
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Building IDL
Applications

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

 14

15

... 20

22

.. 23

25

26
Contents
Chapter 1:
Overview .. 13
What is an IDL Application?...

About Building Applications in IDL...

Part I: How to Build Applications in IDL

Chapter 2:
Creating IDL Projects .. 19
Overview...

Where to Store the Files for a Project..

Creating a Project...

Opening, Closing, and Saving Projects..

Adding, Moving, and Removing Files...
Building IDL Applications 3

4

 29

 33

. 36

8

.. 39

41

.. 42

 44

... 46

55

61

64

5

68

. 69

73

76

... 82

.. 84

.. 86

 87

.... 90

... 93

... 96
Working with Files in a Project...

Setting the Options for a Project..

Selecting the Build Order..

Compiling an Application from a Project.. 3

Building a Project..

Running an Application from a Project...

Exporting a Project..

About Developer’s Kit Licenses..

Chapter 3:
Distributing IDL Applications ... 45
Overview...

Creating Your Product Distribution Through Your IDL Project......................... 51

Customizing A Windows Distribution..

Customizing a Macintosh Distribution..

Customizing A UNIX Distribution..

For Applications That Use IDL DataMiner... 6

For Applications That Use ActiveX..

Using the make_rt Script..

Adding IDL Files to the Distribution...

Replacing the Licensing Dialog Image..

Part II: Components of IDL

Chapter 4:
The Structure of the IDL Language .. 81
Data Types..

Numeric Constants...

String Constants...

Type Conversion Functions...

Arrays...

Structures..

Variables...
Contents Building IDL Applications

5

.. 99

. 102

. 104

10

. 114

 115

. 117

27

. 132

33

 136

39

40

 143

145

147

49

51

. 156

57

 158

 161
System Variables...

Chapter 5:
Constants ... 101
Data Types..

Constants...

Type Conversion Functions... 1

Chapter 6:
Expressions and Operators ... 113
Overview...

Operator Precedence..

IDL Operators...

Type and Structure of Expressions.. 1

Chapter 7:
Structures .. 131
Overview...

Creating and Defining Structures... 1

Structure References..

Using HELP with Structures.. 1

Parameter Passing with Structures... 1

Arrays of Structures...

Structure Input/Output...

Advanced Structure Usage...

Automatic Structure Definition.. 1

Relaxed Structure Assignment... 1

Chapter 8:
Array Subscripts ... 155
Overview...

Array Subscript Syntax: [] vs. ().. 1

Subscript Examples..

Subscript Ranges..
Building IDL Applications Contents

6

163

 165

7

69

. 172

 173

74

 175

76

77

. 179

. 180

82

. 183

86

 187

91

. 196

197

198

.. 204

 206

 208

 211

16

 219

. 220
Structure of Subarrays..

Array Subscripts...

Combining Array Subscripts with Others.. 16

Storing Elements with Array Subscripts.. 1

Chapter 9:
Strings .. 171
Overview...

String Operations...

Non-string and Non-scalar Arguments.. 1

String Concatenation..

Using STRING to Format Data... 1

Byte Arguments and Strings.. 1

Case Folding...

Whitespace..

Finding the Length of a String... 1

Substrings..

Splitting and Joining Strings.. 1

Comparing Strings...

Learning About Regular Expressions.. 1

Chapter 10:
Statements ... 195
Overview...

Components of Statements..

The Assignment Statement..

Blocks ..

CASE Statement..

Common Blocks..

FOR Statement...

Function Definition Statement... 2

GOTO Statement...

IF Statement..
Contents Building IDL Applications

7

222

25

 226

 227

. 230

 231

233

34

235

. 236

239

 243

244

 246

 247

 248

56

257

 259

. 261

263

. 265

 266

269

71

 273
Procedure Call Statement ...

Procedure Definition Statement ... 2

REPEAT Statement ...

WHILE Statement ..

Chapter 11:
Pointe rs .. 229
Overview ...

Heap Variables ...

Creating Heap Variables ..

Saving and Restoring Heap Variables ... 2

Pointer Heap Variables ..

IDL Pointers ..

Operations on Pointers ...

Dangling References ..

Heap Variable Leakage ..

Pointer Validity ..

Freeing Pointers ...

Pointer Examples ...

Chapter 12:
Object Basic s .. 255
Object-Oriented Programming ... 2

IDL Object Overview ..

Class Structures ..

Inheritance ...

Object Heap Variables ...

Null Objects ..

The Object Lifecycle ..

Operations on Objects ..

Obtaining Information about Objects .. 2

Method Routines ..
Building IDL Applications Contents

8

 277

 280

. 284

85

. 286

89

 291

96

98

 300

02

06

307

312

14

 315

17

19

20

21

 322

 328

. 330
Method Overriding...

Object Examples..

Part III: Programming in IDL

Chapter 13:
Defining Procedures and Functions .. 283
Overview...

Procedure & Function Definitions... 2

Parameters...

Using Keyword Parameters... 2

Keyword Inheritance..

Entering Procedure Definitions.. 2

Parameter Passing Mechanism.. 2

Calling Mechanism..

Setting Compilation Options... 3

Chapter 14:
Programming in IDL .. 305
Overview of Programming in IDL... 3

Informational Routines..

Program Control Routines...

Expression Evaluation Order... 3

Avoid IF Statements..

Use Vector and Array Operations.. 3

IDL System Functions and Procedures.. 3

Use Constants of the Correct Type.. 3

Eliminate Invariant Expressions.. 3

Virtual Memory ...

IDL Implementation...

Chapter 15:
Controlling Errors .. 329
Overview...
Contents Building IDL Applications

9

31

332

33

37

38

 340

42

 343

. 345

. 352

 353

355

356

. 358

. 359

60

63

65

0

. 375

94

01

406

11

19

422

32

33

434
Default Error-Handling Mechanism.. 3

Disappearing Variables..

Controlling Errors Using CATCH... 3

Controlling Errors Using ON_ERROR... 3

Controlling Input/Output Errors.. 3

Error Signaling...

Obtaining Traceback Information.. 3

Error Handling...

Math Errors...

Chapter 16:
Files and Input/Output .. 351
Overview...

File I/O in IDL ...

Unformatted Input/Output...

Formatted Input/Output...

Opening Files..

Closing Files...

Logical Unit Numbers (LUNs).. 3

Reading and Writing Very Large Files.. 3

Using Free Format Input/Output.. 3

Using Explicitly Formatted Input/Output.. 37

Format Codes..

Using Unformatted Input/Output... 3

Portable Unformatted Input/Output... 4

Associated Input/Output..

File Manipulation Operations.. 4

UNIX-Specific Information... 4

VMS-Specific Information..

Windows-Specific Information.. 4

Macintosh-Specific Information.. 4

Scientific Data Formats..
Building IDL Applications Contents

10

5

. 438

40

42

453

 468

 471

473

 489

90

496

507

511

516

518

521

523

526

532

. 542

. 544

549

50

51

54

 557

. 559
Support for Standard Image File Formats.. 43

Chapter 17:
Using the IDL GUIBuilder .. 437
Overview...

Starting the IDL GUIBuilder... 4

Creating an Example Application.. 4

IDL GUIBuilder Tools...

Widget Operations...

Generating Files...

IDL GUIBuilder Examples..

Widget Properties...

Common Widget Properties... 4

Base Widget Properties..

Button Widget Properties...

Text Widget Properties..

Label Widget Properties..

Slider Widget Properties..

Droplist Widget Properties..

Listbox Widget Properties...

Draw Widget Properties...

Table Widget Properties..

Chapter 18:
Widgets ... 541
Overview...

Widget Types..

Manipulating Widgets..

Examples of Widget Programming.. 5

The Widget Application Model... 5

Creating Widget Applications.. 5

Widget Example 1..

Widget Values...
Contents Building IDL Applications

11

 562

. 563

 569

 571

 573

 578

 581

. 583

89

92

 594

96

98

. 608

609

614

19

. 624

25

26

629

. 630

 633

634

35

.. 636

.. 637
Widget User Values...

Widget Events...

Widget Example 2..

Using Draw Widgets..

Creating Menus..

Controlling Widgets...

Widget Example 3..

Widget Sizing..

Event Processing And Callbacks... 5

Managing Widget Application State.. 5

Compound Widgets...

Tips on Creating Widget Applications.. 5

Compound Widget Example.. 5

Chapter 19:
Debugging an IDL Program .. 607
Overview...

Debugging Commands...

The IDL Code Profiler...

The Variable Watch Window.. 6

Chapter 20:
Building Cross-Platform Applications 623
Overview...

Which Operating System is Running?... 6

File and Path Specifications... 6

Environment Variables..

Files and I/O..

Math Exceptions..

Operating System Access..

Display Characteristics and Palettes.. 6

Fonts...

Printing...
Building IDL Applications Contents

12

638

.. 639

 642

643

. 646

. 650

1

 653

6

58

60
SAVE and RESTORE..

Widgets ..

Using External Code..

IDL DataMiner Issues..

Chapter 21:
Extending the IDL Online Help System 645
Overview...

Creating Hypertext Files for Use with IDL’s Hypertext Help Viewer.............. 647

Appendix A:
VMS Floating-Point Arithmetic in IDL 649
Overview...

VAX Floating-Point Format Background.. 65

Transition Issues..

A Warning About Floating-Point Conversions in IDL...................................... 655

A Strategy for Converting VMS Programs.. 65

Using CALL_EXTERNAL ... 6

A Note on the VMS G Float Format.. 6

Index ... 661
Contents Building IDL Applications

Chapter 1:

Overview
This chapter includes information about the following topics:
What is an IDL Application? 14 About Building Applications in IDL. 15
Building IDL Applications 13

14 Chapter 1: Overview

y
he

a

s
d

Of

nse.

ss

tive
What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the ver
simple (a MAIN program entered at the IDL command prompt, for example) to t
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing a small program to analyze a single data set or
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can I Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleague
and others who use IDL. (If you intend to distribute your applications, it is a goo
idea to avoid any code that depends on the qualities of a specific platform. See
“!VERSION” in Appendix D of theIDL Reference Guide and“Creating Widget
Applications”on page 554 for some hints on writing platform-independent code.)
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have access to an IDL lice

If you would like to distribute your IDL application to people who do not have acce
to an IDL license, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. Contact your distributor or Research Systems sales representa
for information about runtime licensing.
What is an IDL Application? Building IDL Applications

Chapter 1: Overview 15

g in

n be
 and

 and

ns

ta
P,

F).

d
ll
About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programmin
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages ca
accomplished in hours. You can explore data interactively using IDL commands
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computatio
immediately.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom da
format. Support is also provided for common image standards (including BM
GIF, JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCD

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (Unix, VMS,
Microsoft Windows, and Macintosh systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to ad
specialized functionality. Alternatively, C and FORTRAN programs can ca
IDL routines as a subroutine library or display “engine”.
Building IDL Applications About Building Applications in IDL

16 Chapter 1: Overview
About Building Applications in IDL Building IDL Applications

Part I: How to
Build Applications

in IDL

Chapter 2:

Creating IDL
Projects

This chapter describes the following topics.
Overview . 20
Where to Store the Files for a Project. 22
Creating a Project . 23
Opening, Closing, and Saving Projects. . . . 25
Adding, Moving, and Removing Files 26
Working with Files in a Project. 29
Setting the Options for a Project. 33

Selecting the Build Order 36
Running an Application from a Project. . . . 41
Compiling an Application from a Project . . 38
Building a Project . 39
Exporting a Project 42
About Developer’s Kit Licenses 44
Building IDL Applicaitons 19

20 Chapter 2: Creating IDL Projects

r
ier
ojects

our

ct

set

and
Overview

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop you
IDL application. All of your application files can be organized so that they are eas
to access and easier to export to other developers, colleagues, or users. IDL Pr
are a great benefit to development teams working on a large project as well as
individual developers managing multiple projects.

Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:

• IDL source code files (.pro)

• GUI files (.prc) created with IDL GUIBuilder

• Data files

• Image files

• Other files (help files,.sav files, etc.)

After you add all of your files to your project, you can simply double click on.pro
files to open them in the IDL editor or.prc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects make it easy to add, remove, move, edit, compile, and test files in y
project.

All of your workspace information is saved as well. If you save and exit your proje
with open files, when you open your project, those same files will be opened
automatically for you.

IDL projects also store and retain breakpoint information. There is no need to re
breakpoints every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled
run by specifying options for your project. When generating the event file and.pro
Overview Building IDL Applicaitons

Chapter 2: Creating IDL Projects 21

IDL
 or
rce
code for IDL GUIBuilder (.prc) files, IDL Projects automatically prompt you to add
them to your project.

Exporting Your Applications

Once you have completed your application, you can quickly and easily create an
Runtime distribution or you can easily move your application to another platform
distribute your source code to colleagues by exporting your project. All your sou
code or compiled code (.sav files), IDL GUIBuilder files, data files, and image files
are copied to a directory you specify.

Example of a Project

A working example project has been included with IDL in the main IDL directory
and is nameddemo_proj.prj .
Building IDL Applicaitons Overview

22 Chapter 2: Creating IDL Projects

ou
ny

le,

files

file

here
r

e of
of
Where to Store the Files for a Project

The directory structure you use for your application files is important for when y
export the source files for your project. Even though you can add any file from a
path to your project, keep the following in mind:

• Create a directory structure with all of your files in your project. For examp
you might create a directory structure similar to the following:

C:\myproject

myproj.prj

\source

\gui

\data

\bitmaps

\other

where all of your source files (.pro) are in thesource directory, IDL
GUIBuilder files (.prc) are in thegui directory, data files are in thedata
directory, image files are in thebitmaps directory, and any other
miscellaneous files are in theother directory. You can also create
subdirectories under these directories.

Note
This examples names the directories the same as the folders that will hold your
in your project. You do not have to name your directories in this manner.

• Keep the project file (.prj) at the root level of all the other files and
directories in your project. As shown in the previous example, the project
myproj.prj is in the root level directorymyproject .

When a project’s source files are exported, the files will be placed according to w
they are in relation to the.prj file, keeping the directory structure intact wheneve
possible. All of the directories that are in the same directory as the.prj file will be
recreated when an IDL Project is exported. If you have files that are stored outsid
this hierarchy, they will be exported to the top-level directory. If, for example, one
your source files exists inD:\otherproj , when you export your project it will be
placed in the top-level directory, in this case,C:\myproject .

For more information on exporting a project, see“Exporting a Project” on page 42.
Where to Store the Files for a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 23

ects
us
ct,
Creating a Project

To create a Project, complete the following steps:

1. SelectFile → New → Project (on Windows and Motif) orFile → New
Project (on Macintosh). TheNew Project dialog is displayed.

2. Select the path and name of the project file. ClickSave. A .prj extension will
automatically be appended to the name you enter. You will see that your
project is displayed in theProjects Window.

3. Save your new project. SelectFile → Save Project.

Note
For Windows and Motif, you can only have one project open at a time. On
Macintosh, you can have multiple project windows open at the same time.

After you have created your project, you’ll see your project displayed in the Proj
Window. The Projects window is where you control your project. If you click the pl
sign (Windows and Motif) or the expand arrow (Macintosh) to expand your proje

Figure 2-1: Projects Window for Macintosh (left) and Windows (right)

Projects
Window
Building IDL Applicaitons Creating a Project

24 Chapter 2: Creating IDL Projects

our
you will see that 5 groups have been automatically created when you created y
project. You can then click the minus sign to collapse the listing.

The following table describes the purpose for each group:

Figure 2-2: Project Window Collapsed (Left) and Expanded (Right)

Group Description

Source Stores IDL source code files (.pro).

GUI Stores GUI files (.prc) created using the IDL GUIBuilder.

Data Stores any data files.

Bitmaps Stores image files.

Other Stores any other files that do not apply to the other groups.

Table 2-1: Project Group Descriptions
Creating a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 25
Opening, Closing, and Saving Projects

After you have created a project, you can open, save, and close a project.

Opening Projects

To open a project, complete the following steps:

1. For Windows and Motif, selectFile → Open Project. For Macintosh, select
File → Open.

2. Select the path and name of your project file.

Tip
IDL keeps track of the most recently opened projects. You can use theFile →
Recent Projects menu (on Windows and Motif) andFile → Open Recent (on
Macintosh) to select projects to open.

Saving Projects

To save a project, selectFile → Save Project.

Closing Projects

To close a project, selectFile → Close Project.
Building IDL Applicaitons Opening, Closing, and Saving Projects

26 Chapter 2: Creating IDL Projects

 the

ny
ject,
Adding, Moving, and Removing Files

After you have created a project, you can add, move, and remove files in your
application.

Adding Files

To add files to your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click Project → Add/Remove Files...(on Windows and Motif) orProject →
Add Files... (on Macintosh). TheAdd/Remove Files dialog is displayed.

3. Select the path and name of the file you want to add to your project. Click
Add button. You will see the file added to the list of current files in your
project.

Tip
You can also add files to your project by dragging and dropping the files from a
file manager. If you already have the file open that you want to add to your pro

Figure 2-3: Add/Remove Dialog

Current directory

File list in the current directory

File to add/remove

Filter for listing different

Current Files in project

file types
Adding, Moving, and Removing Files Building IDL Applicaitons

Chapter 2: Creating IDL Projects 27

n

e

you
 a

.

u

t

use

e, it
on Windows and UNIX platforms you can right click in the editor window and
selectAdd to Current Project from the context menu, on the Macintosh, you ca
add the open file by selectingProject → Add Window. On some Motif platforms,
dragging and dropping is not supported. In this case, use theAdd/Remove...dialog.

4. Continue to add the files you want to include in your project. Then clickOK .

5. You can expand the listings in the Project window to see the files you hav
added.

6. Save your project file by selectingFile → Save Project.

Moving Files

When you add a file to your project, it will be added to the appropriate group. If
want the file to exist in a different group, you can move it to that group. To move
file, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file yo
want to move.

3. To move the file, select the file and then drag it to a different group or righ
click over the file you want to move and selectMove To...from the context
menu and then select the different group.

Note
On some Motif platforms, dragging and dropping is not supported. In this case,
theMove To... menu item on the context menu.

4. Save your project file by selectingFile → Save Project.

Note
When moving a file in your project, it does not change the actual path of the fil
only changes the group in which the file appears within your project.
Building IDL Applicaitons Adding, Moving, and Removing Files

28 Chapter 2: Creating IDL Projects

ou
tes

ick
y
lete

r

lect
Removing Files

When you no longer want a file to be in your project, you can remove it. When y
remove a file from your project, it does not delete the file on your disk, it only dele
the reference to the file from your project.

On Windows and Motif, to remove files from your project, complete the following
steps:

1. Open your project. SelectFile → Open Project and select the path and name
of your project file.

2. Click Project → Add/Remove Files... TheAdd/Remove Files dialog is
displayed.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove.

Tip
On Windows and Motif, you can use the context menu to remove a file. Right cl
over the file and then selectRemove. On Windows, you can also use the Delete ke
to remove files. Select the file by left-clicking over the file and then press the De
key. On Macintosh, you can drag the file to the Trash.

4. Save your project file by selectingFile → Save Project.

On Macintosh, to remove files from your project, complete the following steps:

1. Open your project.Select File→ Open and select the path and name of you
project file.

2. Select the file you want to remove.

3. SelectProject → Remove Selection.

Tip
On Macintosh, you can use the Cmd-Delete key sequence to remove files. Se
the file by clicking over the file and then press Cmd-Delete.

4. Save your project file by selectingFile → Save Project.
Adding, Moving, and Removing Files Building IDL Applicaitons

Chapter 2: Creating IDL Projects 29

ess

ps:

.

-

w

.

-

s

Working with Files in a Project

Once you have added all of the files in your application to a project, you can acc
those files through the project window.

Editing a Source File

All source files that can be opened in IDL (.pro and.prc files) can be opened
directly through the project. To open a file for editing, complete the following ste

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right-clicking (for Windows and UNIX) or Ctrl
clicking (for Macintosh) over the file you want to open. SelectEdit from the
context menu. Source files (.pro) are opened in the IDL editor and
GUIBuilder files (.prc) are opened in the IDL GUIBuilder

Tip
You can also edit a.pro or .prc file by double-clicking on the filename. Also, on
Windows you can drag the file from the Projects window to the IDL Editor windo
to open the file.

Compiling a File

All source files can be compiled through the project window. To compile a file,
complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right-clicking (for Windows and UNIX) or Ctrl
clicking (for Macintosh) over the file you want to compile. SelectCompile
from the context menu. The file is compiled.

For more information on how to compile all the files in your project or just the file
that have been recently modified, see“Compiling an Application from a Project” on
page 38.
Building IDL Applicaitons Working with Files in a Project

30 Chapter 2: Creating IDL Projects

t

.

-

of a

s

o

Note
On Macintosh, you will see a red check mark to the left of each file that has no
been compiled after it has been modified.

Testing a File

All IDL GUIBuilder files (.prc) can be run under test mode directly through a
project. To run a.prc file in test mode, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right-clicking (for Windows and UNIX) or Ctrl
clicking (for Macintosh) over the file you want to test. SelectTest from the
context menu. The file is run in test mode.

For more information on running.prc files in test mode, see“Running the
Application in Test Mode” on page 447.

Setting the Properties of a File

Each file in a project has properties. The following table describes each property
file:

Property Description

File name The name of the file. (This field is read only.)

Path The path of the file. (This field is read only.)

Group The name of the group in which the file resides. (This field i
read only.)

File Not Found If the source file cannot be found, you can click this button t
display a dialog for finding the path to the file.

Table 2-2: File Properties
Working with Files in a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 31

.

u

-

r

t

To set the properties for a file, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file yo
want to change.

3. Access the context menu by right-clicking (for Windows and UNIX) or Ctrl
clicking (for Macintosh) over the file for which you want to change the
properties. SelectProperties from the menu. TheFile Properties dialog is
displayed.

Do not Compile Indicates whether or not to compile the file when running o
building. For example, you may have included files for your
main program that you do not want compiled. Selecting this
check box indicates that you do not want this file compiled.

Note - You do not need to set this property for non-source
files such as data files, image files, etc. These types of files
will be automatically excluded from compilation.

Export Indicates whether or not to export the file when exporting a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not wan
to export. When checked, this file will be exported.

Property Description

Table 2-2: File Properties
Building IDL Applicaitons Working with Files in a Project

32 Chapter 2: Creating IDL Projects

ow.
the
it.

file
4. Change any properties of the file.

Note
On Macintosh, the Do Not Compile option can be selected in the Project Wind
If you want the file to be compiled, make sure that the black dot to the right of
file name is displayed. If it is not displayed, click to the right of the file to display

Also the Export option can also be selected/deselected by Ctrl-clicking over the
and selectingExport from the menu. If there is a check mark next toExport , the
file will be exported.

5. Click OK .

6. Save your project file by selectingFile → Save Project.

Figure 2-4: File Properties Dialog
Working with Files in a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 33

 set
Setting the Options for a Project

The options for a project describe how to run, compile, and build the project. To
the options for your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click Project → Options... TheProject Settings dialog is displayed.

3. Set the options based upon the information in the following table:

Figure 2-5: Project Settings Dialog

Option Description

Name Specifies the project name.

Note - This field is read only.

Table 2-3: Project Options
Building IDL Applicaitons Setting the Options for a Project

34 Chapter 2: Creating IDL Projects

ll

rl
Path Specifies the path of the project.

Note - This field is read only.

Run Command Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid IDL
command including.sav or .pro files (these can be files
that are included or not included in your project.) Typically
this is the main program in your application.

Tip - You can use the %? command stream substitution to ca
a dialog to enter a value or values to pass to the called
program. For example, if you have a program named “main”
and it requires the argument “x” to be passed to it, then you
can enter the following for the Run Command:

main, %?(Enter the value for x, x)

For more information on how to run your application, see
“Running an Application from a Project” on page 41.

Build Command Specifies the IDL command to build the application. The
default is blank. If left blank, the files in the project are built
according to theExecution File Format specified and are
compiled (if applicable) in the order specified under Build
Order. For more information, see“Selecting the Build Order”
on page 36.

You can enter any valid IDL command including.sav or
.pro files. You can also enter a batch file using @filenamein
order to perform other operations (for example, running a Pe
script on your source or data files before compiling. For more
information on batch scripts, see theUsing IDL manual.

Save File Specifies the name of the save file to create when building
your project. For more information on building a project, see
“Building a Project” on page 39.

Note - This field is grayed out if you have selected the.pro
File Project Type.

Option Description

Table 2-3: Project Options
Setting the Options for a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 35

file.
4. After completing any changes, clickOK .

5. Save your project file by selectingFile → Save Project.

Note
In addition to setting options for a project, you can also set the properties of a
For more information, see“Setting the Properties of a File” on page 30.

Execution File
Format

Specifies how the project will run or build. The available
formats are:

• Source File (.pro).

• Save File (.sav).

• Licensed Save File (.sav)

Note - The Licensed Save File option is grayed out if you do
not have a Developer Kit license. For more information, see
“About Developer’s Kit Licenses” on page 44.

For more information on building and running projects, see
“Building a Project” on page 39 or“Running an Application
from a Project” on page 41.

Option Description

Table 2-3: Project Options
Building IDL Applicaitons Setting the Options for a Project

36 Chapter 2: Creating IDL Projects

d.
 of

s:

st
d

r

uild
Selecting the Build Order

The build order of a project determines the order in which the files will be compile
In some cases, you might not be able to run all the files in your project because
dependencies on the order in which they are compiled. For example, if the file
main.pro contains:

Pro main
x=1
y=AddTen(x)
Print, x

End

and fileAddTen.pro contains:

Function AddTen, x
x=x+10

End

IDL can’t tell if the statementy=AddTen(x) is referring to a variable namedAddTen
or a function namedAddTen . UnlessAddTen is compiled beforemain , you will get a
“Variable undefined” error message.

To select the build order for the files in your project, complete the following step

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click theBuild Order tab in the Projects window.

3. Move the files to the order in which you want to compile them. The topmo
file listed in the Build Order window will be compiled first. On Windows an
Macintosh, you can move a file by dragging and dropping it to the desired
location. On UNIX, first select a file by left clicking it, then change the orde
by using the up and down arrows located in the bottom left corner of the
Projects window. For example, using the scenario stated previously, the B
Order would look like the following:
Selecting the Build Order Building IDL Applicaitons

Chapter 2: Creating IDL Projects 37
4. Save your project file by selectingFile → Save Project.

Figure 2-6: Build Order Window
Building IDL Applicaitons Selecting the Build Order

38 Chapter 2: Creating IDL Projects

ave
(on

or

e

are
Compiling an Application from a Project

You can compile all of the source files in your project, or just the files that you h
recently modified. A modified file is one that has been modified and then saved
Macintosh, the file does not have to be saved).

To compile the files in your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. To compileall the files in your project on Windows and Motif, select
Project → Compile → All Files. On Macintosh, while holding down the
Option key, selectProject → Compile All Files.

3. To compilejust the files that have been modified since the last compilation on
Windows and Motif, selectProject → Compile → Modified Files. On
Macintosh, selectProject → Compile Modified Files.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 36.

All the files in your project are now compiled. You can now run your application. F
more information, see“Running an Application from a Project” on page 41.

About IDL GUIBuilder Files

If you have included IDL GUIBuilder files in your IDL Project, the following

• On Windows, IDL GUIBuilder (.prc) files are not compiled automatically.
You must selectFile → Generate.You are prompted whether or not to add th
generated files (.pro file and event file) to your project.

• For UNIX and Macintosh, when you compile your IDL Project, IDL
GUIBuilder (.prc) files are automatically compiled (the.pro and event files
are generated) are automatically added to your project on Macintosh, but
not added to your project’s file listing for UNIX. On UNIX, you must add
these files manually. They will be located in the same directory as the.prc
file.

For more information on the IDL GUIBuilder, seeChapter 17, “Using the
IDL GUIBuilder” .
Compiling an Application from a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 39

d

vel

l

ll the
ct’s

e

t

lved,
ct’s
Building a Project

Building a project creates a.sav file of your project or compiles your project base
upon the options you have set for your project. If you have specified:

• Source File — The IDL session is reset (all procedures, functions, main le
variables, and common blocks are deleted from memory), all files in the
project are compiled, and all undefined but referenced functions and
procedures are resolved.

For more information on resetting an IDL session, see
.FULL_RESET_SESSIONin theIDL Reference Guide. For more information
on resolving undefined but referenced functions, seeRESOLVE_ALL in the
IDL Reference Guide.

• Save File — The IDL session is reset (all procedures, functions, main leve
variables, and common blocks are deleted from memory so that unwanted
items are not included in your.sav file), all files in the project are compiled,
all undefined but referenced functions and procedures are resolved, and a
functions and procedures are saved into the file you specified in the proje
options.

The save file is created using the XDR and COMPRESS options. For mor
information, seeSAVE in theIDL Reference Guide.

• Licensed Save File — The IDL session is reset (all procedures, functions,
main level variables, and common blocks are deleted from memory so tha
unwanted items are not included in your.sav file), all files in the project are
compiled, all undefined but referenced functions and procedures are reso
all the functions and procedures are saved into the file specified in the proje
options, and embedded license information is added to the save file.

For more information on embedded license information, see“About
Developer’s Kit Licenses” on page 44.

Note
For more information on project options, see“Setting the Options for a Project”on
page 33.

To build your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.
Building IDL Applicaitons Building a Project

40 Chapter 2: Creating IDL Projects

n
ect,

ou
2. SelectProject → Build . A dialog display confirming that you want to reset
your session.

This will delete all procedures, functions, main level variables and commo
blocks from memory.If you have the save file option selected for your proj
this will ensure that these items will not be included in your.sav file. If you
have the source file option selected for your project, this will ensure that y
have a clean environment in which to run and test your application.

3. Click OK .

Your project has been built.
Building a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 41

our
 run

e

Running an Application from a Project

After compiling your project, you can run your application. What is run depends
upon the options you have set for your project:

• If you have selected your execution file format as source file, each file in y
project is compiled and then run using the command you specified as the
command.

• If you have selected your execution file format as save file or licensed sav
file, the most recently compiled version is run using the command you
specified as the run command. You must have compiled or built your
application before running it.

For more information on setting options for your project, see“Setting the Options for
a Project” on page 33.

To run your application, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. SelectProject → Run.
Building IDL Applicaitons Running an Application from a Project

42 Chapter 2: Creating IDL Projects

IDL
 or
rce

ct. If

y
t

rm.
ct

y

o
re

L
n

ths

rm,
Exporting a Project

Once you have completed your application, you can quickly and easily create an
Runtime distribution or you can easily move your application to another platform
distribute your source code to colleagues by exporting your project. All your sou
code or compiled code (.sav files), IDL GUIBuilder files, data files, and image files
are copied to a directory you specify.

What is exported is dependent upon the options you have selected for the proje
you have selected:

• Source File — Your project’s source, IDL GuiBuilder, data, bitmaps, and an
other files listed in your project will be exported along with your ILD Projec
file to a directory you specify so that you can move them to another platfo
For information on how to set up a directory structure so that your IDL Proje
can find the source files after exporting, see“Where to Store the Files for a
Project” on page 22.

• Save File — The.sav file for your project as well as data, bitmaps, and an
other.sav files included in your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform t
which you are exporting. For information on how to set up a directory structu
so that all files will retain their relative paths after exporting, see“Where to
Store the Files for a Project” on page 22.

• Licensed Save File — The.sav file (with an embedded license) for your
project as well as data, bitmaps, and any other.sav files included in your
project will be exported. You will also be given the option of exporting an ID
Runtime distribution for the platform you are exporting on. For information o
how to set up a directory structure so that all files will retain their relative pa
after exporting, see“Where to Store the Files for a Project” on page 22.

For more information on the options for a project, see“Setting the Options for
a Project” on page 33. For more information on creating a.sav file with an
embedded license, see“About Developer’s Kit Licenses” on page 44.

Exporting Your Project’s Source Files

To export your project’s source files so that you can move them to another platfo
complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.
Exporting a Project Building IDL Applicaitons

Chapter 2: Creating IDL Projects 43

n

s

ove

ing
2. SelectProject → Export . TheBrowse for Folder dialog displays.

3. Select the folder to export the project and clickOK .

4. A dialog is displayed asking if you want to export an IDL Runtime distributio
with your .sav file. SelectNo to not include the distribution.

Your project has now been exported. When moving a project and it’s source file
from one platform to another, there are a few items to be aware of:

• Project workspace information such as which files are open, etc. will not m
from platform to platform.

• Problems with paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by chang
the properties of the file. For more information, see“Where to Store the Files
for a Project” on page 22 and“Setting the Properties of a File” on page 30.

Exporting .sav Files and an IDL Runtime Distribution

For more information on how to create a.sav file of your IDL application and an
IDL Runtime distribution, see“Creating Your Product Distribution Through Your
IDL Project” on page 51.
Building IDL Applicaitons Exporting a Project

44 Chapter 2: Creating IDL Projects

an
 on
e

he
L

About Developer’s Kit Licenses

A Developer’s Kit License allows a developer to embed licensing information into
IDL application (.sav file). This creates an application that is fully licensed to run
an IDL Runtime distribution. When this embedded license is present, IDL Runtim
bypasses normal license checking. One example of this licensing technique is t
IDL Demo Applications. The Demo Applications can be run on an unlicensed ID
distribution.

For more information on purchasing a Developer’s Kit License, contact your
Research Systems sales representative.
About Developer’s Kit Licenses Building IDL Applicaitons

Chapter 3:

Distributing IDL
Applications

This chapter describes the following topics.
Overview . 46
Creating Your Product Distribution Through
Your IDL Project. 51
Customizing A Windows Distribution 55
Customizing a Macintosh Distribution. . . . 61
Customizing A UNIX Distribution. 64

For Applications That Use IDL DataMiner. 65
For Applications That Use ActiveX. 68
Using the make_rt Script. 69
Adding IDL Files to the Distribution. 73
Replacing the Licensing Dialog Image 76
Building IDL Applications 45

46 Chapter 3: Distributing IDL Applications

T,

L,
y

in. If
r

can

n

ls to

s of

n
at
Overview

This chapter describes how to distribute your IDL application on Windows 95/98/N
Macintosh, or UNIX platforms. Whether your IDL application uses.sav files,
Callable IDL, or the IDL ActiveX control, you can easily distribute your IDL
application using the procedures outlined in this section.

IDL Applications

An IDL application is a.sav file or a series of.sav files as well as other data files,
that you can distribute with an IDL Runtime distribution, a standard version of ID
or by simply giving your user the IDL application to run on a version of IDL that the
already have. When your user starts the program, IDL restores the.sav file you
specify that contains the main program and executes the routines contained there
you are distributing a standard version of IDL or giving your application to a use
who already has a standard version of IDL, you can also distribute.pro files since
that user has the ability to compile programs.

IDL Applications that Use Callable IDL

An IDL application that uses Callable IDL is an application written in another
language (such as C, C++, Visual Basic, etc.) that calls IDL as a subroutine. You
distribute Callable IDL applications with an IDL Runtime distribution, a standard
version of IDL, or by simply giving your user the IDL application to run on a versio
of IDL that they already have. For information on how to create an IDL Callable
application, see theExternal Development Guide.

IDL Applications that Use the IDL ActiveX Control

An IDL application that uses the IDL ActiveX control is an application written in
another language (such as C, C++, Visual Basic, etc.) that uses ActiveX Contro
call IDL. The Microsoft Windows version of IDL includes an ActiveX Control that
provides a powerful way to integrate all the data analysis and visualization feature
IDL with other programming languages that support ActiveX control. You can
distribute IDL ActiveX applications with an IDL Runtime distribution, a standard
version of IDL, or by simply giving your user the IDL application to run on a versio
of IDL that they already have. For information on how to create an application th
uses the IDL ActiveX control, see theExternal Development Guide.
Overview Building IDL Applications

Chapter 3: Distributing IDL Applications 47

arch
ity
QL

ly

see

ou

” or a

nt

 or
ou
g.

ur
re
Using IDL DataMiner within Your Application

An IDL application that uses IDL DataMiner is an application (either using a.sav
file, Callable IDL, or the IDL ActiveX control) that accesses data using the Open
Database Connectivity (ODBC) interface. This allows IDL users to access and
manipulate information from a variety of database management systems. Rese
Systems developed IDL DataMiner so that IDL users can have all the connectiv
advantages of ODBC without having to understand the intricacies of ODBC or S
(Structured Query Language). You can distribute applications that use IDL
DataMiner with an IDL Runtime distribution, a standard version of IDL, or by simp
giving your user the IDL application to run on a version of IDL that they already
have. For information on how to create an application that uses IDL DataMiner,
theIDL DataMiner Guide.

Your Application’s Main .sav File

The main .sav file is the file that is restored and run when you start your IDL
application. If you are creating your application using an IDL Project, all the
information required to run your application will be automatically created when y
export your project. Keep in mind that the.sav file that you want to automatically
be restored and executed when IDL starts must have a procedure named “main
procedure with the same name as your.sav file without the extension.

Secondary .sav Files and Other Data Files

If your IDL application requires that you provide data in IDL variables or if you wa
to distribute other procedures and functions that are not in your main.sav file, you
will need to save the IDL variables, functions, and procedures in separate.sav files.

If you are creating your application using an IDL Project, you can include these.sav
files in your project. You can also include other data files such as ASCII, binary,
image files that are required for your application in your project as well. When y
export your project, these files will be included in the distribution you are creatin
For more information on including other files in your IDL Project, see“Where to
Store the Files for a Project” on page 22.

The.sav files included in your distribution can then be restored by a routine in yo
application. (Generally, themain procedure calls the RESTORE procedure to resto
all secondary.sav files.)
Building IDL Applications Overview

48 Chapter 3: Distributing IDL Applications

les,

e

t

g

t

Note
Before using the RESTORE procedure, make sure that you set !PATH system
variable to a path that includes your secondary.sav files.

Keywords to the SAVE procedure allow you to save IDL variables, system variab
and common block definitions. For example, to save the definitions of all of the
variables and common block definitions used in your compiled program in a file
namedmyvariables.sav , use the command

IDL> SAVE, /VARIABLES, /COMM, FILENAME='myvariables.sav'

To restore the values of the variables saved inmyvariables.sav from within your
runtime application, include the line

RESTORE, 'myvariables.sav'

in your main procedure.

If you prefer not to include all of the IDL routines required by your application in
your main.sav file, you can save them in one or more separate.sav files and use
the RESTORE procedure in your main procedure to restore the routines:

RESTORE, 'extra_routines.sav'

Note
IDL Runtime does not compile.pro files. Because of this, you will need to creat
.sav files using the SAVE procedure in conjunction with the RESOLVE_ALL
procedure for any procedures or functions used by your application that are no
included in the main.sav file.

IDL Runtime vs. Standard IDL

You can distribute your IDL applications using an IDL Runtime distribution or usin
the standard IDL distribution.

IDL Runtime

The Runtime version of IDL executes programs written using IDL, but does not
provide access to the IDL command line or IDL Development Environment
(IDLDE). It does not accept IDL commands interactively. You can create IDL
programs and bundle them with IDL Runtime for distribution to users who do no
have access to the full version of IDL.

IDL Runtime is appropriate for:
Overview Building IDL Applications

Chapter 3: Distributing IDL Applications 49

s

dify

 of

ccess

tion
our

:

 a
tor
 not

m
and
 or

ur

on is
• Vertical-market packages developed in IDL but which appear to the user a
stand-alone applications.

• Software designed for use by operators or technicians who do not need
programmatic access to IDL’s full range of analytical tools.

• Situations in which the developer does not want end-users to be able to mo
functions written in the IDL language.

• Organizations with existing investments in IDL code, where some mixture
runtime and development IDL licenses may be cost effective.

Standard IDL

The standard version of IDL is best suited to applications where the user needs a
to the full scope of IDL’s features. If your users need advanced analytical tools
outside the scope of your application, you may choose to distribute your applica
using standard IDL. If you are distributing the standard version of IDL, contact y
sales representative to purchase copies that you can distribute.

How do I License My IDL Application?

IDL (both standard and IDL Runtime) is protected by one of the following means

• Software-Based Node-Locked License — Use a software key to tie the
license to the specific computer on which IDL will run. The software key is
license file generated by Research Systems or your local office or distribu
based on a unique host ID from the machine to be licensed. This option is
available on the Macintosh platform.

• Hardware-Based Node-Locked License — Use a copy-protection device to
tie the license to a specific computer (Windows and Macintosh platforms
only). The device will not interfere with the normal functioning of your syste
or other software packages. The hardware key, or HASP, is a small plastic
metal device labeled HASP that plugs into your computer’s parallel, ADB,
USB port.

• Floating License — Use a license file generated by Research Systems, yo
local office, or distributor based on a unique host ID from the machine or
machines to be licensed. Floating licenses use a license server, which
distributes available licenses to machines that request a license. This opti
not available on the Macintosh platform.
Building IDL Applications Overview

50 Chapter 3: Distributing IDL Applications

L.
 the
will
ions
sly.

DL
per

y of

our
Note
There are different hardware keys for the Runtime and standard versions of ID
On the Macintosh, both hardware keys cannot be installed on your machine at
same time.This means that you or your users who have both products installed
need to have the correct hardware key installed while running the different vers
of IDL. On Windows machines, you can install both hardware keys simultaneou

You must decide which licensing method you will use to distribute your IDL
applications. Research Systems strongly recommends that you distribute your I
Runtime applications pre-licensed. This means that you will have to obtain the pro
licensing information from Research Systems and individually license each cop
your application before delivering it to your end-user. This information can be
included with your application. For more information, see theLicensing Management
Guide.

If you would like more information on these licensing methods, please contact y
Research Systems sales representative.
Overview Building IDL Applications

Chapter 3: Distributing IDL Applications 51

IDL
e

ct. If

y
so
 to

o

L

a

Creating Your Product Distribution Through
Your IDL Project

Once you have completed your application, you can quickly and easily create an
Runtime distribution that you can distribute to your users. All your compiled cod
(.sav files), IDL GUIBuilder files, data files, and image files are copied to a
directory you specify.

What is exported is dependent upon the options you have selected for the proje
you have selected:

• Source File — Your project’s source, IDL GuiBuilder, data, bitmaps, and an
other files listed in your project will be exported to a directory you specify
that you can move them to another platform. For more information on how
export source files, see“Exporting Your Project’s Source Files” on page 42.

• Save File — The.sav file for your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform t
which you are exporting.

• Licensed Save File — The.sav file (with an embedded license) for your
project will be exported. You will also be given the option of exporting an ID
Runtime distribution for the platform you are exporting on.

For more information on the options for a project, see“Setting the Options for
a Project” on page 33. For more information on creating a.sav file with an
embedded license, see“About Developer’s Kit Licenses” on page 44.

Creating Your Application and IDL Runtime Distribution

To export your project’s source files, complete the following steps:

Note
Exporting an IDL Runtime distribution is not supported on Windows NT for Alph
platform.

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.
Building IDL Applications Creating Your Product Distribution Through Your IDL Project

52 Chapter 3: Distributing IDL Applications

n

L

t

les

ee
Note
You must build the project before exporting. See“Building a Project” on page 39
for more information.

2. SelectProject → Export . TheBrowse for Folder dialog is displayed.

3. Select the folder to which to export the project and clickOK .

4. A dialog is displayed asking if you want to export an IDL Runtime distributio
with your .sav file. SelectYesto include the distribution orNo to not include
the distribution. For information on how to add or remove files from the ID
distribution, see“Adding IDL Files to the Distribution” on page 73.

5. Specify where to copy the distribution files from.

For Windows platforms, you will need to insert your IDL product CD-ROM
into your CD-ROM drive. The files needed to create this distribution will be
copied from the CD-ROM. Enter the drive letter of your CD-ROM drive tha
contains your IDL product CD-ROM.

For UNIX platforms, the distribution is taken directory from the installed
version of IDL you are currently running.

For Macintosh platforms, a dialog displays that you can use to select the fi
you want to include in the distribution. If you want to create a standard
distribution, selectExport . For more information on customizing the
distribution, see“Adding IDL Files to the Distribution” on page 73.

Your project has now been exported.

The IDL Distribution for Windows

After you have exported your project and the IDL Runtime distribution, you will s
the following in the directory you specified:

• Your application’s.sav file.

• Any other secondary.sav files or data files that you have included in your
IDL Project.

• Thebin andresource directories of the IDL Runtime distribution. Thebin
directory contains the subdirectorybin.x86 , which contains all of the files
necessary to run your application. Theresource directory contains other files
necessary to run IDL.
Creating Your Product Distribution Through Your IDL Project Building IDL Applications

Chapter 3: Distributing IDL Applications 53

is

All
er

our

d in

u

.

Within thebin/bin.x86 directory are the executables for your application, which
named the same as your.sav file minus the extension (for example
your_sav_file .exe), and theidl.ini file which describes information that IDL
needs to start. Simply double-clicking the executable will start your application.
paths in theidl.ini file are relative so you can copy this directory tree to any oth
Windows platform and simply double-click the executable file to run your
application.

For information on how to customize your IDL distribution, see“Customizing A
Windows Distribution” on page 55.

The IDL Distribution for Macintosh

After you have exported your project, you will see the following in the folder you
specified:

• Your application’s.sav file.

• Any other secondary.sav files or data files that you have included in your
IDL Project.

• Thebin andresource folders.

The executable for your application is in the top-level folder that also contains y
main.sav file and is named the same as your main.sav file. Simply double-click
the executable to start your application. The executable uses information locate
the resource for the file to start your application.

For information on how to customize your IDL distribution, see“Customizing a
Macintosh Distribution” on page 61.

The IDL Distribution for UNIX

After you have exported your project, you will see the following in the directory yo
specified:

• Your application’s.sav file.

• A script that executes your application that is named the same as your.sav
file minus the extension.

• Any other secondary.sav files or data files that you have included in your
IDL Project.

• Thebin andresource directories.

You can simply execute the script that has been created to start your application
Building IDL Applications Creating Your Product Distribution Through Your IDL Project

54 Chapter 3: Distributing IDL Applications
For information on how to customize your IDL distribution, see“Customizing A
UNIX Distribution” on page 64.
Creating Your Product Distribution Through Your IDL Project Building IDL Applications

Chapter 3: Distributing IDL Applications 55

m

en

ser
our

to
Customizing A Windows Distribution

If you have exported your IDL Project with an IDL Runtime distribution or if you
have used themake_rt script to create the distribution, the following sections
describe ways in which you can customize your IDL application. You can perfor
these actions manually or through an installation script that you create.

Note
There are a number of commercial applications available to help you build
installers, for example InstallShield from InstallShield Software Inc. Research
Systems has no connection with the companies that produce installation
applications, and does not make any claims as to the applications’ suitability.

The IDL.INI File

IDL Runtime uses an initialization file—idl.ini —to supply software licensing
information and program defaults. Theidl.ini file is automatically created in the
bin\bin.x86 directory with settings that can be used to run your application wh
you export your IDL Project. If you have created an IDL distribution using the
make_rt script, you will need to create theidl.ini file.

The idl.ini file is read when IDL starts up for the first time and its entries are
converted into Windows Registry entries automatically. If registry entries already
exist for an IDL installation in the same directory, a dialog will appear asking the u
whether the existing entries should be overwritten. Even if you choose to have y
customer license IDL the first time your application is run, youmust supply an
idl.ini file.

Note
If your application’s executable (created through your IDL Project),idlde.exe , or
idlrt.exe is launched, then theidl.ini file will no longer be present. It will be
renamedidl.000 and areg.dat file will be created. If this happens, you will
need to rename theidl.000 back toidl.ini and then distribute your package,
without the reg.dat file.) In order to view it, since it is hidden, you may need to go
View → Options → Show all files in Windows Explorer and clickOK .

The following is an exampleidl.ini file:

[IDL 5.3]
Cookie=25-XALP9CAF
Building IDL Applications Customizing A Windows Distribution

56 Chapter 3: Distributing IDL Applications

he

e

se

nse

of
HomeDir=..\..
HelpPath=+..\..\help
InstallNum=314159
LicenseMethod=0
PortSetID=0
RSI Root=..\..
RuntimeFile=..\..\myapp.sav
RuntimeIcon=myicon.ico
SearchPath=+..\..
SiteNotice=My Notice

Note
If you have created an IDL Runtime distribution through IDL Projects, not all of t
entries for theidl.ini file are included.

The fields have the following meanings:

[IDL 5.3]

The field heading specifies which version of IDL is in use. This heading should b
the same as the heading used by the copy of IDL you use to create your IDL
application.

Cookie

This field, along with InstallNum and SiteNotice, contain the hardware key licen
information for your IDL Runtime application. Note that these fields may contain
different information for each installation.

If your application uses hardware licensing and you desire to “pre-license” your
application, the fields Cookie, InstallNum, and SiteNotice should be set to the lice
information provided by Research Systems.

HelpPath

This field specifies which directories IDL Runtime will search for hypertext help
files. The “+” symbol at the beginning of the string indicates that all subdirectories
the specified directory should be searched.

HomeDir

This field specifies the directory that contains thebin directory.
Customizing A Windows Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 57

nse

ses

ing.

se
InstallNum

This field, along with SiteNotice and Cookie, contain the hardware key license
information for your IDL Runtime application. Note that these fields may contain
different information for each installation.

If your application uses hardware licensing and you desire to “pre-license” your
application, the fields Cookie, InstallNum, and SiteNotice should be set to the lice
information provided by Research Systems.

LicenseMethod

The following line can be placed in theidl.ini file to cause IDL to use
client/server licensing:

LicenseMethod=1

For this type of license, thelicense.dat file should be located in the
<idl_dir> \license directory (where<idl_dir> is the directory that contains
the IDL Runtime distribution tree). This type of license may require starting the
license manager.

The default licensing method is Desktop (or hardware-based node-locked) licen
(HASP licenses). If desired, this could be forced by placing the following line in
idl.ini :

LicenseMethod=0

Note
When prompted with a dialog asking whether or not to import initialization
preferences, you should answerYes. AnsweringNo may mean that you are not
licensing IDL-Runtime.

PortSetID

This field is used to describe the port number of the hardware key used for licens
This field should always be set to 0.

RSI Root

This field is used to specify the directory that contains the license directory for u
with software-based node-locked licenses.

RuntimeFile

This field should contain the name of the.sav file to be restored automatically when
IDL Runtime starts. If this field is left blank and no.sav file is specified on the
Building IDL Applications Customizing A Windows Distribution

58 Chapter 3: Distributing IDL Applications

nse

u

ke

e.
command line, IDL Runtime will attempt to restore a file namedruntime.sav in
directory specified by theHomeDir field.

Note
If you specify a.sav file to be restored automatically, IDL Runtime will ignore any
.sav file specified on the command line.

RuntimeIcon

This field should contain the path and name of the.ico file containing your
application’s custom icon.

SearchPath

This field specifies which directories IDL Runtime will search for.sav files. The
“+” symbol at the beginning of the string indicates that all subdirectories of the
specified directory should be searched.

SiteNotice

This field, along with InstallNum and Cookie, contain the hardware key license
information for your IDL Runtime application. Note that these fields may contain
different information for each installation.

If your application uses hardware licensing and you desire to “pre-license” your
application, the fields Cookie, InstallNum, and SiteNotice should be set to the lice
information provided by Research Systems.

Install the HASP Service

If you are using Hardware-Based Node-Locked License (or HASP licensing), yo
must install the HASP service.

Your IDL Runtime distribution tree contains an application (hinstall.exe) in the
bin \bin.x86 directory that will install or remove the HASP service. Use this
application to install the service on your users’ Windows systems. To do so, invo
hinstall.exe with the/i switch from the DOS prompt:

hinstall /i

as part of the installation process for your IDL application. Note thathinstall.exe
will prompt the user to reboot the computer after installation of the HASP servic

To remove the HASP service, invokehinstall.exe with the/r switch.
Customizing A Windows Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 59

ion

ing

:

Note
Installing the HASP driver is not needed for floating licenses. For more informat
on installing floating licenses, see theLicense Management Guide.

Creating Shortcuts/Start Menu Items

You can create shortcuts or Start menu items for your application. Use the follow
guidelines.

When you start your IDL Runtime application, itrestores:

• a .sav file specified on the command line,

• a .sav file specified in theidl.ini file,

• or the fileruntime .sav (if no other file is specified)

and calls the main procedure. This is:

• a procedure namedmain in the.sav file

• or a procedure with the same name as the.sav file

When the main procedure returns, IDL exits.

Creating a Shortcut

To create a Shortcut that appears on your desktop, complete the following steps

1. Right-click on your desktop and selectNew → Shortcut. TheCreate
Shortcut dialog displays.

2. Enter the full path to your application’s executable. For example:

c:\myapp\myapp.exe

This will call the.sav file specified in theidl.ini file. If you wanted to
specify a.sav file in the command line, enter the following:

c:\myapp\myapp.exe myapp.sav

3. Click Next. TheSelect a Title for the Program dialog displays.

4. Enter the name you want to appear on the shortcut.

5. Click Finish.
Building IDL Applications Customizing A Windows Distribution

60 Chapter 3: Distributing IDL Applications
Creating a Start Menu Item

To create a Start Menu item, complete the following steps:

1. SelectStart → Settings→ Taskbar and Start Menu.... The Taskbar
Properties dialog displays.

2. Select theStart Menu Programs tab.

3. Click Add.... The Create Shortcut dialog displays.

4. Enter the full path to your application’s executable. For example:

c:\myapp\myapp.exe

This will call the.sav file specified in theidl.ini file. If you wanted to
specify a.sav file in the command line, enter the following:

c:\myapp\myapp.exe myapp.sav

5. Click Next. TheSelect a Title for the Program dialog displays.

6. Enter the name you want to appear on the shortcut.

7. Click Finish.
Customizing A Windows Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 61

on.
u

t
ns’

e

n.

r. The
ce. If
Customizing a Macintosh Distribution

If you have exported your IDL Project with an IDL Runtime distribution, the
following sections describe ways in which you can customize your IDL applicati
You can perform these actions manually or through an installation script that yo
create.

Note
There are a number of commercial applications available to help you build
installers: these include Developer VISE from MindVision Software, Stuffit and
Stuffit Installer Maker from Aladdin Systems, and DragInstall from Ray Sauers
Associates, Inc. Research Systems has no connection with the companies tha
produce these applications, and does not make any claims as to the applicatio
suitability.

Modifying The Resource for Your Application’s Executable

IDL Runtime uses the resource of the executable to supply the name of the.sav file
to restore on startup. When exporting a project and IDL Runtime distribution, th
resource is automatically modified with the information necessary to run your
application. This allows you to double-click on the IDL icon to run your applicatio
You can modify the resource to change the default settings.

Resources are added using a resource file editor such as ResEdit or Resorcere
following instructions assume you are using ResEdit to add the necessary resour
you are using a different editor, the exact actions may be slightly different.

Prelicensing Your Application

Note
Be sure to make your changes to a copy of IDL that is not licensed.

1. Double-click on the IDL icon to start IDL. ClickLicense, and enter your
runtime license key information into the License dialog.

2. Quit IDL.

Changing the Main .sav File to Restore at Startup

1. Open the IDL application using ResEdit.
Building IDL Applications Customizing a Macintosh Distribution

62 Chapter 3: Distributing IDL Applications

our
he
2. Open the STR# resources by double-clicking on the STR# icon.

3. Double-click on STR# ID 134. (The following figure shows the STR # ID in
the title of the window.)

Enter the name of your application’s main.sav file without the.sav
extension. In the following figure, we have entered the name'myapp' as an
example.

Note
The number of strings in the STR # 134 resource depends on the type of IDL
license you are using. You may see more than two text fields—for example, if y
license includes IDL DataMiner functionality, you will see a field that contains t
string 'idl_dm' in addition to the two shown above.

4. ChooseSave from the File menu.

5. Quit ResEdit.

Figure 3-1: The STR# icon

Figure 3-2: The ResEdit Resource String Dialog
Customizing a Macintosh Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 63

s

han

d.

d.
r has
n

if
he

n.
Starting IDL Runtime Applications for Macintosh

There are three ways to start IDL Runtime for Macintosh:

• Double-click on the IDL Runtime icon. IDL Runtime will look for the file
name specified in the STR # 134 resource (as described in“Modifying The
Resource for Your Application’s Executable” on page 61) in the top level
folder of the IDL runtime distribution, and attempt to restore the file. If it doe
not find the file, IDL will exit with an error message. This is the preferred
method for launching an IDL runtime application.

• Drag the.sav file that contains theMAINprogram onto the IDL Runtime icon.
This method is also quite robust.

• Double-click on the.sav file that contains theMAIN program. This is the
least-desirable method for starting a runtime application, because if more t
one IDL executable (runtime or fully interactive) exists on a particular
Macintosh, it is not certain that double-clicking on the.sav file will launch
the correct executable. This may become a problem if:

• You, as the IDL Runtime developer, have both runtime and non-IDL
Runtime executables on your machine. In this situation, simply avoid
double-clicking on the.sav file—drag it to the proper executable instea

• The IDL Runtime application end-user has other copies of IDL installe
Since it may not be possible to know in advance whether the end-use
other copies of IDL installed, it is up to you as a IDL Runtime applicatio
developer to inform your end-users that they should do one of the
following:

Limit themselves to a single IDL executable. This may not be feasible
the end-user has an older version of IDL that cannot be upgraded to t
same version as that used to produce the IDL Runtime application.

Explicitly drag the runtime application’s.sav file to the proper IDL
Runtime executable. This will work in all cases.

Double-click on the IDL Runtime executable icon to start the applicatio
Note that this method requires that the name of the.sav file be specified
in the STR # 134 resource of the IDL executable, or (if no name is
specified in the string resource) that the.sav file be named
runtime.sav . In either case, the.sav file must be located in thelib
folder in the IDL Runtime distribution.
Building IDL Applications Customizing a Macintosh Distribution

64 Chapter 3: Distributing IDL Applications

m

.

ed

ed
Customizing A UNIX Distribution

If you have Exported your IDL Project with an IDL Runtime distribution or if you
have used themake_rt script to create the distribution, the following section
describe ways in which you can customize your IDL application. You can perfor
these actions manually or through an installation script that you create.

IDL Runtime Command Line Options for UNIX

IDL Runtime for UNIX is started using theidl command. You can invoke this
command at the command line or create a script containing theidl command. If you
have Exported your IDL Project, a script has been automatically created for you

When you start your IDL Runtime application, itrestores:

• a .sav file specified on the command line,

• or the fileruntime .sav (if no other file is specified)

and calls the main procedure. This is:

• a procedure namedMAIN in the.sav file

• or a procedure with the same name as the.sav file

When the main procedure returns, IDL exits.

The following command will start IDL Runtime and attempt to restore a file nam
runtime.sav , located in the current directory:

% idl -rt

The following command will start IDL Runtime and attempt to restore a file nam
myapp.sav , located in the directory/usr/local/rsi/idl :

% idl -rt=/usr/local/rsi/idl/myapp.sav

If the .sav file is located in the current directory, the full path name need not be
supplied.
Customizing A UNIX Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 65

ks:
For Applications That Use IDL DataMiner

If your application uses IDL DataMiner, you will need complete the following tas

If Your Application Uses IDL DataMiner for Windows

1. Before creating your IDL Runtime distribution, add the files listed in the
manifest_aux.txt file to the manifest file. For more information on how to
modify the manifest file, see“Adding IDL Files to the Distribution” on
page 73.

2. After creating your IDL Runtime distribution, you will need to move files from
thebin\bin.x86 directory. Move the following .DLLs to the
WINDOWS/SYSTEM directory for Windows 95/98 or to the
WINDOWS/SYSTEM32 directory for Windows NT.

3. You will also need to move .DLLs for any the drivers you require to the
WINDOWS/SYSTEM directory for Windows 95/98 or to the
WINDOWS/SYSTEM32 directory for Windows NT. The following are the
drivers for Windows 95/98/NT:

Files for MS SQL Server

• dbnmpntw.dll

• drvssrvr.hlp

• sqlsrv32.dll

Files for Informix

• dminf13.dll

• dminf13.hlp

dmbas13.dll dmut13.dll ivdm.lic

odbc32.dll odbccp32.dll odbcint.dll

odbcad32.exe odbccr32.dll odbcinst.cnt

odbcinst.hlp odbctrac.dll mtxdm.dll

dmdrv13.hlp dmdrv13.cnt dmflt13.dll
Building IDL Applications For Applications That Use IDL DataMiner

66 Chapter 3: Distributing IDL Applications

d

the
t it

he
Files for Oracle 7

• dmor713.dll

• dmor713.hlp

Files for Oracle 8

• dmor813.dll

• dmor813.hlp

Files for Sybase

• dmsyb13.dll

• dmsyb13.hlp

Files for Text Files

• dmtxt13.dll

• dmtxt13.hlp

4. You will also need to create registry entries for these files. The
registry.txt file located in thebin/make_rt directory contains the
necessary information to create these entries.

For Macintosh

1. Before creating your IDL Runtime distribution, copy the ODBC folder locate
in theRSI-directory to the IDL53 directory whereRSI-directory is the
directory in which you have installed IDL.

2. ChooseProject → Export . The export dialog is displayed.

3. Add all the files the ODBC directory that you have just copied by clicking
ODBC directory. A check mark is displayed next to the folder indicating tha
will be exported.

4. When you are installing your application, you will need to move files from t
ODBC directory of the IDL Runtime distribution.

Move the following files to the System:Extensions folder:

• ODBC Configuration Manager PPC

• ODBC Cursor Library PPC

• ODBC Driver Manager PPC
For Applications That Use IDL DataMiner Building IDL Applications

Chapter 3: Distributing IDL Applications 67

at

st
ou
• ODBC 2.x Bridge PPC

• ODBC Trace Library PPC

Move the following file to the System:Control Panels folder:

• ODBC Setup PPC

Move the following file to the System:Preferences folder:

• dmodbc.lic

Move any of the following files to the Systems:Extensions:ODBC folder th
your application requires:

• Research Systems 3.02 Flat Lib

• Research Systems 3.02 Base Lib

• Research Syste 3.02 Text Driver

• Research Syst 3.02 dBase Driver

• Research Sys 3.02 Utilities Lib

• Research Sys 3.02 Sybase Driver

• Research Sys 3.02 Oracle Driver

• Research S 3.02 FoxPro DB Driver

For UNIX

1. Before creating your IDL Runtime distribution, add the files listed in the
manifest_aux.txt file to the manifest file. For more information on how to
modify the manifest file, see“Adding IDL Files to the Distribution” on
page 73.

2. You must modify theodbc.ini file to include information about the drivers
you are using. This file is located in theresource/dm/< OS_NAME> directory
of the distribution tree you have just created. After modifying this file, it mu
be placed in each user’s home directory. For details on the modifications y
must make to theodbc.ini file, see theIDL DataMiner manual.
Building IDL Applications For Applications That Use IDL DataMiner

68 Chapter 3: Distributing IDL Applications

ol

r

For Applications That Use ActiveX

If you’re creating a distribution for an application that uses the IDL ActiveX contr
on Windows platforms, you must complete the following steps:

1. Before creating your IDL Runtime distribution, add the files listed in the
manifest_aux.txt file to the manifest file. For more information on how to
modify the manifest file, see“Adding IDL Files to the Distribution” on
page 73.

2. Install theidldrawx2.ocx file which is now in thebin. x86 directory of
your distribution tree in the SYSTEM subdirectory of the WINDOWS
directory (on Windows NT systems, the files should be installed in the
SYSTEM32 directory).

3. Register theidldrawx2.ocx file during your installation process. For
example, you can do this using theregsvr32.exe executable (for more
information, refer to your Microsoft Windows documentation) or you can
perform this task using calls from the product you are using to create you
installation script.
For Applications That Use ActiveX Building IDL Applications

Chapter 3: Distributing IDL Applications 69

,
ntime

is

DL

or

e

d.

ted.
n’s

y

Using the make_rt Script

Themake_rt script is used to create an IDL Runtime distribution. On Macintosh
this process is done through a dialog. This process can be used to create IDL Ru
distributions for use with IDL Callable or IDL ActiveX applications. This script is
also called during the Exporting of an IDL project. If you choose, you can run th
script outside of projects to create your IDL Runtime distribution.

Tip
It is recommended that you use the Exporting of an IDL Project to create your I
Runtime distribution instead of using themake_rt script. For more information on
how to create an IDL Runtime distribution through IDL Projects, seeChapter 2,
“Creating IDL Projects”.

If you are using themake_rt script to create your IDL Runtime distribution, you
must complete the following tasks that Exporting an IDL Project does for you
automatically:

• Create the IDL Runtime distribution using themake_rt script. If you are
creating a distribution for an application that uses the IDL ActiveX control,
an application that uses IDL DataMiner, see“Adding IDL Files to the
Distribution” on page 73 for information on additional files you’ll need to
include. You can also customize the distribution to include other files in th
standard IDL distribution, for more information see“Adding IDL Files to the
Distribution” on page 73.

• Place your application’s main.sav file, along with any.sav files containing
variable data or additional routines, in the distribution tree you have create

• Create.sav files for any.pro files from the IDL distribution that are used by
your application and place them in the distribution tree you have just crea
Alternatively, these routines can be compiled and saved in your applicatio
main .sav file.

Note
Before using the RESTORE procedure to restore any secondary.sav files, make
sure that you set !PATH system variable to a path that included your secondar
.sav files.
Building IDL Applications Using the make_rt Script

70 Chapter 3: Distributing IDL Applications
Using the make_rt Script for Windows

To create a distribution on Windows using themake_rt script, complete the
following steps:

Note
Themake_rt.exe is not supported on Windows NT for Alpha platforms.

1. SelectStart → Run. The Run dialog is displayed.

2. Enter the command syntax based on the following:

rsi-directory\bin\make_rt\make_rt.exe [source] dest manifest savefile mode

wherersi-directory is the directory in which you installed IDL. The following
table describes each parameter:

Parameter Description

source The CD-ROM drive containing your IDL product
CD-ROM to copy the distribution source files.
For example, if your CD-ROM drive is E:, then
the path would be“E” . If not specified, you will
be prompted.

dest The full path to the destination directory to
contain the copied distribution.

manifest The full path and filename containing the list of
files to copy. This is themanifest_rt.txt file
in thersi-directory \bin\make_rt
directory. For more information, see“Adding
IDL Files to the Distribution” on page 73.

savefile The name of the resulting IDL Runtime
executable. The IDL Runtime executable is
typically named “idlrt.exe ” but you can
specify the name of your product or the same
name as your.sav file. For IDL Callable or IDL
ActiveX control applications, we suggest you use
“ idlrt ”. Enter the name without any extension.
Using the make_rt Script Building IDL Applications

Chapter 3: Distributing IDL Applications 71

e the
3. Click OK .

For Macintosh

On Macintosh, the distribution is created through a dialog where you can choos
files to export. To start the dialog, chooseProject → Export . For more information
on creating a distribution, see“Adding Files on Macintosh Platforms” on page 74.

For UNIX

To create a distribution on Windows, run themake_rt script located inrsi-
directory /bin/make_rt script wherersi-directory is the IDL installation
directory. The following is the syntax for themake_rt script:

make_rt [source] dest manifest savefile mode

The following table describes each parameter of the syntax:

mode The type of distribution you are creating. Valid
values are:

rt — Creates an IDL Runtime distribution for use
with all IDL applications, including IDL Callable
applications and ActiveX applications.

em — Creates an IDL Runtime distribution for
use with an embedded.sav file. For more
information, see“About Developer’s Kit
Licenses” on page 44.

Parameter Description

source The full path to the source directory containing
the IDL distribution. This is the path to the IDL
bin directory. For example, if you’ve installed in
the default location, this would be
/usr/local/rsi/idl_5.3 . If not specified,
you will be prompted.

Table 3-2: make_rt Parameters

Parameter Description

Table 3-1: make_rt.exe Parameters
Building IDL Applications Using the make_rt Script

72 Chapter 3: Distributing IDL Applications
dest The full path to the destination directory to
contain the copied distribution.

manifest The full path and filename containing the list of
files to copy. This is themanifest_rt.txt file
in thersi-directory /bin directory. For more
information, see“Adding IDL Files to the
Distribution” on page 73.

savefile The name of the script to be created in thedest
directory. This script will start IDL Runtime and
attempt to restore a.sav file named
savefile .sav in yourdest directory. You may
want to specify the name of your product or the
same name as your.sav file. Enter the name
without any extension.

mode The type of distribution you are creating. Valid
values are:

rt — Creates an IDL Runtime distribution for use
with all IDL applications including IDL Callable
applications and ActiveX applications.

em — Creates an IDL Runtime for use with an
embedded.sav file. For more information, see
“About Developer’s Kit Licenses” on page 44.

Parameter Description

Table 3-2: make_rt Parameters
Using the make_rt Script Building IDL Applications

Chapter 3: Distributing IDL Applications 73

fest

es

e

our

r
n,
on

n
he

 of
Adding IDL Files to the Distribution

The files that are exported for an IDL Runtime distribution are defined in a mani
file. This file is used when you export a Project and include the IDL Runtime
distribution. The files that are included in the manifest file are the minimum IDL fil
you need to create an IDL Runtime distribution. You can modify this file to:

• Add the resource files such as high-resolution maps that are not currently
included in the manifest.

• Add files required for creating an IDL ActiveX distribution.

• Add files required for an IDL application that uses IDL DataMiner.

• Add any other files included in the IDL distribution that are not included in th
manifest file.

• Remove any files that are included in the manifest but are not required for y
application.

Note
Only files in the IDL distribution can be added to the manifest. If you have othe
files you want to be included in your application but are not in the IDL distributio
you can add them to your IDL Project or manually copy them into the distributi
after it has been completed.

Adding Files on Windows and UNIX Platforms

The manifest is located inrsi-directory /bin/make_rt/manifest_rt.txt
file for Windows platforms andrsi-directory /bin/manifest_rt.txt for
Motif platforms wherersi-directory is the installation directory for IDL.

To modify the manifest file to include other files, complete the following steps:

1. Open themanifest_rt.txt in any text editor.

2. If you’re creating a distribution for use with an IDL ActiveX application or a
IDL application that uses IDL DataMiner, you need to add the files listed in t
manifest_aux.txt file located in the same directory as the
manifest_rt.txt file.

3. Add the path and filename of any other files you want to include to the list
files to export. Make sure that the path is relative to thersi-directory.
Building IDL Applications Adding IDL Files to the Distribution

74 Chapter 3: Distributing IDL Applications

tion

u
t to
um

hic

es
Note
On Windows, files are copied from your IDL product CD-ROM. In this case,rsi-
directory is theidl53 directory on your IDL product CD-ROM. Note also that on
the CD-ROM, there are multiple subdirectories under thebin directory for the
different Windows platforms.

4. Make sure that you have not included any blank lines in the file.

5. Save the file.

Adding Files on Macintosh Platforms

On the Macintosh platform, when you choose to export an IDL Runtime distribu
by selectingProject → Export , a dialog is displayed which you can use to choose
the files you want to include in your IDL Runtime distribution. Complete the
following steps to add files to your distribution:

1. Select the files you want to include in the manifest by clicking on them. Yo
can only add files that are in the IDL 5.3 folder. A check mark appears nex
a file that is to be included. The files that are already checked are the minim
IDL files you need to create an IDL Runtime distribution. A check next to a
folder indicates the entire contents of the folder will be included in the
distribution. A dash next to a folder means that only some of the files (files
with check marks next to them) will be included in the distribution.

2. Select the graphic to use as the application’s icon. You can copy and grap
you want to use and then select the icon. ChooseEdit → Paste to insert the
graphic.

3. Select the Preferred and Minimum Size for memory to be used by your
application. This is listed in Kilobytes. The default values listed are the valu
that are currently set for IDL.

4. Click Export .
Adding IDL Files to the Distribution Building IDL Applications

Chapter 3: Distributing IDL Applications 75
Figure 3-3: Macintosh Distribution File List
Building IDL Applications Adding IDL Files to the Distribution

76 Chapter 3: Distributing IDL Applications

the

ays
Replacing the Licensing Dialog Image

You can specify the image for the Demo dialog that appears for an IDL Callable
application. This allows you to customize the licensing of your IDL Callable
application.

The Unlicensed Application dialog displays at the startup of a callable IDL
application if it is not licensed.

Replacing the Image for Windows Callable Applications

To replace the image in the Unlicensed Application dialog for Windows, you use
IDL_SetValue routine:

int IDL_SetValue(int id, void* pvValue);

You must call the IDL_SetValue routine prior to the IDL_Win32Init() call which
initializes IDL. pvValue may be either a string containing the path of a.bmp file or
a bitmap resource defined in your IDL Callable application. The id attribute is alw
IDL_VAL_DEMODLG_BITMAP as defined inexport.h .

For example, to specify a path to a.bmp file, you would use the following:

// string containing path of bitmap file
strcpy(bitmapFile, "c:\\test_app\\source\\example.bmp");

Figure 3-4: Unlicensed Application Dialog for Windows

Default image that
you can replace
Replacing the Licensing Dialog Image Building IDL Applications

Chapter 3: Distributing IDL Applications 77

d to

the
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) bitmapFile);

If you are specifying a resource, you would use something like the following:

// bitmap resource
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) IDB_BITMAP1);

where IDB_BITMAP1 is a constant in your application.

Replacing the Image for Macintosh Callable Applications

To replace the image in the Unlicensed Application dialog for Macintosh, you nee
edit the IDL executable resource using a resource editor. In the following
instructions, ResEdit is used to modify the resource.

To replace the image for Macintosh callable applications, complete the following
steps:

1. Copy the graphic you want to add to the Unlicensed Application dialog to
clipboard.

2. Start ResEdit.

3. Open the IDL executable.

4. Open the PICT resources by double-clicking on the PICT icon.

5. Open the 139 resource by double-clicking it.

6. Paste the graphic into the window. ChooseEdit → Paste.

7. Save the file. ChooseFile → Save.

8. Quit ResEdit. ChooseFile → Quit .
Building IDL Applications Replacing the Licensing Dialog Image

78 Chapter 3: Distributing IDL Applications
Replacing the Licensing Dialog Image Building IDL Applications

Part II: Components
of IDL

Chapter 4:

The Structure of the
IDL Language

Thischapter provides abrief overview of IDL’sdata typesand languageconstructs. Thefollowing
topics are covered in this chapter:
0
3
6

Data Types . 82
Numeric Constants 84
String Constants . 86
Type Conversion Functions 87

Arrays . 9
Structures . 9
Variables . 9
System Variables . 99
Building IDL Applications 81

82 Chapter 4: The Structure of the IDL Language

will

he
Data Types

The IDL language is dynamically typed. This means that an operation on a variable
can change that variable’s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to a floating-point variable, the result
be a floating-point variable.

Basic Data Types

In IDL there are twelve atomic data types, each with its own form of constant. T
basic data types and their syntax are defined in the following table:

Data Types Syntax Definition

Byte nB 8-bit unsigned integer ranging
in value from 0 to 255

Integer n or nS 16-bit signed integer ranging
from −32,768 to +32,767

Unsigned Integer nU or nUS 16-bit unsigned integer
ranging from 0 to 65535.

Longword nL 32-bit signed integer in the
range of± two billion, 2x109

Unsigned
Longword

nUL 32-bit unsigned integer in the
range 0 to four billion.

64-bit Integer nLL 64-bit integer ranging from
-9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

Unsigned 64-bit

Integer

nULL Unsigned 64-bit integer
ranging from 0 to
18,446,744,073,709,551,615.

Floating Point n.n 32-bit, single-precision,
floating-point number in the
range of±1038(IEEE)

Table 4-1: Basic Data Types
Data Types Building IDL Applications

Chapter 4: The Structure of the IDL Language 83

d in

IDL
In addition to the twelve basic data types, IDL also supports the following:

• Structures: Aggregations of data of various types. Structures are discusse
Chapter 7, “Structures”.

• Pointers: A reference to a dynamically-allocatedheap variable. Pointers are
discussed inChapter 11, “Pointers”.

• Object References: A reference to a special heap variable that contains an
object structure. Object references are discussed inChapter 12, “Object
Basics”.

Double-Precision n.n D 64-bit, double-precision,
floating-point number in the
range of±10308(IEEE)

Complex COMPLEX(n.n , n.n) real-imaginary pair of single-
precision, floating-point
numbers

Double-Precision
Complex

DCOMPLEX(n.n , n.n) real-imaginary pair of double-
precision, floating-point
numbers

String 'ssss ' sequence of characters, from 0
to 32,767 characters in length

Data Types Syntax Definition

Table 4-1: Basic Data Types
Building IDL Applications Data Types

84 Chapter 4: The Structure of the IDL Language

x of

eger
be of

 are

ted

be

l

Numeric Constants

This section briefly discusses the features of IDL’s numeric constants. The synta
numeric constants is described further inChapter 5, “Constants”.

Integer Constants

Numeric constants of different types can be represented by a variety of forms. Int
constants can be decimal, hexadecimal or octal. Each of these radices can either
byte, integer, long, or 64-bit long type. The absolute values of integer constants
given in the following table:

Integers specified without one of the B, S, L, or LL codes are automatically promo
to an integer type capable of holding them. For example, 4000 is promoted to
longword because it is too large to fit into an integer. Any numeric constant can
preceded by a plus (+) or minus (-) sign.

Floating-Point and Double-Precision Constants

Floating-point and double-precision constants can be expressed in either
conventional or scientific notation. Any numeric constant that includes a decima
point is a floating-point or double-precision constant.

Type Absolute Value Range

Byte 0 – 255

Integer 0 – 32767

Unsigned Integer 0 – 65535

Long 0 – (231- 1)

Unsigned Long 0 – (232 - 1)

64-bit Long 0 – (263 - 1)

Unsigned 64-bit Long 0 – (264 - 1)

Table 4-2: Absolute Value Range Of Integer Constants
Numeric Constants Building IDL Applications

Chapter 4: The Structure of the IDL Language 85

- or

s:

 an
e
on,
Complex Constants

Complex constants contain a real and an imaginary part, both of which are single
double-precision, floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follow

COMPLEX(REAL_PART, IMAGINARY_PART)

or

COMPLEX(REAL_PART)

For example, COMPLEX(1,2) is a complex constant with a real part of one, and
imaginary part of two. COMPLEX(1) is a complex constant with a real part of on
and a zero imaginary component. To extract the real part of a complex expressi
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.
Building IDL Applications Numeric Constants

86 Chapter 4: The Structure of the IDL Language

ing
each
the
String Constants

An IDL string is a sequence of characters from 0 to 65,535 characters in length,
enclosed by apostrophes (') or quotes ("). The value of the constant is simply the
characters appearing between the leading delimiter (' or ") and the next occurrence of
thesame delimiter. A double apostrophe ('') or quote ("") is considered to be the
null string; a string containing no characters. An apostrophe or quote can be
represented within a string by two apostrophes or quotes; e.g.,'Don''t' returns
Don't . This syntax often can be avoided by using a different delimiter; e.g.,
"Don't" instead of'Don''t' .

Strings have dynamic length (they grow or shrink to fit), and there is no need to
declare the maximum length of a string prior to using it. As with any data type, str
arrays can be created to hold more than a single string. In this case, the length of
individual string in the array depends only on its own length and is not affected by
lengths of the other string elements.

Features of IDL string constants are described further inChapter 9, “Strings”.
String Constants Building IDL Applications

Chapter 4: The Structure of the IDL Language 87

an
Type Conversion Functions

The conversion functions are as follows:

These functions are useful in many instances, such as forcing the evaluation of
expression to a certain type, outputting data in a mode compatible with other
programs, etc.

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to 16-bit integer, or optionally other type

UINT Convert to 16-bit unsigned integer

LONG Convert to 32-bit longword

ULONG Convert to 32-bit unsigned longword

LONG64 Convert to 64-bit integer

ULONG64 Convert to 64-bit unsigned integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

COMPLEX Convert to complex value

DCOMPLEX Convert to double-precision complex value

Table 4-3: Type Conversion Functions
Building IDL Applications Type Conversion Functions

88 Chapter 4: The Structure of the IDL Language

YTE

nt.

at
The following table illustrates several uses of type conversions:

Type conversion between strings and bytes is a special case. The result of the B
function applied to a string or a string array is a byte array containing the ASCII
codes of the characters of the string. Converting a byte array with the STRING
function yields a string array or scalar with one less dimension than the argume

Dynamic Type Conversion

The TYPE keyword to the FIX function allows type conversion to an arbitrary type
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TYPE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D
; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA
; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
; Convert the user value to the type stored in typeA:
ConvUserVal = FIX(UserVal, TYPE=typeA)
PRINT, ConvUserVal

END

Operation Results

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

FIX(1.3, TYPE=5) 1.3000000

BYTE(1.2) 1

BYTE(-1) 255 (Bytes are modulo 256)

BYTE('01ABC') [48, 49, 65, 66, 67]

STRING([65B, 66B, 67B]) ’ABC’

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 4-4: Uses of Type Conversion Functions
Type Conversion Functions Building IDL Applications

Chapter 4: The Structure of the IDL Language 89
IDL Type Conversion functions are described further inChapter 5, “Constants”.
Building IDL Applications Type Conversion Functions

90 Chapter 4: The Structure of the IDL Language

of a

n,

l

tes
se,
al to

ore
ve a

at
ach
Arrays

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. Array elements can be of any IDL data type, but all elements
given array must be of the same data type. Arraysubscripts provide a means of
selecting one or more elements of an array for retrieval or modification.

This section provides a brief overview of IDL arrays. For more detailed informatio
seeChapter 8, “Array Subscripts”.

One-dimensional arrays are often calledvectors. The following IDL statement
creates a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematica
operations (where they are often termedmatrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:

PRINT, array

IDL prints:

 1 2 3
 4 5 6

Arrays can have up to eight dimensions in IDL. The following IDL statement crea
a three-column by four-row by five-layer deep three-dimensional array. In this ca
we use the IDL FINDGEN function to create an array whose elements are set equ
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL is an array-oriented language. This means that array operations execute m
efficiently than similar one-dimensional operations. For example, suppose you ha
three-dimensional array and wish to divide each element by two. A language th
does not support array operations would create a loop to perform the division for e
element; IDL accomplishes the division in a single line of code:

array = array/2
Arrays Building IDL Applications

Chapter 4: The Structure of the IDL Language 91

teger
ins

iable
ments,
n the

arated
e

s to
e

Array Subscripts

Individual array elements can be referenced using theirsubscripts. In IDL, array
subscripts arezero-based; this means that the first element in an array is element
zero, the second is element one, etc. For example, in the array created by the
following IDL statement:

array = [1, 2, 3]

The integer 1 is element zero of the array, the integer 2 is element one, and the in
3 is element two. The following IDL statement creates a new variable that conta
element one ofarray :

new = array[1]

Displaying the value ofnew reveals the following:

PRINT, new

IDL prints:

2

The values of the selected array elements are extracted when a subscripted var
reference appears in an expression. New values are stored in selected array ele
without disturbing the remaining elements, when a subscript reference appears o
left side of an assignment statement. See“The Assignment Statement” on page 198
for information on the use of the different types of assignment statements when
storing into arrays.

The syntax of a subscript reference is:

Variable_Name [Subscript_ List]

or

(Array_Expression)[Subscript_List]

TheSubscript_List is simply a list of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are sep
by commas if there is more than one subscript. In addition, multiple elements ar
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts instead of square brackets. While the old syntax (using parenthese
enclose array subscripts) will continue to work, we suggest that you use squar
Building IDL Applications Arrays

92 Chapter 4: The Structure of the IDL Language
brackets in all new code. See“Array Subscript Syntax: [] vs. ()”on page 157 for a
discussion of the change.
Arrays Building IDL Applications

Chapter 4: The Structure of the IDL Language 93

lars,

, and

tions
DL
seful

led

ich is

e

UCT

ar
an
Structures

IDL supports structures and arrays of structures. A structure is a collection of sca
arrays, or other structures contained in a variable. Structures are useful for
representing data in a natural form, transferring data to and from other programs
containing a group of related items of various types. There are two types of
structures: named and anonymous. Named structures are used when the defini
will not be changed, since the attributes of the structure are stored internally in I
and cannot be changed in the current IDL session. Anonymous structures are u
when the structure, type, and/or dimensions of its components change during
program execution.

This section provides a brief overview of IDL structure variables. For more detai
information, seeChapter 7, “Structures”.

Creating and Defining Structures

A named structure is created by executing a structure-definition expression, wh
an expression of the following form:

{ Structure_Name, Tag_Name1 : Tag_Definition1, ..., Tag_Namen : Tag_Definitionn}

Anonymous structures are created in the same way, but with the structure’s nam
omitted.

{ Tag_Name1 : Tag_Definition1 , ..., Tag_Namen : Tag_Definitionn}

Anonymous structures can also be created and combined using the CREATE_STR
function.

For example, assume that a star catalog is to be processed. Each entry for a st
contains the following information: star name, right ascension, declination, and
intensity measured each month over the last 12 months. A structure for this
information is defined with the following IDL statement:

A = {STAR, NAME: '', RA: 0.0, DEC: 0.0, INTEN: FLTARR(12)}

Each tag name, NAME, RA, DEC and INTEN, is followed by its tag definition.

The same structure is created as an anonymous structure by the statement:

A ={NAME: '', RA: 0.0, DEC: 0.0, INTEN: FLTARR(12)}

or by using the CREATE_STRUCT function:

A = CREATE_STRUCT('NAME', '', 'RA', 0.0, 'DEC', 0.0, $
'INTEN', FLTARR(12))
Building IDL Applications Structures

94 Chapter 4: The Structure of the IDL Language

ity
Structure References

The basic syntax of a reference to a field within a structure is as follows:

Variable_Name.Tag_Name

Examples of Structure References

The name of the star contained in A is referenced as A.NAME. The entire intens
array is referred to as A.INTEN, while thenth element of A.INTEN is A.INTEN[N].
The following are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {STAR, NAME: 'SIRIUS', RA: 30., DEC: 40., INTEN:FINDGEN(12}

;Set name field only.
A.NAME = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.NAME, A.RA, A.DEC

;Set Q to the value of the sixth element of A.INTEN. Q will be a
;floating-point scalar.
Q = A.INTEN[5]

;Set RA field to 23.21.
A.RA = 23.21

;Zero all 12 elements of intensity field.
A.INTEN = 0

;Store 4th through 7th elements of INTEN field in variable B.
B = A.INTEN[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.NAME = 12

;Copy A to B. The entire structure is copied and B contains a STAR
;structure.
B = A

Using HELP with Structures

The statement

HELP, /STRUCTURE, A
Structures Building IDL Applications

Chapter 4: The Structure of the IDL Language 95

rints
shows the type, structure and tag name of each field in a structure.

Parameter Passing with Structures

An entire structure is passed byreference by simply using the name of the variable
containing the structure as a parameter. For example, the following statement p
the value of the structure fieldA.NAME:

PRINT, A.NAME
Building IDL Applications Structures

96 Chapter 4: The Structure of the IDL Language

ve
d to

of a

e
.
f

s are
e read

ger,

 or
Variables

Variables are named repositories where information is stored. A variable can ha
virtually any size and can contain any of the IDL data types. Variables can be use
store images, spectra, single quantities, names, tables, etc.

This section provides a brief overview of IDL variables. For more detailed
information, seeChapter 5, “Constants”.

Attributes of Variables

Every variable has a number of attributes that can change during the execution
program or terminal session. Variables have both astructure and atype.

Structure

A variable can contain a single value (a scalar) or a number of values of the sam
type (an array) or data entities of potentially differing type and size (a structure)
Strings are considered as single values, and a string array contains a number o
variable-length strings.

In addition, a variable can associate an array structure with a file; these variable
called associated variables. Referencing an associated variable causes data to b
from, or written to, the file. Associated variables are described inASSOC in theIDL
Reference Guide.

Type

A variable can have one and only one of the following types: undefined, byte, inte
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer,
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.
Variables Building IDL Applications

Chapter 4: The Structure of the IDL Language 97

nd
an be
ot
racters
e
. The

ned)
s in
Variable Names

IDL variables are named by identifiers. Each identifier must begin with a letter a
can contain from 1 to 128 characters. The second and subsequent characters c
letters, digits, the underscore character, or the dollar sign. A variable name cann
contain embedded spaces, because spaces are considered to be delimiters. Cha
after the first 128 are ignored. Names are case insensitive. Lowercase letters ar
converted to uppercase; so the variable name abc is equivalent to the name ABC
following table illustrates some acceptable and unacceptable variable names.

Warning
A variable cannot have the same name as a function (either built-in or user defi
or a reserved word (see the following list). Giving a variable such a name result
a syntax error or in “hiding” the variable.

Unacceptable Reason Acceptable

EOF Conflicts with function name A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE

AB@ Illegal character ABC$DEF

ab cd Embedded space My_variable

Table 4-5: Unacceptable and Acceptable IDL Variable Names
Building IDL Applications Variables

98 Chapter 4: The Structure of the IDL Language
The following table lists all of the reserved words in IDL.

AND BEGIN CASE COMMON

DO ELSE END ENDCASE

ENDELSE ENDFOR ENDIF ENDREP

ENDWHILE EQ FOR FUNCTION

GE GOTO GT IF

LE LT MOD NE

NOT OF ON_IOERROR OR

PRO REPEAT THEN UNTIL

WHILE XOR
Variables Building IDL Applications

Chapter 4: The Structure of the IDL Language 99

ram

to

When
e, if

SV
System Variables

System variables are a special class of predefined variables available to all prog
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes,
return error status, etc.

System variables have a predefined type and structure that cannot be changed.
an expression is stored into a system variable, it is converted to the variable typ
necessary and possible. Certain system variables areread only, and their values
cannot be changed. The user can define new system variables with the DEFSY
procedure.

System variables are discussed inAppendix D, “System Variables” in theIDL
Reference Guide.
Building IDL Applications System Variables

100 Chapter 4: The Structure of the IDL Language
System Variables Building IDL Applications

Chapter 5:

Constants
The following topics are covered in this chapter:
Data Types. 102
Constants. 104

Type Conversion Functions 110
Building IDL Applications 101

102 Chapter 5: Constants

will

tant.
en
he

o

e

Data Types

The IDL language is dynamically typed. This means that an operation on a variable
can change that variable’s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to a floating-point variable, the result
be a floating-point variable.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of cons
The data type assigned to a variable is determined either by the syntax used wh
creating the variable, or as a result of some operation that changes the type of t
variable.

IDL’s basic data types are discussed in more detail beginning with“Constants” on
page 104.

• Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixels in
images are commonly represented as byte data.

• Integer: A 16-bit signed integer ranging from−32,768 to +32,767.

• Unsigned Integer: A 16-bit unsigned integer ranging from 0 to 65535.

• Long: A 32-bit signed integer ranging in value from approximately minus tw
billion to plus two billion.

• Unsigned Long: A 32-bit unsigned integer ranging in value from 0 to
approximately four billion.

• 64-bit Long: A 64-bit signed integer ranging in value from –
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

• 64-bit Unsigned Long: A 64-bit unsigned integer ranging in value from 0 to
18,446,744,073,709,551,615.

• Floating-point: A 32-bit, single-precision, floating-point number in the rang
of ±1038, with approximately six or seven decimal places of significance.

• Double-precision: A 64-bit, double-precision, floating-point number in the
range of±10308 with approximately 14 decimal places of significance.
Data Types Building IDL Applications

Chapter 5: Constants 103

.

-
LEX
ion

ich

L
ay

es
you

d in

IDL
• Complex: A real-imaginary pair of single-precision, floating-point numbers
Complex numbers are useful for signal processing and frequency domain
filtering.

• Double-precision complex: A real-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in a single
precision complex number because those versions of IDL lacked the DCOMP
double-precision complex data type. Starting with IDL version 4, this combinat
results in a DCOMPLEX number.

• String: A sequence of characters, from 0 to 32,767 characters in length, wh
is interpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the ID
executable. The values shown here are minimum values; in some cases, IDL m
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or valu
that cannot be represented exactly as floating-point numbers, this is something
should consider.

