# Run daily at 1am # Not yet set up to just update every day but runs everything from june 1 every time # Here are the Modules you will need import os import numpy as np import pandas as pd from datetime import datetime,timedelta import json import xarray as xr import numcodecs as ncd import boto3 from botocore import UNSIGNED from botocore.config import Config # Declare initial variables region = 'conus' field = 'sfc' # set domain bot_left_lat = 36.8 bot_left_lon = -114.2 top_right_lat = 38.6 top_right_lon = -110.9 # This is the file that houses the latitude and longitude data for the zarr HRRR files latLon_data = '/uufs/chpc.utah.edu/common/home/horel-group7/Pando/hrrr/HRRR_latlon.h5' x = xr.open_dataset(latLon_data) lat = x.latitude.data lon = x.longitude.data ### FUNCTIONS ### def date_range_list(start_date, end_date, time_delta): # Return list of datetime.date objects between start_date and end_date by hour (inclusive). date_list = [] curr_date = start_date while curr_date <= end_date: date_list.append(curr_date) curr_date += time_delta return date_list def findChunk_andLatLons(latPoint,lonPoint): """ ----------------------------------------------------------------------------- findChunk_andLatLons: Input Lat/Lon for the chunk you desire and it returns the two ID numbers needed as well as the lats and lons for the entire chunk -----------------------------------------------------------------------------""" absLat = np.abs(lat - latPoint) absLon = np.abs(lon - lonPoint) c = np.maximum(absLon,absLat) index = np.where(c == c.min()) x = int(index[0]) y = int(index[1]) # Divide by chunk size - ignoring remainder chunkX = (x//150) chunkY = (y//150) x0 = chunkX*150 y0 = chunkY*150 xRange = x0+150 yRange = y0+150 chunkLats = lat[x0:xRange,y0:yRange] chunkLons = lon[x0:xRange,y0:yRange] return(chunkX, chunkY, chunkLats, chunkLons) def create_file_path(utcDT, mdlType, lvl, variable ): """ create_file_path: Creates the correct AWS file path to retrieve your data. For more information about creating an aws file path see ... utcDT: This is the datetime object for the desired date mdlType: analysis or forecast (anl, fcst) lvl: level of the variable i.e. (surface, 500mb) variable: HRRR Zarr variable """ stringDate = datetime.strftime(utcDT, '%Y%m%d') stringDate_hr = datetime.strftime(utcDT, '%Y%m%d_%H') aws_fp = 'sfc/%s/%sz_%s.zarr/%s/%s/%s/%s/' %(stringDate, stringDate_hr, mdlType, lvl, variable, lvl, variable) return(aws_fp) def decompressChunk(objct, surface_pres): """ ----------------------------------------------------------------------------- decompressChunk: this decompress the chunk data and returns it in a array with the shape (n, 150, 150) -----------------------------------------------------------------------------""" buf = ncd.blosc.decompress(objct) if surface_pres == True: chunk = np.frombuffer(buf, dtype=' 0: #2nd one is more east chunk3, lons3, lats3 = stitch_chunks(chunk2, chunk1, lats2, lats1, lons2, lons1, 1, bool_fcst) else: #1st one is more east chunk3, lons3, lats3 = stitch_chunks(chunk1, chunk2, lats1, lats2, lons1, lons2, 1, bool_fcst) return(chunk3, lons3, lats3) def combine_2_chunks(data_dict, lat_lon, bool_fcst): # append the two southern chunks data, newLons, newLats = order_chunks(data_dict['SE'], data_dict['SW'], lat_lon['Lats_SE'], lat_lon['Lats_SW'], lat_lon['Lons_SE'], lat_lon['Lons_SW'], bool_fcst) return(data, newLons, newLats) def get_2_chunks(s_3, aws_File_Paths, fcstHrs): """ This function will grab the data for the past fcst hours currently (6,12,18) and return the data in a dictionary and the lat and lons associated""" precipData = {} for aws_File_Path, fcstHr in zip(aws_File_Paths, fcstHrs): data = {} # Decompress the hrrr data and store it in the variable for ID, loc in zip(chnkID_dict.values(), geo_loc): data[loc] = open_aws_hrrr_zarr(s_3, aws_File_Path+ID, sfc_prs) precipData[fcstHr], utah_lons, utah_lats = combine_2_chunks(data, latLon_dict, bool_fcst) return(precipData, utah_lons, utah_lats) def cut_data(lat,lon,bl_lat,bl_lon,tr_lat,tr_lon): ''' #Made By Brian Blaylock see script here /uufs/chpc.utah.edu/common/home/u0553130/MS/plot_hrrr/HRRR_700.py Cut down full netcdf data for domain for faster plotting. input: the bottom left corner and top right corner