
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

External
Development
Guide

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

.. 14

. 27

.. 29

.. 31

.. 32

33
Contents
Chapter 1:
Overview .. 13
About this Manual..

Inter-language Communication Techniques Which are Supported..................... 15

Dynamic Linking Terminology and Dynamic Linking Concepts....................... 21

When is it Appropriate to Combine External Code with IDL?........................... 23

Skills Required to Combine External Code with IDL... 24

Recommended Reading..

IDL Organization...

External Definitions...

Linking Details...

Reading the Remainder of this Book...
External Development Guide 3

4

. 36

. 37

 39

 41

46

8

 54

.. 57

58

2

3

65

66

 67

.. 70

.... 71

 79

... 81

. 85

. 87

.... 89
Chapter 2:
SPAWN .. 35
The SPAWN Procedure..

Interactive Use of SPAWN...

Noninteractive Use of SPAWN...

Avoiding the Shell Under UNIX...

Communicating Through the Use of a UNIX Child Process............................... 42

Chapter 3:
IDLDrawWidget ActiveX Control .. 45
IDLDrawWidget ActiveX Control..

Creating an Interface and Handling Events... 4

Working with IDL Procedures...

Advanced Examples...

Copying and Printing IDL Graphics..

XLoadCT Functionality using Visual Basic.. 6

XPalette Functionality Using Visual Basic.. 6

Integrating Your Object Graphics by Utilizing Visual Basic.............................. 64

Sharing a Grid Control Array with IDL...

Handling Events within Visual Basic..

Distributing Your Application...

Chapter 4:
IDL ActiveX Control Command Reference 69
IDLDrawWidget ..

Methods..

Do Methods (Runtime only)..

Properties..

Read Only Properties..

Auto Event Properties...

Events...
Contents External Development Guide

5

.. 92

. 93

94

 95

 96

.. 98

. 103

06

07

 108

09

11

112

 127

30

31

41

47

48

55

56

57
Chapter 5:
AppleScript Support ... 91
AppleScript and IDL..

Basic AppleScript Support..

Using IDL Commands via AppleScript...

Moving Data To and From IDL...

Controlling Other Applications..

IDL Apple Events..

References...

Chapter 6:
Remote Procedure Calls ... 105
IDL and Remote Procedure Calls.. 1

Using IDL as an RPC Server... 1

Client Variables...

Linking to the Client Library... 1

Compatibility with Older IDL Code.. 1

The IDL RPC Library..

RPC Examples...

Chapter 7:
CALL_EXTERNAL .. 129
IDL and CALL_EXTERNAL.. 1

The CALL_EXTERNAL Function.. 1

Handling Different Data Types.. 1

CALL_EXTERNAL under UNIX ... 1

CALL_EXTERNAL under OpenVMS.. 1

OpenVMS Compilation and Linking... 1

CALL_EXTERNAL Under Windows... 1

CALL_EXTERNAL on the Macintosh... 1
External Development Guide Contents

6

. 160

163

5

168

69

 172

 173

 175

 180

181

86

188

190

 191

192

94

95

96

98

9

00

03

04

205

. 207
Chapter 8:
IDL Internals: Types .. 159
Type Codes...

Mapping Of Basic Types...

IDL_MEMINT and IDL_FILEINT Types .. 16

Chapter 9:
IDL Internals: Variables ... 167
IDL and Internal Variables..

The IDL_VARIABLE Structure.. 1

Scalar Variables...

Array Variables..

Structure Variables...

Heap Variables...

Temporary Variables...

Creating an Array from Existing Data... 1

Getting Dynamic Memory...

Accessing Variable Data..

Copying Variables...

Storing Scalar Values...

Obtaining the Name of a Variable... 1

Looking Up Main Program Variables.. 1

Looking Up Variables in Current Scope.. 1

Chapter 10:
IDL Internals: Keyword Processing ... 197
IDL and Keyword Processing.. 1

Creating Routines that Accept Keywords.. 19

The IDL_KW_PAR Structure.. 2

The IDL_KW_ARR_DESC Structure... 2

Keyword Processing Options... 2

Processing Keywords...