For more information on floating-point mathematics, seeChapter 16, “Mathematics”
in theUsing IDL manual. For information on your machine’s precision, see
MACHAR in theIDL Reference Guide.

Complex Data Types

• Structures: Aggregations of data of various types. Structures are discusse
Chapter 7, “Structures”.

• Pointers: A reference to a dynamically-allocatedheap variable. Pointers are
discussed inChapter 11, “Pointers”.

• Object References: A reference to a special heap variable that contains an
object structure. Object references are discussed inChapter 12, “Object
Basics”.
Building IDL Applications Data Types

104 Chapter 5: Constants

he
re
Constants

Integer Constants

Numeric constants of different types can be represented by a variety of forms. T
syntax used when creating integer constants is shown in the following table, when
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B

Integer n or nS 12,12S,425,425S

Unsigned Integer nU or nUS 12U,12US

Long nL 12L, 94L

Unsigned Long nUL 12UL, 94UL

64-bit Long nLL 12LL, 94LL

Unsigned 64-bit
Long

nULL 12ULL, 94ULL

Hexadecimal Byte 'n'XB '2E'XB

Integer 'n'X '0F'X

Unsigned Integer 'n'XU ’0F’XU

Long ’n'XL 'FF'XL

Unsigned Long 'n'XUL ’FF’XUL

64-bit Integer 'n'XLL ’FF’XLL

Unsigned 64-bit
Integer

'n'XULL 'FF'XULL

Table 5-1: Integer Constants
Constants Building IDL Applications

Chapter 5: Constants 105

stants,

Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal con
substituting an O for the X.

Absolute values of integer constants are given in the following table.

Octal Byte "nB "12B

Integer "n "12

'n'O '377'O

Unsigned Integer "nU "12U

'n'OU '377'OU

Long "nL "12L

'n'OL '777777'OL

Unsigned Long "nUL "12UL

'n'OUL '777777’OUL

64-bit Long "nLL "12LL

'n'OLL '777777'OLL

Unsigned 64-bit "nULL "12ULL

Long 'n'OULL '777777'OULL

Type Absolute Value Range

Byte 0 – 255

Integer 0 – 32767

Unsigned Integer 0 – 65535

Long 0 – 231 - 1

Unsigned Long 0 – 232 - 1

64-bit Long 0 – 263 - 1

Table 5-2: Absolute Value Range Of Integer Constants

Radix Type Form Examples

Table 5-1: Integer Constants
Building IDL Applications Constants

106 Chapter 5: Constants

l

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it is too large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Floating-Point and Double-Precision Constants

Floating-point and double-precision constants can be expressed in either
conventional or scientific notation. Any numeric constant that includes a decima
point is a floating-point or double-precision constant.

Unsigned 64-bit Long 0 – 264 - 1

Unacceptable Reason Acceptable

256B Too large, limit is 255 255B

'123L Missing apostrophe '123'L

'03G'x Invalid character "129

'27'L No radix '27'OL

650XL No apostrophes '650'XL

"129 9 is an invalid octal digit "124

Table 5-3: Examples of Integer Constants

Type Absolute Value Range

Table 5-2: Absolute Value Range Of Integer Constants
Constants Building IDL Applications

Chapter 5: Constants 107

ing

- or

s:

 an
e
on,

(
 the
The syntax of floating-point and double-precision constants is shown in the follow
table. The notation “sx” represents the sign and magnitude of the exponent, for
example,E-2 .

Double-precision constants are entered in the same manner, replacing theE with aD.
For example,1.0D0 , 1D, and1.D each represent a double-precision numeral 1.

Complex Constants

Complex constants contain a real and an imaginary part, both of which are single
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follow

COMPLEX(REAL_PART, IMAGINARY_PART)

or

COMPLEX(REAL_PART)

For example, COMPLEX(1,2) is a complex constant with a real part of one, and
imaginary part of two. COMPLEX(1) is a complex constant with a real part of on
and a zero imaginary component. To extract the real part of a complex expressi
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes ') or
quotes ("). The value of the constant is simply the characters appearing between

Form Example

n. 102.

.n .102

n.n 10.2

nEsx 10E5

n.Esx 10.E-3

.nEsx .1E+12

n.nEsx 2.3E12

Table 5-4: Syntax of Floating-Point Constants
Building IDL Applications Constants

108 Chapter 5: Constants

g
o
d by

le,
er
and
leading delimiter (' or "") and the next occurrence of thesame delimiter. A double
apostrophe ('') or quote ("") is considered to be the null string; a string containin
no characters. An apostrophe or quote can be represented within a string by tw
apostrophes or quotes; e.g., 'Don''t' returns Don't. This syntax often can be avoide
using a different delimiter; e.g., "Don't" instead of 'Don''t'. The following table
illustrates valid string constants.

The following table illustrates invalid string constants. In the last entry of the tab
"129" is interpreted as an illegal octal constant. This is because a quote charact
followed by a digit from 0 to 7 represents an octal numeric constant, not a string,
the character 9 is an illegal octal digit.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

' ' Null String

"I'm happy" I’m happy

'I"m happy' I”m happy

'counter' counter

'129' 129

Table 5-5: Examples of Valid String Constants

String Value Unacceptable Reason

Hi there 'Hi there" Mismatched delimiters

Null String ' Missing delimiter

I’m happy 'I'm happy' Apostrophe in string

counter ''counter'' Double apostrophe is null string

129 "129" Illegal octal constant

Table 5-6: Examples of Invalid String Constants
Constants Building IDL Applications

Chapter 5: Constants 109

r
for
t the
e

y

.

that
Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffe
than handles input at the IDL command prompt is limited to 255 characters. If
some reason you need to create a string variable longer than 255 characters a
IDL command prompt, split the variable into multiple sub-variables and combin
them with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

Representing Non-Printable Characters

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants b
specifying their ASCII value as a byte argument to the STRING function. The
following table gives examples of using octal or hexadecimal character notation

Note that ASCII characters may have different effects (or no effect) on platforms
do not support ASCII terminal commands.

Specified String Actual Contents Comment

STRING(27B)+'[;H'
+STRING(27B)+[2J’

'<Esc>[;H<Esc>[2J' Erase ANSI terminal

STRING(7B) Bell Ring the bell

STRING(8B) Backspace Move cursor left

Table 5-7: Specifying Non-Printable Characters
Building IDL Applications Constants

110 Chapter 5: Constants

with

, and

 are
Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output data in a mode compatible
other programs, etc. The conversion functions are in the following table:

Conversion functions operate on data of any structure: scalars, vectors, or arrays
variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a longword
; integer by IDL.
A = 33000

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to 16-bit integer, or optionally other type

UINT Convert to 16-bit unsigned integer

LONG Convert to 32-bit integer

ULONG Convert to 32-bit unsigned integer

LONG64 Convert to 64-bit integer

ULONG64 Convert to 64-bit unsigned integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

COMPLEX Convert to complex value

DCOMPLEX Convert to double-precision complex value

Table 5-8: Type Conversion Functions
Type Conversion Functions Building IDL Applications

Chapter 5: Constants 111

to

has

tain
is to

ecial
rray
ay
an

at
;B is silently truncated.
B = FIX(A)
PRINT, B

IDL prints:

-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE andCHECK_MATH functions. SeeChapter 15, “Controlling Errors”, for
more information.

Converting Strings

When converting from a string argument, it is possible that the string does not con
a valid number and no conversion is possible. The default action in such cases
print a warning message and return zero. TheON_IOERRORprocedure can be used
to establish a statement to be jumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a sp
case. The result of the BYTE function applied to a string or string array is a byte a
containing the ASCII codes of the characters of the string. Converting a byte arr
with the STRING function yields a string array or scalar with one less dimension th
the byte array.

Dynamic Type Conversion

The TYPE keyword to the FIX function allows type conversion to an arbitrary type
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TYPE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
Building IDL Applications Type Conversion Functions

112 Chapter 5: Constants
; Convert the user value to the type stored in typeA:
ConvUserVal = FIX(UserVal, TYPE=typeA)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

FIX(1.3, TYPE=5) 1.3000000

BYTE(1.2) 1

BYTE(-1) 255b (Bytes are modulo 256)

BYTE(’01ABC’) [48b, 49b, 65b, 66b, 67b]

STRING([65B, 66B, 67B]) ’ABC’

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 5-9: Uses of Type Conversion Functions
Type Conversion Functions Building IDL Applications

Chapter 6:

Expressions and
Operators

The following topics are covered in this chapter:
7
Overview . 114
Operator Precedence. 115

IDL Operators . 11
Type and Structure of Expressions 127
Building IDL Applications 113

114 Chapter 6: Expressions and Operators

T,
t to
nd to

y of a
IDL

s,

form
Overview

Variables and constants are combined intoexpressionsusing operators and functions,
and providing a result. Expressions can be combined with other expressions,
variables, and constants to yield more complex expressions. In IDL, unlike
FORTRAN or C, expressions can be scalar- or array-valued.

There are many types of operators in IDL. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, G
etc.), and Boolean arithmetic (AND, OR, NOT, and XOR) — other operators exis
find minima, maxima, select scalars and subarrays from arrays (subscripting), a
concatenate scalars and arrays to form new arrays.

Functions, which are operators in themselves, perform operations that are usuall
more complex nature than those denoted by simple operators. Functions exist in
for data smoothing, shifting, transforming, evaluation of transcendental function
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PI) evaluates the variableA multiplied by the value ofπ, then
applies the trigonometric sine function. This result can be used as an operand to
a more complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluatesesin πa).
Overview Building IDL Applications

Chapter 6: Expressions and Operators 115

on
sser
Operator Precedence

IDL operators are divided into the levels of algebraic precedence found in comm
arithmetic. Operators with higher precedence are evaluated before those with le
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in the following
table.

Priority Operator

First (highest) () (parentheses, to group expressions)

Second * (pointer dereference)

^ (exponentiation)

Third * (multiplication)

and## (matrix multiplication)

/ (division)

MOD (modulus)

Fourth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Boolean negation)

Fifth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Table 6-1: Operator Precedence
Building IDL Applications Operator Precedence

116 Chapter 6: Expressions and Operators

own

the

luated
The effect of operators is based on precedence, not position. This concept is sh
by the following examples.

A = 4 + 5 * 2

A is equal to 14 since the multiplication operator has a higher precedence than
addition operator. Parentheses can be used to override the default evaluation.

A = (4 + 5) * 2

In this case, A equals 18 because the expression inside the parentheses is eva
first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Sixth AND (Boolean AND)

OR (Boolean OR)

XOR (Boolean exclusive OR)

Seventh ? (conditional expression)

Expression Value

A + 1 The sum of A and 1.

A < 2 + 1 The smaller of A or two, plus one.

A < 2 * 3 The smaller of A and six, since * has
higher precedence than <.

2 * SQRT(A) Twice the square root of A.

A + 'Thursday' The concatenation of the strings A
and “Thursday.” An error results if A
is not a string

Table 6-2: Examples of Expressions

Priority Operator

Table 6-1: Operator Precedence
Operator Precedence Building IDL Applications

Chapter 6: Expressions and Operators 117

lists.
bove.

o

IDL Operators

As described above, operators are used to combine terms and expressions. IDL
supports the following types of operators:

• Parentheses

• Square Brackets

• Mathematical Operators

• Minimum and Maximum Operators

• Matrix Multiplication

• Array Concatenation

• Boolean Operators

• Relational Operators

Parentheses

Parentheses are used to group expressions and to enclose function parameter
Parentheses can be used to override the order of operator evaluation described a
Examples:

;Parentheses enclose function argument lists.
SIN(ANG * PI/180.)

;Parentheses specify order of operator evaluation.
(A + 5)/B

The right parenthesis must always close the list begun by the left parenthesis.

Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

;Use brackets when assigning elements to an array.
ARRAY = [1, 2, 3, 4, 5]

;Brackets enclose subscripts.
ARRAY[X, Y]

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue t
Building IDL Applications IDL Operators

118 Chapter 6: Expressions and Operators

all

right
n the

on

 the

 2
work as in previous version of IDL, we strongly suggest that you use brackets in
new code. See“Array Subscript Syntax: [] vs. ()” on page 157 for additional
details.

Mathematical Operators

There are seven basic IDL mathematical operators, described below.

Assignment

The equal sign (=) is the assignment operator. The value of the expression on the
hand side of the equal sign is stored in the variable, subscript element, or range o
left side. See“The Assignment Statement” on page 198. For example, the following
assigns the value 32 to A.

A = 32

Addition

The positive sign (+) is the addition operator. When applied to strings, the additi
operator concatenates the strings. For example:

;Store the sum of 3 and 6 in B.
B = 3 + 6

;Store the string value of “John Doe” in B.
B = 'John' + ' ' + 'Doe'

Subtraction and Negation

The negative sign (-) is the subtraction operator. Also, the minus sign is used as
unary negation operator. For example:

;Store the value of 5 subtracted from 9 in C.
C = 9 - 5

;Change the sign of C.
C = -C

Multiplication

The asterisk (*) is the multiplication operator. For example, Store the product of
and 5 in variable C:

C = 2 * 5
IDL Operators Building IDL Applications

Chapter 6: Expressions and Operators 119

.0

.

rees

l

Division

The forward slash (/) is the division operator. For example, Store the result of 10
divided by 3.2 in variable D:

D = 10.0/3.2

Exponentiation

The caret (^) is the exponentiation operator.A^B is equal to A raised to the B power

• If A is a real number and B is of integer type, repeated multiplication is
applied.

• If A is real and B is real (non-integer), the formula AB = eBlnA is evaluated.

• If A is complex and B is real, the formulaAB = (reiθ)B = rB (cosBθ + isinBθ)
(wherer is the real part of A andiθ is the imaginary part) is evaluated.

• If B is complex, the formulaAB = eB ln A is evaluated. If A is also complex, the
natural logarithm is computed to be ln (A) = ln(reiθ) = ln (r) + iθ (wherer is the
real part of A andiθ is the imaginary part).

• A0 is defined as 1.

Modulo

The keyword MOD is the modulo operator.I MOD J is equal to the remainder when
I is divided by J. The magnitude of the result is less than that of J, and its sign ag
with that of I. For example:

;Assign the value of 9 modulo 5 (4) to A.
A = 9 MOD 5

;Compute angle modulo 2p.
A =(ANGLE + B) MOD (2 * !PI)

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.

The Minimum Operator

The “less than” sign (<) is the IDL minimum operator. The value of “A < B” is equa
to the smaller of A or B. For example:

;Set A equal to 3.
Building IDL Applications IDL Operators

120 Chapter 6: Expressions and Operators

rray
 of
f

s of
 first
array
A = 5 < 3

;Set A equal to -6.
A = 5 < (-6)

;Syntax Error. IDL attempts to perform a subtraction operation if
;the “-6” is not enclosed in parentheses.
A = 5 < -6

;Set all points in array ARR that are larger than 100 to 100.
ARR = ARR < 100

;Set X to the smallest of the three operands.
X = X0 < X1 < X2

The Maximum Operator

The “greater than” sign (>) is the IDL maximum operator. “A > B” is equal to the
larger of A or B. For example:

;‘>’ is used to avoid taking the log of zero or negative numbers.
C = ALOG(D > 1E - 6)

;Plot positive points only. Negative points are plotted as zero.
PLOT, ARR > 0

Matrix Multiplication

IDL has two operators used to multiply arrays and matrices.

The # Operator

The # operator computes array elements by multiplying the columns of the first a
by the rows of the second array. The second array must have the same number
columns as the first array has rows. The resulting array has the same number o
columns as the first array and the same number of rows as the second array.

The ## Operator

The ## operator does what is commonly referred to asmatrix multiplication. It
computes array elements by multiplying the rows of the first array by the column
the second array. The second array must have the same number of rows as the
array has columns. The resulting array has the same number of rows as the first
and the same number of columns as the second array.

For an example illustrating the difference between the two, seeMultiplying Arrays in
theUsing IDL manual.
IDL Operators Building IDL Applications

Chapter 6: Expressions and Operators 121

osed in
s. The

can

g 3
ual

oss
ore
or

le.
Array Concatenation

The square brackets are used as array concatenation operators. Operands encl
square brackets and separated by commas are concatenated to form larger array
expression[A,B] is an array formed by concatenating A and B, which can be
scalars or arrays, along the first dimension.

Similarly, [A,B,C] concatenates A, B, and C. The second and third dimensions
be concatenated by nesting the bracket levels;[[1,2],[3,4]] is a 2-element by
2-element array with the first row containing 1 and 2 and the second row containin
and 4. Operands must have compatible dimensions; all dimensions must be eq
except the dimension that is to be concatenated, e.g.,[2,INTARR(2,2)] are
incompatible. Examples:

;Define C as three-point vector.
C = [-1, 1, -1]

;Add 12 to the end of C.
C = [C, 12]

;Insert 12 at the beginning of C.
C = [12, C]

;Plot ARR2 appended to ARR1.
PLOT, [ARR1, ARR2]

;Define a 3x3 matrix.
KER = [[1,2,1], [2,4,2], [1,2,1]]

Note
The maximum number of operands that can appear within brackets varies acr
IDL implementations but is always at least 25. If you must create an array of m
than 25 elements using the concatenation operator, use multiple statements. F
example, to create an array with 70-constant elements, use the following
statements:

A = [k0, k 1, ..., k 24]
A = [A, k25, k 26, ..., k 49]
A = [A, k50, k 51, ..., k 69]

This method is relatively inefficient and should be performed only once if possib
Building IDL Applications IDL Operators

122 Chapter 6: Expressions and Operators

or
h

rue;
r,
tions
ot

e
to

s
r (a

sign.

e

d

Boolean Operators

There are four Boolean operators in IDL. Boolean operators return either “true”
“false” as described previously. Note that the Boolean operators do not work wit
string and complex arguments.

AND

AND is a Boolean operator that returns “true” whenever both of its operands are t
otherwise, the result is “false.” Any nonzero value is considered true. For intege
longword, and byte operands, a bitwise AND operation is performed. For opera
on other types, the result is equal to the second operand if the first operand is n
equal to zero or the null string; otherwise, the result is zero or the null string.

NOT

The NOT operator is the Boolean inverse and is a unary operator (it has only on
operand). In other words, “NOT true” is equal to “false” and “NOT false” is equal
“true.” NOT complements each bit for integer operands.

Note
Signed integers are expressed using the “2s complement” representation. Thi
means that to arrive at the decimal representation of a negative binary numbe
string of binary digits with a one as the most significant bit), you must take the
complement of each bit, add one, convert to decimal, and prepend a negative
This means that NOT 0 equals -1, NOT 1 equals -2, etc.

For floating-point operands, the result is 1.0 if the operand is zero; otherwise, th
result is zero. The NOT operator is not valid for string or complex operands.

OR

OR is the Boolean inclusive operator. For integer or byte operands, a bitwise
inclusive OR is performed. For example,3 OR 5 equals 7. For floating-point
operands, the OR operator returns the first operand if it is non-zero, or the 2nd
operand otherwise.

XOR

XOR is the Boolean “exclusive or” function. XOR is only valid for byte, integer, an
longword operands. A bit in the result is set to 1 if the corresponding bits in the
operands are different; if they are equal, it is set to zero.
IDL Operators Building IDL Applications

Chapter 6: Expressions and Operators 123

ns
ions
The following table summarizes the action of the boolean operators:

When applied to bytes, integers, and longword operands, the Boolean functions
operate on each binary bit. For example:

Results of relational expressions can be combined into more complex expressio
using the Boolean operators. Some examples of relational and Boolean express
are as follows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) AND (A GE 25)

;True if A is less than 25 or greater than 50. This is the inverse
;of the first.
(A GT 50) OR (A LT 25)

;Adds (using the logical AND operator) the hexadecimal constant FF
;(255 in decimal) to the array ARR. This masks the lower 8-bits and
;zeros the upper bits.
ARR AND 'FF'X

Operator(op) T op T T op F F op F

AND T F F

OR T T F

XOR F T F

op T op F

NOT F T

Table 6-3: Action of Boolean Operators

Decimal Binary

3 AND 5 = 1 0011 AND 0101 = 0001

3 OR 5 = 7 0011 OR 0101 = 0111

3 XOR 5 = 6 0011 XOR 0101 = 0110

NOT 5 = -6 NOT 0101 = 1010

Table 6-4: Action of Boolean Operators on Integers
Building IDL Applications IDL Operators

124 Chapter 6: Expressions and Operators

of
E or
al

e the
ional
 to
yte 1.

lex

d

he
Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Relational operators apply a relation to two operands and return a logical value
true or false. The resulting logical value can be used as the predicate in IF, WHIL
REPEAT statements can be combined using Boolean operators with other logic
values to make more complex expressions. For example: “1 EQ 1” is true, and
“1 GT 3” is false.

The rules for evaluating relational expressions with operands of mixed modes ar
same as those given above for arithmetic expressions. For example, in the relat
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared
the floating point 2.0. The result of this expression is true, as represented by a b

In IDL, the value “true” is represented by the following:

• Any odd, nonzero value for byte, integer, and longword data types

• Any nonzero value for single, double-precision, and the real part of a comp
number (the imaginary part is ignored)

• Any non-null string

Conversely, false is represented as anything that is not true—zero or even-value
integers; zero-valued, floating-point quantities; and the null string.

The relational operators return a value of 1 for true and 0 for false. The type of t
result is always byte.

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 6-5: Relational Operators
IDL Operators Building IDL Applications

Chapter 6: Expressions and Operators 125

 are
for

 the

 true
e of

less

rand
s

the
e, “4

 on

d
LE
EQ

EQ is the relational “equal to” operator. This operator returns true if its operands
equal; otherwise, it returns false. This operator always returns a byte value of 1
true and a byte value of 0 for false.

NE

NE is the “not-equal-to” relational operator. This operator returns true whenever
operands are different. For example"sun" NE "fun" returns true.

GE

GE is the “greater than or equal to” relational operator. The GE operator returns
if the operand on the left is greater than or equal to the one on the right. One us
relational operators is to mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCII collating sequence: " " is less than "0" is
than "9" is less than "A" is less than "Z" is less than "a" which is less than "z".

GT

GT is the “greater than” relational operator. This operator returns true if the ope
on the left is greater than the operand on the right. For example, “6 GT 5” return
true.

LE

LE is the “less-than or equal-to” relational operator. This operator returns true if
operand on the left is less than or equal to the operand on the right. For exampl
LE 4” returns true.

LT

LT is the “less-than” relational operator. This operator returns true if the operand
the left is less than the operand on the right. For example, “3 LT 4” returns true.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones an
zeroes can be used as an operand. For example, the expression, ARR * (ARR
100) is an array equal to ARR except that all points greater than 100 have been
Building IDL Applications IDL Operators

126 Chapter 6: Expressions and Operators

ise.

t
sed. It

at if

ater

not
reduced to zero. The expression(ARR LE 100) is an array that contains a 1 where
the corresponding element of ARR is less than or equal to 100, and zero otherw
For example, to print the number of positive elements in the array ARR:

PRINT,TOTAL(ARR GT 0)

Conditional Expression

The conditional expression—written with the ternary operator ?:—has the lowes
precedence of all the operators and is used wherever any other expression is u
provides an alternate way to write simple constructions of the IF:THEN:ELSE
combination. In the following example, z holds the greater value, a or b. Note th
a=b, z holds b.

IF (a GT b) THEN z = a ELSE z = b

Using a conditional expression, this statement can be simplified. Set z to the gre
of a and b, with z=b if a=b.

z = (a GT b) ? a : b

The general form of this expression follows:

expr1 ? expr2 : expr3

The expressionexpr1 is evaluated first. Ifexpr1 is true, then the expressionexpr2 is
evaluated and set as the value of the conditional expression. Ifexpr1is false,expr3is
evaluated and set as the value of the conditional expression. Eitherexpr2 or expr3 is
evaluated, based on the result ofexpr1.

Note
Since ?: has very low precedence—just above assignment—parentheses are
necessary around the first expressionexpr1. Parentheses are advisable anyway to
distinguish the condition part of the expression.

For more information about the behavior of the ?: operator, see“Definition of True
and False” on page 220.
IDL Operators Building IDL Applications

Chapter 6: Expressions and Operators 127

a

nlike
t be
n
 one

he
ype as
hen
rted
nt
lt is
her
Type and Structure of Expressions

Every entity in IDL has an associated type and structure. The twelve atomic dat
types in decreasing order of precedence are as follows:

• Double-precision complex floating-point

• Complex floating-point

• Double-precision floating-point

• Floating-point

• Signed and unsigned 64-bit integer

• Signed and unsigned longword (32-bit) integer

• Signed and unsigned (16-bit) integer

• Byte

• String

The structure of an expression can be either a scalar or an array. The type and
structure of an expression depends on the type and structure of its operands. U
many other languages, the type and structure of most expressions in IDL canno
determined until the expression is evaluated. Because of this, care must be take
when writing programs. For example, a variable can be a scalar byte variable at
point in a program while at a later point it can be set to a complex array.

Expression Type

IDL attempts to evaluate expressions containing operands of different types in t
most accurate manner possible. The result of an operation becomes the same t
the operand with the greatest precedence or potential precision. For example, w
adding a byte variable to a floating-point variable, the byte variable is first conve
to floating-point, then added to the floating-point variable, yielding a floating-poi
result. When adding a double-precision variable to a complex variable, the resu
double precision complex because the double precision complex type has a hig
position in the hierarchy of data types.
Building IDL Applications Type and Structure of Expressions

128 Chapter 6: Expressions and Operators

an
the

ired

is
hile
 type.
Note
Signed and unsigned integers of a given width have the same precedence. In
expression involving a combination of such types, the result is given the type of
leftmost operand.

When writing expressions with mixed types, care must be taken to obtain the des
results. For example, assume the variableA is an integer variable with a value of 5.
The following expressions yield the indicated results:

;Integer division is performed. The remainder is discarded.
A / 2 = 2

;The value of A is first converted to floating.
A / 2. = 2.5

;Integer division is done first because of operator precedence.
;Result is floating point.
A / 2 + 1. = 3.

;Division is done in floating, then the 1 is converted to floating
;and added.
A / 2. +1 = 3.5

;Signed and unsigned integer operands have the same precedence, so
;the left-most operand determines the type of the result as signed
;integer.
A + 5U = 10

;As above, the left-most operand determines the result type
;between types with the same precedence
5U + 1 = 10U

Note
When other types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, w
'123.333' + 33 gives the result 156 because 123.333 is first converted to integer
In the same manner, 'ABC' + 123 also causes a conversion error.
Type and Structure of Expressions Building IDL Applications

Chapter 6: Expressions and Operators 129

pe
ray,

R,

tions.
ith

nds.
; the
int-
r
f
is of

r is
e the
Expression Structure

IDL expressions can contain operands with different structures, just as they can
contain operands with different types. Structure conversion is independent of ty
conversion. An expression will yield an array result if any of its operands is an ar
as shown in the following table:

Functions exist to create arrays of the data types IDL supports: BYTARR, INTAR
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these func
The result of FLTARR(5) is a floating-point array with one dimension, a vector, w
five elements initialized to zero. FLTARR(50,100) is a two-dimensional array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array opera
For example, adding a 50-point array to a 100-point array gives a 50-point array
last 50 points of the larger array are ignored. Array operations are performed po
by-point, without regard to individual dimensions. An operation involving a scala
and an array always yields an array of identical dimensions. When two arrays o
equal size (number of elements) but different structure are operands, the result
the same structure as the first operand. For example:

;Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, a row vector is added to a column vector and a row vecto
obtained because the operands are the same size. This causes the result to tak
structure of the first operand. Here are some examples of expressions involving
arrays:

;An array in which each element is equal to the same element in ARR
;plus one. The result has the same dimensions as ARR. If ARR is

Operands Result

Scalar : Scalar Scalar

Array : Array Array

Scalar : Array Array

Array : Scalar Array

Table 6-6: Structure of Expressions
Building IDL Applications Type and Structure of Expressions

130 Chapter 6: Expressions and Operators

ay
 be
t
e

;byte or integer, the result is of integer type; otherwise, the
;result is the same type as ARR.
ARR + 1

;An array obtained by summing two arrays.
ARR1 + ARR2

;An array in which each element is set to twice the smaller of
;either the corresponding element of ARR or 100.
(ARR < 100) * 2

;An array in which each element is equal to the exponential of the
;same element of ARR divided by 10.
EXP(ARR/10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its arr
argument. This way of writing the statement requires that each element of ARR
operated on twice. If(3./MAX(ARR)) is evaluated with one division and the resul
then multiplied by each point in ARR, the process requires approximately half th
time.
Type and Structure of Expressions Building IDL Applications

Chapter 7:

Structures
The following topics are covered in this chapter:
Overview . 132
Creating and Defining Structures 133
Structure References. 136
Using HELP with Structures. 139
Parameter Passing with Structures 140

Arrays of Structures. 143
Structure Input/Output. 145
Advanced Structure Usage. 147
Automatic Structure Definition 149
Relaxed Structure Assignment. 151
Building IDL Applications 131

132 Chapter 7: Structures

lars,

, and
ures

first
e
ame
 a
heir

mous
e

type
me.
alue

nts

ctures.
Overview

IDL supports structures and arrays of structures. A structure is a collection of sca
arrays, or other structures contained in a variable. Structures are useful for
representing data in a natural form, transferring data to and from other programs
containing a group of related items of various types. There are two types of struct
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The
time a structure name is used, IDL creates and saves a definition of the structur
which cannot be changed. Each structure definition consists of the structure’s n
and a definition of each field that is a member of the structure. Each instance of
named structure shares the same definition. Named structures are used when t
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anony
structures when the structure, type, and/or dimensions of its components chang
during program execution.

Each field definition consists of a tag name and a tag definition that contains the
and structure of the data contained in the field. A field is referred to by its tag na
The tag definition is simply an expression or variable. The type, structure, and v
of the tag definition serve to define the field’s type, structure, and value. As with
structure definitions, a field definition is fixed and cannot be changed. The conte
of a field can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of stru
Overview Building IDL Applications

Chapter 7: Structures 133

ich is

e

e can
les of

hose
ture
s tag

re, all

ll

re

mes
Creating and Defining Structures

A named structure is created by executing a structure-definition expression, wh
an expression of the following form:

{ Structure_Name, Tag_Name1 : Tag_Definition1, ..., Tag_Namen : Tag_Definitionn}

Anonymous structures are created in the same way, but with the structure’s nam
omitted.

{ Tag_Name1 : Tag_Definition1 , ..., Tag_Namen : Tag_Definitionn}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names must be unique within a given structure, although the same tag nam
be used in more than one structure. Structure names and tag names follow the ru
IDL identifiers: they must begin with a letter; following characters can be letters,
digits, or the underscore or dollar sign characters; and case is ignored.

As mentioned above, each tag definition is a constant, variable, or expression w
structure defines the structure and initial value of the field. The result of the struc
definition expression is an instance of the structure, with each field set equal to it
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{ Structure_Name }

The result of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structu
of the fields in the newly-created structure arezeroed. This means that fields
containing numeric values will contain zeros, fields containing string values wi
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structu
contained, the new structure will contain only a template for that type of data.

Also, when making a named structure that has already been defined, the tag na
need not be present:

{ Structure_Name, expression1, ...,expressionn}
Building IDL Applications Creating and Defining Structures

134 Chapter 7: Structures

 name
ous
ion.

 one
, if

sure
n the

 be
IDL

n
s

ng,

e

All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag
and the structure of each tag field must agree with the original definition. Anonym
structures do not have this restriction because each instance has its own definit

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause
structure to inherit tags from another, use the INHERITS specifier. For example
we define a structureone as follows:

A = {one, data1a:0, data1b:0L }

we can define a second structuretwo that includes the tags from theone structure
with the following definition statement:

B = { two, INHERITS one, data2:0.0 }

This is the same as defining the structuretwo with the statement:

B = { two, data1a:0, data1b:0L, data2:0.0 }

Note that the fields of theone structure are included in thetwo structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be
that the tag names in the inherited structure do not conflict with the tag names i
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can
defined. If a structure inherits tags from another structure that is not yet defined,
will search for a routine to define the inherited structure as outlined in“Automatic
Structure Definition” on page 149. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful whe
dealing withobject class structures. When the INHERITS specifier is used in a clas
structure definition, it has the added effect of defining the inheriting object as a
subclassof the inherited class. For a discussion of object-oriented IDL programmi
seeChapter 12, “Object Basics”.

Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains th
following information: star name, right ascension, declination, and an intensity
Creating and Defining Structures Building IDL Applications

Chapter 7: Structures 135

s

ent

ad
measured each month over the last 12 months. A structure for this information i
defined with the following IDL statement:

A = {star, name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

This structure definition is the basis for all examples in this chapter. The statem
above defines a structure type namedstar , which contains four fields. The tag
names arename, ra , dec , andinten . The first field, with the tagname, contains a
scalar string as given by its tag definition. The following two fields each contain
floating-point scalars. The fourth field,inten , contains a 12-element, floating-point
array. Note that the type of the constants, 0.0, is floating point. If the constants h
been written as 0, the fieldsra anddec would contain short integers.

 The same structure is created as an anonymous structure by the statement:

A = {name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

or by using the CREATE_STRUCT function:

A = CREATE_STRUCT('name', '', 'ra', 0.0, 'dec', 0.0, $
'inten', FLTARR(12))
Building IDL Applications Creating and Defining Structures

136 Chapter 7: Structures

self

ame,

iable
alar

with
yntax
ts,
Structure References

The basic syntax of a reference to a field within a structure is as follows:

Variable_Name.Tag_Name

Variable_Namemust be a variable that contains a structure.Tag_Nameis the name of
the field and must exist in the structure. If the field referred to by the tag name is it
a structure, theTag_Name can optionally be followed by one or more additional tag
names, as shown by the following example:

var.tag1.tag2

This nesting of structure references can be continued up to 10 levels. Each tag n
except possibly the last, must refer to a field that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the var
is an array of structures or if the field referred to by the tag contains an array. Sc
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name.Tag_Name[Subscripts]

Variable_Name[Subscripts].Tag_Name...

Variable_Name[Subscripts].Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, array of subscripts, or a
subscript range. If a variable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structures is referenced without a subscript but
a tag name, the designated field in all array elements is affected. The complete s
of references to structures follows. (Optional items are enclosed in curly bracke
{}.)

Structure_reference:= Variable_Name{ [Subscripts]}.Tags

Tags:= {Tags.}Tag

Tag:= Tag_Name{ [Subscripts]}

For example, all of the following are valid structure references:
Structure References Building IDL Applications

Chapter 7: Structures 137

s are

ity
.

A.B
A.B[N, M]
A[12].B
A[3:5].B[*, N]
A[12].B.C[X, *]

The semantics of storing into a structure field using subscript ranges is slightly
different than that of simple arrays. This is because the structure of arrays in field
fixed. See“Storing Into Array Fields” on page 140.

Examples of Structure References

The name of the star contained in A is referenced as A.NAME. The entire intens
array is referred to as A.INTEN, while the n-th element of A.INTEN is A.INTEN[N]
The following are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:INDGEN(12)}

;Set name field. Other fields remain unchanged.
A.name = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.name, A.ra, A.dec

;Set Q to the value of the sixth element of A.inten. Q will be a
;floating-point scalar.
Q = A.inten[5]

;Set ra field to 23.21.
A.ra = 23.21

;Zero all 12 elements of intensity field. Because the type and size
;of A.inten are fixed by the structure definition, the semantics of
;assignment statements is somewhat different than with normal
;variables.
A.inten = 0

;Store fourth through seventh elements of inten field in
;variable B.
B = A.inten[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.name = 12
Building IDL Applications Structure References

138 Chapter 7: Structures
;Copy A to B. The entire structure is copied and B contains a STAR
;structure.
B = A
Structure References Building IDL Applications

Chapter 7: Structures 139

into

rd
g

Using HELP with Structures

Use theHELP,/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored
variable A. The statement,

HELP, /STRUCTURE, A

prints the following information:

** Structure STAR, 4 tags, length=40:
NAME STRING 'SIRIUS'
RA FLOAT 30.0000
DEC FLOAT 40.0000
INTEN INT Array(12)

Using HELP with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HELP with the STRUCTURE keywo
and no parameters prints a list of all defined, named structure types and their ta
names.
Building IDL Applications Using HELP with Structures

140 Chapter 7: Structures

ble

e

er

 array
 the
cur
 and
Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the varia
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure ar
passed by value. For example, the following statement prints the value of the
structure field A.name:

PRINT, A.name

Any reference to a structure with a subscript or tag name is evaluated into an
expression, henceA. name is an expression and is passed by value. This works as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A.name

does not read intoA.name but interprets its parameter as a prompt string. The prop
code to read into the field is as follows.

;Copy type and attributes to variable.
B = A.name

;Read into a simple variable.
READ, B

;Store result into field.
A.name = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fields is
slightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an
field. With normal arrays, when storing an array inside part of another array, use
subscript of the lower-left corner, not a range specification. Other differences oc
because the size and type of a field are fixed by the original structure definition,
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:
Parameter Passing with Structures Building IDL Applications

Chapter 7: Structures 141

ror
ain

f the
into

ment
nt
VAR.ARRAY_TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

;Set all 12 elements of A.inten to 100.
A.inten = 100

VAR.TAG = Array_Expression

Each element ofArray_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an er
results. If it contains fewer elements than VAR.TAG, the unmatched elements rem
unchanged. For example:

;Set A.inten to the 12 numbers 0, 1, 2,..., 11.
A.inten = FINDGEN(12)

;Set A.inten[0] to 1 and A.inten[1] to 2. The other elements
;remain unchanged.
A.inten = [1, 2]

VAR.TAG [Subscript] = Scalar_Expression

The value of the scalar expression is simply copied into the designated element o
destination. IfSubscript is an array of subscripts, the scalar expression is copied
the designated elements. For example:

;Set the sixth element of A.inten to 100.
A.inten[5] = 100

;Set elements 2, 4, and 6 to 100.
A.inten[[2, 4, 6]] = 100

VAR.TAG [Subscript] = Array_Expression

Unless VAR.tag is an array of structures, the subscript must be an array. Each ele
of Array_Expression is copied into the element given by the corresponding eleme
subscript. For example:

;Set elements 2, 4, and 6 to the values 5, 7, and 9 respectively.
A.inten[[2, 4, 6]] = [5, 7, 9]

VAR.TAG [Subscript_Range] = Scalar_Expression

The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elements 8, 9, 10, and 11 to the value 5.
A.inten[8:*] = 5
Building IDL Applications Parameter Passing with Structures

142 Chapter 7: Structures

he
ith the
VAR.TAG [Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by t
subscript range. The number of elements in the array expression must agree w
size of the subscript range. For example:

;Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FINDGEN(4)
Parameter Passing with Structures Building IDL Applications

Chapter 7: Structures 143

 the
re

ion.
nt.

en

wing

s,
nly a
e

Arrays of Structures

An array of structures is simply an array in which each element is a structure of
same type. The referencing and subscripting of these arrays (also called structu
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structures is to use the REPLICATE funct
The first parameter to REPLICATE is a reference to the structure of each eleme
Using the example in“Examples of Structure References”on page 137 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLICATE({star}, 100)

Alternatively, since the variable A contains an instance of the structure STAR, th

cat = REPLICATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the follo
statement:

cat = REPLICATE({star, name:'', ra:0.0, dec:0.0, $
inten:FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript range
fields, nested structures, etc., are quite general and lead to many possibilities, o
small number of which can be explained here. In general, any structures that ar
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variableCAT contains a star
catalog ofSTAR structures.

;Set the name field of all 100 elements to “EMPTY.”
cat.name = 'EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE', 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = INDGEN(100)
Building IDL Applications Arrays of Structures

144 Chapter 7: Structures
;Prints name field of all 100 elements of cat, separated by commas
;(the last field has a trailing comma).
PRINT, cat.name + ','

;Find index of star with name of SIRIUS.
I = WHERE(cat.name EQ 'SIRIUS')

;Extract intensity field from each entry. Q will be a 12 by 100
;floating-point array.
Q = cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

;Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascending order by names. Store the result
;back into cat.
cat = cat(SORT(cat.name))

;Determine the monthly total intensity of all stars in array.
;monthly is now a 12-element array.
monthly = cat.inten # REPLICATE(1,100)
Arrays of Structures Building IDL Applications

Chapter 7: Structures 145

t

h

 The

ce
of the

 (i.e,

d
pt in
ed in

e

ng
Structure Input/Output

Structures are read and written using the formatted and unformatted input/outpu
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with eac
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type.
entire structure is enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
results in the following output.

{SIRIUS 30.0000 40.0000 0 1 2 3 4 5 6 7 8 9 10 11}

When reading a structure with READ or READF and the default format, white spa
should separate each element. Reading string elements causes the remainder
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elements is determined by the format specification
to read the next 10 characters into a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforwar
process of transferring each element, without interpretation or modification, exce
the case of strings. Each IDL data type, except strings, has a fixed length express
bytes. This length (which is padded when using ASSOC, butnot padded when using
READU/WRITEU) is also the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whos
native C compilers force short integers to begin on an even byte boundary, IDL
begins fields that are not of type byte on an even byte boundary. Thus, a “paddi
byte” may appear (when using ASSOC for I/O) after a byte field to cause the
following non-byte-type field to begin on an even byte. A padding byte is never
added before a byte or byte array field. For example, the structure:

{example, t1:1b, t2:1}
Building IDL Applications Structure Input/Output

146 Chapter 7: Structures

yte

e
hat
g. If
 read

e
es

,
 be

to

nks
an be
e, to
occupies four bytes on a machine where short integers must begin on an even b
boundary. When using ASSOC, a padding byte is added after fieldt1 to cause the
integer fieldt2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structures is not fixed. For example, one instance of the{star} structure can
contain aname field with a five-character name, while another instance of the sam
structure can contain a 20-character name. When reading into a structure field t
contains a string, IDL reads the number of bytes given by the length of the strin
the string field contains a 10-character string, 10 characters are read. If the data
contains a null byte, the length of the string field is truncated, and the null and
following characters are discarded. When writing fields containing strings with th
unformatted procedure WRITEU, IDL writes each character of the string and do
not append a terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU
make each string in a given field the same length to be compatible with C and to
able to read the data back into IDL. You must know how many characters exist
read into a string element. One way around this problem is using the STRING
function with a format specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of allname fields in the
cat array to 20 characters by using the following statement.

cat.name = STRING(cat.name, FORMAT = '(A20)')

This statement will truncate names longer than 20 characters and will pad with bla
those names shorter than 20 characters. The structure or structure array then c
output in a format suitable to be read by C or FORTRAN programs. For exampl
read into thecat array from a file in which eachname field occupies 26 bytes, use
the following statements.

;Make a 100-element array of {STAR} structures, storing a
;26-character string in each name field.
cat = REPLICATE({star, STRING(' ', FORMAT = '(A26)'), $

FLTARR(0., 0.12)}, 100)

;Read the structure. As mentioned above, 26 bytes will be read for
;each name field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.
READU, 1, cat
Structure Input/Output Building IDL Applications

Chapter 7: Structures 147

s

. In
the
of

.

f

hat
the
Advanced Structure Usage

Facilities exist to process structures in a general way using tagnumbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, a
follows:

Variable_Name.(Tag_Index)...

TheTag_Index ranges from zero to the number of fields minus one.

Note
TheTag_Index is an expression, the result of which is taken to be a tag position
order for the IDL parser to understand that this is the case, you must enclose
Tag_Index in parentheses. This is not an array indexing operation, so the use
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fields in a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the /LENGTH keyword

Names of Structure Tags

The function TAG_NAMES(Structure) returns a string array containing the names o
each tag. To return the name of the structure itself, call TAG_NAMES with the
/STRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure t
reads into a structure from the keyboard. The procedure prompts the user with
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, from the keyboard with
;prompts.
PRO READ_STRUCTURE, S

;Get the names of the tags.
NAMES = TAG_NAMES(S)
;Loop for each field.
FOR I = 0, N_TAGS(S) - 1 DO BEGIN

;Define variable A of same type and structure as the i-th field.
A = S.(I)
Building IDL Applications Advanced Structure Usage

148 Chapter 7: Structures

than

D

;Use HELP to print the attributes of the field. Prompt user with
;tag name of this field, and then read into variable A. S.(I) =
;A. Store back into structure from A.
HELP, S.(I)

READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR
END

Note
In the above procedure, the READ procedure reads into the variable A rather
S. (I) becauseS. (I) is an expression, not a simple variable reference.
Expressions are passed by value; variables are passed by reference. The REA
procedure prompts the user with parameters passed by value and reads into
parameters passed by reference.
Advanced Structure Usage Building IDL Applications

Chapter 7: Structures 149

e
to

is

ired

nd that

, and
Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structur
would cause IDL to halt with an error. This behavior was changed in IDL version 5
allow the automatic definition of named structures.

When IDL encounters a reference to an undefined named structure, it will
automatically search the directories specified in!PATH for a procedure named
Name__DEFINE, whereNameis the actual name of the structure. If this procedure
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the des
operation.

Note
There aretwo underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, a
no procedure named mystruct__define.pro exists in the directories specified by
!PATH. A call to the HELP procedure produces the following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Attempt to call undefined procedure/function:’MYSTRUCT__DEFINE'.
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAIN$

Suppose now that we define a procedure named mystruct__define.pro as follows
place it in one of the directories specified by !PATH:

PRO mystruct__define
tmp = { mystruct, a:1.0, b:'string' }

END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Compiled module: MYSTRUCT__DEFINE.
** Structure MYSTRUCT, 2 tags, length=12:
 A FLOAT 0.00000
 B STRING ''
Building IDL Applications Automatic Structure Definition

150 Chapter 7: Structures

m

Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either via automatic structure definition or by explicitly creating a new structure fro
an existing structure—must be initialized to contain values after creation.
Automatic Structure Definition Building IDL Applications

Chapter 7: Structures 151

n

the

m.
ich
ding

ce
ject

ture

ypes

in
ture
, the
Relaxed Structure Assignment

The IDL “=” operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definitio
SRC, as follows:

source = { SRC, A:FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A:INDGEN(2), C:20 }

Attempting to execute these two statements at the IDL command prompt gives
following results:

% Conflicting data structures: <INT Array[2]>,SRC.
% Execution halted at: $MAIN$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this proble
The STRUCT_ASSIGN procedure performs “relaxed structure assignment,” wh
is a field-by-field copy of a structure to another structure. Fields are copied accor
to the following rules:

1. Any fields found in the destination structure that are not found in the sour
structure are “zeroed” (set to zero, the empty string, or a null pointer or ob
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination struc
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their t
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements
the field in the destination structure are zeroed. If a field in the source struc
has more elements than the corresponding field in the destination structure
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSIGN, source, dest, /VERBOSE

IDL prints:
Building IDL Applications Relaxed Structure Assignment

152 Chapter 7: Structures

is

d

s. If

’s

t to a

y:
% STRUCT_ASSIGN: SRC tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks SRC tag B. Not copied.

If we check the variabledest , we see that it has the definition of thedest structure
and the data from thesource structure:

HELP, dest, /STRUCTURE

IDL prints:

** Structure DEST, 2 tags, length=6:
 A INT Array[2]
 C INT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where th
type of structure definition is very useful is in restoring object structures into an
environment where the structure definition may have changed since the restore
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structures to disk file
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
allows you to make relaxed assignments in such cases.

To see how this works, try the following exercise:

1. Start IDL, create a named structure, and use the SAVE procedure to save i
file:

mystruct = { STR, A:10, B:20L, C:’a string’ }
SAVE, mystruct, FILE='test.dat'

2. Exit and restart IDL.

3. Create a new structure definition with the same name you used previousl

newstruct = { STR, A:20L, B:10.0, C:’a string’, D:ptr_new() }

4. Attempt to restore the variable mystruct from the test.dat file:

RESTORE, 'test.dat'

IDL prints:
Relaxed Structure Assignment Building IDL Applications

Chapter 7: Structures 153

ases
t has
not

ic
% Wrong number of tags defined for structure: STR.
% RESTORE: Structure not restored due to conflict with

existing definition: STR.

5. Now use relaxed structure definition when restoring:

RESTORE, 'test.dat', /RELAXED_STRUCTURE_ASSIGNMENT

6. Check the contents of mystruct:

HELP, mystruct, /STRUCTURE

IDL prints:

** Structure STR, 4 tags, length=20:
 A LONG 10
 B FLOAT 20.0000
 C STRING ’a string’
 D POINTER <NullPointer>

The structure in the variablemystruct now uses the definition from the new version
of the STR structure, but contains the data from the old (restored) structure. In c
where the data type of a field has changed, the data type of the old data elemen
been converted to the new data type. Fields in the new structure definition that do
correspond to fields in the old definition contain “zero” values (zeroes for numer
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).
Building IDL Applications Relaxed Structure Assignment

154 Chapter 7: Structures
Relaxed Structure Assignment Building IDL Applications

Chapter 8:

Array Subscripts
The following topics are covered in this chapter:
Overview ... 156
Array Subscript Syntax: [] vs. ()............. 157
Subscript Examples................................... 158
Subscript Ranges....................................... 161

Structure of Subarrays.............................. 163
Array Subscripts....................................... 165
Combining Array Subscripts with Others. 167
Storing Elements with Array Subscripts... 169
Building IDL Applications 155

156 Chapter 8: Array Subscripts

ieval

iable
ments,
n the

 into

array.

ng to

sion

arated
e

Overview

Subscripts provide a means of selecting one or more elements of an array for retr
or modification.

The values of the selected array elements are extracted when a subscripted var
reference appears in an expression. New values are stored in selected array ele
without disturbing the remaining elements, when a subscript reference appears o
left side of an assignment statement.“The Assignment Statement” on page 198
discusses the use of the different types of assignment statements when storing
arrays.

The subscripts of an array element denote the address of the element within the
In the simple case of a one-dimensional array, ann-element vector, elements are
numbered starting at 0 with the first element, 1 for the second element, and runni
n − 1, the subscript of the last element.

Arrays with multiple dimensions are addressed by specifying a subscript expres
for each dimension. A two-dimensional array, a matrix withn columns andm rows, is
addressed with a subscript of the form[i, j] , where 0 ≤ i < n and 0 ≤ j < m. The first
subscript,i, is the column index; the second subscript,j, is the row index. The syntax
of a subscript reference is:

Variable_Name [Subscript_ List]

or

(Array_Expression)[Subscript_List]

TheSubscript_List is simply a list of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are sep
by commas if there is more than one subscript. In addition, multiple elements ar
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.
Overview Building IDL Applications

Chapter 8: Array Subscripts 157

ts.
sts.
ions

h,
h.

s

ct

his

ther

later:

 as
tax

rior

e it
 be
Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscrip
Function calls use parentheses in a visually identical way to specify argument li
As a result, the IDL compiler is not able to distinguish between arrays and funct
by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variablevalue equal to the sixth element of an array named fis
or set value equal to the result of passing the argument 5 to a function called fis

To determine if it is compiling an array subscript or a function call, IDL checks it
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish , in the above example), it calls that
function with the argument specified. If IDL does not find a function with the corre
name in its table of known functions, it assumes that the unknown element is an
array, and attempts to return the value of the designated element of that array. T
rule generally gives the desired result, but it can be fooled into the wrong choice
under certain circumstances, much to the surprise of the unwary programmer.

For this reason, versions of IDL beginning with version 5.0 use square brackets ra
than parentheses for array subscripting. An array subscripted in this way is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and

value = fish[5]

sets value to the sixth element of an array named fish.

Due to the large amount of existing IDL code written in the older syntax, as well
the ingrained habits of thousands of IDL users, IDL continues to allow the old syn
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]

is unambiguous,

value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions p
to version 5.0

Since the older syntax has been used widely, you should not be surprised to se
from time to time. However, square brackets are the preferred form, and should
used for new code.
Building IDL Applications Array Subscript Syntax: [] vs. ()

158 Chapter 8: Array Subscripts

or to
s the

ment
the

ch

d the

ws:

e
s
rity

the
stem
.

ript,
 the

nt as
Subscript Examples

Subscripts can be used either to retrieve the value of one or more array elements
designate array elements to receive new values. The expression ARR[12] denote
value of the 13th element of ARR (because subscripts start at 0), while the state
ARR[12] = 5 stores the number 5 in the 13th element of ARR without changing
other elements.

Elements of multidimensional arrays are specified by using one subscript for ea
dimension. In arrays and images, the first subscript denotes the column and the
second subscript is the row. For matrices, the first subscript denotes the row an
second subscript is the column.

If A is a 2-element by 3-element array, the elements are stored in memory as follo

The elements are ordered in memory as: A0,0, A1,0, A0,1, A1,1, A0,2, A1,2, etc. Thus,
IDL arrays arerow major(i.e., stored by rows). This ordering is like FORTRAN. It is
the opposite of the way C and Pascal handle arrays. IDL uses row major storag
because it is oriented toward image processing while the other languages stres
matrix computation. For a more extensive discussion of row versus column majo
and how it relates to IDL mathematics routines, see“Arrays and Matrices”in Chapter
16 of theUsing IDL manual.

Images are usually displayed with row zero at the bottom of the screen, matching
display’s coordinate system, although this order can be reversed by setting the sy
variable !ORDER to a nonzero value. Arrays are printed with the first row on top

Elements of multidimensional arrays also can be specified using only one subsc
in which case the array is treated as a vector with the same number of points. In
above example, A[2] is the same element as A [0, 1], and A[5] is the same eleme
A[1, 2].

Stored in Memory

A0,0 A1,0 Lowest memory address

A0,1 A1,1 .
.
.

A0,2 A1,2 Highest memory address

Table 8-1: Storage of IDL Array Elements in Memory
Subscript Examples Building IDL Applications

Chapter 8: Array Subscripts 159

lar
inus

ion is
.

ns.

ore,

ey
If an attempt is made to reference a nonexistent element of an array using a sca
subscript (a subscript that is negative or larger than the size of the dimension m
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript express
not integer, a longword integer copy is made and used to evaluate the subscript

“Extra” Dimensions

When creating arrays, IDL eliminates all size 1, or “degenerate”, trailing dimensio
Thus, the statements

A = INTARR(10, 1)
HELP, A

print the following:

A INT = Array(10)

This removal of superfluous dimensions is usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Theref
IDL allows you to specify “extra” dimensions for an array as long as the extra
dimensions are all zero. For example, consider a vector defined as follows:

ARR = INDGEN(10)

The following are all valid references to the sixth element of ARR:

X = ARR[5]
X = ARR[5, 0]
X = ARR[5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

Subscripting Scalars

Scalar quantities in IDL can be though of as arrays with dimensions of (1,0). Th
can be subscripted with a zero reflecting the first and only position. Therefore,

;Assign the value of 5 to A.
A = 5

;Print the value of the first element of A.
PRINT, A[0]

IDL prints:

5

Building IDL Applications Subscript Examples

160 Chapter 8: Array Subscripts

le
If we redefine the first element of A:

;Redefine the first element of A.
A[0] = 6

PRINT, A

IDL prints:

6

Note
You cannot subscript a variable that has not yet been defined. Thus, if the variabB
has not been previously defined, the statement:

B[0] = 9

will fail with the error “variable is undefined.”
Subscript Examples Building IDL Applications

Chapter 8: Array Subscripts 161

g and

 four

ten

t in

f
a

2

e

f

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the startin
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are
types of subscript ranges:

• A range of subscripts, written [e0:e1], denoting all elements whose subscripts
range from the expressione0 throughe1 (e0 must not be greater thane1). For
example, if the variable VEC is a 50-element vector, VEC[5:9] is a five-
element vector composed of VEC[5] through VEC[9].

• All elements from a given element to the last element of the dimension, writ
as [e:*]. Using the above example, VEC[10:*] is a 40-element vector made
from VEC[10] through VEC[49].

• A simple subscript, [n]. When used with multidimensional arrays, simple
subscripts specify only elements with subscripts equal to the given subscrip
that dimension.

• All elements of a dimension, written [*]. This form is used with
multidimensional arrays to select all elements along the dimension. For
example, if ARR is a 10-column by 12-row array, ARR[*, 11] is the last row o
ARR, composed of elements [ARR[0,11], ARR[1,11], ..., ARR[9,11]], and is
10-element row vector. Similarly, ARR[0, *] is the first column of ARR,
[ARR[0,0], ARR[0,1],..., ARR[0,11]], and its dimensions are 1 column by 1
rows.

Multidimensional subarrays can be specified using any combination of the abov
forms. For example,ARR[*, 0:4] is made from all columns of rows 0 to 4 of ARR
or a 10-column, 5-row matrix. The table below summarizes the possible forms o
subscript ranges:

Form Description

e A simple subscript expression

e0:e1 Subscript range frome0 to e1

e:* All points from elemente to end

Table 8-2: Subscript Ranges
Building IDL Applications Subscript Ranges

162 Chapter 8: Array Subscripts
* All points in the dimension

Form Description

Table 8-2: Subscript Ranges
Subscript Ranges Building IDL Applications

Chapter 8: Array Subscripts 163

ns is

oved.

he

f
at the
Structure of Subarrays

The dimensions of the extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensio
equal to the number of subscripts and subscript ranges. The size of then-th dimension
is equal to one if a simple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions whose size is equal to one) are rem
This was illustrated in the previous example by the expression ARR[*,11] which
resulted in a row vector with a single dimension because the last dimension of t
result was one and was removed. On the other hand, the expression ARR[0, *]
became a column vector with dimensions of [1, 12] showing that the structure o
columns is preserved because the dimension with a size of one does not appear
end.

Using the examples of VEC, a 50-element vector, and A, a 10-column by 12-row
array, some typical subscript range expressions are as follows:

;Elements 5 through 10 of VEC, a six-element vector.
VEC[5:10]

;A three-element vector.
VEC[I - 1:I + 1]

;The same vector.
[VEC[I - 1], VEC[I], VEC[I + 1]]

;Elements of VEC from VEC(4) to the end, a 46-element (50 - 4)
;vector.
VEC[4:*]

;The fourth column of A, a 1 column by 12 row vector.
A[3, *]

;The first row of A, a 10-element row vector. Note, the last
;dimension was removed because it was degenerate.
[A[3, 0], A[3, 1], ..., A[3, 11]]
A[*, 0]

;The nine-point neighborhood surrounding A[X,Y], a 3 by 3 array.
A[X - 1:X + 1, Y - 1:Y + 1]

;Three columns of A, a 3 by 12 subarray:
A[3:5,*]
Building IDL Applications Structure of Subarrays

164 Chapter 8: Array Subscripts
See“The Assignment Statement” on page 198 for a description of the process of
assigning values to subarrays.
Structure of Subarrays Building IDL Applications

Chapter 8: Array Subscripts 165

d as a
t

me as

as if

t of
n or
Array Subscripts

Arrays can be used as subscripts to other arrays. Each element in the array use
subscript selects an element in the subscripted array. When used with subscrip
ranges, more than one element may be selected for each subscript element.

If no subscript ranges are present, the length and structure of the result is the sa
that of the subscript expression. The type of the result is the same as that of the
subscripted array. If only one subscript is present, all subscripts are interpreted
the subscripted array has one dimension.

In the simple case of only one subscript, in which the subscript is an array, the
process can be written as follows:

The vectorV hasn elements, andS hasm elements. The resultV(S) has the same
structure and number of elements as does the subscript vectorS.

If an element of the subscript array is less than or equal to zero, the first elemen
the subscripted variable is selected. If an element of the subscript is greater tha
equal to the last subscript in the subscripted variable (N, above), the last element is
selected.

Example

As an example, consider the commands:

A = [6, 5, 1, 8, 4, 3]
B = [0, 2, 4, 1]
C = A[B]
PRINT, C

that produce the following output:

6 1 4 5

V S()
VSi

if 0 Si n<≤

V0 if Si 0<

Vn 1– if Si n≥

= for 0 i m<≤
Building IDL Applications Array Subscripts

166 Chapter 8: Array Subscripts

on.

11,
1

ct
lts
The first element of C is 6 because that is the number in the 0 position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so

As another example, assume the variable A is a 10 by 10 array. The expression
A[INDGEN(10) * 11] yields a 10-element vector equal to the diagonal elements ofA.
The subscripts of the diagonal elements, A[0,0], A[1,1], ..., A[9, 9] are equal to 0,
22, 99, when singularly subscripted. The elements of the vector INDGEN(10)*1
also are equal to 0, 11, 22, ..., 99. Applying the vector as a subscript selects the
diagonal elements.

The WHERE function, which returns a vector of subscripts, can be used to sele
elements of an array using expressions similar to A[WHERE(A GT 0)] which resu
in a vector composed only of the elements of A that are greater than 0.
Array Subscripts Building IDL Applications

Chapter 8: Array Subscripts 167

s and

left
 be
hose

 of
ach

al

ch

 two-

ed
rays
Combining Array Subscripts with Others

Array subscripts can be combined with subscript ranges, simple scalar subscript
other array subscripts.

When IDL encounters a multidimensional subscript that contains one or more
subscript arrays, it builds an array of subscripts by processing each subscript from
to right. The resulting array of subscripts is then applied to the variable that is to
subscripted. As with other subscript operations, trailing degenerate dimensions (t
with a size of 1) are eliminated.

Subscript Ranges

When combining an array subscript with a subscript range, the result is an array
subscripts constructed by combining each element of the subscript array with e
member of the subscript range. Combining ann-element array with anm-element
subscript range yields annm-element subscript. Each dimension of the result is equ
to the number of elements in the corresponding subscript array or range.

For example, the expression A[[1, 3, 5], 7:9] is a nine-element, 3× 3 array composed
of the following elements:

Each element of the three-element subscript array (1, 3, 5) is combined with ea
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a
dimensional n × m array:

;Zero the first and last rows.
A[*, [0, M-1]] = 0

;Zero the first and last columns.
A[[0, N - 1], *] = 0

Other Subscript Arrays

When combining two subscript arrays, each element of the first array is combin
with the corresponding element of the other subscript array. The two subscript ar

A1 7, A3 7, A5 7,

A1 8, A3 8, A5 8,

A1 9, A3 9, A5 9,
Building IDL Applications Combining Array Subscripts with Others

168 Chapter 8: Array Subscripts

same
, 9]]

t of

d
ssion
must have the same number of elements. The resulting subscript array has the
number of elements as its constituents. For example, the expression A[[1, 3], [5
yields the elements A[1,5] and A[3,9].

Scalars

Combining ann-element subscript range orn-element subscript array with a scalar
yields ann-element result. The value of the scalar is combined with each elemen
the range or array. For example, the expression A[[1, 3, 5], 8] yields the three-
element vector composed of the elements A[1,8], A[3,8], and A[5,8]. The secon
dimension of the result is 1 and is eliminated because it is degenerate. The expre
A[8, [1, 3, 5]] is the 1× 3-column vector A[8,1], A[8,3], and A[8,5], illustrating that
leading dimensions are not eliminated.
Combining Array Subscripts with Others Building IDL Applications

Chapter 8: Array Subscripts 169

 array
ent.
ent
he

dless
es of

 of
wo
Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an
expression as a subscript for the array on the left side of an assignment statem
Values are taken from the expression on the right side of the assignment statem
and stored in the elements whose subscripts are given by the array subscript. T
right-hand expression can be either a scalar or array.

The subscript array is converted to longword type before use if necessary. Regar
of structure, this subscript array is interpreted as a vector. For details and exampl
storing with vector subscripts, see“The Assignment Statement” on page 198.

Examples

The statement:

A[[2, 4, 6]] = 0

zeroes elements A[2], A[4], and A[6], without changing other elements of A. The
statement:

A[[2, 4, 6]] = [4, 16, 36]

stores 4 in A[2], 16 in A[4], and 36 in A[6].

One way to create a squaren × n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

The expression INDGEN(N)*(N + 1) results in a vector containing the subscripts
the diagonal elements [0, N+1, 2N+2, ..., (N-1)*(N+1)]. Yet another way is to use t
array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts [[0,0], [1,1], ..., [n-1, n-1]]. The statement:

A[WHERE(A LT 0)] = -1

sets negative elements of A to -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1
Building IDL Applications Storing Elements with Array Subscripts

170 Chapter 8: Array Subscripts
Storing Elements with Array Subscripts Building IDL Applications

Chapter 9:

Strings
The following topics are covered in this chapter:
0

3

Overview . 172
String Operations 173
Non-string and Non-scalar Arguments. . . 174
String Concatenation. 175
Using STRING to Format Data 176
Byte Arguments and Strings. 177
Case Folding. 179

Whitespace. 18
Finding the Length of a String. 182
Substrings. 18
Splitting and Joining Strings 186
Comparing Strings. 187
Learning About Regular Expressions 191
Building IDL Applications 171

172 Chapter 9: Strings

ing
each
the

t, and
Overview

An IDL string is a sequence of characters from 0 to 32,767 characters in length.
Strings have dynamic length (they grow or shrink to fit), and there is no need to
declare the maximum length of a string prior to using it. As with any data type, str
arrays can be created to hold more than a single string. In this case, the length of
individual string in the array depends only on its own length and is not affected by
lengths of the other string elements.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per elemen
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

Executing the statement,

PRINT, '>' + trees + '< '

results in the following output:

>Beech< >Birch< >Mahogany< >Maple< >Oak< >Pine< >Walnut<
Overview Building IDL Applications

Chapter 9: Strings 173

.

s

.

String Operations

IDL supports several basic string operations, as described below.

Concatenation

TheAddition operator, “+”, can be used to concatenate strings together.

Formatting Data

TheSTRINGfunction is used to format data into a string. TheREADSprocedure can
be used to read values from a string into IDL variables.

Case Folding

TheSTRLOWCASE function returns a copy of its string argument converted to
lowercase. Similarly, theSTRUPCASE function converts its argument to uppercase

White Space Removal

TheSTRCOMPRESS andSTRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length

TheSTRLEN function returns the length of its string argument.

Substrings

TheSTRPOS, STRPUT, andSTRMID routines locate, insert, and extract substring
from their string arguments.

Splitting and Joining Strings

TheSTRSPLIT function is used to break strings apart, and theSTRJOIN function
can be used to and glue strings together.

Comparing Strings

TheSTRCMP, STRMATCH, andSTREGEX functions perform string comparisons
Building IDL Applications String Operations

174 Chapter 9: Strings

ne

o

with
an
Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least o
argument that is the string on which they act.

If the argument is not of type string, IDL converts it to type string using the same
default formatting rules that are used by thePRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRINT, STRLEN(23)

returns the result

8

because the argument “23” is first converted to the string ' 23' that happens t
be a string of length 8.

If the argument is an array instead of a scalar, the function returns an array result
the same structure as the argument. Each element of the result corresponds to
element of the argument. For example, the following statements:

;Get an uppercase version of TREES.
A = STRUPCASE(trees)

;Show that the result is also an array.
HELP, A

;Display the original.
PRINT, trees

;Display the result.
PRINT, A

produce the following output:

A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptions in theIDL Reference Guide.
Non-string and Non-scalar Arguments Building IDL Applications

Chapter 9: Strings 175

d:

list
String Concatenation

The addition operator is used to concatenate strings. For example, the comman

A = 'This is' + ' a concatenation example.'
PRINT, A

results in the following output:

This is a concatenation example.

The following IDL statements build a scalar string containing a comma-separated
of the names found in the TREES string array:

;Use REPLICATE to make an array with the correct number of commas
;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

;Show the resulting list.
PRINT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut
Building IDL Applications String Concatenation

176 Chapter 9: Strings

. It is
 a

s of

s
AD

ing
DS.
Using STRING to Format Data

The STRING function has the following form:

S = STRING(Expression1, ...,Expressionn)

It converts its parameters to characters, returning the result as a string expression
identical in function to the PRINT procedure, except that its output is placed into
string rather than being output to the terminal. As with PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussion
free format and explicitly formatted input/output (“Free Format I/O”on page 356) for
details of data formatting. For more information on the STRING function, see
STRING in theIDL Reference Guide.

As a simple example, the following IDL statements:

;Produce a string array.
A = STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

;Show its structure.
HELP, A

;Print the result.
FOR I = 0, 4 DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:

0
1
2
3

Reading Data from Strings

The READS procedure performs formatted input from a string variable and write
the results into one or more output variables. This procedure differs from the RE
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string us
READF. Then the components of that line can be read into variables using REA

See the description ofREADS in theIDL Reference Guide for more details.
Using STRING to Format Data Building IDL Applications

Chapter 9: Strings 177

ly an

 the
 than
and
tring

CII
T
ta in

ore,
f

rs in
t are
sfer
ings
g a
.

Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simp
array of bytes that is treated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing
byte values from the original argument. Thus, the result has one less dimension
the original argument. A two-dimensional byte array becomes a vector of strings,
a byte vector becomes a scalar string. However, a byte scalar also becomes a s
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output below:

Hello

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Its first element is 72B which is the AS
code for “H,” the second is 101B which is an ASCII “e,” and so forth. Set the PRIN
keyword can be used to disable this feature and cause STRING to treat byte da
the usual way.

As discussed inChapter 16, “Files and Input/Output”, it is easier to read fixed-length
string data from binary files into byte variables instead of string variables. Theref
it is convenient to read the data into a byte array and use this special behavior o
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable characte
a way such that the character is not entered directly. This results in programs tha
easier to read and that also avoid file transfer difficulties (some forms of file tran
have problems transferring nonprintable characters). Due to the way in which str
are implemented in IDL, applying the STRING function to a byte array containin
null (zero) value will result in the resulting string being truncated at that position
Thus, the statement,

PRINT, STRING([65B, 66B, 0B, 67B])

produces the following output:

AB
Building IDL Applications Byte Arguments and Strings

178 Chapter 9: Strings

ray

s
ing
he
This output is produced because the null byte in the third position of the byte ar
argument terminates the string and hides the last character.

Note
The BYTE function, when called with a single argument of type string, perform
the inverse operation to that described above, resulting in a byte array contain
the same byte values as its string argument. For additional information about t
BYTE function, see“Type Conversion Functions” on page 110.
Byte Arguments and Strings Building IDL Applications

Chapter 9: Strings 179

g

wing
Case Folding

TheSTRLOWCASE andSTRUPCASE functions are used to convert arguments to
lowercase or uppercase. They have the form:

S = STRLOWCASE(String)

S = STRUPCASE(String)

whereString is the string to be converted to lowercase or uppercase.

The following IDL statements generate a table of the contents of TREES showin
each name in its actual case, lowercase and uppercase:

FOR I=0, 6 DO PRINT, trees[I], STRLOWCASE(trees[I]),$
STRUPCASE(trees[I]), FORMAT = '(A, T15, A, T30, A)'

The resulting output from running this statement is as follows:

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the follo
IDL statements can be used to ask “yes or no” style questions:

;Create a string variable to hold the response.
answer = ''

;Ask the question.
READ, 'Answer yes or no: ', answer
IF (STRUPCASE(answer) EQ 'YES') THEN $

;Compare the response to the expected answer.
PRINT,'YES' ELSE PRINT, 'NO'

Beech beech BEECH

Birch birch BIRCH

Mahogany mahogany MAHOGANY

Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT
Building IDL Applications Case Folding

180 Chapter 9: Strings

e
ata

e

.

ite
Whitespace

TheSTRCOMPRESS andSTRTRIM functions are used to remove unwanted whit
space (tabs and spaces) from a string. This can be useful when reading string d
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all whit
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)

whereString is the string to be compressed.

The default action is to replace each section of white space with a single space
Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

;Create a string with undesirable white space. Such a string might
;be the result of reading user input with a READ statement.
A = ' This is a poorly spaced sentence. '

;Print the result of shrinking all white space to a single blank.
PRINT, '>', STRCOMPRESS(A), '<'

;Print the result of removing all white space.
PRINT '>', STRCOMPRESS(A, /REMOVE_ALL), '<'

results in the output:

> This is a poorly spaced sentence. <
>Thisisapoorlyspacedsentence.<

Removing Leading or Trailing Blanks

The functionSTRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(String[, Flag])

whereString is the string to be trimmed andFlag is an integer that indicates the
specific trimming to be done. IfFlag is 0 or is not present, trailing white space is
removed. If it is 1, leading white space is removed. Both trailing and leading wh
space are removed ifFlag is equal to 2. For example:

;Create a string with unwanted leading and trailing blanks.
Whitespace Building IDL Applications

Chapter 9: Strings 181

d to
le
A = ' This string has leading and trailing white space '

;Remove trailing white space.
PRINT, '>', STRTRIM(A), '<'

;Remove leading white space.
PRINT, '>', STRTRIM(A,1), '<'

;Remove both.
PRINT, '>', STRTRIM(A,2), '<'

Executing these statements produces the output below.

> This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combine
remove leading and trailing white space and shrink any white space in the midd
down to single spaces.

;Create a string with undesirable white space.
A = 'Yet another poorly spaced sentence. '

;Eliminate unwanted white space.
PRINT, '>' STRCOMPRESS(STRTRIM(A,2)), '<'

Executing these statements gives the result below:

>Yet another poorly spaced sentence.<
Building IDL Applications Whitespace

182 Chapter 9: Strings

g

the
Finding the Length of a String

TheSTRLEN function is used to obtain the length of a string. It has the form:

L = STRLEN(String)

whereStringis the string for which the length is required. For example, the followin
statement

PRINT, STRLEN(’This sentence has 31 characters’)

results in the output

31

while the following IDL statement prints the lengths of all the names contained in
arrayTREES.

PRINT, STRLEN(trees)

The resulting output is as follows:

 5 5 8 5 3 4 6
Finding the Length of a String Building IDL Applications

Chapter 9: Strings 183

has

h is

r of
”:
Substrings

IDL provides theSTRPOS, STRPUT, andSTRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

TheSTRPOS function is used to search for the first occurrence of a substring. It
the form

S = STRPOS(Object, Search_string[, Position])

whereObjectis the string to be searched,Search_stringis the substring to search for,
and Positionis the character position (starting with position 0) at which the searc
begun. If the optional argumentPosition is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the numbe
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog

PRO Animals

;The search string, "dog", appears three times.
animals = 'dog cat duck rabbit dog cat dog'

;Start searching in character position 0.
I = 0

;Number of occurrences found.
cnt = 0

;Search for an occurrence.
WHILE (I NE -1) DO BEGIN

I = STRPOS(animals, 'dog', I)

IF (I NE -1) THEN BEGIN
;Update counter.
cnt = cnt + 1

;Increment I so as not to count the same instance of ‘dog’
;twice.
I = I + 1

ENDIF
ENDWHILE

;Print the result.
PRINT, 'Found ', cnt, " occurrences of 'dog'"
Building IDL Applications Substrings

184 Chapter 9: Strings

rch

 the
ring

has

and
he
END

Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to theSTRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we sea
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from
end of the string, the STRPOS function still returns the position of the search st
starting from the beginning of the string (where 0 is the position of the first
character).

Inserting the Contents of One String into Another

TheSTRPUTprocedure is used to insert the contents of one string into another. It
the form,

STRPUT,Destination, Source[, Position]

where Destination is the string to be overwritten,Source is the string to be inserted,
andPositionis the first character position withinDestinationat whichSourcewill be
inserted. If the optional argumentPosition is omitted, the overwrite is started at the
first character (character position 0). The following IDL statements use STRPOS
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in t
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
;The string to search, “dog”, appears three times.

;While any occurrence of “dog” exists, replace it.
WHILE (((I = STRPOS(animals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', I

;Show the resulting string.
Substrings Building IDL Applications

Chapter 9: Strings 185

he

e

h its
PRINT, animals

Running the above statements produces the result below.

CAT cat duck rabbit CAT cat CAT

Extracting Substrings

TheSTRMID function is used for extracting substrings from a larger string. It has t
form:

STRMID(Expression, First_Character [, Length])

whereExpression is the string from which the substring will be extracted,
First_Characteris the starting position withinExpression of the substring (the first
position is position 0), andLengthis the length of the substring to extract. If there ar
notLengthcharacters following the positionFirst_Character,the substring will be
truncated. If theLength argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month wit
three-letter abbreviation:

;String containing all the month names.
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

;Extract each name in turn. The equation (I-1)*3 calculates the
;position within MONTH for each abbreviation
FOR I = 1, 12 DO PRINT, I, ' ', $
STRMID(months, (I - 1) * 3, 3)

The result of executing these statements is as follows:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP

10 OCT
11 NOV
12 DEC
Building IDL Applications Substrings

186 Chapter 9: Strings

is

nts

ngs
ter

ter as
Splitting and Joining Strings

TheSTRSPLITfunction is used to break apart a string, and the STRJOIN function
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:

Result = STRSPLIT(String [, Pattern])

whereString is the string to be split, andPattern is either a string of character codes
used to specify the delimiter, or a regular expression, as implemented by the
STREGEX function.

The STRJOIN function uses the following syntax:

Result = STRJOIN(String [, Delimiter])

whereString is the string or string array to be joined, andDelimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array eleme
into a new sentence:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' ')

This code results in the following output:

Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substri
as array elements, rather than the default action of returning an array of charac
offsets indicating the position of each substring.

TheSTRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space as in the above example, we could use a different delimi
follows:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' Kind ')

This code results in the following output:

Hello Kind World
Splitting and Joining Strings Building IDL Applications

Chapter 9: Strings 187

s

s of
ing

nd

ers
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX function
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N Characters

TheSTRCMP function simplifies case-insensitive comparisons, and comparison
only the first N characters of two strings. The STRCMP function uses the follow
syntax:

Result = STRCMP(String1, String2 [, N])

whereString1 andString2 are the strings to be compared, andN is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” a
“mOO” requires the following steps:

A = 'Moose'
B = 'mOO'

C=STRMID(A,0,3)

IF (STRLOWCASE(C) EQ STRLOWCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 charact
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:

A='Moose'
B='mOO'

IF (STRCMP(A,B,3, /FOLD_CASE) EQ 1) THEN PRINT, "It's a match!"

The optionalN argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. IfN is omitted, the full
strings are compared.
Building IDL Applications Comparing Strings

188 Chapter 9: Strings

ard

.

String Comparisons Using Wildcards

TheSTRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the stand
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:

Result = STRMATCH(String, SearchString)

whereString is the string in which to search forSearchString.

SearchStringcan contain the following wildcard characters:

The following examples demonstrate various uses of wildcard matching:

Example 1:Find all 4-letter words in a string array that begin with “f” or “F” and end
with “t” or “T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2: Find words of any length that begin with “f” and end with “t”:

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 9-1: Wildcard Characters used by STRMATCH
Comparing Strings Building IDL Applications

Chapter 9: Strings 189

ng

is

t

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4: Find all words beginning with “f” and ending with “t” whose second
character is not the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

This results in:

Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “o” in between. This would
be difficult to accomplish with STRMATCH, but could be easily accomplished usi
theSTREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statemen
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
Building IDL Applications Comparing Strings

190 Chapter 9: Strings
• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which is a substring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which is why the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, seeSTREGEX in theIDL Reference Guide,
and for an introduction to regular expressions, see“Learning About Regular
Expressions” on page 191.
Comparing Strings Building IDL Applications

Chapter 9: Strings 191

rom

story

s are
cult
ey
and

y

nd
ular
57-
lar

t the
 left
 it
sion

t
ave
e” it
Learning About Regular Expressions

Regular expressions are a very powerful way to match arbitrary text. Stemming f
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950’s and 1960’s. Their use has a long hi
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expression
slower than simple pattern matching algorithms, and they can be cryptic and diffi
to write correctly. Small mistakes in specification can yield surprising results. Th
are, however, vastly more succinct and powerful than simple pattern matching,
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressions is a very large one, complicated by the arbitrar
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understa
them better, we recommend a good text on the subject, such as “Mastering Reg
Expressions”, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-2
3). The following is an abbreviated, simplified, and incomplete explanation of regu
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression agains
input string. Such matching starts at the beginning of the string and moves from
to right. The matching is considered to be “greedy”, because at any given point,
will always match the longest possible substring. For example, if a regular expres
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Mos
characters are ordinary. The exceptions, sometimes called “meta characters”, h
special meanings. To convert a meta character into an ordinary one, you “escap
by preceding it with a backslash character (e.g. '*'). The meta characters are
described in the following table:

Character Description

. The period matches any character.

Table 9-2: Meta characters
Building IDL Applications Learning About Regular Expressions

192 Chapter 9: Strings

”,

ter
 a
e

d

n
f

,

e,

,

If
h

it
}'
[] The open bracket character indicates a “bracket expression
which is discussed below. The close bracket character
terminates such an expression.

\ The backslash suppresses the special meaning of the charac
it precedes, and turns it into an ordinary character. To insert
backslash into your regular expression pattern, use a doubl
backslash ('\\').

() The open parenthesis indicates a “subexpression”, discusse
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters are used to specify repetition. The repetitio
is applied to the character or expression directly to the left o
the repetition operator.

* Zero or more of the character or expression to the left. Hence
'a*' means “zero or more instances of 'a'”.

+ One or more of the character or expression to the left. Henc
'a+' means “one or more instances of 'a'”.

? Zero or one of the character or expression to the left. Hence
'a?' will match 'a' or the empty string ''.

{} An interval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match.
it encloses a single unsigned integer length, it means to matc
exactly that number of instances. Hence, 'a{3}' will match
'aaa'. If it encloses 2 such integers separated by a comma,
specifies a range of possible repetitions. For example, 'a{2,4
will match 'aa', 'aaa', or 'aaaa'. Note that '{0,1}' is equivalent to
'?'.

| Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(a|b|c)z'
will match any of 'az', 'bz', or 'cz'.

Character Description

Table 9-2: Meta characters
Learning About Regular Expressions Building IDL Applications

Chapter 9: Strings 193

. There

cify a
ed
ket
r an

ny

by
For

ons
to
r

Subexpressions

Subexpressions are those parts of a regular expression enclosed in parentheses
are two reasons to use subexpressions:

• To apply a repetition operator to more than one character. For example,
'(fun){3}' matches 'funfunfun', while 'fun{3}' matches 'funnn'.

• To allow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to spe
set of characters that can satisfy a match. Many of the meta characters describ
above (.*[\) lose their special meaning within a bracket expression. The right brac
loses its special meaning if it occurs as the first character in the expression (afte
initial '^', if any).

There are several different forms of bracket expressions, including:

• Matching List — A matching list expression specifies a list that matches a
one of the characters in the list. For example, '[abc]' matches any of the
characters 'a', 'b', or 'c'.

• Non-Matching List — A non-matching list expression begins with a '^', and
specifies a list that matches any characternot in the list. For example, '[^abc]'
matches any charactersexcept 'a', 'b', or 'c'. The '^' only has this special
meaning when it occurs first in the list immediately after the opening '['.

• Range Expression— A range expression consists of 2 characters separated
a hyphen, and matches any characters lexically within the range indicated.

^ $ Anchors. A '^' matches the beginning of a string, and '$'
matches the end. As we have seen above, regular expressi
usually match any possible substring. Anchors can be used
change this and require a match to occur at the beginning o
end of the string. For example, '^abc' will only match strings
that start with the string 'abc'. '^abc$' will only match a string
containingonly 'abc'.

Character Description

Table 9-2: Meta characters
Building IDL Applications Learning About Regular Expressions

194 Chapter 9: Strings

se.
example, '[A-Za-z]' will match any alphabetic character, upper or lower ca
Another way to get this effect is to specify '[a-z]' and use the FOLD_CASE
keyword to STREGEX.
Learning About Regular Expressions Building IDL Applications

Chapter 10:

Statements
The following topics are covered in this chapter:
0

Overview . 196
Components of Statements 197
The Assignment Statement 198
Blocks . 204
CASE Statement . 206
Common Blocks . 208
FOR Statement . 211

Function Definition Statement 216
GOTO Statement . 219
IF Statement . 22
Procedure Call Statement 222
Procedure Definition Statement 225
REPEAT Statement 226
WHILE Statement 227
Building IDL Applications 195

196 Chapter 10: Statements

ode
ws:
Overview

IDL programs, procedures, and functions are composed of one or more valid
statements. Most simple IDL statements can also be entered in the immediate m
in response to the IDL> prompt. The thirteen types of IDL statements are as follo

• Assignment

• Block

• Case

• Common Block Definition

• For

• Forward Function Definition

• Function Definition

• Goto

• If

• Procedure Call

• Procedure Definition

• Repeat

• While
Overview Building IDL Applications

Chapter 10: Statements 197

meric

d
ment
y a
eric

racters

es
ly
ts.

ent
Components of Statements

Statements in IDL can consist of any combination of three parts:

• A label field

• The statement proper

• A comment field

Spaces and tabs can appear anywhere except in the middle of an identifier or nu
constant.

Statement Labels

Labels are the destinations of GOTO statements as well as the ON_ERROR an
ON_IOERROR procedures. The label field, which must appear before the state
or comment, is simply an identifier followed by a colon. A line can consist of onl
label field. Label identifiers, as with variable names, consist of 1 to 15 alphanum
characters and are case insensitive. The dollar sign ($) and underscore (_) cha
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
I$QUIT: RETURN ;Comments are allowed.

Comments

The comment field, which is ignored by IDL, begins with a semicolon and continu
to the end of the line. Lines can consist of only a comment field or can be entire
blank. It is good programming practice to fully annotate programs with commen
There are no execution-time or space penalties for comments in IDL.

The following IDL statement shows a simple assignment statement with a comm
field:

COUNT = 5 ;Set variable COUNT to 5. This is the comment field.
Building IDL Applications Components of Statements

198 Chapter 10: Statements
The Assignment Statement

The assignment statement stores a value in a variable. There are four forms of the
assignment statement, as shown in the following table.

Syntax Subscript
Structure

Expression
Structure Effect

Variable = Expression None All Expression is
stored in Variable

Variable[Subscripts] =
Expression

Scalar Scalar Expression is
stored in asingle
element of
Variable

Scalar Array Expression array
is inserted in
Variable array

Array Scalar Expressionscalar
is stored in
designated
elements of
Variable

Array Array Elements of
Expression are
stored in
designated
elements of
Variable

Variable[Range] =
Expression

Range Scalar Scalar is inserted
into subarray

Variable[Range] =
Expression

Range Array Ill egal

Table 10-1:Types of Assignment Statements
The Assignment Statement Building IDL Applications

Chapter 10: Statements 199

s the
d by

o
all

n is
ture.

o the
In the second and fourth cases, an array can be used as a subscript. This store
values from the right side of the statement into elements of the variable designate
the contents of the array subscript.

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue t
work as in previous version of IDL, we strongly suggest that you use brackets in
new code. See“Array Subscript Syntax: [] vs. ()” on page 157 for additional
details.

The Basic Assignment Statement

The first, and most basic, form of the assignment statement is as follows:

Variable = Expression

The old value of the variable, if any, is discarded, and the value of the expressio
stored in the variable. The expression on the right side can be of any type or struc

Examples

Some examples of the basic form of the assignment statement are as follows:

;Set mmax to value.
mmax = 100 * X + 2.987

;name becomes a scalar string variable.
name = 'Mary'

;Make arr a 100-element, floating-point array.
arr = FLTARR(100)

;Discard points 0 to 49 of arr. It is now a 50-element array.
arr = arr[50:*]

The Second Form of the Assignment Statement

The second type of assignment statement has the following form:

Variable[Subscripts] = Scalar_Expression

Here, a single element of the specified array is set to the value of the scalar
expression. The expression can be of any type and is converted, if necessary, t
type of the variable. The variable on the left side must be either an array or a file
Building IDL Applications The Assignment Statement

200 Chapter 10: Statements

es are

cript
ose

ents
the
on

e
s of

ripts
variable. Some examples of assigning scalar expressions to subscripted variabl
shown below:

;Set element 100 of data to value.
data[100] = 1.234999

;Store string in an array. name must be a string array or an error
;will result.
name[index] = 'Joe'

;Set element [X, Y] of the 2-dimensional array image to the value
contained in pixel.
image[X, Y] = pixel

Using Array Subscripts with the Second Form of the Assignment
Statement

The subscripted variable can have either a scalar or array subscript. If the subs
expression is an array, the scalar value is stored in the elements of the array wh
subscripts are elements of the subscript array. For example, the statement

data[[3, 5, 7, 9]] = 0

zeroes the four specified elements of data: data[3], data[5], data[7] and data[9].

The subscript array is converted to longword type if necessary before use. Elem
of the subscript array that are negative, or greater than the highest subscript of
subscripted array, are clipped to the target array boundaries. Note that a comm
error is to use a negativescalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negativearray subscripts (e.g., A[[-1]]) do not cause errors.

TheWHERE function can be used to select array elements to be changed. For
example, the statement:

data[WHERE(data LT 0)] = -1

sets all negative elements ofdata to -1 without changing the positive elements. Th
result of the function, WHERE(data LT 0), is a vector composed of the subscript
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

The Third Form of the Assignment Statement

The third type of assignment statement is similar to the second, except the subsc
specify a range in which all elements are set to the scalar expression.

Variable[Subscript_Range] = Scalar_Expression
The Assignment Statement Building IDL Applications

Chapter 10: Statements 201

o. J
ize of

othe

ide
A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal to
the size of the dimension minus one can be written as * .

For example, arr[I:J] denotesthosepoints in thevector ar r with subscriptsbetween I
and J inclusive. I must be less than or equal to J and greater than or equal to zer
denotes the points in arr from arr[I] to the last point and must be less than the s
the dimension arr [I:*]. SeeChapter 8, “Array Subscripts” for more details on
subscript ranges.

Examples

Assuming the variable B is a 512 × 512-byte array, some examples are as follows:

;Store 1 in every element of the i-th row.
array[*, I] = 1

;Store 1 in every element of the j-th column.
array[J, *] = 1

;Zero all the rows of columns 200 through 220 of array.
array[200:220, *] = 0

;Store the value 100 in all the elements of array.
array[*] = 100

The Fou rth Form of the Assignment Statement

The fourth type of assignment statement is of the following form:

Variable[Subscripts] = Array

Note that this form is syntactically identical to the second type of assignment
statement, but that the expression on the right-hand-side is an array instead of a
scalar. This form of the assignment statement is used to insert one array into anr.

The array expression on the right is inserted into the array appearing on the left s
of the equal sign starting at the point designated by the subscripts.

Examples

For example, to insert thecontents of an array called A into array B, starting at point
B[13, 24], use the following statement:

B[13, 24] = A

If A is a 5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.
Building IDL Applications The Assignment Statement

202 Chapter 10: Statements
In the next example, a subarray is moved from one position to another with the
statement:

B[100, 200] = B[200:300, 300:400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Using Arr ay Subscripts with the Fou rth Form of the Assignment
Statement

If thesubscript expression applied to thevariable isan array and an array appearson
the right side of the statement:

Variable[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. For example, the statement

B[[2, 4, 6]] = [4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A is a 10 × n matrix, the element A[i, j] has the subscript i+10*j. The
subscript array is converted to longword type before use, if necessary.

Asdescribed previously for thesecond form of assignment statement, elementsof the
subscript array that arenegativeor larger than thehighest subscript areclipped to the
target array boundaries. Note that a common error is to use a negativescalar
subscript (e.g., A[-1]). Using this type of subscript causes an error. Negativearray
subscripts (e.g., A[[-1]]) do not cause errors.

As another example, assume that the vector DATA contains data elements and that a
datadrop-out isdenoted by anegativevalue. In addition, assume that therearenever
two or more adjacent drop-outs. The following statements replace all drop-outs with
the average of the two adjacent good points:

;Subscript vector of drop-outs.
bad = WHERE(data LT 0)

;Replace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2
The Assignment Statement Building IDL Applications

Chapter 10: Statements 203
In this example, the following actions are performed:

• WeusetheLT (lessthan) operator to createan array, with thesamedimensions
as data , that contains a 1 for every element of data that is less than zero and
a zero for every element of data that is zero or greater. We use this “drop-out
array” as a parameter for the WHERE function, which generates a vector that
contains the one-dimensional subscripts of the elements of the drop-out array
that are nonzero. The resulting vector, stored in the variable bad , contains the
subscripts of the elements of data that are less than zero.

