth Kumar, asst. professor, Computer Science, University of Alabama, Birm-
ingham

• Aaditya Landge, Twitter

• Michael Matheny, Amazon

• Joshua McConnell, Sandia National Laboratory-Albuquerque

• James Oreluk, Sandia National Laboratory-Berkeley

• John Camilo Parra-Alvarez, National Renewable Energy Laboratory

• Steve Petruzza, asst. professor, Computer Science, Utah State University

• Siddartha Ravichandran, Expedia Group

• Andrew Richards, Los Alamos National Laboratory

• Kaitlyn Scheib, Lahainaluna High School

• Ben Schroeder, Sandia National Laboratory-Berkeley

• William Usher, Intel-Advanced Rendering and Visualization Group

• MinMin Zhou, Reaction Engineering International

• **Qi Wu, University of California/Davis
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6 Educational Impact

We have sought to advance predictive science and computer science leading to exascale
computing as an academic discipline at the University of Utah, the University of California
at Berkeley and Brigham Young University. We have promoted interdisciplinary collabo-
rations among engineering and computer science faculty and students of both disciplines.
We provided the engineering students with tools to relate parallelism, code verification, so-
lution verification, validation using experimental data, uncertainty in experimental results,
accuracy of validations and uncertainty quantification.

The V/UQ faculty of the University of Utah and the University of California-Berkeley
designed a course that was first offered in fall 2015. The course, “Predictivity with Verifi-
cation, Validation and Uncertainty Quantification” is designed for graduate students at the
three CCMSC universities: Brigham Young University, University of California-Berkeley
and University of Utah. The course is taught in-person and remotely. Members of the full
NNSA community were invited to participate. Class student projects have encompassed
Center deliverables, including a range of instrument models, and projects by students out-
side the Center who have analyzed their own models and data. This course has been taught
remotely during the pandemic. It will continue to be taught annually at The University of
Utah to advanced graduate students from across engineering and science disciplines.

We held a Deep Dive Uintah Workshop in July 2014 that focused on implementing a
compressible CFD algorithm (miniAero) within the Uintah runtime system. A follow on
“Mini-Apps” workshop was held in Salt Lake City in November 2014. The Mini-Apps
workshop focused on implementing miniAero) within the Uintah runtime system (TODD’s
writeup). The Mini-Apps workshop was designed to expose all of the details related to de-
veloping a new component in Uintah. Nine staff members of Sandia National Laboratory
(SNL) participated; Janine Bennett, Hemanth Kolla, Keita Teranishi, Greg Sjaardema, Matt
Bettencourt, Ken Franko, Steve Bova, Paul Lin and Gary Templet. The workshop provided
an introduction to Uintah’s patch-based domain decomposition along with the ”rules” for
writing a task. There was also a discussion on what the framework provides to component
developers including geometry objects for domain initialization and boundary conditions.
Details on requesting data from neighboring patches was discussed along with the available
patch iterators. The original miniAero algorithm was broken down into tasks and the data
dependencies between the tasks defined, forming an initial software design from which to
iterate. Two coding teams were then formed that implemented software for a generalized
simulation initialization specification, boundary conditions and the miniAero algorithmic
tasks. At the end of the workshop, the 1D Riemann shock tube problem executed within
Uintah’s new miniAero component and performed all specified tasks, but it produced in-
correct answers. Uintah and Sandia teams continued post-workshop development, adding
a higher order spatial discretization scheme and a Runge Kutta RK4 algorithm for time in-
tegration. The Uintah team performed a strong and weak scaling study using the Riemann
3D shock tube problem as an initial condition. Three problem sizes were tested with (2563

(16.7M), 5123 (134.2M), and 10243 (1.07B)) cells respectively. Good strong and weak
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scaling characteristics were demonstrated using 131K ALCF:Titan CPU cores. Given that
the component had not been run at large scale previously, this is significant.

Other outreach efforts are:

• Over the course of the award, we maintained a public website that included program
information, publications and updates.

• Qualifying students completed internships at national laboratories, and many have
accepted positions with various national laboratories.

• We hosted annual review meetings with representatives of our Tri-lab Sponsor Team
and Alliance Strategy Team that we opened to all students and professionals on our
teams. These interactive meetings provided timely insights and feedback that was
incorporated into research directions.

• Particle Physics Deep-Dive, (co-hosted with University of Florida) It was broadcast
across all centers and to the national labs with broad participation.

• Members of CCMSC attended key meetings each year where developments of our re-
search were presented and discussed in the broader computing and engineering com-
munities: Combustion Institute, Clearwater Clean Energy Conference, WEST Work-
shops, PSAAP IPDPS Meetings, American Flame Research Committee, KOKKOS
Technical Meeting, IEEE VIS Conferences, and SIAM CSE Conference among oth-
ers.

The following students will continue working towards completion of their degrees in
2021.

• Kamron Brinkerhoff, Ph.D candidate, Brigham Young University (adviser: D. Lignell)

• Teri Draper, Ph.D. candidate, University of Utah (adviser: E. Eddings)

• Jebin Elias, Ph.D. candidate, University of Utah (adviser: J. Spinti)

• Duong T. Hoang, Ph.D. candidate, University of Utah (adviser: V. Pascucci)

• John Holmen, Ph.D. candidate, University of Utah (adviser: M. Berzins)

• Mokbel Karam, Ph.D. candidate, University of Utah (adviser: T. Saad)

• Wenyu Li, Ph.D. candidate, University of California-Berkeley (adviser: M. Fren-
klach)

• Damodar Sahasrabudhe, Ph.D. candidate, University of Utah (adviser: M. Berzins)

• Pavol Klacansky, Ph.D. candidate, University of Utah (adviser: V. Pascucci)
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7 Adoption of Center Results

CCMSC has participated with and contributed to the NNSA defense laboratories in two
software projects: 1) the Kokkos software project led by SNL (Albuquerque) and 2) the
Hypre software project based at LLNL. As detailed in section 4.1.1, the Uintah and Kokkos
teams have collaborate since 2015. Indeed, Uintah is one of the Kokkos structured-mesh-
use cases. The Uintah team has used its GPU expertise to improve the performance of
Kokkos on GPUs and contributed to its code base. The team has also shared an extensive
collection of good practices and lessons learned through their Kokkos porting efforts with
the HPC community. A University of Utah student helped with Kokkos code development
during a 2018 internship along with two other students who developed code in Utah. Sim-
ilarly, we have used the Hypre software in Uintah to solve large linear systems with great
success since 2012. Recently we have greatly improved the performance of the OpenMP
version of Hypre.

Our Center has had close interactions with Jim Ahren’s group at LANL, the groups
of Martin Schulz, Peer-Timo Bremer, Eric Brugger and Greg Burton at LLNL, as well as
the groups of David Rogers, Jacqueline Chen, Chris Shaddix, and Stefan Domino at SNL.
Each one of these staff members had strong collaborations with faculty and students at
the University of Utah. Several laboratory staff (Alan Kerstein, Rod Schmidt, Jacqueline
Chen) held adjunct appointments at the University of Utah during the lifetime of the Center
and regularly served on PhD advisory committees.

A former member of CCMSC, Jeremy Thornock, is now working at LLNL and em-
ploying aspects of our V/UQ methodology in his current projects.
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