lat/lon coordinates bl_lat = bottom left latitude tr_lat = top right latitude bl_lon = bottom left longitude tr_lon = top right longitude return: the max and min of each the arrays x and y coordinates lat and lon are global variables of the grids lat and lon ''' lat_limit = np.logical_and(lat>bl_lat,latbl_lon,lon inches # https://www.researchgate.net/post/How-do-I-convert-ERA-Interim-precipitation-estimates-from-kg-m2-s-to-mm-day # That conversion is 25.4mm = 1 in #accum_precip_data = accum_precip_data/25.4 # That conversion is 25.4mm = 1 in accum_precip_data = accum_precip_data/10 # cm return(accum_precip_data) #-----------------------------------------------------------------------------# ### INITIALIZE VARIABLES #location: lat & lon for the four chunks for Utah geo_loc = ['SE', 'SW'] pts_Lat = [ 36, 36] pts_Lon = [-112, -117] # Dictionary to store lat and lon data for each of the 4 chunks latLon_dict = {} # dictionary to store the chunk id for each of the 4 chunks chnkID_dict = {} anl_hours = np.array([18,19,20,21]) #(12-15 MDT) mdl_type = 'anl' sfc_prs = False if mdl_type == 'anl': bool_fcst = False else: bool_fcst = True for pt_Lat, pt_Lon, loc in zip(pts_Lat,pts_Lon, geo_loc): # Find the chunk for the given point x, y, newLats, newLons = findChunk_andLatLons(pt_Lat,pt_Lon) # Put it in the correct format if mdl_type == 'anl': chnkID_dict['IDs_' + str(loc) ] = '{}.{}'.format(x,y) else: chnkID_dict['IDs_' + str(loc) ] = '0.{}.{}'.format(x,y) # get the lat and lons for this chunk and store them in the dictionary latLon_dict['Lats_' + loc] = newLats latLon_dict['Lons_' + loc] = newLons # Use a boto3 resource to connect to AWS sapce s3 = boto3.resource( service_name='s3', region_name='us-west-1', config=Config(signature_version=UNSIGNED) ) # Enter Code to get start and end variables start = datetime.today().replace(month=6, day=1, hour=0) end = datetime.today().replace( hour=0) - timedelta(days=1) # have it finish on the day before since this script runs in the morning #redo 2022 start = datetime.today().replace(year=2023,month=6, day=15, hour=0) end = datetime.today().replace(year=2023,month=9, day=27, hour=0) print(start,end) iterDates = date_range_list(start, end, timedelta(days=1)) avg_pwat = {} max_cape = {} # go through each date for date in iterDates: print('working on date: ', date) stringDate = datetime.strftime(date, '%m/%d/%Y') # We want to go from midnight to midnight local time and since data is stored in UTC # Convert local to UTC by +6hrs, no daylight savings so we are good date += timedelta(hours=6) # empty array to store total afternoon (12-15 MDT) data in cape_anl_4hr = np.zeros([150,300]) pwat_anl_4hr = np.zeros([150,300]) # get each hour for daily sums for i_hr in anl_hours: date = date.replace(hour=i_hr) # Grab CAPE Data try: awsFilePath = create_file_path(date, mdl_type, 'surface', 'CAPE') cape_data, utahLons, utahLats = get_2_chunks(s3, [awsFilePath], [0]) cape_anl_4hr = np.fmax(cape_anl_4hr, cape_data[0]) # combine arrays and keep max values ignore nan values except Exception: print('ERROR with CAPE on hour: ', date) # Grab PWAT Data try: awsFilePath = create_file_path(date, mdl_type, 'entire_atmosphere_single_layer', 'PWAT') pwat_data, utahLons, utahLats = get_2_chunks(s3, [awsFilePath], [0]) pwat_anl_4hr += pwat_data[0] except Exception: print('ERROR with PWAT on hour: ', date) # cut data down to inner domain (southwestern Utah) xmin,xmax,ymin,ymax = cut_data(utahLats,utahLons, bot_left_lat, bot_left_lon, top_right_lat, top_right_lon) pwat_anl_4hr = convert_precip_data(pwat_anl_4hr[xmin:xmax,ymin:ymax]) cape_anl_4hr = cape_anl_4hr[xmin:xmax,ymin:ymax] # PWAT: Get average per grid point per hour avg_pwat[stringDate] = np.nanmean(pwat_anl_4hr) / 4 # Get averaged per hour # CAPE: Get average per grid point of maximum values from that day max_cape[stringDate] = np.nanmean(cape_anl_4hr) # Save the data with open("/uufs/chpc.utah.edu/common/home/u0035056/public_html/monsoon_SW_Utah/data/hrrr_PWAT_anl_daily_avg_%s.json" %( start.year), "w") as outfile: json.dump(avg_pwat, outfile) # Save the data with open("/uufs/chpc.utah.edu/common/home/u0035056/public_html/monsoon_SW_Utah/data/hrrr_CAPE_anl_daily_max_%s.json" %( start.year), "w") as outfile: json.dump(max_cape, outfile)