• The expression data[bad - 1] is a vector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is a vector containing the subscripts of the points immediately
after the drop-outs.

• The average of these two vectors is stored in data[bad], the points that
originally contained drop-outs.

Associated Variables in Assignment Statements

A special case occurs when using an associated file variable in an assignment
statement. For additional information regarding theASSOC function, seeASSOC in
the IDL Reference Guide. When a file variable is referenced, the last (and possibly
only) subscript denotes the record number of the array within the file. This last
subscript must be a simple subscript. Other subscripts and subscript ranges, except
the last, have the same meaning as when used with normal array variables.

An implicit extraction of an element or subarray in a data record can also be
performed. For example:

;Variabl e A associate s th e fil e open on uni t 1 wit h th e record s of
;200-element, floating-point vectors.
A = ASSOC(1, FLTARR(200))

;Then, X is set to the first 100 points of record number 2 , the
;third record of the file.
X = A[0:99, 2]

;Set the 24th point of record 16 to 12.
A[23, 16] = 12

;Increment points 10 to 199 of record 12. Points 0 to 9 of the
;record remain unchanged.
A[10, 12] = A[10:*, 12]+1
Building IDL Applications The Assignment Statement

204 Chapter 10: Statements

le

nal or
rmat

lled a

ny
he
ss of

FOR
e

uted
Blocks

A block of statements is simply a group of statements that are treated as a sing
statement. For example, a group of statements can be bracketed as follows:

BEGIN
Statement1
...
Statementn

END

Blocks are necessary when more than one statement is the subject of a conditio
repetitive statement, as in the FOR, WHILE, and IF statements. In general, the fo
of a FOR statement with a block subject is as follows:

FOR Variable = Expression, Expression DO BEGIN
Statement1
Statement2
...
...
...
Statementn

ENDFOR

All the statements between the BEGIN and the END are the subject of the FOR
statement. The group of statements is executed as a single statement and is ca
compound statement. Blocks can be nested within other blocks.

Syntactically, a block of statements is composed of one or more statements of a
type, started by a BEGIN identifier and ended by an END identifier. IDL allows t
use of blocks wherever a single statement is allowed. As an example, the proce
reversing an array in place might be written as follows:

FOR I = 0,(N - 1)/2 DO BEGIN
T = arr[I]
arr[I] = arr[N - I - 1]
arr[N - I - 1] = T

ENDFOR

Note
The code shown above is for illustration only. The IDLREVERSEfunction is much
more efficient.

The three statements between the BEGIN and ENDFOR are the subject of the
statement, and each will be executed once during each iteration of the loop. If th
statements are not enclosed in a block, only the first statement (T = arr[I]) is exec
Blocks Building IDL Applications

Chapter 10: Statements 205

t of
during each iteration, and the remaining two statements are executed only once after
the termination of the FOR statement.

To ensureproper nesting of compound statements (oneor moredifferent blocks), the
“END” statement terminating the block can be followed by the block type as shown
in the following table. Thecompiler checks theend of each block, comparing it with
the type of the enclosing statement. Any block can be terminated by the generic
END, although no type checking is performed.

Listings produced by the IDL compiler indent each block four spaces to the righ
theprevious level to maketheprogram structureeasier to read. (See.RUN in the IDL
Reference Guide for details on producing program listings with the IDL compiler.)

END Statement Use

ENDCASE CASE statement

ENDELSE IF statement, ELSE clause

ENDFOR FOR statement

ENDIF IF statement, THEN clause

ENDREP REPEAT statement

ENDWHILE WHILE statement

Table 10-2: Types of END Statements
Building IDL Applications Blocks

206 Chapter 10: Statements

on,

E

that is
ent is

last
ne of
ne of

e

CASE Statement

The CASE statement is used to select one, and only one, statement for executi
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CAS
statement is as follows:

CASE Expression OF
Expression : Statement
...
Expression : Statement

ELSE: Statement
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression
compared to the value of the selector expression. If a match is found, the statem
executed and control resumes directly below the CASE statement.

The ELSE clause of the CASE statement is optional. If included, it must be the
clause in the case statement. The statement after the ELSE is executed only if no
the preceding statement expressions match. If the ELSE is not included and no
the values match, an error occurs and program execution stops.

Example

An example of the CASE statement follows:

CASE name OF
;If name is "Linda," print "sister".
'Linda': PRINT, 'sister'

;If name is "John," print "brother".
'John': PRINT, 'brother'

;If name is "Harry," print "step-brother".
'Harry': PRINT, 'step-brother'

;No matches, print "Not a sibling."
ELSE: PRINT, 'Not a sibling.'

;End of CASE statement.
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. One is equivalent totrue and is matched against each of th
conditionals.
CASE Statement Building IDL Applications

Chapter 10: Statements 207

one
tested
.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200): BEGIN

Y = 14 * X - 5
Z = X + Y

END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause is the first
whose value is equal to the value of the case selector expression. Each clause is
in order, so it is most efficient to order the most frequently selected clauses first
Building IDL Applications CASE Statement

208 Chapter 10: Statements

y
 be
nit

were

ence

ated
fined
mon
s:

,

mon
nt
elow.

k

ys
ss of

re

anner
mon
gh
Common Blocks

Common blocks are useful when there are variables that need to be accessed b
several IDL procedures or when the value of a variable within a procedure must
preserved across calls. Once a common block has been defined, any program u
referencing that common block can access variables in the block as though they
local variables. Variables in a common statement have a global scope within
procedures defining the same common block. Unlike local variables, variables in
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and refer
statements.

Common Block Definition Statements

The common block definition statement creates a common block with the design
name and places the variables whose names follow into that block. Variables de
in a common block can be referenced by any program unit that declares that com
block. The general form of the COMMON block definition statement is as follow

COMMONBlock_Name , Variable 1, Variable 2, ..., Variable n

The number of variables appearing in the common block definition statement
determines the size of the common block. The first program unit (main program
function, or procedure) defining the common block sets the size of the common
block, which can never be expanded. Other program units can reference the com
block with any number of variables up to the number originally specified. Differe
program units can give the variables different names, as shown in the example b

Common blocks share the same space for all procedures. In IDL, common bloc
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variable in a given IDL common block will alwa
be the same as the third variable in all declarations of the common block regardle
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define a
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same m
as normal variables. Variables appearing as parameters cannot be used in com
blocks. There are no restrictions on the number of common blocks used, althou
each common block uses dynamic memory.
Common Blocks Building IDL Applications

Chapter 10: Statements 209

s A,
 in
rror
se
ot be

ble
e

and
Example

The two procedures in the following example show how variables defined in
common blocks are shared.

PRO ADD, A
COMMON SHARE1, X, Y, Z, Q, R
A = X + Y + Z + Q + R
PRINT, X, Y, Z, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHARE1, A, B, C, D
T = A - B - C - D
PRINT, A, B, C, D, T
RETURN

END

The variables X, Y, Z, and Q in the procedure ADD are the same as the variable
B, C, and D, respectively, in procedure SUB. The variable R in ADD is not used
SUB. If the procedure SUB were to be compiled before the procedure ADD, an e
would occur when the COMMON definition in ADD was compiled. This is becau
SUB has already declared the size of the common block, SHARE1, which cann
extended.

Common Block Reference Statements

The common block reference statement duplicates the common block and varia
names from a previous definition. The common block need only be defined in th
first routine to be compiled that references the block.

Example

The two procedures in the following example share the common block SHARE2
all its variables.

PRO MULT, M
COMMON SHARE2, E, F, G
M = E * F * G
PRINT, M, E, F, G
RETURN

END

PRO DIV, D
COMMON SHARE2
D = E / F
PRINT, D, E, F, G
Building IDL Applications Common Blocks

210 Chapter 10: Statements

d

RETURN
END

The MULT procedure uses a common blockdefinition statement to define the block
SHARE2. The DIV procedure then uses a common blockreferencestatement to gain
access to all the variables defined in SHARE2. (Note that MULT must be define
before DIV in order for the common blockreference to succeed.)
Common Blocks Building IDL Applications

Chapter 10: Statements 211

le

f 1
the

 the

his

tant

if the
FOR Statement

The FOR statement is used to execute one or more statements repeatedly, whi
incrementing or decrementing a variable with each repetition, until a condition is
met. It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements: one with an implicit increment o
and the other with an explicit increment. If the condition is not met the first time
FOR statement is executed, the subject statement is not executed.

FOR Statement with an Increment of One

The FOR statement with an implicit increment of one is written as follows:

FOR Variable = Expression , Expression DO Statement

The variable after the FOR is called the index variable and is set to the value of
first expression. The subject statement is executed, and the index variable is
incremented by 1 until the index variable is larger than the second expression. T
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO

This loop does not produce the intended result. Converting the longword cons
50,000 to a short integer yields−15,536 because of truncation. The loop is not
executed. The index variable’s initial value is larger than the limit variable. The
loop should be written as follows:

FOR I = 0L, 50000 DO

Note also that changing the data type of an index variable within a loop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example,
Building IDL Applications FOR Statement

212 Chapter 10: Statements

 the

ion

ll to

s at

ent)
or
index value exceeds the maximum value for the initial data type (and so is
truncated) when it is expected instead to exceed the specified index limit, then
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:

FOR i = 0B, 240, 16 DO PRINT, i

The problem occurs because the variablei is initialized to a byte type with 0B.
After the index reaches the limit value 240B,i is incremented by 16, causing the
value to go to 256B, which is interpreted by IDL as 0B, because of the truncat
effect. As a result, the FOR loop “wraps around” and the index can never be
exceeded.

Examples

A simple FOR statement:

FOR I = 1, 4 DO PRINT, I, I^2

which produces the following output:

1 1
2 4
3 9
4 16

The index variable I is first set to an integer variable with a value of one. The ca
the PRINT procedure is executed, then the index is incremented by one. This is
repeated until the value of I is greater than four at which point execution continue
the statement following the FOR statement.

The next example displays the use of a block structure (instead of a single statem
as the subject of the FOR statement. The example is a common process used f
computing a count-density histogram.Note: A HISTOGRAM function is provided
by IDL.

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1

ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions:

FOR X = 1.5, 10.5 DO S = S + SQRT(X)
FOR Statement Building IDL Applications

Chapter 10: Statements 213
where X is set to a floating-point variable and steps through the values (1.5, 2.5, ...,
10.5).

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The typeof the index variable isdetermined by the typeof thefirst
expression after the “=” character.

Warning
Due to the inexact nature of IEEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem is also
manifested in both the Cand FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(f20.10)'

IDL prints the following approximations to the numbers we requested:

0.1000000015
0.0099999998
1.6000000238
1.7000000477

SeeAccuracy & Floating-Point Operations in theUsing IDL manual for more
information about floating-point numbers.

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:

FOR Variable = Expression 1, Expression 2, Increment DO Statement

This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward. In this case, the first expression must have a
value greater than that of the second expression. If not, an almost infinite loop will
result.

Examples

The following examples demonstrate the second type of FOR statement.
Building IDL Applications FOR Statement

214 Chapter 10: Statements

mon

s are
1

 the
mit

-

t
ble
;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A com
mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO

The variableX is first defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expression
converted to the type ofX, integer, yielding an increment value of zero because .
converted to integer type is 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO

which definesX as a floating-point variable.

Operation of the FOR Statement

The FOR statement performs the following steps:

1. The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the
type of this expression.

2. The value of the second expression is evaluated, converted to the type of
index variable, and saved in a temporary location. This value is called the li
value.

3. The value of the third expression, called the step value, is evaluated, type
converted if necessary, and stored. If omitted, a value of 1 is assumed.

4. If the index variable is greater than the limit value (in the case of a positive
step value) the FOR statement is finished and control resumes at the nex
statement. Similarly, in the case of a negative step value, if the index varia
is less than the limit value, control resumes after the FOR statement.

5. The statement or block following the DO is executed.
FOR Statement Building IDL Applications

Chapter 10: Statements 215
6. The step value is added to the index variable.

7. Steps 4, 5, and 6 are repeated until the test of Step 4 fails.
Building IDL Applications FOR Statement

216 Chapter 10: Statements

 a
and
ction
h is
ion

ray,

e

hen
Function Definition Statement

The syntax of the FUNCTION statement is as follows:

FUNCTION Function_Name , Parameter 1, Parameter 2, ..., Parameter n

A function is a program unit containing one or more IDL statements that returns
value. This unit executes independently of its caller. It has its own local variables
execution environment. Once a function has been defined, references to the fun
cause the program unit to be executed. All functions return a function value whic
given as a parameter in the RETURN statement used to exit the function. Funct
names can be up to 128 characters long.

The general format of a function definition is as follows:

FUNCTION Name, Parameter 1, ..., Parameter n
Statement 1
Statement 2
...
...
RETURN, Expression

END

Example

To define a function called AVERAGE, which returns the average value of an ar
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)

END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming th
variable X contains an array, the statement,

PRINT, AVERAGE(X^2)

squares the arrayX, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by a
keyword. See“Keyword Parameters” on page 223. For further details about user-
defined functions, seeChapter 13, “Defining Procedures and Functions”.

Automatic Execution

IDL automatically compiles and executes a user-written function or procedure w
it is first referenced if:
Function Definition Statement Building IDL Applications

Chapter 10: Statements 217

me

.

e

1. The source code of the function is in the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.

2. The name of the file containing the function is the same as the function na
suffixed by .pro or .sav. Under UNIX, the suffix should be in lowercase letters.

Note
IDL iscase-insensitive. However, for someoperating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be named with lowercase.

Warning
User-written functionsmust bedefined beforethey arereferenced, unlessthey meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to accessroutines, see“Executing Program Files” in Chapter
2 of theUsing IDL manual.

Forwa rd Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

Thisproblem hasbeen addressed beginning with IDL version 5.0 by theuseof square
brackets“ []” instead of parenthesesto specify array subscripts. See“Array Subscript
Syntax: [] vs. ()” on page157 for a discussion of the IDL version 5.0 and later
syntax. However, because parentheses are still allowed in array subscripting
statements, theneed for amechanism by which theprogrammer can “reserve” a name
for a function that has not yet been defined remains. The FORWARD_FUNCTION
statement addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when a function has not yet been compiled, or there is no file with th
same name as the function found in the IDL path.

For example, attempting to compile the IDL statement:

A = xyz(1, COLOR=1)
Building IDL Applications Function Definition Statement

218 Chapter 10: Statements

he
se

t.

s
f as

,
with
will cause an error if the user-written function XYZ has not been compiled and t
filenamexyz.pro is not found in the IDL path. IDL reports a syntax error, becau
xyz is interpreted as an array variable instead of a function name.

This problem can be eliminated by using the FORWARD_FUNCTION statemen
This statement has the following syntax:

FORWARD_FUNCTIONName1, Name2, ..., NameN

whereName is the name of a function that has not yet been compiled. Any name
declared as forward-defined functions will be interpreted as functions (instead o
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

;Define XYZ as the name of a function that has not yet been
;compiled.
FORWARD_FUNCTION XYZ

;IDL now understands this statement to be a function call instead
;of a bad variable reference.
a = XYZ(1, COLOR=1)

Note
Declaring a function that will be merged into IDL via theLINKIMAGE command
with the FORWARD_FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines
and thus need no compilation or declaration. They must, however, be merged
IDL before any routines that call them are compiled.
Function Definition Statement Building IDL Applications

Chapter 10: Statements 219

m
r
d.

cult
(or

ccur
GOTO Statement

The syntax of the GOTO statement is as follows:

GOTO, Label

The GOTO statement is used to transfer program control to a point in the progra
specified by the label. The GOTO statement is generally considered to be a poo
programming practice that leads to unwieldy programs. Its use should be avoide
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

Warning
The user must be careful in programming with GOTO statements. It is not diffi
to get into a loop that will never terminate, especially if there is not an escape
test) within the statements spanned by the GOTO.

Example

An example of the GOTO statement follows:

GOTO, JUMP1
Statements ...
...
JUMP1: X = 2000 + Y

In the above example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements. Note that the label could also o
before the GOTO statement that refers to the label.

GOTO statements are frequently the subjects of IF statements, as seen in the
statement below:

IF A NE G THEN GOTO, MISTAKE
Building IDL Applications GOTO Statement

220 Chapter 10: Statements

t

 IS

bove,

es

 of
IF Statement

The syntax of the IF statement is as follows:

IF Expression THEN
IF Expression THEN Statement ELSE Statement

The IF statement is used to conditionally execute a statement or a block of
statements.

The expression after the “IF” is called thecondition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN” is executed. If the expression evaluates to afalse value, the statement
following the “ELSE” clause is executed. Control passes immediately to the nex
statement if the condition is false and the ELSE clause is not present.

Example

Examples of the IF statement include the following:

IF A NE 2 THEN PRINT, 'A is not two '
IF A EQ 1 THEN PRINT, 'A is one' ELSE PRINT, 'not one '

The first example contains no ELSE clause. If the value of A is not equal to 2, “A
NOT TWO” is printed. If A is equal to 2, the THEN clause is ignored, nothing is
printed, and execution resumes at the next statement. In the second example a
the condition of the IF statement is (A EQ 1). If the value of A is equal to 1, “A IS
ONE” is printed; otherwise, “NOT ONE” is printed.

Definition of True and False

The condition of the IF statement can be any scalar expression. The definition oftrue
andfalse for the different data types is as follows:

• Byte, integer, and long: odd integers are true, even integers are false.

• Floating-Point, double-precision floating-point, and complex: non-zero valu
are true, zero values are false. The imaginary part of complex numbers is
ignored.

• String: any string with a nonzero length is true, null strings are false.

Example

In the following example, the logical statement for the condition is a conjunction
two conditions.
IF Statement Building IDL Applications

Chapter 10: Statements 221

true,

nts)

ead

y
ill be
bove
IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than -40 and less than or equal to -20) are
the statement following the THEN is executed.

Using Statement Blocks with the IF Statement

The THEN and ELSE clauses can be in the form of a block (or group of stateme
with the delimiters BEGIN and END (see“Blocks” on page 204). To ensure proper
nesting of blocks, you can use ENDIF and ENDELSE to terminate the block, inst
of using the generic END. Below is an example of the use of blocks within an IF
statement.

IF (I NE 0.0) THEN BEGIN
...

ENDIF ELSE BEGIN
...

ENDELSE

Nesting IF Statements

IF statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

...
IF PN THEN SN ELSE SX

If condition P1 is true, only statement S1 is executed; if condition P2 is true, onl
statement S2 is executed, etc. If none of the conditions are true, statement SX w
executed. Conditions are tested in the order they are written. The construction a
is similar to the CASE statement except that the conditions are not necessarily
related.
Building IDL Applications IF Statement

222 Chapter 10: Statements

ed

nt
cters

de in
e

d

ns,

it
, the
Procedure Call Statement

The syntax of the procedure call statement is as follows:

Procedure_Name, Parameter 1, Parameter 2, ..., Parameter n

The procedure call statement invokes a system, user-written, or externally-defin
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the stateme
following the procedure call statement. Procedure names can be up to 128 chara
long.

Procedures can come from the following sources:

• System procedures provided with IDL.

• User-written procedures written in IDL and compiled with the .RUN
command.

• User-written procedures that are compiled automatically because they resi
directories in the search path. These procedures are compiled the first tim
they are used. See“Function Definition Statement” on page 216.

• Procedures written in IDL, that are included with the IDL distribution, locate
in directories that are specified in the search path.

• Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventio
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:

ERASE

This is a procedure call to a subroutine to erase the screen. There are no explic
inputs or outputs. Other procedures have one or more parameters. For example
statement:

PLOT, CIRCLE

calls the PLOT procedure with the parameter CIRCLE.
Procedure Call Statement Building IDL Applications

Chapter 10: Statements 223

the

ord

riables
 The
 by
edure,
assed

s well
ecific
e call,

es

e, the
tasks

est
Parameter Passing

Parameters passed to procedures and functions are identified by theirposition or by a
keyword. As their name indicates, the position of positional parameters establishes
correspondence of the parameters in the call and those in the definition of the
procedure or function. A keyword parameter is a parameter preceded by a keyw
and “=” that identifies the parameter.

Parameters are passed byvalue or byreference. Parameters that consist of only a
variable name are passed by reference. Expressions, constants, and system va
are passed by value. The two passing mechanisms are fundamentally different.
called procedure or function cannot return a value in a parameter that is passed
value, as the value of the parameter is evaluated and passed into the called proc
but is not copied back to the caller. Changes made by the called procedure are p
back to the caller if the parameter is passed by reference. See“Parameter Passing
Mechanism” on page 298.

Parameters can be of any type or structure, although some system procedures, a
as user-defined procedures, may require a particular type of parameter for a sp
argument. Parameters also can be expressions which are evaluated, used in th
and then discarded. For example:

PLOT, SIN(CIRCLE)

The sine of the array CIRCLE is computed and plotted, then the result of the
computation is discarded.

Keyword Parameters

A keyword parameter is a parameter preceded by a keyword and “=” that identifi
the parameter.

For example, the PLOT procedure can be manipulated to retain, rather than eras
image on the screen, as well as to draw, using color index 12. Accomplish these
with either of the following calls:

PLOT, X, Y, NOERASE = 1, COLOR = 12

or

PLOT, X, Y, COL = 12, /NOERASE

The two calls produce identical code. Keywords can be abbreviated to the short
nonambiguous string. The construct /KEYWORD is equivalent to setting the
keyword parameter to the value 1. For example, /NOERASE is equivalent to
NOERASE = 1. In the above examples, the parameter X is the first positional
Building IDL Applications Procedure Call Statement

224 Chapter 10: Statements

ond

the

hich
sent

out
parameter because it is not preceded by a keyword. The parameter Y is the sec
positional parameter.

The interpretation of keyword arguments is independent of their order. The
placement of keyword arguments does not affect the interpretation of positional
parameters—keyword parameters can appear before, after, or in the middle of
positional parameters.

Keyword parameters offer the following advantages over positional parameters:

• Procedures and functions can have a large number of arguments, any of w
may be optional. Only those arguments that are actually used need be pre
in the call.

• It is much easier to remember the names of keyword arguments than to
remember the order of positional arguments.

• Additional features can be added to existing procedures and functions with
changing the meaning or interpretation of other arguments.
Procedure Call Statement Building IDL Applications

Chapter 10: Statements 225

aved
en

 or

H)
Procedure Definition Statement

The syntax of the PRO statement is as follows:

PRO Procedure_Name , Parameter 1, Parameter 2, ..., Parameter n

A sequence of one or more IDL statements can be given a name, compiled, and s
for future use with the procedure definition statement. Once a procedure has be
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure
function.

The general format for the definition of a procedure is as follows:

PRO Name, Parameter1, ..., Parametern
;Statements defining procedure.
Statement1
Statement2
...

;End of procedure definition.
END

For more detail on defining procedures seeChapter 13, “Defining Procedures and
Functions”.

Calling a user-written procedure that is in a directory in the IDL search path (!PAT
and has the same name as the prefix of the.SAV or .PRO file, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.
Building IDL Applications Procedure Definition Statement

226 Chapter 10: Statements

n is
e, the

ment
REPEAT Statement

The syntax of the REPEAT statement is as follows:

REPEAT Subject_Statement UNTIL Condition_Expression

The REPEAT statement repetitively executes its subject statement until a conditio
true. The condition is checked after the subject statement is executed. Therefor
subject statement is always executed at least once.

Example

Some examples of how the REPEAT statement can be used are as follows:

A = 1
B = 10
REPEAT A = A * 2 UNTIL A GT B

This code finds the smallest power of 2 that is greater than B. The subject state
can also be in the form of a block:

;Sort array.
REPEAT BEGIN

;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN

;Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] = T
ENDIF

;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP

The above example sorts the elements of ARR using the inefficient bubble sort
method. A more efficient way to sort elements is to use IDL’s SORT function.
REPEAT Statement Building IDL Applications

Chapter 10: Statements 227

n
 that

if it

ess

than

 is
 X.
WHILE Statement

The syntax of the WHILE statement is as follows:

WHILE Expression DO Statement

WHILE statements are used to execute a statement repeatedly while a conditio
remains true. The WHILE statement is similar to the REPEAT statement except
the condition is checked prior to the execution of the statement.

When the WHILE statement is executed, the conditional expression is tested, and
is true, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This proc
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition is initially
false.

Example

An example of a WHILE statement follows:

WHILE NOT EOF(1) DO READF, 1, A, B, C

In this example, data are read until the end-of-file is encountered.

The next example demonstrates one way to find the first point of an array greater
or equal to a selected value assuming the array is sorted into ascending order.

;Initialize index.
I = 0

;Increment X until a point larger than X is found or the end of the
;array is reached
WHILE (arr[I] LT X) AND (I LT N) DO I = I + 1

Another way to accomplish the same thing is with the WHERE command, which
used to find the subscripts of the points where ARR[I] is greater than or equal to

;Subscripts of elements of arr that are greater than or equal to X.
P = WHERE(arr GE X)

;Save first subscript.
I = P(0)
Building IDL Applications WHILE Statement

228 Chapter 10: Statements
 Building IDL Applications

Chapter 11:

Pointers
The following topics are covered in this chapter:
Overview . 230
Heap Variables . 231
Creating Heap Variables. 233
Saving and Restoring Heap Variables. . . . 234
Pointer Heap Variables 235
IDL Pointers . 236

Operations on Pointers. 239
Dangling References 243
Heap Variable Leakage 244
Pointer Validity . 246
Freeing Pointers. 247
Pointer Examples. 248
Building IDL Applications 229

230 Chapter 11: Pointers

 one

kens

IDL
rtant

ware.

are

les
Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the to
that are used to access it.

Beginning with IDL version 5, IDL includes a newpointer data type to facilitate the
construction of dynamic data structures. Although there are similarities between
pointers and machine pointers as implemented in languages such as C, it is impo
to understand that they are not the same thing. IDL pointers are a high level IDL
language concept and do not have a direct one-to-one mapping to physical hard
Rather than pointing at locations in computer memory, IDL pointers point atheap
variables, which are special dynamically allocated IDL variables. Heap variables
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the fi
mentioned are located in thedoc subdirectory of theexamples subdirectory of the
main IDL directory. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
!PATH in theIDL Reference Guide for information on IDL’s path.
Overview Building IDL Applications

Chapter 11: Pointers 231

plicit

d

that
ame
sed to

inter
n
oth in

ll
bles

nce
is

heap

tion
Heap Variables

Heap variables are a special class of IDL variables that have global scope and ex
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (SeeChapter 12, “Object
Basics”for more information on IDL objects.) In IDL documentation of pointers an
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are calledobject heap variables.

Note
Pointers and object references have many similarities, the strongest of which is
both point at heap variables. It is important to understand that they are not the s
type, and cannot be used interchangeably. Pointers and object references are u
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the po
itself) instead of copying data. Objects are used to apply object oriented desig
techniques and organization to a system. It is, of course, often useful to use b
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at a
times. (Remember, however, that IDL variables containing pointers to heap varia
arenot global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object refere
automatically causes the associated heap variable to be saved as well. Th
means that if the heap variable contains a pointer or object reference, the
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunc
with pointers.
Building IDL Applications Heap Variables

232 Chapter 11: Pointers

ing
rs

y

Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of build
dynamic data structures, Research Systems recommends that you use pointe
rather than handles when developing new code. SeeAppendix H, “Obsolete
Routines”in theIDL Reference Guidefor a discussion of Research Systems’ polic
on language features that have been superseded in this manner.
Heap Variables Building IDL Applications

Chapter 11: Pointers 233

r the

”

he

same

 name

of
riable
en

, but
Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW o
object creation function OBJ_NEW. (SeeChapter 12, “Object Basics” for a
discussion of object creation.) Copying a pointer or object referencedoes notcreate a
new heap variable. This is markedly different from the way IDL handles “regular
variables. For example, with the statement:

A = 1.0

you create a new IDL floating-point variable with a value of 1.0. The following
statement:

B = A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:

C = PTR_NEW(2.0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with t
following statement:

D = C

does not create another heap variable, but rather creates a second pointer to the
heap variable. In this example, the HELP command would reveal:

% At $MAIN$
A FLOAT = 1.00000
B FLOAT = 1.00000
C POINTER = <PtrHeapVar1>
D POINTER = <PtrHeapVar1>

The variables C and D are both pointers to the same heap variable. (The actual
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in“Dereference” on page 239).

Destroying or redefining either C, D, or both variables would leave the contents
the heap variable unchanged. When all pointers or references to a given heap va
are destroyed, the heap variable still exists and holds whatever memory has be
allocated for it. See“Heap Variable Leakage” on page 244 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist
will be invalid. See“Dangling References” on page 243.
Building IDL Applications Creating Heap Variables

234 Chapter 11: Pointers

 for
file,

ect
,
ith a
d of
d the

e,
s all
Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work
all other supported types. When IDL saves a pointer or object reference in a save
it recursively saves the heap variables that are referenced by that pointer or obj
reference. SAVE handles circular data structures correctly. You can build a large
complicated, self-referential data structure, and then save the entire construct w
call to SAVE to save the single pointer or object reference that points to the hea
the structure. For example, you can save a pointer to the root of a binary tree an
entire tree will be saved.

The internal identifier of a given heap variable is dynamically allocated at run tim
and will differ between IDL sessions. As a result, the RESTORE operation map
saved pointers and object references to their new values in the current session.
Saving and Restoring Heap Variables Building IDL Applications

Chapter 11: Pointers 235
Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only viapointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using thePTR_NEW and
PTRARR functions. For more information on objects, seeChapter 12, “Object
Basics”.
Building IDL Applications Pointer Heap Variables

236 Chapter 11: Pointers

 heap
g

alid

 in

o an

lear,

an
IDL Pointers

As illustrated above, you must use a special IDL routine to create a pointer to a
variable. Two routines are available: PTR_NEW and PTRARR. Before discussin
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

TheNull Pointer is a special pointer value that is guaranteed to never point at a v
heap variable. It is used by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodes
data structures such as trees and linked lists.

It is important to understand the difference between a null pointer and a pointer t
undefined or invalid heap variable. The second case is a valid pointer to a heap
variable that does not currently contain a usable value. To make the difference c
consider the following IDL statements:

;The variable A contains a null pointer.
A = PTR_NEW()
;The variable B contains a pointer to a heap variable with an
;undefined value.
B = PTR_NEW(/ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:

A POINTER = <NullPointer>
B POINTER = <PtrHeapVar1>
<PtrHeapVar1> UNDEFINED = <Undefined>

The primary difference is that it is possible to write a useful value into a pointer to
undefined variable, but this is never possible with a null pointer. For example,
attempt to assign the value 34 to the null pointer:

*A = 34

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRINT, *B
IDL Pointers Building IDL Applications

Chapter 11: Pointers 237

the

 you

reated

ude
nd:

two

r. If

ns.
ter.
IDL prints:

 34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(0) returns a pointer to a heap variable that has been initialized with
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptr1 = PTR_NEW(FINDGEN(10))

creates a new heap variable that contains the ten-element floating point array c
by FINDGEN, and places a pointer to this heap variable in ptr1.

Note that the argument to PTR_NEW can be of any IDL data type, and can incl
any IDL expression, including calls to PTR_NEW itself. For example, the comma

ptr2 = PTR_NEW({name:'', next:PTR_NEW()})

creates a pointer to a heap variable that contains an anonymous structure with
fields: the first field is a string, the second is a pointer. We will develop this idea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be a null pointe
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

SeePTR_NEW in theIDL Reference Guide for further details.

The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensio
By default, every element of the array created by PTRARR is set to the null poin
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2,2)

;Display the contents of the ptarray variable, and of the first
;array element.
HELP, ptarray, ptarray(0,0)

IDL prints:
Building IDL Applications IDL Pointers

238 Chapter 11: Pointers

ed to
se,
PTARR POINTER = Array(2, 2)
<Expression> POINTER = <NullPointer>

If you want each element of the array to point to a new heap variable (as oppos
being a null pointer), use the ALLOCATE_HEAP keyword. Note that in either ca
you will need to initialize the array with another IDL statement.

SeePTRARR in theIDL Reference Guide for further details.
IDL Pointers Building IDL Applications

Chapter 11: Pointers 239

lot
 such
ters
t are

nce,
any

ng
,
 at.
s

 to the

ves
ts:

, you
r

e

Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or p
them. You can, of course, do these things with the heap variables referenced by
pointers, assuming that they contain appropriate data for the task at hand. Poin
exist to allow the construction of dynamic data structures that have lifetimes tha
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, derefere
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make
sense for pointer types and are not defined.

Many non-computational functions and procedures in IDL do work with pointer
variables. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noti
that the only I/O allowed directly on pointer variables is default formatted output
where they are printed as a symbolic description of the heap variable they point
This is merely a debugging aid for the IDL programmer—input/output of pointer
does not make sense in general and is not allowed. Please note that this doesnot
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data
PRINT command is a simple example of this type of I/O.

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gi
you another variable with the same pointer. Hence, after executing the statemen

A = PTR_NEW(FINDGEN(10))
B = A
HELP, A, B

A and B both point at the same heap variable and we see the output:

A POINTER = <PtrHeapVar1>
B POINTER = <PtrHeapVar1>

Dereference

In order to get at the contents of a heap variable referenced by a pointer variable
must use thedereference operator, which is* (the asterisk). The dereference operato
precedes the variable dereferenced. For example, if you have entered the abov
assignments of the variables A and B:
Building IDL Applications Operations on Pointers

240 Chapter 11: Pointers

ble

t

heap

wo,

at

s data
PRINT, *B

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer varia
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires ascalarpointer operand. This means tha
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new
variable for each element:

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer t
you would use the following statement:

FOR I = 0,2 DO *ptarr[I] = I

Note
The dereference operator is dereferencing only element I of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
by the pointers in ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

% Expression must be a scalar in this context: PTARR.
% Execution halted at: $MAIN$

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS(ptarr)-1 DO PRINT, *ptarr[I]

Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to acces
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW(PTR_NEW(47))
Operations on Pointers Building IDL Applications

Chapter 11: Pointers 241

mple,

ted

ted

r.
assigns to A a pointer to a pointer to a heap variable containing the value 47.

To print this value, use the following statement:

PRINT, **A

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For exa
if you define the following structure:

struct = {data:'10.0’, pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable poin
at by the pointer in the pointer field:

PRINT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEW(struct)

you would use the following command to print the value of the heap variable poin
at by the pointer field of thestruct structure, which is pointed at byptstruct :

PRINT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer
within the structure.

Dereferencing the Null Pointer

It is an error to dereference the NULL pointer, an invalid pointer, or a non-pointe
These cases all generate errors that stop IDL execution. For example:

PRINT, *45

IDL prints:

% Pointer type required in this context: <INT(45)>.
% Execution halted at: $MAIN$

For example:

A = PTR_NEW() & PRINT, *A

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$
Building IDL Applications Operations on Pointers

242 Chapter 11: Pointers

the
For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A

IDL prints:

% Invalid pointer: A.

% Execution halted at: $MAIN$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at
same heap variable. For example:

;Make A a pointer to a heap variable containing 23.
A = PTR_NEW(23)

;B points at the same heap variable as A.
B = A

;C contains the null pointer.
C = PTR_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & $
PRINT, 'C NE NULL:', C NE PTR_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Pointers Building IDL Applications

Chapter 11: Pointers 243

that

 is to
er,
Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference
still refers to it is said to contain adangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Print A and the value of the heap variable A points to.
PRINT, A, *A

IDL prints:

<PtrHeapVar13> 23

For example:

;Destroy the heap variable.
PTR_FREE, A

;Try to print again.
PRINT, A, *A

IDL prints:

% Invalid pointer: A.
% Execution halted at: $MAIN$

There are several possible approaches to avoiding such errors. The best option
structure your code such that dangling references do not occur. You can, howev
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use theCATCH mechanism to recover
from the effect of such a dereference.
Building IDL Applications Dangling References

244 Chapter 11: Pointers

ow
eing
ing.

ap

there
w

eap

and
lly
void
ing
e
ave
Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of h
many references to a heap variable exist, or stop the last such reference from b
destroyed—so it is possible to lose access to them and the memory they are us
For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is lost.
A = 0

Use the HEAP_VARIABLES keyword to the HELP procedure to view a list of he
variables currently in memory:

HELP, /HEAP_VARIABLES

IDL prints:

<PtrHeapVar14> INT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but
is no way to reference the variable. There are two options: manually create a ne
pointer to the existing heap variable using the PTR_VALID function (see
PTR_VALID in theIDL Reference Guide), or do manual “Garbage Collection” and
use the HEAP_GC command to destroy all inaccessible heap variables.

Warning
Object reference heap variables are subject to the same problems as pointer h
variables. SeeOBJ_VALID in theIDL Reference Guide for more information.

TheHEAP_GCprocedure causes IDL to hunt for all unreferenced heap variables
destroy them. It is important to understand that this is a potentially computationa
expensive operation, and should not be relied on by programmers as a way to a
writing careful code. Rather, the intent is to provide programmers with a debugg
aid when attempting to track down heap variable leakage. In conjunction with th
VERBOSE keyword, HEAP_GC makes it possible to determine when variables h
leaked, and it provides some hint as to their origin.
Heap Variable Leakage Building IDL Applications

Chapter 11: Pointers 245

es. If
s, a
If so

IDL
ting

than

 top

p

es in
ence
Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variabl
HEAP_GC is used to manage certain data structures, such as large linked list
potentially large number of operations may be pushed onto the system stack.
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, is too slow to be
provided automatically by IDL, and careful programming can easily avoid this
pitfall. Furthermore, implementing a reference counted data structure on top of
pointers is easy to do in those cases where it is useful, and such reference coun
could take advantage of its domain specific knowledge to do the job much faster
the general case.

Another approach would be to write allocation and freeing routines—layered on
of thePTR_NEW andPTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to kee
track of the allocated pointers. Such a facility could offer the ability to allocate
pointers in named groups, and might provide a routine that frees all heap variabl
a given group. Such an operation would be very efficient, and is easier than refer
counting.
Building IDL Applications Heap Variable Leakage

246 Chapter 11: Pointers

D
 no
ter
Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointers to
existing heap variables. If supplied with a single pointer as its argument,
PTR_VALID returns TRUE (1) if the pointer argument points at a valid heap
variable, or FALSE (0) otherwise. If supplied with an array of pointers, PTR_VALI
returns an array of TRUE and FALSE values corresponding to the input array. If
argument is specified, PTR_VALID returns an array of pointers to all existing poin
heap variables. For example:

;Create a new pointer and heap variable.
A = PTR_NEW(10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A points to a valid heap variable.

For example:

;Destroy the heap variable.
PTR_FREE, A

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A does not point to a valid heap variable.

SeePTR_VALID in theIDL Reference Guide for further details.
Pointer Validity Building IDL Applications

Chapter 11: Pointers 247

d the
eap
the

istent
etail in
Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied as its arguments. Any memory used by the heap variable is released, an
heap variable ceases to exist. PTR_FREE is the only way to destroy a pointer h
variable; if PTR_FREE is not called on a heap variable, it continues to exist until
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonex
heap variables are known as dangling references, and are discussed in more d
“Dangling References” on page 243.

SeePTR_FREE in theIDL Reference Guide for further details.
Building IDL Applications Freeing Pointers

248 Chapter 11: Pointers

nd
ral
rate
est”
ore

heap
gs,

fied
rder.

 list
one
hen
d by
Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists a
trees. The following examples demonstrate how pointers are used to build seve
types of dynamic structures. Note that the purpose of these examples is to illust
simply and clearly how pointers are used. As such, they may not represent the “b
or most efficient way to accomplish a given task. Readers interested in learning m
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate a linked list. One
procedure reads string input from the keyboard and creates a list of pointers to
variables that have the strings as their values. Another procedure prints the strin
given the pointer to the beginning of the linked list. A third procedure uses a modi
“bubble sort” algorithm to reorder the values so the strings are in alphabetical o

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing a
element—an anonymous structure with two fields; one to hold the string data and
to hold a pointer to the next list element. Any number of strings can be entered. W
the user is finished entering strings, the program can be exited by entering a perio
itself at the “Enter string:” prompt.

The text of the program shown below can be found in the fileptr_read.pro in the
doc subdirectory of theexamples subdirectory of the IDL distribution.

;PTR_READ accepts one argument, a named variable in which to return
;the pointer that points at the beginning of the list.
PRO ptr_read, first

;Initialize the input string variable.
newstring = ''

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a null pointer.
llist = {name:'', next:PTR_NEW()}

;Print instructions for this program.
PRINT, 'Enter a list of names.'
PRINT, 'Enter a period (.) to stop list entry.'
Pointer Examples Building IDL Applications

Chapter 11: Pointers 249

n
eates
;Continue accepting input until a period is entered.
WHILE newstring NE "." DO BEGIN

READ, newstring, PROMPT='Enter string: '
;Read a new string from the keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first element. Create a pointer called first and initialize
;it to be a list element. Create a second pointer to the heap
;variable pointed at by first .

IF newstring NE '.' THEN BEGIN
IF NOT(PTR_VALID(first)) THEN BEGIN

first = PTR_NEW(llist)
current = first

ENDIF

;Create a pointer to the next list element.
next = PTR_NEW(llist)

;Set the name field of current to the input string.
(*current).name = newstring

;Set the next field of current to the pointer to the next list
;element.
(*current).next = next

;Store the “current” pointer as the “last” pointer.
last = current

;Make the “next” pointer the “current” pointer.
current = next

ENDIF
ENDWHILE

;Set the next field of the last element to the null pointer.
IF PTR_VALID(last) THEN (*last).next = PTR_NEW()

;End of PTR_READ program.
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first

Type a string, press Return, and the program prompts for another string. You ca
enter as many strings as you want. Each time a string is entered, PTR_READ cr
Building IDL Applications Pointer Examples

250 Chapter 11: Pointers

ed.

ked
 we
ame
a new list element with that string as its value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a list of names.
Enter a period (.) to stop list entry.
Enter string: wilma
Enter string: biff
Enter string: cosmo
Enter string: .

The following figure shows one way of visualizing the linked list that we’ve creat

Printing the Linked List

The next program in our example accepts the pointer to the first element of the lin
list and prints all the values in the list in order. To illustrate how the list is linked,
will also print the name of the heap variable that contains each element, and the n
of the heap variable in the next field of that element.

The text of the program shown below can be found in the fileptr_print.pro in the
doc subdirectory of theexamples subdirectory of the IDL distribution.

;PTR_PRINT accepts one argument, a pointer to the first element of
;a linked list returned by PTR_READ. Note that the PTR_PRINT
;program does not need to know how many elements are in the list,
;nor does it need to explicitly know of any pointer other than the
;first.
PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

;PTR_VALID returns 0 if its argument is not a valid pointer. Note
;that the null pointer is not a valid pointer.
WHILE PTR_VALID(current) DO BEGIN

;Print the list element information.
PRINT, current, ', named ', (*current).name, $

Table 11-1: One way of visualizing the linked list created by the PTR_READ
procedure

name:
wilma

next: name:
biff

next: name:
cosmo

next:
nullfirst:
Pointer Examples Building IDL Applications

Chapter 11: Pointers 251

le:

e

with

 of

T

', has a pointer to: ', (*current).next

;Set current equal to the pointer in its own next field.
current = (*current).next

ENDWHILE

;End of PTR_PRINT program.
END

If we run the PTR_PRINT program with the list generated in the previous examp

IDL> ptr_print, first

IDL prints:

<PtrHeapVar1>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named biff, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named cosmo, has a pointer to: <NullPointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves th
values so that they are in alphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom
the list. Note that this is not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL’s SOR
function.

The text of the program shown below can be found in the fileptr_sort.pro in the
doc subdirectory of theexamples subdirectory of the IDL distribution.

;PTR_SORT accepts one argument, a pointer to the first element of a
;linked list returned by PTR_READ. Note that the PTR_SORT program
;does not need to know how many elements are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;Initialize swap flag.
swap = 1

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a pointer.
llist = {name:’’, next:PTR_NEW()}

;Create a pointer to this structure, to be used as “swap space.”
junk = ptr_new(llist)
Building IDL Applications Pointer Examples

252 Chapter 11: Pointers
;Continue the sorting until no swaps are made. If no adjacent
;elements need to be swapped, the list is in alphabetical order.
WHILE swap NE 0 DO BEGIN

;Create a second pointer to the heap variable pointed at by
;first.
current = first

;Create another pointer to the heap variable held in the next
;field of current.
next = (*current).next

;Set swap flag.
swap = 0

;Continue the sorting until next is no longer a valid pointer.
;Note that the null pointer is not a valid pointer.
WHILE PTR_VALID(next) DO BEGIN

;Get values to compare.
value1 = (*current).name
value2 = (*next).name

;Compare values and exchange if first is greater than second.
IF (value1 GT value2) THEN BEGIN

;Use the “swap space” pointer to exchange the name fields of
;current and next.
(*junk).name = (*current).name
(*current).name = (*next).name
(*next).name = (*junk).name

;Set current to next to advance through the list.
current = next

;Reset swap flag.
swap = 1

;If value1 is less than value2, set current to next to advance
;through the list.
ENDIF ELSE current = next

;Redefine next pointer.
next = (*current).next

ENDWHILE
ENDWHILE
END
Pointer Examples Building IDL Applications

Chapter 11: Pointers 253

,

to

es
d
d

d data
.

d
h

To run the PTR_SORT routine with the list from our previous examples as input
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:

ptr_print, first

IDL prints:

<PtrHeapVar1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named cosmo, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named wilma, has a pointer to: <NullPointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary Trees

Two more-complicated example programs demonstrate the use of IDL pointers
create and search a simple tree structure. These files, named idl_tree.pro and
tree_example.pro, can be found in thedoc subdirectory of theexamples
subdirectory of the IDL distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Compile the routines in idl_tree. The example routine calls the
;routines defined in this file.
.run idl_tree

;Run the tree_example.
tree_example

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nod
whose values are structures that contain random values for two fields, “Time” an
“Data”. The TREE_EXAMPLE routine then prints the tree sorted by both time an
data. It then searches for and deletes the nodes containing the fourth and secon
values. The resulting 8-node trees are again printed in both time and data order

A detailed explication of the TREE_EXAMPLE and IDL_TREE routines is beyon
the scope of this chapter. Interested users should examine the files, starting wit
tree_example.pro, to see how the trees are created and searched.
Building IDL Applications Pointer Examples

254 Chapter 11: Pointers
Pointer Examples Building IDL Applications

Chapter 12:

Object Basics
The following topics are covered in this chapter:
Object-Oriented Programming 256
IDL Object Overview 257
Class Structures. 259
Inheritance. 261
Object Heap Variables. 263
Null Objects . 265

The Object Lifecycle. 266
Operations on Objects 269
Obtaining Information about Objects 271
Method Routines . 273
Method Overriding 277
Object Examples . 280
Building IDL Applications 255

256 Chapter 12: Object Basics

L)

ed
 of
ics
s,
ns
ns
ir

sion
Object-Oriented Programming

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functions in the case of ID
and data to be acted upon by the routines.Object oriented programming begins to
remove this distinction by melding the two intoobjectsthat can contain both routines
and data. Object orientation provides a layer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-orient
applications. IDL’s Object Graphics engine is object-oriented, and a class library
graphics objects allows you to create applications that provide equivalent graph
functionality regardless of your (or your users’) computer platform, output device
etc. As an IDL programmer, you can use IDL’s traditional procedures and functio
as well as the new object features to create your own object modules. Applicatio
built from object modules are, in general, easier to maintain and extend than the
traditional counterparts.

This chapter describes how to use object techniques with IDL. A complete discus
of object orientation is beyond the scope of this book—if you are new to object
oriented programming, consult one of the many references on object oriented
program that are available.
Object-Oriented Programming Building IDL Applications

Chapter 12: Object Basics 257

can

an

o a
nce
e

 to
il in

alled
is
g
all
IDL Object Overview

IDL objects are actually specialheap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables
only be accessed via object references. Object references are discussed in this
chapter. Heap variables in general are discussed in detail in“Heap Variables” on
page 231.

Briefly, IDL provides support for the following object concepts and mechanisms:

Classes and Instances

IDL objects are created asinstancesof aclass, which is defined in the form of an IDL
structure. The name of the structure is also the class name for the object. Theinstance
data of an object is an IDL structure contained in the object heap variable, and c
only be accessed by special functions and procedures, calledmethods, which are
associated with the class. Class structures are discussed in“Class Structures” on
page 259.

Encapsulation

Encapsulationis the ability to combine data and the routines that affect the data int
single object. IDL accomplishes this by only allowing access to an object’s insta
data via that object’smethods. Data contained in an object is hidden from all but th
object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging
an object class via a routine naming convention. Methods are discussed in deta
“Method Routines” on page 273.

Polymorphism

Polymorphism is the ability to create multiple object types that support the same
operations. For example, many of IDL’s graphics objects support an operation c
“Draw,” which sends graphics output to a specified place. The “Draw” operation
different in different contexts; sending a graphic to a printer is different from writin
it to a file. Polymorphism allows the details of the differences to remain hidden—
you need to know is that a given object supports the “Draw” operation.
Building IDL Applications IDL Object Overview

258 Chapter 12: Object Basics

 an

can

ve
tion.

) in
hic

 re-
Inheritance

Inheritance is the ability of an object class to inherit the behavior of other object
classes. This means that when writing a new object class that is very much like
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object
inherit qualities from any number of other existing object classes. Inheritance is
discussed in detail in“Inheritance” on page 261.

Persistence

Persistence is the ability of objects to remain in existence in memory after they ha
been created, allowing you to alter their behavior or appearance after their crea
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example
order to change a detail of the item. For example, once you have created a grap
object containing a plot, you can alter any aspect of the plot “on the fly,” without
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an image file, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.
IDL Object Overview Building IDL Applications

Chapter 12: Object Basics 259

 no
type

ated,
rves to
reate

il in

re, all

ll

re
This
the

t.
 the
turned
t on

r a
not
Class Structures

Object instance data is contained in named IDL structures. We will use the termclass
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are
limits on what a class structure contains. Class structures can include data of any
or organization, including pointers and object references. When an object is cre
the name of the class structure becomes the name of the class itself, and thus se
define the names of all methods associated with the class. For example, if we c
the following class structure:

struct = { Class1, data1:0L, data2:FLTARR(10) }

any objects created from the class structureClass1 would have the same two fields
(data1 , a long integer, anddata2 , a ten-element floating-point array) and any
methods associated with the class would have the name Class1::method, where
method is the actual name of the method routine. Methods are discussed in deta
“Method Routines” on page 273.

Note
When a new instance of a structure is created from an existing named structu
of the fields in the newly-created structure arezeroed. This means that fields
containing numeric values will contain zeros, fields containing string values wi
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structu
contained, the new structure will contain only a template for that type of data.
is true of objects as well; a newly created object will contain a zeroed copy of
class structure as its instance data.

It is important to realize that creating a class structure does not create an objec
Objects can only be created by calling the OBJ_NEW or OBJARR function with
name of the class structure as the argument, and can only be accessed via the re
object reference. In addition, object methods can only be called on object, and no
class structures themselves.

Automatic Class Structure Definition

If IDL finds a reference to a structure that has not been defined, it will search fo
structure definition procedure to define it. (This is true of all structure references,
just class structures.) Automatic structure definition is discussed in“Automatic
Building IDL Applications Class Structures

260 Chapter 12: Object Basics

or
f the

of

d,
d

ill

m if
 do
an

arch
e
t,
dle
Structure Definition”on page 149. Briefly, if IDL encounters a structure reference f
a structure type that has not been defined, it searches for a routine with a name o
form

STRUCT__DEFINE

where STRUCT is the name of the structure type. Note that there aretwounderscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFINE
struct = { CNAME, data1:0L, data2:FLTARR(10) }

END

This defines a structure named CNAME with 2 data fields (data1 , a long integer,
anddata2 , a ten-element floating-point array). If you tell IDL to create an object
type CNAME before this structure has been defined, IDL will search for the
procedure CNAME__DEFINE to define the class structure before attempting to
create the object. If the CNAME__DEFINE procedure has not yet been compile
IDL will use its normal routine searching algorithm to attempt to find a file name
CNAME__DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility exists that you w
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a proble
you are developing object-oriented applications for others, since you probably
not have much control over the IDL environment on your clients’ systems. You c
avoid most problems by creating a unique namespace for your routines; Rese
Systems does this by prefixing the names of objects with the letters “IDL”. To b
completely sure that the objects created by your programs are what you expec
however, you should have the program inspect the created structures and han
errors appropriately.
Class Structures Building IDL Applications

Chapter 12: Object Basics 261

the

s

er
 as if
e

he

ther
bject
of
m the
nd
s to

se
the
e

Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” as follows:

struct = { circle, x:0, y:0, radius:0 }

we can define a subclass of the “circle” class like this:

struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when
structure being defined is aclass structure(that is, an object will be created from the
structure), inheritance affects both the structure definition and the object method
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 134.

When a class structure inherits from another class structure, it is said to be asubclass
of the class it inherits from. Similarly, the class that is inherited from is called a
superclass of the new class. Defining a subclass of an existing class in this mann
has two consequences. First, the class structure for the subclass is constructed
the elements of the inherited class structure were included in-line in the structur
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at t
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from ano
class structure is that when an object is created from the subclass structure, that o
inherits themethodsof the superclass as well as its data fields. That is, if an object
the superclass type has a method, that method is available to objects created fro
subclass as well. In our example above, say we create an object of type circle a
define a Print method for it. Any objects of type filled_circle will also have acces
the Print method defined for circle.

IDL allows multiple inheritance. This means that you can include the INHERITS
specifier as many times as you desire in a structure definition,as long as all of the
resulting data fields have unique names. Data fields must have unique names becau
when the class structure definition is built, the tag names are included in-line at
point where the INHERITS specifier appears. Duplicate tag names will cause th
Building IDL Applications Inheritance

262 Chapter 12: Object Basics

tag

e

structure definition to fail; it is your responsibility as a programmer to ensure that
names are not used more than once in a structure definition.

Note
The requirement that names be unique applies only todata fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the sam
names as methods belonging to the superclass. See“Method Overriding” on
page 277 for details.

If a structure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 259.
Inheritance Building IDL Applications

Chapter 12: Object Basics 263

ers,
d

plicit

that
ame
sed to

inter
n
oth in

ll
bles

nce
is

heap
Object Heap Variables

Object heap variables are IDL heap variables that are accessible only viaobject
references.While there are many similarities between object references and point
it is important to understand that they are not the same type, and cannot be use
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see“IDL
Pointers” on page 236.

Heap variables are a special class of IDL variables that have global scope and ex
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are calledpointer heap
variables, and heap variables accessible via object references are calledobject heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is
both point at heap variables. It is important to understand that they are not the s
type, and cannot be used interchangeably. Pointers and object references are u
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the po
itself) instead of copying data. Objects are used to apply object oriented desig
techniques and organization to a system. It is, of course, often useful to use b
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at a
times. (Remember, however, that IDL variables containing pointers to heap varia
arenot global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object refere
automatically causes the associated heap variable to be saved as well. Th
means that if the heap variable contains a pointer or object reference, the
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.
Building IDL Applications Object Heap Variables

264 Chapter 12: Object Basics

tion

that

 is to
er,

ow
eing
ing.
• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunc
with pointers.

Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference
still refers to it is said to contain adangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best option
structure your code such that dangling references do not occur. You can, howev
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use theCATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of h
many references to a heap variable exist, or stop the last such reference from b
destroyed—so it is possible to lose access to them and the memory they are us
See“Heap Variables” on page 231 for additional details.
Object Heap Variables Building IDL Applications

Chapter 12: Object Basics 265

a
s
hen
 the

ify a
t

Null Objects

TheNull Object is a special object reference that is guaranteed to never point at
valid object heap variable. It is used by IDL to initialize object reference variable
when no other initializing value is present. It is also a convenient value to use w
defining structure definitions for fields that are object references, since it avoids
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not spec
class structure to be used as the new object’s template. The following statemen
creates a null object:

nullobj = OBJ_NEW()
Building IDL Applications Null Objects

266 Chapter 12: Object Basics

der
hod

ject
ched

wly-
s 1)

IT
m

NIT
RA

fields
The Object Lifecycle

As discussed above, objects arepersistent, meaning they exist in memory until you
destroy them. We can break the life of an object into three phases: creation and
initialization, use, and destruction. Objectlifecycle routines allow the creation and
destruction of object references;lifecycle methods associated with an object allow
you to control what happens when an object is created or destroyed.

This section will discuss the first and last phases of the object lifecycle; the remain
of this chapter discusses manipulation of existing objects and use of object met
routines.

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ_NEW or
OBJARR. Newly created objects are initialized upon creation in two ways:

1. The object reference is created based on the class structure specified,

2. The object’s INIT method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the ob
does not have an INIT method, the object’s superclasses (if any) are sear
for an INIT method.

The INIT Method

An object’s lifecycle method INIT is a function namedClass::INIT (whereClass is
the actual name of the class). The purpose of the INIT method is to populate a ne
created object with instance data. INIT should return a scalar TRUE value (such a
if the initialization is successful, and FALSE (such as 0) if the initialization fails.

The INIT method is unusual in that itcannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the IN
method on an object directly. You can, however, call an object’s INIT method fro
within the INIT method of a subclass of that object. This allows you to specify
parameters used by the superclass’ INIT method along with those used by the I
method of the object being created. In practice, this is often done using the _EXT
keyword. See“Keyword Inheritance” on page 291 for details.

The OBJ_NEW Function

Use the OBJ_NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ_NEW
creates a new object containing an instance of that class structure. Note that the
The Object Lifecycle Building IDL Applications

Chapter 12: Object Basics 267

ple,

re

ll a

r a

cit
ll to
les

ds

ass

e,

s.
ple,
of the newly-created object’s instance data structure will all be empty. For exam
the command:

obj1 = OBJ_NEW(' ClassName ')

creates a new object heap variable that contains an instance of the class structu
ClassName, and places an object reference to this heap variable inobj1 . If you do
not supply an argument, the newly-created object will be a null object.

When creating an object from a class structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and ca
procedure to define it automatically. See“Automatic Class Structure
Definition” on page 259 for details. If the structure is still not defined,
OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks fo
method function namedClass::INIT (whereClass is the actual name of the
class). If an INIT method exists, it is called with the new object as its impli
SELF argument, as well as any arguments and keywords specified in the ca
OBJ_NEW. If the class has no INIT method, the usual method-searching ru
are applied to find one from a superclass. For more information on metho
and method-searching rules, see“Method Routines” on page 273.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a cl
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object referenc
indicating that the operation failed. Note that in this case the CLEANUP
method is not called.

SeeOBJ_NEW in theIDL Reference Guide for further details.

The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimension
Every element of the array created by OBJARR is set to the null object. For exam
Building IDL Applications The Object Lifecycle

268 Chapter 12: Object Basics

ch

 one
d is
e
n.

t
t’s

ct.

s that
d are
the following command creates a 3 by 3 element object reference array with ea
element contain the null object reference:

obj2 = OBJARR(3, 3)

SeeOBJARR in theIDL Reference Guide for further details.

Destruction

Use the OBJ_DESTROY procedure to destroy an object. If the object’s class, or
of its superclasses, supplies a procedure method named CLEANUP, that metho
called, and all arguments and keywords passed by the user are passed to it. Th
CLEANUP method should perform any required cleanup on the object and retur
Whether a CLEANUP method actually exists or not, IDL will destroy the heap
variable representing the object and return.

The CLEANUP method is unusual in that itcannot be called outside an object-
destruction operation. This means that—unlike most object methods—you canno
call the CLEANUP method on an object directly. You can, however, call an objec
CLEANUP method from within the CLEANUP method of a subclass of that obje

Note that the object references themselves are not destroyed. Object reference
refer to nonexistent object heap variables are known as dangling references, an
discussed in more detail in“Dangling References” on page 243.

SeeOBJ_DESTROY in theIDL Reference Guide for further details.
The Object Lifecycle Building IDL Applications

Chapter 12: Object Basics 269

ions,
 or
s
g that

ent,
wed
ot

s not

tance
mple

ting
Operations on Objects

Object reference variables are not directly usable by many of the operators, funct
or procedures provided by IDL. You cannot, for example, do arithmetic on them
plot them. You can, of course, do these things with the contents of the structure
contained in the object heap variables referred to by object references, assumin
they contain non-object data.

There are four IDL operators that work with object reference variables: assignm
method invocation, EQ, and NE. In addition, the structure dot operator (.) is allo
within methods of a class. The remaining operators (addition, subtraction, etc.) do n
make any sense for object references and are not defined.

Many non-computational functions and procedures in IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth
noting that the only I/O allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. This is merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and i
allowed. Please note that this doesnot imply that I/O on the contents of non-object
instance data contained in heap variables is not allowed. Passing non-object ins
data contained in an object heap variable to the PRINT command is a simple exa
of this type of I/O.

Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after execu
the statements:

;Define a class structure.
struct = { cname, data1:0.0 }

;Create an object.
A = OBJ_NEW('cname')

;Create a second object reference.
B = A

HELP, A, B

IDL prints:

A OBJREF = <ObjHeapVar1(CNAME)>
B OBJREF = <ObjHeapVar1(CNAME)>
Building IDL Applications Operations on Objects

270 Chapter 12: Object Basics

the
ll

thod

refer
Note that both A and B are references to the same object heap variable.

Method Invocation

In order to perform an action on an object’s instance data, you must call one of
object’smethods. (See“Method Routines”on page 273 for more on methods.) To ca
a method, you must use the method invocation operator,-> (the hyphen followed by
the greater-than sign). The syntax is:

ObjRef -> Method

whereObjRef is an object reference andMethod is a method belonging either to the
object’s class or to one of its superclasses.Method may be specified either partially
(using only the method name) or completely using both the class name and me
name, connected with two colons:

ObjRef -> Class::Method

Equality and Inequality

TheEQ and NE operators allow you to compare object references to see if they
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B = A

;C contains a null object reference.
C = OBJ_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ OBJ_NEW() & $
PRINT, 'C NE NULL:', C NE OBJ_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Objects Building IDL Applications

Chapter 12: Object Basics 271

 to
reate

e or
bove:
Obtaining Information about Objects

Three IDL routines allow you to obtain information about an existing object:

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or
obtain the names of a specified object’s direct superclasses. For example, if we c
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

;Create an object.
A = OBJ_NEW('class2')

;Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

;Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

SeeOBJ_CLASS in theIDL Reference Guide for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instanc
subclass of a specified object. For example, if we have defined the object A as a

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

SeeOBJ_ISA in theIDL Reference Guide for further details.
Building IDL Applications Obtaining Information about Objects

272 Chapter 12: Object Basics

o
t
to a
OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer t
valid and currently existing object heap variables. If supplied with a single objec
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FALSE values
corresponding to the input array. For example:

;Create a class structure.
struct = {cname, data:0.0}

;Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

;Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

SeeOBJ_VALID in theIDL Reference Guide for further details.
Obtaining Information about Objects Building IDL Applications

Chapter 12: Object Basics 273

rator.

re or

 the

ions,
o

of
N

Method Routines

IDL objects can have associated procedures and functions calledmethods. Methods
are called on objects via their object references using the method invocation ope

While object methods are constructed in the same was as any other IDL procedu
function, they are different from other routines in the following ways:

• Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs.

• All method routines automatically pass an implicit argument namedself ,
which contains the object reference of the object on which the method is
called.

• Object methods cannot be called on their own. You must use the method
invocation operator and supply a valid object reference, either of the class
method belongs to or of one of that class’ subclasses.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and funct
with the exception that the name of the class to which they belong, along with tw
colons, is prepended to the method name:

PRO ClassName :: Method
IDL statements

END

or

FUNCTION ClassName :: Method , Argument1
IDL statements

RETURN, value
END

For example, suppose we create two objects, each with its own “print” method.

First, define two class structures:

struct = { class1, data1:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS class1 }

Now we define two “print” methods to print the contents of any objects of either
these two classes. (If you are typing this at the IDL command line, enter the .RU
command before each of the following procedure definitions.)

PRO class1::Print1
Building IDL Applications Method Routines

274 Chapter 12: Object Basics

ethod
e
s

ses,
ods
t its
here

od is
t the

an

d

PRINT, self.data1
END
PRO class2::Print2

PRINT, self.data1
PRINT, self.data2a, self.data2b

END

Once these procedures are defined, any objects of class1 have access to the m
Print1, and any objects of class2 have access to both Print1 and Print2 (becaus
class2 is a subclass of—itinherits from—class1). Note that the Print2 method print
the data1 field inherited from class1.

Note
It is not necessary to give different method names to methods from different clas
as we have done here with Print1 and Print2. In fact, in most cases both meth
would have simply been called Print, with each object class knowing only abou
own version of the method. We have given the two procedures different names
for instructional reasons; see“Method Overriding” on page 277 for a more
complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the meth
called. In the method routines created above, self is used to specify which objec
data fields should be printed from.

You do not need to explicitly pass the self argument; in fact, if you try to specify
argument called self when defining a method routine, IDL will issue an error.

Calling Method Routines

You must use the method invocation operator (->) to call a method on an object. The
syntax is slightly different from other routine invocations:

;For a procedure method.
ObjRef -> Method

;For a function method.
Result = ObjRef -> Method()

WhereObjRefis an object reference belonging to the same class as theMethod, or to
one of that class’ subclasses. We can illustrate this behavior using the Print1 an
Print2 methods defined above.
Method Routines Building IDL Applications

Chapter 12: Object Basics 275

e

on

in
rches
First, define two new objects:

A = OBJ_NEW('class1')
B = OBJ_NEW('class2')

We can call Print1 on the objectA as follows:

A -> Print1

IDL prints:

0.00000

Similarly, we can call Print2 on the objectB:

B -> Print2

IDL prints:

0.00000
0 0

Since the objectB inherits its properties from class1, we can also call Print1 on th
objectB:

B -> Print1

IDL prints:

0.00000

We cannot, however, call Print2 on the objectA, since class1 does not inherit the
properties of class2:

A -> Print2

IDL prints:

% Attempt to call undefined method: 'CLASS1::PRINT2'.

Searching for Method Routines

When a method is called on an object reference, IDL searches for it as with any
procedure or function, and calls it if it can be found, following the naming conventi
established for structure definition routines. (See“Automatic Class Structure
Definition” on page 259.) In other words, IDL discovers methods as it needs them
the same way as regular procedures and functions, with the exception that it sea
for files named

classname__method .pro

rather than simply
Building IDL Applications Method Routines

276 Chapter 12: Object Basics

ou
 to
ed to

 If
ition
method .pro

Remember that there are twounderscores in the file name, and twocolons in the
method routine’s name. See“Executing Program Files”in Chapter 2 ofUsing IDL for
details.

Note
If you are working in an environment where the length of filenames is limited, y
may want to consider defining all object methods in the same .pro file you use
define the class structure. This practice avoids any problems caused by the ne
prepend theclassname and the two underscore characters to the method name.
you must use different .pro files, make sure that all class (and superclass) defin
filenames are unique in the first eight characters.
Method Routines Building IDL Applications

Chapter 12: Object Basics 277

that
f
n
 a
me.
 are
n,

d
s—
by
no
ames
fined

ure

Print

hus,
Method Overriding

Unlike data fields, method names can be duplicated. This is an important feature
allows method overriding, which in turn facilitates polymorphism in the design o
object-oriented programs. Method overriding allows a subclass to provide its ow
implementation of a method already provided by one of its superclasses. When
method is called on an object, IDL searches for a method of that class with that na
If found, the method is called. If not, the methods of any inherited object classes
examined in the order their INHERITS specifiers appear in the structure definitio
and the first method found with the correct name is called. If no method of the
specified name is found, an error occurs.

The method search proceedsdepth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherite
classes by first searching the leftmost included class—and all of its superclasse
before proceeding to the next inherited class to the right. If a method is defined
more than a single inherited structure definition, the first one found is used and
warning is generated. This means that class designers should pick non-generic n
for their methods as well as their data fields. For example, suppose we have de
the following classes:

struct = { class1, data1}
struct = { class2, data2a:0, data2b:0.0, inherits class1 }
struct = { class3, data3:'', inherits class2, inherits class1 }
struct = { class 4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that bothclass1 andclass3 have a method calledPrint
defined.

Now suppose that we create an object ofclass4 , and call thePrint method:

A = OBJ_NEW('class4')
A -> Print

IDL takes the following steps:

1. Searchesclass4 for aPrint method. It does not find one.

2. Searches the leftmost inherited class (class2) in the class definition struct
for a Print method. It does not find one.

3. Searches any superclasses of class2 for a Print method. It finds the class1
method and calls it onA.

Notice that IDL stops searching when it finds a method with the proper name. T
IDL doesn’t find the Print method that belongs to class3.
Building IDL Applications Method Overriding

278 Chapter 12: Object Basics

rides
n

:

e the
Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:

ObjRef -> classname :: method

Whereclassname is the name of one of the object’s superclasses, IDL will search
classname and any ofclassname’s superclasses for the method name. IDL willnot
search the object’s own class or any other classes the object inherits from.

This type of method call is especially useful when a class has a method that over
a superclass method and does its job by calling the superclass method and the
adding functionality. In our simple example from“Calling Method Routines” on
page 274, above, we could have defined aPrint method for each class, as follows

PRO class1::Print
PRINT, self.data1

END
PRO class2::Print

self -> class1::Print
PRINT, self.data2a, self.data2b

END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we mak
following method calls:

A -> Print

IDL prints:

0.00000

And now the B:

B -> Print

IDL prints:

0.00000
0 0

Now we’ll use the second method:

B -> class1::Print

IDL prints:

0.00000

And now A:

A -> class2::Print
Method Overriding Building IDL Applications

Chapter 12: Object Basics 279
IDL prints:

% CLASS2 is not a superclass of object class CLASS1.
% Execution halted at: $MAIN$
Building IDL Applications Method Overriding

280 Chapter 12: Object Basics

rt of
Object Examples

We have included a number of examples of object-oriented programming as pa
the IDL distribution. Many of the examples used in this volume are included—
sometimes in expanded form— in the object subdirectory of the examples
subdirectory of the main IDL directory. By default, this directory is part of IDL's
path; if you have not changed your path, you will be able to run the examples as
described here. See!PATH in theIDL Reference Guidefor information on IDL's path.
Object Examples Building IDL Applications

Part III: Programming
in IDL

Chapter 13:

DefiningProcedures
and Functions

The following topics are covered in this chapter:
Overview . 284
Procedure & Function Definitions 285
Parameters. 286
Using Keyword Parameters. 289

Keyword Inheritance 291
Entering Procedure Definitions 296
Parameter Passing Mechanism 298
Calling Mechanism 300
Building IDL Applications 283

284 Chapter 13: Defining Procedures and Functions

e

ner

sult.
y a
e

Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new cod
required for each application.

New procedures and functions can be written in IDL and called in the same man
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executes a RETURN
statement that returns control to its caller. Functions always return an explicit re
A procedure is called by a procedure call statement, while a function is called b
function reference. For example, if ABC is a procedure and XYZ is a function, th
calling syntax is:

;Call procedure ABC with two parameters.
ABC, A, 12

;Call function XYZ with one parameter. The result of XYZ is stored
;in variable A.
A = XYZ(C/D)
Overview Building IDL Applications

Chapter 13: Defining Procedures and Functions 285

ser-
n a
Procedure & Function Definitions

The procedure and function definition statements notify the IDL compiler that a u
written program module follows. One of these statements must be the first line i
user-written IDL routine.

The PRO statement defines an IDL procedure. Its syntax is:

PRO Procedure_Name, P 1, P 2, ..., P n

The FUNCTION statement defines an IDL function. It’s syntax is:

FUNCTION Function_Name , P1, P2, ..., Pn
Building IDL Applications Procedure & Function Definitions

286 Chapter 13: Defining Procedures and Functions

er are
or
al
he

n.
from

l

s

ich

d to
ed by
d
 to,
Parameters

The variables and expressions passed to the function or procedure from its call
parameters. Actual parametersare those appearing in the procedure call statement
the function reference. In the examples at the beginning of this section, the actu
parameters in the procedure call are the variable A and the constant 12, while t
actual parameter in the function call is the value of the expression(C/D) .

Formal parametersare the variables declared in the procedure or function definitio
The same procedure or function can be called using different actual parameters
a number of places in other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the forma
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plainargument, is a parameter without a keyword. Just a
its name implies, the position of a positional parameter establishes the
correspondence—then-th formal positional parameter is matched with then-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=”) that identifies wh
parameter is being passed.

When calling a routine with a keyword parameter, you can abbreviate the keywor
its shortest, unambiguous abbreviation. Keyword parameters can also be specifi
the caller with the syntax /KEYWORD, which is equivalent to setting the keywor
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred
in the rest of this documentation, assetting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.

PRO XYZ, A, B, TEST = T

The caller can supply a value for the formal (keyword) parameterT with the
following calls:

;Supply only the value of T. A and B are undefined inside the
;procedure.
XYZ, TEST = A
Parameters Building IDL Applications

Chapter 13: Defining Procedures and Functions 287

e

rs can
r

l. In

 in
ters,

 upon
into
en the
und
;The value of A is copied to formal parameter T (note the
;abbreviation for TEST), Q to A, and R to B.
XYZ, TE = A, Q, R

;Variable Q is copied to formal parameter A. B and T are undefined
;inside the procedure.
XYZ, Q

Note
When supplying keyword parameters for a function, the keyword is specifiedinside
the parentheses:

result = FUNCTION(Arg1, Arg2, KEYWORD = value)

Copying Parameters

When a procedure or function is called, the actual parameters are copied into th
formal parameters of the procedure or function and the module is executed.

On exit, via a RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Paramete
be inputs to the program unit; they can be outputs in which the values are set o
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the cal
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or a function can be called with fewer arguments than were defined
the procedure or function. For example, if a procedure is defined with 10 parame
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined
entering the procedure or function. If values are stored by the called procedure
parameters not present in the calling statement, these values are discarded wh
program unit exits. The number of actual parameters in the calling list can be fo
by using the system functionN_PARAMS. Use theN_ELEMENTS function to
determine if a variable is defined.
Building IDL Applications Parameters

288 Chapter 13: Defining Procedures and Functions

wn

tion,

cal
 and

 the
Example

An example of an IDL function to compute the digital gradient of an image is sho
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declara
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

;Evaluate and return the result.
RETURN, ABS(image - SHIFT(image, 1, 0)) + $

ABS(image-SHIFT(image, 0, 1))

;End of function.
END

The function has one parameter called IMAGE. There are no local variables. Lo
variables are variables active only within a module (i.e., they are not parameters
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of B in A.
A = GRAD(B)

;Display gradient of IMAGE sum.
TVSCL, GRAD(abc + def)
Parameters Building IDL Applications

Chapter 13: Defining Procedures and Functions 289

al
f the

he
le I.
Using Keyword Parameters

A short example of a function that exchanges two columns of a 4× 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one position
parameter, the coordinate-transformation matrix T. The caller can specify one o
keywords XYEXCH, XZEXCH, or YZEXCH to interchange thexy, xz, or yzaxes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

;Function to swap columns of T. XYEXCH swaps columns 0 and 1,
;XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET(XY) THEN S=[0,1] $

;Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] $

;Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

;If nothing is set, return.
ELSE RETURN, T

;Copy matrix for result.
R = T

;Exchange two columns using matrix insertion operators and
;subscript ranges.

R[S[1], 0] = T[S[0], *]
R[S[0], 0] = T[S[1], *]

;Return result.
RETURN, R

END

Typical calls to SWAP are as follows:

Q = SWAP(!P.T, /XYEXCH)
Q = SWAP(Q, /XYEX)
Q = SWAP(INVERT(Z), YZ = 1)
Q = SWAP(Z, XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. T
last example sets one of the three keywords according to the value of the variab
Building IDL Applications Using Keyword Parameters

290 Chapter 13: Defining Procedures and Functions

if a
 the
This function example uses the system function KEYWORD_SET to determine
keyword parameter has been passed and if it is nonzero. This is similar to using
condition:

IF N_ELEMENTS(P) NE 0 THEN IF P THEN

to test if keywords that have a true/false value are both present and true.
Using Keyword Parameters Building IDL Applications

Chapter 13: Defining Procedures and Functions 291

ned
This

ch

of

t
lling

name
omes
not

nt is
to

f
ers

he
iving
Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defi
in their function or procedure declaration and pass them on to routines they call.
greatly simplifies writing “wrapper” routines, which are variations of a system or
user-provided routine. Specifically, keyword inheritance allows your routines to
accept keywords accepted by routines that it calls without explicitly handling ea
keyword individually.

There are two distinct mechanisms to handle keyword inheritance: one to pass
keyword parameters byvalue, and another to pass keyword parameters byreference.

_EXTRA: Passing Keyword Parameters by Value

You can pass keyword parameters to called routines byvalue by adding the formal
keyword parameter “_EXTRA” (note the underscore character) to the definition
your routine. Passing parameters by value means that you are giving the called
routine thecontentsof an existing IDL variable to work with. In turn, this means tha
keyword parameters passed into a routine by value cannot be returned to the ca
routine — there is no variable name into which the value can be placed.

When a routine is defined with the formal keyword parameter _EXTRA, pairs of
unrecognized keywords and values are placed in an anonymous structure. The
of each unrecognized keyword becomes a tag name, and the keyword value bec
the tag value. Changes to this structure created by using the _EXTRA keyword do
affect variables in the calling program.

When the keyword _EXTRA appears in a procedure or function call, its argume
either a structure containing additional keyword/value pairs which are inserted in
the argument list, or a string array as described in the next section. The value o
_EXTRA can also be “undefined”, indicating that no additional keyword paramet
were passed.

_REF_EXTRA: Passing Keyword Parameters by Reference

You can pass keyword parameters to called routines byreference by adding the
formal keyword parameter “_REF_EXTRA” (note the underscore character) to t
definition of your routine. Passing parameters by reference means that you are g
the called routine thename of an existing IDL variable to work with; IDL takes care
of keeping track of the value associated with the name. Thevalues of keyword
parameters specified via _REF_EXTRA arenot available to the routine that is
passing the keywords on.
Building IDL Applications Keyword Inheritance

292 Chapter 13: Defining Procedures and Functions

irs

in an
rd,
ion.
les

e

en
ish
ject
rious

and
eans

erent

t we
:

L

When a routine is defined with the formal keyword parameter _REF_EXTRA, pa
of unrecognized keywords and values are placed in a storage location that is
accessible to both calling and called routines, and the keyword names are placed
IDL string array. The string array can be “deciphered” using the _EXTRA keywo
which matches the names in the string with the “live” values in the storage locat
This means that if the keywords specify IDL variables, the values of those variab
can be altered by any routine that has access to the variable via the keyword
inheritance mechanism. In this fashion, the values of keyword parameters can b
changed within a routine and passed back to the routine’s caller.

The “pass by reference” keyword inheritance mechanism is especially useful wh
writing object methods, which may be inherited multiple times and which often w
to change the value of variables available to the calling method. (The values of ob
properties are one example of data that can profitably be shared by objects at va
levels in an object hierarchy.)

Accepting Extra Keyword Parameters

While you must choose whether a routine willpass extra keyword parameters by
value or by reference when defining the routine (specifying both _EXTRA and
_REF_EXTRA as formal parameters will cause an error), routines thataccept extra
keyword parameters can use either the _EXTRA keyword or the _REF_EXTRA
keyword. However, it is not possible to both have access to the keyword values
pass them along to called routines by reference within the same routine. This m
that any routine that needs access to the passed keyword parameters must use
_EXTRA in its definition statement, or define the keyword explicitly itself.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct diff
inherited keywords to different routines by specifying a string or array of strings
containing keyword names via the _EXTRA keyword. For example, suppose tha
write a procedure named SOMEPROC that passes extra keywords by reference

PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=['MOOSE', 'SQUIRREL']
TWO, _EXTRA='SQUIRREL'
END

If we call the SOMEPROC routine with three keywords:

SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR_NEW(moose)

• it will pass the keywords MOOSE and SQUIRREL and their values (the ID
variable moose and the integer 3, respectively) to procedure ONE,
Keyword Inheritance Building IDL Applications

Chapter 13: Defining Procedures and Functions 293

s are
nism
htly
m:

e to

e
IDL

must

ither
 the

son.

t

g
ling
 to
• it will pass the keyword SQUIRREL at its value to procedure TWO,

• it will do nothing with the keyword SPY.

Choosing a Keyword Inheritance Mechanism

The “pass by reference” (_REF_EXTRA) keyword inheritance mechanism was
introduced in IDL version 5.1, and in many cases is a good choice even if value
not being passed back to the calling routine. Because the _REF_EXTRA mecha
does not create an IDL structure to hold the keyword/value pairs, overhead is slig
reduced. Two situations lend themselves to use of the _REF_EXTRA mechanis

1. You need to pass the values of keyword variables back from a called routin
the calling routine.

2. Your routine is an “inner loop” routine that may be called many times. If th
routine is called repeatedly, the savings resulting from not creating a new
structure with each call may be significant.

It is important to remember that if the routine that is passing the keyword values
through also needs access to the values of the keywords for some reason, you
use the “pass by value” (_EXTRA) mechanism.

Note
Updating existing routines that use _EXTRA to use _REF_EXTRA is relatively
easy. Since the called routine uses _EXTRA to receive the extra keywords in e
case, you need only change the _EXTRA to _REF_EXTRA in the definition of
calling routine.

By contrast, the “pass by value” (_EXTRA) keyword inheritance mechanism is
useful in the following situations:

1. Your routine needs access to the values of the extra keywords for some rea

2. You want to ensure that variables specified as keyword parameters are no
changed by a called routine.

Example: Keywords Passed by Value

One of the most common uses for the “pass by value” keyword inheritance
mechanism is to create “wrapper” routines that extend the functionality of existin
routines. In most “wrapper” routines, there is no need to return values to the cal
routine — the aim is simply to implement the complete set of keywords available
the existing routine in the wrapper routine.
Building IDL Applications Keyword Inheritance

294 Chapter 13: Defining Procedures and Functions

. The

ir

sing

s of

the
For example, suppose that procedure TEST is a wrapper to the PLOT command
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _EXTRA = e

END

The procedure definition:

PRO TEST, a, b, _EXTRA = e, COLOR = color

places unrecognized keywords (e.g., any keywords other than COLOR) and the
values into the variable “e”. If there are no unrecognized keywords,e will be
undefined.

When procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable “e”, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }

These keyword/value pairs are then be passed from TEST to the PLOT routine u
the_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into a routine via _EXTRA override previous setting
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT.

Example: Keywords Passed by Reference

The “pass by reference” keyword inheritance mechanism allows you to change
value of a variable in the calling routine’s context from within the routine. To
demonstrate the difference between _EXTRA and _REF_EXTRA, consider the
following simple example procedures:

PRO TEST1, _EXTRA = ex
HELP, _EXTRA = ex
END

PRO TEST2, _REF_EXTRA = ex
HELP, _EXTRA = ex
END
Keyword Inheritance Building IDL Applications

Chapter 13: Defining Procedures and Functions 295

the

tput
Both TEST1 and TEST2 are simple wrappers to the HELP procedure. Observe
result when we call each routine, specifying OUTPUT as an extra keyword
parameter, then use the HELP procedure again to determine the value of the ou
variable:

TEST1, OUTPUT = out & HELP, out

IDL prints:

% At TEST1 2 /dev/tty
% $MAIN$
EX UNDEFINED = <Undefined>
Compiled Procedures:
 $MAIN$ TEST1
Compiled Functions:

Now run TEST2:

TEST2, OUTPUT = out & HELP, out

IDL prints:

OUT STRING = Array[8]
Building IDL Applications Keyword Inheritance

296 Chapter 13: Defining Procedures and Functions

. For

ram
tely

ram

 main
ng
dy

ified
the

 a call

o
all
Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commands is as follows:

.RUN File 1 [, File n, ...]

.COMPILE File 1 [, File n, ...]

From 1 to 10 files, each containing one or more program units, can be compiled
more information, see.RUN and.COMPILE in theIDL Reference Guide.

To enter program text directly from the keyboard, simply enter .RUN at the
IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
a directly entered program. As long as IDL requires more text to complete a prog
unit, it prompts with the “-”character. Rather than executing statements immedia
after they are entered, IDL compiles the program unit as a whole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the prog
unit: procedure, function, or main program. If the first non-empty line is not a
procedure or function definition statement, the program unit is assumed to be a
program. The name of the procedure or function is given by the identifier followi
the keyword PRO or FUNCTION. If a program unit with the same name is alrea
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories spec
by the IDL system variable !PATH, must be compiled before the first reference to
function is compiled. This is necessary because the IDL compiler is unable to
distinguish between a reference to a variable subscripted with parentheses and
to a presently undefined user function with the same name. For example, in the
statement

A = XYZ(5)

it is impossible to tell by context alone if XYZ is an array or a function.

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue t
work as in previous version of IDL, we strongly suggest that you use brackets in
Entering Procedure Definitions Building IDL Applications

Chapter 13: Defining Procedures and Functions 297

ted

re

L

,

 that
new code. See“Array Subscript Syntax: [] vs. ()” on page 157 for additional
details.

When IDL encounters references that may be either a function call or a subscrip
variable, it searches the current directory, then the directories specified by!PATH, for
files with names that match the unknown function or variable name. If one or mo
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, ID
displays an error message.

There are several ways to avoid this problem:

• Compile the lowest-level functions (those that call no other functions) first
then higher-level functions, and finally procedures.

• Place the function in a file with the same name as the function, and place
file in one of the directories specified by !PATH.

• Use the FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to a function rather than a variable. See“Forward Function
Definition” on page 217.

• Manually compile all functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.
Building IDL Applications Entering Procedure Definitions

298 Chapter 13: Defining Procedures and Functions

s by
o

nces

t be
e can
ing

 first.

nt 4,

pted
 is as
Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and function
value or byreference. It is important to recognize the distinction between these tw
methods.

• Expressions, constants, system variables, and subscripted variable refere
are passed by value.

• Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results canno
passed back to the caller by these parameters. Parameters passed by referenc
convey information in either or both directions. For example, consider the follow
trivial procedure:

PRO ADD, A, B
A = A + B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the
The call

ADD, A, 4

adds4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the consta
which was passed by value.

ADD, 4, A

No error message is issued. Similarly, if ARR is an array, the call

ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscri
variables are passed by value. The correct, though somewhat awkward, method
follows:

TEMP = ARR[5]
ADD, TEMP, 4
ARR[5] = TEMP
Parameter Passing Mechanism Building IDL Applications

Chapter 13: Defining Procedures and Functions 299
Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See“Parameter
Passing with Structures” on page 140 for additional details.
Building IDL Applications Parameter Passing Mechanism

300 Chapter 13: Defining Procedures and Functions

d

les

nt
ult of
lue

ify a

ters

ied
d by

nt or

m a
ls, as
ata is
g-
Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated an
saved in temporary locations.

2. The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variab
local to the called procedure are set to undefined.

3. The function or procedure is executed until a RETURN or RETALL stateme
is encountered. Procedures also can return on an END statement. The res
a user-written function is passed back to the caller by specifying it as the va
of a RETURN statement. RETURN statements in procedures cannot spec
return value.

4. All local variables in the procedure, those variables that are neither parame
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are cop
back into the corresponding variables. Actual parameters that were passe
value are deleted.

6. Control resumes in the calling procedure after the procedure call stateme
function reference.

Recursion

Recursion (i.e., a program calling itself) is supported for both procedures and
functions.

Example

Here is an example of an IDL procedure that reads and plots the next vector fro
file. This example illustrates using common variables to store values between cal
local parameters are destroyed on exit. It assumes that the file containing the d
open on logical unit 1 and that the file contains a number of 512-element, floatin
point vectors.

;Read and plot the next record from file 1. If RECNO is specified,
;set the current record to its value and plot it.
PRO NXT, recno

;Save previous record number.
Calling Mechanism Building IDL Applications

Chapter 13: Defining Procedures and Functions 301

.

COMMON NXT_COM, lastrec

;Set record number if parameter is present.
IF N_PARAMS(0) GE 1 THEN lastrec = recno

;Define LASTREC if this is first call.
IF N_ELEMENTS(lastrec) LE 0 THEN lastrec = 0

;Define file structure.
AA = ASSOC(1, FLTARR(512))

;Read and plot record.
PLOT, AA[lastrec]

;Increment record for next time.
lastrec = lastrec + 1

RETURN A

END

Once the user has opened the file, typing NXT will read and plot the next record
Typing NXT, N will read and plot record number N.
Building IDL Applications Calling Mechanism

302 Chapter 13: Defining Procedures and Functions

bit
the

L
es

e
to

that
re

N

Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT is as follows:

COMPILE_OPTopt1 [,opt2, ...,optn]

whereoptn is any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants are the 32-
LONG type rather than the default of 16-bit integers. This takes effect from
point where the COMPILE_OPT statement appears in the routine being
compiled.

• HIDDEN — This routine should not be displayed by HELP, unless the FUL
keyword to HELP is used. This directive can be used to hide helper routin
that regular IDL users are not interested in seeing.

A side effect of making a routine hidden is that IDL will not print a “Compil
module” message for it when it is compiled from the library to satisfy a call
it. This makes hidden routines appear built in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages
this routine is obsolete. This directive can be used to warn people that the
may be better ways to perform the desired task.

• STRICTARR — While compiling this routine, IDL will not allow the use of
parenthesis to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTIO
definition.

Research Systems recommends the use of

COMPILE_OPT IDL2
Setting Compilation Options Building IDL Applications

Chapter 13: Defining Procedures and Functions 303

 use

.g.
in all new code intended for use in a reusable library. We further recommend the
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e
helper routines that are part of a larger package).
Building IDL Applications Setting Compilation Options

304 Chapter 13: Defining Procedures and Functions
Setting Compilation Options Building IDL Applications

Chapter 14:

Programming in IDL
The following topics are covered in this chapter:
Overview of Programming in IDL 306
Informational Routines. 307
Program Control Routines 312
Expression Evaluation Order 314
Avoid IF Statements 315
Use Vector and Array Operations. 317

IDL System Functions and Procedures . . . 319
Use Constants of the Correct Type 320
Eliminate Invariant Expressions 321
Virtual Memory . 322
IDL Implementation 328
Building IDL Applications 305

306 Chapter 14: Programming in IDL

l
riting
L
t

ough

 the

ed
ns
vere

ps

ally
Overview of Programming in IDL

While IDL is useful as anad hoc, interactive data analysis tool, it is also a powerfu
programming language. This chapter discusses routines that are useful when w
programs—from simple procedures and functions to large applications—in the ID
language, and presents ideas to consider when trying to create the most efficien
programs possible. The routines discussed in this chapter are useful primarily (th
not exclusively) in IDL procedures and functions. These routines are rarely used
interactively. They provide information about variables and expressions and give
programmer control over program operation.

Routines dealing with error control and handling are discussed inChapter 15,
“Controlling Errors”.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be us
to greatly improve the efficiency of IDL programs. In IDL, complicated computatio
can be specified at a high level. Therefore, inefficient IDL programs can suffer se
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programs in IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

• Use array operations rather than loops wherever possible. Try to avoid loo
with high repetition counts.

• Use IDL system functions and procedures wherever possible.

• Access array data in machine address order.

Attention also must be given to algorithm complexity and efficiency, as this is usu
the greatest determinant of resources used.
Overview of Programming in IDL Building IDL Applications

Chapter 14: Programming in IDL 307

ers,

res
ly

k to
ted

ume

k

re is
OT

.

Informational Routines

Informational routines return information about variables, expressions, paramet
etc. The routinesKEYWORD_SET, N_ELEMENTS, N_PARAMS, andSIZE are
useful in procedures and functions to check if arguments are supplied. Procedu
should be written to check that all required arguments are supplied and to supp
reasonable default values for missing optional parameters. In addition,
TAG_NAMESandN_TAGS, which are discussed in“Advanced Structure Usage”on
page 147, supply information about structure variables.