Cleaning Up..
Contents External Development Guide

7

 208

214

15

 216

 217

18

19

 222

224

228

29

30

231

34

235

36

238

 239

. 244

. 247

248

 249
Keyword Examples..

Chapter 11:
IDL Internals: String Processing ... 213
String Processing and IDL...

Accessing IDL_STRING Values... 2

Copying Strings...

Deleting Strings...

Setting an IDL_STRING Value... 2

Obtaining a String of a Given Length.. 2

Chapter 12:
IDL Internals: Error Handling ... 221
Message Blocks...

Issuing Error Messages..

Specifying errno Explicitly..

Issuing OpenVMS Messages... 2

Looking Up A Message Code by Name.. 2

Checking Arguments...

Chapter 13:
IDL Internals: Type Conversion ... 233
Converting Arguments to C Scalars.. 2

General Type Conversion..

Converting to Specific Types... 2

Chapter 14:
IDL Internals: Files and Input/Output 237
IDL and Input/Output files...

File Information...

Opening Files..

Closing Files...

Preventing File Closing...

Checking File Status..
External Development Guide Contents

8

51

253

254

255

256

257

 260

 263

64

65

 266

 272

273

5

276

 280

. 282

 283

 284

286

287

 288

 290

. 291
Allocating and Freeing File Units.. 2

Detecting End of File...

Flushing Buffered Data..

Reading a Single Character..

Output of IDL Variables..

Adding to the Journal File..

Chapter 15:
IDL Internals: Signals .. 259
IDL and Signals...

Signal Handlers..

Establishing a Signal Handler.. 2

Removing a Signal Handler... 2

UNIX Signal Masks...

Chapter 16:
IDL Internals: Timers ... 271
IDL and Timers..

Making Timer Requests...

Canceling Asynchronous Timer Requests... 27

Blocking UNIX Timers..

Chapter 17:
IDL Internals: Miscellaneous Information 279
Dynamic Memory..

Exit Handlers..

User Interrupts...

System Variables...

Terminal Information...

Ensuring UNIX TTY State..

Type Information...

User Information..

Constants...
Contents External Development Guide

9

.. 292

3

296

97

298

9

 318

1

. 329

31

. 340

41

42

45

 346

48

50

. 351

353

355

57

.. 358
Macros..

IDL Global Data Under VAX/OpenVMS... 29

Chapter 18:
Adding System Routines .. 295
IDL and System Routines..

The System Routine Interface.. 2

Example: Hello World...

Example: Doing A Little More (MULT2)... 29

Example: A Complete Numerical Routine Example (FZ_ROOTS2)................ 302

Example: An Example Using Routine Design Iteration (RSUM)..................... 310

Registering Routines..

Enabling and Disabling System Routines.. 32

LINKIMAGE ..

Dynamically Loadable Modules.. 3

Chapter 19:
Introduction to Callable IDL ... 339
Callable IDL..

How Callable IDL is Implemented.. 3

When is Callable IDL Appropriate?.. 3

Licensing Issues and Callable IDL.. 3

Using Callable IDL..

Documentation for Callable IDL... 3

Chapter 20:
Using Callable IDL Under UNIX and VMS 349
Callable IDL and UNIX and VMS.. 3

Initialization ..

Diverting IDL Output ..

Executing IDL Statements...

Runtime IDL and Embedded IDL.. 3

Cleanup..
External Development Guide Contents

10

 359

60

62

5

68

74

76

. 377

378

380

82

.. 383

84

85

396

 397

8

00

02

04

10

13

20
Interactive IDL...

Compiling Programs That Call IDL.. 3

Example: Calling IDL From C.. 3

Example: Calling an IDL Math Function.. 36

Example: Calling IDL from Fortran.. 3

Compilation and Linking Statements.. 3

Chapter 21:
Using Callable IDL Under Windows ... 375
Callable IDL and Windows... 3

Initialization ..