ARG_PRESENT Function

The ARG_PRESENT function returns TRUE if its parameter will be passed bac
the caller. This function is useful in user-written procedures to determine if a crea
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, ass
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specifyi, the program may not function properly. You can chec
to make sure that an argument was specified by using the following statement:

IF ARG_PRESENT(i) THEN BEGIN

KEYWORD_SET Function

The KEYWORD_SET function returns a 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedu
written which performs and returns the result of a computation. If the keyword PL
is present and nonzero, the procedure also plots its result as follows:

;Procedure definition.
PRO XYZ, result, PLOT = plot

;Compute result.
...

;Plot result if keyword parameter is set.
IF KEYWORD_SET(PLOT) THEN PLOT, result

END

A call to this procedure that produces a plot is shown in the following statement

XYZ, R, /PLOT
Building IDL Applications Informational Routines

308 Chapter 14: Programming in IDL

nts in

 a

or

of

n

d to

fault
N_ELEMENTS Function

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of eleme
arrays or vectors is equal to the product of the dimensions. The N_ELEMENTS
function returns zero if its parameter is an undefined variable. The result is always
longword scalar.

For example, the following expression is equal to the mean of a numeric vector
array.

TOTAL(arr) / N_ELEMENTS(arr)

The N_ELEMENTS function provides a convenient method of determining if a
variable is defined. The following statement sets the variableabc to zero if it is
undefined; otherwise, the variable is not changed.

IF N_ELEMENTS(abc) EQ 0 THEN abc = 0

N_ELEMENTS is frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. An example
using N_ELEMENTS to check for a keyword parameter is as follows:

;Display an image with a given zoom factor. If factor is omitted,
;use 4.
PRO ZOOM, image, FACTOR = factor

;Supply default for missing keyword parameter.
IF N_ELEMENTS(factor) EQ 0 THEN factor = 4

Note
If you use this method, the variablefactor is defined has having the value 4, eve
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variablefactor would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lea
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a de
zoom factor in the example above, but did not want to change the value offactor ,
you could use an approach similar to the following:

IF N_ELEMENTS(factor) EQ 0 THEN zoomfactor = 4 $
ELSE zoomfactor = factor
Informational Routines Building IDL Applications

Chapter 14: Programming in IDL 309

ord

lt
You would then set the zoom factor internally using thezoomfactor variable,
leavingfactor itself unchanged.

N_PARAMS Function

The N_PARAMS function returns the number of positional arguments (not keyw
arguments) present in a procedure or function call. A frequent use is to call
N_PARAMS to determine if all arguments are present and if not, to supply defau
values for missing parameters. For example:

;Print values of XX and YY. If XX is omitted, print values of YY
;versus element number.
PRO XPRINT, XX, YY

;Check number of arguments.
CASE N_PARAMS() OF

;Single-argument case.
1: BEGIN

;First argument is y values.
Y = XX

;Create vector of subscript indices.
X = INDGEN(N_ELEMENTS(Y))

END

;Two-argument case.
2: BEGIN

;Copy parameters to local arguments.
Y = YY & X = XX

END

;Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

;Remainder of procedure.
...

END
Building IDL Applications Informational Routines

310 Chapter 14: Programming in IDL

and

n.
ter
SIZE Function

The SIZE function returns a vector that contains information indicating the size
type of the parameter. The returned vector is always of longword type. The first
element is equal to the number of dimensions of the parameter and is zero if the
parameter is a scalar. The following elements contain the size of each dimensio
After the dimension sizes, the last two elements indicate the type of the parame
and the total number of elements, respectively. The type is encoded as follows:

Examples

Assume A is an integer array with dimensions of (3,4,5). The statements:

arr = INDGEN(3,4,5)

Type Code Data Type

0 Undefined

1 Byte

2 Integer (16-bit)

3 Longword integer (32-bit)

4 Floating point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

9 Double-precision complex floating

10 Pointer

11 Object reference

12 Unsigned integer (16-bit)

13 Unsigned longword integer (32-bit)

14 64-bit integer

15 Unsigned 64-bit integer

Table 14-1: Type Codes Returned by the SIZE Function
Informational Routines Building IDL Applications

Chapter 14: Programming in IDL 311
S = SIZE(arr)

assigns to the variable,S, a six-element vector containing:

A code segment that checks to see if a variable (arr) is two-dimensional and extracts
the dimensions is shown below.

;Create a variable.
arr = [[1,2,3],[4,5,6]]

;Get size vector.
S = SIZE(arr)

;Check if two dimensional.
IF S[0] NE 2 THEN $

;Print error message.
MESSAGE, 'Variable a is not two dimensional.'

;Get number of columns and rows.
NX = S[1] & NY = S[2]

PRINT, 'Array is ', NX, ' columns by ', NY, ' rows.'

Element Value Description

S0 3 Three dimensions

S1 3 First dimension

S2 4 Second dimension

S3 5 Third dimension

S4 2 Integer type

S5 60 Number of elements = 3*4*5

Table 14-2: SIZE Values
Building IDL Applications Informational Routines

312 Chapter 14: Programming in IDL

f the

he
tch

 the

not

in
Program Control Routines

IDL provides the following routines to control the flow of an IDL program:
CALL_FUNCTION, CALL_PROCEDURE, EXECUTE, EXIT, STOP, andWAIT.

The program control procedures are largely self-explanatory with the exception o
EXECUTE function. CALL_FUNCTION and CALL_PROCEDURE are used to
indirectly call functions and procedures whose names are contained in strings. T
EXIT procedure exits the IDL session. STOP halts execution of a program or ba
file and prints the values of its optional parameters. WAIT, as its name implies,
pauses execution for a given amount of time specified in seconds.

CALL_FUNCTION and CALL_PROCEDURE

CALL_FUNCTION andCALL_PROCEDURE are used to indirectly call functions
and procedures whose names are contained in strings.

CALL_FUNCTION calls the IDL function specified, passing any additional
parameters as its arguments. The result of the called function is passed back as
result of the routine. CALL_PROCEDURE calls the procedure, passing any
additional parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_FUNCTION and
CALL_PROCEDURE are much faster, and should be used in preference to
EXECUTE whenever possible.

EXECUTE

TheEXECUTE function compiles and executes one or more IDL statements
contained in its string parameter during runtime.

EXECUTE is limited by two factors:

• Calls to EXECUTE cannot be nested, so a routine called by EXECUTE can
use EXECUTE itself.

• The need to compile the string at runtime makes EXECUTE inefficient in
terms of speed.

The CALL_FUNCTION and CALL_PROCEDURE routines provide much of the
functionality of EXECUTE without imposing these limitations and should be used
preference to EXECUTE when possible.
Program Control Routines Building IDL Applications

Chapter 14: Programming in IDL 313

(0).

TO

ose

TE

are
d are

trol

od.
sion
The result of the EXECUTE function is true (1) if the string was successfully
compiled and executed. If an error occurred during either phase, the result is false
If an error occurs, an error message is printed.

Multiple statements in the string should be separated with the “&” character. GO
statements and labels are not allowed.

Example

This example code fragment, taken from the routine SVDFIT, calls a function wh
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

;Function declaration.
FUNCTION SVDFIT,..., FUNCT = funct

...

;Use default name, POLY, for function if not specified.
IF N_ELEMENTS(FUNCT) EQ 0 THEN FUNCT = 'POLY'

;Make a string of the form “a = funct(x,m)”, and execute it.
Z = EXECUTE('A = '+FUNCT+'(X,M)')

...

The above example is easily made more efficient by replacing the call to EXECU
with the following line:

A = CALL_FUNCTION(FUNCT, X, M)

EXIT

TheEXIT procedure quits IDL and exits back to the operating system. All buffers
flushed and open files are closed. The values of all variables that were not save
lost.

STOP

TheSTOP procedure stops the execution of a running program or batch file. Con
reverts to the interactive mode.

WAIT

TheWAIT procedure suspends execution of an IDL program for a specified peri
Note that because of other activity on the system, the duration of program suspen
may be longer than requested.
Building IDL Applications Program Control Routines

314 Chapter 14: Programming in IDL

d is
sult

calar
g

Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

;Scale A from 0 to 16.
B = A * 16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations require
twice the number of elements in A. A much faster way of computing the same re
is used in the following statement:

;Scale A from 0 to 16 using only one array operation.
B = A * (16./MAX(A))

or

;Operators of equal priority are evaluated from left to right. Only
;one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one s
division. To see the speed difference on your own machine, execute the followin
statements:

A = RANDOMU(seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTIME(1)
PRINT, 'Time for inefficient calculation: ', t2-t1
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTIME(1)
PRINT, 'Time for efficient calculation: ', t4-t3
Expression Evaluation Order Building IDL Applications

Chapter 14: Programming in IDL 315

nd IF
follow.

array

A[I].

e

Avoid IF Statements

Programs with array expressions run faster than programs with scalars, loops, a
statements. Some examples of slow and fast ways to achieve the same results

Example—Summing Elements

The first example adds all positive elements of array B to array A.

;Using a loop will be slow.
FOR I = 0, (N-1) DO IF B[I] GT 0 THEN A[I] = A[I] + B[I]

;Fast way: Mask out negative elements using array operations.
A = A + (B GT 0) * B

;Faster way: Add B > 0.
A = A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and the WHERE Function

In the example below, each element of C is set to the square-root of A if A[I] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of

;Using an IF statement is slow.
FOR I=0,(N-1) DO IF A[I] LE 0 THEN $

C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[I])

;Using an array expression is much faster.
C = ((A GT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value 0 if
A[I]is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if A[I] is negative,
accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of th
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.
negs = WHERE(A LT 0)

;Take root of absolute value.
C = SQRT(ABS(A))
Building IDL Applications Avoid IF Statements

316 Chapter 14: Programming in IDL
;Negate elements in C corresponding to negative elements in A.
C[negs] = -C[negs]
Avoid IF Statements Building IDL Applications

Chapter 14: Programming in IDL 317

array
blem
he
 the

R
he

ther
Use Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL
operations instead of scalar operations in a loop. For example, consider the pro
of inverting a 512× 512 image. This problem arises because approximately half t
available image display devices consider the origin to be the lower-left corner of
screen, while the other half recognize it as the upper-left corner.

The following example is for demonstration only. The IDL system variable !ORDE
should be used to control the origin of image devices. The ORDER keyword to t
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;Temporarily save pixel image.
temp = image[I, J]

;Exchange pixel in same column from corresponding row at bottom
image[I, J] = image[I, 511 - J]

image[I, 511-J] = temp

ENDFOR

A more efficient approach to this problem capitalizes onIDL’s ability to process arrays as
a single entity:

FOR J = 0, 255 DO BEGIN

;Temporarily save current row.
temp = image[*, J]

;Exchange row with corresponding row at bottom.
image[*, J] = image[*, 511-J]

image[*, 511-J] = temp

ENDFOR

At the cost of using twice as much memory, processing can be simplified even fur
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR(512, 512)
Building IDL Applications Use Vector and Array Operations

318 Chapter 14: Programming in IDL
;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE(image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.
Use Vector and Array Operations Building IDL Applications

Chapter 14: Programming in IDL 319

 are
s

The
r

rray
IDL System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and
almost always much faster than writing the equivalent operation in IDL with loop
and subscripting.

Example

A common operation is to find the sum of the elements in an array or subarray.
TOTAL function directly and efficiently evaluates this sum at least 10 times faste
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL(array[J:K])

Similar savings result when finding the minimum and maximum elements in an a
(MIN andMAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.
Building IDL Applications IDL System Functions and Procedures

320 Chapter 14: Programming in IDL

e.
ring

ort

st be
etic
ants;
Use Constants of the Correct Type

As explained inChapter 5, “Constants”, the syntax of a constant determines its typ
Efficiency is adversely affected when the type of a constant must be converted du
expression evaluation. Consider the following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from sh
integer type to floating point each time the expression is evaluated.

The type of a constant also has an important effect in array expressions. Care mu
taken to write constants of the correct type. In particular, when performing arithm
on byte arrays with the intent of obtaining byte results, be sure to use byte const
e.g.,nB. For example, if A is a byte array, the result of the expression A + 5B is a
byte array, while A + 5 yields a 16-bit integer array.
Use Constants of the Correct Type Building IDL Applications

Chapter 14: Programming in IDL 321

e the
Eliminate Invariant Expressions

Expressions whose values do not change inside a loop should be moved outsid
loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ...,

the expression(2*J-1) is invariant and should be evaluated only once before the
loop is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] =
Building IDL Applications Eliminate Invariant Expressions

322 Chapter 14: Programming in IDL

l
r to
hine
disk.
f the

an
 in
rtion
ing

iding
of
s

k,

ead
e,

ical
that

ms,

f
ry

ny
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtua
memory computer systems to avoid penalty. Virtual memory allows the compute
execute programs that require more memory than is actually present in the mac
by keeping those portions of programs and data that are not being used on the
Although this process is transparent to the user, it greatly affects the efficiency o
program.

IDL arrays are stored in dynamically allocated memory. Although the program c
address large amounts of data, only a small portion of that data actually resides
physical memory at any given moment; the remainder is stored on disk. The po
of data and program code in real physical memory is commonly called the work
set.

When an attempt is made to access a datum in virtual memory not currently res
in physical memory, the operating system suspends IDL, arranges for the page
memory containing the datum to be moved into physical memory and then allow
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the dis
and reading the page with the datum into the selected memory page. Apage fault is
said to occur each time this process takes place. Because the time required to r
from or write to the disk is very large in relation to the physical memory access tim
page faults become an important consideration.

When using IDL with large arrays, it is important to have access to sufficient phys
and virtual memory. Given a suitable amount of physical memory, the parameters
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See“Virtual Memory System Parameters” on
page 325. If you suspect that lack of physical or virtual memory is causing proble
consult your system manager.

Access Large Arrays by Memory Order

When an array is larger than or close to the working set size (i.e., the amount o
physical memory available for the process), it is preferable to access it in memo
address order.

Consider the process of transposing a large array. Assume the array is a 512× 512
byte image with a 100 kilobyte working set. The array requires 512× 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at a
one instant.
Virtual Memory Building IDL Applications

Chapter 14: Programming in IDL 323

ing
to
 in

 a
t
d
g the
to

rray
f the
ent:

r

y to

nd
ng
ay
In the transpose operation, each row must be interchanged with the correspond
column. The first row, containing the first 512 bytes of the image, will be read in
memory, if necessary, and written to the first column. Because arrays are stored
row order (the first subscript varies the fastest), one column of the image spans
range of addresses almost equal to the size of the entire image. To write the firs
column, 250,000 bytes of data must be read into physical memory, updated, an
written back to the disk. This process must be repeated for each column, requirin
entire array be read and written almost 512 times. The amount of time required
transpose the array using the method described above is relatively large.

In contrast, the IDLTRANSPOSEfunction transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512× 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:

FOR X = 0, 511 DO FOR Y = 0, 511 DO ARR[X, Y] = ...

This statement requires an extremely large execution time because the entire a
must be transferred between memory and the disk 512 times. The proper form o
statement is to process the points in address order by using the following statem

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by a factor of at least 50.

Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have a small system), you may encounter the erro
message

% Unable to allocate memory.

This error message means that IDL was unable to obtain enough virtual memor
hold all your data. Whenever you define an array, image, or vector, IDL asks the
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing a
exit IDL or delete unused variables containing images or arrays, thereby releasi
enough virtual memory to continue. You can delete the memory allocation of arr
variables by setting the variable equal to a scalar value.
Building IDL Applications Virtual Memory

324 Chapter 14: Programming in IDL

om

8

ry
he

or C
F are
d the

ata

 that
If you need to exit IDL, you first should use the SAVE procedure to save your
variables in an IDL save file. Later, you will be able to recover those variables fr
the save file using the RESTORE procedure.

The HELP,/MEMORY command tells you how much virtual memory you have
allocated. For example, a 512× 512 complex floating array requires 8*5122 bytes or
about 2 megabytes of virtual memory because each complex element requires
bytes. Deleting a variable containing a 512× 512 complex array will increase the
amount of virtual memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates tempora
arrays to evaluate expressions involving arrays. For example, when evaluating t
statement

A = (B + C) * (E + F)

IDL first evaluates the expression B + C and creates a temporary array if either B
are arrays. In the same manner, another temporary array is created if either E or
arrays. Finally, the result is computed, the previous contents of A are deleted, an
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of d
is required in addition to normal variable storage.

It is a good idea to delete the allocation of a variable that contains an image and
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

;Processing steps.
...

;Delete old allocation for A.
A = 0

;Compute image expression and store.
A = Image_Expression

...

;End of loop.
ENDFOR
Virtual Memory Building IDL Applications

Chapter 14: Programming in IDL 325

e the
A’s

s is
t
oid
rray.

signs
d

e, if

need
es to
ding
and

ory
ou
n).

ng
me
ly

.

The purpose of the statement A=0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Becaus
old value of A is going to be replaced in the next statement, it makes sense to free
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large array
to use theTEMPORARY function. TEMPORARY returns the value of its argumen
as a temporary variable and makes the argument undefined. In this way, you av
making a new copy of temporary results. For example, assume that A is a large a
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and as
the result to Abeforefreeing the old allocation of A. Hence, the total storage require
for the operation is twice the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

Virtual Memory System Parameters

The first step is to determine how much virtual memory you require. For exampl
you compute complex Fast Fourier Transforms (FFT) on 512× 512 images, each
complex image requires 2 megabytes. Suppose that during a typical session you
to have four images stored in variables and require enough memory for two imag
hold temporary results, resulting in a total of six images or 12 megabytes. Roun
up to 16 megabytes gives a reasonable goal. The following SYSGEN parameters
quotas should be changed to increase the amount of virtual memory available.

Note
For UNIX, The size of the swapping area(s) determines how much virtual mem
your process is allowed. To increase the amount of available virtual memory, y
must increase the size of the swap device (sometimes called the swap partitio
Increasing the size of a swap partition is a time-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatti
the disk with the new file partition sizes, and restoring the original contents.So
systems offer the alternative of swapping to a regular file. This is a considerab
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations
Building IDL Applications Virtual Memory

326 Chapter 14: Programming in IDL

the
rs,

t on
a
n,

ally
e of

speed

s

the
ged

t in
m files

 files,

m

sing
Note
For OpenVMS, as it comes from DEC, is not tuned for image processing. To get
best performance from IDL, you should increase the VMS SYSGEN paramete
file sizes, andAUTHORIZEquotas that restrict the virtual memory system. This
discussion is on the most elementary level, and the appropriate VMS manuals
should be consulted for more detail.

SYSGEN Parameters

WSMAX : This parameter sets the maximum number of pages of any working se
a system-wide basis. The working set is that portion of virtual memory used by
process that is actually in physical memory. Although this is an over simplificatio
small working set sizes cause page faulting. Page faults waste time and potenti
require disk accesses. Increasing the working set to a size of three times the siz
the largest array to be processed, or at least 2,000 blocks, can cause dramatic
improvements.

VIRTUALPAGECNT : This parameter sets the maximum number of virtual page
(512 bytes/page) that can be used by any one process.

To change the values of SYSGEN parameters, DEC recommends that you run
AUTOGENcommand procedure after adding lines to set the new values of chan
parameters to the end of the fileSYS$SYSTEM: MODPARAMS.DAT.

System Files

The sizes of the system page and swap files (SYS$SYSTEM: PAGEFILE.SYS and
SWAPFILE.SYS) must be large enough to contain the virtual memory used by all
active processes. In any event, you cannot have more virtual memory than will fi
the page file. You can increase the size of these files or create secondary syste
on a disk other than the system disk. If you get the error message

Page file fragmented - continuing

on the system console, your page file is too small. To increase the size of these
use the command procedureSYS$UPDATE: SWAPFILES. Use theSYSGEN
INSTALL command to activate system files created on disks other than the syste
disk.AUTOGEN can also be used to change the sizes of these files.

Quotas

The following quotas, all of which can be changed on a per user or system basis u
theAUTHORIZE utility, affect virtual page limits and working set sizes.
Virtual Memory Building IDL Applications

Chapter 14: Programming in IDL 327

the
ring
um of

ome

n

Pgflquo: The page file quota for each user expressed in blocks. If you increase
size of the page file, be sure to increase the page file quotas for the users requi
more virtual memory. Be sure that the page file size is at least as large as the s
the quotas of each active user.

WSquo: The working set quota for each user. This quota can be used to allow s
users a larger working set than others.WSquomust not be larger thanWSMAX.

Note
For Windows and Macintosh, consult your system documentation for details o
how to configure your system to use virtual memory.
Building IDL Applications Virtual Memory

328 Chapter 14: Programming in IDL

ents

 the
ime
d for

ctor
id
orter
e
ray
or of
IDL Implementation

IDL programs are compiled into a low-level abstract machine code which is
interpretively executed. The dynamic nature of variables in IDL and the relative
complexity of the operators precludes the use of directly executable code. Statem
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine
type and structure of each operand and branch to the appropriate routine. The t
required to properly dispatch each operation may be longer than the time require
the operation itself.

The characteristics of the time required for array operations is similar to that of ve
computers and array processors. There is an initial set-up time, followed by rap
evaluation of the operation for each element. The time required per element is sh
in longer arrays because the cost of this initial set-up period is spread over mor
elements. The speed of IDL is comparable to that of optimized FORTRAN for ar
operations. When data are treated as scalars, IDL efficiency degrades by a fact
30 or more.
IDL Implementation Building IDL Applications

Chapter 15:

Controlling Errors
The following topics are covered in this chapter:
0

3
5

Overview . 330
Default Error-Handling Mechanism. 331
Disappearing Variables. 332
Controlling Errors Using CATCH 333
Controlling Errors Using ON_ERROR. . . 337

Controlling Input/Output Errors 338
Error Signaling. 34
Obtaining Traceback Information 342
Error Handling. 34
Math Errors . 34
Building IDL Applications 329

330 Chapter 15: Controlling Errors

that

nd

he
Overview

This chapter discusses routines and methods used to check and handle errors
occur in IDL programs. The routines covered here are rarely used interactively.

IDL divides possible execution errors into three categories: input/output, math, a
all others. There are three main error-handling routines:CATCH, ON_ERROR, and
ON_IOERROR. CATCH is a generalized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. T
FINITE andCHECK_MATH routines provide control over math errors.
Overview Building IDL Applications

Chapter 15: Controlling Errors 331

f a
ion
ch

ts to
les,

 you

to
Default Error-Handling Mechanism

In the default case, whenever an error is detected by IDL during the execution o
program, program execution stops and an error message is printed. The execut
context is that of the program unit (procedure, function, or main program) in whi
the error occurred.

Sometimes it is possible to recover from an error by manually entering statemen
correct the problem. Possibilities include setting the values of variables, closing fi
etc., and then entering the command.CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

As an example, if an error occurs because an undefined variable is referenced,
can simply define the variable from the keyboard, then continue execution with
.CON. Of course, this is a temporary solution. You should still edit the program file
fix the problem permanently.
Building IDL Applications Default Error-Handling Mechanism

332 Chapter 15: Controlling Errors

error
he

mon

re
ed.

am
Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an
occurs inside a procedure or function. The misunderstood subtlety is that after t
error occurs, IDL’s context isinside the called procedure, not in the main level. All
variables in procedures and functions, with the exception of parameters and com
variables, are local in scope. TypingRETURN or RETALL will make the lost
variables reappear.

RETALL is best suited for use when an error is detected in a procedure and it is
desired to return immediately to the main program level despite nested procedu
calls. RETALL issues RETURN commands until the main program level is reach

The HELP command can be used to see the current call stack (i.e., which progr
unit IDL is in and which program unit called it). For more information, seeHELP in
theIDL Reference Guide.
Disappearing Variables Building IDL Applications

Chapter 15: Controlling Errors 333

 of
the

w).

dure
rror

d in

s are
to the

m

Controlling Errors Using CATCH

TheCATCH procedure provides a generalized mechanism for handling any type
errors and exceptions within IDL. Calling CATCH establishes an error handler for
current procedure that intercepts all errors that can be handled by IDL, with the
exception of non-fatal warnings such as math errors (e.g., floating-point underflo
The CATCH mechanism is similar to C’ssetjmp/longjmp facilities or C++’s
catch/throw facilities.

When an error occurs, each active procedure, beginning with the offending proce
and proceeding up the call stack to the main program level, is examined for an e
handler (established by a call to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. The index of the error is returne
the argument to CATCH and is also stored in !ERROR_STATE.CODE. The
associated error message is stored in !ERROR_STATE.MSG. If no error handler
found, program execution stops, an error message is issued, and control reverts
interactive mode.

For more information, seeCATCH and!ERROR_STATE in theIDL Reference
Guide.

Interaction of CATCH, ON_ERROR, and ON_IOERROR

Error handlers established by calls to CATCH supersede calls toON_ERROR.
However, calls toON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the progra
Building IDL Applications Controlling Errors Using CATCH

334 Chapter 15: Controlling Errors
branches to the label specified by ON_IOERROR. The following figure is a flow
chart of how errors are handled in IDL.

Figure 15-1: Error Handling in IDL.

Error or Exception is Generated

Is it an I/O error?

Is ON_IOERROR
routine in use?

Handle error as
indicated by
ON_IOERROR setting.

Is there an error handler
defined by the CATCH
routine?

Handle error with
CATCH-defined error
handler and continue
program execution.

Handle error as
indicated by setting of
ON_ERROR routine or
use default error handling.

Yes

No

No

Yes

No

Yes
Controlling Errors Using CATCH Building IDL Applications

Chapter 15: Controlling Errors 335

r.
other

he

ring
Canceling an Error Handler

Call CATCH with the CANCEL keyword set to cancel a procedure’s error handle
This cancellation does not effect other error handlers that may be established in
active procedures.

Generating an Exception

To generate an exception and cause control to return to the error handler, use t
MESSAGE procedure. Calling MESSAGE generates an exception that sets the
!ERROR system variable to -5 and the !ERR_STRING system variable to the st
used as an argument to MESSAGE. See“Error Signaling” on page 340.

Example Using CATCH

The following procedure illustrates the use of CATCH:

PRO ABC

;Define variable A.
A = FLTARR(10)

;Establish error handler. When errors occur, the index of the error
;is returned in the variable Error_status. Initially, this
;argument is set to zero.
CATCH, Error_status

;This statement begins the error handler.
IF Error_status NE 0 THEN BEGIN

PRINT, 'Error index: ', Error_status
PRINT, 'Error message:', !ERR_STRING

;Handle the error by extending A.
A=FLTARR(12)

ENDIF

;Cause an error.
A[11]=12

;Even though an error occurs in the line above, program execution
;continues to this point because the event handler extended the
;definition of A so that the statement can be re-executed.
HELP, A

END
Building IDL Applications Controlling Errors Using CATCH

336 Chapter 15: Controlling Errors

trol
Running the ABC procedure causes IDL to produce the following output and con
returns to the interactive prompt:

Error index: -101
Error message:
Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array(12)
Controlling Errors Using CATCH Building IDL Applications

Chapter 15: Controlling Errors 337

ed

 in

aller

nt in
es
cult

added

ade

t

Controlling Errors Using ON_ERROR

TheON_ERROR procedure determines the action taken when an error is detect
inside a user procedure or function and no error handlers established with the
CATCH procedure are found. The possible options for error recovery are shown
the following table:

One useful option is to use ON_ERROR to cause control to be returned to the c
of a procedure in the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. Include this stateme
library procedures and other routines that will be used by others once the routin
have been debugged. This form of error recovery makes debugging a routine diffi
because the routine is exited as soon as an error occurs; therefore, it should be
once the code is completely tested.

Note that error handlers established by CATCH supersede calls to ON_ERROR m
in the same procedure.

Value Action

0 Stop immediately in the context of the procedure or function tha
caused the error. This is the default action.

1 Return to the main program level and stop.

2 Return to the caller of the program unit that called ON_ERROR
and stop.

3 Return to the program unit that called ON_ERROR and stop.

Table 15-1: Error Recovery Options
Building IDL Applications Controlling Errors Using ON_ERROR

338 Chapter 15: Controlling Errors

lar
his
o
n
l
is

r
m

the
Controlling Input/Output Errors

The default action for handling input/output errors is to treat them exactly like regu
errors and follow the error handling strategy set by ON_ERROR. You can alter t
default by using theON_IOERROR procedure to specify the label of a statement t
which execution should jump if an input/output error occurs. When IDL detects a
input/output error and an error-handling statement has been established, contro
passes directly to the given statement without stopping program execution. In th
case, no error messages are printed.

Note that calls to ON_IOERROR made in the procedure that causes an I/O erro
supersede any error handling mechanisms created with CATCH and the progra
branches to the label specified by ON_IOERROR.

When writing procedures and functions that are to be used by others, it is good
practice to anticipate and handle errors caused by the user. For example, the
following procedure segment, which opens a file specified by the user, handles
case of a nonexistent file or read error.

;Define a function to read, and return a 100-element, floating-
;point array.
FUNCTION READ_DATA, FILE_NAME

;Declare error label.
ON_IOERROR, BAD

;Use the GET_LUN keyword to allocate a logical file unit.
OPENR, UNIT, FILE NAME, /GET_LUN

;Define data array.
A = FLTARR(100)

;Read it.
READU, UNIT, A

;Clean up and return.
GOTO, DONE

;Exception label. Print the error message.
BAD: PRINT, !ERR_STRING

;Close and free the input/output unit.
DONE: FREE_LUN, UNIT

;Return the result. This will be undefined if an error occurred.
RETURN, A
Controlling Input/Output Errors Building IDL Applications

Chapter 15: Controlling Errors 339

 is
rns to
END

The important things to note in this example are that the FREE_LUN procedure
always called, even in the event of an error, and that this procedure always retu
its caller. It returns an undefined value if an error occurs, causing its caller to
encounter the error.
Building IDL Applications Controlling Input/Output Errors

340 Chapter 15: Controlling Errors

rs. It

ame
 as

ee

e
y

Error Signaling

TheMESSAGEprocedure is used by user procedures and functions to issue erro
has the form:

MESSAGE, Text

whereText is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the s
mechanism employed by built-in IDL routines. By default, the message is issued
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

As a side effect of issuing the error, appropriate fields of the system variable
!ERROR_STATE are set; the text of the error message is placed in
!ERROR_STATE.MSG, or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See“Error Handling” on page 343 or
!ERROR_STATE in theIDL Reference Guide for more information.

As an example, assume the statement:

MESSAGE, 'Unexpected value encountered.'

is executed in a procedure named CALC. IDL would print:

% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. S
MESSAGE in theIDL Reference Guide for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, th
following code uses ON_IOERROR to read from a file until an error (presumabl
end-of-file) occurs. It then closes the file and reissues the error.

;Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET_LUN

;Arrange for jump to label EOD when an input/output error occurs.
ON_IOERROR, EOD

;Read every line of the file.
WHILE 1 DO READF, UNIT, LINE

;An error has occurred. Cancel the input/output error trap.
EOD: ON_IOERROR, NULL
Error Signaling Building IDL Applications

Chapter 15: Controlling Errors 341
;Close the file.
FREE_LUN, UNIT

;Reissue the error. !ERR_STRING contains the appropriate text. The
;IOERROR keyword causes it to be issued as an input/output error.
;Use of NONAME prevents MESSAGE from tacking the name of the
;current routine to the beginning of the message string since
;!ERR_STRING already contains it.
MESSAGE, !ERR_STRING, /NONAME, /IOERROR
Building IDL Applications Error Signaling

342 Chapter 15: Controlling Errors

dure

the
f the

by

name
Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The HELP procedure returns, in a string array, the contents of the proce
stack when the CALLS keyword parameter is specified. The first element of the
resulting array contains the module name, source filename, and line number of
current level. The second element contains the same information for the caller o
current level, and so on, back to the level of the main program.

For example, the following code fragment prints the name of its caller, followed
the source filename and line number of the call:

HELP, CALLS = A

;print 2nd element
PRINT, 'called from:', A[1]

This results in a message of the following form:

Called from: DIST </usr2/idl/lib/dist.pro (27)>

Programs can readily parse the traceback information to extract the source file
and line number.
Obtaining Traceback Information Building IDL Applications

Chapter 15: Controlling Errors 343

s in

-
as

ill

e
ror

r in
ode
nge
s
this

ent,

rray
s

rors.

rror.
ar
Error Handling

IDL contains a system variable that is updated when errors occur. This system
variable is described below.

!ERROR_STATE

This system variable is a structure. Whenever an error occurs, IDL sets the field
this system variable according to the nature of the field. An IDL error is always
comprised of an IDL-generated component, and may also contain an operating
system-generated component.

The fields for the !ERROR_STATE system variable are described below:

• NAME — A read-only string variable containing the error name of the IDL
generated component of the last error message. Although the error code—
defined below in CODE—may change between IDL sessions, the name w
always remain the same. If an error has not occurred in the current IDL
session, this field is set to IDL_M_SUCCESS.

• BLOCK — A read-only string variable containing the name of the messag
block for the IDL-generated component of the last error message. If an er
has not occurred in the current IDL session, this field is set to
IDL_MBLK_CORE.

• CODE — The error code of the IDL-generated component of the last erro
IDL. Whenever an error occurs, IDL sets this system variable to the error c
(a negative integer number) of the error. Although the error code may cha
between IDL sessions, the name—as defined above in NAME—will alway
remain the same. If an error has not occurred in the current IDL session,
field is set to 0.

• SYS_CODE — The error code of the operating system-generated compon
if it exists, of the last error. IDL sets this system variable to the OS-defined
error code. This field is a two-element longword array. If an error has not
occurred in the current IDL session, the array contains all zeros.

On most operating systems, the error code is returned in the first element of the a
(i.e., SYS_CODE[0]) and the second element is set to 0. Some operating system
(e.g., VMS) can return two separate error codes for some types of filesystem er
In these cases, SYS_CODE[1] is also set to an OS-defined error code.

• MSG — The error message of the IDL-generated component of the last e
Whenever an error occurs, IDL sets this field to the error message (a scal
Building IDL Applications Error Handling

344 Chapter 15: Controlling Errors

he

urs,
not

n.
eld

or
string) that corresponds to the error code. If an error has not occurred in t
current IDL session, this field is set to the null string, ' '.

• SYS_MSG — The error message of the operating system-generated
component, if it exists of the last error. When an operating system error occ
IDL sets this field to the OS-defined error message string. If an error has
occurred in the current IDL session, this field is set to the null string, ' '.

• MSG_PREFIX — A string variable containing the prefix string used for the
IDL-generated component of error messages.

Using !ERROR_STATE

At the beginning of an IDL session, !ERROR_STATE contains default informatio
To see this information, you can either view !ERROR_STATE from the System fi
of the Variable Watch Window (see“The Variable Watch Window” on page 619) or
you can enter PRINT, !ERROR_STATE at the Command Input Line. After an err
has occurred, all of the fields of !ERROR_STATE display their updated status.

You can use MESSAGE, /RESET_ERROR STATE to reset all the fields in
!ERROR_STATE to their default values.
Error Handling Building IDL Applications

Chapter 15: Controlling Errors 345

 to

at

ot

 that
ity of
re

tus,
at is
tor

hen

o
ke:
Math Errors

The detection of math errors, such as division by zero, overflow, and attempting
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems th
implement the IEEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values” on page 346.) Integer overflow and underflow is n
detected. Integer divide by zero is detected on all platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero
it cannot be expressed as a normalized floating-point number. In the vast major
cases, floating-point underflow errors are harmless and can be ignored. For mo
information on floating-point numbers, see“Accuracy & Floating-Point Operations”
in Chapter 16 of theUsing IDL manual.

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This sta
which is implemented as a longword, contains a bit for each type of math error th
detected by the hardware. When IDL automatically checks and clears this indica
depends on the value of the system variable!EXCEPT. TheCHECK_MATH
function also allows you to check and clear the accumulated math error status w
desired.

!EXCEPT has three possible values:

!EXCEPT=0

Do not report exceptions.

!EXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call t
CHECK_MATH) are printed in the IDL command log. A typical message looks li

% Program caused arithmetic error: Floating divide by 0
Building IDL Applications Math Errors

346 Chapter 15: Controlling Errors

IDL

c

are-
ses,
he

able
e
ds is

uch
at

ng
!EXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Machines which implement the IEEE standard for binary floating-point arithmeti
have two special values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when a result is larger than the largest representation. NaN is the
result of an undefined computation such as zero divided by zero, taking the squ
root of a negative number, or the logarithm of a non-positive number. In many ca
when IDL encounters the value NaN in a data set, it treats it as “missing data.” T
special values NaN and Infinity are also accessible in the read-only system vari
!VALUES (see“System Variables” on page 99). These special operands propagat
throughout the evaluation process—the result of any term involving these operan
one of these two special values. For example:

;Multiply NaN by 3
PRINT, 3 * !VALUES.F_NAN

IDL prints:

NaN

It is important to remember that the value NaN is literally not a number, and as s
cannot be compared with a number. For example, suppose you have an array th
contains the value NaN:

A = [1.0, 2.0, !VALUES.F_NAN]
PRINT, A

IDL prints:

1.00000 2.00000 NaN

If you try to select elements of this array by comparing them with a number (usi
theWHERE function, for example), IDL will generate an error:

;Print the indices of the elements of A with a value greater than
;one.
PRINT, WHERE(A GT 1.0)

IDL prints:
Math Errors Building IDL Applications

Chapter 15: Controlling Errors 347

1.0,

,

1
% Program caused arithmetic error: Floating illegal operand

To avoid this problem, use theFINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A) EQ 1)

IDL prints the indices of the finite elements of A:

0 1

To then print the indices of the elements of A that are both finite and greater than
you could use the command:

PRINT, WHERE(A[WHERE(FINITE(A) EQ 1)] GT 1.0)

IDL prints:

1

Similarly, if you wanted to find out which elements of an array werenot valid
floating-point numbers, you could use a command like:

;Print the indices of the elements of A that are not valid
;floating-point numbers.
PRINT, WHERE(FINITE(A) EQ 0)

IDL prints:

2

Note that the special value Infinitycanbe compared to a floating point number. Thus
if:

B = [1.0, 2.0, !VALUES.F_INFINITY]
PRINT, B

IDL prints:

1.00000 2.00000 Inf

and

PRINT, WHERE(B GT 1.0)

IDL prints:

1 2

You can also compare numbers directly with the special value Infinity:

PRINT, WHERE(B EQ !VALUES.F_INFINITY)
Building IDL Applications Math Errors

348 Chapter 15: Controlling Errors

-
r

s

ck
ing
ey
bits

d

e

IDL prints:

2

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double
precision operands on machines which use the IEEE floating-point standard. Fo
example, to check the result of the EXP function for validity, use the following
statement:

;Perform exponentiation.
A = EXP(EXPRESSION)

;Print error message.
IF NOT FINITE(A) THEN PRINT, 'Overflow occurred'

If A is an array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

It must be stressed that when converting from floating to any of the integer type
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow is important, you must explicitly che
to be sure the operands are in range. Conversions to the above types from float
point, double precision, complex, and string types do not check for overflow—th
simply convert the operand to the target integer type, discarding any significant
of information that do not fit.

When run on a Sun workstation, the program:

A = 2.0 ^ 31 + 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longwor
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

This result is incorrect.

Warning
No error message will appear if you attempt to convert a floating number whos
absolute value is between 215 and 231 - 1 to short integer even though the result is
Math Errors Building IDL Applications

Chapter 15: Controlling Errors 349

rror
s

incorrect. Similarly, converting a number in the range of 256 to 231- 1 from
floating, complex, or double to byte type produces an incorrect result, but no e
message. Furthermore, integer overflow is usually not detected. Your program
must guard explicitly against it.
Building IDL Applications Math Errors

350 Chapter 15: Controlling Errors
Math Errors Building IDL Applications

Chapter 16:

Files and
Input/Output

The following topics are covered in this chapter:
Overview . 352
File I/O in IDL . 353
Unformatted Input/Output 355
Formatted Input/Output 356
Opening Files . 358
Closing Files . 359
Logical Unit Numbers (LUNs) 360
Reading and Writing Very Large Files . . . 363
Using Free Format Input/Output 365
Using Explicitly Formatted Input/Output . 370
Format Codes . 375

Using Unformatted Input/Output 394
Portable Unformatted Input/Output 401
Associated Input/Output 406
File Manipulation Operations 411
UNIX-Specific Information 419
VMS-Specific Information 422
Windows-Specific Information 432
Macintosh-Specific Information 433
Scientific Data Formats 434
Support for Standard Image File Formats . 435
Building IDL Applications 351

352 Chapter 16: Files and Input/Output

ms

the

ts.
s

Overview

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on data files by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of progra
which read and write data using IDL, C, and FORTRAN.

The first section of this chapter provides a description for how IDL input/output
works. It is intentionally brief and is intended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps
largest single difference between platforms is input/output. The majority of this
chapter covers information that is required in all of the environments IDL suppor
Operating system specific information is concentrated in the final sections of thi
chapter.
Overview Building IDL Applications

Chapter 16: Files and Input/Output 353

is is
or
ith a

nce
 fills

o

prior
 use

prints

e

File I/O in IDL

Before any file input or output can be performed, it is necessary to open a file. Th
done using either the OPENR (Open for Reading), OPENW (Open for Writing),
OPENU (Open for Update) procedures. When a file is opened, it is associated w
Logical Unit Number, or LUN. All file input and output routines in IDL use the LUN
rather than the filename, and most require that the LUN be explicitly specified. O
a file is opened, several input/output routines are available for use. Each routine
a particular need – the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing
input/output on it. Three files are always open – in fact, the user is not allowed t
close them. These files are thestandard input(usually the keyboard), thestandard
output (usually the IDL log window), and thestandard error output (usually the
terminal screen). These three files are associated with LUNs 0, -1, and -2,
respectively. Because these files are always open, there is no need to open them
to using them for input/output. The READ and PRINT procedures automatically
these files, so basic formatted input/output is extremely simple.

Simple Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello World.'

causes IDL to print the line:

Hello World.

on the terminal screen. This happens because PRINT formats its arguments and
them to LUN -1, which is the standard output file. It is only slightly more
complicated to use other files. The following IDL statements show how the abov
“Hello World” example could be sent to a file namedhello.dat:

;Open LUN 1 for hello.dat with write access.
OPENW, 1, 'hello.dat'

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLOSE, 1
Building IDL Applications File I/O in IDL

354 Chapter 16: Files and Input/Output

is

.

Routines for Input/Output

The following routines are useful when doing input/output operations. For more
information on these commands, seeIDL Reference Guide.

Routine Description

ASSOC Map an array structure to a data file. ASSOC provides
extremely efficient direct access to unformatted data and
an important IDL function to understand.

EOF Check for the end-of-file condition.

FINDFILE Locate files that match a file specification.

FLUSH Ensure all buffered data for a LUN has actually been
output to the file.

FREE_LUN Free unique file units.

FSTAT Get detailed information about any LUN.

GET_KBRD Read single characters from the keyboard.

GET_LUN Allocate and free unique file units.

HELP, /FILES Print information about open files.

PNT_LINE Position the file pointer.

PRINT/PRINTF • PRINT outputs formatted data to the standard output
file (LUN -1).

• PRINTF outputs formatted data to the specified LUN.

READ/READF

READS

READU

• READ reads formatted data from the standard input
file (LUN 0).

• READF reads formatted data from the specified LUN

• READS performs formatted input from a string
variable.

• READU Input unformatted data from the specified
LUN.

WRITEU Output unformatted data to the specified LUN.

Table 16-1: Routines for Input/Output
File I/O in IDL Building IDL Applications

Chapter 16: Files and Input/Output 355

een

l
)

Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly betw
memory and the file.

Advantages of Un formatted I/O

Unformatted input/output is thesimplest and most efficient form of input/output. It is
usually the most compact way to store data.

Disadvantages of Un formatted I/O

Unformatted input/output istheleast portableform of input/output. Unformatted data
files can only be moved easily to and from computers that share the same interna
data representation. It should be noted that XDR (eXternal Data Representation
files, described in “Portable Unformatted Input/Output” on page401, can be used to
produce portable binary data.

Unformatted input/output isnot directly human readable, so you cannot typeit out on
a terminal screen or edit it with a text editor.
Building IDL Applications Unformatted Input/Output

356 Chapter 16: Files and Input/Output

II
from
ee”

data
 as
ode

edited

SCII
e

licit
Formatted Input/Output

Formatted output converts the internal binary representation of the data to ASC
characters which are written to the output file. Formatted input reads characters
the input file and converts them to internal form. Formatted I/O can be either “Fr
format or “Explicit” format, as described below.

Advantages of Formatted I/O

Formatted input/output is very portable. It is a simple process to move formatted
files to various computers, even computers running different operating systems,
long as they all use the ASCII character set. (ASCII is the American Standard C
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.)

Formatted files are human readable and can be typed to the terminal screen or
with a text editor.

Disadvantages of Formatted I/O

Formatted input/output is more computationally expensive than unformatted
input/output because of the need to convert between internal binary data and A
text. Formatted data requires more space than unformatted to represent the sam
information. Inaccuracies can result when converting data between text and the
internal representation.

Free Format I/O

With free format input/output, IDL uses default rules to format the data.

Advantages of Free Format I/O

The user is free of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort.

Disadvantages of Free Format I/O

The default formats used are not always exactly what is required. In this case, exp
formatting is necessary.

Explicit Format I/O

Explicit format I/O allows you to specify the exact format for input/output.
Formatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 357

 in

ut.

e for
Advantages of Explicit I/O

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codesaresupported. In addition, IDL formatshavebeen extended to providemany of
thecapabilities found in thescanf () and printf () functionscommonly found in theC
language runtime library.

Disadvantages of Explicit I/O

Using explicitly specified formats requires the user to specify more detail—they are,
therefore, more complicated to use than free format.

The type of input/output to use in a given situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestionsare intended to give arough ideaof the issues involved, though thereare
always exceptions:

• Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

• Data that need to be human readable should be written using formatted
input/output.

• Data that need to be portable should be written using formatted input/outp
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. This is especially important if moving
between computerswith markedly different internal binary data formats. XDR
is discussed in “Portable Unformatted Input/Output” on page401.

• Free format input/output iseasier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choic
small files where there is no strong reason to prefer one method over another.
Building IDL Applications Formatted Input/Output

358 Chapter 16: Files and Input/Output

ures
l
r.

l
t

s.
Opening Files

Before a file can be processed by IDL, it must be opened using one of the proced
described in the following table. All open files are associated with a LUN (Logica
Unit Number) within IDL, and all input/output routines refer to files via this numbe
For example, to open the file nameddata.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPEN procedures can be used with certain keywords to modify their norma
behavior. Some keywords are generally applicable, while others only have effec
under a given operating system. Some operating system specific keywords are
allowed (and ignored) under other operating systems in order to facilitate writing
portable routines.

Platform-Specific Keywords to the OPEN Procedure

Different computers and operating systems perform input/output in different way
SeeOPEN in theIDL Reference Guide for keywords to the OPEN procedures that
apply under UNIX, VMS, Windows, or the Macintosh OS.

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. Under UNIX, Windows,
and on the Macintosh, if the named file already exists, its old
contents are overwritten. Under VMS, a file with the same
name and a higher version number is created.

OPENU Opens an existing file for input and output.

Table 16-2: IDL File Opening Commands
Opening Files Building IDL Applications

Chapter 16: Files and Input/Output 359

es
r for

he
ough
efore
les

all
Closing Files

After work involving the file is complete, it should be closed. Closing a file remov
the association between the file and its unit number, thus freeing the unit numbe
use with a different file. There is usually an operating system-imposed limit on t
number of files a user may have open at once. Although this number is large en
that it rarely causes problems, situations can occur where a file must be closed b
another file may be opened. In any event, it is good style to only keep needed fi
open.

There are three ways to close a file:

• Use the CLOSE procedure.

• Use the FREE_LUN procedure on a LUN that has been allocated by
GET_LUN.

• Exit IDL. IDL closes all open files when it exits.

Calling the CLOSE procedure is the most common way to close a file unit. For
example, to close file unit number 1, use the following statement:

CLOSE, 1

In addition, if FREE_LUN is called with a file unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally,
open files are automatically closed when IDL exits.
Building IDL Applications Closing Files

360 Chapter 16: Files and Input/Output

em

L.

to

, -

DL

, -
Logical Unit Numbers (LUNs)

IDL Logical Unit Numbers (LUNs) fall within the range−2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNs described below have special meanings that are operating syst
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied tostdin, stdout, andstderr, respectively.
This means that the normal UNIX file redirection and pipe operations work with ID
For example, the shell command

%idl < idl.inp >& idl.out &

will cause IDL to execute in the background, reading its input from the fileidl.inp
and writing its output to the fileidl.out. Any messages sent to stderr are also sent
idl.out.

When using the IDL Development Environment (IDLDE), Logical Unit Numbers 0
1, and -2 are tied tostdin(the command line),stdout(the log window), andstderr
(the log window), respectively.

VMS

Logical Unit Numbers 0, -1, and -2 are tied toSYS$INPUT, SYS$OUTPUT, and
SYS$ERROR respectively. This means that the DCLDEFINE command can be used
to redefine where IDL gets commands and writes its output. It also means that I
can be used in command and batch files.

When using the IDL Development Environment (IDLDE), Logical Unit Numbers 0
1, and -2 are tied toSYS$INPUT(the command line),SYS$OUTPUT(the log
window), andSYS$ERROR(the log window), respectively.

Windows and Macintosh

Logical Unit Numbers 0, -1, and -2 are tied tostdin(the command line),stdout(the
log window), andstderr(the log window), respectively.

These special file units are described in more detail below.
Logical Unit Numbers (LUNs) Building IDL Applications

Chapter 16: Files and Input/Output 361

een.

reen.

 the
for

If an
it,

 is
res

ted
e
file
File Unit 0

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X

is equivalent to the following:

READF, 0, X

File Unit -1

This LUN represents the standard output stream, which is usually the terminal scr
Therefore, the IDL statement:

PRINT, X

is equivalent to the following:

PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal sc

File Units 1–99

These are the file units for normal interactive use. When using IDL interactively,
user arbitrarily selects the file units used. The file units from 1 to 99 are available
this use.

File Units 100–128

These are the file units managed by the GET_LUN and FREE_LUN procedures.
IDL procedure or function that uses files is written to explicitly use a given file un
there is a chance that it will conflict with other routines that use the same unit. It
therefore necessary to avoid explicit file unit numbers when writing IDL procedu
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates a file
unit from a pool of free units in the range 100 to 128. This unit will not be alloca
again until it is released by a call to FREE_LUN. Meanwhile, it is available for th
exclusive use of the program that allocated it. A typical procedure that needs a
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN
Building IDL Applications Logical Unit Numbers (LUNs)

362 Chapter 16: Files and Input/Output

N
r be
;Body of program goes here.
.
.
.

;Return file unit.
FREE_LUN, UNIT

;Since the file is still open, FREE_LUN will automatically call
;CLOSE.
END

Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LU
to obtain file units. Furthermore, the file units between 100 and 128 should neve
used unless previously allocated by GET_LUN.
Logical Unit Numbers (LUNs) Building IDL Applications

Chapter 16: Files and Input/Output 363

n
han

to

. IDL
d

the
Reading and Writing Very Large Files

IDL on all platforms is able to read and write data from files up to 2^31-1 bytes i
length. On some platforms, it is also able to read and write data from files longer t
this limit. Currently, IDL on Digital Unix, HP-UX, Sun Solaris (SPARC and x86),
and SGI IRIX is able to perform I/O on such files. RSI expects this list of platforms
increase with future releases.

When reading and writing to files smaller than this limit, there is no difference in
behavior between the platforms that can and those that cannot handle larger files
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) an
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integers in order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW, 1, 'test.dat'

;Initial position should be 0.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

;Move the file pointer past the signed 32-bit boundary.
POINT_LUN, 1, '000000ffffffffff'x

;The position is now too large to represent as a longword.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

CLOSE, 1

Executing these statements results in the following output:

POS LONG = 0
POS LONG64 = 1099511627775

Initially, the file position is 0, which fits easily into a 32-bit integer. Once the file
position exceeds the range of a signed 32-bit number, IDL automatically shifts to
64-bit integer type.
Building IDL Applications Reading and Writing Very Large Files

364 Chapter 16: Files and Input/Output

by

ion
it
ory

be

ame
er.

f

l be
e the
rms,

s,
lt
Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood
the IDL programmer:

• On any platform, the amount of data that IDL can transfer in a single operat
is limited by the amount of memory it can allocate. Currently, IDL is a 32-b
program, and as such, can theoretically address up to 2^31-1 bytes of mem
(approximately 2.3GB). Reading or writing data larger than this limit must
done in multiple operations. Most systems do not have 2.3 GB of memory
available, and other programs running on the system also compete for the s
memory, so the actual memory available is likely to be considerably small

• The ability to read or write to very large files is constrained by the ability o
the underlying file system to support such files. Many platforms can only
support large files on certain file systems. For example, many platforms wil
unable to support these operations on NFS mounted file systems becaus
latest version of NFS must be in use on both client and server. Some platfo
such HP-UX, can only support such operations on special large file system
and only if they are mounted using the appropriate mount options. Consu
your system documentation to determine the limitations present on your
system and the procedures for supporting very large file.
Reading and Writing Very Large Files Building IDL Applications

Chapter 16: Files and Input/Output 365

dable
ata

ed,
tring
 input

ies

 The

ces
fault,
o

ior—
end
to
Using Free Format Input/Output

Use of formatted data is most appropriate when the data must be in human rea
form, such as when it is to be prepared or modified with a text editor. Formatted d
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discuss
the STRING function can be used to generate formatted output that is sent to a s
variable instead of a file. The READS procedure can be used to read formatted
from a string variable.

The exact format of the character data may be specified to these routines by
providing a format string via the FORMAT keyword. If no format string is given,
default formats for each type of data are applied. This method of formatted
input/output is called free format. Free format input/output is suitable for most
applications involving formatted data. It is designed to provide input/output abilit
with a minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output.
default format for displaying structure data is to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A:2, B:3, C:'A String' }

and then use default formatted output via the PRINT command:

PRINT, struct

IDL prints:

{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly bra
are part of the formatting and ignore them. This is not the case, however. By de
to read the third field in the structure (the string field) IDL will read from the “A” t
the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behav
displaying the result of the PRINT statement on the computer screen. We recomm
that you use explicitly formatted input/output when reading and writing structures
disk files, so as not to have to explicitly code around the possibility that your
structure may include strings.
Building IDL Applications Using Free Format Input/Output

366 Chapter 16: Files and Input/Output

ated

 A.

t,

g

r new

put
ntial

are
lue is
t is
Free Format Input

The following rules are used by IDL to perform free format input:

1. Input is performed on scalar variables. Array and structure variables are tre
as collections of scalar variables. For example,

A = INTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable

2. If the current input line is empty and there are variables left requiring inpu
read another line.

3. If the current input line is not empty but there are no variables left requirin
input, the remainder of the line is ignored.

4. Input data must be separated by commas or white space (tabs, spaces, o
lines).

5. When reading into a variable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the in
into a value of the expected type. Decimal points are optional and expone
(scientific) notation is allowed. If a floating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into a variable of complex type, the real and imaginary parts
separated by a comma and surrounded by parentheses. If only a single va
provided, it is taken as the real part of the variable, and the imaginary par
set to zero. For example:

;Create a complex variable.
A = COMPLEX(0)

;IDL prompts for input with a colon:
READ, A

;The user enters “(3,4)” and A is set to COMPLEX(3, 4).
:(3, 4)

;IDL prompts for input with a colon:
READ, A

;The user enters “50” and A is set to COMPLEX(50, 0).
:50
Using Free Format Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 367

he
d in

0
to
ses

nd
Free Format Output

The following rules are used by IDL to perform free format output:

1. The format used to output numeric data is determined by the data type. T
formats used are summarized in the table below. The formats are specifie
the FORTRAN-like style used by IDL for explicitly formatted input/output.

2. The current output line is filled with characters until one of the following
happens:

A. There is no more data to output.

B. The output line is full. When output is to a file, the default line width is 8
columns (you can override this default by setting the WIDTH keyword
the OPEN procedure). When the output is to the standard output, IDL u
the current width of your tty or command log window.

C. An entire row is output in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” a
“}” characters.

Data Type Format

Byte I4

Int, UInt I8

Long, ULong I12

Float G13.6

Long64, ULong64 I22

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

Double-precision Complex '(', G16.8, ',', G16.8, ')'

String Output full string on current line.

Table 16-3: Formats Used for Free-Format Output
Building IDL Applications Using Free Format Input/Output

368 Chapter 16: Files and Input/Output

ts

en
nd
le,
.

le
eads
t to
 if
Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statemen
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure named “types” that contains seven of the basic
;IDL data types, as well as a floating-point array.
A = {TYPES, A:0B, B:0, C:0L, D:1.0, E:1D, $

F:COMPLEX(0), G: 'string', E:FLTARR(5)}

;Read free-formatted data from input
READ, A

;IDL prompts for input with a colon. We enter values for the first
;six numeric fields of A and the string.
: 1 2 3 4 5 (6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had be
omitted, the complex field of A would have received the value COMPLEX(6, 0), a
the 7 would have been input for the next field. When reading into a string variab
IDL starts from the current point in the input and continues to the end of the line
Thus, we do not enter values intended for the rest of the structure on this line.

;There are still fields of A that have not received data, so IDL
;prompts for another line of input.
: 9 10 11 12 13

;Show the result.
PRINT, A

Executing these statements results in the following output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight

9.00000 10.0000 11.0000 12.0000 13.0000
}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Because the variabA is
a structure, braces {} are placed around the output. As noted above, when IDL r
strings it continues to the end of the line. For this reason, it is usually convenien
place string variables at the end of the list of variables to be input. For example,S
is a string variable andI is an integer:

;Read into the string first.
READ, S, I
Using Free Format Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 369
;IDL prompts for input. We enter a string value followed by an
;integer.
: Hello World 34

;The entire previous line was placed into the string variable S,
;and I still requires input. IDL prompts for another line.
: 34
Building IDL Applications Using Free Format Input/Output

370 Chapter 16: Files and Input/Output

at
ieve
ve

r
es the

hile
de f
d a

n:

at

or
ur
Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The syntax of IDL format strings is
extremely similar to that used in FORTRAN. The format string specifies the form
in which data is to be transferred as well as the data conversion required to ach
that format. The format specification strings supplied by the FORMAT keyword ha
the form:

FORMAT = '(q 1f 1s1f 2s2 ... f nqn)'

where q, f, and s are described below.

Record Terminators

q is zero or more slash (/) record terminators. On output, each record terminato
causes the output to move to a new line. On input, each record terminator caus
next line of input to be read.

Format Codes

f is a format code. Some format codes specify how data should be transferred w
others control some other function related to how input/output is handled. The co
can also be a nested format specification enclosed in parentheses. This is calle
group specification and has the following form:

...[n](q 1f 1s1f 2s2 ... f nqn) ...

A group specification consists of an optional repeat countn followed by a format
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specificatio

FORMAT = '("Result: ", "<",I5,">", "<",I5,">")'

can be written more concisely using a group specification:

FORMAT = '("Result: ", 2("<",I5,">"))'

If the repeat count is 1 or is not given, the parentheses serve only to group form
codes for use in format reversion (discussed in the next section).

Field Separators

s is a field separator. A field separator consists of one or more commas (,) and/
slash record terminators (/). The only restriction is that two commas cannot occ
side-by-side.
Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 371

he
and
s
ed in
g-

tor
he
es.

use

e is
red,

ist is
not
The arguments provided in a call to a formatted input/output routine are called t
argument list. The argument list specifies the data to be moved between memory
the file. All data are handled in terms of basic IDL components. Thus, an array i
considered to be a collection of scalar data elements, and a structure is process
terms of its basic components. Complex scalar values are treated as two floatin
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traverse the format string from left to right, processing each record termina
and format code until an error occurs or no data is left in the argument list. T
comma field separator serves no purpose except to delimit the format cod

2. It is an error to specify an argument list with a format string that does not
contain a format code that transfers data to or from the argument list beca
an infinite loop would result.

3. When a slash record terminator (/) is encountered, the current record is
completed, and a new one is started. For output, this means that a new lin
started. For input, it means that the rest of the current input record is igno
and the next input record is read.

4. When a format code that does not transfer data to or from the argument l
encountered, process it according to its meaning. The format codes that do
Building IDL Applications Using Explicitly Formatted Input/Output

372 Chapter 16: Files and Input/Output

e

o

r

 or
transfer data to or from the argument list are summarized in the following
table:

5. When a format code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. Th

Code Action

Quoted String On output, the contents of the string are written out. On input,
quoted strings are ignored.

: The colon format code in a format string terminates format
processing if no more items remain in the argument list. It has n
effect if data still remains on the list.

$ On output, if a$ format code is placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the$ format code is
ignored.

nH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nX Skipsn character positions.

Tn Tab. Sets the character position of the next item in the current
record.

TLn Tab Left. Specifies that the next character to be transferred to o
from the current record is then-th character to the left of the
current position.

TRn Tab Right. Specifies that the next character to be transferred to
from the current record is then-th character to the right of the
current position.

Table 16-4: Format Codes that do not Transfer Data
Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 373

d in

. If
able
sue

es

 no
ver,
 the

g

o
he
format codes that transfer data to or from the argument list are summarize
the following table:

6. On input, read data from the file and format it according to the format code
the data type of the input data does not agree with the data type of the vari
that is to receive the result, do the type conversion if possible; otherwise, is
a type conversion error and stop.

7. On output, write the data according to the format code. If the data type do
not agree with the format code, do the type conversion prior to doing the
output if possible. If the type conversion is not possible, issue a type
conversion error and stop.

8. If the last closing parenthesis of the format string is reached and there are
data left on the argument list, then format processing terminates. If, howe
there are still data to be processed on the argument list, then part or all of
format specification is reused. This process is called format reversion.

Code Action

A Transfer character data.

C() Transfer calendar (Julian date and/or time) data.

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential)
notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value bein
processed.

I Transfer integer data.

O Transfer octal data.

Q Obtain the number of characters in the input record remaining t
be transferred during a read operation. In an output statement, t
Q format code has no effect except that the corresponding
input/output list element is skipped.

Z Transfer Hexadecimal data.

Table 16-5: Format Codes that Transfer Data
Building IDL Applications Using Explicitly Formatted Input/Output

374 Chapter 16: Files and Input/Output

sis
es
ing

f the

sing
Format Reversion

In format reversion, the current record is terminated, a new one is initiated, and
format control reverts to the group repeat specification whose opening parenthe
matches the next-to-last closing parenthesis of the format string. If the format do
not contain a group repeat specification, format control returns to the initial open
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", I1, ">"))', $
INDGEN(6)

results in the output

The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:

1. Output the string “The values are: ”.

2. Process the group specification and output the first two values. The end o
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", I1, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format proces
is complete.
Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 375

.

gs

r
for
t the
e

Format Codes

“A” Format Code

TheA format code transfers character data. The format is

[n]A[w]

where:

n —is an optional repeat count (1≤ n ≤ 32767) specifying the number of times the
format code should be processed. Ifn is not specified, a repeat count of one is used

w —is an optional width (1≤ w ≤ 256) specifying the number of characters to be
transferred. Ifw is not specified, the entire string is transferred. On output, ifw is
greater than the length of the string, the string is right justified. On input, IDL strin
have dynamic length, sow specifies the resulting length of input string variables.

For example, the IDL statement,

PRINT, FORMAT = '(A6)', '123456789'

generates the following output:

123456

Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffe
than handles input at the IDL command prompt is limited to 255 characters. If
some reason you need to create a string variable longer than 255 characters a
IDL command prompt, split the variable into multiple sub-variables and combin
them with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

“:” Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list. For example, the IDL statement,

PRINT, FORMAT = '(6(I1, :, ", "))', INDGEN(6)

will output the following comma-separated list of integer values:
Building IDL Applications Format Codes

376 Chapter 16: Files and Input/Output

n

ed
0, 1, 2, 3, 4, 5

Theuseof thecolon format codeprevented acommafrom being output following the
final item in the argument list.

“$” Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a “$” format code is found in the format
specification, this default newline is not output. The “$” format code is only used o
output; it is ignored during input formatting. The most common use for the “$”
format code is in prompting for user input. For example, the IDL statements,

;Prompt for input. Suppress the carriage return.
PRINT, FORMAT = '($, "Enter value: ")'

;Read the response.
READ, VALUE

wil l prompt for input without forcing theuser’s response to appear on aseparate line
from the prompt. Under VMS, the “$” format code does not work with files open
with carriage-return carriage control, which is the default for new files. However, it
does work with explicit or FORTRAN carriage control. FORTRAN carriage control
is described in “Reading FORTRAN-Generated Unformatted Data with IDL” on
page419.

“ F,” “ D,” “E ,” and “G” Format Codes

The F, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file. The format is

[n]F[w. d]
[n]D[w. d]
[n]E[w. d] or [n]E[w. dEe]
[n]G[w. d] or [n]G[w. dEe]

where

n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times the
format code should be processed. If n is not specified, a repeat count of 1 is used.

w.d — is an optional width specification (1 ≤ w ≤ 256, 1 ≤ d < w). The variablew
specifies the number of characters in the external field. For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the G format
code, d specifies the number of significant digits displayed.
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 377

t list

The
is
n

nd

ded

y, at

“E”,

ues,
e —is an optional width (1≤ e ≤ 256) specifying the width of exponent part of the
field. IDL ignores this value—it is allowed for compatibility with FORTRAN.

On input, the F, D, E, and G format codes all transferw characters from the external
field and assign them as a real value to the corresponding input/output argumen
datum.

The F and D format codes are used to output values using fixed-point notation.
value is rounded tod decimal positions and right-justified into an external field that
w characters wide. The value ofw must be large enough to include a minus sign whe
necessary, at least one digit to the left of the decimal point, the decimal point, ad
digits to the right of the decimal point. The code D is identical to F (except for its
default values forw andd) and exists in IDL primarily for compatibility with
FORTRAN.

The E format code is used for scientific (exponential) notation. The value is roun
to d decimal positions and right-justified into an external field that isw characters
wide. The value ofw must be large enough to include a minus sign when necessar
least one digit to the left of the decimal point, the decimal point,d digits to the right
of the decimal point, a plus or minus sign for the exponent, the character “e” or
and at least two characters for the exponent.

Note
IDL uses a standard I/O function to format numbers and their exponents. As a
result, different platforms may print different numbers of exponent digits.

The G format code uses the F output style when reasonable and E for other val
but displays exactlyd significant digits rather thand digits following the decimal
point.

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition. Ifw is zero, the “natural” width for the value is
used—the value is read or output using a default format without any leading or
Building IDL Applications Format Codes

378 Chapter 16: Files and Input/Output

ed.

e E
fic
d

trailing whitespace, in the style of the C standard input/output libraryprintf (3S)
function. If w, d, or eare omitted, the values specified in the following table are us

Using a value of zero for thew parameter is useful when reading tables of data in
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99.845
23.723 200.02 141.93

setting the format to

FORMAT = '(3F0)'

ensures that the correct number of digits are read or output for each element.

Normally, the case of the format code is ignored by IDL. However, the case of th
and G format codes determines the case used to output the exponent in scienti
notation. The following table gives examples of several floating-point formats an
the resulting output.

Data Type w d e

Float, Complex 15 7 2 (3 for Windows)

Double 25 16 2 (3 for Windows)

All Other Types 25 16 2 (3 for Windows)

Table 16-6: Floating Format Defaults

Format Internal Value Formatted Output

F 100.0 bbbb100.0000000

F 100.0D bbbbb100.0000000000000000

F10.0 100.0 bbbbbb100.

F10.1 100.0 bbbbb100.0

F10.4 100.0 100.0000

F2.1 100.0 **

Table 16-7: Floating-Point Output Examples (“b” represents a blank space)
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 379

octal
“I,” “O,” and “Z” Format Codes

The I, O, and Z format codes are used to transfer integer values to and from the
specified file. The I format code is used to output decimal values, O is used for
values, and Z is used for hexadecimal values.

The format is as follows:

[n] I [w] or [n] I [w.m]
[n] O[w] or [n] O[w.m]
[n] Z[w] or [n] Z[w.m]

where

n —is an optional repeat count (1≤ n ≤ 32767) specifying the number of times the
format code should be processed. Ifn is not specified, a repeat count of 1 is used.

w —is an optional integer value (1≤ w ≤ 256) specifying the width of the field in
characters. The default values used ifw is omitted are specified in the following
table:

e10.4 100.0 1.0000e+02 (e+03 for Windows)

E10.4 100.0 1.0000E+02 (e+03 for Windows)

g10.4 100.0 100.0

g10.4 10000000.0 1.000e+07

Data Type w

Byte, Int, UInt 7

Long, ULong, Float 12

Long64, ULong64 22

Double 23

All Other Types 12

Table 16-8: Integer Format Defaults

Format Internal Value Formatted Output

Table 16-7: Floating-Point Output Examples (“b” represents a blank space)
Building IDL Applications Format Codes

380 Chapter 16: Files and Input/Output

e
, in

f
r

e
e
t.
If the field provided is not wide enough, it is filled with asterisks (*) to indicate the
overflow condition. Ifw is zero, the “natural” width for the value is used—the valu
is read or output using a default format without any leading or trailing white space
the style of the C standard input/output libraryprintf (3S) function.

Note that using a value of zero for thew parameter is useful when reading tables o
data in which individual elements may be of varying lengths. For example, if you
data reside in tables of the following form:

26 92 344
101 6 99
23 200 141

setting the format to

FORMAT = '(3I0)'

ensures that the correct number of digits are read or output for each element.

m — On output,m specifies the minimum number of nonblank digits required
(1 ≤ m ≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero,
the external field is blank filled.

Normally, the case of the format code is ignored by IDL. However, the case of thZ
format codes determines the case used to output the hexadecimal digits A-F. Th
following table gives examples of several integer formats and the resulting outpu

Format Internal
Value

Formatted
Output

I 3000 bbb3000

I6.5 3000 b03000

I5.6 3000 *****

I2 3000 **

O 3000 bbb5670

O6.5 3000 b05670

O5.6 3000 *****

O2 3000 **

z 3000 bbbbbb8

Table 16-9: Integer Output Examples (“b” represents a blank space)
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 381

ng to

read
ters

ut.
“Q” Format Code

The Q format code returns the number of characters in the input record remaini
be transferred during the current read operation. It is ignored during output
formatting. Format Q is useful for determining how many characters have been
on a line. For example, the following IDL statements count the number of charac
in file demo.dat:

;Open file for reading.
OPENR, 1, "demo.dat"

;Create a longword integer to keep the count.
N = 0L

;Count the characters.
WHILE(NOT EOF(1)) DO BEGIN

READF, 1, CUR, FORMAT = '(q)' & N = N + CUR
END

;Report the result.
PRINT, FORMAT = '("counted", N, "characters.")'

;Close file.
CLOSE, 1

Quoted String and “H” Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the outp
On input, they are ignored. For example, the IDL statement,

PRINT, FORMAT = '("Value: ", I0)', 23

results in the following output:

Value: 23

Z 3000 bbbbBB8

Z6.5 3000 b00bb8

Z5.6 3000 *****

Z2 3000 **

Format Internal
Value

Formatted
Output

Table 16-9: Integer Output Examples (“b” represents a blank space)
Building IDL Applications Format Codes

382 Chapter 16: Files and Input/Output

s

e
her

agree

at is

tion

he
Notice the use of single quotes around the entire format string and double quote
around the quoted string inside the format. This is necessary because we are
including quotes inside a quoted string. It would have been equally correct to us
double quotes around the entire format string and single quotes internally. Anot
way to specify the string is with a Hollerith constant as follows:

PRINT, FORMAT = '(7HValue: , I0)', 23

The format for a Hollerith constant is:

nHc1c2 c 3 ... cn

where

n —is the number of characters in the constant (1≤ n ≤ 255) .

ci — is the characters that make up the constant. The number of characters must
with the value provided forn.

“T” Format Code

The T format code specifies the absolute position in the current record. The form

Tn

where

n — is the absolute character position within the record to which the current posi
should be set (1≤ n ≤ 32767).

T — differs from the TL, TR, and X format codes primarily in that it requires an
absolute position rather than an offset from the current position. For example,

PRINT, FORMAT = '("First", 20X, "Last", T10, "Middle")'

produces the following output:

First bbbbMiddle bbbbbbbbbbLast

where “b” represents a blank space.

“TL” Format Code

The TL format code moves the current position in the external record to the left. T
format is

TLn

where
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 383

read
ple,

 The

s

kip

f an

lways
n —is the number of characters to move left from the current position (1≤ n ≤
32767). If the value of n is greater than the current position, the current position is
moved to column one.

TL — is used to move backwards in the current record. It can be used on input to
the same data twice or on output to position the output nonsequentially. For exam

PRINT, FORMAT = '("First", 20X, "Last", TL15, "Middle")'

produces the following output:

First bbbbbbbbbMiddle bbbbbLast

where “b” represents a blank space.

“TR” and “X” Format Codes

The TR and X format codes move the current position in the record to the right.
format is

TRn
nX

where

n — is the number of characters to skip (1≤ n ≤ 32767). On input,n characters in the
current input record will be passed over. On output, the current output position i
movedn characters to the right.

The TR or X format codes can be used to leave whitespace in the output or to s
over unwanted data in the input. For example,

PRINT, FORMAT = '("First", 15X, "Last")'

or

PRINT, FORMAT = '("First", TR15, "Last")'

results in the following output:

First bbbbbbbbbbbbbbbLast

where “b” represents a blank space.

These two format codes differ in one way. Using the X format code at the end o
output record will not cause any characters to be written unless it is followed by
another format code that causes characters to be output. The TR format code a
writes characters in this situation. Thus,

PRINT, FORMAT = '("First", 15X)'
Building IDL Applications Format Codes

384 Chapter 16: Files and Input/Output

:

The

at

rmat

at

t for
does not leave 15 blanks at the end of the line, but the following statement does

PRINT, FORMAT = '("First", 15TR)'

“C()” Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data.
format is

[n]C([c 0,c 1,…,c x])

where:

n —is an optional repeat count (1≤ n ≤ 32767) specifying the number of times the
format code should be processed. Ifn is not specified, a repeat count of 1 is used.

ci — represents optional calendar format subcodes, or any of the standard form
codes that are allowed within a calendar specification, as described below. If noci are
provided, the data will be transferred using the standard 24-character system fo
that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979

This default is equivalent (for output) to:

C(CDWA, X, CMoA, X, CDI, X, CHI, ":", CMI, ":", CSI, X, CYI)

Note
The C() format code represents an atomic data transfer. Nesting within the
parentheses is not allowed.

Calendar Format Subcodes

The following is a list of the subcodes allowed within the parenthesis of the C form
code:

“CMOA” subcodes

The CMOA subcodes transfers the month portion of a date as a string. The forma
an all upper case month string is:

CMOA[w]

The format for a capitalized month string is:

CMoA[w]

The format for an all lower case month string is:

CmoA[w]
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 385

t, if

at is

.

s as

.

Note
The case of the ‘M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

For these subcodes:

w —is an optional width (0≤ w ≤ 256) specifying the number of characters of the
month name to be transferred. Ifw is not specified, three characters will be
transferred. Ifw is 0, the natural length of the month name is transferred. On outpu
w is greater than the natural length of the month name, the string will be right
justified.

“CMOI” subcode

The CMOI subcode transfers the month portion of a date as an integer. The form
as follows:

CMOI[w] or CMOI[w.m]

where:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 2.

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero, the
external field is blank filled.

“CDI” subcode

The CDI subcode transfers the day portion of a date as an integer. The format i
follows:

CDI[w] or CDI[w.m]

where:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 2.

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.
Building IDL Applications Format Codes

386 Chapter 16: Files and Input/Output

is as

.

r 24

.

is as

.

“CYI” subcode

The CYI subcode transfers the year portion of a date as an integer. The format
follows:

CYI[w] or CYI[w.m]

where:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 4.

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero, the
external field is blank filled.

“CHI” subcodes

The CHI subcodes transfer the hour portion of a date as an integer. The format fo
hour based integer is:

CHI[w] or CHI[w.m]

The format for a 12 hour based integer is:

ChI[w] or ChI[w.m]

For these subcodes:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 2.

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero, the
external field is blank filled.

“CMI” subcode

The CMI subcode transfers the minute portion of a date as an integer. The format
follows:

CMI[w] or CMI[w.m]

where:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 2.
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 387

at is

.

. The

ble
lue
int,

 or
tyle

e

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero, the
external field is blank filled.

“CSI” subcode

The CSI subcode transfers the seconds portion of a date as an integer. The form
as follows:

CSI[w] or CSI[w.m]

where:

w —is an optional width (1≤ w ≤ 256) specifying the width of the field in characters
The default width is 2.

m— On output,mspecifies the minimum number of nonblank digits required (1≤ m
≤ 256). The field is zero-filled on the left if necessary. Ifm is omitted or zero, the
external field is blank filled.

“CSF” subcode

The CSF subcode transfers the seconds portion of a date as a floating point value
format is as follows:

CSF[w.d]

where:

w.d —is an optional width specification (1≤ w ≤ 256, 1≤ d < w). The variablew
specifies the number of characters in the external field; the default is 5. The variad
specifies the number of positions after the decimal point; the default is 2. The va
of w must be large enough to include at least one digit to the left of the decimal po
the decimal point, andd digits to the right of the decimal point. On output, if the field
provided is not wide enough, it is filled with asterisks (*) to indicate the overflow
condition. Ifw is zero, the “natural” width for the value is used – the value is read
output using a default format without any leading or trailing whitespace, in the s
of the C standard library printf (3S) function.

“CDWA” subcodes

The CDWA subcodes transfers the day of week portion of a data as a string. Th
format for an all upper case day of week string is:

CDWA[w]

The format for a capitalized day of week string is:

CDwA[w]
Building IDL Applications Format Codes

388 Chapter 16: Files and Input/Output

n
ill

rmat

he

ill
The format for an all lower case day of week string is:

CdwA[w]

Note
The case of the ‘D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS_OF_WEEK keyword for the current routine is explicitly set.

For these subcodes:

w —is an optional width (0≤ w ≤ 256), specifying the number of characters of the
day of week name to be transferred. Ifw is not specified, three characters will be
transferred. Ifw is 0, the natural length of the day of week name is transferred. O
output, ifw is greater than the natural length of the day of week name, the string w
be right justified.

“CAPA” subcodes

The CAPA subcodes transfers the am or pm portion of a date as a string. The fo
for an all upper case AM or PM string is:

CAPA[w]

The format for a capitalized AM or PM string is:

CApA[w]

The format for an all lower case AM or PM string is:

CapA[w]

Note
The case of the first ‘A’ and ‘P’ of these subcodes will be ignored on input, or if t
AM_PM keyword for the current routine is explicitly set.

For these subcodes:

w —is an optional width (0≤ w ≤ 256), specifying the number of characters of the
AM or PM string to be transferred. Ifw is not specified, two characters will be
transferred. Ifw is 0, the natural length of the AM or PM string is transferred. On
output, ifw is greater than the natural length of the AM or PM string, the string w
be right justified.
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 389

n to
d

y a

st

yee

wo
ple
Standard Format Codes Allowed within a Calendar Specification

None of these subcodes are allowed outside of a C() format specifier. In additio
the subcodes listed above, only quoted strings and “X” format codes are allowe
inside of the C() format specifier.

Example:

To print the current date in the default format:

PRINT, FORMAT='(C())', SYSTIME(/JULIAN)

The printed result should look something like:

Fri Aug 14 12:34:14 1998

Example:

To print the current date as a two-digit month value followed by a slash followed b
two-digit day value:

PRINT, FORMAT=’(C(CMOI,"/",CDI))’,SYSTIME(/JULIAN)

The printed result should look something like:

8/14

Example: Reading Tables of Formatted Data

IDL explicitly formatted input/output has the power and flexibility to handle almo
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing emplo
data records. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next t
lines contain each employee’s monthly salary for the last twelve months. A sam
file namedemployee.dat with this format might look like the following:

Bullwinkle 10
1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
Boris 11
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10
950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11
1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12
Building IDL Applications Format Codes

390 Chapter 16: Files and Input/Output

 of

 a
AN
.

The following IDL statements read data with the above format and produce a
summary of the contents of the file:

;Open data file for input.
OPENR, 1, 'employee.dat'

;Create variables to hold the name, number of years, and monthly
;salary.
name = '' & years = 0 & salary = FLTARR(12)

;Output a heading for the summary.
PRINT, FORMAT='("Name", 28X, "Years", 4X, "Yearly Salary")'

;Note: The actual dashed line is longer than is shown here.
PRINT, '========'

;Loop over each employee.
WHILE (NOT EOF(1)) DO BEGIN

;Read the data on the next employee.
READF, 1, $
FORMAT = '(A32,I3,2(/,6F10.2))', name, years, salary

;Output the employee information. Use TOTAL to sum the monthly
;salaries to get the yearly salary.

PRINT, FORMAT='(A32,I5,5X,F10.2)', name, years, TOTAL(salary)

ENDWHILE

CLOSE, 1

The output from executing these statements onemployee.dat is as follows:

Name Years Yearly Salary
==
Bullwinkle 10 32501.09
Borris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

Example: Reading Records that Contain Multiple Array
Elements

Frequently, data are written to files with each record containing single elements
more than one array. One example might be a file consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing
value for each of the four variables. Because IDL has no equivalent of the FORTR
implied DO list, special procedures must be used to read or write this type of file
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 391

ave
ables
rray is
into a
ites

all
The first approach, which is the simplest, may be used only if all of the variables h
the same data type. An array is created with as many columns as there are vari
and as many rows as there are elements. The data are read into this array, the a
transposed storing each variable as a row, and each row is extracted and stored
variable which becomes a vector. For example, the FORTRAN program which wr
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE(1,'(4(1x,g15.5))')

(ALT(I),PRES(I),TEMP(I),VELO(I),I=1,100)

IDL Read:

;Open file for input.
OPENR, 1, 'test'

;Define variable (NVARS by NOBS).
A = FLTARR(4,100)

;Read the data.
READF, 1, A

;Transpose so that columns become rows.
A = TRANSPOSE(A)

;Extract the variables.
ALT = A[*, 0]
PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]

Note that this same example may be written without the implied DO list, writing
elements for each variable contiguously and simplifying matters considerably:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE (1,'(4(1x,G15.5))') ALT,PRES,TEMP,VELO

IDL Read:

;Define variables.
ALT = FLTARR(100)
PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'
READF, 1, ALT, PRES, TEMP, VELO
Building IDL Applications Format Codes

392 Chapter 16: Files and Input/Output

s or

ing a
ch

 is of
ut
A different approach must be taken when the columns contain different data type
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writ
loop to read each line into the scalars, and then storing the scalar values into ea
array. For example, assume that a fifth variable, the name of an observer which
string type, is added to the variable list. The FORTRAN output routine and IDL inp
routine are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
CHARACTER * 10 OBS(100)
OPEN (UNIT = 1, STATUS = 'NEW', FILE = 'TEST')
WRITE (1,'(4(1X,G15.5),2X,A)')

(ALT(I),PRES(I),TEMP(I),VELO(I),OBS(I),I=1,100)

IDL Read:

;Access file. This example will read files containing from 1 to 200
;records.
OPENR, 1, 'test'

;Define vector, make it large enough for the biggest case.
ALT = FLTARR(200)

;Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

;Define scalar string.
OBSS = ''

;Initialize counter.
I = 0

;Read loop.
WHILE NOT EOF(1) DO BEGIN

;Read scalars.
READF, 1, $

FORMAT = '(4(1X, G15.5), 2X, A10)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
Format Codes Building IDL Applications

Chapter 16: Files and Input/Output 393

, the
ar to

lified
.
st

ry

r
array
VELO[I] = VELOS & OBS[I] = OBSS

;Increment counter and check for too many records.
IF I LT 199 THEN I = I + 1 ELSE STOP, 'Too many records'

;Done.
ENDWHILE

If desired, after the file has been read and the number of observations is known
arrays may be truncated to the correct length using a series of statements simil
the following:

ALT = ALT[0:I-1]

The above statement represents a worst case example. Reading is greatly simp
by writing data of the same type contiguously and by knowing the size of the file
One frequently used technique is to write the number of observations into the fir
record so that when reading the data the size is known.

Warning
It might be tempting to implement a loop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR I = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELO[I]

This statement isincorrect. Subscripted elements (including ranges) are tempora
expressions passed as values to procedures and functions (READFin this example).
Parameters passed by value do not pass results back to the caller. The prope
approach is to read the data into scalars and assign the values to the individual
elements as follows:

A = 0. & P = 0. & T = 0. & V = 0.
FOR I = 0, 99 DO BEGIN

READF, 1, A, P, T, V
ALT[I] = A & PRES[I] = P & TEMP[I] = T & VELO[I] = V

ENDFOR
Building IDL Applications Format Codes

394 Chapter 16: Files and Input/Output
Using Un formatted Input/Output

Unformatted input/output involves the direct transfer of data between a file and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency is important and portability is not an issue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.

WRITEU

Writes unformatted data to the specified file unit.

ASSOC

Mapsan array structureto alogical fileunit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page406. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit , Var 1, ..., Var n
WRITEU, Unit , Var 1, ..., Var n

where

Unit — The logical fileunit with which the input/output operation wil l beperformed.

Vari — One or more IDL variables (or expressions in the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU readsexactly thenumber of bytesrequired by thesizeof itsarguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have a fixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it isalwayspossible to know the length of the
other types, string variables are a special case. IDL uses the following rules to
determine the number of characters to transfer:
Using Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 395

ng

mber

ou
tion
the

he
Input

Input enough bytes to fill the original length of the string. The length of the resulti
string is truncated if the string contains a null byte.

Output

Output the number of bytes contained in the string. This number is the same nu
returned by the STRLEN function and does not include a terminating null byte.

Note that these rules imply that when reading into a string variable from a file, y
must know the length of the original string so as to be able to initialize the destina
string to the correct length. For example, the following IDL statements produce
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Prepare a nine-character string.
A = ' '

;Read back in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

produce the following, because the receiving variable A was not long enough:

Hello Wor

The only solution to this problem is to know the length of the string being input. T
following IDL statements demonstrate a useful “trick” for initializing strings to a
known length:

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'
Building IDL Applications Using Unformatted Input/Output

396 Chapter 16: Files and Input/Output

G
TE

ord
oyed,
;Rewind the file.
POINT_LUN, 1, 0

;Create a string of the desired length initialized with blanks.
;REPLICATE creates a byte array of 11 elements, each element
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 blanks.
A = STRING(REPLICATE(32B,11))

;Read in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

This example takes advantage of the special way in which the BYTE and STRIN
functions convert between byte arrays and strings. See the description of the BY
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data with IDL

The following C program produces a file containing employee records. Each rec
stores the first name of each employee, the number of years he has been empl
and his salary history for the last 12 months.

#include <stdio.h>

main()
{
 static struct rec {
 char name[32]; /* Employee's name */
 int years; /* # of years with company */
 float salary[12]; /* Salary for last 12 months */
 } employees[] = {
{ {'B','u','l','l','w','i','n','k','l','e'}, 10,
 {1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
 5000.0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{
{'B','o','r','r','i','s'}, 11,
 {400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,
 200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },
{ {'N','a','t','a','s','h','a'}, 10,
 {950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
 2600.0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },
{ {'R','o','c','k','y'}, 11,
 {1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
Using Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 397
 5000.0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}
};

 FILE *outfile;

 outfile = fopen("data.dat", "w");
 (void) fwrite(employees, sizeof(employees), 1, outfile);
 (void) fclose(outfile);
}

Running this program creates the filedata.dat containing the employee records. The
following IDL statements can be used to read and print this file:

;Create a string with 32 characters so that the proper number of
;characters will be input from the file. REPLICATE is used to
;create a byte array of 32 elements, each containing the ASCII code
;for a space (32). STRING turns this byte array into a string
;containing 32 blanks.
STR32 = STRING(REPLICATE(32B, 32))

;Create an array of four employee records to receive the input
;data.
A = REPLICATE({EMPLOYEES, NAME:STR32, YEARS:0L, $

SALARY:FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

;Read the data.
READU, 1, A

CLOSE, 1

;Show the results.
PRINT, A

Executing these IDL statements produces the following output:

{ Bullwinkle 10
1000.00 9000.97 1100.00 0.00000 0.00000 2000.00
5000.00 3000.00 1000.12 3500.00 6000.00 900.000
}{Borris 11
400.000 500.000 1300.10 350.000 745.000 3000.00
200.000 100.000 100.000 50.0000 60.0000 0.250000
}{ Natasha 10
950.000 1050.00 1350.00 410.000 797.000 200.360
2600.00 2000.00 1500.00 2000.00 1000.00 400.000
}{ Rocky 11
1000.00 9000.00 1100.00 0.00000 0.00000 2000.37
5000.00 3000.00 1000.01 3500.00 6000.00 900.120
Building IDL Applications Using Unformatted Input/Output

398 Chapter 16: Files and Input/Output

rray

w to
ple
nly

le.
}

Example: Reading IDL-Generated Unformatted Data with C

The following IDL program creates an unformatted data file containing a 5 x 5 a
of floating-point values:

;Open a file for output.
OPENW, 1, 'data.dat'

;Write 5x5 array with each element set to its 1-dimensional index.
WRITEU, 1, FINDGEN(5, 5)

CLOSE, 1

This file can be read and printed by the following C program:

#include <stdio.h>

main()
{
 float data[5][5];
 FILE *infile; int i, j;
 infile = fopen("data.dat", "r");
 (void) fread(data, sizeof(data), 1, infile);
 (void) fclose(infile);
 for (i = 0; i < 5; i++) {
 for (j = 0; j < 5; j++)
 printf("%8.1f", data[i][j]);
 printf("\n");
 }
}

Running this program gives the following output:

0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0

10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows ho
read such an image and display it using IDL. In the interest of keeping the exam
brief, a number of simplifications are made, no error checking is performed, and o
8-bit deep rasterfiles are handled. See the READ_SRF procedure (the file
read_srf.pro in the lib subdirectory of the IDL distribution) for a complete examp
Using Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 399

ata
The format used for rasterfiles is documented in the C header file
/usr/include/rasterfile.h . That file provides the following information:

Each file starts with a fixed header that describes the image. In C, this header is
defined as follows:

struct rasterfile{
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of image */
int ras_height; /* height (pixels) of image */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of image */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image d
follows directly after the color map.

The following IDL statements read an 8-bit deep image from the fileras.dat:

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A C int variable on a Sun corresponds to an IDL LONG
;int.
h = {rasterfile, magic:0L, width:0L, height:0L, depth: 0L,$

length:0L, type:0L, maptype:0L, maplength:0L}

;Open the file, allocating a file unit at the same time.
OPENR, unit, file, /GET_LUN

;Read the header information.
READU, unit, h

;Is there a color map?
IF ((h.maptype EQ 1) AND (h.maplength NE 0)) THEN BEGIN

;Calculate length of each vector.
maplen = h.maplength/3

;Create three byte vectors to hold the color map.
r=(g=(b=BYTARR(maplen, /NOZERO)))

;Read the color map.
READU, unit, r, g, b

ENDIF

;Create a byte array to hold image.
image = BYTARR(h.width, h.height, /NOZERO)
Building IDL Applications Using Unformatted Input/Output

400 Chapter 16: Files and Input/Output
;Read the image.
READU, unit, image

;Free the previously-allocated Logical Unit Number and close the
;file.
FREE_LUN, unit
Using Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 401

ary
ng

ard
ard

tted

lve

ion
en

le

ned

nd
hine
Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differences in the way various machines represent bin
data. However, it is possible to produce binary files that are portable by specifyi
the XDR keyword with the OPEN procedures. XDR (for eXternal Data
Representation) is a scheme under which all binary data is written using a stand
“canonical” representation. All machines supporting XDR understand this stand
representation and have the ability to convert between it and their own internal
representation.

XDR represents a compromise between the extremes of unformatted and forma
input/output:

• It is not as efficient as purely unformatted input/output because it does invo
the overhead of converting between the external and internal binary
representations.

• It is still much more efficient than formatted input/output because convers
to and from ASCII characters is much more involved than converting betwe
binary representations.

• It is much more portable than purely unformatted data, although it is still
limited to those machines that support XDR. However, XDR is freely availab
and can be moved to any system.

XDR Considerations

The primary differences in the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

• To use XDR, you must specify the XDR keyword when opening the file.

• The only input/output data transfer routines that can be used with a file ope
for XDR are READU and WRITEU.

• XDR converts between the internal and standard external binary
representations for data instead of simply using the machine’s internal
representation.

• Since XDR adds extra “bookkeeping” information to data stored in the file a
because the binary representation used may not agree with that of the mac
being used, it does not make sense to access an XDR file without usingXDR.
Building IDL Applications Portable Unformatted Input/Output

402 Chapter 16: Files and Input/Output

e

re,
• OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at a time. Thus, using thes
procedures with the XDR keyword results in a file open for output only.
OPENR works in the usual way.

• The length of strings is saved and restored along with the string. This means
that you do not have to initialize astring of thecorrect length before reading a
string from the XDR file. (This is necessary with normal unformatted
input/output and is described in “Using Unformatted Input/Output” on
page394).

• For efficiency reasons, byte arrays are transferred as a single unit; therefo
bytevariablesmust beinitialized to thecorrect number of elementsfor thedata
to be input, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW, /XDR, 1, 'data.dat'

;Write a 10-element byte array.
WRITEU, 1, BINDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat'

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:

% READU: Error encountered reading from file unit: 1.

Instead, it isnecessary to read theentirebytearray back in oneoperation using
a statement such as:

;Read the whole array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.

• Under VMS, XDR is only possible with stream mode files.

IDL XDR Conventions for Programme rs

IDL uses certain conventions for reading and writing XDR files. If your only use of
XDR is through IDL, you do not need to be concerned about these conventions
becauseIDL takescareof it for you. However, programmerswho want to create IDL-
Portable Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 403

es
ion.

s.
compatible XDR files from other languages need to know the actual XDR routin
used by IDL for various data types. The following table summarizes this informat

The routines used for type COMPLEX and STRING are not primitive XDR routine
Their definitions are as follows:

bool_t xdr_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i} *p;

{
return(xdr_float(xdrs, (char *) &p->r) &&

xdr_float(xdrs, (char *) &p->i));
}
bool_t xdr_counted_string(xdrs, p)

XDR *xdrs;
char **p;

{
int input = (xdrs->x_op == XDR_DECODE);
short length;

/* If writing, obtain the length */
if (!input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */
if (input)
{

 *p = malloc((unsigned) (length + 1));

Data Type XDR routine

Byte xdr_bytes()

Integer xdr_short()

Long xdr_long()

Float xdr_float()

Double xdr_double()

Complex xdr_complex()

String xdr_counted_string()

Table 16-10: XDR Routines Used by IDL
Building IDL Applications Portable Unformatted Input/Output

404 Chapter 16: Files and Input/Output
 p[length] = '\0'; / Null termination */
}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

}

Example: Reading C-Generated XDR Data with IDL

The following C program produces a file containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>
#include <rpc/rpc.h>
[xdr_complex() and xdr_counted_string() included here]

main()
{
 static struct {/* Output data */
 unsigned char c;
 short s;
 long l;
 float f;
 double d;
 struct complex { float r, i } cmp;
 char *str;
 }
 data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
 u_int c_len = sizeof(unsigned char); /* Length of a char */
 char *c_data = (char *) &data.c; /* Addr of byte field */
 FILE *outfile; /* stdio stream ptr */
 XDR xdrs; /* XDR handle */

 /* Open stdio stream and XDR handle */
 outfile = fopen("data.dat", "w");
 xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

 /* Output the data */
 (void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);
 (void) xdr_short(&xdrs, (char *) &data.s);
 (void) xdr_long(&xdrs, (char *) &data.l);
 (void) xdr_float(&xdrs, (char *) &data.f);
 (void) xdr_double(&xdrs, (char *) &data.d);
 (void) xdr_complex(&xdrs, (char *) &data.cmp);
 (void) xdr_counted_string(&xdrs, &data.str);

 /* Close XDR handle and stdio stream */
 xdr_destroy(&xdrs);
 (void) fclose(outfile);
}

Portable Unformatted Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 405

.

Running this program creates the filedata.dat containing the XDR data. The
following IDL statements can be used to read this file and print its contents:

;Create structure containing correct types.
DATA={S, C:0B, S:0, L:0L, F:0.0, D:0.0D, CMP:COMPLEX(0), STR:''}

;Open the file for input.
OPENR, /XDR, 1, 'data.dat'

;Read the data.
READU, 1, DATA

;Close the file.
CLOSE, 1

;Show the results.
PRINT, DATA

Executing these IDL statements produces the output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine
Sun users should consult theirNetwork Programming manual.
Building IDL Applications Portable Unformatted Input/Output

406 Chapter 16: Files and Input/Output

les

se
, the
ike a
ex of
ion

 or
and

 it is

too

ts
ut

tion

0

Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variab
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of a file. The file is treated as an array of the
repeating units of data. The first array or structure in the file has an index of zero
second has index one, and so on. Such variables do not keep data in memory l
normal variable. Instead, when an associated variable is subscripted with the ind
the desired array or structure within the file, IDL performs the input/output operat
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays
structures), associated file variables offer the following advantages over READU
WRITEU for unformatted input/output:

• Input/output occurs when an associated file variable is subscripted. Thus,
possible to perform input/output within an expression without a separate
input/output statement.

• The size of the data set is limited primarily by the maximum size of the file
containing the data instead of the maximum memory available. Data sets
large for memory can be accessed.

• There is no need to declare the maximum number of arrays or structures
contained in the file.

• Associated variables systematize access to the data. Direct access to any
element in the file is rapid and simple—there is no need to calculate offse
into the file and/or position the file pointer prior to performing the input/outp
operation.

• Associated variables are the most efficient form of IDL input/output.

An associated file variable is created by assigning the result of the ASSOC func
to a variable. SeeASSOC in theIDL Reference Guide for details.

Example of Using Associated Input/Output

Assume that a file nameddata.datexists, and that this file contains a series of 10 x 2
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:
Associated Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 407

 call
 the

en

s
nly

DL

re,

ause
ted.
r an

never
of the
;Open the file.
OPENU, 1, 'data.dat'

;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO))

The order of these two statements is not important—it would be equally valid to
ASSOC first, and then open the file. This is because the association is between
variable and the logical file unit, not the file itself. It is also legitimate to close the
file, open a new file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occurs if the file is not op
when the file variable is subscripted in an expression or if the file is open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with a file opened for read-only access).

As a result of executing the two statements above, the variableA is now an associated
file variable. Executing the statement,

HELP, A

gives the following response:

A FLOAT = File<data.dat> Array(10, 20)

The associated variableA maps the structure of a 10 x 20, floating-point array onto
the contents of the filedata.dat. Thus, the response from the HELP procedure show
it as having the structure of a two-dimensional array. An associated file variable o
performs input/output to the file when it is subscripted. Thus, the following two I
statements do not cause input/output to happen:

B = A

This assignment does not transfer data from the file to variableB becauseA is not
subscripted. Instead,B becomes an associated file variable with the same structu
and to the same logical file unit, asA.

B = 23

This assignment does not result in the value 23 being transferred to the file bec
variableB (which became a file variable in the previous statement) is not subscrip
Instead,B becomes a scalar integer variable containing the value 23. It is no longe
associated file variable.

Reading Data from Associated Files

Once a variable has been associated with a file, data are read from the file whe
the associated variable appears in an expression with a subscript. The position
Building IDL Applications Associated Input/Output

408 Chapter 16: Files and Input/Output

r the

file

n is

nless
e

ipt,

nt
ay
array or structure read from the file is given by the value of the subscript. The
following IDL statements give some examples of using file variables:

;Copy the contents of the first array into normal variable Z. Z is
;now a 10 x 20, floating-point array.
Z = A[0]

;Form the sum of the first 10 arrays (Z was initialized in the
;previous statement to the value of the first array. This statement
;adds the following nine to it.).
FOR I = 1, 9 DO Z = Z + A[I]

;Read fourth array and plot it.
PLOT, A[3]

;Subtract array four from array five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - A[4]

Subscripting Associated File Variables on Input

When the structure associated with a file variable is an array, it is possible to
subscript into the array being accessed during input operations. For example, fo
variable A defined above,

Z = A[0, 0, 1]

assigns the value of the first floating-point element of the second array within the
to the variable Z. The rightmost subscript is taken as the subscript into the file
causing IDL to read the entire array into memory. This resulting array expressio
then further subscripted by the remaining subscripts.

Note
Although this ability can be convenient, it also can be very slow because every
access to an array element causes the entire array to be read from memory. U
only one element of the array is desired, it is faster to assign the contents of th
array to a normal variable by subscripting the file variable with a single subscr
then accessing the individual array elements in the normal variable.

Writing Data

When a subscripted associated variable appears on the left side of an assignme
statement, the expression on the right side is written into the file at the given arr
position:
Associated Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 409

rray
nts
ual
rray
pted

 a

t
data
in

tes,
ould
er,
24
;Sets sixth record to zero.
A[5] = FLTARR(10, 20)

;Writes ARR into the sixth record after any necessary type
;conversions.
A[5] = ARR

;Averages records J and J+1, and writes the result into record J.
A[J] = (A[J] + A[J + 1])/2

When writing data, only a single subscript specifying the index of the affected a
or structure in the file is allowed. Thus, it is not possible to index individual eleme
of associated arrays on output, although it is allowed for input. To update individ
elements of an array within a file, assign the contents of that array to a normal a
variable, modify the copy, and write the array back by assigning it to the subscri
file variable.

Files with Multiple Structures

The same file may be associated with a number of different structures. Assume
number of 128 x 128-byte images are contained on a file. The statement,

ROW = ASSOC(1, BYTARR(128))

will map the file into rows of 128 bytes each.ROW[3] is the fourth row of the first
image, whileROW[128] is the first row of the second image. The statement,

IMAGE = ASSOC(1, BYTARR(128, 128))

maps the file into entire images;IMAGE[4] will be the fifth image.

Offset Parameter

TheOffset parameter to ASSOC specifies the position in the file at which the firs
array starts. This parameter is useful when a file contains a header followed by
records. For example, if a UNIX file uses the first 1,024 bytes of the file to conta
header information, followed by 512 x 512-byte images, the statement,

IMAGE = ASSOC(1, BYTARR(512, 512), 1024)

sets the variable IMAGE to access the images while skipping the header.

Under VMS, stream files and RMS block mode files have their offset given in by
and record-oriented files have it specified in records. Thus, the example above w
have worked for VMS if the file was a stream or block mode file. Assume howev
that the file has 512-byte, fixed-length records. In this case, skipping the first 1,0
bytes is equivalent to skipping the first two records:
Building IDL Applications Associated Input/Output

410 Chapter 16: Files and Input/Output

m

n a

t

 be
IMAGE = ASSOC(1, BYTARR(512, 512), 2)

Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the
physical block size of the disk holding the file. Common values are 512, 1,024, and
2,048 bytes. For example, on a disk with 512-byte blocks, one benchmark progra
required approximately one-eighth of the time required to read a 512 x 512-byte
image that started and ended on a block boundary, as compared to a similar program
that read an image that was not stored on even block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to the file. Therefore, if a record is to be accessed more tha
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to the file if
necessary.

Unformatted Data f rom UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does no
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” on page394.
Associated Input/Output Building IDL Applications

Chapter 16: Files and Input/Output 411

es

der

t

rd
File Manipulation Operations

Locating Files

The FINDFILE function returns an array of strings containing the names of all fil
that match its argument string. The argument string may contain any wildcard
characters understood by the command interpreter. Under VMS, this is DCL. Un
UNIX, it is the Bourne shell (/bin/sh). Under Windows it is COMMAND.COM. On
the Macintosh, standard Macintosh OS wildcard characters are supported. For
example, to determine the number of IDL procedure files that exist in the curren
directory, use the following statement:

PRINT, '# IDL pro files:',N_ELEMENTS(FINDFILE('*.pro'))

SeeFINDFILE in theIDL Reference Guide for details.

Getting Help and Information

Information about currently open file units is available by using the FILES keywo
with the HELP procedure. If no arguments are provided, information about all
currently open user file units (units 1–128) is given. For example, the following
command can be used to get information about the three special units (−2, −1, and 0):

HELP, /FILES, -2, -1, 0

This command results in output similar to the following:

Unit Attributes Name
-2 Write, New, Tty, Reserved <stderr>
-1 Write, New, Tty, Reserved <stdout>

0 Read, Tty, Reserved <stdin>

SeeHELP in theIDL Reference Guide for details.

The FSTAT Function

The FSTAT function can be used to get more detailed information, as well as
information that can be used from within an IDL program. It returns a structure
expression of type FSTAT or FSTAT64 containing information about the file. For
example, to get detailed information about the standard input, the command,

HELP, /STRUCTURES, FSTAT(0)

causes the following to be displayed on the screen:

** Structure FSTAT, 12 tags, length=48:
Building IDL Applications File Manipulation Operations

412 Chapter 16: Files and Input/Output

ber

gth.
of

n:

ill

you
it
 UNIT LONG 0
 NAME STRING '<stdin>'
 OPEN BYTE 1
 ISATTY BYTE 1
 ISAGUI BYTE 0
 INTERACTIVE BYTE 1
 READ BYTE 1
 WRITE BYTE 0
 TRANSFER_COUNT LONG 0
 CUR_PTR LONG 51550
 SIZE LONG 0
 REC_LEN LONG 0

Since IDL allows keywords to be abbreviated to the shortest nonambiguous num
of characters,

HELP, /ST, FSTAT(0)

also will work (and save some typing).

IDL on some platforms can support files that are longer than 2^31-1 bytes in len
If FSTAT is applied to such a file, it returns an expression of type FSTAT64 instead
the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide the following informatio

UNIT

The IDL logical unit number (LUN).

NAME

The name of the file.

OPEN

Nonzero if the file unit is open. If OPEN is zero, the remaining fields in FSTAT w
not contain useful information.

ISATTY

Nonzero if the file is actually a terminal instead of a normal file. For example, if
are using anxterm window on a Unix system and you invoke FSTAT on logical un
0 (standard input), ISATTY will be set to 1.
File Manipulation Operations Building IDL Applications

Chapter 16: Files and Input/Output 413

nit
E

.

on

the

, it

ata
wn.
(the
s.
ISAGUI

Nonzero if the file is actually a Graphical User Interface (for example, a logical u
associated with the IDL Development Environment). Thus, if you are using IDLD
and you invoke FSTAT on logical unit 0 (standard input), ISAGUI will be set to 1

INTERACTIVE

Nonzero ifeither ISATTY or ISAGUI is nonzero.

READ

Nonzero if the file is open for read access.

WRITE

Nonzero if the file is open for write access.

TRANSFER_COUNT

The number of scalar IDL data items transferred in the last input/output operation
the unit. This is set by the following IDL routines: READU, WRITEU, PRINT,
PRINTF, READ, and READF. TRANSFER_COUNT is useful when attempting to
recover from input/output errors.

CUR_PTR

The current position of the file pointer, given in bytes from the start of the file. If
device is a terminal (ISATTY is nonzero), the value of CUR_PTR will not contain
useful information.

SIZE

The current length of the file in bytes. If the device is a terminal (ISATTY is
nonzero), the value of SIZE will not contain useful information.

REC_LEN

If the file is record-oriented (VMS), this field contains the record length; otherwise
is zero.

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point d
from a stream file into a vector when the number of elements in the file is not kno
It uses the FSTAT function to get the size of the file in bytes and divides by four
size of a single-precision, floating-point value) to determine the number of value
Note that this approach will not work with VMS variable-length record files:
Building IDL Applications File Manipulation Operations

414 Chapter 16: Files and Input/Output

e

een
ept
ns
e file
;READ_DATA reads all the floating point values from a stream file
;and returns the result as a floating-point vector.
FUNCTION READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file

;Get file status.
status = FSTAT(unit)

;Make an array to hold the input data. The SIZE field of status
;gives the number of bytes in the file, and single-precision,
;floating-point values are four bytes each.
data = FLTARR(status.size / 4)

;Read the data.
READU, unit, data

;Deallocate the file unit. The file also will be closed.
FREE_LUN, unit

RETURN, data

END

Assuming that a file nameddata.dat exists and contains 10 floating-point values, th
READ_DATA function could be used as follows:

;Read floating-point values from data.dat.
A = READ_DATA('data.dat')

;Show the result.
HELP, A

The following output is produced:

A FLOAT = Array(10)

Flushing File Units

For efficiency, IDL buffers its input/output in memory. Therefore, when data are
output, there is a window of time during which data are in memory and have not b
actually placed into the file. Normally, this behavior is transparent to the user (exc
for the improved performance). The FLUSH routine exists for those rare occasio
where a program needs to be certain that the data has actually been written to th
immediately. For example, use the statement,

FLUSH, 1
File Manipulation Operations Building IDL Applications

Chapter 16: Files and Input/Output 415

le.
le

int.

 out

.

a
int.
.

e

to flush file unit one.

SeeFLUSH in theIDL Reference Guide for details.

Positioning File Pointers

Each open file unit has a current file pointer associated with it. This file pointer
indicates the position in the file at which the next input/output operation will take
place. The file position is specified as the number of bytes from the start of the fi
The first position in the file is position zero. The following statement will rewind fi
unit 1 to its start:

POINT_LUN, 1, 0

The following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)
POINT_LUN, 1, tmp.size

POINT_LUN has the following operating-system specific behavior:

• UNIX: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that po
The gap created is filled with zeroes.

• VMS stream files: the current file pointer can be positioned arbitrarily –
moving to a position beyond the current end-of-file causes the file to grow
to that point. The gap created is filled with zeroes.

• VMS block mode and record-oriented files: attempting to move the pointer
past the current end-of-file causes an end-of-file error.

• VMS record-oriented files: the file pointer should only be set to record
boundaries. Setting it to other positions can result in unexpected behavior

• Windows: the current file pointer can be positioned arbitrarily – moving to
position beyond the current end-of-file causes the file to grow out to that po
Unlike UNIX, the gap created is filled with arbitrary data instead of zeroes

• Macintosh: the current file pointer cannot be positioned past the end of th
file.

SeePOINT_LUN in theIDL Reference Guide for details.
Building IDL Applications File Manipulation Operations

416 Chapter 16: Files and Input/Output

e

tial

ing

r a

al

e

might
Testing for End-Of-File

The EOF function is used to test a file unit to see if it is currently positioned at th
end of the file. It returns true (1) if the end-of-file condition is true and false (0)
otherwise.

Note the non-diskfile devices always return “false” and, under VMS, non-sequen
files or files opened across DECnet always return “false”.

For example, to read the contents of a file and print it on the screen, use the follow
statements:

;Open file demo.doc for reading.
OPENR, 1, 'demo.doc'

;Create a variable of type string.
LINE = ''

;Read and print each line until the end of the file is encountered.
WHILE(NOT EOF(1)) DO BEGIN READF,1,LINE & PRINT,LINE & END

;Done with the file.
CLOSE, 1

SeeEOF in theIDL Reference Guide for details.

GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit zero) as a single character string. It takes a single parameter
named WAIT. If WAIT is zero, the function returns the null string if there are no
characters in the terminal typeahead buffer. If it is nonzero, the function waits fo
character to be typed before returning.

Under Windows, the GET_KBRD function can be used to return Windows speci
characters (in addition to the standard keyboard characters). To get a special
character, hold down the Alt key and type the character’s ANSI equivalent on th
numeric keypad while GET_KBRD is waiting. Control +key combinations are not
supported.

SeeGET_KBRD in theIDL Reference Guide for details.

Example—Using GET_KBRD

A procedure that updates the screen and exits when the carriage return is typed
appear as follows:
File Manipulation Operations Building IDL Applications

Chapter 16: Files and Input/Output 417

an

. If
rray
;Procedure definition.
PRO UPDATE, ...

;Loop forever.
WHILE 1 DO BEGIN

;Update screen here...
...

;Read character, no wait.
CASE GET_KBRD(0) OF

;Process letter A.
'A':

;Process letter B.
'B':

;Process other alternatives.
...

;Exit on carriage return (ASCII code = 15 octal).
STRING("15B): RETURN

;Ignore all other characters.
ELSE:

ENDCASE

ENDWHILE

;End of procedure.
END

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. It c
be thought of as a version of PRINT that places its formatted output into a string
variable instead of a file. If the output is a single line, the result is a scalar string
the output has multiple lines, the result is a string array with each element of the a
containing a single line of the output.

Example—Using STRING with Explicit Formatting

The IDL statements:

;Produce a string array.
A=STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))
Building IDL Applications File Manipulation Operations

418 Chapter 16: Files and Input/Output

s
AD

ing
DS.
;Show its structure.
HELP, A

;Print out the result.
FOR I = 0, 5 DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:
 0
 1
 2
 3
 4

SeeSTRING in theIDL Reference Guide for details.

Reading Data from a String Variable

The READS procedure performs formatted input from a string variable and write
the results into one or more output variables. This procedure differs from the RE
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string us
READF. Then the components of that line can be read into variables using REA

See the description of READS in theIDL Reference Guide for more details.
File Manipulation Operations Building IDL Applications

Chapter 16: Files and Input/Output 419

ted
stem
ter,

.

l

 of
at
but

ms
UNIX-Specific Information

UNIX offers only a single type of file. All files are considered to be an uninterpre
stream of bytes, and there is no such thing as record structure at the operating sy
level. (By convention, records of text are simply terminated by the linefeed charac
which is referred to as “newline.”) It is possible to move the current file pointer to
any arbitrary position in the file and to begin reading or writing data at that point
This simplicity and generality form a system in which any type of file can be
manipulated easily using a small set of file operations.

Reading FORTRAN-Generated Unformatted Data with IDL

The UNIX file system considers all files to be an uninterpreted stream of bytes.
Standard FORTRAN I/O considers all input/output to be done in terms of logica
records.

In order to reconcile the FORTRAN need for logical records with UNIX files, UNIX
FORTRAN programs add a longword count before and after each logical record
data. These longwords contain an integer count giving the number of bytes in th
record. Note that direct-access FORTRAN I/O does not write data in this format,
simply transfers binary data to or from the file.

The use of the F77_UNFORMATTED keyword with the OPENR statement infor
IDL that the file contains unformatted data produced by a UNIX FORTRAN
program. When a file is opened with this keyword, IDL interprets the longword
counts properly and is able to read and write files that are compatible with
FORTRAN.

Reading data from a FORTRAN file

The following UNIX FORTRAN program produces a file containing a five-column
by three-row array of floating-point values with each element set to its one-
dimensional subscript:

PROGRAM ftn2idl

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORM="unformatted")
DO 100 j = 1, 3

DO 100 i = 1, 5
data(i,j) = ((j - 1) * 5) + (i - 1)
print *, data(i,j)
Building IDL Applications UNIX-Specific Information

420 Chapter 16: Files and Input/Output

nts:

he
the
100 CONTINUE
WRITE(1) data
END

Running this program creates the fileftn2idl.dat containing the unformatted array.
The following IDL statements can be used to read this file and print out its conte

;Create an array to contain the fortran array.
data = FLTARR(5,3)

;Open the fortran-generated file. The F77_UNFORMATTED keyword is
;necessary so that IDL will know that the file contains unformatted
;data produced by a UNIX FORTRAN program.
OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, lun, data

;Release the logical unit number and close the fortran file.
FREE_LUN, lun

;Print the result.
PRINT, data

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000

Because unformatted data produced by UNIX FORTRAN unformatted WRITE
statements are interspersed with extra information before and after each logical
record, it is important that the IDL program read the data in the same way that t
FORTRAN program wrote it. For example, consider the following attempt to read
above data file one row at a time:

;Create an array to contain one row of the Fortran array.
data = FLTARR(5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a time.
FOR I = 0, 4 DO BEGIN

;Read a row of data.
READU, lun, data

;Print the row.
PRINT, data
UNIX-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 421

fter

-
the
ENDFOR

;Close the file.
FREE_LUN, lun

Executing these IDL statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.dat6
% Execution halted at $MAIN$(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program as if it were written in five separate records. IDL hit the end of the file a
reading the first five values of the first record.

Writing data to a FORTRAN file

The following IDL statements create a five-column by three-row array of floating
point values with each element set to it’s one-dimensional subscript, and writes
array to a data file suitable for reading by a FORTRAN program:

;Create the array.
data = FINDGEN(5,3)

;Open a file for writing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDL to write the data in a format readable by a
;FORTRAN program.
OPENW, lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

;Write the data.
WRITEU, lun, data

;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:

PROGRAM idl2ftn

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORM="unformatted")
READ(1) data

DO 100 j = 1, 3
DO 100 i = 1, 5

PRINT *, data(i,j)
100 CONTINUE

END
Building IDL Applications UNIX-Specific Information

422 Chapter 16: Files and Input/Output

f
his

ion
r
 to

de.”
 a

e

ential
ative
 by

UN

d
L.

It is
ide
VMS-Specific Information

Input/output under VMS is a relatively complex topic, involving a large number o
formats and options. VMS files are record-oriented, and it is necessary to take t
into account when writing applications, especially those that will run under other
operating systems. The VMS user faces decisions in the following areas:

Organization

A VMS file can have sequential, relative, or indexed organization. The organizat
controls the way in which data is placed in the file and determines the options fo
random access. IDL is able to read data from all three organizations and is able
create sequential or indexed files.

In addition, it is possible to bypass the organization and access a file in “block mo
In block mode, most VMS file processing is bypassed. The IDL user can access
block mode file as if it were simply a stream of uninterpreted bytes. This is very
similar to stream files (although considerably more efficient).

Warning
With some file organizations, VMS intermingles housekeeping information with
data. When accessing such a file in block mode, it is easy to corrupt this
information and render the file unusable in its usual mode; however, block mod
will always work. Avoiding such corruption is the user’s responsibility.

Access

The access mode controls how data in a file are accessed. VMS supports sequ
access, random access by key value (indexed files), relative record number (rel
files), or relative file address (all file organizations). IDL does not support access
relative record number—files are accessed sequentially or through key value.
Random access for sequential files is allowed by file address using the POINT_L
procedure.

Record Format

VMS supports fixed-length records, variable-length records, variable length with
fixed-length control field (VFC), and stream format. Of these, the fixed-length an
variable-length record formats are the most useful and are fully supported by ID

It is possible to read the data portion of a VFC file, but not the control field. All
access to stream mode files under IDL is done through the Standard C Library.
worth noting that VMS stream files are record oriented (and therefore, fail to prov
VMS-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 423

y
ur

ally
atted

that
l (if
 be

e.

hese
unt

d a

,

ge

e

much of the flexibility of UNIX stream files) although the VMS Standard C Librar
(upon which IDL is implemented) does a good job of concealing this limitation. O
experience indicates that input/output using VMS stream mode files is dramatic
slower than the other options and should be avoided when possible. For unform
data, using block mode can give similar flexibility as well as high efficiency.

Record Attributes

When a record is output to the screen or printer, VMS uses its carriage control
attributes to determine how to output each line. Explicit carriage control specifies
VMS should do nothing, and the user will provide the appropriate carriage contro
any) in the data. Carriage-return carriage control specifies that each line should
preceded by a line feed and followed by a carriage return. FORTRAN carriage
control indicates that the first byte of each record contains a FORTRAN carriage
control character. The possible values of this byte are given in the following tabl
The default for IDL is carriage-return carriage control.

File Attributes

There are many file attributes that can be adjusted to suit various requirements. T
attributes allow specifying the default name, the initial size of new files, the amo

Byte
Value

ASCII
Character Meaning

0 (null) No carriage control—output data directly.

32 (space) Single-space. A linefeed precedes the output data, an
carriage return follows.

48 0 Double-space. Two linefeeds precede the output data
and a carriage return follows.

49 1 Page eject. A formfeed precedes the data, and a carria
return follows.

40 + Overprint. A carriage return follows the data, causing
the next output line to overwrite the current one.

36 $ Prompt. A linefeed precedes the data, but no carriage
return follows.

other Same as ASCII space character. Single-space carriag
control

Table 16-11: VMS FORTRAN Carriage Control
Building IDL Applications VMS-Specific Information

424 Chapter 16: Files and Input/Output

when

the

d
 is

ord-
or

gle

of
by which files are extended, whether the file is printed or sent to a batch queue
closed, file sharing between processes, etc.

How IDL Handles Records

With record-oriented files, IDL always transfers at least a single record of data. If
amount of data required exceeds a single record, more input/output occurs. For
example, consider the case of a file open on unit 1 for output with 80-character
records. The statement,

WRITEU, UNIT, FINDGEN(512)

requires 2,048 bytes to be output (each floating-point value takes four bytes), an
thus, causes 26 records to be output. The last record will not be entirely full and
padded at the end with zeroes.

On later input, the same rule is applied in reverse—26 records are read, and the
unused portion of the last one is discarded. The basic rule of input/output with rec
oriented files is that the form of the input and output statements should match. F
instance, the statements,

WRITEU, UNIT, A
WRITEU, UNIT, B
WRITEU, UNIT, C

generate three output records and should be later input with statements of the
following form:

READU, UNIT, A
READU, UNIT, B
READU, UNIT, C

In contrast, the statement

WRITEU, UNIT, A, B, C

generates a single-output record and should be later input with the following sin
statement:

READU, UNIT, A, B, C

Reading FORTRAN-Generated Unformatted Data with IDL

The following VMS FORTRAN program produces a file containing a 5 x 5 array
floating-point values with each element set to its one-dimensional subscript:

 INTEGER I, J REAL DATA(5, 5)
 OPEN(1, FILE='data.dat', FORM='unformatted', status='new')
 DO 100 J = 1, 5
VMS-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 425

he
 or

to
e file,
 to

he
DO 100 I = 1, 5
 DATA(I,J) = ((J-1) * 5) + (I-1)
 100 CONTINUE

WRITE(1) DATA
 END

Running this program creates the filedata.dat containing the unformatted data. By
default, VMS FORTRAN programs create such files usingsegmented records, which
is a scheme used by FORTRAN to write data records with lengths that exceed t
actual record lengths allowed by VMS. Each segmented record is written as one
more actual VMS records. Each of the actual records has a 2-byte control field
prepended that allows FORTRAN to reconstruct the original record. IDL is able
read and write segmented record files if the OPEN statement, used to access th
includes the SEGMENTED keyword. The following IDL statements can be used
read this file and print out its contents:

;Open the file. The SEGMENTED keyword is necessary so that IDL will
;know that the file contains VMS FORTRAN segmented records.
OPENR, 1, 'data.dat', /SEGMENTED

;Create an array to contain the array.
A = FLTARR(5, 5, /NOZERO)

;Read the data in a single input operation.
READU, 1, A

;Print the result.
PRINT, A

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

As with all record-oriented input/output, it is important that the IDL program read t
data in the same way it was written by the FORTRAN program. For example,
consider the following attempt to read the above data file one row at a time:

;Create an array to contain one row of the array.
OPENR, 1, 'DATA.DAT', /SEGMENTED
A = FLTARR(5, /NOZERO)

;One row at a time.
FOR I = 0, 4 DO BEGIN $

;Read a row of data.
Building IDL Applications VMS-Specific Information

426 Chapter 16: Files and Input/Output

N
le

for
MS

for

e
n.

e.
READU, 1, A $

;Print the row.
PRINT, A $

ENDFOR

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
% End of file encountered on file unit: 1.
% Execution halted at $MAIN$(0).

This program attempted to read the single logical record written by the FORTRA
program as if it were written in five separate records and so, hit the end of the fi
after reading the first five values of the first record.

Indexed Files

Creating Indexed Files

Although IDL can read and write indexed files, it cannot create them. The options
creating indexed files are so numerous that they should be specified using the V
CREATE/FDLcommand. FDL (File Definition Language) is the standard method
specifying VMS file attributes. TheVAX/VMS File Definition Language Facility
Reference Manual (1986) describes FDL in detail. It is often useful to start with th
FDL description for an existing file and then modify it to suit your new applicatio
The VMS command,

$ ANALYZE/RMS FILE/FDL file.dat

creates a file namedfile.fdl containing the FDL description forfile.dat . The
following is an example of an FDL description for an indexed file nameddata.dat
with two keys. The first key is a 32-character string containing an employee nam
The second is a 4-byte integer containing the current salary for that employee:

FILE
 NAME data.dat
 ORGANIZATION indexed
RECORD
 SIZE 36
KEY 0
 NAME "Name"
 SEG0_LENGTH 32
 SEG0_POSITION 0
 TYPE string
KEY 1
 CHANGES yes
VMS-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 427

he

ion
 NAME "Salary"
 SEG0_LENGTH 4
 SEG0_POSITION 32
 TYPE bin4

Assume that this description resides in a file nameddata.fdl. The following IDL
statement can be used to createdata.dat:

SPAWN, 'create/fdl = data.fdl'

Once the file exists, it can be opened within IDL using the KEYED keyword with t
OPENR or OPENU procedures.

Using Indexed Files

Given a file created using the FDL description in the previous section, the IDL
statements below do four things:

• Add some employee records to the file

• Print the records out sorted by name

• Give an employee a raise

• Print the records sorted by increasing salary

IDL is able to perform both formatted and unformatted input/output with indexed
files. In this instance, unformatted access is required because the record definit
contains a binary field (salary).

;Open the previously created, empty file.
OPENU, UNIT, 'data.dat', /KEY, /GET_LUN

;Add the first record. The STRING function is used to pad the name
;to 32 characters using space characters because the data must
;match the FDL description of the file exactly.
WRITEU, UNIT, STRING('Natasha', FORMAT = "(A,T33)"), 14257L

;Second record.
WRITEU, UNIT, STRING('Bullwinkle', FORMAT = "(A,T33)"), 32501L

;Third record.
WRITEU, UNIT, STRING('Rocky', FORMAT = "(A,T33)"), 32500L

;Fourth and last record.
WRITEU, UNIT, STRING('Borris', FORMAT = "(A,T33)"), 6805L

;Print the contents of the file, sorted by name. READ_BY_INDEX is a
;procedure (described below) that does the actual work.
READ_BY_INDEX, UNIT, 0, 'a', 'By Name:'
Building IDL Applications VMS-Specific Information

428 Chapter 16: Files and Input/Output
;In preparation for giving a raise, make variables to read the
;current information on the employee.
NAME = STRING(REPLICATE(32B, 32))

SALARY = 0L

;Read the record for employee Bullwinkle.
READU, UNIT, NAME, SALARY, KEY_VALUE = 'Bullwinkle'

;Update Bullwinkle's record with an increased salary. The REWRITE
;keyword causes the last input record to be overwritten, instead of
;creating a new record.
WRITEU, UNIT, NAME, SALARY + 10000L, /REWRITE

;Print the contents of the file, sorted by salary.
READ_BY_INDEX, UNIT, 1, 0L, 'By Salary:'

;Free the file unit, and close the file.
FREE_LUN, UNIT

The procedure READ_BY_INDEX is implemented as follows:

;Print the contents of the file sorted on the index given by KI. KV
;is the value the first record should be matched against. Heading
;is a banner comment to be printed before the file contents.
PRO READ_BY_INDEX, UNIT, KI, KV, HEADING

;Indicates first trip through main loop.
FIRST = 1

;Prepare variables to read the records into.
NAME = STRING(REPLICATE(32B, 32))
SALARY = 0L

;The EOF function does not work with indexed files, so we will use
;ON_IOERROR to catch attempts to read too far.
ON_IOERROR, EOD

;Loop will be exited on end-of-file.
WHILE 1 DO BEGIN

;First iteration.
IF (FIRST) THEN BEGIN

;Output the heading.
PRINT, FORMAT='(/, a)', HEADING)

;On first iteration, use keywords to locate the first record.
VMS-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 429

es
yte
READU, UNIT, NAME, SALARY, KEY_ID = KI, KEY_MATCH = 1, $
KEY_VALUE = KV

;Indicate that first iteration has happened.
FIRST = 0

;After the first iteration, use normal input statement to read
;sequentially.

ENDIF ELSE BEGIN

READU, UNIT, NAME, SALARY

ENDELSE

;Print the record.
PRINT, FORMAT = '(4X, A, T15, I)', NAME, SALARY

ENDWHILE

;When the above loop tries to read past end-of-file, execution will
;be transferred here.
EOD:

END

Executing the above statements gives the following output:

By Name:
Borris 6805
Bullwinkle 32501
Natasha 14257
Rocky 32500

By Salary:
Borris 6805
Natasha 14257
Rocky 32500
Bullwinkle 42501

Magnetic Tape

Under VMS, IDL offers procedures to directly access magnetic tapes. Data are
transferred between the tape and IDL arrays without using RMS. Optionally, tap
from IBM mainframe compatible systems may be read or written with odd/even b
reversal.
Building IDL Applications VMS-Specific Information

430 Chapter 16: Files and Input/Output

ust

er

tput

o it.

rive
.

The routines used to access magnetic tape directly are as follows:

To use the IDL magnetic tape procedures, you must define a logical name MTn: to be
equivalent to the actual name of the tape drive you wish to use. This definition m
be done before invoking IDL. You also must have the tape mounted as a foreign
volume.

For example, if you wish to access the tape drive MUA0: as IDL tape unit numb
one, issue the following VMS commands before running IDL:

$ MOUNT/FOREIGN MUA0:
$ DEFINE MT1 MUA0:

Then, within IDL, refer to the tape as unit number one. The IDL unit numbern may
range from 0 to 9.

Note
These unit numbers are not the same as the LUNs used by the other input/ou
routines. The unit numbers used by the magnetic tape routines are completely
unrelated and come from the last letter of the MT* logical name used to refer t

Magnetic Tape Examples

The following statements skip forward 30 records on the tape mounted on the d
with the logical nameMT2: and print a message if an end-of-file was encountered

;Skip forward over 30 records on unit 2.
SKIPF, 2, 30, 1

;Print a message if the requested number of records were not
;skipped.
IF !ERR NE 30 THEN PRINT, 'end-of-file hit'

Routine Description

REWIND Rewind a tape unit.

SKIPF Skip records or files.

TAPRD Read from tape.

TAPWRT Write to tape.

WEOF Write an end-of-file mark on tape.

Table 16-12: Magnetic Tape Access Routines
VMS-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 431

iately

 is
-byte
The next example skips two files backwards and then positions the tape immed
after the second file mark encountered in reverse.

;Go backwards two files. Position after file if two files were
;actually skipped.
SKIPF, 0, -2

IF !ERR EQ -2 THEN SKIPF, 0, 1

The following code segment reads a 512 x 512-byte image from the tape which
assigned the logical name MT5. It is assumed that the data are written in 2,048
tape blocks.

;Define image array.
a = BYTARR(512, 512)

;Define an array to hold one tape block worth of data.
b = BYTARR(512, 4)

FOR I = 0, 511, 4 DO BEGIN
;Read next record.
TAPRD, B, 5

;Insert four rows starting at i-th row.
A[0, I] = B

ENDFOR

Assuming the tape is actually on driveMXB2:, the mount command, which must be
issued to VMS before entering IDL, is as follows:

;This command serves to both mount the tape and define the logical
;name MT5 to refer to it, thus making it unit 5 within IDL.
$ MOUNT MXB2:/FOR "" MT5

References

Digital Equipment Corporation (1986),VAX/VMS File Definition Language Facility
Reference Manual, Order Number AA-Z415B-TE, Maynard, Massachusetts.
Building IDL Applications VMS-Specific Information

432 Chapter 16: Files and Input/Output

essed

read
ng

he
ou

 to
Windows-Specific Information

Under Microsoft Windows, a file is read or written as an uninterrupted stream of
bytes—there is no record structure at the operating system level. Files are proc
asbinary or text. Binary files are processed using no translation of characters.Text
files are processed by translating the characters that terminate a line. Lines are
terminated by the character sequence CR LF (carriage return, line feed). During
operations, if a CR character precedes a LF character, the CR is removed. Duri
write operations, all LF characters are prepended with a CR character.

The ASSOC, READU, and WRITEU routines operate in binary mode by default. T
PRINT, PRINTF, READ, and READF routines operate in text mode by default. Y
can override the defaults by setting the BINARY or NOAUTOMODE keywords to
the OPEN procedures. See the documentation for the Windows-Only keywords
OPEN in theIDL Reference Guide.
Windows-Specific Information Building IDL Applications

Chapter 16: Files and Input/Output 433

her

for
Macintosh-Specific Information

Macintosh files store two pieces of information not generally stored by files on ot
platforms—the file’stype and itscreator. The MACTYPE and MACCREATOR
keywords to the OPEN procedures allow you to explicitly set the type and creator
files created on a Macintosh. See the documentation for the Macintosh-Only
keywords toOPEN in theIDL Reference Guide.
Building IDL Applications Macintosh-Specific Information

434 Chapter 16: Files and Input/Output

ons

can
Scientific Data Formats

IDL supports the HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific data formats. Collecti
of built-in routines provide an interface between IDL and these formats.
Documentation for specific routines and further discussion of the various formats
be found inIDL Scientific Data Formats Guide.
Scientific Data Formats Building IDL Applications

Chapter 16: Files and Input/Output 435

s.

IDL
Support for Standard Image File Formats

IDL includes routines for reading and writing many standard graphics file format
These routines and the types of files they support are listed in the table below.
Documentation on these routines can be found in the online help (enter “?” at the
prompt).

Format Read/Write
Routines Query Routine Description

BMP READ_BMP
WRITE_BMP

QUERY_BMP Windows Bitmap
(.bmp) Format

GIF READ_GIF
WRITE_GIF

QUERY_GIF CompuServe Graphics
Interchange Format

Interfile READ_INTERFILE

(Write routine is n/a)

n/a Interfile version 3.3
Format

JPEG READ_JPEG
WRITE_JPEG

QUERY_JPEG Joint Photographic
Experts Group files

NRIF (Read routine is n/a)

WRITE_NRIF

n/a NCAR Raster
Interchange Format

PICT READ_PICT
WRITE_PICT

QUERY_PICT Macintosh version 2
PICT files (bitmap only)

PNG READ_PNG
WRITE_PNG

QUERY_PNG Portable Network
Graphics file

PPM READ_PPM
WRITE_PPM

QUERY_PPM PPM/PGM Format

SRF READ_SRF
WRITE_SRF

QUERY_SRF Sun Raster File

TIFF READ_TIFF
WRITE_TIFF

QUERY_TIFF 8-bit or 24-bit Tagged
Image File Format

X11
Bitmap

READ_X11_BITMAP
(Write routine is n/a)

n/a X11 Bitmap format used
for reading bitmaps for
IDL widget button labels

Table 16-13: IDL-Supported Graphics Standards
Building IDL Applications Support for Standard Image File Formats

436 Chapter 16: Files and Input/Output
XWD READ_XWD
(Write routine is n/a)

n/a X Windows Dump
format

Format Read/Write
Routines Query Routine Description

Table 16-13: IDL-Supported Graphics Standards
Support for Standard Image File Formats Building IDL Applications

Chapter 17:

Using the
IDL GUIBuilder

The following topics are covered in this chapter:
Overview . 438
Starting the IDL GUIBuilder 440
Creating an Example Application. 442
IDL GUIBuilder Tools 453
Widget Operations 468
Generating Files . 471
IDL GUIBuilder Examples. 473
Widget Properties 489
Common Widget Properties 490

Base Widget Properties 496
Button Widget Properties. 507
Text Widget Properties. 511
Label Widget Properties 516
Slider Widget Properties 518
Droplist Widget Properties 521
Listbox Widget Properties. 523
Draw Widget Properties. 526
Table Widget Properties. 532
Building IDL Applications 437

438 Chapter 17: Using the IDL GUIBuilder

 the
tine

tes
th
ted

se
avior
ttons.

t for
,

ing

ts

hich
 to
first
re
Overview

The IDL GUIBuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with a way to interactively create user interfaces and then generate
IDL source code that defines that interface and contains the event-handling rou
place holders.

Note
The IDL GUIBuilder is supported on Windows only. However, the code it genera
is portable and runs on all IDL supported platforms. Since applications built wi
IDL GUIBuilder may require functionality added in the current release, genera
code only runs on the version of IDL you generated the code on or greater.

The IDL GUIBuilder has several tools that simplify application development. The
tools allow you to create the widgets that make up user interfaces, define the beh
of those widgets, define menus, and create and edit color bitmaps for use in bu

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layou
your bases instead of a bulletin board layout. By using a row or column layout
problems caused by differences in the default spacing and decorations (e.g.,
beveling) of widgets on each platform can be avoided

These are the basic steps you will follow when building an application interface us
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBuilder. Widgets are simple graphical objec
supported by IDL, such as sliders or buttons.

2. Set attribute properties for each widget. The attributes control the display,
initial state, and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to w
it can respond. When you design and create an application, it is up to you
decide if and how a widget will respond to the events it can generate. The
step to having a widget respond to an event is to supply an event procedu
name for that event.
Overview Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 439

the
ce

nt

ot
ill
le.
ed.
4. Save the interface design to an IDL resource file, *.prc file, and generate
portable IDL source code files. There are two types of generated IDL sour
code: widget definition code (*.pro files) and event-handling code
(*_eventcb.pro files).

5. Modify the generated *_eventcb.pro event-handling code file using the
IDLDE, then compile and run the code. This code can run on any IDL-
supported platform.

The *_eventcb.pro file contains place holders for all of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary eve
callback routines for each procedure.

Warning
Once you have generated the widget definition code (*.pro files), you should n
modify this file manually. If you decide to change your interface definition, you w
need to regenerate the interface code, and will therefore overwrite that *.pro fi
Any new event handling code will not be overwritten but will instead be append

For information about IDL widgets, and how to create user interfaces
programmatically (without the IDL GUIBuilder), seeChapter 18, “Widgets”.
Building IDL Applications Overview

440 Chapter 17: Using the IDL GUIBuilder

L
t,

an
d.
Starting the IDL GUIBuilder

To open a new IDL GUIBuilder window:

From the IDLDE File menu, choose New, then choose GUI.

Or

Click the New GUI button on the IDLDE toolbar.

Each of these actions opens a new IDL GUIBuilder window and displays the ID
GUIBuilder toolbar. The IDL GUIBuilder window contains a top-level base widge
as shown in the following figure. This top-level base holds all of the widgets for
individual interface; it is the top-level parent in the widget hierarchy being create

Opening Existing Interface Definitions

To open an existing interface design in the IDL GUIBuilder:

Figure 17-1: IDLDE with IDL GUIBuilder Window
Starting the IDL GUIBuilder Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 441

pen.

ting

ion.
1. Do one of the following to launch the Open dialog:

From the IDLDE File menu, choose Open.

Or

Click on the Open button on the IDLDE toolbar.

2. In the Open dialog, locate and select the appropriate *.prc file, and click O

The *.prc portable resource file contains the widget definitions that make up the
widget hierarchy and define your interface design. When you click Open, the exis
definition is displayed in a IDL GUIBuilder window. You can modify the interface
then save it, and you can generate new IDL source code for the modified definit
Building IDL Applications Starting the IDL GUIBuilder

442 Chapter 17: Using the IDL GUIBuilder

lete,

tions

eate

ying

500
on
ll

se

g
ted
Creating an Example Application

The following example takes you through the process of creating your first
application with the IDL GUIBuilder and the IDLDE. You will create the user
interface and write the event callback routines.

The simple example application contains a menu and a draw widget. When comp
the running application allows the user to open and display a graphics file in GIF
format, change the color table for the image display, and perform smooth opera
on the displayed image.

This example introduces you to some of the basic procedures you will use to cr
applications with the IDL GUIBuilder; it shows you how to define menus, create
widgets, set widget properties, and write IDL code to handle events.

Defining Menus for the Top-level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by clicking on the New GUI button
(window icon) on the IDLDE toolbar.

2. Drag out the window then the top-level base to a reasonable size for displa
an image.

For example, drag the base out so that it has an X Size property value of
and a Y Size property value of 400. To view the property values, right-click
the base, and choose Properties from menu. In the Properties dialog, scro
down to view the X Size and Y Size property values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choo
Edit Menu. This action opens the Menu Editor.

4. In the Menu Editor Menu Caption field, enter “File” and click Insert. Clickin
Insert sets the entered value and adds a new line after the currently selec
line, and the new line becomes the selected line.

5. To define the File menu items, do the following:

A. With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it a menu item.

B. Click in the Menu Caption field and enter “Open...”.

C. Click in the Event Procedure field and enter “OpenFile”. The OpenFile
routine will be called when the user selects this menu.
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 443

ight

el

el
D. To create a separator after the Open menu, click the line button at the r
side of the dialog (above the arrow buttons).

E. To set the values and move to a new line, click Insert.

F. In the Menu Caption field, enter “Exit”.

G. In the Event Procedure field, enter “OnExit”.

H. To set the values and move to a new line, click Insert.

6. To define the Tools menu and its one item, do the following:

A. With the new line selected, click the left arrow to make the line a top-lev
menu.

B. In the Menu Caption field, enter “Tools”, then click Insert.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Load Color Table”.

E. In the Event Procedure field, enter “OnColor”.

F. To set the values and move to a new line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:

A. With the new line selected, click the left arrow to make the line a top-lev
menu.

B. In the Menu Caption field, type “Analyze”, then press Enter.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Smooth”.

E. In the Event Procedure field, enter “DoSmooth”.
Building IDL Applications Creating an Example Application

444 Chapter 17: Using the IDL GUIBuilder

g.

me
Your entries should look like those shown in the following figure.

8. Save your menu definitions by clicking OK in the Menu Editor.

Note
For more information about using the Menu Editor, see“Using the Menu Editor”on
page 461.

9. At this time you can click on the menus to test them. Your interface should
look similar to the one in the following figure.

10. From the IDLDE File menu, choose Save, which opens the Save As dialo

11. In the Save As dialog, select a location, enter “example.prc” in the File na
field, and click Save. This action writes the portable resource code to the
specified file.

Figure 17-2: Menu Editor Dialog with Example Menus
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 445

t an
d the
Creating a Draw Widget

To create a draw area that will display GIF image files, follow these steps:

1. Click on the Draw Widget tool button (the dark square icon), then drag ou
area that fills the top-level base display area. Leave a small margin aroun
edge of the draw area when you drag it out.

For more information about creating and operating on widgets, see“Using the
IDL GUIBuilder Toolbar” on page 454 and“Widget Operations” on page 468.

Figure 17-3: IDL GUIBuilder with Example Application
Building IDL Applications Creating an Example Application

446 Chapter 17: Using the IDL GUIBuilder

e
d in

en

rea
r;

t.
for

dget

g,

 the
2. Right click on the draw area, and choose Properties. This action opens th
Properties dialog for the draw area; the draw widget properties are displaye
the dialog.

3. In the Properties dialog, click the push pin button so the dialog will stay op
and on top.

4. In the Properties dialog, change the draw widgetName attribute value to
“Draw”.

Later, you will write code to handle the display of the image in this draw a
widget. Renaming the widget now will make it easier to write the code late
the “Draw” name is easy to remember and to type.

Note
The Name property must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select i
When you do so, the Properties dialog will update and display the attributes
this base widget.

6. In the Properties dialog, locate theComponent Sizing property, and select
Default from the droplist values. This action sizes the base to the draw wi
size you created.

When you first dragged out the size of the base, the Component Sizing
property changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizin
and IDL will handle the sizing of this top-level base.

7. From the File menu, choose Save, which saves your new modifications to
example.prc file. The application should look like the one shown in the
following figure.
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 447
Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus.

To run your application in test mode:

From the Run menu, choose Test GUI.

Or

Table 17-1: Complete Example Application
Building IDL Applications Creating an Example Application

448 Chapter 17: Using the IDL GUIBuilder

on

s

ter

e file.

res

. If
g
on
Press Control+t.

Both these actions display the interface as it will look when it runs. You can click
the menus, but there is no active event handling in test mode.

To exit test mode:

Press the Esc key.

Or

Click the close X in the upper-right corner of the test application window.

Generating the IDL Code

To generate the code for the example application, follow these steps:

1. From the File menu, choose Generate .pro. This action opens the Save A
dialog.

2. In the Save As dialog, find the location where you want the files saved, en
“example.pro” in the File name field, and click Save.

This action generates an example.pro widget definition file and an
example_eventcb.pro event-handling file.

The example.pro file contains the widget definition code, and you should
never modify this file. If you decide later to change your interface, you will
need to regenerate this interface code, and thus overwrite the widget cod

The example_eventcb.pro contains place holders for all the event procedu
you defined in the IDL GUIBuilder Menu Editor and Properties dialog. You
must complete these event procedures by filling in event callback routines
you generate code after you have modified this file, any new event handlin
code will not be overwritten but will instead be appended. For information
ways to handle regenerating the *_eventcb.pro file, see“Notes on Generating
Code a Second Time” on page 472.

For more information on interface definitions and generated code, see
“Generating Files” on page 471.

Note
You should modifyonly the generated event-handling file (*_eventcb.pro); you
should never modify the generated interface code (the *.pro file).
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 449

s for

 For
r to
e

ps:

n

lick
ou

nce,

dded
Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the event
the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event.
this application, the Open menu item will launch an Open dialog to allow the use
choose a GIF file, and then the routine will check the selected file’s type, read th
image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these ste

1. From the File menu in the IDLDE, choose Open, which launches the Ope
dialog.

2. In the Open dialog, locate and select the example_eventcb.pro file, and c
Open. This file contains the event handling routine place holders, which y
will now complete.

3. In the example_eventcb.pro file, locate the OpenFile routine calling seque
which looks like this:

PRO OpenFile, Event

END

4. Add the following code to handle the event (the comments describe the a
code):

PRO OpenFile, Event

; If there is a file, draw it to the draw widget.
sFile = Dialog_Pickfile(filter="*.gif")
if(sFile ne "")then begin

; Find the draw widget, which is named Draw.
wDraw = Widget_Info(Event.top, find_by_uname="Draw");
; Make sure something was found.
if(wDraw gt 0)then begin

; Make the draw widget the current, active window.
widget_control, wDraw, get_value=idDraw
wset,idDraw

; Read in the image.
read_gif,sFile, im
; Size the image to fill the draw area.
im = congrid(im, !d.x_size, !d.y_size)
Building IDL Applications Creating an Example Application

450 Chapter 17: Using the IDL GUIBuilder

e
me

ooses

se
; Display the image.
tv, im
; Save the image in the uvalue of the top-level base.
widget_control, Event.top, set_uvalue=im, /no_copy

endif
endif

END

Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw
widget using its name property. In this example, the widget name, “Draw”, is th
one you gave the widget in the IDL GUIBuilder Properties dialog. The widget na
is case-sensitive.

Handling the Exit Event

To add the code that causes the example application to close when the user ch
Exit from the File menu, follow these steps:

1. Locate the OnExit routine place holder, which looks like this:

PRO OnExit, Event

END

2. Add the following statement to handle the destruction of the application:

PRO OnExit, Event

widget_control, Event.top, /destroy

END

Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses Load Color Table from the Tools menu, follow the
steps:

1. Locate the OnColor routine place holder, which looks like this:

PRO OnColor, Event

END

2. Add the following procedure to open the IDL XLoadct color table dialog:

PRO OnColor, Event
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 451

fined

hed
is 5.

:

xloadct

END

This procedure opens a dialog from which the user can select from a set of prede
color tables. When the user clicks the name of a color table, it is loaded and the
displayed GIF file changes appropriately.

Note
The IDL XLoadct color table dialog affects only 8-bit display devices.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed GIF image. The smooth operation displays a smoot
image with a boxcar average of the specified width, which in the example code

To add the callback routines to handle the smooth operation, follow these steps

1. Locate the DoSmooth routine place holder, which looks like this:

PRO DoSmooth, Event

END

2. Add the following code to handle the smooth operation:

PRO DoSmooth, Event

; Get the image stored in the uvalue of the top-level-base.
widget_control, Event.top, get_uvalue=image, /no_copy
; Make sure the image exists.
if(n_elements(image) gt 0)then begin

; Smooth the image.
image = smooth(image, 5)
; Display the smoothed image.
tv, image
; Place the new image in the uvalue of the button widget.
widget_control, Event.top, set_uvalue=image, /no_copy

endif

END

3. From the File menu, choose Save, which saves all your changes to the
example_eventcb.pro file.
Building IDL Applications Creating an Example Application

452 Chapter 17: Using the IDL GUIBuilder

re

an
the
Compiling and Running the Example Application

To compile and run your example application, follow these steps:

1. At the IDL> command prompt, type the following:

example

2. This action compiles and runs the example application. The following figu
shows the example application and the IDL color table dialog.

In the running application, you can open and display a GIF file. Then, you c
open the IDL XLoadct dialog and change the color table used in displaying
image, or you can perform the smooth procedure on the image.

Table 17-2: Running Example Application and XLoadct Dialog
Creating an Example Application Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 453

ng

ke

t

ify
IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface usi
the IDL GUIBuilder:

• The IDL GUIBuilder Toolbar, which you use to create the widgets that ma
up your interface. See“Using the IDL GUIBuilder Toolbar” on page 454 and
“Widget Operations” on page 468.

• Widget Properties dialog, which you use to set widget attributes and even
properties. See“Using the Properties Dialog” on page 457 and“Widget
Properties” on page 489.

• Widget Browser, which you can use to see the widget hierarchy and to mod
certain aspects of the widgets in your application. See“Using the Widget
Browser” on page 460.

• The Menu Editor, which you use to define menus to top-level bases and
buttons. See“Using the Menu Editor” on page 461.

• The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets. See“Using the Bitmap Editor” on page 465.

• The IDLDE to modify, compile, and run the generated code (seeChapter 3,
“The IDL for Windows Interface” in theUsing IDL manual.
Building IDL Applications IDL GUIBuilder Tools

454 Chapter 17: Using the IDL GUIBuilder

e

se

act

n

Using the IDL GUIBuilder Toolbar

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the
widgets for your user interface. The following figure shows the toolbar.

These are the widget types you can create using the IDL GUIBuilder toolbar:

Figure 17-4: IDL GUIBuilder Toolbar

Widget Description

Base Creates a container for a group of widgets within a top-level bas
container. A top-level base is contained in the IDL GUIBuilder
window, and you build your interface in it. Use base widgets
within the top-level base to set up the widget hierarchy, layout,
and to organize the application. For example, you can use a ba
widget to group a set of buttons. For information on base
properties, see“Base Widget Properties” on page 496.

Button Creates a push button. The easiest way to allow a user to inter
with your application is through a button click. You can have
button widgets display labels, menus, or bitmaps. For informatio
on button properties, see“Button Widget Properties” on
page 507.

Table 17-3: Widget Types

Select Cursor

Base Button Radio Button

Checkbox

Text

Label

Vertical Slider ListboxDroplist Draw Area

Table

Horizontal Slider
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 455

le

on

r

d

st

ee
Radio Button Creates a toggle button that is always grouped within a base
container. Use radio buttons to present a set of choices from
which the user can pick only one. For information on radio button
properties, see“Button Widget Properties” on page 507.

Checkbox Creates a checkbox, which you can use either as a single togg
button to indicate a particular state is on or off or as a list of
choices from which the user can select none to all choices.
Checkboxes are created within a base container. For informati
on checkbox properties, see“Button Widget Properties” on
page 507.

Text Creates a text widget. Use text widgets to get input from users o
to display multiple lines of text. For information on text widget
properties, see“Text Widget Properties” on page 511.

Label Creates a label. Use label widgets to identify areas of your
application or to label widgets that do not have their own label
property. Use labels when you have only a single line of text an
you do not want the user to be able to change the text. For
information on label widget properties, see“Label Widget
Properties” on page 516.

Horizontal
and Vertical
Sliders

Creates a slider with a horizontal or vertical layout. Use slider
widgets to allow the user to control program input, such as adju
the speed of movement for a rotating image. For information on
slider properties, see“Slider Widget Properties” on page 518.

Droplist Creates a droplist widget, which you can use to present a
scrollable list of items for the user to select from. The droplist is
an effective way to present a lot of choices without using too
much interface space. For information on droplist properties, s
“Droplist Widget Properties” on page 521.

Listbox Creates a list widget, which you can use to present a scrollable
list of items for the user to select from. For information on listbox
properties, see“Listbox Widget Properties” on page 523.

Widget Description

Table 17-3: Widget Types
Building IDL Applications IDL GUIBuilder Tools

456 Chapter 17: Using the IDL GUIBuilder

s that
cted

IDL
en
se

n act

the
e of

el

, and
For

.

w

Note
The Select Cursor button returns the cursor to its standard state, and it indicate
the cursor is in that state. After you click on another button and create the sele
widget, the cursor returns to the selection state.

Creating Widgets

All widgets for a user interface must be descendents of a top-level base; in the
GUIBuilder window, all widgets must be contained in a top-level base widget. Wh
you open a IDL GUIBuilder window, it contains a top-level base. You can add ba
widgets to that top-level widget to form a widget hierarchy. The added bases ca
as containers for groups of widgets.

To create a widget:

Click on the appropriate button on the toolbar, then drag out an area within
top-level base widget. When you release the mouse button, a widget the siz
the dragged-out area is created.

Or

Click on the appropriate button on the toolbar, then click within the top-lev
base area. This action creates a widget of the default size.

After you add widgets to a top-level base, you can resize, move, and delete them
you can change their parent base. You can also set properties for each widget.
information on how to operate on widgets, see“Widget Operations”on page 468, and
for information on setting properties, see“Using the Properties Dialog” on page 457.

Draw Area Creates a draw area, which you can use to display graphics in
your application. The draw area can display IDL Direct Graphics
or IDL Object Graphics, depending on how you set its properties
For information on the draw area properties, see“Draw Widget
Properties” on page 526.

Table Creates a table widget, which you can use to display data in a ro
and column format. You can allow users to edit the contents of
the table. For information on the table widget properties, see
“Table Widget Properties” on page 532.

Widget Description

Table 17-3: Widget Types
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 457

get’s

f the

n you
e
 the
pply
Using the Properties Dialog

For each widget, you can define attribute and event procedure properties. A wid
attributes define how it will display on the screen and its basic behaviors. The
attributes you can set for a selected widget are displayed on the Attributes tab o
Properties dialog. These attributes are initially set to default values.

Event procedures are the predefined set of events a widget can recognize. Whe
write an application, you decide if and how the widget will respond to each of th
possible events. The events that a selected widget recognizes are displayed on
Events tab of the Properties dialog. The event Values are initially undefined. Su
event routine names for only those events to which you want the application to
respond.

Opening the Properties dialog

To open the Properties dialog for a widget:

Right-click on the widget in the IDL GUIBuilder window, and choose
Properties from the menu.

Or

Select the widget, and choose Properties from the Edit menu.
Building IDL Applications IDL GUIBuilder Tools

458 Chapter 17: Using the IDL GUIBuilder

 the
ectly
.

for

lect
These actions open a Properties dialog similar to the one shown in the following
figure.

The status area at the bottom of the Properties dialog, contains a description of
currently selected attribute or event. In addition, for each property that maps dir
to an IDL keyword, there is a tool-tip that provides the name of the IDL keyword

To display a tool-tip:

Place the cursor over the property name. The tool-tips are displayed only
properties that map to IDL keywords.

Note
If you have multiple widgets selected in the IDL GUIBuilder window, the
Properties dialog displays the properties for the primary selection, which is
indicated by the darker, filled-in sizing handles around the widget. When you se
multiple widgets, only one is marked as the primary selection.

To keep the Properties dialog on top:

Click the push pin button.

Table 17-4: Properties Dialog for a Slider Widget
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 459

ush
d

ll see
ke to

cific
s

order

he
le
The Properties dialog will close as soon as it loses focus, unless you click the p
pin button. If you click the push pin button, the Properties dialog stays on top an
updates to reflect the properties of the currently selected widget.

To close the Properties dialog when the push pin is being used:

Click the push pin again, and the dialog will close when it loses focus.

Or

Press Escape while the dialog has focus.

Or

Click the close X in the upper right corner of the dialog.

Any changes you make to values in the Properties dialog are automatic; you wi
the results of all visual changes immediately. For example, any changes you ma
the alignment or column setting will change the layout position of the widget
immediately.

All widgets share a common set of properties, and each widget has its own spe
properties. These properties are arranged in the following order in the Propertie
dialog Attributes tab:

• The Name property

• An alphabetical list of common and widget-specific properties, combined

On the Properties dialog Events tab, the properties are displayed in alphabetical
with common and widget-specific events combined.

For information on the properties you can set for each widget, see“Widget
Properties” on page 489.

Entering Multiple Strings for a Property

There are several widget properties that you can set to multiple string values. T
attribute’s Value field contains a popup edit control in which you can enter multip
strings.

To enter more than one string in the edit control, do one of the following:

Type in a string, then press Control+Enter, at the end of each line.

Or

Type in a string, then press Control+j, at the end of each line.
Building IDL Applications IDL GUIBuilder Tools

460 Chapter 17: Using the IDL GUIBuilder

ssary

.

can
. For
These actions move you to the next line. When you have entered the nece
string, press Enter to set the values.

Using the Widget Browser

The Widget Browser of the IDL GUIBuilder is a dialog window that presents the
current GUI in a tree control. This presents the user with a different view into the
GUI they are designing.

To start the Widget Browser:

Right-click on any component in a IDL GUIBuilder window, then choose
Browse from the menu.

This action opens the Widget Browser, like the one shown in the following figure

The Widget Browser is helpful when you want to see your widget hierarchy and
when you need to operate on overlapping widgets in your interface layout, which
happen when you design an interface to show or hide widgets on specific events
an example that uses the Widget Browser for this purpose, see“Controlling Widget
Display” on page 483.

Note
In the Widget Browser, there is no indication of defined menus.

Figure 17-5: Widget Browser
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 461

ing

d in

py,
erties
et

w

et to
 in
,
dures.
You can expand the widget tree by clicking on the plus sign, or contract it by click
on the minus sign.

When you select a widget in the hierarchy by clicking on it, the widget is selecte
the IDL GUIBuilder window, and the Properties dialog updates to display the
selected widget’s properties.

Right-click on a component to display a context menu from which you can cut, co
paste, or delete the widget. From the context menu, you can also open the Prop
dialog and the Menu Editor, when appropriate. To delete a widget from the Widg
Browser, use the context menu, or select a widget and press the Delete key.

To change a widget’s Name property in the Widget Browser:

Select the widget name with two single clicks on the name. This action
changes the name into an editable text box in which you can enter the ne
name. TheName property must be unique to the widget hierarchy.

For more information on other ways to operate on widgets, see“Widget Operations”
on page 468.

Using the Menu Editor

You can add menus to top-level bases or to buttons that have the Type property s
Menu. To define menus for your interface, use the Menu Editor, which is shown
the following figure with defined menus. This dialog allows you to define menus
menu items, submenu titles, and submenus, and all their associated event proce
Building IDL Applications IDL GUIBuilder Tools

462 Chapter 17: Using the IDL GUIBuilder

ee

el

g a
utton
first
For the instructions on how to define the menus shown in the following figure, s
“Defining Menus for the Top-level Base” on page 442.

To define basic menus, menu items, submenu titles, and submenus and their
associated event procedures, to top-level bases, follow these general steps:

1. Open the Menu Editor by doing one of the following:

From the Edit menu, choose Menu.

Or

Right-click on a top-level base, then choose Edit Menu.

2. To define a top-level menu in the Menu Editor, enter a Menu Caption, and
click Insert. When you are defining menus for a top-level base, the top-lev
menus are aligned along the left edge of the menu list, and following the
indentation indicates the nesting in the menu.

Note
The Menu Caption is the name that appears on the menubar. If you are definin
top-level menu for a base, you do not need to supply an Event Procedure. On b
menus however, the button’s Label property acts as the top-level menu, and the

Figure 17-6: Menu Editor Dialog

Separator

Move Left

Move Right

Move Down

Move Up
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 463

t

r a

nt
is

 the

ot

vent

k

 is

o,

the
er,
level of menus in the editor serve as menu items, and thus need defined Even
Procedures.

3. To define a menu item on a new line in the editor, click the right arrow, ente
Menu Caption and its associated Event Procedure, and then click Insert.

The Menu Caption is the name you want to appear on the menu. The Eve
Procedure is the name of the routine that will be called when the menu item
selected.

Note
For top-level bases, you must indent a line to make it a menu item and enable
Event Procedure field.

4. To define a submenu title, enter the Menu Caption, and click Insert. It is n
necessary to define Event Procedures for submenu titles.

5. To define submenus to a submenu title, enter the Menu Caption and the E
Procedure, indent the item another level by using the right arrow, and click
Insert. Enter the submenus you want at this level of indentation.

6. To define another top-level menu or menu item, enter the information, clic
the left arrow until the indentation is appropriate, and click Insert.

7. To define a separator, select a blank line, or select the line you want the
separator after, then click the separator button (which has a line on it and
above the arrow buttons).

8. To save your defined menus, Click OK in the Menu Editor. When you do s
the menu items will appear on the top-level base. To test the display of the
menus, click on them.

Note
Under Microsoft Windows, including the ampersand character (&) in the Menu
Caption causes the window manager to underline the character following the
ampersand, which is the keyboard accelerator. This functionality is supported in
Menu Editor. If you are designing an application to run on other platforms howev
avoid the use of the ampersand in the Menu Caption.

To move a menu item to a new position:
Building IDL Applications IDL GUIBuilder Tools

464 Chapter 17: Using the IDL GUIBuilder

the

n
ure.

y

ow

se

ies

se

r,

el
ed
Select the menu item, and click the up or down arrow on the right side of
dialog until the menu item is in the desired position. Then, click OK.

To add a menu item in the middle of existing menu items:

Select the line you want the new item to follow, then click Insert. This actio
adds a new line, for which you can enter a Menu Caption and Event Proced

To make a menu item display disabled initially:

Click the Enabled checkbox (to uncheck it). All menu items are enabled b
default.

To delete a menu item:

Select the item, then click Delete.

To delete a menu:

Delete each contained menu item, then delete the top-level menu.

Adding Menus to Buttons

You can also create buttons that contain menus. To add a menu to a button, foll
these basic steps:

1. Click on the Button widget tool on the toolbar, then click on the top-level ba
area. This action creates a button of the default size.

2. Right-click on the button and choose Properties, which opens the Propert
dialog.

3. In the Properties dialog, click on the Type attribute Value arrow, then choo
Menu from the droplist.

4. Right-click on the button, then choose Edit Menu, which opens the Menu
Editor. You can define the menu items and submenus with the Menu Edito
using the general steps described above.

Note
For buttons, the buttonLabelproperty acts as the top-level menu, and the first lev
of menus in the Menu Editor serve as menu items, and therefore require defin
Event Procedures (unlike top-level menu items defined to bases).
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 465

o,
y is

),

w

s.
an
.

The

ich

te,

tmap
at

elect
nd
5. After you have defined all the necessary menus, click OK. When you do s
the menus are saved, and, in the IDL GUIBuilder, the button Label propert
displayed as the top-level menu.

To view menus on buttons:

Immediately after creating the menu (after clicking OK in the Menu Editor
click on the button, and the menus will display.

Or

At any other time, right-click on the button, and then choose Show Menu.
After you do this, you can click on the button to view the menu items. To vie
the menus at any other time, choose Show Menu again.

Using the Bitmap Editor

Use the Bitmap Editor to create 16 color bitmaps to be displayed on push button
The Bitmap Editor can read and write bitmap files (*.bmp). Using the editor, you c
create your own bitmaps, or you can open existing bitmap files and modify them

IDL supplies a set of bitmap files you can use in the buttons of your applications.
files are always available for loading. The bitmaps are located in the following
directory:

IDL_DIR \resource\bitmaps

Placing a Color Bitmap on a Button

To display a bitmap on a button, follow these steps:

1. Right-click on the button widget, and choose Properties from the menu, wh
opens the Properties dialog for this button.

2. In the Type Value field, select Bitmap from the droplist.

3. In the Properties dialog, click on the arrow to the right of the Bitmap attribu
and do one of the following:

To place an existing bitmap in the button, choose Select Bitmap, and select a bi
file from the Open dialog. This action displays the bitmap on the button. Note th
when Bitmap type is selected, the label property changes to Bitmap.

Or

To edit an existing bitmap and place it in the button, choose Edit Bitmap, then s
the bitmap file from the Open dialog. This opens the bitmap in the Bitmap Editor, a
Building IDL Applications IDL GUIBuilder Tools

466 Chapter 17: Using the IDL GUIBuilder

hen

n
save

p
n

the
).

ct
ol

 any
assigns this as the bitmap to display on the button. It is displayed on the button w
you save the file.

Or

To create a new bitmap and place it in a button, choose New Bitmap. This actio
opens the Bitmap Editor, which you can use to create the new bitmap. When you
the *.bmp file, it is placed on the button.

When you complete one of these processes, the filename of the selected bitma
appears in theBitmap field of the Properties dialog, and the bitmap is displayed o
the button.

Using the Bitmap Editor Tools

The Bitmap Editor tools allow you to select from the color palette, and then use
Pencil (pixel fill), the Flood fill (fill clear area), or the Eraser (clear or color areas
The Bitmap Editor tools are shown in the following figure.

You can select a color by clicking on it in the color selection tool, or you can sele
your primary colors, the left-button and right-button colors, and then click on a to
and draw on the bitmap canvas. You can change the primary color selections at
time.

Figure 17-7: Bitmap Editor Tools

Selection Cursor

Pencil (Pixel Fill) Flood Fill

Eraser

Color Selection Area

Left-button Color

Right-button Color
IDL GUIBuilder Tools Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 467
To select the left mouse button color:

Left-click on the color in the color selection area.

To select a right mouse button color:

Right-click on the color in the color selection area.

To use the left color:

With a tool selected, click or press and drag the right mouse button on the
bitmap canvas.

To use the right color:

With a tool selected, click or press and drag the left mouse button on the
bitmap canvas.

To change the size of the bitmap:

Drag the bitmap canvas to the desired size.
Building IDL Applications IDL GUIBuilder Tools

468 Chapter 17: Using the IDL GUIBuilder

ct,
o

ol
t

t
ton,

ou
ed
Widget Operations

The IDL GUIBuilder allows you to operate on widgets in many ways. You can sele
deselect, move, cut, copy, paste, and delete widgets, and you can undo and red
operations. This section describes the following:

• Selecting Widgets

• Moving and Resizing Widgets

• Cutting, Copying, and Pasting Widgets

• Deleting Widgets

• Undoing and Redoing Operations

Selecting Widgets

You can select a widget, then move it or resize it.

To select a widget:

Click on the widget.

To select more than one widget:

Press Shift and click on each widget.

Or

Press Control and click on the widgets. When you press Control, you can
change the selection state by clicking again on the widget; pressing Contr
during selection allows you to toggle the selection state of a widget withou
affecting the selection state of any other widget.

Or

Press the left mouse button and drag out an area in the top-level base tha
includes the widgets you want to select. When you release the mouse but
widgets in the selection box are selected.

When you select multiple widgets, there is always one primary selection. The
primary widget selection is indicated with the dark, filled-in selection handles. If y
open the Properties dialog with multiple widgets selected, the properties display
are those for the primary selection.
Widget Operations Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 469

me

ew

same

w

er
e
in

n
ns,

nu.
Note
When selecting multiple widgets, you can select only widgets that share the sa
base widget as their parent.

Moving and Resizing Widgets

You can move widgets around in their parent base by dragging the widget to a n
location or by using the arrow keys.

To move a widget to a new base; to give a widget a new parent base within the
top-level base:

Press Alt and drag and drop the widget on the new parent base.

Or

Right-click on the widget, choose Cut from the menu, right-click on the ne
base widget, and choose Paste from the menu.

Note
When you drag a widget to a new location, either in the same base or in anoth
base, and theLayout attribute for the parent base is set to Column or Row, a blu
line displays to indicate where the widget will be placed relative to other widgets
the base.

To resize a widget:

Click on a sizing handle, and drag to the desired size.

Cutting, Copying, and Pasting Widgets

You can cut, copy, and paste widgets within the same base or to another base i
another IDL GUIBuilder window, using the Edit menu items, or the toolbar butto
or a context menu (opened with a right-click on the widget).

To cut or copy a selected widget, or to paste a widget from the clipboard:

Choose the appropriate operation from the Edit menu, or from the IDLDE
toolbar.

Or

Right-click on the widget and select the appropriate operation from the me
If you are pasting, right-click on the base widget you want to paste into.
Building IDL Applications Widget Operations

470 Chapter 17: Using the IDL GUIBuilder

y, or

ard.

ry.
Or

Select the widget and use standard windows keyboard shortcuts to cut, cop
paste the widget.

Note
All cut or copied items are placed on a local clipboard, not on the system clipbo

Deleting Widgets

To delete a widget:

Select the widget and choose Delete from the Edit menu.

Or

Select the widget and press the Delete key.

Or

Right click on a widget and choose Delete from the menu.

Undoing and Redoing Operations

In the IDL GUIBuilder, you can undo or redo unlimited operations between save
procedures. If you save the resource file, the operations are cleared from memo

To undo an operation:

Choose Undo from the Edit menu.

Or

Click the Undo button on the IDLDE toolbar.

Or

Press Control+z.

To redo an operation:

Choose Redo from the Edit menu.

Or

Click the Redo button on the IDLDE toolbar.

Or

Press Control+y.
Widget Operations Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 471

s

o

n
t

 As
e

:

ave
the
r the
e

ou
Generating Files

The IDL GUIBuilder generates the following two types of files:

• *.prc files that contain the resource definitions for the interface definition a
displayed in the IDL GUIBuilder.

• *.pro files that contain the generated IDL source code. The generated *.pr
files are portable across all IDL-supported platforms.

Generating Resource Files

The *.prc files contain the resource definitions for the graphical interface. You ca
open *.prc files in the IDL GUIBuilder and modify the interface at anytime. Do no
attempt to modify this file directly.

To save a *.prc file for the first time:

Choose Save or Save As from the IDLDE File menu. This opens the Save
dialog, which allows you to select a location and indicate a file name for th
*.prc file.

Generating IDL Code

The IDL GUIBuilder can generate these two kinds of *.pro IDL source code files

• Widget definition code (*.pro files).

• Event-handling code (*_eventcb.pro files).

To save both the widget code and the event handler *.pro files:

From the IDLDE File menu, choose Generate .pro. This action opens the S
As dialog, which you can use to select a location and indicate a name for
widget code. The event code file name is based on the name specified fo
widget code. For example, if you enter “app1.pro” in the File name field, th
event code file will be named “app1_eventcb.pro”.

Note
Never modify the generated *.pro interface file. If you decide to modify the
application interface, use the IDL GUIBuilder, then regenerate the file. When y
regenerate the widget code, the file is overwritten.
Building IDL Applications Generating Files

472 Chapter 17: Using the IDL GUIBuilder

en

ld
 to

.pro

ge
w

Note
When you save both files, IDL puts the RESOLVE_ROUTINE procedure in the
generated widget code. The procedure contains the name of the related
*_eventcb.pro event-handler file so that it will be compiled and loaded with wh
you run the widget code.

Notes on Generating Code a Second Time

When you modify a interface and save the *.prc file, it is overwritten, which shou
not be a problem. If you decide to change your interface, you will however need
regenerate the widget code and thus overwrite the *.pro widget code file.

Note that if you regenerate either of the *.pro files, they are overwritten. When
writing code, you should modifyonly the generated event-handling file
(*_eventcb.pro); and, you should never modify the generated widget code (the *
file). This allows you to change the interface and regenerate the definition code
without losing modifications in that file. This should simplify the procedures you
need to take to update or change an interface.

Because it is modular, the event-handler code is simple to modify after you chan
the interface definitions. When you regenerate the IDL source code files, any ne
event handler code is appended to the end of the file.
Generating Files Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 473

,
e

ted

r
nts,

 you

e of

en a

the
IDL GUIBuilder Examples

After you define your interface and generate IDL code using the IDL GUIBuilder
you will write the code that controls the application’s behavior. You can modify th
code, compile it, and run it using the IDLDE.

Generally, you will be writing the event-handler callbacks for the procedures loca
in the generated *_eventcb.pro file. While doing this, you might like to handle
initialization states, have multiple GUIs work together, add compound widgets, o
control widget display. For examples of how to handle these different types of eve
see the following sections:

• Understanding IDL GUIBuilder Event Handling Code

• Writing Event Callback Routines

• Handling Initialization Arguments

• Integrating Multiple Interfaces

• Adding Compound Widgets

• Controlling Widget Display

Understanding IDL GUIBuilder Event Handling Code

When using the IDL GUIBuilder, you assign event procedures to specific events
using the Properties dialog Events tab. The calling sequence for the events that
set are added to the generated *_eventcb.pro event callback code.

The argument that is passed into the specified event routine depends on the typ
event being processed. Creation, realization, and destruction event routines are
usually passed the ID of the involved widget, and all other callback routines are
passed the appropriate IDL widget event structure.

It is a normal operation in applications to change the attributes of the interface wh
certain events occur. One method used in handling events for IDL GUIBuilder
generated applications is the UNAME keyword, or theName property, given to all
created widgets. (In a programmatically created IDL application, this action is
handled using information stored in a widget component’s user value.)

When you create a widget in the IDL GUIBuilder, IDL gives it a name unique to
widget hierarchy to which it belongs. You can rename the widget using theName
property.
Building IDL Applications IDL GUIBuilder Examples

474 Chapter 17: Using the IDL GUIBuilder

hese

-

ens

log.

pen

se:

.

t of

s

In the generated code, this name is specified by the UNAME keyword. Because t
names are unique, you can use the WIDGET_INFO function with the
FIND_BY_UNAME keyword in your event callback routines to get the IDs of
widgets in the interface application.

Note
For information on properties, see“Using the Properties Dialog” on page 457, and
see“Widget Properties” on page 489.

Writing Event Callback Routines

This short example shows how basic event processing works in IDL GUIBuilder
generated code. The example demonstrates how to use the FIND_BY_UNAME
keyword to obtain the IDs of other widgets in the interface.

To create this simple example application, follow these steps:

1. From the IDLDE File menu, choose New, then choose GUI. This action op
a new IDL GUIBuilder window.

2. In the IDL GUIBuilder window, right-click on the contained top-level base,
and choose Properties from the menu. This action opens a Properties dia

3. In the open Properties dialog, click the push pin button to keep the dialog o
and on top.

4. On the Properties dialog Attributes tab, set the following for the top-level ba

• Set theComponent Sizing property to Default.

• Set theLayout property to Column.

5. On the IDL GUIBuilder toolbar, click the Label widget button (the letter A)

6. Click on the top-level base area, which adds to the interface a label widge
the default.

7. With the label widget selected, set the following attributes in the Propertie
dialog:

• In theName field, enter “clock”.

• Set theAlignment attribute to Center.

• Set theComponent Sizing attribute to Default.

• In theText field, enter “No Time Currently Available”.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 475

).

ce.

og:

g.

ld,
.

8. On the IDL GUIBuilder toolbar, click the Button widget (the rectangle icon

9. Click on the top-level base area, which adds a button widget to the interfa

10. With the button selected, set the following attributes in the Properties dial

• In theLabel field, enter “Time”.

11. In the Properties dialog, click the Events tab and do the following:

• In theOnButtonPress field, enter “OnPress”.

Your interface definition should look like the one shown in the following figure.

12. From the IDLDE File menu, choose Save, which opens the Save As dialo

13. In the Save As dialog, select a location, enter “time.prc” in the File name fie
and click Save. This action saves the interface definition to a resource file

Figure 17-8: Handling Events Example Application
Building IDL Applications IDL GUIBuilder Examples

476 Chapter 17: Using the IDL GUIBuilder

 As

e
he

g.

t
bel

 time.

d

the

de
14. From the IDLDE File menu, choose Generate .pro which opens the Save
dialog.

15. In the Save As dialog, select the location, enter “time.pro” in the File nam
field, and click Save. This action saves the time.pro widget code file and t
time_eventcb.pro event callback code to the specified directory.

16. From the IDLDE File menu, choose Open, which launches the Open dialo

17. In the Open dialog, locate and select the time_eventcb.pro file, then click
Open. This action opens the file in the IDLDE.

18. In the file, locate the OnPress event procedure place holder, and add the
following IDL code to handle a button press, like this:

PRO OnPress, Event

; Get the widget ID of the label widget.
Label = widget_info(Event.top, find_by_uname='clock')

; Set the value of the label widget to current time.
widget_control, Label, set_value=Systime(0)

END

The first command gets the ID of the label widget by searching the widge
hierarchy for a widget named “clock”. This is the name that you gave the la
widget in the IDL GUIBuilder Properties dialog. Once the ID is found, the
second command sets the value of the label widget to the current system

19. From the Run menu, choose, Compile time_eventcb.pro, which saves an
compiles the file.

20. To execute the program, enter the following at the IDL command prompt:

time

This compiles and runs the time.pro file. In the running application, you can press
Time button to cause the current time to be displayed in the label.

Handling Initialization Arguments

You can provide runtime initialization information to the generated *.pro widget co
by modifying the *_eventcb.pro file. Keywords provided to the generated widget
interface procedure are passed to the post creation routines using the _EXTRA
keyword.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 477

us
each

dal

u

se
e,

tine

te
gic
ook

og at
If a routine is defined with the _EXTRA keyword parameter, you can add
unrecognized keyword and value pairs, and the pairs are placed in an anonymo
structure. The name of each unrecognized keyword becomes a tag name, and
value becomes the tag value.

You will use this feature most often when your application launches floating or mo
dialogs, but the functionality is always available.

For example, if you want to display a dialog at the creation of an application, yo
would follow these basic steps:

1. Create an interface using the IDL GUIBuilder.

2. After creating the interface, open the Properties dialog for the top-level ba
and set thePostCreationevent for the top-level base widget to a routine nam
such as “OnCreate”.

3. Save the interface definition and generate the IDL source code

4. In the generated *_eventcb.pro event code file, locate the “OnCreate” rou
place holder, which looks like this:

PRO OnCreate, wWidget, _EXTRA=_VWBExtra_

END

5. To process a specific keyword in this post creation routine, declare the
keyword in the procedure statement and add the processing code to the
procedure.

For example, to process the DO_DIALOG keyword in the defined OnCrea
procedure, add the DO_DIALOG keyword to the procedure, and add the lo
to handle it to the event callback routine. The completed procedure should l
like this:

PRO OnCreate, wWidget, DO_DIALOG=DO_DIALOG, _EXTRA=_VWBExtra_

; If DO_DIALOG is set, display a simple message box.
if(Keyword_Set(DO_DIALOG))then $

status = Dialog_Message("On Dialog Set")

END

6. Save the file, then compile and generate the application. To show the dial
creation time, enter the following at the IDL command prompt:

<ProgramName>, /DO_DIALOG
Building IDL Applications IDL GUIBuilder Examples

478 Chapter 17: Using the IDL GUIBuilder

o
uct

le
 is

ens

k
ase.

 and

e

og.

me
he
Integrating Multiple Interfaces

You can create multiple interfaces with the IDL GUIBuilder then integrate them t
form the complete application hierarchy. This example shows you how to constr
two interfaces and integrate them.

The first interface you will create is the main window, and it will consist of a simp
push button that will launch a modal dialog. The second interface you will create
the modal dialog, and it will display a close button.

Creating the Main Window

To create the main window, follow these steps:

1. From the IDLDE File menu, choose New, then choose GUI. This action op
a new IDL GUIBuilder window with a top-level base.

2. On the IDL GUIBuilder toolbar, click on the button widget button, then clic
on the top-level base. This action adds a button of the default size to the b
You can place the button anywhere in the base.

3. Right-click on the newly created button, and choose Properties from the
context menu. This action opens a Properties dialog.

4. In the Properties dialog, click the push pin button to keep the dialog open
on top.

5. With the button selected, set the following in the Properties dialog:

In theLabel value field, enter “Modal Dialog”.

6. Click on the Properties dialog Events tab, and do the following:

In theOnButtonPress value field, enter “OnPress”.

7. From the File menu, choose Save, which opens the Save As dialog.

8. In the Save As dialog, select a location, enter “maingui.prc” in the File nam
field, and click Save. This action saves the interface definition to an IDL
resource file.

9. From the File menu, choose Generate .pro which opens the Save As dial

10. In the Save As dialog, select a location, enter “maingui.pro” in the File na
field, and click Save. This action saves the maingui.pro widget code and t
maingui_evnetcb.pro event-handler code.

11. From the File menu, choose Open, which launches the Open dialog.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 479

er the

et
.

aves

ng

p-
ce it

me

og.
12. In the Open dialog, select the maingui_eventcb.pro file, and click Enter.

13. In the open file, locate the OnPress event procedure place holder, then ent
code that launches the modal dialog, like this:

PRO OnPress, Event

modalgui, group_leader=Event.top

END

You will create the “modalgui” dialog in the next set of steps. Note that you s
the GROUP_LEADER keyword here because the modal dialog requires it

14. From the Run menu, choose Compile maingui_eventcb.pro. This action s
and compiles the file.

Creating the Modal Dialog

To create the modal dialog, follow these steps:

1. Open a new IDL GUIBuilder window.

2. In the IDL GUIBuilder window, select the top-level base, and set the followi
in the Properties dialog:

• Set theModal attribute to True.

• In theTitle field, enter “Modal Dialog”.

3. On the IDL GUIBuilder toolbar, click the button widget, then click on the to
level base. This action adds a button to the top-level base, and you can pla
anywhere in the base.

4. With the new button selected, set the following in the Properties dialog:

• In theLabel field, enter “OK”.

5. Click on the Properties dialog Events tab, and do the following:

• In theOnButtonPress value field, enter “OnModalPress”.

6. From the File menu, choose Save, which opens the Save As dialog

7. In the Save As dialog, select a location, enter “modalgui.prc” in the File na
field, and click Save. This action saves the interface definition to an IDL
resource file.

8. From the File menu, choose Generate .pro which opens the Save As dial
Building IDL Applications IDL GUIBuilder Examples

480 Chapter 17: Using the IDL GUIBuilder

me
nd

ure
 the

nd
og,

get.

w

ll

ed
9. In the Save As dialog, select a location, enter “modalgui.pro” in the File na
field, and click Save. This action saves the modalgui.pro widget code file a
the modalgui_eventcb.pro event callback file.

10. Open the modalgui_eventcb.pro file and locate the OnModalPress proced
place holder. Then, add the following code so that the dialog closes when
button is pushed:

PRO OnModalPress, Event

widget_control, Event.top, /destroy

END

11. Save and compile this file.

Running the Example Application

Enter the following at the IDL command prompt:

maingui

This command runs the main window. You can press the Modal Dialog button, a
the modal dialog is displayed. When you press the OK button on the modal dial
the dialog exits.

Adding Compound Widgets

The IDL GUIBuilder tools do not allow you to add a compound widget directly to
your interface. You can, however, modify your event code to add a compound wid

To add a compound widget to a IDL GUIBuilder generated interface, you will follo
these basic steps:

1. Add the compound widget to the widget tree in aPostCreation event callback
procedure.

2. Handle the events generated by the compound widget in theHandle Event
callback function. Set this event function value for the base widget that wi
contain the compound widget.

Adding a Compound Widget to an Interface

This example demonstrates how to add a compound widget to an application
constructed with the IDL GUIBuilder. The application contains a label and a
CW_FSLIDER compound widget. In the running application, the values generat
by CW_FSLIDER will be displayed in the label widget.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 481

a

s

p.

ar,

e

log:

f

h

To create this application, follow these steps:

3. From the IDLDE File menu, choose New, then choose GUI, which opens
new IDL GUIBuilder window with a top-level base.

4. Right-click on the base and choose Properties, which opens the Propertie
dialog for the top-level base.

5. In the Properties dialog, click the push pin button to keep the dialog on to

6. In the Properties dialog of the top-level base, set the following properties:

• Set theComponent Sizing attribute to Default.