Diverting IDL Output ..

Executing IDL Statements...

Runtime IDL and Embedded IDL.. 3

Cleanup..

Building an Application that Calls IDL... 3

Example: A Simple Application.. 3

Chapter 22:
Adding External Widgets to IDL ... 395
IDL and External Widgets...

WIDGET_STUB..

WIDGET_CONTROL/WIDGET_STUB.. 39

Functions for Use with Stub Widgets.. 4

Internal Callback Functions... 4

OpenVMS With WIDGET_STUB.. 4

Appendix A:
Obsolete Internal Interfaces ... 409
Interfaces Obsoleted in IDL 5.3... 4

Simplified Routine Invocation... 4

Compatibility with Versions 2 and 3... 4
Contents External Development Guide

11

21
IDL Version 1 Compatibility... 4

Index ... 425
External Development Guide Contents

12
Contents External Development Guide

Chapter 1:

Overview
This chapter discusses the following topics:
4

About this Manual. 14
Inter-language Communication Techniques
Which are Supported. 15
Dynamic Linking Terminology and Dynamic
Linking Concepts . 21
When is it Appropriate to Combine External
Code with IDL?. 23

Skills Required to Combine External Code
with IDL . 2
Recommended Reading. 27
IDL Organization. 29
External Definitions. 31
Linking Details . 32
Reading the Remainder of this Book. 33
External Development Guide 13

14 Chapter 1: Overview
About this Manual

Thismanual describestheinternal implementation of IDL in sufficient detail to allow
theuser to writecodein other languagesand link it with IDL. It explainshow to write
codethat wil l becalled directly from IDL (CALL_EXTERNAL), how to add built-in
system routines and functions (LINKIMAGE), and how to call IDL as a subroutine
from other programs (“Callable IDL”).

Using this Document with Pr evious Versions of IDL

This document describes the interface to the IDL internals introduced with IDL
version 4.0. Those using CALL_EXTERNAL or LINKIM AGE with previous
versions of IDL should consult Appendix A , “Obsolete Internal Interfaces” for
compatibility information.
About this Manual External Development Guide

Chapter 1: Overview 15

ing
, in

end
nes

p

take.
ve,

nt

 that
ate

zed
book

e the
ified
n

Inter-language Communication Techniques
Which are Supported

IDL supports a number of different techniques for communicating with the operat
system and programs written in other languages. These methods are described
brief, below.

Options are presented in approximate order of increasing complexity. We recomm
that you favor the simpler options at the head of this list over the more complex o
that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overla
between their abilities. We highlight the advantages and disadvantages of each
method as well as make recommendations to help you decide which approach to
By comparing this list with the requirements of the problem you are trying to sol
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

• All the benefits of using a high level, interpreted, array oriented environme
with high levels of platform independence.

Disadvantages

• Not always possible.

Recommendation

Writing in IDL is the easiest path. If you have existing code in another language
is simple enough to translate to IDL, this is the best way to go. You should investig
the other options if the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardi
package. Another good reason for considering the techniques described in this
is if you wish to access IDL abilities from a large program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL is to us
SPAWN procedure. Calling SPAWN spawns a child process that executes a spec
command. Under UNIX and VMS, the output from SPAWN can be captured in a
External Development Guide Inter-language Communication Techniques Which are Supported

16 Chapter 1: Overview

be

e
and

e

d

nd
phi,
and

m

IDL string variable. Under UNIX, IDL can communicate with a child process
through a bi-directional pipe using SPAWN. More information about SPAWN can
found inChapter 2, “SPAWN”, or in the documentation for SPAWN in theIDL
Reference Guide.

Advantages

• Simplicity

• Allows use of existing standalone programs.

• Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
easily.

Disadvantages

• Non-UNIX hosts are unable to use the pipe facility to communicate with th
program. Data can only be sent to the command via arguments to SPAWN,
data can only be returned by writing it to a temporary file which IDL
subsequently opens and reads.