• Set theLayout attribute to Column.

7. To add the label, click the label Widget button (the single letter) on the toolb
then click on the top-level base. This action creates a label widget of the
default size.

8. With the label selected, set the following in the Properties dialog:

• In theName value field, enter “label”.

• Set theAlignment attribute to Center.

• Set theComponent Sizing attribute to Default.

• In theText value field, enter “000.000”.

9. Click the Base widget button on the toolbar (window icon), and click on th
top-level base, This action adds a base to the top-level base.

10. With the new base widget selected, set the following in the Properties dia

• Set the Component Sizing attribute to Default.

11. In the Properties dialog, click on the Events tab and set the following base
widget event values:

• In theHandle EventValue field, enter “HandleEvent”. This is the name o
the function that will handle the compound widget events.

• In thePostCreation Value field, enter “AddCW”. This is the name of the
event routine that will create the compound widget.

12. To save the portable resource file, choose Save from the File menu, whic
opens the Save As dialog.
Building IDL Applications IDL GUIBuilder Examples

482 Chapter 17: Using the IDL GUIBuilder

me

og.

.pro

g.

k

ode
e

he
13. In the Save As dialog, select a location, enter “compound.prc” in the File na
field, and click Save. This saves the interface definition to an IDL resource
file.

14. From the File menu, choose Generate .pro which opens the Save As dial

15. In the Save As dialog, enter “compound.pro”, and click Save. This action
generates the compound.pro widget code file and the compound_eventcb
event-handler file.

16. From the IDLDE File menu, choose Open, which launches the Open dialo

17. In the Open dialog, select the compound_eventcb.pro event file, then clic
Open, which opens the file in the IDLDE.

18. In the file, locate the AddCW event routine place holder, and modify the c
to add the CW_FSLIDER compound widget to the base widget. The routin
should look like this:

PRO AddCw, wWidget

idslide = cw_fslider(wWidget, /suppress_value)

END

19. Add the event callback routines to the generated HandleEvent function. T
function should look like this:

FUNCTION HandleEvent, Event

; Fslider event structure is an anonymous structure, so
; the following will return "" if it is from fslider.

if(Tag_Names(Event, /structure_name) eq "")then begin

; Get the id of the label widget using its name.
id = widget_info(Event.top, find_by_uname='label')

; Set the value of the label, to the value in the slider.
widget_control, id, set_value= $

String(Event.value, format='(f5.2)')
return,0
; Halt event processing here.

end

return, Event
; By Default, return the event.

END
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 483

e

es

the

that
ple
d in

he
base

ens

his
Note that the callback routine finds the label widget using the
FIND_BY_UNAME keyword with the name value you gave the widget in th
Properties dialog.

20. From the Run menu, choose Compile compound_eventcb.pro, which sav
and compiles the file.

Running the Example

To run the application, enter the following at the IDL command prompt:

compound

This action complies and runs the application. In the running application, move
CW_FSLIDER and the value is placed in the label.

Controlling Widget Display

This example demonstrates how to use the IDL GUIBuilder to create an interface
contains overlapping sub-bases containing different types of widgets. The exam
shows how you can display and hide overlapping controls in an interface create
the IDL GUIBuilder, and it incorporates using the Widget Browser. Note that this
example is a slightly more complicated than the others.

This example constructs an interface with the following widgets:

• A droplist.

• A sub-base that contains two sub-bases:

• One sub-base containing a text widget.

• One sub-base containing a button.

The two contained sub-bases overlap and the visibility of each is controlled by t
value selected in the droplist. When users select an item in the droplist, one sub-
is hidden and the other one is displayed.

Creating the Interface

To create this application interface, follow these steps:

1. From the IDLDE File menu, choose New, then choose GUI. This action op
a new IDL GUIBuilder window with a top-level base.

2. Right-click on the top-level base, and choose Properties from the menu. T
action opens a Properties dialog.
Building IDL Applications IDL GUIBuilder Examples

484 Chapter 17: Using the IDL GUIBuilder

 and

k

s

n
e

n
idget.
3. In the Properties dialog, click the push pin button to keep the dialog open
on top.

4. In the Properties dialog, do the following:

• Set theComponent Sizing attribute to Default.

• Set theLayout attribute to Column.

5. On the IDL GUIBuilder toolbar, click on the droplist widget button, then clic
on the top-level base. This action creates a droplist in the base area.

6. With the droplist select, set the following in the Properties dialog:

• In theTitle value field, enter “Active Base”.

• In theInitial Value field, click on the arrow. This displays an popup edit
control in which you can enter “Base One”, press Control+Enter, enter
“Base Two”, and press Enter.

Note
In the pop-up edit control for theInitial Value attribute, press Control+Enter to
move to the next line. To set the values and close the popup edit control, pres
Enter.

7. Click on the Properties dialog Events tab, and do the following:

• In theOnSelectValue field, enter “OnSelect”.

8. On the IDL GUIBuilder toolbar, click on the base widget button, then click o
the top-level base. This action adds a base widget of the default size to th
interface.

9. With the new base selected, set the following attributes in the Properties
dialog:

• In theName value field, enter “base0”.

• Set theFrame attribute to True.

10. On the IDL GUIBuilder toolbar, click on the base widget button, then click o
the base you just added. This action adds a base widget to the “base0” w

11. With the newly-added base selected, set the following attributes in the
Properties dialog:

• In theName value field, enter “base1”.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 485

tion

ies

stes
0”.

he

og:

e

”

• Set theComponent Sizing attribute to Explicit.

• In theX Offset value field, enter “0”.

• In theX Size value field, enter “200”.

• In theY Offset value field, enter “0”.

• In theY Size value field, enter “200”.

12. Right-click on a base, and choose Browse from the context menu. This ac
opens the Widget Browser.

13. In the Widget Browser, right-click on base1, and choose Copy, which cop
the widget to the local clipboard.

14. In the Widget Browser, right-click on “base0”, and choose Paste, which pa
the copied base in to the “base0” widget. The new base is called “base1_

15. In the Widget Browser, select “base1_0”. This action selects the base in t
IDL GUIBuilder window and updates the Properties dialog with the
appropriate properties and values.

16. With “base1_0” selected, set the following attributes in the Properties dial

• In theName value field, enter “base2”.

• Set theComponent Sizing attribute to Explicit.

• In theX Offset value field, enter “0”.

• In theX Size value field, enter “200”.

• In theY Offset value field, enter “0”.

• In theY Size value field, enter “200”.

17. From the File menu, choose Save, which opens the Save As dialog.

18. In the Save As dialog, select a location, enter “visible.prc” in the File nam
field, and click Save. This action saves the interface definition.

19. In the Widget Browser, select “base1”.

20. With “base1” selected, set the following attribute in the Properties dialog:

• Set theVisible attribute to False. This will hide “base1” and make “base2
visible.
Building IDL Applications IDL GUIBuilder Examples

486 Chapter 17: Using the IDL GUIBuilder

n
et.

g:

e

e

ere

.prc
21. On the IDL GUIBuilder toolbar, click the button widget button, then click o
“base2” in the IDL GUIBuilder. This action adds a button to the base widg
Place the button anywhere in this base.

22. With the button selected, set the following attribute in the Properties dialo

• In theLabel value field, enter “Button 2”.

23. In the Widget Browser, select “base2”, and set the following attribute in th
Properties dialog:

• Set theVisible attribute to False, which hides the base.

24. In the Widget Browser, select “base1”, and set the following attribute in th
Properties dialog:

• Set the Visible attribute to True, which shows the base.

25. On the IDL GUIBuilder toolbar, click the label widget button, then click on
“base1”. This action adds a label to “base1”. You can place the label anywh
in this base.

26. With the label widget selected, set the following attribute in the Properties
dialog:

• In theText value field, enter “Label 1”.

27. From the File menu, choose Save, which saves the changes to the visible
resource file.

The interface is now complete. It should look similar to the one shown in the
following figure.
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 487

.

e
the

is
Generating and Modifying the Code

To generate and modify the code, follow these steps:

1. From the File menu, choose Generate .pro which opens a Save As dialog

2. In the Save As dialog, select a location, enter “visible.pro” in the File nam
field, and click Save. This action saves the visible.pro widget code file and
visible_eventcb.pro event-handler file.

3. From the File menu, choose Open, which launches the Open dialog.

4. In the Open dialog, select the visible_eventcb.pro file, and click Open. Th
action opens the file in the IDLDE.

Figure 17-9: Visible Widgets Example Application
Building IDL Applications IDL GUIBuilder Examples

488 Chapter 17: Using the IDL GUIBuilder

and
value

nd

an
dget.
5. In the visible_eventcb.pro file, locate the OnSelect event procedure place
holder, then add the following code:

PRO OnSelect, Event

; Toggle the mapping of the two IDL sub-bases and
; get the Widget IDs of the two sub-bases.
wBase1 = Widget_Info(Event.top, find_by_uname="base1")
wBase2 = Widget_Info(Event.top, find_by_uname="base2")

; Now update the mapping.
widget_control, wBase1, map=(Event.index eq 0)
widget_control, wBase2, map=(Event.index eq 1)

END

The added IDL code gets the Widget IDs of the sub-bases that you created
sets the mapping (hide or show) of these bases depending on the selected
of the droplist.

6. From the Run menu, choose Compile visible_eventcb.pro, which saves a
compiles the file.

Running the Application

To run this application, enter the following at the IDL command prompt:

visible

This command executes the visible application. In the running application, you c
change the selection in the droplist, and the action will change the displayed wi
IDL GUIBuilder Examples Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 489

 you
the
ed

lues

er,
t
u are
he
Widget Properties

For each widget type, there is a set of attribute values and a set of event values
can set using the IDL GUIBuilder Properties dialog. When you select a widget in
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updat
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog, the attributes are set to default va
and are arranged in the following order:

• TheName property.

• An alphabetical list of common and widget-specific properties, combined.

On the Events tab, the possible events for a widget are listed in alphabetical ord
with the common and the widget-specific events combined. By default, no even
values are set initially. When you enter a routine name for an event property, yo
responsible for making sure that event procedure exists. IDL does not validate t
existence of the specified routine.

For information on how to open and use the Properties dialog, see“Using the
Properties Dialog” on page 457.

The rest of this chapter describes the properties you can set for each widget:

• Common Widget Properties

• Base Widget Properties

• Button Widget Properties

• Text Widget Properties

• Label Widget Properties

• Slider Widget Properties

• Droplist Widget Properties

• Listbox Widget Properties

• Draw Widget Properties

• Table Widget Properties
Building IDL Applications Widget Properties

490 Chapter 17: Using the IDL GUIBuilder

. The
e

tring
ain

e first

g that

e

s by

ns.
Common Widget Properties

There are several attribute and event property values you can set for all widgets
attribute properties include the name of the widget and the sizing properties. Th
event properties include creation, realization, destruction, and tracking events.

The following sections describe the common properties:

• Common Attributes

• Common Events

Common Attributes

These are the common attributes, which you can set for all widgets:

Name

The Name attribute specifies the name of the component. This value can be any s
that is unique to the widget hierarchy of the interface, but the string cannot cont
spaces. For each widget you create in the IDL GUIBuilder, a default name is
supplied, and this name is in the WID_<TYPE>_<NUMBER> format.

If you copy and paste a widget in the IDL GUIBuilder, the new widget is given a
unique name based on the name of the one you copied. A number is added to th
widget’s name, or an existing number is incremented.

You can use the Name value for the widget in your event callback routines. For
example, you can use the specified name to find the widget, using the
FIND_BY_UNAME keyword to the WIDGET_INFO function. Set the name for
each widget to a name that makes sense to you; set the name value to somethin
is easy to remember and easy to use in your code.

In the generated *.pro file, this value is specified with the UNAME keyword to th
widget creation routines.

Component Sizing

The Component Sizing keyword determines how the component is sized, which i
one of the following methods:

• Default: The widget is sized to a natural or implicit size. This is the default
setting for the attribute. For example, a label widget’s natural size is
determined by the size of the text it is displaying with extra space for margi
The default size for each widgets is controlled by several things, including
Common Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 491

ing

E

 it.

 to

n
te the

r

 the
 this
displayed font size and the characteristics of the operating system display
the interface.

• Explicit: The widget size is determined by several attributes, which include
Layout for the base and its ownX Size, andY Size attributes.

In the generated *.pro widget file, this value is specified with the XSIZE, and YSIZ
keywords to the widget creation routines.

Note
The default size of text widgets on Motif is based on the width of text, but the
default size for text widgets on Windows and Macintosh is approximately 20
characters.

Frame

The Frame attribute determines if the widget will have a frame or border around
These are the possible values:

• False: The widget will have no frame drawn around it. This is the default
value.

• True: The widget will have a frame or border around it.

In the generated *.pro widget file, this value is specified by the FRAME keyword
the widget creation routines.

Note
The Frame attribute is not available for top-level base widgets.

Sensitive

The Sensitive attribute determines if the selected widget is active or not active o
startup. You can set this value to determine if the user can access and manipula
widget immediately after creation. These are the possible values:

• True: The widget is initially displayed as enabled and accepts keyboard o
mouse input and generates events. This is the default value.

• False: The widget is initially displayed as disabled and does not accept
keyboard or mouse input. The appearance of most widgets change when
False value is set, but the appearance does not always change to indicate
state.
Building IDL Applications Common Widget Properties

492 Chapter 17: Using the IDL GUIBuilder

o

e

 the

s for

to

et

e

In the generated *.pro file, this value is specified with the SENSITIVE keyword t
the widget creation routines.

Note
To change the sensitivity of a widget after the widget is created, use the
WIDGET_CONTROL function with the SENSITIVE keyword.

X Offset

The X Offset attribute specifies the X offset of the component from its parent. Th
possible values for X Offset areo to n, in pixels; any number is valid. TheY Offset
attribute specifies the Y offset.

In the generated *.pro file, this value is specified with the XOFFSET keyword to
widget creation routines.

Note
The X Offset property value isnot used with base widgets that have theLayout
property set to Row or Column.

X Size

The X Size attribute specifies the width of the visible component in pixels. This
property is disabled whenComponent Sizingis set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible value
X Size are 0 ton, in pixels.

In the generated *.pro file, this value is specified with the SCR_XSIZE keyword
the widget creation routines.

Note
If you add scroll bars to a widget, use the widget-specific X Scroll property to s
the width of the virtual area.

Y Offset

The Y Offset attribute specifies the Y offset of the component from its parent in
pixels. The possible values for Y Offset are 0 ton, in pixels; any number is valid. The
X Offset attribute specifies the X offset.

In the generated *.pro file, this value is specified by the XOFFSET keyword to th
widget creation routines.
Common Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 493

s for

to

et

vent

s
ll
.

at
ndle

s:
Note
The Y Offset property value isnot used with base widgets that have theLayout
property set to Row or Column.

Y Size

The Y Size attribute specifies the height of the visible component in pixels. This
property is disabled whenComponent Sizingis set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible value
Y Size are 0 ton, in pixels.

In the generated *.pro file, this value is specified with the SCR_YSIZE keyword
the widget creation routines.

Note
If you add scroll bars to a widget, use the widget-specific Y Scroll property to s
the height of the virtual area.

Common Events

These are the common events, which you can set for all widgets (by default, no e
values are initially set):

Handle Event

The Handle Event value is the function name that is called when an event arrive
from a widget that is rooted in a IDL GUIBuilder-created widget in the hierarchy. A
events are sent to this event function, except for creation and destruction events

For example, if you add a compound widget to an interface, using thePostCreation
event procedure for a base widget, you should set the Handle Event value for th
parent base widget (for the compound widget’s parent widget). Then, you can ha
all the events returned by the compound widget using this event function value.

In the generated *_eventcb.pro file, the event function place holder looks like thi

Function < Name>, Event

return, Event
End

Name is the name of the event function you specify.Event is the returned event
structure, which is specific to the widget event.
Building IDL Applications Common Widget Properties

494 Chapter 17: Using the IDL GUIBuilder

yed.

dget
 like

cted
ks

.

s a

 like
For an example of how to handle the generated Handle Event function, see“Adding
Compound Widgets” on page 480.

OnDestroy

The OnDestroy value is the routine name that is called when the widget is destro
In the generated *_eventcb.pro file, the event calling sequence looks like this:

PRO <RoutineName >, wWidget

RoutineName is the name of the event procedure you specify.wWidget is the IDL
widget identifier.

OnRealize

The OnRealize value is the routine name that is called automatically when the wi
is realized. In the generated *_eventcb.pro file, the event calling sequence looks
this:

PRO <RoutineName >, wWidget

RoutineName is the name of the event procedure you specify.wWidget is the IDL
widget identifier.

OnTimer

The OnTimer value is the routine name that is called when a timer event is dete
for a widget. In the generated *_eventcb.pro file, the event calling sequence loo
like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which has the 3 standard event tags and looks like this:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

You must set timer events for a widget, using the WIDGET_CONTROL function
The code generated by the IDL GUIBuilder only routes the events.

OnTracking

The OnTracking value is the routine name that is called when the widget receive
tracking event, which occurs when the mouse pointerenters or leaves the region of
the widget. In the generated *_eventcb.pro file, the event calling sequence looks
this:

PRO <RoutineName >, Event
Common Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 495

ted,
e

RoutineName is the name of the event procedure you specify.Event is the returned
structure, which is of the following type:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.

PostCreation

The PostCreation value is the routine name that is called after the widget is crea
but before it is realized. In the generated *_eventcb.pro file, the calling sequenc
looks like this:

PRO <RoutineName >, wWidget

RoutineName is the name of the event procedure you specify.wWidget is the IDL
widget identifier.
Building IDL Applications Common Widget Properties

496 Chapter 17: Using the IDL GUIBuilder

e

our
at are

e

f its

or a

n is

se
Base Widget Properties

A base widget holds other widgets, including other base widgets. You can creat
groupings of widgets by using a base widget, thus forming a widget hierarchy.

When you open the IDL GUIBuilder, a top-level base is created, and you build y
interface in this base. Top-level bases are a special class of the base widgets th
created without parent widgets; they act as the top-level parent in the widget
hierarchy.

In the IDL GUIBuilder, you can add a menubar to the top-level base by using th
Menu Editor.

In addition, you can make top-level basesfloat above their group leaders, with the
Floating property, or you can make themmodal dialogs, with theModal property.
Modal dialogs interrupt program execution until the user closes them. When you
make a top-level base floating or modal, you must provide a group leader when
calling the generated code, by using the GROUP_LEADER keyword.

When programming in IDL, you create base widgets using the WIDGET_BASE
function. For more information, seeWIDGET_BASE in theIDL Reference Guide.

For more information on the Menu Editor, see“Using the Menu Editor”on page 461.

Note
A base widget’s layout is controlled by where you place it and the properties o
parent base.

Base Widget Attributes

For base widgets, you can set common attributes and base-specific attributes. F
list attributes common to all widgets, see“Common Attributes” on page 490.

Some of the base widget attributes apply to top-level bases only, and this limitatio
noted in the following list of base widget attributes:

of Rows/Columns

The # of Rows/Columns attribute specifies the number of Columns or Rows to u
when laying out the base. This property is valid only when theLayoutproperty is set
to Column or Row. The possible values for this setting are 1 ton, and the default
value is 1.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 497

 see

y in
e of

he

s is

ed.

ing

or

r

or

n

ee

e
o the
In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

For information on other properties that control the layout of contained widgets,
Alignment, Layout, Space, X Pad, andY Pad.

Alignment

The Alignment attribute defines how components are aligned in the base. The wa
which the value of this property affects the display of widgets depends on the valu
the Layout property. The following is a list possible values for the Alignment
property, and each value description includes information on how it works with t
Layout settings:

• Center: Aligns the contained widgets with the center this parent base. Thi
the default value. For this setting to take effect, the Layout setting must be
Row or Column. With Row set, the contained widgets are vertically center
With Column set, the contained widgets are horizontally centered.

• Top: Aligns contained widgets with the top of this parent base. For this sett
to take effect, the Layout setting must be Row.

• Bottom: Aligns the contained widgets with the bottom of this parent base. F
this setting to take effect, the Layout setting must be Row.

• Left: Aligns the contained widgets with the left side of this parent base. Fo
this setting to take effect, the Layout setting must be Column.

• Right: Aligns the contained widgets with the right side of this parent base. F
this setting to take effect, the Layout setting must be Column.

• Default: Uses the default layout.

In the generated *.pro file, these settings are specified with the
BASE_ALIGN_CENTER, BASE_ALIGN_TOP, BASE_ALIGN_BOTTOM,
BASE_ALIGN_LEFT, and BASE_ALIGN_RIGHT keywords to the widget creatio
routine.

For information on other properties that control the layout of contained widgets, s#
of Rows/Columns, Layout, Space, X Pad, andY Pad.

Allow Closing

The Allow Closing attribute determines if the top-level base can be closed by th
user. By default, this value is set to True and the base can be closed. To make it s
top-level base cannot be close, set this value to False.
Building IDL Applications Base Widget Properties

498 Chapter 17: Using the IDL GUIBuilder

he

nly
.

s
 this

, see

nly
.

 on

rd

he
In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other properties that control aspects of top-level bases, see t
Allow Moving, Minimize/Maximize, System Menu, andTitle Bar properties.

Note
This property setting is used with top-level bases only. Note that this setting is o
a hint to the window system and might be ignored by some window managers

Allow Moving

The Allow Moving attribute determines if the base can be moved. By default, thi
value is set to True, and the base can be moved. To suppress this behavior, set
value to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other property settings that control aspects of top-level bases
theAllow Closing, Minimize/Maximize, System Menu, andTitle Bar properties.

Note
This property setting is used with top-level bases only. Note that this setting is o
a hint to the window system and might be ignored by some window managers

Floating

The Floating attribute determines if the top-level base is a floating base (always
top). By default, this setting is False, indicating that the base isnota floating base. To
create a floating base, set this property to True.

If you make a top-level base floating, you must set the GROUP_LEADER keywo
to a valid widget ID when calling the generated procedure.

In the generated *.pro file, this value is specified with the FLOATING keyword to t
widget creation routine.

Note
This property setting is used with top-level bases only.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 499

 all
 are

.

. If

rd

e the

.

ou

t for
,
n

ing

get
Grid Layout

The Grid Layout attribute determines if the base will have a grid layout, in which
columns have the same width, or in which all rows have the same height. These
the possible values:

• False: Columns or rows will not be the same size. This is the default value

• True: Column widths or row heights are taken from the largest child widget
you set this property to True, you must also set theLayoutproperty to Column
or Row and the# of Rows/Columns property to more than 1.

In the generated *.pro file, this value is specified with the GRID_LAYOUT keywo
to the widget creation routine.

Layout

The Layout attribute specifies how components are laid out in the base. These ar
possible values:

• Bulletin: Indicates that you can position the widgets anywhere on the base
This is the default setting.

• Column: Indicated that widgets should be in columns. If you set this value, y
should also set the# of Rows/Columns property and theAlignment property.

• Row: Indicated that widgets should be in rows. If you set this value, you
should also set the# of Rows/Columns property and theAlignment property.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layou
your bases instead of a bulletin board layout. By using a row or column layout
differences in the default spacing and decorations (e.g., beveling) of widgets o
each platform can be avoided

The number of child widgets placed in each column or row is calculated by divid
the number of created child widgets by the number of columns or rows specified (# of
Rows/Columns). When one column or row is filled, a new one is started.

The width of each column or the height of the row is determined by the largest wid
in that column or row. If you set theGrid Layout property to True, all columns or
rows are the same size; they are the size of the largest widget.

If you set theAlignment property for the base, the contained widgets are their
“natural” size. If you do not set the Alignment property for the base or the child
Building IDL Applications Base Widget Properties

500 Chapter 17: Using the IDL GUIBuilder

ght

ee

add
f the

 a
.

,

, see

nly
.

lt,
True.

R

widgets, all contained widgets will be sized to the width of the column or the hei
of the row.

For information on other properties that control the layout of contained widgets, s#
of Rows/Columns, Alignment, Space, X Pad, andY Pad.

In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

Note
When you create a radio button or checkbox, it is created in a base, and you can
more radio buttons or checkboxes to that base (the added widgets must all be o
same type). The base in which radio buttons and checkboxes are created has
column layout setting, and buttons you add will be lined up in a column format

Minimize/Maximize

The Minimize/Maximize attribute determines if the top-level base can be resized
minimized, and maximized. By default, this value is set to True. To disable this
behavior, set this property to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other property settings that control aspects of top-level bases
theAllow Closing, Allow Moving, System Menu, andTitle Bar properties.

Note
This property setting is used with top-level bases only. Note that this setting is o
a hint to the window system and might be ignored by some window managers

Modal

The Modal attribute determines if this top-level base is a modal dialog. By defau
this value is set to False. To make the base a modal dialog, set this property to

If you set the Modal property to True, you cannot set theScroll property, and you
cannot define a menu for the top-level base. In addition, theSensitive common
property and theVisible base widget property are also disabled.

If you make a top-level base a modal dialog, you must set the GROUP_LEADE
keyword to a valid widget ID in the generated procedure.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 501

e

ive
are

al

e

um

ts

0 to
In the generated *.pro file, this value is specified with the MODAL keyword to th
widget creation routine.

Note
This property setting is used with top-level bases only.

Scroll

The Scroll attribute determines if the base widget will be support scrolling. By
default, this property is set to False, and the base will not support scrolling. To g
the widget scroll bars and allow for viewing portions of the widget contents that
not currently in the viewport area, set the Scroll property to True. In the IDL
GUIBuilder, scroll bars on bases are live so that you can work on the entire virtu
area of your application.

If you set theModal property to True, you cannot set the Scroll property.

In the generated *.pro file, this value is specified with the SCROLL keyword to th
widget creation routine.

To set the size of the scrollable region, use theX Scroll andY Scroll properties.

Note
For the Macintosh, if you setX Size or Y Size to a value less than 48, the base
created with the Scroll property will be a minimum of 48x48. If you have not
specified values for the X Size or Y Size property, the base will be set to a minim
of 66x66. If the base is resized, it will jump to the minimum size of 128x64.

Space

The Space attribute specifies the number of pixels between the contained widge
(the children) in a column or rowLayout. By default, this value is set to 3 pixels and
that is the space between the contained widgets. Valid values for this property are
n pixels.

In the generated *.pro file, this value is specified with the SPACE keyword to the
widget creation routine.

To set the space from the edge of the base, use theX Pad andY Pad properties. For
information on other properties that control the layout of contained widgets, see# of
Rows/Columns, Alignment,andLayout.
Building IDL Applications Base Widget Properties

502 Chapter 17: Using the IDL GUIBuilder

.

ssed
m

, see

t to

s
 title

use
uld
Note
You cannot set this property on a base containing radio buttons or checkboxes

System Menu

The System Menu attribute determines if the system menu is displayed or suppre
on a top-level base. By default, this value is set to True, indicating that the syste
menu will be used. To suppress the menu, set this property to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other property settings that control aspects of top-level bases
theAllow Closing, Allow Moving, Minimize/Maximize, andTitle Bar properties.

Note
This property setting is used with top-level bases only.

Title

The Title attribute specifies the title of a top-level base. By default, this value is se
IDL, but you can change it to any string.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Note
This property setting is used with top-level bases only.

Title Bar

The Title Bar attribute determines if the title bar will be displayed. By default, thi
value is set to True, and the title bar is displayed. To suppress the display of the
bar, set this value to False.

For interfaces running on the Macintosh, you cannot suppress the title bar beca
only modal dialogs use a window without a title bar. Suppressing the title bar wo
be contrary to Macintosh Human Interface Guidelines and would create an
immovable window.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 503

, see

e

 its

ets
ting

. Valid

s. In
x to
hen
For information on other property settings that control aspects of top-level bases
theAllow Closing, Allow Moving, Minimize/Maximize, andSystem Menu
properties.

Note
This property setting is used with top-level bases only, and it is only a hint to th
window system and might be ignored by some window managers.

Visible

The Visible attribute specifies whether to show or hide the base component and
descendants. Show, the default value, specifies to display the hierarchy when
realized. The Hide value specifies that the hierarchy shouldnotbe displayed initially.
This mapping operation applies only to base widgets.

In the generated *.pro file, this value is specified with the MAP keyword to the
widget creation routine.

Note
If you set theModal property to True, you cannot set this value.

X Pad

The X Pad attribute specifies the horizontal space (in pixels) between child widg
and the edges of rows or columns. By default, this value is set to 3 pixels, indica
that there are 3 pixels between the edge of the base and the contained widgets
values for this property are 0 ton pixels.

In the generated *.pro file, this value is specified with the XPAD keyword to the
widget creation routine.

To set the space between widgets, use theSpace property. For information on other
properties that control the layout of contained widgets, see# of Rows/Columns,
Alignment, Layout, andY Pad.

Note
You cannot set this property for a base that contains radio buttons or checkboxe
the IDL GUIBuilder, a base is created when you add a radio button or checkbo
an interface, and you can add more radio buttons or checkboxes to that base. W
you add the buttons, they are lined up in a column format.
Building IDL Applications Base Widget Properties

504 Chapter 17: Using the IDL GUIBuilder

es
n set
e

ents

. In
x to

des
n set
X Scroll

The X Scroll attribute specifies the width in pixels of the base area, which includ
the exposed as well as the virtual area. There is no default value set, but you ca
this value to any number of pixels from 0 ton. To add scroll bars to the base, use th
Scroll property, and to set the height of the scrollable base area, use theY Scroll
property.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To set the width of the displayed widget, use theX Size common property.

Y Pad

The Y Pad attribute specifies the vertical space (in pixels) between child compon
and the edge of the base in a row or columnLayout. By default, this value is set to 3
pixels, indicating that there are 3 pixels between the edge of the base and the
contained widgets. Valid values for this property are 0 ton pixels.

In the generated *.pro file, this value is specified with the YPAD keyword to the
widget creation routine.

To set the space between widgets, use theSpace property. For information on other
properties that control the layout of contained widgets, see# of Rows/Columns,
Alignment, Layout, andX Pad.

Note
You cannot set this property on a base containing radio buttons or checkboxes
the IDL GUIBuilder, a base is created when you add a radio button or checkbo
an interface, and you can add more radio buttons or checkboxes to that base.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the base area, which inclu
the exposed as well as the virtual area. There is no default value set, but you ca
this value to any number of pixels from 0 ton.

To add scroll bars to the base, use theScrollproperty, and to set the width of the base
area, use theX Scroll property.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 505

t

f the
oks

e

se is

kill

the
Note
To set the height of the displayed widget, use theY Size common property.

Base Widget Events

For base widgets, you can set common event properties and base-specific even
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

The following is a list of event properties specific to base widgets:

OnFocus

The OnFocus value is the routine name that is called when the keyboard focus o
base changes. In the generated *_eventcb.pro file, the event calling sequence lo
like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when the keyboard focus changes and is of th
following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the base is gaining the keyboard focus, and returns 0 if the ba
losing the keyboard focus.

OnKillRequest

The OnKillRequest value is the routine that is called when the user attempts to
the top-level base widget. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when a user tries to destroy the widget using
window manager and is of the following type:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

Note that this event structure contains the standard three fields that all widgets
contain.
Building IDL Applications Base Widget Properties

506 Chapter 17: Using the IDL GUIBuilder

el
uence

nd is
Note
This event procedure is valid for top-level bases only.

OnSizeChange

The OnSizeChange value is the name the routine that is called when the top-lev
base has been resize. In the generated *_eventcb.pro file, the event calling seq
looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when the top-level base is resized by the user a
of the following type:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0, Y:0 }

The X and Y fields return the new width of the base, not including any frame
provided by the window manager.

Note
This event procedure is valid for top-level bases only.
Base Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 507

.

can
wn

 a

llows
s
 a
reate
nd

lusive
, and
in the
nly

oxes

the
Button Widget Properties

In IDL, a button widget can be a button (push button), radio button, or checkbox

A push button is activated by a single-click. Push buttons can be of any size. You
set the Menu property to yes for a button widget, and then it can contain a pull-do
menu. When you do so, theLabel is enclosed in a box to indicate that the button is
menu button.

Radio buttons have two states, set and unset, and they belong to a group that a
only one radio button selection for that group. The group is defined as all button
contained in the same exclusive base widget. When a radio button in a base (in
group) is selected, any other button selection in that base is cleared. When you c
a radio button in the IDL GUIBuilder, it is created in an exclusive base widget, a
you can add only radio buttons to that base.

Checkboxes have two states, set and unset, and they are grouped in a non-exc
base widget. This base allow for any number of checkboxes to be set at one time
you can use single checkboxes in your interface. When you create a checkbox
IDL GUIBuilder, it is created in an non-exclusive widget base, and you can add o
checkboxes to this base.

When programming in IDL, you create push buttons, radio buttons, and checkb
using the WIDGET_BUTTON function. For more information, see
WIDGET_BUTTON in theIDL Reference Guide.

Note
The bases in which radio buttons and checkboxes are created have theLayout
attribute set to column so when you add more widgets they are lined up
appropriately.

Creating Multiple Radio Buttons or Checkboxes

To create several radio buttons or checkboxes in a base widget:

1. Click on the radio button or checkbox tool, and click on the location to add
button. This action creates a base with radio one button or checkbox in it.

2. Click on the radio button or checkbox tool, and click in the radio button or
checkbox base area you just created. This action adds a radio button or
checkbox to the base.
Building IDL Applications Button Widget Properties

508 Chapter 17: Using the IDL GUIBuilder

ses

an

og,
or

. For

/or

et.

ton,
mp

p

When you drop a button in a exclusive or non-exclusive base, the added
buttons line up in columns; by default, these exclusive and non-exclusive ba
have theirLayout property set to Column.

3. Repeat step 2 until you have the desired number of buttons.

4. If you want to change the layout of the checkboxes or radio buttons, you c
open the Properties dialog and set theLayout common property for the base
widget to Row or Bulletin.

5. To set the properties for each button in the base, open the Properties dial
click the push pin button to keep it on top, then click on each radio button
checkbox to set their individual properties.

Button, Radio Button, and Checkbox Widget Attributes

For button widgets, you can set common attributes and button-specific attributes
a list of common attributes, see“Common Attributes”on page 490. The following is
a list of button widget attributes, which apply to push buttons, radio buttons, and
checkboxes:

Alignment

The Alignment attribute specifies how the text label is aligned in the button widg
These are the possible alignment values:

• Center: The label text is centered. This is the default value.

• Left: The label text is left-justified.

• Right: The label text is right-justified.

In the generated *.pro file, this value is specified by the ALIGN_CENTER, the
ALIGN_LEFT, or the ALIGN_RIGHT keyword to the widget creation routine.

Bitmap

The Bitmap attribute allows you to select a bitmap to be displayed in the push but
and it allows you to access the Bitmap Editor to create or modify a bitmap file (*.b
file). This value applies only to buttons (not to radio buttons or checkboxes).

To set this value:

Set theType value to Bitmap, then the Bitmap attribute displays in the
Properties dialog. When the button type is “Bitmap”, you can set the Bitma
attribute to the path and name of the bmp file.
Button Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 509

om

elect

t the

ve a

ault,

e
ts
r the

This

ord
When you click on the arrow in the Bitmap attribute Value field, you can choose fr
the following options:

• Select Bitmap: Launches an Open dialog that you can use to locate and s
the existing *.bmp file to be placed in the button.

• Edit Bitmap: Launches an Open dialog that you can use to locate and selec
existing *.bmp file to be opened in the Bitmap Editor. You can modify the
bitmap and save it. The bitmap is then displayed in the button.

• New Bitmap: Opens the Bitmap Editor which you can use to create and sa
bitmap. When you save the new bitmap, it is displayed in the button.

In the generated *.pro file, this value is specified with the VALUE and Bitmap
keyword to the widget creation routine.

For information on using the Bitmap Editor, see“Using the Bitmap Editor” on
page 465.

Label

The Label attribute specifies the text label for a button. If you set theTypeattribute to
Bitmap (for push buttons only), this value is not displayed. For radio buttons and
checkboxes, the label value is the text string displayed next to the button. By def
this value is set to Button, and you can change it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

No Release

The No Release attribute enables and disables the dispatching of button releas
events for radio buttons and checkboxes. Normal buttons do not generate even
when released, but radio buttons and checkboxes can return separate events fo
select and release actions. These are the possible values:

• True: The release event is not returned; only the select event is returned.
is the default setting.

• False: Both the release and select events are returned.

In the generated *.pro file, this values is specified with the NO_RELEASE keyw
to the widget creation routine.

Note
The No Release property is for radio buttons and checkboxes only.
Building IDL Applications Button Widget Properties

510 Chapter 17: Using the IDL GUIBuilder

n, or
 or

ght-
y,

bar

ent

d, or
d

arate
ts are
Type

The Type attribute specifies if a push button is a plain push button, a menu butto
a bitmap button. This attribute applies only to push buttons (not to radio buttons
checkboxes). These are the possible values:

• Push: The button widget is a plain push button. This is the default value.

• Menu: The button contains a menu. After you select this value, you can ri
click on the button widget, choose Edit Menu, and define a menu to displa
using the Menu Editor.

• Bitmap: The button displays a bitmap, which you would use to create a tool
for example. If you change the Type value to Bitmap, theBitmap property is
displayed and you can select, modify, or create a bitmap to display on the
button.

In the generated *.pro file, this value is specified with the MENU or VALUE
keywords to the widget creation routine.

Button, Radio Button, and Checkbox Widget Events

For button widgets, you can set common event properties and button-specific ev
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

The following is the event property specific to button widgets; it applies to push
buttons, radio buttons, and checkboxes:

OnButtonPress

The OnButtonPress value is the routine that is called when the button is presse
when a button is released for a radio button or checkbox button. In the generate
*_eventcb.pro file, the event calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0 }

SELECT is set to 1 if the button was set, and 0 if released. Push buttons do not
generate events when released, so SELECT will always be 1 for a push button.
However, radio buttons and checkboxes are toggle buttons, and thus return sep
events for the set and the release actions. To control whether or not release even
returned, set theNo Release property.
Button Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 511

rom
t can

r to
user

a list

his
ext

he

ues

ht
ou
Text Widget Properties

Use text widgets to display text, and optionally, use them to accept textual input f
users. The text widgets can have one or more lines, and if necessary, the widge
contain scroll bars to allow for viewing longer text.

When programming in IDL, you create text widgets using the WIDGET_TEXT
function. For more information, seeWIDGET_TEXT in theIDL Reference Guide.

Note
Use text widgets for displaying large amounts of text, or when you want the use
be able to edit the text. Use label widgets to display single-line labels that the
cannot edit.

Text Widget Attributes

For text widgets, you can set common attributes and text-specific attributes. For
of common attributes, see“Common Attributes” on page 490. The following are the
attributes specific to text widgets:

Editable

The Editable attribute determines if the text widget is editable or not. By default, t
value is set to False, which means the text widget is not editable. To make the t
widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to t
widget creation routine.

Height

The Height attribute specifies the height of the text widget in text lines. Valid val
for this attribute are 1 ton. The default value, is 1, or one text line.

Note that the physical height of the text widget depends on the value of the Heig
attribute and on the size of the font used. The default font size is used, unless y
modify your generated code to use a different font, and the default font size is
platform specific.

In the generated *.pro file, this value is specified by the YSIZE keyword to the
widget creation routine.
Building IDL Applications Text Widget Properties

512 Chapter 17: Using the IDL GUIBuilder

e

tion
ress

his
the

ues
lt

h
 to
 20

t to
Initial Value

The Initial Value attribute specifies the initial array of values that are placed in th
text widget. You can enter either a string or an array of strings.

To enter more than one string in the Value field:

Type in a string, then press Control+Enter (at the end of each line). This ac
moves you to the next line. When you have entered the strings you want, p
Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.

Note
Variables returned by the GET_VALUE keyword to WIDGET_CONTROL are
always string arrays, even if a scalar string is specified in the call to
WIDGET_TEXT.

Scroll

The Scroll attribute determines if the text widget displays scroll bars. By default, t
value is set to False, which indicates that no scroll bars will be displayed. To have
text widget display scroll bars, set this value to True.

In the generated *.pro file, this value is specified by the SCROLL keyword to the
widget creation routine.

Width

The Width attribute specifies the width of the text widget in characters. Valid val
for this attribute are 0 ton. By default, Width is set to 0, which indicates that defau
IDL sizing should be used when, as long as defaultComponent Sizing is also set.

Note that the physical width of the text widget depends on the value of the Widt
attribute and on the size of the font used. The default font size varies according
your windowing system. On Windows and Macintosh, the default size is roughly
characters. On Motif, the default size depends on the system default.

In the generated *.pro code, this value is specified with the XSIZE keyword.

Word Wrapping

The Word Wrapping attribute determines whether a scrolling or multi-line text
widgets should automatically break lines between words to keep the text from
extending past the right edge of the text display area. By default this value is se
Text Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 513

idget

xt

t

, and
ted.
no

es. In
False, and carriage returns are not automatically entered; the value of the text w
will remain a single-element array unless. To have the text widget enter carriage
returns at the end of lines, change this value to True.

In the generated *.pro code, this value is specified with the WRAP keyword.

Text Widget Events

For text widgets, you can set common event properties and text-specific event
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

You can set the following event values for text widgets:

OnDelete

The OnDelete value is the routine that is called when text is deleted from the te
widget. To set this event value, you must set theEditable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when any amount of text is deleted from a tex
widget. The event structure is of the following type:

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted
it is also the insertion position that will result when the characters have been dele
LENGTH gives the number of characters deleted, where 0 (zero) indicates that
characters were deleted.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus chang
the generated *_eventcb.pro event code, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the text widget is gaining the keyboard focus, or 0 if the text
widget is losing the keyboard focus.
Building IDL Applications Text Widget Properties

514 Chapter 17: Using the IDL GUIBuilder

erted

xt

 is

d in

ters

ted.

text

cture
OnInsertCh

The OnInsertCh value is the routine that is called when a single character is ins
in the widget. To set this event value, you must set theEditable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned a single character is typed or pasted into a te
widget by a user. The event structure is of the following type:

{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character
inserted. CH is the ASCII value of the character.

OnInsertString

The OnInsertString value is the routine that is called when a text string is inserte
the text widget. To set this event value, you must set theEditable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is returned
structure, which is of the following type, which is returned when multiple charac
are inserted in to text widget:

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is inser
STR is the string to be inserted.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the
widget. To set this event value, you must also set theEditable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when an area of text is selected. The event stru
is of the following type:
Text Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 515

ed)

s

any
text
gth
{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

This event announces a change in the insertion point. OFFSET is the (zero-bas
character position of the first character selected, which can also be the insertion
position. LENGTH gives the number of characters involved, where zero indicate
that no characters are selected.

Note
Text insertion, text deletion, or any change in the current insertion point causes
current selection to be lost. In such cases, the loss of selection is implied by the
event reporting the insert, delete, or movement event, and a separate zero len
selection event isnot sent.
Building IDL Applications Text Widget Properties

516 Chapter 17: Using the IDL GUIBuilder

ey

.

 be
you

or a
l

y

Label Widget Properties

Label widgets display static text. They are similar to single-line text widgets, but th
are optimized for small labeling purposes.

There are not label widget-specific event properties.

When programming in IDL, you create label using the WIDGET_LABEL function
For more information, seeWIDGET_LABEL in theIDL Reference Guide.

Note
Use label widgets to display single-line labels that you do not want the user to
able to edit. Use text widgets for displaying larger amounts of text, or text that
want the user to be able to edit.

Label Widget Attributes

For label widgets, you can set common attributes and label-specific attributes. F
list of common attributes, see“Common Attributes”on page 490. These are the labe
widget attributes:

Alignment

The Alignment attribute specifies how labelText is aligned. These are the possible
values:

• Left: The text is left-justified. This is the default value.

• Center: The text is centered.

• Right: The text is right-justified.

In the generated *.pro file, this value is specified with the ALIGN_CENTER, the
ALIGN_RIGHT, or the ALIGN_LEFT keyword to the widget creation routine.

Text

The Text attribute specifies the text string that is displayed in the label widget. B
default, this value is set to Label, and you can set it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.
Label Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 517
Label Widget Events

There areno events specific to Label widgets. For a list of the common widget
events, see“Common Events” on page 493.
Building IDL Applications Label Widget Properties

518 Chapter 17: Using the IDL GUIBuilder

ge
ange

his
thin

he

or a

 The
ks

he
ks

e

this
r

Slider Widget Properties

Horizontal or vertical slider widgets allow for the selection of a value within a ran
of possible integer values. A slider widget is a rectangular region representing a r
of values, with a sliding pointer inside that indicates or selects the current value. T
sliding pointer can be manipulated by the user dragging it with the mouse, or wi
IDL code.

When programming in IDL, you create horizontal or vertical slider widgets using t
WIDGET_SLIDER function. SeeWIDGET_SLIDER in theIDL Reference Guide.

Horizontal and Vertical Slider Widget Attributes

For slider widgets, you can set common attributes and slider-specific attributes. F
list of common attributes, see“Common Attributes”on page 490. The following is a
list of slider attributes:

Maximum Value

The Maximum Value attribute specifies the maximum range value for the slider.
default value is 100, but you can set this property to any integer. This value wor
with theMinimum Value property.

In the generated *.pro file, this value is specified with the MAXIMUM keyword to
the widget creation routine.

Minimum Value

The Minimum Value attribute specifies the minimum range value of the slider. T
default value is 0, but you can set this property to any integer. This property wor
with theMaximum Value property.

In the generated *.pro file, this value is specified with the MINIMUM keyword to th
widget creation routine.

Position

The Position attribute specifies the initial value position of the slider. By default
is set to 0, so the initial position will be at 0. You can set this value to any intege
within the range of theMaximum Value andMinimum Value attribute settings.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.
Slider Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 519

ers
e of
 in
e is

 to

et.
.

nt

er is
the

 of

nt
en the
es
Suppress Value

The Suppress Value attribute controls the display of the current slider value. Slid
work only with integer units. You can use this property to suppress the actual valu
a slider so that a program can present the user with a slider that seems to work
other units (such as floating-point) or with a non-linear scale. By default, this valu
set to False, indicating that the current slider values, in integer units, should be
displayed. To suppress the display of the current values, set this property value
True.

In the generated *.pro file, this value is specified with the SUPPRESS_VALUE
keyword to the widget creation routine.

Title

The Title attribute specifies the label or title that is associate with the slider widg
By default, this is not set; it is an empty string. You can set the title to any string

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Horizontal and Vertical Slider Widget Events

For slider widgets, you can set common event properties and slider-specific eve
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

This is the event property specific to slider widgets:

OnChangeValue

The OnChangeValue specifies the routine that is called when the value of the slid
changed. When you set this event value, the calling sequence looks like this in
generated *_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when a slider in moved. The event structure is
the following type:

{ WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0 }

VALUE returns the new value of the slider. DRAG returns integer 1 if the slider eve
was generated as part of a drag operation, or zero if the event was generated wh
user had finished positioning the slider. Note that the slider widget only generat
Building IDL Applications Slider Widget Properties

520 Chapter 17: Using the IDL GUIBuilder

n is
events during the drag operation if the DRAG keyword is set, and if the applicatio
running on Motif. That is, in most cases, DRAG will return zero.
Slider Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 521

om

tes.

list

tion
u

be

vent
Droplist Widget Properties

Droplist widgets display a single entry from a list of possible choices. To choose fr
the list, click the droplist, then click on the item in the list. On Motif operating
systems, the droplist widget looks like a button, which when clicked displays the
drop-down list.

When programming in IDL, you create droplist widgets using the
WIDGET_DROPLIST function. For more information, seeWIDGET_DROPLISTin
theIDL Reference Guide.

Droplist Widget Attributes

For droplist widgets, you can set common attributes and droplist-specific attribu
For a list of common attributes, see“Common Attributes”on page 490. These are the
droplist attributes:

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the
droplist widget. The initial value of a droplist can be a scalar string, or it can be a
of strings. By default, this value is not set, and the droplist is empty.

To enter more than one string in the Value field:

Type in a string, then press Control+Enter (at the end of each line). This ac
moves you to the next line. When you have entered as many strings as yo
want, press Enter to set the values.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

Title

The Title attribute specifies the title string, or label, for the droplist. This value can
any string. By default, this value is set to NULL.

In the generated *.pro file, this value is specified by the TITLE keyword to the
widget creation routine.

Droplist Widget Events

For droplist widgets, you can set common event properties and droplist-specific e
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.
Building IDL Applications Droplist Widget Properties

522 Chapter 17: Using the IDL GUIBuilder

s an

ted

t and

he

r
ys
This is the event property specific to droplist widgets:

OnSelectValue

The OnSelectValue specifies the routine that is called when a droplist item is
selected. When a user selects an item from a droplist, the widget deselects the
previously selected item, changes the visible item on the droplist, and generate
event.

When you set this event value, the calling sequence looks like this in the genera
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which and is returned when a user selects an item from a droplis
is of the following type:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }

INDEX returns the index of the selected item. This value can be used to index t
array of names originally used to set the widget’s value.

Note
On some platforms, when a droplist widget contains only one item and the use
selects the again, the action does note not generate an event. Events are alwa
generated on selection actions if the list contains multiple items.
Droplist Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 523

on
s.

s.

nes

ars,
d.

et

list
or a
gest

tion
u

ult,
em
Listbox Widget Properties

The listbox displays a list of text items from which a user can select, by clicking
them. The listboxes have vertical scroll bars to allow viewing of a long list of item

When programming in IDL, you create listbox widgets using the WIDGET_LIST
function. For more information, seeWIDGET_LIST in theIDL Reference Guide.

Listbox Widget Attributes

For listbox widgets, you can set common attributes and listbox-specific attribute
For a list of common attributes, see“Common Attributes”on page 490. These are the
listbox widget attributes:

Height

The Height attribute specifies the height of the listbox based on the number of li
that are visible. The possible values for the attribute are 1 ton. By default, Height is
set to 1, which indicates the default size of one line will be used.

Note that the final size of the widget may be adjusted to include space for scroll b
which are not always visible, so the listbox might be slightly larger than specifie

In the generated *.pro file, this value specified with the YSIZE keyword to the widg
creation routine.

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the
widget. By default, the list is empty, but you can set this value to a scalar string
list of strings. List widgets are sized based on the length (in characters) of the lon
item specified in the array of values.

To enter more than one string in the Value field:

Type in a string, then press Control+Enter (at the end of each line). This ac
moves you to the next line. When you have entered as many strings as yo
want, press Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.

Multiple

The Multiple attribute determines if the user can select multiple list items. By defa
the setting is False, which allows for only one selection. To enable multiple list it
Building IDL Applications Listbox Widget Properties

524 Chapter 17: Using the IDL GUIBuilder

d

he

ot
n
bar,

et

vent

item
nt is

ted

ay of
selection, set this value to True. Multiple selections are handled using the metho
appropriate to the platform the application is running on.

In the generated *.pro file, this value is specified with the MULTIPLE keyword to t
widget creation routine.

Width

The Width attribute specifies the width of the listbox in characters. The possible
values for the attribute are 0 ton. By default, Width is set to 0, which indicates that
default sizing will be used, as long as theComponent Sizingattribute is set to default.

By default, IDL sizes widgets to fit the situation. However, if the desired effect is n
produced, use explicit Component Sizing with the Width property to set your ow
sizing. The final size of the widget may be adjusted to include space for the scroll
which is not always visible, so your widget may be slightly larger than specified.

In the generated *.pro file, this value specified with the XSIZE keyword to the widg
creation routine.

Listbox Widget Events

For listbox widgets, you can set common event properties and listbox-specific e
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

The following is the event property specific to listbox widgets:

OnSelectValue

The OnSelectValue specifies a valid IDL routine name that is called when a list
is selected. When a user clicks on an item in the listbox to select the item, an eve
generated.

When you set this event value, the calling sequence looks like this in the genera
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L }

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the arr
names originally used to set the widget’s value. CLICKS returns either 1 or 2,
Listbox Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 525

list
e

depending on how the list item was selected. If the list item is double-clicked,
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a
widget, you will need to handle two events. The CLICKS field will return a 1 on th
first click and a 2 on the second click.
Building IDL Applications Listbox Widget Properties

526 Chapter 17: Using the IDL GUIBuilder

ows.

the

lor.

rd

empt

et
Draw Widget Properties

Draw widgets are rectangular regions that IDL treats as standard graphics wind
Use draw widgets to display either IDL Direct graphics or IDL Object graphics,
depending on the value of theGraphics Type property. You can direct any graphical
output that can be produced by IDL to one of these widgets, either by using the
WSET function or by using the object reference of a draw widget’s IDLgrWindow
object.

Draw widgets can contain scroll bars that allow for viewing of a graphical region
larger than the area containing the widget.

When programming in IDL, you create draw area widgets using the
WIDGET_DRAW function. For more information, seeWIDGET_CONTROLin the
IDL Reference Guide.

Draw Area Widget Attributes

For a draw area widget, you can set common attributes and draw area-specific
attributes. For a list of common attributes, see“Common Attributes” on page 490.
These are the draw area-specific attributes:

Color Model

The Color Model attribute specifies the color model that should be used for
displaying information on the draw widget. This property value is used only when
Graphics Type property is set to Object, for IDL Object Graphics. These are the
possible values for the Color Model attribute:

• Index: The draw widget’s associated IDLgrWindow object uses indexed co
This is the default value.

• RGB: The RGB color model is used.

In the generated *.pro file, this value is specified by the COLOR_MODEL keywo
to the widget creation routine.

For information on using indexed color in Object Graphics window objects, see
Chapter 20, “Working with Color” in theUsing IDL manual.

Colors

The Colors attribute specifies the number of colors that the drawable should att
to use from the system color table. This property is only valid with theGraphics Type
property is set to Direct, for IDL Direct Graphics. By default, the Color attribute is s
Draw Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 527

r
use.
e of

is
to 2

e

will

e.

ct.

t

is

in

the
to 0, which indicates that IDL will attempt to get all available colors. That is, all o
most of the available color indices are allocated, based on the window system in
You can set the Colors attribute to any integer, but most values will be in the rang
-256 <n < 256.

This property has effect only if it is supplied when the first IDL graphics window
created. To use monochrome windows on a color display, set the Colors property
for the first window. One color table is maintained for all running IDL windows.

In the generated *.pro file, this value is specified by the COLORS keyword to th
widget creation routine.

Graphics Type

The Graphics Type attribute specifies the type of graphics that the draw widget
support. These are the possible values:

• Direct: The draw widget will display Direct Graphics. This is the default valu
The Colors property is used only whenGraphics Type is set to Direct.

• Object: The draw widget will display IDL Object Graphics. TheColor Model
andRendererproperties are used only when the Graphics Type is set to Obje

In the generated *.pro file, this value is specified with the GRAPHICS_LEVEL
keyword to the widget creation routine.

Renderer

The Renderer attribute specifies which graphics renderer to use with IDL Objec
Graphics. That is, for this property to be used, theGraphics Type property should be
set to Object. These are the possible values for the Renderer attribute:

• OpenGL: The platform’s native OpenGL renderer is used when drawing
objects within the window. If your platform does not have a native OpenGL
implementation, IDL’s software implementation is used as the renderer. Th
value is set by default.

• Software: IDL’s software implementation is used when drawing objects with
the window.

In the generated *.pro file, this value is specified by the RENDERER keyword to
widget creation routine.

For more information, see“Hardware vs. Software Rendering” in Chapter 28 of the
Using IDL manual.
Building IDL Applications Draw Widget Properties

528 Chapter 17: Using the IDL GUIBuilder

hese

you

e

ill
no
you

e

h
set X
Note
The renderer selection can also affect the maximum size of a draw widget.

Retain

The Retain attribute specifies how backing store is performed in the draw area. T
are the possible values:

• None: There is no backing store. When the Retain property is set to None,
should trackOnExpose events so that you can handle the redrawing of the
screen. This is the default value.

• System: The server or window system should provide backing store.

• IDL Pixmap: IDL should provide backing store.

In the generated *.pro file, this value is specified with the RETAIN keyword to th
widget creation routine.

For information on the use of the Retain property with Direct Graphics, see“Backing
Store” in Appendix B of theIDL Reference Guide. For more information on this
property with IDL Object Graphics, seeIDLgrWindow::Init in theIDL Reference
Guide.

Scroll

The Scroll attribute specifies if the draw area widget will support scrolling, and w
have scroll bars. By default, this value is set to False, which indicates there are
scroll bars. To display scroll bars, and enable scrolling, set this value to True. If
do so, set the size of the scrollable area with theX Scroll andY Scroll properties.

In the generated *.pro file, this value is specified with the SCROLL keyword to th
widget creation routine.

X Scroll

The X Scroll attribute specifies the width in pixels of the drawing area. This widt
includes the exposed and virtual area. By default, this value is not set. You can
Scroll to any width from 0 ton. If you set this value, also set theScroll andY Scroll
property values.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.
Draw Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 529

ght
set Y

ecific

s:

tton,

n

Note
To set the width of the displayed widget, use theX Size common property.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the drawing area. This hei
includes the exposed and virtual area. By default, this value is not set. You can
Scroll to any height in pixels from 0 ton. If you set this value, also set theScroll and
X Scroll properties.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To set the height of the displayed widget, use theY Size common property.

Draw Area Widget Events

For draw area widgets, you can set common event properties and draw area-sp
event properties. By default, event values arenot set. For a list of events common to
all widgets, see“Common Events” on page 493.

These are the draw area event properties:

OnButton

The OnButton value is the routine that is called when a mouse button event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like thi

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events; OnBu
OnExpose, OnMotion, andOnViewportMoved events all return the same structure.
Therefore the following paragraphs describe all these events.

TYPE returns a value that describes the type of draw widget interaction that
generated an event. If there is a button press, it returns 0, and if there is a butto
release, it returns 1. If there is motion, it returns 2 (for anOnMotion event). If the
Building IDL Applications Draw Widget Properties

530 Chapter 17: Using the IDL GUIBuilder

 the
utton
n

S
the
.

of

s:
viewport moved with the scroll bars, it returns 3 (for anOnViewportMovedevent). If
the visibility changes, it returns 4 (for anOnExpose event).

The X and Y fields give the device coordinates at which the event occurred,
measured from the lower left corner of the drawing area.

PRESS and RELEASE are bitmasks in which the least significant bit represents
left-most mouse button. The corresponding bit of PRESS is set when a mouse b
is pressed, and in RELEASE when the button is released. If the event is a motio
event, both PRESS and RELEASE returns zero.

CLICKS returns either 1 or 2. If the time interval between button-press events is
greater than the time interval for a double-click event for the system, the CLICK
field returns 1. If the time interval between two button-press events is less than
time interval for a double-click event for the platform, the CLICKS field returns 2

OnExpose

The OnExpose value is the routine that is called when the visibility of any portion
the draw window (or viewport) changes or is exposed. In the generated
*_eventcb.pro file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events;OnButton,
OnExpose, OnMotion, andOnViewportMoved events all return the same structure.
For information on this structure, seeOnButton.

OnMotion

The OnMotion value is the routine that is called when a mouse motion event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like thi

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }
Draw Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 531

.pro
Note that this is the same event structure returned for all draw area events;OnButton,
OnExpose, OnMotion, andOnViewportMoved events all return the same structure.
For information on this structure, seeOnButton.

OnViewportMoved

The OnViewportMoved value is the routine that is called when the viewport of a
scrolling draw widget is moved, using the scroll bars. In the generated *_eventcb
file, the calling sequence looks like this:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events;OnButton,
OnExpose, OnMotion, andOnViewportMoved events all return the same structure.
For information on this structure, seeOnButton.
Building IDL Applications Draw Widget Properties

532 Chapter 17: Using the IDL GUIBuilder

one

or a
e

the

to

lt,
he

tion

umn
Table Widget Properties

Table widgets display data and allow for data editing by the user. Tables can have
or more rows and one or more columns.

When programming in IDL, you create table widgets using the WIDGET_TABLE
function. For more information, seeWIDGET_TABLE in theIDL Reference Guide.

Table Widget Attributes

For table widgets, you can set common attributes and table-specific attributes. F
list of common attributes, see“Common Attributes”on page 490. These are the tabl
widget-specific attributes:

Alignment

The Alignment attribute specifies how the text is aligned in the cells. These are
possible values:

• Left: The text is left-justified. This is the default value.

• Right: The text is right-justified.

• Center: The text is centered.

In the generated *.pro file, this value is specified with the ALIGNMENT keyword
the widget creation routine.

Column Labels

The Column Labels attribute specifies the labels for the table columns. By defau
this value is set to empty strings, but you can set it to any set of strings. To set t
labels for table rows, use theRow Labels property.

To enter more than one string in the Value field:

Type in a string, then press Control+Enter (at the end of each line). This ac
moves you to the next line, or the next label for a column. When you have
entered as many labels as you want, press Enter to set the values.

In the generated *.pro file, this value is specified with the COLUMN_LABELS
keyword to the widget creation routine.

Display Headers

The Display Headers attribute determines if the table headings, the row and col
labels, are displayed. By default, this value is set to True, indicating that table
Table Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 533

lue to

lt,
xt is

he

.

his

By
. To
heading should be displayed. To disable the display of table headings, set this va
False.

In the generated *.pro file, the False value is specified with the NO_HEADERS
keyword to the widget creation routine.

Editable

The Editable attribute determines if the table widget is editable or not. By defau
this value is set to False, which means the text widget is not editable, and the te
read-only. To make the text widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to t
widget creation routine.

Number of Columns

The Number of Columns attribute specifies the number of columns in the table
widget. This value sets the full, virtual width of the table. By default, it is set to 6

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set theScroll property to True. Then, to specify the
visible size of the table, set theViewport Columns property.

Number of Rows

The Number of Rows attribute specifies the number of rows in the table widget. T
value sets the full, virtual height of the table. By default, it is set to 6.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set theScroll property to True. Then, to specify the
visible size of the table, set theViewport Columns property.

Resize Columns

The Resize Columns attribute determines if this user can resize table columns.
default, this value is set to True, indicating that the user can resize the columns
Building IDL Applications Table Widget Properties

534 Chapter 17: Using the IDL GUIBuilder

e to

is

ing

 the
a, set
ust

able.

lue
or

tion
red

rd

s
croll
the
specify that the columns of the table are not resizeable by the user, set this valu
False.

In the generated *.pro file, this value is specified with the
RESIZEABLE_COLUMNS keyword to the widget creation routine.

Note
If you set theDisplay Headersproperty to False, the ability to resize the columns
automatically disabled.

Row/Column Major

The Row/Column Major attribute specifies how data is transferred to the table
widget, either by Row or by Column. By default, this value is set to Row, indicat
that the data should be read into the table as if each element of the vector is a
structure containing one row’s data. To specify that the data should be read into
table as if each element of the vector is a structure containing one column’s dat
this value to Column. Note that for either setting to work properly the structures m
all be of the same type, and must have one field for each column or row in the t

In the generated *.pro file, this value is specified with the ROW_MAJOR or the
COLUMN_MAJOR keyword to the widget creation routine.

Row Labels

The Row Labels attribute specifies the labels for the table rows. By default, this va
is set to empty strings, but you can set it to any set of strings. To set the labels f
table columns, use theColumn Labels property.

To enter more than one string in the Value field:

Type in a string, then press Control+Enter (at the end of each line). This ac
moves you to the next line, or the next label for a row. When you have ente
as many labels as you want, press Enter to set the values.

In the generated *.pro file, this value is specified with the ROW_LABELS keywo
to the widget creation routine.

Scroll

The Scroll attribute determines if the table widget has scroll bars. By default, thi
value is set to False, indicating that the table will have no scroll bars. To enable s
bars, set this value to True. If you set this value to True, you can set the size of
scrollable region with theViewport Rows andViewport Columns properties.
Table Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 535

e

m
l

erty

 in

m

ty is

t

In the generated *.pro file, this value is specified with the SCROLL keyword to th
widget creation routine.

Viewport Columns

The Viewport Columns attribute specifies the number of columns that should be
visible in the scroll area of the table widget. By default, this value is set to 6.

If you first set theScrollproperty to True, you can then set this value to any size fro
0 ton columns within the limits of your full table size. The full table size, or virtua
width in columns, is set with theNumber of Columns property.

This property is used only when theComponent Sizing property is set to Default. If
you set the Component Sizing property to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Columns prop
is ignored, and theX Size and theY Size properties are used.

In the generated *.pro file, this value is specified with the X_SCROLL_SIZE
keyword to the widget creation routine.

Viewport Rows

The Viewport Rows attribute specifies the number of rows that should be visible
the scroll area of the table widget. By default, this value is set to 6.

If you first set theScrollproperty to True, you can then set this value to any size fro
0 ton rows, within the limits of your full table size. The full table size, or virtual
height in rows, is set with theNumber of Rows property.

This property is used only when theComponent Sizing property is set to Default. If
you set the Component Sizing property to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Rows proper
ignored, and theX Size and theY Size properties are used.

In the generated *.pro file, this value is specified with the Y_SCROLL_SIZE
keyword to the widget creation routine.

Table Widget Events

For table widgets, you can set common event properties and table-specific even
properties. By default, event values arenot set. For a list of events common to all
widgets, see“Common Events” on page 493.

These are the table widget-specific event properties:
Building IDL Applications Table Widget Properties

536 Chapter 17: Using the IDL GUIBuilder

e
ted

nd is

cified
lls
rner
HT,

o

nd is

w

OnCellSelect

The OnCellSelect value is the routine that is called when cells are selected in th
table. When you set this value, the calling sequence looks like this in the genera
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when range of cells is selected or deselected a
of the following type:

{ WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L }

The range of cells selected is given by the zero-based indices into the table spe
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When ce
are deselected, either by changing the selection or by clicking in the upper left co
of the table, an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIG
and SEL_BOTTOM fields contain the value -1.

Note
Two WIDGET_TABLE_CELL_SEL events are generated when an existing
selection is changed to a new selection. If your code uses this event, be sure t
differentiate between select and deselect events.

OnColWidth

The OnColWidth value is the routine that is called when the column width is
changed. When you set this value, the calling sequence looks like this in the
generated *_eventcb.pro file:

PRO <RoutineName>, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when a column width is changed by the user a
of the following type:

{ WIDGET_TABLE_COLUMN_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COLUMN:0L, WIDTH:0L }

COLUMN contains the zero-based column number, and WIDTH contains the ne
width.
Table Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 537

ble.

of a

d it is
H

base

) if

ble.

 a
OnDelete

The OnDelete value is the routine that is called when text is deleted from the ta
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when any amount of text is deleted from a cell
table widget and is of the following type:

{ WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L }

OFFSET is the (zero-based) character position of the first character deleted, an
the insertion position that will result when the next character is inserted. LENGT
gives the number of characters involved. The X and Y fields give the zero-based
address of the cell within the table.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus of the
changes. When you set it, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 (one) if the table widget is gaining the keyboard focus, or 0 (zero
the table widget is losing the keyboard focus.

OnInsertChar

The OnInsertChar value is the routine that is called when text is inserted in the ta
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when a single character is typed into a cell of
table widget and is of the following type:

{ WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }
Building IDL Applications Table Widget Properties

538 Chapter 17: Using the IDL GUIBuilder

 is

ble.

ll and

ted.
ss of

ell.

ss
 The

elds

ble.
OFFSET is the (zero-based) insertion position that will result after the character
inserted. CH is the ASCII value of the character. The X and Y fields indicate the
zero-based address of the cell within the table.

OnInsertString

The OnInsertString value is the routine that is called when text is inserted in the ta
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when multiple characters are pasted into a ce
is of the following type:

{ WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the text is inser
STR is the string to be inserted. The X and Y fields indicate the zero-based addre
the cell within the table.

OnInvalidData

The OnInValidData value is the routine that is called when invalid data is set in a c
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event

RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when the text entered by the user does not pa
validation, and the user has finished editing the field (by pressing Tab or Enter).
event structure is of the following type:

{ WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L }

STR contains invalid contents entered by the user as a text string. The X and Y fi
contain the cell location.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the ta
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

PRO <RoutineName >, Event
Table Widget Properties Building IDL Applications

Chapter 17: Using the IDL GUIBuilder 539

cture

ed)
er of
n,

the
RoutineName is the name of the event procedure you specify.Event is the returned
event structure, which is returned when an area of text is selected. The event stru
is of the following type:

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

This event announces a change in the insertion point. OFFSET is the (zero-bas
character position of the first character to be selected. LENGTH gives the numb
characters involved. A LENGTH of zero indicates that the widget has no selectio
and that the insertion position is given by OFFSET. The X and Y fields indicate
zero-based address of the cell within the table.
Building IDL Applications Table Widget Properties

540 Chapter 17: Using the IDL GUIBuilder
Table Widget Properties Building IDL Applications

Chapter 18:

Widgets
The following topics are covered in this chapter:
3

Overview . 542
Widget Types. 544
Manipulating Widgets. 549
Examples of Widget Programming. 550
The Widget Application Model 551
Creating Widget Applications. 554
Widget Example 1. 557
Widget Values. 559
Widget User Values. 562
Widget Events. 563
Widget Example 2. 569

Using Draw Widgets 571
Creating Menus . 573
Controlling Widgets. 578
Widget Example 3 581
Widget Sizing. 58
Event Processing And Callbacks. 589
Managing Widget Application State 592
Compound Widgets. 594
Tips on Creating Widget Applications. . . . 596
Compound Widget Example 598
Building IDL Applications 541

542 Chapter 18: Widgets

n via
r
sed

a C
the
s

e
ent

ams

y

t
-

here

he
s
out

next
l

urce
Overview

IDL allows you to construct and manipulate graphical user interfaces usingwidgets.
Widgets (orcontrols, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interactio
a pointing device (usually a mouse) and a keyboard. This style of graphical use
interaction offers many significant advantages over traditional command-line ba
systems.

IDL widgets are significantly easier to use than other alternatives, such as writing
language program using the native window system directly. IDL handles much of
low-level work involved in using such toolkits. The interpretive nature of IDL make
it easy to prototype potential user interfaces. In addition to the user interface, th
author of a program written in a traditional compiled language also must implem
any computational and graphical code required by the program. IDL widget progr
can draw on the full computational and graphical abilities of IDL to supply these
components.

The style of widgets IDL creates depends on the windowing system supported b
your host computer. Unix and VMS hosts use Motif widgets, while Microsoft
Windows and Macintosh systems use their native toolkits. Although the differen
toolkits produce applications with a slightly different look and feel, most properly
written widget applications work on all systems without change.

IDL graphical user interfaces are constructed by combining widgets in a treelike
hierarchy. Each widget has one parent widget and zero or more child widgets. T
is one exception: the topmost widget (called atop-level base) is always a base widget
and has no parent.

Programs that use widgets areevent driven. In an event driven system, the program
creates an interface and then waits for messages (events) to be sent to it from t
window system. Events are generated in response to user manipulation, such a
pressing a button or moving a slider. The program responds to events by carrying
the action or computation specified by the programmer, and then waiting for the
event. This approach to computing is fundamentally different from the traditiona
command-based approach.

Note
You can use the IDL GUIBuilder to create user interfaces interactively. The IDL
GUIBuilder allows you to create and interface rapidly and generate the IDL so
Overview Building IDL Applications

Chapter 18: Widgets 543

les
code to create the interface. For information, seeChapter 17, “Using the
IDL GUIBuilder” .

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the fi
mentioned are located in thedoc subdirectory of theexamples subdirectory of the
main IDL directory. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
!PATH in theIDL Reference Guide for information on IDL’s path.
Building IDL Applications Overview

544 Chapter 18: Widgets

.
e

se
e
, and

ID.

ing a
ee

ding
 be

the
Widget Types

IDL supports two types of widgets.Widget primitivesare the base interface elements
Compound widgets are more complex interface elements built in the IDL languag
from the widget primitives. In addition, there are a number ofdialogs which are
widget-like but which do not belong to a widget hierarchy.

Widget Primitives

Widget primitives are created by functions with names like WIDGET_BASE and
WIDGET_BUTTON. IDL provides the following widget primitives:

Base

A base is a widget used to hold other widgets, including other base widgets. Ba
widgets can optionally contain scroll bars that allow the base to be larger than th
space on the screen. In this case, only part of the base is visible at any given time
the scroll bars are used to control which part is visible.

Base widgets are created by the WIDGET_BASE function. SeeWIDGET_BASE in
theIDL Reference Guide for more information.

Top-level basesare a special class of base widget created without a parent widget
Top-level bases can be organized into an application hierarchy by specifying the
GROUP_LEADER keyword. Top-level bases can be made tofloat above their group
leaders (via the FLOATING keyword), or can be created asmodal bases (via the
MODAL keyword) that interrupt program execution until the user performs some
action. See“The Widget Application Model” on page 551 for additional discussion
of widget applications.

Button

A pushbutton is activated by moving the mouse cursor over the button and press
mouse button. Button widgets are created by the WIDGET_BUTTON function. S
WIDGET_BUTTON in theIDL Reference Guide for more information.

Draw

Draw widgets offer a rectangular area that works like a standard IDL graphics
window. Draw widgets can use either Direct graphics or Object graphics, depen
on how they are created. Any graphical output that can be produced by IDL can
directed to one of these widgets, either through theWSET function or by using the
object reference of a draw widget’s IDLgrWindow object. Draw widgets can
optionally contain scrollbars that allow examining a graphical region larger than
Widget Types Building IDL Applications

Chapter 18: Widgets 545

y
ears

are
rge
e

an
gets
s.

eger
of

ells
eated
area containing the widget. Draw widgets are created by the WIDGET_DRAW
function. SeeWIDGET_DRAW in theIDL Reference Guide for more information.

Droplist

Droplist widgets display a single entry from a list of options. When selected, the
reveal the entire list. When a new option is selected from this list, the list disapp
and the new selection is displayed. On systems using the Motif window system,
Droplist widgets look like buttons with labels that change depending on the item
selected from the drop-down list. Droplist widgets are created by the
WIDGET_DROPLIST function. SeeWIDGET_DROPLIST in theIDL Reference
Guide for more information.

Label

Label widgets display static text. They are similar to single-line text widgets but
optimized for small labeling purposes. Text widgets should be used to display la
amounts of text. Label widgets are created by the WIDGET_LABEL function. Se
WIDGET_LABEL in theIDL Reference Guide for more information.

List

A list widget offers the user a list of text elements from which to choose. Users c
select an item by pointing with the mouse cursor and pressing a button. List wid
always have a vertical scrollbar and allow selection from a large number of item
List widgets are created by the WIDGET_LIST function. SeeWIDGET_LIST in the
IDL Reference Guide for more information.

Slider

Slider widgets are used to select or indicate a value within a range of possible int
values. They consist of a rectangular region that represents the possible range
values. Inside this region is a sliding pointer that displays the current value. This
pointer can be manipulated by the user via the mouse or from within IDL by the
WIDGET_CONTROL procedure. Slider widgets are created by the
WIDGET_SLIDER function. SeeWIDGET_SLIDER in theIDL Reference Guide
for more information.

Table

Table widgets are used to display information in tabular format. Individual table c
(or ranges of cells) can be selected for editing by the user. Table widgets are cr
by the WIDGET_TABLE function. SeeWIDGET_TABLE in theIDL Reference
Guide for more information.
Building IDL Applications Widget Types

546 Chapter 18: Widgets

n
ore

t
L

ines

g

r to

ing
Text

Text widgets are used to display text and to get text input from the user. They ca
have one or more lines and can optionally contain scroll bars that allow viewing m
text than can otherwise be displayed. Text widgets are created by the
WIDGET_TEXT function. SeeWIDGET_TEXT in theIDL Reference Guide for
more information.

Compound Widgets

A compound widget is a complete, self-contained, reusable widget sub-tree tha
behaves to a large degree just like a widget primitive, but which is written in the ID
language. Compound widget routines can be found (along with many other rout
that use the widgets) in thelib subdirectory of the IDL distribution. All compound
widget filenames begin with “CW_” to make them easier to identify. The followin
types of compound widgets are included in the IDL distribution.

Animation

The CW_ANIMATE compound widget — along with its associated routines —
displays an animated sequence of images. SeeCW_ANIMATE in theIDL Reference
Guide.

Color Manipulation

The CW_CLR_INDEX compound widget displays a color bar and allows the use
select a color index. SeeCW_CLR_INDEX in theIDL Reference Guide.

The CW_COLORSEL compound widget displays all the colors in the current
colormap and allows the user to select color indices. SeeCW_COLORSEL in the
IDL Reference Guide.

The CW_RGBSLIDER compound widget allows the user to adjust color values us
the RGB, CMY, HSV, and HLS color systems. SeeCW_RGBSLIDER in theIDL
Reference Guide.

Data Entry and Display

The CW_FIELD compound widget simplifies building data-entry interfaces by
combining label and text widgets. SeeCW_FIELD in theIDL Reference Guide.

The CW_FORM compound widget allows you to create simple forms with text,
numeric fields, buttons, and droplists. SeeCW_FORM in theIDL Reference Guide.
Widget Types Building IDL Applications

Chapter 18: Widgets 547

y-

-

ree-

les

de

hy.

ce.
Image Manipulation

The CW_DEFROI compound widget allows you to specify aregion of interestwithin
a draw widget. SeeCW_DEFROI in theIDL Reference Guide.

The CW_ZOOM compound widget displays original and zoomed images side-b
side. SeeCW_ZOOM in theIDL Reference Guide.

Orientation

The CW_ARCBALL compound widget allows the user to intuitively specify three
dimensional orientations. SeeCW_ARCBALL in theIDL Reference Guide.

The CW_ORIENT compound widget allows the user to interactively adjust the th
dimensional drawing transformation. SeeCW_ORIENT in theIDL Reference Guide.

User Interface

The CW_BGROUP compound widget simplifies creation of a cluster of buttons.
Button groups can be simple menus in which each button acts independently,
exclusive groups (also known as “radio buttons”), ornon-exclusive groups (often
called “checkboxes”). SeeCW_BGROUP in theIDL Reference Guide.

The CW_FSLIDER compound widget is a version of the slider widget that hand
floating-point values. SeeCW_FSLIDER in theIDL Reference Guide.

The CW_PDMENU compound widget creates pulldown menus, which can inclu
sub-menus, from a set of buttons. SeeCW_PDMENU in theIDL Reference Guide.

See“Writing Compound Widgets”on page 594 for information on writing your own
compound widgets.

Dialogs

A dialog is a widget-like user interface element that is not part of a widget hierarc
Dialogs aremodal (or “blocking”) elements, which means that when a dialog is
displayed, no other interface elements (widgets or compound widgets) can be
manipulated until the user dismisses the dialog.

File and Directory Selection

File selection dialogs allow you to choose a file or directory via a graphical interfa
The DIALOG_PICKFILE function returns the string containing the name of the
selected file. SeeDIALOG_PICKFILE in theIDL Reference Guide for more
information.
Building IDL Applications Widget Types

548 Chapter 18: Widgets

ed, no
e of

ntly
Message

Message dialogs aremodal (or “blocking”) dialog boxes that can display warnings,
informational messages, or error messages. When a message dialog is display
widgets can be manipulated until the user dismisses the dialog by clicking on on
its buttons. Message dialogs do not belong to widget hierarchies; they are insta
created when the DIALOG_MESSAGE function is called and block all widget
activity until dismissed. SeeDIALOG_MESSAGE in theIDL Reference Guide for
more information.

Printing

IDL provides two dialogs for controlling printing.DIALOG_PRINTJOB opens a native
dialog that allows you to setthe properties of a printer.parameters for a printing job
(number of copies to print, for example).DIALOG_PRINTERSETUPopens a native
dialog for setting the applicable properties for a particular printer.See
DIALOG_PRINTJOB andDIALOG_PRINTERSETUP in theIDL Reference Guide
for more information.
Widget Types Building IDL Applications

Chapter 18: Widgets 549

t

:

hed.

c

Manipulating Widgets

Widgets are controlled via theirwidget IDs. The widget ID is a long integer assigned
to the widget when it is first created. In practice, the widget ID of a widget is
contained in a named variable that you assign when you call the widget creation
function. For example, you might create a base widget with the following IDL
command:

base = WIDGET_BASE()

Here, the IDL variablebase contains the widget ID of the top-level widget base tha
is created.

IDL provides several routines that allow you to manipulate and manage widgets

• WIDGET_CONTROL allows you torealize (make visible on your screen)
widget hierarchies, manipulate them, and destroy them when you are finis

• WIDGET_EVENT allows you to process events generated by a specific
widget hierarchy.

• WIDGET_INFOallows you to obtain information about the state of a specifi
widget or widget hierarchy.

• XMANAGER provides an event loop and manages events generated by a
widget hierarchy.

• XREGISTERED allows you to test whether a specific widget is currently
registered with XMANAGER.

These widget manipulation routines are discussed in more detail in the following
sections.
Building IDL Applications Manipulating Widgets

550 Chapter 18: Widgets

e

Examples of Widget Programming

A number of simple examples of widget programming can be seen by running th
IDL programexamples.pro , which can be found in the/examples/misc folder
of the IDL distribution. A widget interface with a pulldown menu of small widget
applications should appear.
Examples of Widget Programming Building IDL Applications

Chapter 18: Widgets 551

es.
an

zed,

ix
and 5,
lso
s that
 that
.

The Widget Application Model

Using widgets, you can create entire IDL applications with graphical user interfac
Although widget applications are running “inside” IDL, a well-designed program c
behave and appear just like a stand-alone application.

A widget application consists of agroup of top-level bases organized hierarchically.
Groups of widgets are defined by setting the GROUP_LEADER keyword when
creating the widget. Group membership controls how and when widgets are iconi
which layer they appear in, and when they are destroyed.

The following figure depicts a widget application group hierarchy consisting of s
top-level bases in three groups: base 1 leads all six bases, base 2 leads bases 4
and base 3 leads base 6. What does this mean? Operations that affect base 2 a
affect bases 4 and 5. Operations that affect base 3 also affect base 6. Operation
affect base 1 affect all six bases—that is, a group includes not only those bases
explicitly claim one base as their leader, but also all basesled bythose member bases

The following IDL commands would create this hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)

Figure 18-1: A widget application group hierarchy with six top-level bases.
Building IDL Applications The Widget Application Model

552 Chapter 18: Widgets

ne on

oup
n a
e

 on

 their

.

re
n
g is
base3 = WIDGET_BASE(GROUP_LEADER=base1)
base4 = WIDGET_BASE(GROUP_LEADER=base2)
base5 = WIDGET_BASE(GROUP_LEADER=base2)
base6 = WIDGET_BASE(GROUP_LEADER=base3)

Iconization

On Motif and Windows platforms, bases and groups of bases can beiconized (or
minimized) by clicking the system minimize control. When a group leader is
iconized, all members of the group are minimized as well. Minimization has no
meaning on the Macintosh.

Layering

Layering is the process by which groups of widgets seem to share the same pla
the display screen. Within a layer on the screen, widgets have aZ-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

All widgets within a group hierarchy share the same layer—that is, when one gr
member has the input focus, all members of the group hierarchy are displayed i
layer that appears in front of all other groups or applications. Within the layer, th
widgets can have an arbitrary Z-order.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking
the system “close” button, all members of the group are destroyed as well.

SeeIconizing, Layering, and Destroying Groups of Top-Level Bases under
WIDGET_BASE in theIDL Reference Guidefor detailed information on how group
membership defines widget behavior on different platforms.

Floating bases

Top-level base widgets created with the FLOATING keyword set willfloat above
their group leaders, even though they share the same layer. Floating bases and
group leaders are iconized in a single icon (on platforms where iconization is
possible). Floating bases are destroyed when their group leaders are destroyed

Modal bases

Top-level base widgets created with the MODAL keyword will float above their
group leaders, and will suspend processing in the widget application until they a
dismissed. (Dialogs are generally modal.) Modal bases cannot be iconized, and o
some platforms other bases cannot be moved or iconized while the modal dialo
present. Modal bases cannot have scroll bars or menubars.
The Widget Application Model Building IDL Applications

Chapter 18: Widgets 553

kes
Menubars

Widget applications can have an application-specific menubar, created by the
APP_MBAR keyword to WIDGET_BASE. Currently, application menubars are
equivalent to individual menubars created by the MBAR keyword on Motif and
Windows platforms. On the Macintosh, the menubar defined by APP_MBAR “ta
over” the Macintosh system menubar, while menubars defined by MBAR are
included on an individual top-level base widget.
Building IDL Applications The Widget Application Model

554 Chapter 18: Widgets

tions
lf.

 in
nd
ld

eturn

et
ing

t to
Creating Widget Applications

An application using widgets goes through the following cycle:

Construct the Widget Hierarchy

You must first build a widget hierarchy. Start with one or moretop-level bases
(created with the WIDGET_BASE function) in a hierarchy described by
GROUP_LEADER relationships. Combine other widget creation functions —
WIDGET_BUTTON, CW_PDMENU, etc. — to create and organize the user
interface of your widget application. At this point, the widgets exist only within
IDL—nothing has been created or displayed on the window system.

Provide an Event-Handling Routine

In order for a widget application todo anything, you must provide a routine that
examines events, determines what action to take, and implements the action. Ac
may involve computation, graphics display, or updating the widget interface itse

For the best performance, it is important that the program spend most of its time
theevent loopprovided by the event handling routine. Some widgets will not respo
rapidly to user manipulation when not in this loop. Widget-based programs shou
wait for user-generated events, handle them as quickly as possible, and quickly r
to wait for more events. Event processing is discussed in detail in“Widget Events”on
page 563 and in“Event Processing And Callbacks” on page 589.

Event handling routines can use theWIDGET_CONTROL procedure to manipulate
widgets. Possible actions include the following:

• Obtain or change the value of a widget (see“Widget Values” on page 559)
using the APPEND, GET_VALUE, and SET_VALUE keywords.

• Obtain or change the value of a widget’s user value (discussed in“Widget User
Values” on page 562) using the GET_UVALUE and SET_UVALUE
keywords.

• Map and unmap widgets using the MAP keyword. Unmapped widgets are
removed from the screen and become invisible, but they still exist.

• Change a widget’s sensitivity using the SENSITIVE keyword. When a widg
is insensitive, it indicates the fact by changing its appearance (often by gray
itself or displaying text with dashed lines) and ignores any user input. It is
useful to make widgets insensitive at points where it would be inconvenien
get events from them (for example, if your program is waiting for input from
another source).
Creating Widget Applications Building IDL Applications

Chapter 18: Widgets 555

hem

he

en

ed
.

 is
e

based
y —

hy to
• Change the settings of toggle buttons using the SET_BUTTON keyword.

• Push a widget hierarchy behind the other windows on the screen, or pull t
in front using the SHOW keyword.

• If you expect an operation to be slow, display the “hourglass” cursor while t
application is busy and not able to respond to user actions by setting the
HOURGLASS keyword.

Realize the Widgets

Bring the widget hierarchy into existence using the REALIZE keyword to the
WIDGET_CONTROL procedure. This causes the widgets to be created and
displayed.

Register the Program with the XMANAGER

Register the program with the XMANAGER procedure. Your widget application th
waits for events to be reported to it and reacts as specified in the event handling
routine.

Events are obtained by XMANAGER via the WIDGET_EVENT function and pass
to the calling routine (your event handler) in the form of an IDL structure variable
Each type of widget returns a different type of structure, the exact form of which
described in the documentation for the individual widget creation functions in th
IDL Reference Guide. However, every event structure has the same first three
elements. These are long integers namedID , TOP, andHANDLER. ID is the widget
ID of the widget generating the event.TOP is the widget ID of the top-level base
containing ID.HANDLER is important for event handler functions, which are
discussed later in this chapter.

When an event appears, XMANAGER passes it to an event-handling procedure
specified by the program, and the event handler takes some appropriate action
on the event. This means that multiple widget applications can run simultaneousl
XMANAGER dispatches the events to the appropriate routine.

Destroy the Widgets

When the application has finished (usually when the user clicks on a “Done” or
“Quit” button), destroy the widget hierarchy using the WIDGET_CONTROL
procedure’s DESTROY keyword. This causes all resources related to the hierarc
be freed and removes it from the screen.
Building IDL Applications Creating Widget Applications

556 Chapter 18: Widgets

he

 IDL
Handling Widget Application Errors

At times, widget applications may experience errors that stop the processing of
widget events by XMANAGER. This is most common during the development of t
application, when unexpected programming errors are likely to appear.

By default, XMANAGER catches errors and continues processing (seeCATCH in
theIDL Reference Guide). If you are using XMANAGER to manage your widget
application (as in most cases you should), have explicitly set CATCH=0, and the
widget stops responding, error messages appear in your command log, and the
command prompt reappears, do the following:

1. EnterRETALL at the IDL prompt to return to the main program level.

2. EnterXMANAGERat the IDL prompt. Calling XMANAGER with no parameters
tells it to skip registering a new application and to simply resume event
processing.

Note
If you donot restart XMANAGER, widget applications will not respond even if
you recompile.
Creating Widget Applications Building IDL Applications

Chapter 18: Widgets 557

ition

e

d a

hat
Widget Example 1

The following example demonstrates the simplicity of widget programming. It
creates a base widget containing a single button, labelled “Done.” When you pos
the mouse cursor over the button and click, the widget is destroyed.

Enter the two procedures listed below — either in a text file namedwidget1.pro ,
or directly into IDL using the.RUN command. Enterwidget1 at the IDL prompt to
run the program.

PRO widget1_event, ev
IF ev.select THEN WIDGET_CONTROL, ev.top, /DESTROY
END

PRO widget1
base = WIDGET_BASE()
button = WIDGET_BUTTON(base, value='Done')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'Widget1', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget1

at the IDL command prompt. See“Running the Example Code” on page 543 if IDL
does not run the program as expected.

While this simple example does nothing particularly useful, it does illustrate som
basic concepts of event-driven programming. Let’s examine how the example is
constructed.

First, note that the “application” consists of two parts; an event handling routine an
creation routine. First, let’s examine the second part — the creation routine —
contained in thewidget1 procedure.

Thewidget1 procedure does the following:

1. Creates a top-level base widget namedbase . All widget applications have at
least one base.

2. Creates a button widget namedbutton with base as its parent. The value
“Done” is assigned to the button. The value of a button widget is the text t
appears on the button’s face.
Building IDL Applications Widget Example 1

558 Chapter 18: Widgets

ng

an
e

ssed

e the
3. Realizes the widget hierarchy built onbase by calling WIDGET_CONTROL
with the /REALIZE keyword. This causes the widget to appear on your
computer screen.

4. Invokes the XMANAGER routine to manage the widget event loop, providi
the name of the calling routine (widget1) and the name of the top-level base
the widget hierarchy is built on (base).

The first part, contained in thewidget1_event procedure, is the event handling
routine for the application. By convention, the XMANAGER procedure looks for
event handling procedure with the same name as the procedure that creates th
widgets, with “_event” appended to the end. (This default can be overridden by
specifying an event handler directly using the EVENT_HANDLER keyword to
XMANAGER.) When an event is received by XMANAGER, the event structure is
passed to thewidget1_event procedure via theev argument.

In this example, all the event handling routine does is check to see if the event pa
to it was a select event, which is part of the event structure generated bythe button
widget. If aselect event is received, the routine calls WIDGET_CONTROL with the
DESTROY keyword to destroy the widget hierarchy built on the top-level base
widget that contains the button widget (specified in thetop field of the event
structure).

For further discussion of widget events and event structures, see“Widget Events”on
page 563. For details about the event structures returned by different widgets, se
documentation for each widget in theIDL Reference Guide.
Widget Example 1 Building IDL Applications

Chapter 18: Widgets 559

sing

to

e

IDL

alue

a

Widget Values

Many widget primitives have values associated with them. Initial values are set u
the VALUE keyword to the widget creation function. The value can be obtained
and/or changed at any time using the GET_VALUE and SET_VALUE keywords
the WIDGET_CONTROL procedure. Widgets with a value are listed below.

Button

Type: Scalar string (text) or byte array (bitmap). The value is the button label. Th
GET_VALUE keyword cannot be used to obtain bitmaps.

To specify text as a button label, use the VALUE keyword as follows:

button = WIDGET_BUTTON(base, VALUE='Text')

To specify a bitmap as a button label, use the VALUE keyword as follows:

button = WIDGET_BUTTON(base, VALUE='mybitmap.bmp', /BITMAP)

Note that when specifying a bitmap as a button label, you must use the BITMAP
keyword.

Draw

Type: Integer. For draw widgets created using Direct Graphics, the value is the
window number for use with direct graphics routines, such asWSET. For draw
widgets created using Object Graphics, the value is the object reference to the
IDLgrWindow object. This value cannot be set or modified. See“Using Draw
Widgets” on page 571.

Label

Type: Scalar string. The value is the label text.

List or Droplist

Type: Scalar string or string array. The value represents the list elements. This v
can only be set; it cannot be retrieved.

Slider

Type: Integer. The value is the current slider position.

Table

Type: Any data type or types, organized either in a two-dimensional array or as
vector of structures. The value is the contents of the table.
Building IDL Applications Widget Values

560 Chapter 18: Widgets

type.

 the
ta

hen
w

e
in
et is

re

sive
sive

nitial

set
If the value is specified as a two-dimensional array, all data must be of the same

If the value is specified as a vector of structures, all of the structures must have
same structure definition. Individual fields within the structures can be of any da
type. The structures must contain one field for each column (if the
COLUMN_MAJOR keyword to WIDGET_TABLE is set) or one field for each row
(if the ROW_MAJOR keyword to WIDGET_TABLE is set, or if neither keyword is
set).

Text

Type: Scalar string or string array. The value is the contents of the text widget. W
setting this value, the APPEND keyword to WIDGET_CONTROL causes the ne
text to be appended to the old text instead of replacing it.

Widget Values of Compound Widgets

Many compound widgets also have associated values. Initial values can often b
specified using the VALUE keyword to the creation routine. Note, however, that
some cases widget values of compound widgets cannot be set until after the widg
realized; values are thus set, obtained, or changed using the GET_VALUE and
SET_VALUE keywords to the WIDGET_CONTROL procedure. See the
documentation for the individual compound widget creation routines in theIDL
Reference Guide for more detailed information. Compound widgets with a value a
listed below:

CW_ARCBALL

Type: 3 by 3 array. The value is the three-dimensional rotation matrix.

CW_BGROUP

Type: Integer or Vector. For “normal” button groups, there is no value. For exclu
button groups, the value is the integer index of the selected button. For non-exclu
button groups, the value is a vector indicating which buttons are selected. The i
value of a button group can be set using the SET_VALUE keyword to
CW_BGROUP.

CW_CLR_INDEX

Type: Integer. The value is the index of the color selected. The value cannot be
before the widget is realized.
Widget Values Building IDL Applications

Chapter 18: Widgets 561

set

rm.

e the
CW_COLORSEL

Type: Integer. The value is the index of the color selected. The value cannot be
before the widget is realized.

CW_FIELD

Type: String. The value is the string value of the text portion of the field widget.

CW_FORM

Type: Structure. The value is a structure of tag/value pairs for each field in the fo
The value cannot be set before the widget is realized.

CW_FSLIDER

Type: Floating-point number. The value is the numeric value of the slider.

CW_ZOOM

Type: byte array. The value is the current array displayed. Note that you must us
SET_VALUE keyword to WIDGET_CONTROL to display the original image.
Building IDL Applications Widget Values

562 Chapter 18: Widgets

ins
et

n
get
 and

er
e.

nt to
keep

han
get
get

ple,
Widget User Values

Every widget primitive and compound widget has the potential to carry a user-
specified value of any IDL data type and organization. That is, every widget conta
a variable that can store arbitrary information. This value is ignored by the widg
and is for the programmer’s convenience only.

The initialuser valueis specified using the UVALUE keyword to the widget creatio
function. If no initial value is specified, the user value is undefined. Once the wid
exists, its user value can be examined and/or changed using the GET_UVALUE
SET_UVALUE keywords to the WIDGET_CONTROL procedure. The widget us
value should not be confused with the concept of widget values described abov

User Values Simplify Event Handling

User values can be used to simplify event-handling. If each widget in a widget
hierarchy has a distinct user value, you need only check the user value of any eve
determine which widget generated it. In practice, this means you do not need to
track of the widget IDs of all the widgets in your widget hierarchy in order to
determine what to do with a given event.

User Values Can Simulate Global Variables

Another use for user variables is to simulate a variable that is “known” in more t
one IDL routine. For example, you can set the user value of a top-level base wid
equal to one or more widget IDs. You then have an easy way to “import” the wid
IDs from your widget creation routine into your event handling routine.

We will take advantage of both of these aspects of user values in our next exam
“Widget Example 2” on page 569.
Widget User Values Building IDL Applications

Chapter 18: Widgets 563

der

ser

er

get

e

ng

t
for

t

ws
Widget Events

The concept of events and event processing underlies every aspect of widget
programming. It is important to understand how IDL handles widget events in or
to use widgets effectively.

What are Widget Events?

A widget event is a message returned from the window system as the result of u
interactions such as pressing a button or otherwise manipulating a widget. In
response to an event, a widget program usually performs some action for the us
(e.g., opens a file, updates a plot).

Structure of Widget Events

As events arrive from the window system, IDL saves them in a queue for the tar
widget. They are delivered to the IDL program as IDL structures by the
WIDGET_EVENT function. Every widget event structure has the same first thre
fields: these are long integers namedID , TOP, andHANDLER.

• ID is the widget ID of the widget generating the event.

• TOP is the widget ID of the top-level base containingID .

• HANDLER is the widget ID of the widget associated with the event handli
routine. The importance ofHANDLER will become apparent when we discuss
event routines and compound widgets, below.

Event structures for different widgets may contain other fields as well. The exac
form of the event structure for any given widget is described in the documentation
that widget’s creation function in theIDL Reference Guide.

Processing Widget Events

All widget event processing in IDL is handled by theWIDGET_EVENT function.
Note that while we will discuss WIDGET_EVENT here for completeness, in mos
cases you willnot want to call WIDGET_EVENT directly. TheXMANAGER
routine provides a convenient, simplified interface to WIDGET_EVENT and allo
IDL to take over the task of managing multiple widget applications.

Calling the WIDGET_EVENT Function

In its simplest form, the WIDGET_EVENT function is called with a widget ID
(usually, the ID of a widget base) as its argument. WIDGET_EVENT checks the
Building IDL Applications Widget Events

564 Chapter 18: Widgets

st
 in

t

p-
n, a

or
ou

ts

 to be

R.
ion
s of
be

nce
queue of undelivered events for that widgetor any of its children. If an event is
present, it is immediately dequeued and returned. If no event is available,
WIDGET_EVENT blocks until one arrives and then returns it. Typically, the reque
is made for a top-level base, so WIDGET_EVENT returns events for any widget
that widget hierarchy (also called a widget tree).

This simple usage suffers from a major weakness. Since each call to
WIDGET_EVENT is looking for events from a specified widget hierarchy, it is no
possible to receive events for more than one widget hierarchy at a time. It is
important to be able to run multiple widget applications (each with a separate to
level base) simultaneously. An example would be an image processing applicatio
colortable manipulation tool, and an on-line help reader all running together.

One solution to this problem is to call WIDGET_EVENT with an array of widget
identifiers instead of a single ID. In this case, WIDGET_EVENT returns events f
any widget hierarchy in the list. This solution is effective, but it still requires that y
maintain a complete list of all interesting top-level base identifiers, which implies
that all cooperating applications need to know about each other.

The most powerful way to use WIDGET_EVENT is to call it without any argumen
at all. Called this way, it will return events for any currently-realized widgets that
have expressed an interest in being managed. (You specify that a widget wants
managed by setting the MANAGED keyword to the WIDGET_CONTROL
procedure.) This form of WIDGET_EVENT is especially useful when used in
conjuction with widget event callback routines, discussed in“Event Processing And
Callbacks” on page 589.

Managing Events with XMANAGER

As discussed above, WIDGET_EVENT provides basic widget event-handling
capabilities. However, it is extremely rare for a user-written widget program to
actually call WIDGET_EVENT directly. Instead, your programs should call the
XMANAGER procedure, which provides a convenient, simplified interface to
WIDGET_EVENT.

A widget application creates and realizes its widgets, and then calls XMANAGE
XMANAGER arranges for an event-handling procedure supplied by the applicat
to be called when events for it arrive. The application is shielded from the detail
calling WIDGET_EVENT and interacting with other widget applications that may
running simultaneously.

For these reasons, widget applications should always use XMANAGER in prefere
to calling WIDGET_EVENT directly. The filexmng_tmpr.pro , found in thelib
Widget Events Building IDL Applications

Chapter 18: Widgets 565

ns

nt-

ions:

tty.
.

ront-
ll-

for

s

ce

y do

t

subdirectory of the main IDL directory, is a template for writing widget applicatio
that use XMANAGER.

A Note About Blocking in XMANAGER

Beginning with IDL version 5.0, most versions of IDL’s command-processing fro
end are able to support anactive command line while running properly constructed
widget applications. What this means is that—provided the widget application is
properly configured—the IDL command input line is available for input while a
widget application is running and widget events are being processed.

There are currently 5 separate IDL command-processing front-end implementat

• Apple Macintosh Integrated Development Environment (IDLDE)

• Microsoft Windows IDLDE

• Motif IDLDE (Unix and VMS)

• Unix plain tty

• VMS plain tty

All of these front-ends are able to process widget events except for the VMS plain
VMS users can still enjoy an active command line by using the IDLDE interface

If the command-processing front-end can process widget events (that is, if the f
end isnot the VMS plain tty), it is still necessary for widget applications to be we
behaved with respect to blocking widget event processing. Since in most cases
XMANAGER is used to handle widget event processing, this means that in order
the command line to remain active, all widget applications must be run with the
NO_BLOCK keyword to XMANAGER set. (Note that since NO_BLOCK isnot the
default, it is quite likely that some application will block.) If a single application run
in blocking mode, the command line will be inaccessible until the blocking
application exits. When a blocking application exits, the IDL command line will on
again become active.

JUST_REG vs. NO_BLOCK

Although their names imply a similar function, the JUST_REG and NO_BLOCK
keywords perform very different services. It is important to understand what the
and how they differ.

The JUST_REG keyword tells XMANAGER that it should simply register a clien
and then return immediately. The result is that the client becomes known to
XMANAGER, and that future calls to XMANAGER will take this client into
account. Therefore, JUST_REG only controls how the registering call to
Building IDL Applications Widget Events

566 Chapter 18: Widgets

 the

o
e

T
ed to

nd
ary

r

t is,
XMANAGER should behave. The client can still be registered as requiring
XMANAGER to block by setting NO_BLOCK=0. In this case,future calls to
XMANAGER will block.

Note
JUST_REG is useful in situations where you suspect blocking might occur—if
active command line is not supported and you wish to keep it active before
beginning event processing, or if blocking will be requested at a later time. If n
blocking will occur or if the blocking behavior is useful, it is not necessary to us
JUST_REG.

The NO_BLOCK keyword tells XMANAGER that the registered client does not
require XMANAGER to block if the command-processing front-end is able to
support active command line event processing. XMANAGER remembers this
attribute of the client until the client exits, even after the call to XMANAGER that
registered the client returns. NO_BLOCK is just a “vote” on how XMANAGER
should behave—the final decision is made by XMANAGER by considering the
NO_BLOCK attributes ofall of its current clients as well as the ability of the
command-processing front-end in use to support the active command line.

Blocking vs. Non-blocking Applications

The issue of blocking in XMANAGER requires some explanation. IDL widget
events are not processed until the WIDGET_EVENT function is called to handle
them. Otherwise, they are queued by IDL indefinitely. Knowing how and when to
call WIDGET_EVENT is the primary service provided by XMANAGER.

There are two ways blocking is typically handled:

1. The first call to XMANAGER processes events by calling WIDGET_EVEN
as necessary until no managed widgets remain on the screen. This is referr
as “blocking” because XMANAGER does not return to the caller until it is
done, and the IDL command line is not available.

2. XMANAGER does not block, and instead, the part of IDL that reads comma
input also watches for widget events and calls WIDGET_EVENT as necess
while also reading command input. This is referred to as “non-blocking” o
“active command line” mode.

XMANAGER will block unless all of the following conditions are met:

• The command-processing front-end is able to process widget events (tha
the front-end is not the VMS plain tty).
Widget Events Building IDL Applications

Chapter 18: Widgets 567

d.)

for
at
ng

es
e of
s
es

se
s

he

get

g

ingle
in the

s a

ly a
tine:
• All registered widget applications have the NO_BLOCK keyword to
XMANAGER set.

• No modal dialogs are displayed. (Modal dialogs always block until dismisse

In general, we suggest that new widget applications be written with XMANAGER
blocking disabled (that is, with the NO_BLOCK keyword set). Since a widget
application that does block event processing for itself will block event processing
all other widget applications (and the IDL command line) as well, we suggest th
older widget applications be upgraded to take advantage of the new, non-blocki
behavior by adding the NO_BLOCK keyword to most calls to XMANAGER.

Features Reserved to XMANAGER

Because XMANAGER buffers you from direct handling of widget events, it requir
that you not explicitly specify certain event handling features for the top-level bas
your widget application. To be able to work with XMANAGER, widget application
should avoid the following pitfalls. If you ignore the suggestions below, your chang
will conflict with those made by XMANAGER:

• Do not specify an event-handling function or procedure on the top-level ba
of a widget application using the EVENT_FUNC or EVENT_PRO keyword
to the widget creation functions or WIDGET_CONTROL. Instead, provide t
name of the event handler routine to XMANAGER via the
EVENT_HANDLER keyword.

• Do not specify a death notification procedure on the top-level base of a wid
application using the KILL_NOTIFY keyword to the widget creation
functions or WIDGET_CONTROL. Instead, provide the name of your
“cleanup” routine to XMANAGER via the CLEANUP keyword.

For a detailed discussion of XMANGER, seeXMANAGER in theIDL Reference
Guide.

The XREGISTERED Function

The XMANAGER procedure does not restrict applications to only a single runnin
copy. Indeed, it is desirable for most applications to allow multiple simultaneous
instances to run. However, there are some applications that should only allow a s
instance at a time, either because it makes logical sense or because a weakness
implementation requires it. An obvious example of this is an application that use
COMMON block to maintain its current state (see“Managing Widget Application
State” on page 592).

TheXREGISTERED function can be used in such applications to ensure that on
single copy can run at a time. Place the following statement at the start of the rou
Building IDL Applications Widget Events

568 Chapter 18: Widgets
IF XREGISTERED('routine_name') THEN RETURN

whereroutine_name is the name of the widget application.

SeeXREGISTERED in theIDL Reference Guidefor further information.
Widget Events Building IDL Applications

Chapter 18: Widgets 569

vent
three

s
ne”

on
 be
h a
Widget Example 2

The following example demonstrates how user values can be used to simplify e
processing and to pass variables between routines. It creates a base widget with
buttons and a text field that reports which button was pressed.

Enter the two procedures listed below — either in a text file namedwidget2.pro ,
or directly into IDL using the.RUN command. Enterwidget2 at the IDL prompt to
run the program.

PRO widget2_event, ev
WIDGET_CONTROL, ev.top, GET_UVALUE=textwid
WIDGET_CONTROL, ev.id, GET_UVALUE=uval
CASE uval OF

'ONE' : WIDGET_CONTROL, textwid, SET_VALUE='Button One Pressed'
'TWO' : WIDGET_CONTROL, textwid, SET_VALUE='Button Two Pressed'
'DONE': WIDGET_CONTROL, ev.top, /DESTROY

ENDCASE
END

PRO widget2
base = WIDGET_BASE(/COLUMN)
button1 = WIDGET_BUTTON(base, VALUE='One', UVALUE='ONE')
button2 = WIDGET_BUTTON(base, VALUE='Two', UVALUE='TWO')
text = WIDGET_TEXT(base, XSIZE=20)
button3 = WIDGET_BUTTON(base, value='Done', UVALUE='DONE')
WIDGET_CONTROL, base, SET_UVALUE=text
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'Widget2', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget2

at the IDL command prompt. See“Running the Example Code” on page 543 if IDL
does not run the program as expected.

Once again, let’s examine the creation routine,widget2 , first. We first create a top-
level base, this time specifying the COLUMN keyword to ensure that the widget
contained in the base are stacked vertically. We create two buttons with values “O
and “Two,” and user values “ONE” and “TWO.” Remember that the value of a butt
widget is also the button’s label. We create a text widget, and specify its width to
20 characters using the XSIZE keyword. The last button is the “Done” button, wit
the user value “DONE.”
Building IDL Applications Widget Example 2

570 Chapter 18: Widgets

ser
w
lizes

e
et
 the

e
e we

value

ich

n
e

Next follow two calls to the WIDGET_CONTROL procedure. The first sets the u
value of the top-level base equal to the widget ID of our text widget. This will allo
us easy access to the text widget from our event handling routine. The second rea
the top-level base and all its child widgets. Finally, we invoke the XMANAGER to
manage the widget application.

Thewidget2_event routine is slightly more complicated than its predecessor. W
begin by using WIDGET_CONTROL to retrieve the widget ID of the our text widg
from the user value of the top-level base. We can do this because we know that
widget ID of our top-level base is contained in the TOP field of the widget event
structure — thus, ev.top contains the widget ID of the base widget. We use the
GET_UVALUE keyword to store the widget ID of the text widget in the variable
textwid .

Next, we use WIDGET_CONTROL and the GET_UVALUE keyword to retrieve th
user value of the widget that generated the event. Again, we can do this becaus
know that the widget ID of the widget that generated the event is stored in theID
field of the event structure. We then use a CASE statement to compare the user
of the widget, now stored in the variableuval , with the list of possible user values
(which we know, have set them explicitly in the creation routine) to determine wh
button was pressed and act accordingly.

In the CASE statement, we check to see ifuval is the user value associated with
either button one or button two. If it is, we use WIDGET_CONTROL and the
SET_VALUE keyword to alter the value of the text widget, whose ID we stored i
the variabletextw id. If uval is 'DONE', we recognize that the user has clicked on th
“Done” button and use WIDGET_CONTROL to destroy the widget hierarchy.
Widget Example 2 Building IDL Applications

Chapter 18: Widgets 571

ther

.)
e of

hile
ith

re

ber
us

u
ich

rrent
re to
Using Draw Widgets

Draw widgets are graphics windows that appear as part of a widget hierarchy ra
than appearing as an independent window. Like other graphics windows, draw
widgets can be created to use either Direct or Object graphics. (SeeChapter 10,
“Graphics” in theUsing IDL manual for a discussion of IDL’s two graphics modes
Draw widgets allow designers of IDL graphical user interfaces to take advantag
the full power of IDL graphics in their displays.

Using Direct Graphics in Draw Widgets

Standard Direct graphics windows are created using the WINDOW procedure, w
Direct graphics draw widgets are created using the WIDGET_DRAW function w
the GRAPHICS_LEVEL keyword set equal to one. Draw widgets use Direct
graphics by default. Once created, Direct graphics windows and draw widgets a
used in the same way.

All IDL Direct graphics windows are referred to by a window number. Unlike
windows created by the WINDOW procedure, the window number of a Direct
graphics draw widget cannot be assigned by the user. In addition, the window num
of a draw widget is not assigned until the draw widget is actually realized, and th
cannot be returned by WIDGET_DRAW when the widget is created. Instead, yo
must use the WIDGET_CONTROL procedure to retrieve the window number, wh
is stored invalue of the draw widget,after the widget has been realized.

Unlike normal graphics windows, creating a draw widget does not cause the cu
graphics window to change to the new widget. You must use the WSET procedu
explicitly make the draw widget the current graphics window. The following IDL
statements demonstrate the required steps:

;Create a base widget.
base = WIDGET_BASE()

;Attach a 256 x 256 draw widget.
draw = WIDGET_DRAW(base, XSIZE = 256, YSIZE = 256)
;Realize the widgets.
WIDGET_CONTROL, /REALIZE, base

;Obtain the window index.
WIDGET_CONTROL, draw, GET_VALUE = index

;Set the new widget to be the current graphics window
WSET, index
Building IDL Applications Using Draw Widgets

572 Chapter 18: Widgets

ized,

do

the
is
raw

with
de

t,
the

nits
ics

th
If you attempt to get the value of a draw widget before the widget has been real
IDL returns the value -1, which is not a valid index.

Using Object Graphics in Draw Widgets

Standard Object graphics windows are IDLgrWindow objects, whereas Object
graphics draw widgets are created using the WIDGET_DRAW function with the
GRAPHICS_LEVEL keyword set equal to two. Once created, Object graphics
windows and draw widgets are used in the same way.

All IDL Object graphics windows are referred to by an object reference. Since you
not explicitly create the IDLgrWindow object used in a draw widget, you must
retrieve the object reference by using the WIDGET_CONTROL procedure to get
valueof the draw widget. As with Direct graphics draw widgets, the window object
not created—and thus the object reference cannot be retrieved—until after the d
widget is realized.

Scrolling Draw Widgets

Another difference between a draw widget and either a graphics window created
the WINDOW procedure or an IDLgrWindow object is that draw widgets can inclu
scroll bars. Setting the APP_SCROLL keyword or the SCROLL keyword to the
WIDGET_DRAW function causes scrollbars to be attached to the drawing widge
which allows the user to view images or graphics larger than the visible area. Use
APP_SCROLL keyword when displaying images, or anything drawn in device u
or pixels. Use the SCROLL keyword when a draw widget is going to display graph
drawn in data units (e.g., PLOT, CONTOUR, SURFACE).

The IDL SLIDE_IMAGE routine is an example of a widget application that uses bo
regular and scrolling draw widgets. SeeWIDGET_DRAW in theIDL Reference
Guide for details, or inspect the fileslide_image.pro in thelib subdirectory of
your main IDL directory for an example.
Using Draw Widgets Building IDL Applications

Chapter 18: Widgets 573

gets
on.

nu,

the

he

ed
s to

r

tion
sed.
-

ing

king
Creating Menus

Menus allow a user to select one or more options from a list of options. IDL wid
allow you to build a number of different types of menus for your widget applicati

Button Groups

One approach to menu creation is to build an array of buttons. With a button me
all options are visible to the user all the time. To create a button menu, do the
following:

1. Call the WIDGET_BASE function to create a base to hold the buttons. Use
COLUMN and ROW keywords to determine the layout of the buttons.

2. Call the WIDGET_BUTTON function once for each button to be added to t
base created in the previous step.

Because menus of buttons are common, IDL provides a compound widget nam
CW_BGROUP to create them. Using CW_BGROUP rather than a series of call
WIDGET_BUTTON simplifies creation of a menu of buttons and also simplifies
event handling by providing a single event structure for the group of buttons. Fo
example, the following IDL statements create a button menu with five choices:

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE()
bgroup = CW_BGROUP(base, VALUE=values, /COLUMN)
WIDGET_CONTROL, base, /REALIZE

In this example, one call to CW_BGROUP replaces five calls to
WIDGET_BUTTON.

Exclusive or Nonexclusive Buttons

Buttons in button groups normally act as independent entities, returning a selec
event (a one in the select field of the event structure) or similar value when pres
Groups of buttons can also be made to act in concert, as either exclusive or non
exclusive groups. In contrast to normal button groups, both exclusive and non-
exclusive groups display which buttons have been selected.

Exclusivebutton groups allow only one button to be selected at a given time. Click
on an unselected button deselects any previously-selected buttons.Non-exclusive
button groups allow any number of buttons to be selected at the same time. Clic
on the same button repeatedly selects and deselects that button.
Building IDL Applications Creating Menus

574 Chapter 18: Widgets

tton
he

the
it

list.

E

The following code creates three button groups. The first group is a “normal” bu
group as created in the previous example. The next is an exclusive group, and t
third is a non-exclusive group.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
bgroup1 = CW_BGROUP(base, VALUE=values, /COLUMN, $
 LABEL_TOP='Normal', /FRAME)
bgroup2 = CW_BGROUP(base, VALUE=values, /COLUMN, /EXCLUSIVE, $
 LABEL_TOP='Exclusive', /FRAME)
bgroup3 = CW_BGROUP(base, VALUE=values, /COLUMN, /NONEXCLUSIVE, $
 LABEL_TOP='Nonexclusive', /FRAME)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Lists

A second approach to menu creation is to provide the user with a list of options in
form of a scrolling or drop-down list. A scrolling list is always displayed, although
may not show all items in the list at all times. A drop-down list shows only the
selected item until the user clicks on the list, at which time it displays the entire
Both lists allow only a single selection at a time.

The following example code uses the WIDGET_LIST and WIDGET_DROPLISTfunctions
to create two menus of five items each. While both lists contain five items, the
scrolling list displays only three at a time, because we specify this with the YSIZ
keyword.

Figure 18-2: Normal Menu (left), Exclusive Menu (center) and Non-exclusive
Menu (right)
Creating Menus Building IDL Applications

Chapter 18: Widgets 575

U

 a

s to
values = [’One’, ’Two’, ’Three’, ’Four’, ’Five’]
base = WIDGET_BASE(/ROW)
list = WIDGET_LIST(base, VALUE=values, YSIZE=3)
drop = WIDGET_DROPLIST(base, VALUE=values)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Pulld own Menus

A third approach to menu creation involvesmenusthat appear asasinglebutton until
the user selects the menu, at which time the menu pops up to display the list of
possible selections. Buttons in such a pulldown menu can activate other pulldown
menus to any desired depth. The method for creating a pulldown menu is as follows:

1. The topmost element of any pulldown menu is a button, created with the MEN
keyword to the WIDGET_BUTTON function.

2. The top-level button has one or more child widget buttons attached. (That is,
one or more buttons specify the first button’s widget ID as their “parent.”)
Each button can either be used as is, in which case pressing it causes an event
to begenerated, or it can becreated with theMENU keyword and havefurther
child widget buttons attached to it. If it has child widgets, pushing it causes
pulldown menu containing the child buttons to pop into view.

3. Menu buttons can be the parent of other buttons to any desired depth.

Because pulldown menus are common, IDL provides a compound widget named
CW_PDMENU to create them. Using CW_PDMENU rather than a series of call
WIDGET_BUTTON simplifies creation of a pulldown menu in the same way the
CW_BGROUP simplifies the creation of button menus.

Figure 18-3: A scrolling list and a drop-down list.
Building IDL Applications Creating Menus

576 Chapter 18: Widgets

e

o

th
ns

ue of

le
s of
ch
ind

tton
 an
The following example uses CW_PDMENU to create a pulldown menu. First, w
create an array of anonymous structures to contain the menu descriptions.

desc = REPLICATE({ flags:0, name:'' }, 6)

Thedesc array contains six copies of the empty structure. Each structure has tw
fields: flags andname. Next, we populate these fields with values:

desc.flags = [1, 0, 1, 0, 2, 2]
desc.name = ['Operations', 'Predefined', 'Interpolate', $

'Linear', 'Spline', 'Quit']

The value of theflags field specifies the role of each button. In this example, the
first and third buttons start a new sub-menu (values are 1), the second and four
buttons are plain buttons with no other role (values are 0), and the last two butto
end the current sub-menu and return to the previous level (values are 2). The val
thename field is the value (or label) of the button at each level.

base = WIDGET_BASE()
menu = CW_PDMENU(base, desc)
WIDGET_CONTROL, base, /REALIZE

The format of the menu description used by CW_PDMENU in the above examp
requires some explanation. CW_PDMENU views a menu as consisting of a serie
buttons, each of which can optionally lead to a sub-menu. The description of ea
button consists of a structure supplying its name and a flag field that tells what k
of button it is (starts a new sub-menu, ends the current sub-menu, or a plain bu
within the current sub-menu). The description of the complete menu consists of
array of such structures corresponding to the flattened menu. Compare the
description used in the code above with the result shown in the following figure.

Figure 18-4: Pulldown menu created with CW_PDMENU.
Creating Menus Building IDL Applications

Chapter 18: Widgets 577

y do
se of
ase

 menu
Menus on Top-Level Bases

A final approach to providing menus in your widget application is to attach the
menus directly to the top-level base widget. Menus attached to a top-level base
widget are created just like pulldown menus created from button widgets, but the
not appear as buttons. Menus created in this way are children of a special sub-ba
the top-level base, created by specifying the MBAR keyword when the top-level b
is created.

For example, the following code creates a top-level base widget and attaches a
titled MENU1 to it. MENU1 contains the choices ONE, TWO, and THREE.

base = WIDGET_BASE(MBAR=bar)
menu1 = WIDGET_BUTTON(bar, VALUE='MENU1', /MENU)
button1 = WIDGET_BUTTON(menu1, VALUE='ONE')
button2 = WIDGET_BUTTON(menu1, VALUE='TWO')
button3 = WIDGET_BUTTON(menu1, VALUE='THREE')
draw = WIDGET_DRAW(base, XSIZE=100, YSIZE=100)
WIDGET_CONTROL, base, /REALIZE

The resulting widget is shown in the following figure:

Figure 18-5: Menu attached to a top-level base.
Building IDL Applications Creating Menus

578 Chapter 18: Widgets

y
e of

ers
ing

t the

.

t-

 top-
ow
L

 in
ith a

nge
Controlling Widgets

The WIDGET_CONTROL procedure allows you to realize, manage, and destro
widget hierarchies. It is often used to change the default behavior or appearanc
previously-realized widgets.

Some keywords to WIDGET_CONTROL affect only certain types of widgets, oth
affect any type of widget, and some affect the widget system in general without be
tied to a single widget ID or widget type. SeeWIDGET_CONTROL in theIDL
Reference Guide for complete details. We discuss here only a few of the more
common uses of this procedure.

Realizing Widget Hierarchies

As we have seen in the above examples, widgets must berealizedbefore they appear
on screen. In most cases, you will want to realize your entire widget hierarchy a
same time. Do this with the statement

WIDGET_CONTROL, base, /REALIZE

werebase is the widget ID of the top-level base widget for your widget hierarchy

Killing Widget Hierarchies

The standard way to kill a widget hierarchy is with the statement

WIDGET_CONTROL, base, /DESTROY

wherebase is the widget ID of the top-level base widget of the hierarchy to be
killed. Usually, IDL programs that use widgets issue this statement in their even
handling routine in response to the application “Done” button.

In addition, some window managers place a pulldown menu on the frame of the
level base widget that allows the user to kill the entire hierarchy. Using the wind
manager to kill a widget hierarchy is equivalent to using the WIDGET_CONTRO
procedure.

When designing widget applications, you should always include a “Done” button
the application itself, because some window managers do not provide the user w
kill option from the outer frame.

Retrieving or Changing Widget Values

As we discussed previously, you can use WIDGET_CONTROL to retrieve or cha
widget values using the GET_VALUE and SET_VALUE keywords. Similarly, you
Controlling Widgets Building IDL Applications

Chapter 18: Widgets 579

ure

t.

gets
rating

ero
ons

sive
ritten
tion
 the
SS

ets
can retrieve or change widget user values with the GET_UVALUE and
SET_UVALUE keywords.

For example, you could use the following command in an event handling proced
to save the user value of the widget that generates an event into an IDL variable
named uval:

WIDGET_CONTROL, event.id, GET_UVALUE=uval

Similarly, you could use the following commands to retrieve the value of a draw
widget nameddrawwid and make that draw widget the current graphics window:

WIDGET_CONTROL, drawwid, GET_VALUE=draw
WSET, draw

Sensitizing Widgets

When a widget is sensitive, it has normal appearance and can receive user inpu
When a widget is insensitive, it ignores any input directed at it. Use sensitivity to
control when a user is allowed to manipulate a widget. Note that while most wid
change their appearance when they become insensitive, some simply stop gene
events.

Set the SENSITIVE keyword equal to zero to desensitize a widget, or to a nonz
value to make it sensitive. For example, you might wish to make a group of butt
namedbgroup insensitive after some user input. You would use the following
command:

WIDGET_CONTROL, bgroup, SENSITIVE=0

Indicating Time-Consuming Operations

In an event driven environment, it is important that the interface be highly respon
to the user’s manipulations. This means that widget event handlers should be w
to execute quickly and return. However, sometimes the event handler has no op
but to perform an operation that is slow. In such a case, it is a good idea to give
user feedback that the system is busy. This is easily done using the HOURGLA
keyword just before the expensive operation is started:

WIDGET_CONTROL, /HOURGLASS

This command causes IDL to turn on an hourglass-shaped cursor for all IDL widg
and graphics windows. The hourglass remains active until the next event is
processed, at which point the previous cursor is automatically restored.
Building IDL Applications Controlling Widgets

580 Chapter 18: Widgets

r to
in
king

L
vents
n is

vent
for

stream
each
Using Timer Events

In addition to the normal widget events discussed previously, IDL allows the use
maketimer event requests by using the TIMER keyword. Such events are useful
many applications that are time dependent, such as animation. The syntax for ma
such a request is:

WIDGET_CONTROL,Widget_Id , TIMER= interval_in_seconds

Widget_Id can be the ID of any type of widget. When such a request is made, ID
generates a timer request after the requested time interval has passed. Timer e
consist of a structure with only the standard three fields — no additional informatio
provided.

It is up to the programmer to differentiate between a normal event and a timer e
for a given widget. The usual way to solve this problem is to make timer requests
widgets that do not otherwise generate events, such as base or label widgets.

Each timer request causes a single event to be generated. To generate a steady
of timer events, you must make a new timer request in the event handler routine
time a timer event is delivered.
Controlling Widgets Building IDL Applications

Chapter 18: Widgets 581

 a
get
will

o

r
.

r

t

get.
Widget Example 3

The following example program creates a small widget application consisting of
draw widget and a droplist menu. One of three plots is displayed in the draw wid
depending on the selection made from the droplist. To add to the excitement, we
use timer events to change the color table used in the draw window every three
seconds.

Enter the two procedures listed below — either in a text file namedwidget3.pro ,
or directly into IDL using the .RUN command. Enter widget3 at the IDL prompt t
run the program.

PRO widget3_event, ev

We need to save the value of the seed variable for the random number generato
between calls to the event-handling routine. We do this using a COMMON block

COMMON wid3, seed

Retrieve the widget ID of the draw widget and make it the current IDL graphics
window:

WIDGET_CONTROL, ev.top, GET_UVALUE=drawID
WSET, drawID

Check the type of event structure returned. If it is a timer event, change the colo
table index to a random number between 0 and 40. (See“Event Processing And
Callbacks” on page 589 for more on identifying widget types from returned even
structures.)

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') $
THEN BEGIN

;Pick a random number.
table = FIX(RANDOMU(seed)*41)
;Load the color table.
LOADCT, table
;Reset the timer.
WIDGET_CONTROL, ev.id, TIMER=3.0

ENDIF

If the event is a droplist event, change the type of plot displayed in the draw wid
Note the use of theindex field of events returned from the droplist widget to
determine the value selected.

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_DROPLIST') $
THEN BEGIN

CASE ev.index OF
Building IDL Applications Widget Example 3

582 Chapter 18: Widgets

it in
raw

he

raw

he
0: PLOT, DIST(150)
1: SURFACE, DIST(150)
2: SHADE_SURF, DIST(150)
3: WIDGET_CONTROL, ev.top, /DESTROY

ENDCASE
ENDIF
END

Create a base widget containing a draw widget and a droplist menu.

PRO widget3

select = ['Plot', 'Surface', 'Shaded Surface', 'Done']
base = WIDGET_BASE(/COLUMN)
draw = WIDGET_DRAW(base, XSIZE=150, YSIZE=150)
dlist = WIDGET_DROPLIST(base, VALUE=select)

Realize the widget hierarchy, then retrieve the value of the draw widget and store
the user value of the base widget. (Note that we are using Direct graphics for the d
widget, so the value is an IDL graphics window ID.) Finally, set the timer value of t
draw widget.

WIDGET_CONTROL, base, /REALIZE
WIDGET_CONTROL, draw, GET_VALUE=drawID
WIDGET_CONTROL, base, SET_UVALUE=drawID
WIDGET_CONTROL, draw, TIMER=0.0

Set the droplist to display “Shaded Surface” and place a shaded surface in the d
widget:

WIDGET_CONTROL, dlist, SET_DROPLIST_SELECT=2
WSET, drawID
SHADE_SURF, DIST(150)
;Register the widget with the XMANAGER.
XMANAGER, 'widget3', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget3

at the IDL command prompt. See“Running the Example Code” on page 543 if IDL
does not run the program as expected.

This example is intentionally silly. The intent is to demonstrate the use of draw
widgets, menus, and timer events with a minimum of other issues to complicate
things. However, it is easy to imagine applications wherein a graphics window
containing a plot or some other information is updated periodically by a timer. T
method used here can be easily applied to more realistic situations.
Widget Example 3 Building IDL Applications

Chapter 18: Widgets 583

pts,

as
 a

pace
 font

get

e

ssed
e its

ting
s

es
.

Widget Sizing

This section explains how IDL widgets size themselves, widget geometry conce
and how to explicitly size and position widgets.

Widget Geometry Terms and Concepts

Widget geometry, or the size and layout of widgets, is determined by many
interrelated factors. In the following discussion, the following terms are used:

• Geometry: The size and position of a widget.

• Natural Size: The natural, or implicit, size of a widget is the size a widget h
if no external constraints are placed on it. For example, a label widget has
natural size that is determined by the size of the text it is displaying and s
for margins. These values are influenced by such things as the size of the
being displayed and characteristics of the low-level (i.e., operating-system
level) widget or control used to implement the IDL widget.

• Explicit Size: The explicit, or user-specified, size of a widget is the size set
when an IDL programmer specifies one of the size keywords to an IDL wid
creation function or WIDGET_CONTROL.

How Widget Geometry is Determined

IDL uses the following rules to determine the geometry of a widget:

• The explicit size of a widget, if one is specified, takes precedence over the
natural size. That is, the user-specified size is used if available.

• If an explicit size is not specified, the natural size of the widget—at the tim
the widget is realized—is used. Once realized, the size of a widgetdoes not
automatically change when the value of the widget changes, unless the
widget’s dynamic resize property has been set. Dynamic resizing is discu
in more detail below. Note that any realized widget can be made to chang
size by calling WIDGET_CONTROL with any of the sizing keywords.

• Children of a “bulletin board” base (i.e., a base that was created without set
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset i
explicitly specified via the XOFFSET or YOFFSET keywords.

• The offset keywords to widgets that are children of ROW or COLUMN bas
are ignored, and IDL calculates the offsets to lay the children out in a grid
Building IDL Applications Widget Sizing

584 Chapter 18: Widgets

r the

es

t the

ith

eated

mes

ts to

run

s to
tion
range
 the

cts

he
This calculation can be influenced by setting any of the ALIGN or
BASE_ALIGN keywords when the widgets are created.

Dynamic Resizing

Realized widgets, by default, do not automatically resize themselves when their
values change. This is true whether the widget was created with an explicit size o
widget was allowed to size itself naturally. This behavior makes it easy to create
widget layouts that don’t change size too frequently or “flicker” due to small chang
in a widget’s natural size.

This default behavior can be changed for label, button, and droplist widgets. Se
DYNAMIC_RESIZE keyword to WIDGET_LABEL, WIDGET_BUTTON, or
WIDGET_DROPLIST to make a widget that automatically resizes itself when its
value changes. Note that the XSIZE and YSIZE keywords should not be used w
DYNAMIC_RESIZE. Setting explicit sizing values overrides the dynamic resize
property and creates a widget thatwill not resize itself.

Explicitly Specifying the Size and Location of Widgets

The XSIZE (and SCR_XSIZE), YSIZE (and SCR_YSIZE), XOFFSET, and
YOFFSET keywords, when used with a standard base widget parent (a base cr
without the COLUMN or ROW keywords—also called a “bulletin board” base),
allow you to specify exactly how the child widgets should be positioned. Someti
this is a very useful option. However, in general, it is best to avoid this style of
programming. Although these keywords are usually honored, they are merely hin
the widget toolkit and might be ignored.

Explicitly specifying the size and offset makes a program inflexible and unable to
gracefully on various platforms. Often, a layout of this type will look good on one
platform, but variations in screen size and how the toolkit works will cause widget
overlap and not look good on another platform. The best way to handle this situa
is to use nested row and column bases to hold the widgets and let the widgets ar
themselves. Such bases are created using the COLUMN and ROW keywords to
WIDGET_BASE function.

Sizing Keywords

When explicitly setting the size of a widget, IDL allows you to control three aspe
of the size:

• Thevirtual size is the size of thepotentially viewable area of the widget. The
virtual size may be larger than the actual viewable area on your screen. T
Widget Sizing Building IDL Applications

Chapter 18: Widgets 585

ting
he
ZE

se
ice
lay

the
virtual size of a widget is determined by either the widget’s value, or the
XSIZE and YSIZE keywords to the widget creation routine.

• Theviewport size is the size of the viewable area on your screen. If the
viewport size is smaller than the virtual size, scroll bars may be present to
allow you to view different sections of the viewable area. When creating
widgets for which scroll bars are appropriate, you can add scroll bars by set
the SCROLL keyword to the widget creation routine. You can explicitly set t
size of the viewport area using the X_SCROLL_SIZE and Y_SCROLL_SI
keywords when creating base, draw, and table widgets.

Note
With draw widgets, you can set the APP_SCROLL or the SCROLL keyword. U
the APP_SCROLL keyword when displaying images, or anything drawn in dev
units or pixels. Use the SCROLL keyword when a draw widget is going to disp
graphics drawn in data units (e.g., PLOT, CONTOUR, SURFACE).

• Thescreen size is the size of the widget on your screen. You can explicitly
specify a screen size using the SCR_XSIZE and SCR_YSIZE keywords to
widget creation routine. Explicitly-set viewport sizes (set with
X_SCROLL_SIZE or Y_SCROLL_SIZE) are ignored if you specify the
screen size.

The following code shows an example of the WIDGET_DRAW command:

draw = WIDGET_DRAW(base, XSIZE=384, YSIZE=384, $
X_SCROLL_SIZE=192, Y_SCROLL_SIZE = 192, SCR_XSIZE=200)
Building IDL Applications Widget Sizing

586 Chapter 18: Widgets

els.

E
xels,

ge
 to

ay
ation

W

e

This results in the following:

In this case, the XSIZE and YSIZE keywords set the virtual size to 384 x 384 pix
The X_SCROLL_SIZE and Y_SCROLL_SIZE keywords set the viewport size to
192 x 192 pixels. Finally, the SCR_XSIZE keyword overrides the X_SCROLL_SIZ
keyword and forces the screen size of the widget (in the X-dimension) to 200 pi
including the scroll bar.

Controlling Widget Size after Creation

A number of keywords to the WIDGET_CONTROL procedure allow you to chan
the size of a widget after it has been created. (You will find a list of the keywords
WIDGET_CONTROL that apply to each type of widget at the end of the widget
creation routine documentation.) Note that keywords to WIDGET_CONTROL m
not control the same parameters as their counterparts associated with widget cre
routines. For example, while the XSIZE and YSIZE keywords to WIDGET_DRA
control the virtual size of the draw widget, the XSIZE and YSIZE keywords to
WIDGET_CONTROL (when called with the widget ID of a draw widget) control th
viewport size of the draw widget.

Figure 18-6: Visual description of widget sizes.

Virtual Size (XSIZE & YSIZE)

Screen Size (SCR_XSIZE)

V
ie

w
 S

iz
e

(Y
_S

C
R

O
LL

_S
IZ

E
)

Widget Sizing Building IDL Applications

Chapter 18: Widgets 587

.

in

of

ow

e

the
s
hing”

etting
r of
er all

ped
Units of Measurement

You can specify the unit of measurement used for most widget sizing operations
When using a widget creation routine, or when using WIDGET_CONTROL or
WIDGET_INFO, set the UNITS keyword equal to 0 (zero) to specify that all
measurements are in pixels (this is the default), to 1 (one) to specify that all
measurements are in inches, or to 2 (two) to specify that all measurements are
centimeters.

Note
The UNITS keyword does not affect all sizing operations. Specifically, the value
UNITS is ignored when setting the XSIZE or YSIZE keywords toWIDGET_LIST,
WIDGET_TABLE, orWIDGET_TEXT.

Finding the Size of the Screen

When creating the top-level base for an application, sometimes it is useful to kn
the size of the screen. This information is available via the GET_SCREEN_SIZE
function. GET_SCREEN_SIZE returns a two-element integer array specifying th
size of the screen, in pixels. SeeGET_SCREEN_SIZE in theIDL Reference Guide
for details.

Preventing Layout Flicker

After a widget hierarchy has been realized, adding or destroying widgets in that
hierarchy causes IDL to recalculate and set new geometries for every widget in
hierarchy. When a number of widgets are added or destroyed, these calculation
occur between each change to the hierarchy, resulting in unpleasant screen “flas
as the user sees a brief display of each intermediate widget configuration. This
behavior can be eliminated by using the UPDATE keyword to
WIDGET_CONTROL.

The top-level base of every widget hierarchy has an UPDATE attribute that
determines whether or not changes to the hierarchy are displayed on screen. S
UPDATE to 0 turns off immediate updates and allows you to make a large numbe
changes to a widget hierarchy without updating the screen after each change. Aft
of your changes have been made, setting UPDATE to 1 causes the final widget
configuration to be displayed on screen.

For example, consider the following main-level program that realizes an unmap
base, then adds 200 button widgets to the previously-realized base:

time = SYSTIME(1)
Building IDL Applications Widget Sizing

588 Chapter 18: Widgets

he
was
he
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP
PRINT, 'time used: ', SYSTIME(1) - time
END

This program takes over 50 seconds to run on an HP 9000/720 workstation. If t
base had been mapped, the user would see the base “flashing” as each button
added to the base. Altering the example to use the UPDATE keyword reduces t
execution time to 0.7 seconds:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE, UPDATE=0
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP, /UPDATE
PRINT, 'time used: ', SYSTIME(1) - time
END

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly.
Widget Sizing Building IDL Applications

Chapter 18: Widgets 589

ll to

. The
,

 the
ns

ns,

it is

first
ed

d in

 is
ce
et
Event Processing And Callbacks

Previously we mentioned that when IDL receives an event, it is queued until a ca
WIDGET_EVENT is made, when the event is dequeued and returned. That is a
simplified description of what actually happens.

All events for a given widget are processed in the order that they are generated
event processing performed by WIDGET_EVENT consists of the following steps
applied iteratively:

• WIDGET_EVENT waits for an event from one of the specified widgets to
arrive.

• Starting with the widget that the event belongs to, move up the widget
hierarchy looking for a widget that has an event-handling procedure or
function associated with it. Such routines are associated with a widget via
EVENT_PRO and EVENT_FUNC keywords to the widget creation functio
or the WIDGET_CONTROL procedure.

• If an event-handlingprocedure is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the
widget associated with the handling procedure. When the procedure retur
WIDGET_EVENT returns to the first step above and starts searching for
events. Hence, event-handling procedures are said to “swallow” events.

• If an event-handlingfunction is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the
widget associated with the handling function.

When the function returns, its value is examined. If the value is not a structure,
discarded and WIDGET_EVENT returns to the first step. This behavior allows
event-handling functions to selectively act like event-handling procedures and
“swallow” events.

If the returned value is a structure, it is checked to ensure that it has the standard
3 fields: ID, TOP, and HANDLER. If not, an error is issued. Otherwise, the return
value replaces the event found in the first step and WIDGET_EVENT continues
moving up the widget tree looking for another event handler routine, as describe
step 2, above.

Hence, event functions are said to “rewrite” events. This ability to rewrite events
the basis ofcompound widgetswhich combine several widgets to give the appearan
of a single, more complicated widget. Compound widgets are an important widg
programming concept. For more information, see“Compound Widgets”on page 594.
Building IDL Applications Event Processing And Callbacks

590 Chapter 18: Widgets

 by

ED
ts,
dard

e

event
he

med
s.

ack a

e to

re of

get
• If an event reaches the top of a widget hierarchy without being swallowed
an event handler, it is returned as the value of WIDGET_EVENT.

• If WIDGET_EVENT was called without an argument, and there are no
widgets left on the screen that are being managed (as set via the MANAG
keyword to the WIDGET_CONTROL procedure) and could generate even
WIDGET_EVENT ends the search and returns an empty event (i.e., a stan
widget event structure with the top three fields set to zero).

Identifying Widget Type from an Event

Given a widget event structure, often you need to know what type of widget
generated it without having to match the widget ID in the event structure to all th
current widgets. This information is available by specifying the
STRUCTURE_NAME keyword to the TAG_NAMES function:

PRINT, ' Event structure type: ' , $
TAG_NAMES(EVENT, /STRUCTURE_NAME)

This works because each widget type generates a different event structure. The
structure generated by a given widget type is documented in the description of t
widget creation function for that type.

When using this technique, be aware that although all the basic widgets use na
structures for their events, many compound widgets return anonymous structure
This technique does not work well in that case because anonymous structures l
recognizable name.

Note
Always check for a distinct type of widget event. Research Systems will continu
add new widgets with new event structures, so it is important not to make
assumptions about the contents of a random widget event structure. The structu
existing widget events will remain stable, so checking for a particular type of
widget event will always work.

Keyboard Focus Events

Base, table, and text widgets can be set to generatekeyboard focus events. Generating
and examining keyboard focus events allows you to determine when a given wid
has eithergained or lost the keyboard focus—that is, when it is brought to the
foreground or when it is covered by another window.
Event Processing And Callbacks Building IDL Applications

Chapter 18: Widgets 591

,
ent-

 when
 to
e
 has
us
by
s are

that
.

t
e

upt
sarily
ly
t IDL
s
n it.

ent-
e

Set the KBRD_FOCUS_EVENTS keyword to WIDGET_BASE, WIDGET_TABLE
or WIDGET_TEXT to generate keyboard focus events. You can then use your ev
handling procedure to cache the widget ID of the last widget (with keyboard focus
events enabled) to have the keyboard focus. One situation where this is useful is
you have an application menu (created with the MBAR or APP_MBAR keyword
WIDGET_BASE) and you wish to perform an action in a text widget based on th
menu item selected. Although the event generated by the user’s menu selection
themenu’s base as its top-level widget ID, if you generate and track keyboard foc
events for the text widget, you can “remember” which widget the action triggered
the menu selection should affect. Note that in this example, keyboard focus event
not generated for the menubar’s base.

Interrupting the Event Loop

Beginning with IDL version 5, IDL has the ability to process commands from the
IDL command line while simultaneously processing widget events. This means
the IDL command will remain active even when widget applications are running

It is possible to interrupt the event function by sending the interrupt character
(Control-C or Command-C). However, you may find that even after sending the
interrupt, IDL does not immediately interrupt the event loop. IDL will interrupt the
process that is “on top”—that is, if several applications are running at once, the
interrupt will be handled by the first application to receive it.

If your widget application is the only active application, and sending the interrup
does not cause it to break, move the mouse cursor across (or click on) one of th
widgets.

This works because when IDL is in the event function, it only checks for the interr
between event notifications from the window system. Such events do not neces
translate one-to-one into IDL widget events because the window system typical
generates a large number of events related to the window system’s operation tha
quietly handles. Moving the mouse cursor across the widgets typically generate
some of these events which gives IDL a chance to notice the interrupt and act o

Note
Do not interrupt the event loop by placing a STOP or EXIT command in the ev
handler or in a callback routine. The presence of either command will cause th
widget routine to exit with an error.
Building IDL Applications Event Processing And Callbacks

592 Chapter 18: Widgets

is
 the
ed

te.
py of
at

tore

.

e
or

d to

 and
nt
th

sily

ser
nd

re,
ts
ing
Managing Widget Application State

Usually, a widget application or compound widget has some information, orstate,
associated with it. This is a natural consequence of the fact that the application
usually divided into at least two separate routines, one that creates and realizes
application and another that handles events. These multiple routines need shar
access to certain types of information such as the widget IDs of the component
widgets and data being used by the application.

One obvious answer to this problem is to use a COMMON block to hold the sta
However, this solution is undesirable because it prevents more than a single co
the application from running at the same time. It is easy to imagine the chaos th
would ensue if multiple instances of the same application were using thesame
common block without some sort of interlocking.

A better solution to this problem is to use the user value of one of the widgets to s
state information for the application. Since this user value can be of any type, a
structure can be used to store any number of state-related values. Using this
technique, multiple instances of the same widget code can exist simultaneously

In our previous discussions, theHANDLER field of widget event structures was
described without giving any compelling reason for its existence. That is becaus
event processing and compound widgets must be understood before the need f
HANDLER becomes clear. Recall that when WIDGET_EVENT finds an event to
return, it moves up the widget tree looking for an event-handling routine registere
the widgets in between its current position and the top-level base of the widget
application. If such a routine is found, it is called with the event as its argument,
theHANDLERfield of this event is set to the widget ID of the widget where the eve
routine was found. Since compound widgets have event handlers associated wi
their root widget, theHANDLER field gives the event handler the widget ID of the
root widget. This allows the event handler for a compound widget instance to ea
locate the location of its state information relative to this root.

IDL programmers are often tempted to store the state information directly in the u
value of the root widget, but this is not a good idea. The user value of a compou
widget is reserved for the user of the widget, just like any basic widget. Therefo
you should store the state information in the user value of one of the child widge
below the root. As a convention, the user value of the first child is often used, lead
to event handlers structured as follows:

FUNCTION EVENT_FUNC, event
; Get state from the first child of the compound widget root:
child = WIDGET_INFO(event.handler, /CHILD)
Managing Widget Application State Building IDL Applications

Chapter 18: Widgets 593

g
E
any

hild
tate

er
WIDGET_CONTROL, child, GET_UVALUE=state, /NO_COPY

; Execute event-handling code here.

; Restore the state information before exiting routine:
WIDGET_CONTROL, child, SET_UVALUE=state, /NO_COPY

; Return result of function
RETURN, result
END

Notice the use of the NO_COPY keyword in the above example. This keyword
behaves similarly to the TEMPORARY function, and prevents IDL from duplicatin
the memory used by the user value during the GET_UVALUE and SET_UVALU
operations. This is an important efficiency consideration if your code generates m
events or the size of the state data is large.

Sometimes, an application will find that it needs to use the user value of all its c
widgets for some other purpose, and there is no convenient place to keep the s
information. One way to work around this problem is to interpose an extra base
between the root base and the rest of the widgets:

ROOT = WIDGET_BASE(parent)
EXTRA = WIDGET_BASE(root)

In such an approach, the remaining widgets would all be children of EXTRA rath
than ROOT.
Building IDL Applications Managing Widget Application State

594 Chapter 18: Widgets

plex

ted
trol
 are

ation

-
itive

und
ges.

hey

hies.
r’s

lue.

st

ges
t. By
nd
Compound Widgets

Widget primitives can be used to construct many varied user interfaces, but com
programs written with them suffer the following drawbacks:

• Large widget applications become difficult to maintain. As an application
grows, it becomes more difficult to properly write and test. The resulting
program suffers from poor organization.

• Good ideas can be difficult to reuse. Most larger applications are construc
from smaller sub-units. For example, a color table editor might contain con
panel, color selection and color-index selection sub-units. These sub-units
often complicated tools that could be used profitably in other programs. To
reuse such sub-units, the programmer must understand the existing applic
and then transplant the interesting parts into the new program — at best a
tedious and error-prone proposition.

Compound widgets solve these problems. A compound widget is a complete, self
contained, reusable widget sub-tree that behaves to a large degree just like a prim
widget. Complex widget applications written with compound widgets are much
easier to maintain than the same application written without them. Using compo
widgets is analogous to using subroutines and functions in programming langua

Writing Compound Widgets

Compound widgets are written in the same way as any other widget application. T
are distinguished from regular widget applications in the following ways:

• Compound widgets usually have a base widget at the root of their hierarc
This base contains the subwidgets that make up the cluster. From the use
point of view, this single widgetis the compound widget — its children are
hidden from the users view.

• It is important that the compound widget not make use of the base’s user va
This user value should be reserved for use by the caller of the compound
widget in order to preserve the illusion that the compound widget works ju
like any of the basic widgets.

• The root widget of the compound widgetalwayshas an event handler function
associated with it via the EVENT_FUNC keyword to the widget creating
function or the WIDGET_CONTROL procedure. This event handler mana
events from its sub-widgets and generates events for the compound widge
swallowing events from the widgets that comprise the compound widget a
Compound Widgets Building IDL Applications

Chapter 18: Widgets 595

sion

 a

ned
generating events that represent the compound widget, it presents the illu
that the compound widget is acting like a basic widget.

• If the compound widget has a value that can be set, it should be assigned
value setting procedure via the PRO_SET_VALUE keyword to the widget
creating function or the WIDGET_CONTROL procedure.

• If the compound widget has a value that can be retrieved, it should be assig
a value retrieving function via the FUNC_GET_VALUE keyword to the
widget creating function or the WIDGET_CONTROL procedure.

For an example of how a compound widget might be written, see“Compound Widget
Example” on page 598.
Building IDL Applications Compound Widgets

596 Chapter 18: Widgets

in

s
ill

 of

ship

your

t

ree
ot
stem

n

se

 are
ere.
Tips on Creating Widget Applications

The following are some ideas to keep in mind when writing widget applications
IDL.

• When writing new applications, decompose the problem into sub-problem
and write reusable compound widgets to implement them. In this way, you w
build a collection of reusable widget solutions to general problems instead
hard-to-modify, monolithic programs.

• Use the GROUP_LEADER keyword to WIDGET_BASE to define the
relationships between parts of your application. Group leadership/member
relationships make it easy to group widgets appropriately for iconization,
layering, and destruction.

• Use the MBAR (and APP_MBAR) keyword to WIDGET_BASE to create
application-specific menubars. Use keyboard focus events to track which
widget menu options should affect.

• Use existing compound widgets when possible. In particular, use the
CW_BGROUP and CW_PDMENU compound widgets to create menus.
These functions are easier to use than writing the menu code directly, and
intent will be more quickly understood by others reading your code.

• The many advantages of the XMANAGER procedure dictate that all widge
programs should use it. There are few if any reasons to call the
WIDGET_EVENT procedure directly.

• Use CATCH to handle any unanticipated errors. The CATCH branch can f
any pointers, pixmaps, logical units, etc., to which the calling routine will n
have access, and reset IDL session-wide settings like color tables and sy
variables.

• If all else fails, it is possible to use the value of the WIDGET_INFO functio
to execute special-case code for each platform’s user interface toolkit. It is
desirable, however, to avoid large-scale special-case programming becau
this makes maintenance of the finished program more difficult.

Portability Issues

Although IDL widgets are essentially the same on all supported platforms, there
some differences that can complicate writing applications that work well everywh
The following hints should help you write such applications:
Tips on Creating Widget Applications Building IDL Applications

Chapter 18: Widgets 597

ible.

ses
cit
ets
.

re

ize
the
s to

ut

each
• Avoid specifying the absolute size and location of widgets whenever poss
(That is, avoid using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords.) The different user interface toolkits used by different platforms
create widgets with slightly different sizes and layouts, so it is best to use ba
that order their child widgets in rows or columns and stay away from expli
positioning. If you must use these keywords, try to isolate the affected widg
in a sub-base of the overall widget hierarchy to minimize the overall effect

• When using a bitmap to specify button labels, be aware that some toolkits
prefer certain sizes and give sub-optimal results with others. Also, if you a
specifying a color bitmap, use the BITMAP keyword.

• Try to place text, label, and list widgets in locations where their absolute s
can vary without making the overall application look bad. The font used by
different toolkits have different physical sizes that can cause these widget
have different proportions.

It is reasonably easy to write applications that will work in all environments witho
having to resort to much special-case programming. It is very helpful to have a
machine running each environment available so that the design can be tested on
iteratively until a suitable layout is obtained.
Building IDL Applications Tips on Creating Widget Applications

598 Chapter 18: Widgets

w

ed

not
ere is

ap
self
vent

ive

e 1
l

n
e

to

ing

e.
Compound Widget Example

The following example incorporates ideas from the previous sections to show ho
you might approach the task of writing a compound widget. The widget is called
CW_DICE, and it simulates a single six-sided die.Figure 18-7shows the appearance
of XDICE, an application that uses two instances of CW_DICE. XDICE is discuss
on “Using CW_DICE in a Widget Program” on page 604.

Note
cw_dice.pro can be found in thelib subdirectory of the IDL distribution. xdice.pro
can be found in thedoc subdirectory of the examples subdirectory of the IDL
distribution. You should examine these files for additional details and comments
included here. We present sections of the code here for didactic purposes—th
no need to re-create either of these files yourself.

The CW_DICE compound widget has the following features:

• It uses a button widget. The current value of the die is displayed as a bitm
label on the button itself. When the user presses the button, the die “rolls” it
by displaying a sequence of bitmaps and then settles on a final value. An e
is generated that returns this final value.

• Timer events are used to create the rolling effect. This allows the dice to g
the same appearance on machines of varying performance levels.

• The die can be set to a specific value via the SET_VALUE keyword to the
WIDGET_CONTROL procedure. If the desired value is outside of the rang
through 6, the die is rolled as if the user had pressed the button and a fina
value is selected randomly. Using WIDGET_CONTROL does not cause a
event to be issued. This follows the IDL convention that user actions caus
events while programmatic changes do not.

• The current value of the die can be obtained via the GET_VALUE keyword
the WIDGET_CONTROL procedure.

Almost any compound widget will have some state associated with it. The follow
is the state of CW_DICE:

1. The current value.

2. The number of times the die should “tumble” before settling on a final valu

3. The amount of time to take between tumbles.
Compound Widget Example Building IDL Applications

Chapter 18: Widgets 599

nal

em in
kes
r than
t the

n be
).
4. When a roll is in progress, a count of how many tumbles are left before a fi
value is displayed.

5. The bitmaps to use for the 6 possible die values.

6. The seed to use for the random number generator.

The first four items are stored in a per-widget structure kept in one of the child
widget’s user values. Since the bitmaps never change, it makes sense to keep th
a COMMON block to be accessed freely by all the CW_DICE routines. It also ma
sense to use a single random number seed for the entire CW_DICE class rathe
one per instance to avoid the situation where multiple dice, having been created a
same time, have the same seed and thus display the same value on each roll.

It is rare that the use of a COMMON block in a compound widget makes sense.
Notice, however, that we’re only keeping read-only data (bitmaps) or data that ca
overwritten at any time with no negative effects (random number generator seed

Given the above decisions, it is now possible to write the CW_DICE procedure:

;Value is an optional argument that lets the caller set the initial
;die value to a value between 1 and 6. UVALUE will simply be passed
;on to the root base of CW_DICE. The TUMBLE keywords let the user
;adjust the tumble count and period.
PRO cw_dice, parent, value, UVALUE=uvalue, $

TUMBLE_CNT=tumble_cnt, TUMBLE_PERIOD=tumble_period

;This COMMON block holds the bitmaps and random number generator
;seed.
COMMON CW_DICE_BLK, seed, faces

;Provide defaults for the keywords.
IF NOT KEYWORD_SET(tumble_cnt) THEN tumble_cnt=10

;Guard against a nonsensical request.
IF (tumble_cnt lt 1) then tumble_cnt=10

;Default tumble period in seconds.
IF NOT KEYWORD_SET(tumble_period) THEN tumble_period=.05
IF (tumble_period lt 0) then tumble_period=.05
IF NOT KEYWORD_SET(uvalue) uvalue=0

;Return to caller if an error occurs.
ON_ERROR, 2

;Generate the die face bitmaps. The actual code for this is omitted
;here because it doesn’t add much to the example, but it can be
Building IDL Applications Compound Widget Example

600 Chapter 18: Widgets

and
;found in the CW_DICE.PRO file.
faces=LONARR(192)

;Use RANDOMU to pick the initial value of the die unless the user
;provided one.
IF(N_ELEMENTS(value) EQ 0) THEN value = FIX(6*RANDOMU(seed) + 1)

;Construct a state variable for this instance.
state = { value:value, tumble_cnt:FIX(tumble_cnt), $

tumble_period:tumble_period, remaining:0 }

;Create the base widget, passing the UVALUE through for the caller.
;Notice that we also register an event function and GET/SET value
;routines which will be called by WIDGET_CONTROL on our behalf.
base = WIDGET_BASE(parent, UVALUE=uvalue, $

EVENT_FUNC='CW_DICE_EVENT', $
FUNC_GET_VALUE='CW_DICE_GET_VALUE', $
PRO_SET_VALUE='CW_DICE_SET_VALUE')

;Create the die, setting its bitmap to the current value.
die = WIDGET_BUTTON(base, VALUE=faces[*, *, value-1])

;Save the state in the first child’s user value. Notice the use of
;the NO_COPY keyword for efficiency.
WIDGET_CONTROL, WIDGET_INFO(base, /CHILD), $

SET_UVALUE=state, /NO_COPY

;The result of a compound widget is always the ID of its topmost
;widget.
RETURN, base

END

The above code makes reference to two routines named CW_DICE_SET_VAL
CW_DICE_GET_VAL. By using the FUNC_GET_VALUE and PRO_SET_VALUE
keywords to WIDGET_BASE, WIDGET_CONTROL can call these routines
whenever the user makes a WIDGET_CONTROL SET_VALUE or GET_VALUE
request:

;This is the SET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE, and value is the user’s requested value.
PRO cw_dice_set_val, id, value

COMMON CW_DICE_BLK, seed, faces

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(id, /CHILD)
Compound Widget Example Building IDL Applications

Chapter 18: Widgets 601
;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NOCOPY

;If the value is outside the range [1,6] then roll the die as if
;the user pressed the button.
if (value < 1) or (value > 6) THEN BEGIN

;CW_DICE_ROLL rolls the dice. It’s a separate function because our
;event handler also needs to use it.
CW_DICE_ROLL, stash, state

ENDIF ELSE BEGIN
;If the value is in the range [1,6] then simply set the die to that
;value without rolling.
state.value=value

;Set the new bitmap on the button. We take advantage of the fact
;that stash must be the widget ID of the button widget, since the
;base only has one child.
WIDGET_CONTROL, stash, SET_VALUE=faces[*,*, value-1]

ENDELSE

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY

END

;This is the GET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE. The return value of this function must be the current
;value of the compound widget, as defined by that widget.
FUNCTION cw_dice_get_val, id

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(id, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Get the current value from the state structure.
ret = state.value

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY
Building IDL Applications Compound Widget Example

602 Chapter 18: Widgets

LL

l

f

y

e

RETURN, ret

END

CW_DICE_SET_VALUE makes reference to a procedure named CW_DICE_RO
that does the actual dice rolling. Rolling is implemented as follows:

1. If this is the initial call to CW_DICE_ROLL, then pick the final value that wil
end up being displayed and enter this into the widget’s state. Hence,
WIDGET_CONTROL, /GET_VALUE reports the final value instead of one o
the intermediate “tumble” values no matter when it is called.

2. If this is not the final tumble, pick a random intermediate value and displa
that. Then, make another timer event request for the next tumble.

3. If this is the final tumble, use the saved final value.

4. CW_DICE_ROLL works in cooperation with the event handler function for
CW_DICE. Each timer event causes the event handler to be called and th
event handler in turn calls CW_DICE_ROLL to process the next tumble.

;Roll the specified die. Dice is the widget ID of the button
;holding the bitmap, and state is the state as extracted from the
;CW_DICE UVALUE by the caller.
PRO cw_dice_roll, dice, state
COMMON CW_DICE_BLK, seed, faces

;First time.
IF (state.remaining EQ 0) THEN BEGIN

;Set the counter for the number of tumbles remaining.
state.remaining = state.tumble_cnt

;Determine final value now.
state.value = FIX(6*RANDOMU(seed)+1)

ENDIF

;Last time.
IF (state.remaining EQ 1) THEN BEGIN

;Use the previously-saved final result.
value = state.value

;Not the last time.
ENDIF ELSE BEGIN

;Generate an intermediate value.
Compound Widget Example Building IDL Applications

Chapter 18: Widgets 603
value = FIX(6 * RANDOMU(seed) + 1)

;Since this isn’t the last tumble, make the next timer request.
WIDGET_CONTROL, dice, TIMER=state.tumble_period

ENDELSE

;Display the correct bitmap.
WIDGET_CONTROL, dice, SET_VALUE=faces[*,*, value-1]

;Decrement tumble counter.
state.remaining = state.remaining-1

END

This leads us to the event handler function:

FUNCTION cw_dice_event, event

;The primary use for the HANDLER field of event structures is to
;make finding the root of a compound widget easy.
base = event.handler

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(base, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Roll the die and display a new bitmap.
CW_DICE_ROLL, stash, state

;This event handler expects to see button press events generated
;from a user action as well as TIMER events from CW_DICE_ROLL. We
;only want to issue events for the button presses. Even though the
;die still has several tumbles left, we know that the final value
;is in the state now.
if (TAG_NAMES(event, /STRUCTURE_NAME) NE 'WIDGET_TIMER') THEN $

;Create an event.
ret = { CW_DICE_EVENT, ID:base, TOP:event.top, $

HANDLER:0L, VALUE:state.value} $
ELSE ret = 0
;By not returning an event structure, we cause the event to be
;swallowed by WIDGET_EVENT.

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY
Building IDL Applications Compound Widget Example

604 Chapter 18: Widgets

on.
ys
ly.

e
:

onal
RETURN, ret

END

This results in the following:

Using CW_DICE in a Widget Program

Having written a compound widget, it is natural to want to use it in a real applicati
We can use CW_DICE to implement an application named XDICE. XDICE displa
two dice as well as a “Roll” button. Pressing either die causes it to roll individual
Pressing the “Roll” button causes both dice to roll together. A text widget at the
bottom always displays the current value in textual form. XDICE is shown in the
preceeding figure.

Note
xdice.pro can be found in thedoc subdirectory of the examples subdirectory of th
IDL distribution. You can run the program from the IDL distribution by entering

xdice

at the IDL command prompt. See“Running the Example Code”on page 543 if IDL
does not run the program as expected. You should examine the files for additi
details and comments not included here.

;Providing standard keywords usually found in other widget
;applications is a nice finishing touch. GROUP is easy to support
;since we just pass it to XMANAGER.
PRO xdice, GROUP=group

Figure 18-7: The XDICE Example Program
Compound Widget Example Building IDL Applications

Chapter 18: Widgets 605
;Create the top-level base that holds everything else.
base = WIDGET_BASE(/COLUMN, title='Pair O'' Dice')

;A button group compound widget is used to implement the Done and
;Roll buttons. The SPACE keyword simply causes the buttons to be
;spread out from each other.
bgroup = CW_BGROUP(base, ['Done', 'Roll'], /ROW, SPACE=50)

;Create a row base to hold the dice. XPAD moves the first die away
;from the left side of the application and helps center the dice.
dice = WIDGET_BASE(base, /ROW, XPAD=20)

;The first die.
d1 = CW_DICE(dice)

;The second die.
d2 = CW_DICE(dice)

;We need the initial dice values to set the label appropriately. We
;could have specified initial values for the calls to CW_DICE
;above, but it seems better to let them be different on each
;invocation.
WIDGET_CONTROL, d1, GET_VALUE=d1v
WIDGET_CONTROL, d2, GET_VALUE=d2v

;Format the initial label text.
str=STRING(FORMAT='("Current Value: ",I1,", ",I1)', d1v, d2v)

;This label is used to textually display the current dice values.
label = WIDGET_LABEL(base, value=str)

;Information that is needed in the event handler.
state = { bgroup:bgroup, d1:d1, d2:d2, label:label }

;Save useful information in the base UVALUE, and realize the
;application.
WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY, /REALIZE

;Pass control to XMANAGER.
XMANAGER, 'XDICE', base, GROUP=group

END

The following event handler is called by XMANAGER to process events for the
XDICE application:

PRO xdice_event, event

;Recover the state.
Building IDL Applications Compound Widget Example

606 Chapter 18: Widgets
WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

;Either the Done or Roll button was pressed.
IF (event.id EQ state.bgroup) THEN BEGIN

;The Done button.
IF (event.value EQ 0) THEN BEGIN

WIDGET_CONTROL, /DESTROY, event.top;Destroy the application.

;Return now to avoid trying to update the widget label we
;just destroyed.
RETURN

;The Roll button.
ENDIF ELSE BEGIN

;Roll the first die by asking for an out of range value.
WIDGET_CONTROL, state.d1, SET_VALUE=-1

;Roll the second die.
WIDGET_CONTROL, state.d2, SET_VALUE=-1

ENDELSE
ENDIF

;Get value of first die.
WIDGET_CONTROL, state.d1, GET_VALUE=d1v

;Get value of second die.
WIDGET_CONTROL, state.d2, GET_VALUE=d2v

;Format the initial label text.
str = STRING(format='("Current Value: ",I1,", ",I1)', d1v, d2v)

;Update the label.
WIDGET_CONTROL, state.label, SET_VALUE=str

;Restore the state.
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
Compound Widget Example Building IDL Applications

Chapter 19:

Debugging an IDL
Program

The following topics are covered in this chapter:
Overview . 608
Debugging Commands 609

The IDL Code Profiler. 614
The Variable Watch Window. 619
Building IDL Applications 607

608 Chapter 19: Debugging an IDL Program

Run
s
ful

e

sing
Overview

There are several tools you can use to help you find errors in your IDL code. The
menu item in the IDL Development Environment provides several ways to acces
IDL’s built-in debugging and executive commands. The IDL Profiler provides use
information about the routines used in the program being executed. The Variabl
Watch Window helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples u
the IDLDE interface to debug a file.
Overview Building IDL Applications

Chapter 19: Debugging an IDL Program 609

nu,

that
ot
W,

An

that

s a
d
file.
Debugging Commands

When a file displayed in an IDL editor window has been compiled (by selecting
“Compile” or “Memory Compile” from the Run menu, or by entering .COMPILE,
.COMPILE -f, or .RUN at the IDL command prompt), a number of debugging
commands become available for selection. For more information on the Run me
see theUsing IDL manual.

When execution is interrupted, a current-line indicator is placed next to the line
will be executed when processing resumes. The routine being compiled need n
already be shown in an editor window. If a routine compiled with the .RUN, .RNE
or .COMPILE executive commands contains an error, IDLDE will display the file
automatically.

A Simple Example

A simple procedure, called BROKEN, has been included in the IDL distribution.
error occurs when BROKEN is executed.

Start the IDLDE. Call the BROKEN procedure by entering:

BROKEN

at the IDL command line. An error is reported in the Output Log window and an
editor window containing the fileBROKEN.PRO appears.

A “Variable is undefined” error has occurred. Since execution stopped at line 4,
line is highlighted with an arrow.

Click on the Output Log window to see the error:

% Compiled module: BROKEN.
% PRINT: Variable is undefined: I.
% Execution halted at BROKEN 4

/user/local/rsi/idl50/examples/general/broken.pro
% $MAIN$

There are several ways of fixing this error. We could edit the program file to
explicitly define the variable i, or we could change the program so that it accept
parameter at the command line. We can also define the variable i “on the fly” an
continue execution of the program without making any changes to the program
We’ll do this first, then go back and edit the program to accept a command-line
parameter.
Building IDL Applications Debugging Commands

610 Chapter 19: Debugging an IDL Program

nd

he
ng

.

Click

t

dure

p”
To define the variable i and assign it the value 10, click in the IDL command line a
enter:

i = 10

Step Through the Program

Select “Step Into” from the Run menu to execute line 4 with the new value ofi and
step to the next program line.

The Output Log reports:

10

and the current-line pointer advances to the next line in the window containing t
file BROKEN.PRO. You could continue stepping through the program by choosi
“Step Into” repeatedly (or by entering .STEP at the IDL command prompt).

The Trace dialog offers an opportunity to automatically step through the program
Select “Trace...” from the Run menu. The Trace dialog appears. Click “Run” to
continue issuing the .STEP command until the END statement is encountered.
“Cancel” to dismiss the Trace dialog.

You can also continue execution of the program without stepping through. Selec
“Run” from the Run menu, noting that the Output Log shows that IDL callsbroken .
Define the variablei in the Command Input Line. Select “Run” again. The Output
Log now shows that IDL calls .CONTINUE. IDL prints the resulting output to the
Output Log window:

10
20
30
40

When stepping through a main program, if the next line calls another IDL proce
or function, you have three options with which to handle execution of the nested
program. Selecting “Step Into” executes statements in order by successive “Ste
commands. Selecting “Step Over” executes statements to the end of the called
function, without interactive capability. Select “Step Out” if you would like to
continue processing until the main program returns.

Fix the Program

To fix the program permanently, edit the first line of the program to be:

PRO BROKEN, i
Debugging Commands Building IDL Applications

Chapter 19: Debugging an IDL Program 611

 the
his

he
 the

t to

e.

kpoint

s.

he
Select “Save” from the File menu and “Compile” from the Run menu. IDL saves
modified text file over the old version and compiles the modified routine. To call t
new version of BROKEN with an input argument of 10, enter:

BROKEN, 10

The Output Log window prints the result:

10
20
30
40

Breakpoints

You can suspend execution of a program temporarily by setting breakpoints in t
code. Set a breakpoint at the fifth line of BROKEN.PRO by placing the cursor in
line that reads:

PRINT, i*2

and selecting “Set Breakpoint” from the Run menu. A breakpoint dot appears nex
the line. Now enter:

BROKEN, 10

The Output Log window displays the following:

10
% Breakpoint at: BROKEN 5

user/local/rsi/idl40/examples/general/broken.pro

and a current-line indicator marks line 5. Select “Run” to allow execution to resum
To list the breakpoints, enter HELP,/BREAKPOINT at the Command Input Line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a brea
in BROKEN.PRO is not very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routine

The Breakpoint Tool Bar Buttons

There are three buttons in the main menu bar. These are:

TheToggle Breakpoint button creates or deletes a breakpoint. If you
place the cursor in the line you want to create a breakpoint in, clicking t
Building IDL Applications Debugging Commands

612 Chapter 19: Debugging an IDL Program

dy

t.
L

.
om
nts,

ts
e

he
Toggle Breakpoint button creates the breakpoint. If a breakpoint alrea
exists in that line, the breakpoint is removed.

TheEnable/Disable Breakpoint button enables or disables a breakpoin
If a breakpoint is enabled, a solid circle appears next to the line in the ID
Editor window. If it disabled, the circle is not filled. If a breakpoint has
been disabled, the breakpoint is ignored when running the file.

TheEdit Breakpoints button displays the Set Complex Breakpoint dialog
In previous releases, this printed a listing of the current breakpoints. Fr
this dialog, you can list your current breakpoints, create new breakpoi
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The Edit Breakpoints Dialog

TheEdit Breakpoints dialog allows you to add, remove, and remove all breakpoin
in a file as well as the ability to move to the line in the source file that contains th
breakpoint. The following figure shows theEdit Breakpoints dialog:

To create a breakpoint using theEdit Breakpoints dialog, complete the following
steps:

1. Open the file you in which you want to set a breakpoint.

2. Display theEdit Breakpoints dialog by clicking the button in the
IDLDE Tool Bar or by selectingRun → Edit Breakpoints...

3. Place the cursor in the line in which you want to create the breakpoint in t
Editor window.

Figure 19-1: Edit Breakpoints Dialog
Debugging Commands Building IDL Applications

Chapter 19: Debugging an IDL Program 613

y

st

e

e

4. SelectAdd in theEdit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

5. At this point, you can modify any of the items (except Module and Line) b
double-clicking in the entry.

Your breakpoint entry is now complete.

Item Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteria for the breakpoint is
met.

Module Specifies the procedure or function the breakpoint is set in.

Note - This item will not be displayed until the file has been
compiled with the new breakpoint.

Line Specifies the line number where breakpoint has been set.

File Specifies the filename where the breakpoint has been set.

After Specifies how many times the execution must pass the
breakpoint before stopping execution. For example, if this
item is set to 0, execution will stop the first time this
breakpoint is encountered. If it is set to 9, execution will not
stop until the breakpoint has been encountered for the ninth
time.

Once The breakpoint is removed after it is encountered for the fir
time.

Condition Specifies a condition to be met for the execution to stop. Th
condition is a string containing an IDL expression. When a
breakpoint is encountered, the expression is evaluated. If th
expression is true (if it returns a non-zero value), program
execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint.

Table 19-1: Edit Breakpoints Description
Building IDL Applications Debugging Commands

614 Chapter 19: Debugging an IDL Program

You

e as

the

log.

for
ust
g.
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications.
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command lin
well as programs run from within a file.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of
IDLDE or by enteringPROFILERat the Command Input Line. For more information
about the PROFILER procedure, seePROFILER in theIDL Reference Guide.

Note
Calling the Profiler from the Command Input Line does not start the Profiler dia

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected
profiling. To select a module, click on the checkbox next to it. All user modules m
be compiled before opening the Profile dialog in order to be available for profilin

Figure 19-2: Profile Dialog
The IDL Code Profiler Building IDL Applications

Chapter 19: Debugging an IDL Program 615

he
ick

les
umn
. By

in a
s
ER
All User Modules

Select this checkbox to select all the user modules for profiling.

System Modules

This field includes all IDL system procedures and functions.

All System Modules

Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for all the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. T
“Profile Report” dialog is dismissed, as it no longer contains any information. Cl
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismiss the Profile dialog. Click “Help” to display Help
on this dialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modu
selected for profiling from the Profile dialog. You can sort the values in each col
in both ascending and descending order by clicking anywhere within the column
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line, or run a program contained
file, the PROFILER procedure will report the status of all the specified module
compiled and executed either since profiling was first set or since the PROFIL
was reset.

Modules

The name of the library, user, or system procedure or function.
Building IDL Applications The IDL Code Profiler

616 Chapter 19: Debugging an IDL Program

User

not

e

t”
he

lp
Typ

The type of module. System procedures or functions are associated with an “S”.
or library functions or procedures are associated with a “U”.

Count

The number of times the procedure or function has been called.

Only(sec)

The time required, in seconds, for IDL to execute the given function or procedure,
including any calls to other functions or procedures (children).

Only Avg

Average of the Only(sec) field above.

+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedur
including any calls to other functions or procedures.

+Child Avg

Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Prin
from the File menu of the IDLDE. Click “Save” to save the report as a text file. T
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display He
on this dialog.

Using the IDL Code Profiler

Open a new editor file by selecting “New” from the File menu.

Enter the following lines in the editor:

pro prof_test
openr, 1, filepath(’nyny.dat’, subdir=[’examples’, ’data’])
a=assoc(1, bytarr(768,512))
b=a[0]
close, 1
TV, b
end
The IDL Code Profiler Building IDL Applications

Chapter 19: Debugging an IDL Program 617

 As

to

 is

ve

rt
Save the file as prof_test.pro by selecting “Save” from the File menu. The Save
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

For more information about the capabilities of either dialog, see“The Profile Dialog”
on page 614 and“The Profile Report Dialog” on page 615.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The abo
example set profiling for all system files, plus the user module,prof_test , and the
library function, FILEPATH. If you have altered the above results, reset the repo
and runprof_test again.

Figure 19-3: Profile Report Dialog
Building IDL Applications The IDL Code Profiler

618 Chapter 19: Debugging an IDL Program

ded
de
h
ote
o the
m

er
ly
t

Enter the following lines at the Command Input Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.
A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appen
to the User Module field, but that it remains unselected. The Profiler will not inclu
any uncompiled modules by default. Click “Report” in the Profile dialog to refres
the Profile Report dialog’s results. The following figure shows the new results. N
that TV is counted twice, and that more system modules have been appended t
Modules column. The DIST function, although it is not itself included, calls syste
routines which were previously selected for profiling.

If you select DIST in the User Modules field in the Profile dialog and then re-ent
only the statement calling TV at the Command Input Line, you will notice that on
the count for TV increases in the profiler report. You must re-enter the statemen
calling DIST at the Command Input Line; the already-compiled library function is
executed again, making it available for profiling.

Figure 19-4: Refreshing the Profile Report
The IDL Code Profiler Building IDL Applications

Chapter 19: Debugging an IDL Program 619

ted
to a
the

o
s

d to
 to

E
u.

on.
The Variable Watch Window

The Variable Watch window displays current variable values after IDL has comple
execution. If the calling context changes during execution — as when stepping in
procedure or function — the variable table is replaced with a table appropriate to
new context. While IDL is at the main program level, the Watch window remains
active and displays any variables created.

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select “Hide Variable Watch” from the
Configure option in the Window menu. Select “Show Variable Watch” to make it
reappear. Changing the Window menu will only affect the current IDL session. T
apply your changes to future sessions, go to the Layout tab from the Preference
option of the File menu. In the section labeled Windows, you can use the Hide fiel
make any of the available options disappear. Click “Save” to apply any changes
future IDL sessions.

Note
The Configure option from the Window menu reflects changes in the Layout
Preferences and vice versa.

You can also choose to separate the Variable Watch window from the main IDLD
window. Use the Separate field in the Layout Preferences tab from the File men

The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed executi
Each Variable Watch window contains the following folders:

Figure 19-5: Variable Watch Window
Building IDL Applications The Variable Watch Window

620 Chapter 19: Debugging an IDL Program

ed

ns
see

he

re

 size
 to
he
k

r

 click
• Locals

This tab contains descriptions of local variables. Local variables are creat
from IDL’s main program level. For example, enteringa=1 at the Command
Input Line lists the integera in the Locals tab.

• Params

This tab contains descriptions of parameters. The variables and expressio
passed to a function or procedure are parameters. For more information,
“Parameters” on page 286.

• Commons

This tab contains descriptions of variables contained in common blocks. T
name of each common block is shown in parentheses next to the variable
contained within it. For more information, see“Common Blocks” on
page 208.

• System

This tab contains descriptions of system variables. System variables are a
special class of predefined variables available to all program units. For mo
information about system variables, seeAppendix D, “System Variables” in
theIDL Reference Guide.

Each tab contains a table listing the variables included in the category. You can
the columns by clicking on the line to the right of the title of the column you wish
expand or shrink. Drag the mouse either left or right until you are satisfied with t
width of the column. For example, to change the width of the Name column, clic
and drag on the line separating the Name field from the Type field.

The following fields describe variable attributes:

• Name

This field shows the name of the variable. This field is read-only, except fo
array subscript descriptions (see example inUsing the Variable Watch Window
below).

For compound variables such as arrays, structures, pointers, and objects,
the “+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-” symbol to collapse the description.

• Type

This field shows the type of the variable. This field is read-only.
The Variable Watch Window Building IDL Applications

Chapter 19: Debugging an IDL Program 621

by

ata
ad-

e
 to
light
ify

the
• Value

This field shows the value of the variable. To edit a value, highlight the cell
clicking on it, press the function keyF2 to enter editing mode, and enter the
new value.

The Name, Type, and Value fields are displayed as when using theHELP procedure.
For more information about variables, see“Variables” on page 96.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object d
are expanded only if the object method has finished running. Object data are re
only and cannot be changed with the Variable Watch window.

Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next th
name of the array to display the initial array subscript. You can change this field
display the characteristics of any other array element. To edit the subscript, high
the cell by clicking on it, press the function key F2 to enter editing mode, and mod
the name using the arrow keys to maneuver. For example, enter the following:

;Create an array with 2 columns and 3 rows.
A=MAKE_ARRAY(2,3)

;Show the values of array A in the Output Log. They will all be
;zero.
PRINT, A

;Assign the value of 5 to the value in the array subscripted as 2.
;This is the same as entering A(0,1)=5.
A(2)=5

;Show the new values of array A.
PRINT, A

IDL prints:

0.00000 0.00000
5.00000 0.00000
0.00000 0.00000

It is easy to manipulate variables within the Watch window. Click on the “+”
expansion bitmap next to the array A. The subscript [0,0] will be revealed beneath
description of A. Enter editing mode and change [0,0] to [0,1].
Building IDL Applications The Variable Watch Window

622 Chapter 19: Debugging an IDL Program

In

is
Tab”
er
Note
To enter editing mode in Motif, press F2 after clicking on the cell to be edited.
Windows, double click on the cell. On the Macintosh, click on the cell.

Press Return [Enter] to effect the change. Notice that the value of the subscript
displayed as 5.00000, as you entered from the Command Input Line. Press the “
key twice to highlight the value of the subscript [0,1]. You can change it to anoth
number. Enter [1,0] in the subscript name field. You can change the value from
0.00000 to another number.

For more information about arrays, see“Arrays” on page 90.
The Variable Watch Window Building IDL Applications

Chapter 20:

Building Cross-
Platform Applications

The following topics are covered in this chapter:
6
7

9

Overview . 624
Which Operating System is Running? . . . 625
File and Path Specifications 626
Environment Variables 629
Files and I/O . 630
Math Exceptions. 633
Operating System Access. 634

Display Characteristics and Palettes 635
Fonts. 63
Printing. 63
SAVE and RESTORE 638
Widgets . 63
Using External Code 642
IDL DataMiner Issues 643
Building IDL Applications 623

624 Chapter 20: Building Cross-Platform Applications

me

of

t

re
cusses
at

ross-
Overview

IDL is designed as a platform-independent environment for data analysis and
programming. Because of this, the vast majority of IDL’s routines operate the sa
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, therearedifferences between the computers tha
make up a multi-platform environment. Operating systems supply resources in
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows, Macintosh, UNIX, and VMS machines, the
are some cases where the discrepancies cannot be overcome. This chapter dis
aspects of IDL that you may wish to consider when developing an application th
will run on multiple types of computer.

Note
This chapter isnot an exhaustive list of differences between versions of IDL for
different platforms. Rather, it covers issues you may encounter when writing c
platform applications in IDL.
Overview Building IDL Applications

Chapter 20: Building Cross-Platform Applications 625

r

ng

ort,
nner.
Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, you
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable!VERSION. For example, you could use an IDLCASE Statementthat looks
something like the following to execute code that pertains to a particular operati
system family:

CASE !VERSION.OS_FAMILY OF
'MacOS' : Code for Macintosh
'unix' : Code for Unix
'vms' : Code for VMS
'Windows' : Code for Windows

ENDCASE

Writing conditional IDL code based on platform information should be a last res
used only if you cannot accomplish the same task in a platform-independent ma
Building IDL Applications Which Operating System is Running?

626 Chapter 20: Building Cross-Platform Applications

used

DL

e

file

the
d
our
File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters
by different operating systems; see!PATH in theIDL Reference Guide for further
details on path specification.

As a result of these differences, specifying filenames and paths explicitly in your I
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific fil
and path specification issues by using theFILEPATH andDIALOG_PICKFILE
functions.

Choosing Files at Runtime

To allow users of your application to choose a file at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such as reading a
name from a text field in a widget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to a file you know to be installed on the host, use
FILEPATH function. By default, FILEPATH allows you to select files that are include
in the IDL distribution tree. Chances are, however, that a file you supply as part of y

Operating
System

Directory
Separator

Path Element
Separator

MacOs : (colon) , (comma)

UNIX / (forward slash) : (colon)

VMS . (dot) , (comma)

Windows \ (backward slash) ; (semicolon)

Table 20-1: Directory and Path Element Separator Characters
File and Path Specifications Building IDL Applications

Chapter 20: Building Cross-Platform Applications 627

se
the
. If

-

DIR

root
be
own application isnot included in the IDL tree. You can still use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

For example, suppose your application is installed in a subdirectory namedMYAPPof
the root directory of the filesystem that contains the IDL distribution. You could u
the FILEPATH function and set the ROOT_DIR keyword to the root directory of
filesystem, and use the SUBDIRECTORY keyword to select the MYAPP directory
you are looking for a file namedmyapp.dat , the FILEPATH command looks like
this:

file = FILEPATH('myapp.dat', ROOT_DIR= root , SUBDIR='MYAPP')

The problem that remains is how to specify the value ofroot properly on each
platform. This is one case where it is very difficult to avoid writing some platform
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_
keyword. The CASE statement looks like this:

CASE !VERSION.OS_FAMILY OF
'MacOS' : rootdir = STRMID(!DIR, 0, STRPOS(!DIR, ':'))
'unix' : rootdir = '/'
'vms' : rootdir = 'SYS$SYSDEVICE:'
'Windows' : rootdir = STRMID(!DIR, 0, 2)

ENDCASE
file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directories under Unix and VMS are well defined, whereas the
directories on machines running the Macintosh OS or Microsoft Windows must

Figure 20-1: A possible directory hierarchy for an IDL application.
Building IDL Applications File and Path Specifications

628 Chapter 20: Building Cross-Platform Applications

tdir
olon,

the
determined by parsing the IDL system variable !DIR. On the Macintosh, the roo
variable takes the value of !DIR up to the first directory separator character (a c
in this case). On machines running Microsoft Windows, the root is assumed to be
drive letter of the hard drive and the following colon — usually “C:”.
File and Path Specifications Building IDL Applications

Chapter 20: Building Cross-Platform Applications 629

L

DL

er

res

u
ed

less

 on
Environment Variables

UNIX and VMS versions of IDL have the ability to useenvironment variables (or
logical names, under VMS) to store information about the environment in which ID
is running. Typically, environment variables are used to store information like the
path to the main IDL directory, or to a batch file to be read and executed when I
starts up. See“Environment Variables Used by IDL” in Chapter 2 of theUsing IDL
manual for details.