• Macintosh or Windows systems are unable to capture returned data via th
Result parameter, further reducing flexibility.

Recommendation

SPAWN is the easiest form of interprocess communication supported by IDL an
allows accessing operating system commands directly.

ActiveX

IDLDrawWidget is an OLE custom control (OCX) built around IDL for Windows
that provides an easy mechanism for integrating IDL with Microsoft Windows 95 a
NT applications written in languages such as C, C++, Visual Basic, Fortran, Del
and others. This is the most natural way to combine IDL with such environments,
is therefore the easiest option under Windows. For more information, seeChapter 3,
“IDLDrawWidget ActiveX Control”.

Advantages

• Integrates easily with an important interprocess communication mechanis
under Windows 95/98 and NT.

• Higher level than the function call interfaces supported by the remaining
options.
Inter-language Communication Techniques Which are Supported External Development Guide

Chapter 1: Overview 17

lphi.

ion

ism

l of

g

tion
ram
• Uses native syntax in languages such as Visual Basic, Visual C++, and De

Disadvantages

• Only supported under Microsoft Windows.

Recommendation

Use the IDL ActiveX control if you are writing a Windows-only application written
in a language that supports ActiveX and you wish to use IDL to perform computat
or graphics within a framework established by this other application.

AppleScript

On the Macintosh, IDL can act as an AppleScript server or client.

Advantages

• Integrates easily with standard Apple interprocess communication mechan
on the Macintosh.

• Higher level than the function call interfaces supported by the remaining
options.

• Far more capable than SPAWN on the Macintosh, allowing remote contro
any scriptable application, the system, and finder.

• Allows import/export of data from IDL.

Disadvantages

• Only supported on the Macintosh.

• Not possible to integrate graphics from IDL into another program’s drawin
area.

Recommendation

AppleScript is excellent for scripting operations, more sophisticated than what
SPAWN allows, but less capable than the IDL ActiveX control available under
Microsoft Windows.

Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communica
between IDL and other programs. IDL is run as an RPC server and your own prog
is run as a client. IDL’s RPC functionality is documented inChapter 6, “Remote
Procedure Calls”.
External Development Guide Inter-language Communication Techniques Which are Supported

18 Chapter 1: Overview

unt
e

e
ace.
Advantages

• Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

• API is similar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

• Possibility of overlapped execution on a multi-processor system.

Disadvantages

• Complexity of managing RPC servers.

• Bandwidth limitations of network for moving large amounts of data.

• Only supported under UNIX.

Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amo
of data being moved is reasonable on your network. CALL_EXTERNAL might b
more appropriate for especially simple tasks, or if the external code is not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL’s CALL_EXTERNAL function loads and calls routines contained in shareabl
object libraries. IDL and the called routine share the same memory and data sp
CALL_EXTERNAL is much easier to use than either LINKIMAGE or Callable IDL
and is often the best (and simplest) way to communicate with other programs.
CALL_EXTERNAL is also supported on all IDL platforms.

While many of the topics in this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found inChapter
7, “CALL_EXTERNAL” and the documentation for CALL_EXTERNAL in theIDL
Reference Guide.

Advantages

• Allows calling arbitrary code written in other languages.

• Requires little or no understanding of IDL internals.

Disadvantages

• Errors in coding can easily corrupt the IDL program.
Inter-language Communication Techniques Which are Supported External Development Guide

Chapter 1: Overview 19

e or

et

.e.

s of

rite

ch

e to

s

ures.
• Requires understanding of system programming, compiler, and linker.

• Data must be passed to and from IDL in precisely the correct type and siz
memory corruption and program errors will result.

• System and hardware dependent, requiring different binaries for each targ
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language (i
without knowledge of IDL internals). For safety, you should write your
CALL_EXTERNAL functions within special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risk
corruption and give your callers an appropriate IDL-like interface to the new
functionality.