Microsoft Windows systems also have the ability to use environment variables to
store information, but this form of information storage is much less common und
Windows. On the Macintosh, there is no analogue of the environment variable.

Rather than using environment variables, the IDL Development Environment sto
information inpreferences; the mechanisms used to store preferences is different
between platforms, but is generally transparent to you. Configuration settings yo
specify in the preferences dialogs of the IDL Development Environment are sav
and are available to the IDE the next time it is started.

What does this all mean in the context of writing IDL applications for multiple
platforms? Simply this: don’t rely on environment variables in your programs un
you know that:

1. the target platform supports environment variables, and

2. the appropriate environment variables are defined as you wish them to be
the target platform.
Building IDL Applications Environment Variables

630 Chapter 20: Building Cross-Platform Applications

xt file
ng

inary

es in

asic

at

lists
Files and I/O

IDL’s file input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening a te
and reading its contents, importing an image format file into an IDL array, or writi
ASCII data to a file on a hard disk, IDL’s I/O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in b
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writes fil
the proper way.

Before attempting to write a cross-platform IDL application that uses more than b
file I/O, you should read and understand the sections inChapter 16, “Files and
Input/Output” that apply to the platforms your application will support. The
following are a few topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Computer systems on which IDL runs support two ways of ordering the bytes th
make up an arbitrary scalar:big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, andlittle endian, in which
numbers are stored beginning with the least significant byte. The following table
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

Digital Alpha AXP Tru64 UNIX little-endian

Alpha VMS little-endian

Windows NT little-endian

Hewlett Packard PA-RISC HP-UX big-endian

IBM RS/6000 AIX big-endian

Intel x86 Linux little-endian

Solaris x86 little-endian

Windows little-endian

Table 20-2: Byte ordering schemes used by platforms that support IDL
Files and I/O Building IDL Applications

Chapter 20: Building Cross-Platform Applications 631

ore
in
n

ify
ble
1-99
ice
to
een
t
 use

he
The IDL routinesBYTEORDER andSWAP_ENDIAN allow you to convert
numbers from big endian format to little endian format andvice versa. It is often
easier, however, to use the XDR (for eXternal Data Representation) format to st
data that you know will be used by multiple platforms. XDR files write binary data
a standard “canonical” representation; as a result, the files are slightly larger tha
pure binary data files. XDR files can be read and written on any platform that
supports IDL. XDR is discussed in detail in“Portable Unformatted Input/Output”on
page 401.

Logical Unit Numbers

Logical Unit Numbers (LUNs) are assigned to individual files when the files are
opened by the IDL OPENR/OPENU/OPENW commands, and are used to spec
which file IDL should read from or write to. There are a total of 128 LUNs availa
for assignment to files. While it is possible to assign any of the integers between
to a given file, when writing applications for others it is good programming pract
to let IDL assign and manage the LUNs itself. By using the GET_LUN keyword
the OPEN routines, you can ask IDL to assign a free Logical Unit Number betw
100-128 to the specified file. Letting IDL assign the LUN from the list of free uni
numbers ensures that your application does not attempt to use a LUN already in
by someone else’s application. See the description of the GET_LUN keyword to
OPEN in theIDL Reference Guide and“Logical Unit Numbers (LUNs)” on
page 360.

Macintosh File Pointer

IDL provides thePOINT_LUN procedure to allow you to explicitly position the file
pointer anywhere within an open file. Note, however, that on the Macintosh, the
POINT_LUN routine cannot be used to position the file pointer past the end of t
file, as it can on other platforms.

Motorola PowerPC Macintosh OS big-endian

SGI R4000 and up Irix big-endian

Sun SPARC SunOS big-endian

Solaris big-endian

Processor Type Operating System Byte Ordering

Table 20-2: Byte ordering schemes used by platforms that support IDL
Building IDL Applications Files and I/O

632 Chapter 20: Building Cross-Platform Applications

 not
 data
d
d

ry
e

e

sitive.
osh
o.

t are
se.

at the

se
ok

, we
Macintosh File Types and Creators

The Macintosh file system attaches two pieces of information to each file that is
used by other operating systems. The Macintosh file type specifies what type of
is stored in the file—for example, a file may contain text, an image, or unspecifie
binary information. The Macintosh file creator specifies which application create
the file.

Text files saved by IDL on the Macintosh have the default file type “TEXT”. Bina
files saved by IDL on the Macintosh have the default file type “BIN ” (note that th
fourth character is a space). All files created by IDL have the default creator typ
“MIDL”. The default types can be overridden using the MACCREATOR and
MACTYPE keywords to the OPEN routines. SeeOPEN in theIDL Reference Guide
for details.

Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “$”
character is not allowed in a filename under VMS.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insen
File names are case-insensitive under VMS as well. Under Unix and the Macint
operating system, file names are case sensitive—file.pro is different from File.pr
When writing cross-platform applications, you should avoid using filenames tha
different only in case. The safest course is to use filenames that are all lower ca

Remember, too, that IDL commands are themselves case-insensitive. If entered
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

One upshot of this is that if you have filenames that differ only in case and you u
IDL’s automatic compilation feature, on platforms where case matters, IDL will lo
for the lower-case version of the file name first. Youcan specify case-sensitive
filenames if you use the .COMPILE and .RUN executive commands—but again
recommend that you use unique file names always.
Files and I/O Building IDL Applications

Chapter 20: Building Cross-Platform Applications 633

 to

As a
Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL uses the IEEE floating-point standard on all supported systems.
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See“Special Floating-Point Values” on page 346 for
details on NaN and Infinity.)
Building IDL Applications Math Exceptions

634 Chapter 20: Building Cross-Platform Applications

ns,
orm
sure
Operating System Access

While IDL provides ways to interact with each operating system under which it ru
it is not generally useful to use operating-system native functions in a cross-platf
IDL program. If you find that you must use operating-system native features, be
to determine the current operating system (as described in“Which Operating System
is Running?” on page 625) and branch your code accordingly.
Operating System Access Building IDL Applications

Chapter 20: Building Cross-Platform Applications 635

hich
ur

ine
tries

than
out
ars,
ing

lor)
l

Display Characteristics and Palettes

Finding Screen Size

Use the GET_SCREEN_SIZE function to determine the size of the screen on w
your application is displayed. Writing code that checks the screen size allows yo
application to handle different screen sizes gracefully.

Number of Colors Available

Use the N_COLORS and TABLE_SIZE fields of the !D system variable to determ
the number of colors supported by the display and the number of color-table en
available, respectively.

Make sure that your application handles relatively small numbers of colors (less
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors
of all the available colors for its own use. These colors are the ones used for title b
window frames, window backgrounds, scroll bars, etc. If your application is runn
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit co
displays as well. If your application uses IDL’s color tables, for example, you wil
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.
Building IDL Applications Display Characteristics and Palettes

636 Chapter 20: Building Cross-Platform Applications

her

that

m-
Fonts

IDL uses three font systems for writing characters on the graphics device, whet
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in
Appendix G, “Fonts” in theIDL Reference Guide.

Both TrueType and Vector fonts are displayed identically on all of the platforms
support IDL. This means that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platfor
dependent code.
Fonts Building IDL Applications

Chapter 20: Building Cross-Platform Applications 637

d via

ion.
Printing

IDL displays operating-system native dialogs using theDIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presente
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in quest
Building IDL Applications Printing

638 Chapter 20: Building Cross-Platform Applications

cific

hen
ible

on
s in

lly

st
SAVE and RESTORE

Unless your cross-platform application supports VMS, there are no platform-spe
issues to be concerned with. However, if you distribute your application via IDL
SAVE files, remember that files containing IDL routines are not necessarily
compatible between IDL releases. Always save your original code and re-save w
a new version of IDL is released. SAVE files containing data are always compat
between releases of IDL.

If your application supports VMS, you should be aware that SAVE files created
VMS machines with IDL versions before release 5.1 stored floating-point number
VAX format. Beginning with version 5.1, IDL stores all floating-point numbers in
IEEE format. When IDL reads an older data file created on a VAX, it automatica
converts the floating-point numbers from VAX format to IEEE format.

Note also that if you are restoring a file created with VAX IDL version 1, you mu
restore on a machine running VMS.
SAVE and RESTORE Building IDL Applications

Chapter 20: Building Cross-Platform Applications 639

et-
the

where

ou

e

w a

ts
g”

ols).
ition
all
Widgets

IDL’s user interface toolkit is designed to provide a “native” look and feel to widg
based IDL applications. Where possible, widget toolkit elements are built around
operating system’s native dialogs and controls; as a result, there are instances
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependencies in the IDL widget toolkit.
Consult the descriptions of the individual DIALOG and WIDGET routines in theIDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when y
use DIALOG_PICKFILE in an IDL application, a Windows user will see the
Windows-native file selection dialog, a Macintosh user will see the appropriate
Macintosh-native file selection dialog (there are two), and Motif users will see th
Motif file selection dialog. Consult the descriptions of the individual DIALOG
routines in theIDL Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET_BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. SeeIconizing, Layering, and Destroying Groups of Top-Level Bases
under WIDGET_BASE in theIDL Reference Guide for details about the platform-
dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allo
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widge
depend on the platform’s current settings for font, font size, and “window dressin
(things like the thickness of borders and three-dimensional appearance of contr
As a result of the platform-specific appearance of each widget, attempting to pos
individual widgets manually within a base will seldom give satisfactory results on
platforms. Instead, insert widgets inside base widgets that have the ROW or
Building IDL Applications Widgets

640 Chapter 20: Building Cross-Platform Applications

ent

e the
out

-
e
 the

t

for

e

s a

ou
AR
COLUMN keywords set, and let IDL determine the correct geometry for the curr
platform automatically. You can gain a finer degree of control over the layout by
placing groups of widgets within sub-base widgets (that is, base widgets that ar
children of other base widgets). This allows you to control the column or row lay
of small groups of widgets within the larger base widget.

In particular, refrain from using the X/YSIZE and X/YOFFSET keywords in cross
platform applications. Using the COLUMN and ROW keywords instead will caus
IDL to calculate the proper (platform-specific) size for the base widget based on
size and layout of the child widgets.

Fonts used in Widget Applications

You can specify the font used in a widget via the FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widge
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in“Which Operating System is Running?” on
page 625. You can avoid the need for platform-dependent code by using the
TrueType fonts supplied with IDL; there may be a performance penalty when th
fonts are initially rendered. SeeAppendix G, “Fonts”in theIDL Reference Guidefor
details.

Application Menu Bars

The Macintosh is unique among the platforms on which IDL runs in that it provide
single menu bar at the top of the screen for the currently-active application. The
APP_MBAR keyword to the WIDGET_BASE function allows your application to
“take over” the Macintosh system menu when your IDL application is active. If y
wish to place the menu for your application in an individual window, use the MB
keyword instead. Code that uses the APP_MBAR keyword acts as if the MBAR
keyword had been specified. SeeAPP_MBAR under WIDGET_BASE in theIDL
Reference Guide for details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to a widget on a Motif system. Resources specified via the
RESOURCE_NAME keyword will be quietly ignored on Windows and Macintosh
systems. SeeRESOURCE_NAME under WIDGET_BASE in theIDL Reference
Widgets Building IDL Applications

Chapter 20: Building Cross-Platform Applications 641

l of

s.
us

ms
on
cies

IDL
 on

s but
Guidefor details. In general, you should not expect to be able to duplicate the leve
control available via X Window System resources on other platforms.

WIDGET_STUB

On Motif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL application
The WIDGET_STUB mechanism is only available under Unix and VMS, and is th
not suitable for use in cross-platform applications that will run under Microsoft
Windows or on the Macintosh. WIDGET_STUB is described in theExternal
Development Guide.

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical ite
are displayed and manipulated. IDL attempts to provide consistent functionality
all windowing systems, but is not always completely successful. Two inconsisten
that have caused confusion in the past are:

• Enter/Exit tracking events are not generated by some windowing systems.
attempts to provide appropriate enter/exit events, but behaviors may differ
different platforms.

• When an IDL draw widget (created with the WIDGET_DRAW function) is
realized on screen, an expose event is generated under Microsoft Window
not on other platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.
Building IDL Applications Widgets

642 Chapter 20: Building Cross-Platform Applications

he
Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program via CALL_EXTERNAL or LINKIMAGE or via the callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See t
External Development Guide for details on writing and using external code along
with IDL.
Using External Code Building IDL Applications

Chapter 20: Building Cross-Platform Applications 643

 that
e

e,
IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL’s Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers
allow connection to different databases are platform-dependent, and may requir
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in us
and will be different from data source to data source.
Building IDL Applications IDL DataMiner Issues

644 Chapter 20: Building Cross-Platform Applications
IDL DataMiner Issues Building IDL Applications

Chapter 21:

Extending the IDL
Online Help System

The following topics are covered in this chapter:
Overview . 646Creating Hypertext Files for Use with IDL’s
Hypertext Help Viewer 647
Building IDL Applications 645

646 Chapter 21: Extending the IDL Online Help System

, or
f IDL

es
L’s
Overview

Users may want to create online help for their own IDL applications, procedures
functions. The online help system used by IDL emulates (or uses, in the case o
for Windows) the Microsoft Windows Help viewer on all supported platforms.
Because the online help files arecompiled, there is not a simple, no-cost way to
include user-created help topics directly in the help system on all platforms.
However, therearea number of ways to create your own online help. The techniqu
described in this section vary in complexity, cost, and level of integration with ID
hypertext online help viewer.
Overview Building IDL Applications

Chapter 21: Extending the IDL Online Help System 647

The

t be
er.

at

ts

lp
o,

s

are
Creating Hypertext Files for Use with IDL’s
Hypertext Help Viewer

The online help system used by IDL emulates (or uses, in the case of IDL for
Windows) the Microsoft Windows Help viewer on all supported platforms. It is
possible to create your own hypertext help files that can be used with the viewer.
difficulty and expense involved in creating such files depends largely on the
platform(s) involved.

Microsoft Windows

For Microsoft Windows systems, help files are relatively easy to create. Files mus
created in the Rich Text Format (RTF) and compiled with Microsoft’s help compil
The help compiler is part of the Windows Software Developer’s Kit, and is now
included in several Microsoft programming products, including the Visual C++
development environment. The help compiler may also be available from the
Microsoft ftp site (ftp.microsoft.com) or other Microsoft online software libraries
little or no cost.

The Windows help system is often referred to as “WinHelp”. The two componen
are the viewer (WINHELP.EXE, found in the main WINDOWS directory of all
Windows systems), and the help compiler. There are a number of third-party “he
authoring systems” that simplify the creation of WinHelp compatible RTF files. Als
a number of third party books describe the WinHelp creation process—Developing
Online Help for Windows, by Scott Boggan, David Farkas, and Joe Welinske, Sam
Publishing, 1993, ISBN: 0-672-30230-6 is one that we have found useful.

Macintosh

For Macintosh, we use a WinHelp-compatible compiler and viewer licensed from
Altura Software, Inc. called QuickHelp. This compiler uses the same RTF files as
used by the Microsoft Help compiler. Altura Software can be contacted at the
following address:

Altura Software, Inc.
510 Lighthouse Avenue, Suite 5
Pacific Grove, CA 93950
Phone: 408-655-8005
Fax: 408-655-9663
AppleLink: ALTURA
Building IDL Applications Creating Hypertext Files for Use with IDL’s Hypertext Help Viewer

648 Chapter 21: Extending the IDL Online Help System

files

r

nd
h
rted

”
be
UNIX and VMS

For UNIX and VMS, we use a compiler and viewer from Bristol Technology, Inc.
called HyperHelp. Bristol makes a number of compilers that can compile source
in RTF, FrameMaker’s MIF (Maker Interchange Format), SGML (Standard
Generalized Markup Language), HTML (Hypertext Markup Language), and thei
own simple HyperHelp Text (HHT) format. We use the MIF compiler to create
hypertext help files from the same FrameMaker files that produce our hardcopy
manuals.

Bristol also makes a product called Bridge that takes compiled HyperHelp files a
converts them to RTF files that can be compiled with the Windows and Macintos
help compilers described above. In this way, we can create help files for all suppo
IDL platforms from a single source.

Bristol Technology can be contacted at the following address:

Bristol Technology, Inc.
241 Ethan Allen Highway
Ridgefield, CT 06877
Phone: 203-438-6969
Fax: 203-438-5013
E-mail: info@bristol.com
http://www.bristol.com

Accessing Hypertext Help Files

Once compiled, your own hypertext help files can be opened by selecting “Open
from the help viewer’s File menu. In addition, the ONLINE_HELP procedure can
used in your IDL programs to display help files and control the viewer. See
ONLINE_HELP in theIDL Reference Guide for details.
Creating Hypertext Files for Use with IDL’s Hypertext Help Viewer Building IDL Applications

Appendix A:

VMS Floating-Point
Arithmetic in IDL

The following topics are discussed in this appendix:
Overview . 650
VAX Floating-Point Format Background. 651
Transition Issues . 653
A Warning About Floating-Point Conversions
in IDL . 655

A Strategy for Converting VMS Programs 656
Using CALL_EXTERNAL 658
A Note on the VMS G Float Format 660
Building IDL Applications 649

650 Appendix A: VMS Floating-Point Arithmetic in IDL

rn

and
Overview

All VMS versions of IDL through release 5.0 used VAX F and D floating-point
formats. In contrast, all non-VMS versions of IDL use a different and more mode
floating-point standard (IEEE 754). Starting with IDL release 5.1, VMS IDL has
been converted to also support IEEE floating-point formats rather than the now
obsolete VAX formats. This appendix explains the history behind these decisions
discusses how to convert older VMS IDL programs.
Overview Building IDL Applications

Appendix A: VMS Floating-Point Arithmetic in IDL 651

by
s
e

ific
the

dard

e.
cant

.

.

l
ave

oes

int

e
lity
t
S

o

VAX Floating-Point Format Background

The floating-point format used by a program such as IDL is determined entirely
the computer hardware upon which it runs. In the early years of computing it wa
common for different machines to have incompatible floating-point formats. In th
1970s and 1980s, PDP-11 and VAX minicomputers were widely used for scient
computation, and their floating-point format (known as F and D floating) became
de facto standard for science.

Over the years, the computing industry has converged upon a floating-point stan
known as IEEE 754, and commonly referred to as “ieee floating” or “ieee
arithmetic”, and other formats (including the VAX) have diminished in importanc
Now, all common computing hardware uses the IEEE formats, which has signifi
advantages over earlier ones:

• Binary data is portable to almost all current and foreseeable computing
hardware and operating systems, requiring at most simple byte swapping

• SpecialInfinity andNot A Number (NaN) values for undefined computations
allow exceptional computations to be carried out in a well defined manner

This convergence gained momentum in the 1980s as workstations and persona
computers came into prominence. The result is that non-VMS versions of IDL h
always used IEEE floating-point—a significant difference between them and the
VMS version. VAX/VMS IDL stayed with the VAX formats to provide backwards
compatibility with existing programs and data, and because the VAX hardware d
not support the IEEE formats.

In the early 1990s, Digital Equipment Corporation released a new hardware
architecture named ALPHA to replace the aging VAX line. The native floating-po
format for ALPHA is IEEE, but it also supports the VAX formats for backwards
compatibility. When IDL was ported to ALPHA/VMS, it was tempting to switch to
IEEE floating-point in order to bring it in line with all other computers. However, th
decision was made to stay with the VAX formats in order to maximize compatibi
with our VMS customers existing binary data. Since support for the VAX was no
discontinued at that time, Research Systems felt that it was important for all VM
implementations to be compatible with each other.

With IDL 5.1, the floating-point format for ALPHA/VMS IDL has been changed t
IEEE. There are many reasons for this decision:

• IDL no longer runs on VAX hardware, and ALPHA supports IEEE natively.
There is no longer a hardware barrier to conversion.
Building IDL Applications VAX Floating-Point Format Background

652 Appendix A: VMS Floating-Point Arithmetic in IDL

rms.

n

ost
e

re
ct
to
• The VAX formats are obsolete and no longer supported by any modern
computing hardware, making an eventual switch inevitable.

• The lack of specialNaN andInfinity values prevented important IDL features
from being useful under VMS, and differences in floating-point precision
made some numerical methods behave differently than on the other platfo

• The ALPHA implementation of VAX D float has three fewer bits of precisio
than VAX hardware, making that format even less attractive.

• Unlike the past, it is rare for computing sites to be VMS-only these days. M
VMS users also use Unix workstations and personal computers, and thos
machines all use the IEEE floating-point representation. These sites have
already addressed the issue of moving data between these formats, and a
therefore in a position to move to IEEE under VMS. For most sites, the fa
that VMS IDL did not use IEEE floating-point had become a primary barrier
moving completely beyond the transition to IEEE.
VAX Floating-Point Format Background Building IDL Applications

Appendix A: VMS Floating-Point Arithmetic in IDL 653

VAX
e

ns

off-
:

EE
hat
fore
d to
N
 to

sing
Transition Issues

Most existing VMS applications will work with the IEEE version of VMS IDL
without code changes. The slight differences in precision and range between the
and IEEE formats do not usually cause problems as long as you are aware of th
limitations discussed in“A Warning About Floating-Point Conversions in IDL” on
page 655“. Since most VMS sites also use non-VMS computers, such conversio
are probably already common at your site.

Transition issues therefore center around permanent data kept in disk files and
line storage. Within IDL, the focus is therefore on data entering and leaving IDL

Input/Output

Programs that read binary data in VAX format will have to convert the data to IE
format so that IDL can understand it. Similarly, programs that write data to a file t
is supposed to contain VAX format data must convert the data to VAX format be
writing it. The BYTEORDER procedure has a number of new keywords designe
perform this operation. More conveniently, the VAX_FLOAT keyword to the OPE
routines causes all binary data input or output via ASSOC, READU, or WRITEU
be automatically converted to the VAX floating-point format.

CALL_EXTERNAL

Programs that pass floating-point data to or from code dynamically linked to IDL
using CALL_EXTERNAL may need to be adjusted. The options, in order of
preference, are:

1. Recompile the linked code to use the IEEE floating-point format (that is, u
the /IEEE_FLOAT/IEEE_MODE=DENORM compiler options).

2. Use the VAX_FLOAT keyword to CALL_EXTERNAL to automatically
translate all data to and from VAX format as necessary.

3. Convert data to or from VAX format using BYTEORDER.

Again, remember that conversion from one format to another is not without
consequences. Please read“A Warning About Floating-Point Conversions in IDL”on
page 655 before making a final decision.
Building IDL Applications Transition Issues

654 Appendix A: VMS Floating-Point Arithmetic in IDL

here
 is
he
ta
LINKIMAGE

Programs that pass floating-point data to or from code dynamically linked to IDL
using LINKIMAGE require that the linked code be recompiled to use the IEEE
floating-point format (that is, using the /IEEE_FLOAT/IEEE_MODE=DENORM
compiler options).

SAVE and RESTORE

While data also enters and leaves IDL via the SAVE and RESTORE procedures, t
is no IEEE transition issue for such data. The portable XDR format of SAVE files
already compatible with IEEE. Furthermore, RESTORE automatically converts t
data in old VMS format SAVE files to IEEE format as it reads the data, allowing da
in the older format to be recovered as well.
Transition Issues Building IDL Applications

Appendix A: VMS Floating-Point Arithmetic in IDL 655

ur
d
and
ible.

loss:

both

t is
ting

AL
.

A Warning About Floating-Point Conversions
in IDL

The VAX formats are obsolete and IEEE is the standard for modern computing
hardware. With or without IDL, you will eventually find it necessary to convert yo
existing VAX data to IEEE format if it is to remain usable. In doing so, you shoul
understand that translation of floating-point values from one format to the other
back is not a completely reversible operation, and should be avoided when poss
Two important differences between the VAX and IEEE formats can lead to data

1. The VAX floating-point format lacks support for the IEEE special floating-
point valuesNaN andInfinity. Their special meaning is lost when they are
converted to VAX format, and the meaning cannot be recovered.

2. Differences in precision and range can also cause information to be lost in
directions.

The conversion of existing VAX format data to IEEE cannot be avoided, and the
information lost is usually small. Once the data is converted to IEEE, however, i
best to keep it and any results computed from it in IEEE format and avoid conver
it back to the VAX format for storage.

For this reason, we recommend recompiling all code called via CALL_EXTERN
to use the IEEE floating-point format rather than using the VAX_FLOAT keyword
New data should be written to files in IEEE format whenever possible.
Building IDL Applications A Warning About Floating-Point Conversions in IDL

656 Appendix A: VMS Floating-Point Arithmetic in IDL

ed
rsion
he

ur
n
wer

nd

1

f

e

at

to
A Strategy for Converting VMS Programs

Starting with IDL 5.1, all IDL platforms, including ALPHA/VMS, use the IEEE
floating-point format. VMS sites upgrading from a previous version of IDL are fac
with the issue of how to manage this conversion. We recognize that such a conve
cannot occur all at once, and will instead be carried out gradually. We suggest t
following general approach to making the transition.

Step 1: Ensure the Stability of Existing Operations

To ensure that your applications continue to work, keep IDL 5.0.x installed on yo
systems, and use it to run existing applications. Install the IEEE version of IDL i
parallel with the older 5.0.x version and keep both available. Then, shift to the ne
IEEE version as applications and data are ported.

Step 2: Use Compatibility Mode To Make The Initial Port

IEEE versions of VMS IDL can be started with the /VAX_FLOAT command
qualifier. This causes the default value of the VAX_FLOAT keywords to OPEN a
CALL_EXTERNAL to be TRUE instead of FALSE as is usually the case. This is
often sufficient to allow programs that do not use LINKIMAGE to run with IDL 5.
while preserving the VAX format of all external data.

Note
You can also use theVAX_FLOAT function to check or change the default value o
the keywords to OPEN and CALL_EXTERNAL at runtime.

Step 3: Full Port

To move your code fully to IEEE VMS without using the special compatibility mod
(the /VAX_FLOAT command qualifier or calls to the VAX_FLOAT function) you
will need to take the following steps:

1. Recompile dynamically linked code to use the IEEE floating-point format (th
is, using the /IEEE_FLOAT/IEEE_MODE=DENORM compiler options).

2. If possible, convert data files to IEEE format, using the IEEE version of IDL
read the VAX format data and then write a new version of the file in IEEE
format.
A Strategy for Converting VMS Programs Building IDL Applications

Appendix A: VMS Floating-Point Arithmetic in IDL 657

ents
he
3. If data files cannot be converted to IEEE format, adjust the OPEN statem
that access them to include the VAX_FLOAT keyword so that IDL converts t
data on input and output.
Building IDL Applications A Strategy for Converting VMS Programs

658 Appendix A: VMS Floating-Point Arithmetic in IDL

for

e

er
ce.
Using CALL_EXTERNAL

The VAX_FLOAT keyword to CALL_EXTERNAL can be used to make the IEEE
versions of VMS IDL properly pass floating-point data to external code compiled
the VAX floating-point format. However, IDL 5.0.x and earlier did not accept this
keyword. This makes it difficult to write a CALL_EXTERNAL statement that can b
used under both versions at the same time.

The VAX_CALL_EXT routine shown below can be used to solve this problem. If
you compile and use VAX_CALL_EXT it instead of CALL_EXTERNAL, your
program will be able to specify the VAX_FLOAT keyword in all cases, and the old
IDL versions will simply ignore the keyword as a side effect of keyword inheritan

Enter the following IDL code in a file namedcall_ext.pro and include it in your
IDL path. Then use the VAX_CALL_EXT function with the VAX_FLOAT keyword
wherever you would otherwise use CALL_EXTERNAL.

FUNCTION vax_call_ext, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, $
a11, a12, a13, a14, a15, a16, _EXTRA=e

CASE N_PARAMS() OF
2: ans = CALL_EXTERNAL(a1,a2,_EXTRA=e)
3: ans = CALL_EXTERNAL(a1,a2,a3,_EXTRA=e)
4: ans = CALL_EXTERNAL(a1,a2,a3,a4,_EXTRA=e)
5: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,_EXTRA=e)
6: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,_EXTRA=e)
7: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,_EXTRA=e)
8: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,_EXTRA=e)
9: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,_EXTRA=e)
10:ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,_EXTRA=e)
11:ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11, $

_EXTRA=e)
12: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,_EXTRA=e)
13: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,$

a11,a12,a13,_ex,tra=e)
14: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,_EXTRA=e)
15: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,a15,_EXTRA=e)
16: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,a15,a16,_EXTRA=e)
ENDCASE
RETURN, ans
END
Using CALL_EXTERNAL Building IDL Applications

Appendix A: VMS Floating-Point Arithmetic in IDL 659
Note
You do not need to enter the code forVAX_CALL_EXT.PRO by hand. It is included
in themisc subdirectory of theexamples directory of the IDL distribution.
Building IDL Applications Using CALL_EXTERNAL

660 Appendix A: VMS Floating-Point Arithmetic in IDL

at
the

float

ific
int,

er.

ata
A Note on the VMS G Float Format

In addition to the F and D floating-point formats, VMS systems also support a form
known as G float, which has fewer mantissa bits than D float and larger range. On
VAX, this format was rarely used, and IDL has never supported it. Under
ALPHA/VMS, however, G float is the default for DEC language compilers. This
makes it very easy to inadvertently build programs that produce G float data. G
offers little advantage, if any, over double precision IEEE, while causing
compatibility issues similar to those caused by F and D float. For this reason,
Research Systems recommends that you not use G float unless you have spec
requirements for it. To compile your programs to produce IEEE format floating po
specify the /IEEE_FLOAT command qualifier to the compiler. There are several
levels of compiler support for IEEE math, controlled by the /IEEE_MODE qualifi
IDL is built with the options /IEEE_FLOAT/IEEE_MODE=DENORM.

If you need to use G float data with IDL, you will need to manually convert the d
to and from IEEE format. The DTOGFLOAT and GFLOATTOD keywords to the
BYTEORDER procedure can be used for this task.
A Note on the VMS G Float Format Building IDL Applications

Index

Symbols
!ERROR_STATE system variable, 333, 343

MSG, 340
SYS_MSG, 340

of Rows/Columns base property, 496
operator, 120
operator, 120
.prc file

testing in project, 30
.prj files, 23
< operator, 119
<nopage>controlssee widgets, 542
> operator, 119
?: ternary operator, 126
^ character, 119
_EXTRA keyword (keyword inheritance), 291

_REF_EXTRA keyword (keyword inherit-
ance), 291

Numerics
64-bit data type

long, 102
unsigned long, 102

A
abbreviating keywords, 286
about IDL, 15
active command line, 565
actual parameters, 286
adding

files to a project, 26
Building IDL Applications 661

662
addition operator, 118
Alignment, 497
Alignment base property, 497
Alignment button property, 508
Alignment label property, 516
Alignment table property, 532
Allow Closing base property, 497
Allow Moving base property, 498
Altura Software, 647
AND operator, 122
animation

compound widget, 546
anonymous structures, 93, 132
applications, written in IDL, 14
ARG_PRESENT function, 307
arithmetic errors, 345
arrays

concatenation, 121
definition, 90
efficient accessing, 410
of structures, 143
subscripts

definition, 91
ranges, 161

assignment, 269
pointers, 239
statement, 198

assignment operator, 118
ASSOC function, 354, 357
associated I/O, 406
attributes

draw widget, 526
droplist, 521
label widget, 516
listbox, 523
table widget, 532

automatic compilation, 216
automatic structure definition, 149, 259

B
background tasks

for widgets, 580
base widgets

attributes, 496
bulletin board bases, 584
defined, 544
events, 505
using, 454

BEGIN statement, 204
Bell, ringing the terminal, 109
binary trees, 253
bitmap

files
standard file format I/O routines, 435

Bitmap button property, 508
Bitmap Editor, 465

opening, 508
tools, 466

bitmaps
adding to buttons, 465

blocks, 204
BMP files

adding to button widgets, 465
displaying on buttons, 508
standard file format I/O routines, 435
supplied, 465

Boolean operators, 122
breakpoints

debugging with, 611
Bristol Technology, 648
bubble sort, 251
bugs

debugging in IDL, 609
building

order in project, 36
projects, 39

bulletin board bases, 584
button widgets

adding menus to, 464
defined, 544
Index Building IDL Applications

663
setting attributes, 508
setting properties, 507
using, 454

byte
arguments and strings, 177
data type, 102

BYTE function, 178

C
CALL_EXTERNAL, 653, 658
CALL_FUNCTION function, 312
CALL_PROCEDURE procedure, 312
calling

mechanism for procedures, 300
CALLS keyword, 342
CANCEL keyword, 335
caret, 119
carrot, 119
case folding, 179
CASE statement, 206
CATCH procedure, 333
change value event, 519
changing widget values, 578
characters

non-printable, 109
CHECK_MATH function, 345
checkbox widgets

creating, 507
laying out, 508
setting attributes, 508
setting properties, 507

checkboxes, 507
using, 455

class
object, 257
structure, 259
structures

zeroed, 259
closing

files, 359

projects, 25
code

IDL GUIBuilder generated, 448
modifying generated, 449

Color Model
draw area property, 526

color tables
example, 450

colors
manipulation compound widgets, 546

Colors draw area property, 526
COLUMN keyword, 584
Column Labels table property, 532
comments, 197
common blocks, 208

widgets and, 592
compiling

a file from a project, 29
all files in a project, 38
modified files in a project, 38

compiling functions and procedures, 302
complex

numbers, 85, 107
complex data type, 103
Component Sizing common property, 490
compound widgets, 546, 594

animation, 546
color manipulation, 546
data entry, 546
example, 480
handling events, 493
image manipulation, 547
in IDL GUIBuilder code, 480
orientation, 547
user interface, 547
writing, 598

concatenation
array, 121
string, 175

conditional expression, 126
Building IDL Applications Index

664
constants
complex, 85, 107
decimal, 104
double-precision, 84, 106
floating-point, 84, 106
hexadecimal, 104
integer, 84, 104
ivalues, 84, 105
octal, 104
string, 86, 87, 107

context, 332
creating

.sav file from a project, 39
heap variables, 233
IDL runtime distribution, 43, 52
projects, 23

creating multiple, 507
cursor

hourglass, 579
CW_DICE function, 598
CW_PDMENU function, 575

D
dangling references, 243, 264
data entry

compound widgets, 546
data types

64-bit
long, 102
unsigned long, 102

byte, 102
complex, 103
double-precision complex, 103
double-precision floating-point, 102
floating-point, 102
integer, 102
long integer, 102
string, 103
unsigned

integer, 102

long, 102
debugging, 609
decimal, 104
defining method routines, 273

note for Windows 3.11 users, 276
deleting

files in a project, 28
delimiters, string, 86, 108
dereference operator, pointers, 239
DESTROY keyword, 578
destroying

objects, 268
widgets, 578

developer’s kit license, 44
DIALOG_PRINTERSETUP function, 548
DIALOG_PRINTJOB function, 548
dialogs

file selection, 547
printing, 548

disappearing variables, 332
Display Headers table property, 532
distributing IDL applications, 14
distribution

creating, 43, 52
division operator, 119
DO statement, 204
double-precision

complex data type, 103
floating-point data type, 102

draw widgets, 571
attributes, 526
backing store, 528
color model, 526
colors used in, 526
defined, 544
events, 529
example application using, 445
graphics type, 527
mouse events, 529
mouse motion events, 530
properties, 526
Index Building IDL Applications

665
renderer type, 527
scrolling, 528
scrolling area, 528, 529
using, 456
view change events, 530
viewport move, 531

droplist widgets
defined, 545
events, 521
initial value, 521
select event, 522
setting attributes, 521
setting properties, 521
title, 521
using, 455

DYNAMIC_RESIZE keyword, 584

E
Editable table property, 533
Editable text property, 511
editing

a source file from a project, 29
efficiency

constants, 320
if statements, 315
programming, 306
system functions and procedures, 319
vector and array operations, 317

encapsulation, 257
END statement, 204
Entering Procedure Definitions, 296
EOF function, 354
EQ operator, 125

object references, 270
pointers, 242

errors
default error-handling mechanism, 331
floating-point underflow, 345
handling, 330

CATCH procedure, 333

input/output, 338
ON_ERROR procedure, 337

input/output, 338
math, 345
signaling (MESSAGE procedure), 340
system variables, 343
system variables for, 343

event driven programming, 542
events, 535

button press, 510
common properties, 493
compound, handling, 493
destruction, 494
draw area mouse, 529
draw area mouse motion, 530
draw area view changes, 530
draw area widget, 529
draw viewport move, 531
droplist, 521
droplist select, 522
focus, 505
handling in IDL GUIBuilder code, 449, 473,
474, 478, 483
interrupting the event loop, 591
keyboard focus, 590
kill request, 505
listbox, 524
listbox selection, 524
post creation, 495
realize, 494
release for buttons, 509
setting button, 510
slider, 519
slider change value, 519
table cell select, 536
table column width change, 536
table data invalid, 538
table focus, 537
table insert character, 537
table insert string, 538
table text delete, 537
Building IDL Applications Index

666
table text selection, 538
text delete, 513
text focus, 513
text inserts, 514, 514
text selection, 514
text widget, 513
timer, 494, 580
tracking, 494
widget, 563

EXECUTE function, 312
EXIT procedure, 313
explicitly formatted I/O, 356, 370
exponentiation operator, 119
exporting

projects, 42, 51
expressions

efficiency of evaluation, 314
structure of, 127, 129
type of, 127

EXTRA keyword (keyword inheritance), 291

F
false, definition of, 220
file

adding to a project, 26
compiling from a project, 29
compiling in a project, 38
editing from a project, 29
moving in a project, 27
removing from a project, 28
setting properties for a project, 30

file units, 360
files

closing, 359
end-of-file, 416
file units,seefile units
flushing file units, 414
formats

BMP, 435
GIF, 435

Interfile, 435
JPEG, 435
NRIF, 435
PICT, 435
PNG, 435
PPM, 435
SRF, 435
TIFF, 435
X11 Bitmap, 435
XWD, 436

help and information, 411
IDL GUIBuilder

generated, 448
generating code, 471
generating resource, 471
IDL code, 471
regeneration, 472
resource, 471

indexed, 426
input/output, 353
locating, 411
logical unit number, 360
Macintosh-specific information, 433
manipulation operations, 411
modifying generated, 449
multiple structures, 409
opening, 358
pointer position, 415
record-oriented, 424
selection dialogs, 547
storing in a project, 22
VMS-specific information, 422
Windows-specific information, 432

FILES keyword, 411
FIND_BY_UNAME keyword, 474
FINDFILE function, 354, 411
FINITE function, 348
Floating base property, 498
floating point conversions, 655
floating-point

data type, 102
Index Building IDL Applications

667
errors, 345
underflow errors, 345

floating-point format, 651
FLUSH procedure, 354
focus events, 590
FOR statement, 204, 211
formal parameters, 286
Format Codes, 375
FORMAT keyword, 176, 177
formatted I/O, 356
FORWARD_FUNCTION statement, 217
Frame common property, 491
free format I/O, 356, 365
FREE_LUN procedure, 354
freeing pointers, 247
FSTAT function, 354, 411
function definition statement, 216
functions, 296

defining, 216
definition statements, 285
forward definition, 217

G
GE operator, 125
geometry of widgets, 583
GET_KBRD function, 354, 416
GET_LUN procedure, 354
GET_SCREEN_SIZE keyword, 587
GIF files

standard file format I/O routines, 435
GOTO statement, 219
Graphics Type draw area property, 527
Grid Layout base property, 499
group

moving files in a project, 27
GT operator, 125
GUIBuilder,see IDL GUIBuilder

H
Handle Events common event, 493
heap variables, 231, 263

creating, 233
leakage, 244, 264
object, 231, 257, 263, 263
pointer, 235
saving and restoring, 234

Height listbox property, 523
Height text property, 511
HELP procedure, 354
hexadecimal, 104
horizontal slider,see slider widgets
hourglass cursor, 579
HOURGLASS keyword, 579
HTML, 648
HyperHelp, 648
HyperText Markup Language, 648

I
IDL

applications, distributing, 14
Code Profiler, 614
pointers, 236
runtime licensing, 14
statements, 196

IDL GUIBuilder, 438
of Rows/Columns property, 496
Alignment label property, 516
Alignment property, 497, 508
Alignment table property, 532
Allowing Closing property, 497
Allowing Moving property, 498
base widget attributes, 496
base widget events, 505
base widget properties, 496
base widgets, using, 454
Bitmap Editor, 465
Bitmap property, 508
Building IDL Applications Index

668
button attributes, 508
button widgets, using, 454
buttons, adding bitmaps, 465
buttons, adding menus, 464
checkbox attributes, 508
checkbox widgets, using, 455
checkboxes, creating, 507
Color Model draw area property, 526
color table example, 450
Colors draw area property, 526
Column Labels table property, 532
common events, 493
compiling and running example, 452
Component Sizing property, 490
copying or cutting widgets, 469
creating draw area, example, 445
creating multiple checkboxes, 507
creating multiple radio buttons, 507
defining menus, example, 442
deleting widgets, 470
Display Headers table property, 532
draw area events, 529
draw widget properties, 526
draw widgets, using, 456
droplist attributes, 521
droplist events, 521
droplist properties, 521
droplists, using, 455
Editable table property, 533
Editable text property, 511
event code, example, 483
event code, handling example, 474
event code, integrating interfaces, 478
event code, understanding, 473
example application, 442
files, generating multiple times, 472
files, IDL code, 471
files, portable resource, 471
Floating property, 498
Frame property, 491
generating code, 448, 471

generating resource files, 471
Graphics Type draw area property, 527
Grid layout property, 499
Handle Events common event, 493
Height listbox property, 523
Height text property, 511
horizontal slider, using, 455
Initial Value droplist property, 521
Initial Value listbox property, 523
Initial Value text property, 512
integrating multiple interfaces, 478
Label property, 509
label widget attributes, 516
label widget properties, 516
label widgets, using, 455
Layout property, 499
listbox attributes, 523
listbox events, 524
listbox properties, 523
listbox widgets, using, 455
Maximum Value slider property, 518
menus, editing, 461
Minimize/Maximize property, 500
Minimum Value slider property, 518
Modal property, 500
modifying code, example, 449
moving widgets, 469
Multiple listbox property, 523
Name property, 490
No Release property, 509
OnButton draw area event, 529
OnButton Press event property, 510
OnCellSelect table event, 536
OnChangeValue slider event, 519
OnColWidth table event, 536
OnDelete table event, 537
OnDelete text event, 513
OnDestroy event property, 494
OnExpose draw area event, 530
OnFocus event property, 505
OnFocus table event, 537
Index Building IDL Applications

669
OnFocus text event, 513
OnInsertCh text event, 514
OnInsertChar table event, 537
OnInsertString table event, 538
OnInsertString text event, 514
OnInvalidData table event, 538
OnKillRequest event property, 505
OnMotion draw area event, 530
OnRealize event property, 494
OnSelectValue droplist event, 522
OnSelectValue listbox event, 524
OnSizeChange event property, 506
OnTextSelect table event, 538
OnTextSelect text event, 514
OnTimer event property, 494
OnTracking event property, 494
OnViewportMoved draw area event, 531
operating on widgets, 468
parent base, changing for widget, 469
pasting widgets, 469
Position slider property, 518
PostCreation event property, 495
Properties dialog, 457
radio button attributes, 508
radio button widgets, using, 455
radio buttons, creating, 507
redoing operations, 470
Renderer draw area property, 527
Resize Columns table property, 533
resizing widgets, 469
Retain draw area property, 528
Row Labels table property, 534
Row/Column Major table property, 534
Scroll draw area property, 528
Scroll property, 501
Scroll table property, 534
Scroll text property, 512
selecting widgets, 468
Sensitive property, 491
setting button events, 510
setting button properties, 507

setting text widget attributes, 511
setting text widget events, 513
slider events, 519
slider properties, 518
smooth example, 451
Space property, 501
starting, 440
Suppress Value slider property, 519
System Menu property, 502
table events, 535
table widget attributes, 532
table widget properties, 532
table widgets, using, 456
test mode, 447
Text label property, 516
text widgets properties, 511
text widgets, using, 455
Title Bar property, 502
Title droplist property, 521
Title property, 502
Title slider property, 519
toolbar, 454
tools, 453
Type property, 510
undoing operations, 470
vertical slider, using, 455
Viewport Columns table property, 535
Viewport Rows table property, 535
Visible property, 503
Widget Browser, 483
Widget Browser, using, 460
widgets, changing parent base of, 469
widgets, cutting, copying or pasting, 469
widgets, deleting, 470
widgets, moving, 469
widgets, resizing, 469
widgets, selecting, 468
Width listbox property, 524
Width text property, 512
Word Wrapping text property, 512
writing event-handling code, 449
Building IDL Applications Index

670
X Offset property, 492
X Pad property, 503
X Scroll draw area property, 528
X Scroll property, 504
X Size property, 492
Y Offset property, 492
Y Pad property, 504
Y Scroll draw area property, 529
Y Scroll property, 504
Y Size property, 493

IDL object overview, 257
IDL objects, 266
IDL_TREE example routine, 253
IEEE floating point, 651
IEEE standard, 82, 346, 348
IF statement, 220

avoiding, 315
images

image manipulation compound widgets, 547
implicit self argument, 274
infinity, undefined result, 346
information about objects, 271
Informational Routines, 307
inheritance, 261

object, 258
Initial Value droplist property, 521
Initial Value listbox property, 523
Initial Value text property, 512
input/output

associated, 406
error handling, 338
explicit format, 356, 370
format codes, 375
format reversion, 374
formatted, 356
free format, 356, 365
magnetic tape, 429
portable, 401
unformatted, 355, 394

portable, 401
string variables, 394

UNIX FORTRAN unformatted data files,
410
XDR, 401

instance
object, 257

integer
constants, 84, 105
conversions, errors in, 348
data type, 102

Interfile files
standard file format I/O routines, 435

J
joining strings, 186
JPEG files

standard file format I/O routines, 435

K
keyboard

focus events, 590
KEYWORD_SET function, 307
keywords

inheritance, 291
parameters, 286

passing, 289
setting, 286

killing widgets, 578

L
Label button property, 509
label widgets

attributes, setting, 516
defined, 545
setting properties, 516
using, 455

Layout base property, 499
LE operator, 125
Index Building IDL Applications

671
license
developer’s kit, 44

lifecycle
methods, 266
routines, 266

linked lists, 248
using pointers to create, 248

LINKIMAGE , 654
list widgets

defined, 545
listbox widgets

attributes, 523
events, 524
initial value, 523
multiple selections, allowing, 523
selection events, 524
setting height, 523
setting properties, 523
using, 455
width, 524

location of widgets, 584
logical unit numbers, 360
long integer data type, 102
LT operator, 125
LUNs (logical unit numbers), 360

M
magnetic tape, 429
main menu bar enhancements, 611
Maker Interchange Format, 648
managing the state of a widget application, 592
math errors, 345
mathematical operators, 118
matrices, multiplying, 120
maximum operator, 119
Maximum Value slider property, 518
Menu Editor, using, 461
menus, 573

editing in IDL GUIBuilder, 461
pulldown, 575

system, using, 502
MESSAGE procedure, 340
message widgets

defined, 548
method overriding, 277
methods, 273

defining routines, 273
Windows 3.11, 276

invocation, 270
object, 257

MIF, 648
Minimize/Maximize base property, 500
minimum operator, 119
Minimum Value slider property, 518
Modal base property, 500
modal dialogs, creating, 500
modulo operator, 119
moving

files in a project, 27
Multiple listbox property, 523
multiplication operator, 118

N
N_ELEMENTS function, 287, 308
N_PARAMS function, 287, 309
Name common property, 490
named

structures, 93, 132
names

of variables, 97
NaN (not-a-number), 346
NaN values, 651
NE operator, 125

object references, 270
pointers, 242

negation operator, 118
No Release button property, 509
non-printable characters, 109
NOT operator, 122
Building IDL Applications Index

672
NRIF
standard file format I/O routines, 435

O
OBJ_CLASS function, 271
OBJ_DESTROY function, 268
OBJ_ISA function, 271
OBJ_NEW function, 266
OBJ_VALID function, 272
OBJARR function, 267
object

class, 257
class structures, 259
encapsulation, 257
heap variables, 257
inheritance, 258, 261
instances, 257
lifecycle, 266
method routines, 273
persistence, 258
polymorphism, 257

object heap variables, 263
object oriented programming, 256
objects

destroying, 268
heap variables, 231, 263
references for heap variables, 231

Obtaining Traceback Information, 342
octal, 104
ON_ERROR procedure, 330, 337
OnButton draw area event, 529
OnButton Press event property, 510
OnCellSelect table event, 536
OnChangeValue slider event, 519
OnColWidth table event, 536
OnDelete table event, 537
OnDelete text event, 513
OnDestroy property, 494
OnExpose draw area event, 530
OnFocus event property, 505

OnFocus table event, 537
OnFocus text event, 513
OnInsertCh text event, 514
OnInsertChar table event, 537
OnInsertString table event, 538
OnInsertString text event, 514
OnInvalidData table event, 538
OnKillRequest event property, 505
online help

extending, 646
ONLINE_HELP procedure, 648
OnMotion draw area event, 530
OnRealize event property, 494
OnSelectValue droplist event, 522
OnSelectValue listbox event, 524
OnSizeChange event property, 506
OnTextSelect table event, 538
OnTextSelect text event, 514
OnTimer event property, 494
OnTracking event property, 494
OnViewportMoved draw area event, 531
opening

projects, 25
opening files, 358
OpenVMSsee VMS
operations on objects, 269
operations on pointers, 239
operators, 117

addition, 118
AND, 122
array concatenation, 121
assignment, 118
Boolean, 122
division, 119
EQ, 125
exponentiation, 119
GE, 125
GT, 125
LE, 125
LT, 125
mathematical, 118
Index Building IDL Applications

673
matrix multiplication, 120
maximum, 119
minimum, 119
modulo, 119
multiplication, 118
NE, 125
NOT, 122
OR, 122
parentheses, 117
precedence, 115
relational, 124
square brackets, 117
subtraction and negation, 118
XOR, 122

options
setting for project, 33

OR operator, 122
orientation, 3-dimensional, 547
overflow, integer, 349

P
parameters

actual, 286
copying, 287
formal, 286
passing mechanism, 286, 298

parentheses, 117
passing parameters, 298
performance

analyzing, 614
persistence, 258
PICT files

standard file format I/O routines, 435
PNG files

standard file format I/O routines, 435
POINT_LUN procedure, 354
pointer heap variables, 263
pointers, 231, 263

examples, 248
examples of using, 248

freeing, 247
heap variables, 231, 235
validity, 246, 246

polymorphism
objects, 257

portable unformatted I/O, 401
Position slider property, 518
positional parameters, 286
PostCreation event property, 495
PPM files

standard file format I/O routines, 435
prc file

testing in project, 30
PRINT procedure, 354
printing

dialog, 548
properties, 548
setup dialog, 548

printing dialogs, 548
PRINTNAMES example routine, 250
prj files, 23
procedures

call statement, 222
calling

mechanism, 300
definition statements, 285

profiling, 614
Program Control Routines, 312
programming

routines, 306
project

adding files, 26
closing, 25
compiling a file, 29
creating, 23
editing source files, 29
moving files, 27
opening, 25
removing files, 28
saving, 25
storing source files, 22
Building IDL Applications Index

674
testing a .prc file, 30
projects

building, 39
compiling all files, 38
compiling modified files, 38
creating a .sav file, 39
exporting, 42, 51
overview, 20
running an application, 41
setting build order, 36
setting file properties, 30
setting options, 33

properties
draw area widget, 526
entering multiple strings, 459
label widget, 516
table widget, 532
text widget, 511

Properties dialog, 457
of Rows/Columns base property, 496
Alignment base property, 497
Alignment button property, 508
Alignment label property, 516
Alignment table property, 532
Allow Moving base property, 498
Allowing Closing base property, 497
Bitmap button property, 508
Color Model draw area property, 526
Colors draw area property, 526
Column Labels table property, 532
Component Sizing common property, 490
Display Headers table property, 532
draw area events, 529
draw area widget properties, 526
droplist events, 521
droplist widgets, 521
Editable table property, 533
Editable text property, 511
entering multiple strings, 459
Floating base property, 498
Frame common property, 491

Graphics Type draw area property, 527
Grid Layout base property, 499
Handle Events common event, 493
Height listbox property, 523
Height text property, 511
Initial Value droplist property, 521
Initial Value listbox property, 523
Initial Value text property, 512
Label button property, 509
Layout base property, 499
listbox events, 524
listbox properties, 523
Maximum Value slider property, 518
Minimize/Maximize base property, 500
Minimum Value slider property, 518
Modal base property, 500
Multiple listbox property, 523
Name common property, 490
No Release button property, 509
OnButton draw area event, 529
OnButtonPress button event, 510
OnCellSelect table event, 536
OnChangeValue slider event, 519
OnColWidth table event, 536
OnDelete table event, 537
OnDelete text event, 513
OnDestroy common event, 494
OnExpose draw area event, 530
OnFocus base event, 505
OnFocus table event, 537
OnFocus text event, 513
OnInsertCh text event, 514
OnInsertChar table event, 537
OnInsertString table event, 538
OnInsertString text event, 514
OnInvalidData table event, 538
OnKillRequest base event, 505
OnMotion draw area event, 530
OnRealize common event, 494
OnSelectValue droplist event, 522
OnSelectValue listbox event, 524
Index Building IDL Applications

675
OnSizeChange base event, 506
OnTextSelect table event, 538
OnTextSelect text event, 514
OnTimer common event, 494
OnTracking common event, 494
OnViewportMoved draw area event, 531
opening, 457
Position slider property, 518
PostCreation common event, 495
Renderer draw area property, 527
Resize Columns table property, 533
Retain draw area property, 528
Row Labels table property, 534
Row/Column Major table property, 534
Scroll base property, 501
Scroll draw area property, 528
Scroll table property, 534
Scroll text property, 512
Sensitive common property, 491
setting label widget properties, 516
Space base property, 501
Suppress Value slider property, 519
System Menu base property, 502
table events, 535
table widget properties, 532
Text label property, 516
Title Bar base property, 502
Title base property, 502
Title droplist property, 521
Title slider property, 519
Type button property, 510
Viewport Columns table property, 535
Viewport Rows table property, 535
Visible base property, 503
Width listbox property, 524
Width text property, 512
Word Wrapping text property, 512
X Offset common property, 492
X Pad base property, 503
X Scroll base property, 504
X Scroll draw area property, 528

X Size common property, 492
Y Offset common property, 492
Y Pad base property, 504
Y Scroll base property, 504
Y Scroll draw area property, 529
Y Size common property, 493

Q
QuickHelp, 647
quotas, 326
quotation marks, 86, 108

R
radio button widgets

creating, 507
creating multiple, 507
laying out, 508
setting attributes, 508
setting properties, 507
using, 455

READ procedure, 354, 355
READNAMES example routine, 248
READS procedure, 418
realizing widgets, 578
recommendations

storing files in a project, 22
record-oriented files, 424
recursion, 300
REF_EXTRA keyword (keyword inheritance),
291
reference, parameters passed by, 298
relational operators, 124
relaxed structure assignment, 151
REMOVE_ALL keyword, 180
removing

files in a project, 28
Renderer draw area property, 527
repeat statement, 226
Building IDL Applications Index

676
Resize Columns table property, 533
RESTORE procedure, 654
restoring structures, 152
Retain draw area property, 528
Rich Text Format, 647
ROW keyword, 584
Row Labels table property, 534
Row/Column Major table property, 534
RTF, 647
running

applications from a project, 41
runtime IDL, 14

S
SAVE procedure, 654
save/restore

heap variables, 234
saving

projects, 25
saving and restoring heap variables, 234
SCR_XSIZE keyword, 584
SCR_YSIZE keyword, 584
screen size, finding, 587
Scroll base property, 501
Scroll draw area property, 528
Scroll table property, 534
Scroll text property, 512
self argument (objects), 274
semicolon, 197
Sensitive common property, 491
sensitizing widgets, 579
setting

keywords, 286
options for a project, 33
properties of a file in a project, 30

SGML, 648
SINKSORT example routine, 251
size

of widgets, 584
SIZE function, 310

sizing widgets, 583
slider widgets, 519

defined, 545
displayed values, 519
initial position, 518
maximum value, 518
minimum value, 518
properties, 518
setting attributes, 518
setting events, 519
title, 519
using, 455

smoothing
example, 451

sorting
SINKSORT example, 251

Space base property, 501
spaces, removing from a string, 180
splitting strings, 186
square brackets, 117

Seearrays, concatenation
SRF files

standard file format I/O routines, 435
standard

image file formats, 435
Standard Generalized Markup Language,
SGML, 648
statement labels, 197
statements, 196
stepping through, debugging, 610
STOP procedure, 313
storing

file in a project, 22
STRCOMPRESS function, 180, 181
string data type, 103
STRING function, 176, 177, 417
strings, 86, 87, 107

case folding, 179
concatenation, 175
finding last occurrence of substring in, 184
formatting data, 176
Index Building IDL Applications

677
length of, 182
nonstring arguments to routines, 174
operations, 173
substrings, 183
whitespace, 180

STRJOIN function, 186
STRLEN function, 182
STRLOWCASE function, 179
STRMATCH function, 188
STRMID function, 183, 185
STRPOS function, 183
STRPUT procedure, 183, 184
STRSPLIT function, 186
STRTRIM function, 180
STRUCT_ASSIGN procedure, 151
structure of subarrays, 163
structures

advanced, 147
arrays of, 143
automatic definition, 149, 259
creating and defining, 93, 133, 149
definition, 151
input/output, 145
introduction to, 93, 132
number of fields in, 147
parameter passing, 95, 140
references, 94, 136
relaxed definition, 151
restoring, 152
using help with, 94, 139
zeroed, 133, 259

STRUPCASE function, 179
subscripts, 156

array valued, 165
arrays, 91
examples, 158
of scalars, 159
ranges, 161, 161
ranges, combined with arrays, 167
subscript arrays, 200, 202

substrings, 183

subtraction operator, 118
Suppress Value slider property, 519
suspending execution, 611
system

files, 326
System Menu base property, 502
system variables, 99

!ERROR_STATE, 343
for errors, 343

T
table widgets, 535

alignment of text, 532
attributes, 532
cell select events, 536
column labels, 532
column width change events, 536
data invalid events, 538
data transfer to, 534
defined, 545
editing cells, 533
events, 535
focus events, 537
heading display, 532
height, 533
insert character events, 537
insert string events, 538
row labels, 534
scroll height, 535
scroll width, 535
scrolling, 534
sizing columns, 533
text delete events, 537
text selection events, 538
using, 456
width, 533

tabs, removing from a string, 180
TEMPORARY function, 325
ternary operator, ?:, 126
test mode, IDL GUIBuilder, 447
Building IDL Applications Index

678
testing
.prc file from a project, 30

Text label property, 516
text widgets

defined, 546
delete events, 513
focus events, 513
properties, 511
selection events, 514
setting attributes, 511
setting editable state, 511
setting height, 511
setting initial displays, 512
setting scrolling, 512
setting width, 512
setting word wrapping, 512
string insert events, 514
text insert events, 514
using, 455

TIFF files
standard file format I/O routines, 435

timer events (for widgets), 580
TIMER keyword, 580
Title Bar base property, 502
Title base property, 502
Title droplist property, 521
Title slider property, 519
toolbars

IDL GUIBuilder, 454
traceback information, 342
TREE_EXAMPLE example routine, 253
trees, 248

binary, 253
true, definition of, 220
Type button property, 510

U
underflow errors, 345

unformatted I/O, 355, 394
UNIX, OS-specific file I/O information, 419
unsigned data type

integer, 102
long, 102

UPDATE keyword, 587
user interface compound widgets, 547
user values

for widgets, 562

V
value

parameters passed by, 298
widgets, 559

Variable Watch Window, 619
variables, 96

attributes of, 96
disappearing, 332
displaying current, 619
names of, 97
system, 99

VAX_CALL_EXT routine, 658
VAX_FLOAT keyword, 658
vectors

subscripting, 161
vertical slider,see slider widgets
Viewport Columns table property, 535
Viewport Rows table property, 535
virtual memory, 306, 322

minimizing, 324
running out of, 323
system parameters, 325

Visible base property, 503
Visible property, 503
VMS

Open VMS
virtual memory performance

VMS file I/O information, 422
Index Building IDL Applications

679
W
WAIT procedure, 313
while statement, 227
whitespace, removing from strings, 180
Widget Browser, 460, 483
WIDGET_BASE function, 584
WIDGET_CONTROL procedure, 578, 579
widgets, 542

3D orientation, 547
application

errors, 556
tips, 596

attributes
slider, 518

base, 544
base focus events, 505
base, alignment, 497
base, allow moving, 498
base, allowing closing, 497
base, displaying titlebars, 502
base, floating, 498
base, grid layouts, 499
base, kill request events, 505
base, layouts, 499
base, menus, using system, 502
base, modal, 500
base, resizing, 500
base, rows and columns, 496
base, scroll area size, 504
base, scrolling, 501
base, setting attributes, 496
base, setting events, 505
base, setting properties, 496
base, spacing of contained widgets, 501
base, spacing of widgets in, 503, 504
base, titles, 502
base, visibility, 503
bases, using, 454
Browser, 460
button, press events, 510
button, release events, 509

button, setting properties, 507
buttons, 544
buttons, adding menus, 464
buttons, displaying bitmaps, 508
buttons, labels, 509
buttons, using, 454
changing values, 578
checkboxes, using, 455
common blocks and, 592
common events, 493
compound, 547, 594, 598
compound, adding, 480
compound, example, 480
compound, handling events for, 493
controlling, 578
controlling visibility, 483
creating in IDL GUIBuilder, 454
creating with IDL GUIBuilder, 438
destroy events, 494
displaying, 483
draw, 544, 571, 571
draw area properties, 526
draw area, color model, 526
draw events, 529
draw, attributes, 526
draw, backing store, 528
draw, changing view events, 530
draw, colors used in, 526
draw, graphic type, 527
draw, mouse events, 529
draw, mouse motion events, 530
draw, render type, 527
draw, scrolling, 528
draw, scrolling area, 528, 529
draw, using, 456
draw, viewport move events, 531
droplist, 545
droplist attributes, 521
droplist events, 521
droplist properties, 521
droplist, select events, 522
Building IDL Applications Index

680
droplist, title, 521
droplists, initial value, 521
droplists, using, 455
dynamic resizing, 584
enabled or disabled state, 491
events, 563
examples, 550
explicit size, 583
finding screen size, 587
frames, using, 491
geometry, 583
height, 493
hierarchies, 578
hourglass cursor, 579
interrupting the event loop, 591
killing hierarchies, 578
label, 545
label, setting properties, 516
labels, using, 455
lifecycle, 554
list, 545
listbox attributes, 523
listbox events, 524
listbox properties, 523
listbox, height, 523
listbox, initial value, 523
listbox, multiple selections, 523
listbox, selection events, 524
listbox, using, 455
listbox, width, 524
location, 584
managing the state of applications, 592
menus, 573
message, 548
modal dialogs, 500
naming, 490
natural size, 583
portability, 596
positioning, 492
post creation events, 495
preventing layout flicker, 587

properties for IDL GUIBuilder, 457
pulldown menus, 575
radio buttons, using, 455
realize events, 494
realizing

hierarchies, 578
restarting after an error, 556
retrieving values, 578
sensitizing, 579
setting button events, 510
setting label attributes, 516
size, 584

dynamic resizing, 584
explicit, 583
natural, 583
sizing, 583

sizing, default or explicit, 490
slider, 545
slider properties, 518
slider, change value events, 519
slider, displayed values, 519
slider, initial position, 518
slider, maximum value, 518
slider, minimum value, 518
slider, setting events, 519
slider, title, 519
slider, using, 455
table, 545
table attributes, 532
table events, 535
table properties, 532
table, alignment, 532
table, cell select events, 536
table, column labels, 532
table, column width events, 536
table, data transfer to, 534
table, editing, 533
table, focus events, 537
table, heading display, 532
table, height, 533
table, insert character events, 537
Index Building IDL Applications

681
table, insert string events, 538
table, invalid data events, 538
table, row labels, 534
table, scroll height, 535
table, scroll width, 535
table, scrolling, 534
table, sizing columns, 533
table, text delete events, 537
table, text selection events, 538
table, using, 456
table, width, 533
text, 546
text, character inserts, 514
text, delete event, 513
text, editable, 511
text, events, 513
text, focus events, 513
text, height, 511
text, initial display, 512
text, scrolling, 512
text, selection events, 514
text, string inserts, 514
text, using, 455
text, width, 512
text, word wrapping, 512
timer events, 494, 580
tracking events, 494
types, 544
user values, 562, 562
values, 559

user, 562
width, 492

Width listbox property, 524
Width text property, 512
wildcards, in string searches, 188
windows

finding screen size, 587
WinHelp, 647
Word Wrapping text property, 512
wrapper routines, 291

WRITEU procedure, 354
writing

a compound widget, 598

X
X Offset common property, 492
X Pad base property, 503
X Scroll base property, 504
X Scroll draw area property, 528
X Size common property, 492
X11 Bitmap, standard file format I/O routines,
435
XDICE procedure, 604
XDR, 401
XDR files, 357
XMANAGER procedure, 564, 567, 596
XOFFSET keyword, 584
XOR operator, 122
XREGISTERED function, 567
XSIZE keyword, 584
xwd files

standard file format I/O routines, 436

Y
Y Offset common property, 492
Y Pad base property, 504
Y Scroll base property, 504
Y Scroll draw area property, 529
Y Size common property, 493
YOFFSET keyword, 584
YSIZE keyword, 584

Z
zeroed structures, 133, 259
Building IDL Applications Index

682
Index Building IDL Applications

	Online Guide
	Contents
	Overview
	What is an IDL Application?
	Can I Distribute My Application?

	About Building Applications in IDL

	Part I: How to Build Applications in IDL
	Creating IDL Projects
	Overview
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Exporting Your Applications
	Example of a Project

	Where to Store the Files for a Project
	Creating a Project
	Opening, Closing, and Saving Projects
	Opening Projects
	Saving Projects
	Closing Projects

	Adding, Moving, and Removing Files
	Adding Files
	Moving Files
	Removing Files

	Working with Files in a Project
	Editing a Source File
	Compiling a File
	Testing a File
	Setting the Properties of a File

	Setting the Options for a Project
	Selecting the Build Order
	Compiling an Application from a Project
	About IDL GUIBuilder Files

	Building a Project
	Running an Application from a Project
	Exporting a Project
	Exporting Your Project’s Source Files
	Exporting .sav Files and an IDL Runtime Distribution

	About Developer’s Kit Licenses

	Distributing IDL Applications
	Overview
	IDL Applications
	IDL Applications that Use Callable IDL
	IDL Applications that Use the IDL ActiveX Control
	Using IDL DataMiner within Your Application
	Your Application’s Main .sav File
	Secondary .sav Files and Other Data Files
	IDL Runtime vs. Standard IDL
	IDL Runtime
	Standard IDL

	How do I License My IDL Application?

	Creating Your Product Distribution Through Your IDL Project
	Creating Your Application and IDL Runtime Distribution
	The IDL Distribution for Windows
	The IDL Distribution for Macintosh
	The IDL Distribution for UNIX

	Customizing A Windows Distribution
	The IDL.INI File
	[IDL 5.3]
	Cookie
	HelpPath
	HomeDir
	InstallNum
	LicenseMethod
	PortSetID
	RSI Root
	RuntimeFile
	RuntimeIcon
	SearchPath
	SiteNotice

	Install the HASP Service
	Creating Shortcuts/Start Menu Items
	Creating a Shortcut
	Creating a Start Menu Item

	Customizing a Macintosh Distribution
	Modifying The Resource for Your Application’s Executable
	Prelicensing Your Application
	Changing the Main .sav File to Restore at Startup
	Starting IDL Runtime Applications for Macintosh

	Customizing A UNIX Distribution
	IDL Runtime Command Line Options for UNIX

	For Applications That Use IDL DataMiner
	If Your Application Uses IDL DataMiner for Windows
	For Macintosh
	For UNIX

	For Applications That Use ActiveX
	Using the make_rt Script
	Using the make_rt Script for Windows
	For Macintosh
	For UNIX

	Adding IDL Files to the Distribution
	Adding Files on Windows and UNIX Platforms
	Adding Files on Macintosh Platforms

	Replacing the Licensing Dialog Image
	Replacing the Image for Windows Callable Applications
	Replacing the Image for Macintosh Callable Applications

	Part II: Components of IDL
	The Structure of the IDL Language
	Data Types
	Basic Data Types

	Numeric Constants
	Integer Constants
	Floating-Point and Double-Precision Constants
	Complex Constants

	String Constants
	Type Conversion Functions
	Dynamic Type Conversion

	Arrays
	Array Subscripts

	Structures
	Creating and Defining Structures
	Structure References
	Examples of Structure References

	Using HELP with Structures
	Parameter Passing with Structures

	Variables
	Attributes of Variables
	Structure
	Type

	Variable Names

	System Variables

	Constants
	Data Types
	Basic Data Types
	Precision of Floating-Point Numbers

	Complex Data Types

	Constants
	Integer Constants
	Floating-Point and Double-Precision Constants
	Complex Constants
	String Constants
	Representing Non-Printable Characters

	Type Conversion Functions
	Take Care When Converting Types
	Converting Strings
	Dynamic Type Conversion
	Examples of Type Conversion

	Expressions and Operators
	Overview
	Operator Precedence
	IDL Operators
	Parentheses
	Square Brackets
	Mathematical Operators
	Assignment
	Addition
	Subtraction and Negation
	Multiplication
	Division
	Exponentiation
	Modulo

	Minimum and Maximum Operators
	The Minimum Operator
	The Maximum Operator

	Matrix Multiplication
	The # Operator
	The ## Operator

	Array Concatenation
	Boolean Operators
	AND
	NOT
	OR
	XOR

	Relational Operators
	EQ
	NE
	GE
	GT
	LE
	LT
	Using Relational Operators with Arrays

	Conditional Expression

	Type and Structure of Expressions
	Expression Type
	Expression Structure

	Structures
	Overview
	Named Structures
	Anonymous Structures

	Creating and Defining Structures
	Structure Inheritance
	Example of Creating a Structure

	Structure References
	Subscripted Structure References
	Examples of Structure References

	Using HELP with Structures
	Parameter Passing with Structures
	Storing Into Array Fields

	Arrays of Structures
	Creating an Array of Structures
	Examples of Arrays of Structures

	Structure Input/Output
	Formatted Input/Output with Structures
	Unformatted Input/Output with Structures
	Strings
	String Length Issues

	Advanced Structure Usage
	Number of Structure Tags
	Names of Structure Tags
	Example

	Automatic Structure Definition
	Relaxed Structure Assignment
	Using Relaxed Structure Assignment

	Array Subscripts
	Overview
	Array Subscript Syntax: [] vs. ()
	Subscript Examples
	“Extra” Dimensions
	Subscripting Scalars

	Subscript Ranges
	Structure of Subarrays
	Array Subscripts
	Example

	Combining Array Subscripts with Others
	Subscript Ranges
	Other Subscript Arrays
	Scalars

	Storing Elements with Array Subscripts
	Examples

	Strings
	Overview
	A Note About the Examples

	String Operations
	Concatenation
	Formatting Data
	Case Folding
	White Space Removal
	Length
	Substrings
	Splitting and Joining Strings
	Comparing Strings

	Non-string and Non-scalar Arguments
	String Concatenation
	Using STRING to Format Data
	Reading Data from Strings

	Byte Arguments and Strings
	Case Folding
	Whitespace
	Removing All Whitespace
	Removing Leading or Trailing Blanks
	Removing All Types of Whitespace

	Finding the Length of a String
	Substrings
	Searching for a Substring
	Searching For the Last Occurrence of a Substring
	Inserting the Contents of One String into Another
	Extracting Substrings

	Splitting and Joining Strings
	Comparing Strings
	Case-Insensitive Comparisons of the First N Characters
	String Comparisons Using Wildcards
	Complex Comparisons Using Regular Expressions

	Learning About Regular Expressions
	Meta Characters
	Subexpressions
	Bracket Expressions

	Statements
	Overview
	Components of Statements
	Statement Labels
	Comments

	The Assignment Statement
	The Basic Assignment Statement
	Examples

	The Second Form of the Assignment Statement
	Using Array Subscripts with the Second Form of the Assignment Statement

	The Third Form of the Assignment Statement
	Examples

	The Fourth Form of the Assignment Statement
	Examples
	Using Array Subscripts with the Fourth Form of the Assignment Statement

	Associated Variables in Assignment Statements

	Blocks
	CASE Statement
	Example

	Common Blocks
	Common Block Definition Statements
	Example

	Common Block Reference Statements
	Example

	FOR Statement
	FOR Statement with an Increment of One
	Examples

	FOR Statement with Variable Increment
	Examples

	Operation of the FOR Statement

	Function Definition Statement
	Example
	Automatic Execution
	Forward Function Definition

	GOTO Statement
	Example

	IF Statement
	Example
	Definition of True and False
	Example

	Using Statement Blocks with the IF Statement
	Nesting IF Statements

	Procedure Call Statement
	Example
	Parameter Passing
	Keyword Parameters

	Procedure Definition Statement
	REPEAT Statement
	Example

	WHILE Statement
	Example

	Pointers
	Overview
	Running the Example Code

	Heap Variables
	Creating Heap Variables
	Saving and Restoring Heap Variables
	Pointer Heap Variables
	IDL Pointers
	Null Pointers
	The PTR_NEW Function
	The PTRARR Function

	Operations on Pointers
	Assignment
	Dereference
	Dereferencing Pointer Arrays
	Dereferencing Pointers to Pointers
	Dereferencing Pointers within Structures
	Dereferencing the Null Pointer

	Equality and Inequality

	Dangling References
	Heap Variable Leakage
	Pointer Validity
	Freeing Pointers
	Pointer Examples
	Creating a Linked List
	Creating the List
	Printing the Linked List
	A Simple Sorting Routine for the Linked List

	Example Files—Using Pointers to Create Binary Trees

	Object Basics
	Object-Oriented Programming
	IDL Object Overview
	Classes and Instances
	Encapsulation
	Methods
	Polymorphism
	Inheritance
	Persistence

	Class Structures
	Automatic Class Structure Definition

	Inheritance
	Object Heap Variables
	Dangling References
	Heap Variable “Leakage”

	Null Objects
	The Object Lifecycle
	Creation and Initialization
	The INIT Method
	The OBJ_NEW Function
	The OBJARR Function

	Destruction

	Operations on Objects
	Assignment
	Method Invocation
	Equality and Inequality

	Obtaining Information about Objects
	OBJ_CLASS
	OBJ_ISA
	OBJ_VALID

	Method Routines
	Defining Method Routines
	The Implicit Self Argument
	Calling Method Routines
	Searching for Method Routines

	Method Overriding
	Specifying Class Names in Method Calls

	Object Examples

	Part III: Programming in IDL
	Defining Procedures and Functions
	Overview
	Procedure & Function Definitions
	Parameters
	Correspondence of Formal and Actual Parameters
	Positional Parameters
	Keyword Parameters

	Copying Parameters
	Number of Parameters
	Example

	Using Keyword Parameters
	Keyword Inheritance
	_EXTRA: Passing Keyword Parameters by Value
	_REF_EXTRA: Passing Keyword Parameters by Reference
	Accepting Extra Keyword Parameters
	Selective Keyword Redirection

	Choosing a Keyword Inheritance Mechanism
	Example: Keywords Passed by Value
	Example: Keywords Passed by Reference

	Entering Procedure Definitions
	Note Regarding Functions

	Parameter Passing Mechanism
	Calling Mechanism
	Recursion
	Example

	Setting Compilation Options

	Programming in IDL
	Overview of Programming in IDL
	Informational Routines
	ARG_PRESENT Function
	KEYWORD_SET Function
	N_ELEMENTS Function
	N_PARAMS Function
	SIZE Function
	Examples

	Program Control Routines
	CALL_FUNCTION and CALL_PROCEDURE
	EXECUTE
	Example

	EXIT
	STOP
	WAIT

	Expression Evaluation Order
	Avoid IF Statements
	Example—Summing Elements
	Example—Using Array Operators and the WHERE Function

	Use Vector and Array Operations
	IDL System Functions and Procedures
	Example

	Use Constants of the Correct Type
	Eliminate Invariant Expressions
	Virtual Memory
	Access Large Arrays by Memory Order
	Example

	Running Out of Virtual Memory
	Minimizing Virtual Memory
	The TEMPORARY Function
	Virtual Memory System Parameters
	SYSGEN Parameters
	System Files
	Quotas

	IDL Implementation

	Controlling Errors
	Overview
	Default Error-Handling Mechanism
	Disappearing Variables
	Controlling Errors Using CATCH
	Interaction of CATCH, ON_ERROR, and ON_IOERROR
	Canceling an Error Handler
	Generating an Exception
	Example Using CATCH

	Controlling Errors Using ON_ERROR
	Controlling Input/Output Errors
	Error Signaling
	Obtaining Traceback Information
	Error Handling
	!ERROR_STATE
	Using !ERROR_STATE

	Math Errors
	A Note on Floating-Point Underflow Errors
	Accumulated Math Error Status
	!EXCEPT=0
	!EXCEPT=1
	!EXCEPT=2

	Special Floating-Point Values
	The FINITE Function
	Integer Conversions

	Files and Input/Output
	Overview
	File I/O in IDL
	Simple Examples
	Routines for Input/Output

	Unformatted Input/Output
	Advantages of Unformatted I/O
	Disadvantages of Unformatted I/O

	Formatted Input/Output
	Advantages of Formatted I/O
	Disadvantages of Formatted I/O
	Free Format I/O
	Advantages of Free Format I/O
	Disadvantages of Free Format I/O

	Explicit Format I/O
	Advantages of Explicit I/O
	Disadvantages of Explicit I/O

	Opening Files
	Platform-Specific Keywords to the OPEN Procedure

	Closing Files
	Logical Unit Numbers (LUNs)
	The Standard Input, Output, and Error LUNs
	UNIX
	VMS
	Windows and Macintosh
	File Unit 0
	File Unit -1
	File Unit -2

	File Units 1–99
	File Units 100�–128

	Reading and Writing Very Large Files
	Limitations of Large File Support

	Using Free Format Input/Output
	Structures and Free Format Input/Output
	Free Format Input
	Free Format Output
	Example: Free Format Input/Output

	Using Explicitly Formatted Input/Output
	Record Terminators
	Format Codes
	Field Separators
	Rules for Explicitly Formatted Input/Output
	Format Reversion

	Format Codes
	“A” Format Code
	“:” Format Code
	“$” Format Code
	“F,” “D,” “E,” and “G” Format Codes
	“I,” “O,” and “Z” Format Codes
	“Q” Format Code
	Quoted String and “H” Format Codes
	“T” Format Code
	“TL” Format Code
	“TR” and “X” Format Codes
	“C()” Format Code
	Calendar Format Subcodes
	“CMOA” subcodes
	“CMOI” subcode
	“CDI” subcode
	“CYI” subcode
	“CHI” subcodes
	“CMI” subcode
	“CSI” subcode
	“CSF” subcode
	“CDWA” subcodes
	“CAPA” subcodes

	Standard Format Codes Allowed within a Calendar Specification
	Example:
	Example:

	Example: Reading Tables of Formatted Data
	Example: Reading Records that Contain Multiple Array Elements
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:

	Using Unformatted Input/Output
	READU
	WRITEU
	ASSOC
	Unformatted Input/Output of String Variables
	Input
	Output

	Example: Reading C-Generated Unformatted Data with IDL
	Example: Reading IDL-Generated Unformatted Data with C
	Example: Reading a Sun Rasterfile from IDL

	Portable Unformatted Input/Output
	XDR Considerations
	IDL XDR Conventions for Programmers
	Example: Reading C-Generated XDR Data with IDL

	Associated Input/Output
	Example of Using Associated Input/Output
	Reading Data from Associated Files
	Subscripting Associated File Variables on Input
	Writing Data
	Files with Multiple Structures
	Offset Parameter
	Efficiency
	Unformatted Data from UNIX FORTRAN Programs

	File Manipulation Operations
	Locating Files
	Getting Help and Information
	The FSTAT Function
	UNIT
	NAME
	OPEN
	ISATTY
	ISAGUI
	INTERACTIVE
	READ
	WRITE
	TRANSFER_COUNT
	CUR_PTR
	SIZE
	REC_LEN
	An Example Using FSTAT

	Flushing File Units
	Positioning File Pointers
	Testing for End-Of-File
	GET_KBRD
	Example—Using GET_KBRD

	Using the STRING Function to Format Data
	Example—Using STRING with Explicit Formatting

	Reading Data from a String Variable

	UNIX-Specific Information
	Reading FORTRAN-Generated Unformatted Data with IDL
	Reading data from a FORTRAN file
	Writing data to a FORTRAN file

	VMS-Specific Information
	Organization
	Access
	Record Format
	Record Attributes
	File Attributes
	How IDL Handles Records
	Reading FORTRAN-Generated Unformatted Data with IDL
	Indexed Files
	Creating Indexed Files
	Using Indexed Files

	Magnetic Tape
	Magnetic Tape Examples
	References

	Windows-Specific Information
	Macintosh-Specific Information
	Scientific Data Formats
	Support for Standard Image File Formats

	Using the IDL�GUIBuilder
	Overview
	Starting the IDL GUIBuilder
	Opening Existing Interface Definitions

	Creating an Example Application
	Defining Menus for the Top-level Base
	Creating a Draw Widget
	Running the Application in Test Mode
	Generating the IDL Code
	Handling the Open File Event
	Handling the Exit Event
	Handling the Load Color Table Event
	Handling the Smooth Event
	Compiling and Running the Example Application

	IDL GUIBuilder Tools
	Using the IDL GUIBuilder Toolbar
	Creating Widgets

	Using the Properties Dialog
	Opening the Properties dialog
	Entering Multiple Strings for a Property

	Using the Widget Browser
	Using the Menu Editor
	Adding Menus to Buttons

	Using the Bitmap Editor
	Placing a Color Bitmap on a Button
	Using the Bitmap Editor Tools

	Widget Operations
	Selecting Widgets
	Moving and Resizing Widgets
	Cutting, Copying, and Pasting Widgets
	Deleting Widgets
	Undoing and Redoing Operations

	Generating Files
	Generating Resource Files
	Generating IDL Code
	Notes on Generating Code a Second Time

	IDL GUIBuilder Examples
	Understanding IDL GUIBuilder Event Handling Code
	Writing Event Callback Routines
	Handling Initialization Arguments
	Integrating Multiple Interfaces
	Creating the Main Window
	Creating the Modal Dialog
	Running the Example Application

	Adding Compound Widgets
	Adding a Compound Widget to an Interface
	Running the Example

	Controlling Widget Display
	Creating the Interface
	Generating and Modifying the Code
	Running the Application

	Widget Properties
	Common Widget Properties
	Common Attributes
	Name
	Component Sizing
	Frame
	Sensitive
	X Offset
	X Size
	Y Offset
	Y Size

	Common Events
	Handle Event
	OnDestroy
	OnRealize
	OnTimer
	OnTracking
	PostCreation

	Base Widget Properties
	Base Widget Attributes
	# of Rows/Columns
	Alignment
	Allow Closing
	Allow Moving
	Floating
	Grid Layout
	Layout
	Minimize/Maximize
	Modal
	Scroll
	Space
	System Menu
	Title
	Title Bar
	Visible
	X Pad
	X Scroll
	Y Pad
	Y Scroll

	Base Widget Events
	OnFocus
	OnKillRequest
	OnSizeChange

	Button Widget Properties
	Creating Multiple Radio Buttons or Checkboxes
	Button, Radio Button, and Checkbox Widget Attributes
	Alignment
	Bitmap
	Label
	No Release
	Type

	Button, Radio Button, and Checkbox Widget Events
	OnButtonPress

	Text Widget Properties
	Text Widget Attributes
	Editable
	Height
	Initial Value
	Scroll
	Width
	Word Wrapping

	Text Widget Events
	OnDelete
	OnFocus
	OnInsertCh
	OnInsertString
	OnTextSelect

	Label Widget Properties
	Label Widget Attributes
	Alignment
	Text

	Label Widget Events

	Slider Widget Properties
	Horizontal and Vertical Slider Widget Attributes
	Maximum Value
	Minimum Value
	Position
	Suppress Value
	Title

	Horizontal and Vertical Slider Widget Events
	OnChangeValue

	Droplist Widget Properties
	Droplist Widget Attributes
	Initial Value
	Title

	Droplist Widget Events
	OnSelectValue

	Listbox Widget Properties
	Listbox Widget Attributes
	Height
	Initial Value
	Multiple
	Width

	Listbox Widget Events
	OnSelectValue

	Draw Widget Properties
	Draw Area Widget Attributes
	Color Model
	Colors
	Graphics Type
	Renderer
	Retain
	Scroll
	X Scroll
	Y Scroll

	Draw Area Widget Events
	OnButton
	OnExpose
	OnMotion
	OnViewportMoved

	Table Widget Properties
	Table Widget Attributes
	Alignment
	Column Labels
	Display Headers
	Editable
	Number of Columns
	Number of Rows
	Resize Columns
	Row/Column Major
	Row Labels
	Scroll
	Viewport Columns
	Viewport Rows

	Table Widget Events
	OnCellSelect
	OnColWidth
	OnDelete
	OnFocus
	OnInsertChar
	OnInsertString
	OnInvalidData
	OnTextSelect

	Widgets
	Overview
	Running the Example Code

	Widget Types
	Widget Primitives
	Base
	Button
	Draw
	Droplist
	Label
	List
	Slider
	Table
	Text

	Compound Widgets
	Animation
	Color Manipulation
	Data Entry and Display
	Image Manipulation
	Orientation
	User Interface

	Dialogs
	File and Directory Selection
	Message
	Printing

	Manipulating Widgets
	Examples of Widget Programming
	The Widget Application Model
	Iconization
	Layering
	Destruction
	Floating bases
	Modal bases
	Menubars

	Creating Widget Applications
	Construct the Widget Hierarchy
	Provide an Event-Handling Routine
	Realize the Widgets
	Register the Program with the XMANAGER
	Destroy the Widgets
	Handling Widget Application Errors

	Widget Example 1
	Widget Values
	Button
	Draw
	Label
	List or Droplist
	Slider
	Table
	Text
	Widget Values of Compound Widgets
	CW_ARCBALL
	CW_BGROUP
	CW_CLR_INDEX
	CW_COLORSEL
	CW_FIELD
	CW_FORM
	CW_FSLIDER
	CW_ZOOM

	Widget User Values
	User Values Simplify Event Handling
	User Values Can Simulate Global Variables

	Widget Events
	What are Widget Events?
	Structure of Widget Events
	Processing Widget Events
	Calling the WIDGET_EVENT Function
	Managing Events with XMANAGER
	A Note About Blocking in XMANAGER
	JUST_REG vs. NO_BLOCK
	Blocking vs. Non-blocking Applications
	Features Reserved to XMANAGER
	The XREGISTERED Function

	Widget Example 2
	Using Draw Widgets
	Using Direct Graphics in Draw Widgets
	Using Object Graphics in Draw Widgets
	Scrolling Draw Widgets

	Creating Menus
	Button Groups
	Exclusive or Nonexclusive Buttons

	Lists
	Pulldown Menus
	Menus on Top-Level Bases

	Controlling Widgets
	Realizing Widget Hierarchies
	Killing Widget Hierarchies
	Retrieving or Changing Widget Values
	Sensitizing Widgets
	Indicating Time-Consuming Operations
	Using Timer Events

	Widget Example 3
	Widget Sizing
	Widget Geometry Terms and Concepts
	How Widget Geometry is Determined
	Dynamic Resizing
	Explicitly Specifying the Size and Location of Widgets
	Sizing Keywords
	Controlling Widget Size after Creation
	Units of Measurement
	Finding the Size of the Screen

	Preventing Layout Flicker

	Event Processing And Callbacks
	Identifying Widget Type from an Event
	Keyboard Focus Events
	Interrupting the Event Loop

	Managing Widget Application State
	Compound Widgets
	Writing Compound Widgets

	Tips on Creating Widget Applications
	Portability Issues

	Compound Widget Example
	Using CW_DICE in a Widget Program

	Debugging an IDL Program
	Overview
	Debugging Commands
	A Simple Example
	Step Through the Program
	Fix the Program
	Breakpoints
	The Breakpoint Tool Bar Buttons
	The Edit Breakpoints Dialog

	The IDL Code Profiler
	The Profile Dialog
	User Modules
	All User Modules

	System Modules
	All System Modules

	Buttons

	The Profile Report Dialog
	Fields in the Profiler Report Dialog
	Modules
	Typ
	Count
	Only(sec)
	Only Avg
	+Children(sec)
	+Child Avg

	Buttons

	Using the IDL Code Profiler
	Profiling with Command Line Modules

	The Variable Watch Window
	Customizing Variable Watch Window Layout
	The Variable Watch Interface Description
	The Variable Watch Window and Objects

	Using the Variable Watch Window

	Building Cross- Platform Applications
	Overview
	Which Operating System is Running?
	File and Path Specifications
	Choosing Files at Runtime
	Selecting Files Programmatically

	Environment Variables
	Files and I/O
	Byte Order Issues
	Logical Unit Numbers
	Macintosh File Pointer
	Macintosh File Types and Creators
	Naming of IDL .pro Files

	Math Exceptions
	Operating System Access
	Display Characteristics and Palettes
	Finding Screen Size
	Number of Colors Available

	Fonts
	Printing
	SAVE and RESTORE
	Widgets
	Dialog Routines
	Base Widgets
	Positioning Widgets within a Base Widget
	Fonts used in Widget Applications
	Application Menu Bars
	Motif Resources
	WIDGET_STUB
	Widget Event Inconsistencies

	Using External Code
	IDL DataMiner Issues

	Extending the IDL Online Help System
	Overview
	Creating Hypertext Files for Use with IDL’s Hypertext Help Viewer
	Microsoft Windows
	Macintosh
	UNIX and VMS
	Accessing Hypertext Help Files

	VMS Floating-Point Arithmetic in IDL
	Overview
	VAX Floating-Point Format Background
	Transition Issues
	Input/Output
	CALL_EXTERNAL
	LINKIMAGE
	SAVE and RESTORE

	A Warning About Floating-Point Conversions in IDL
	A Strategy for Converting VMS Programs
	Step 1: Ensure the Stability of Existing Operations
	Step 2: Use Compatibility Mode To Make The Initial Port
	Step 3: Full Port

	Using CALL_EXTERNAL
	A Note on the VMS G Float Format

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