If you lack knowledge of IDL internals, CALL_EXTERNAL is the best way to add
external code quickly. Programmers who do understand IDL internals will often w
a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, Dynamically Loadable
Modules)

It is possible to merge routines written in other languages with IDL at run-time. Su
routines are dynamically linked, as with CALL_EXTERNAL. They are more
difficult to write, but more flexible and powerful. LINKIMAGE provides access to
variables and other objects inside of IDL.

This book contains the information necessary to successfully add your own cod
IDL using LINKIMAGE. Especially important isChapter 18, “Adding System
Routines”. Additional information about LINKIMAGE can be found inChapter 7,
“CALL_EXTERNAL” and in the documentation for LINKIMAGE in theIDL
Reference Guide.

Advantages

• This is the most fully integrated option. It allows writing IDL system routine
that are indistinguishable from those written by RSI.

• In use, system routines are very robust and fault tolerant.

• Allows direct access to IDL user variables and other important data struct

Disadvantages

• All the disadvantages of CALL_EXTERNAL.
External Development Guide Inter-language Communication Techniques Which are Supported

20 Chapter 1: Overview

e
t the
t

n of
”

wn

ore

se
• Requires in depth understanding of IDL internals.

Recommendation

Use LINKIMAGE if you require the highest level of integration of your code into th
IDL system. UNIX users with RPC experience should consider using RPCs to ge
benefits of distributed processing. If your task is sufficiently simple or you do no
have the desire or time to learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL for Windows, IDL for UNIX, and IDL for VMS are packaged in a shareable
form that allows other programs to call IDL as a subroutine. This shareable portio
IDL can be linked into your own programs. This use of IDL is called “Callable IDL
to distinguish it from the more usual case of calling your codefrom IDL via
CALL_EXTERNAL or LINKIMAGE. IDL for Macintosh supports “calls” to IDL
via AppleScript.

This book contains the information necessary to successfully call IDL from your o
code. Introductory material and caveats about Callable IDL can be found inChapter
1, “Overview”.

Advantages

• Supported on almost all systems.

• Allows extremely low level access to IDL.

Disadvantages

• All the disadvantages of CALL_EXTERNAL or IDL system routines.

• IDL imposes some limitations on programming techniques that your
program can use.

• Not available on the Macintosh.

Recommendation

Most platforms offer a specialized method to call other programs that might be m
appropriate. Windows 95 or NT users should consider the ActiveX control. UNIX
users should consider using the IDL RPC server. Macintosh users do not have
Callable IDL available and should use AppleScript. If these options are not
appropriate for your task and you wish to call IDL from another program, then u
Callable IDL.
Inter-language Communication Techniques Which are Supported External Development Guide

Chapter 1: Overview 21

hat

age
that

ker

).
ful.
a

d in
re to
Dynamic Linking Terminology and Dynamic
Linking Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into a form which is loadable by
programs at run time as well as link time. The ability to load them at run time is w
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

• Macintosh: Code Fragments

• UNIX: Sharable Libraries

• VMS: Sharable Libraries and Sharable Executables

• Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such filessharable libraries in order to have a consistent
and uniform way to refer to them. It should be understood that this is a generic us
that applies equally to all of these systems. Sharable libraries contain functions
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the lin
gives you control over which functions and data (often referred to assymbols) are
visible from the outside (public symbols) and which are hidden (private symbols
Such control over the interface presented by a sharable library can be very use
Your system documentation discusses these options and explains how to build
sharable library.

Dynamic linking is the enabling technology for many of the techniques discusse
this manual. If you intend to use any of these techniques, you should first be su
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as built in system routines.
External Development Guide Dynamic Linking Terminology and Dynamic Linking Concepts

22 Chapter 1: Overview

ts
rk.

C
st it
Callable IDL

Most of IDL is built as a sharable library. The actual IDL program that implemen
the standard interactive IDL program links to this library and uses it to do its wo
Since IDL is a sharable library, it can be called by other programs.

Remote Procedure Calls (RPCs)

The IDL RPC server is a program that links to the IDL sharable library. The IDL RP
client side library is also a sharable library. Your RPC client program links again
to obtain access to the IDL RPC system.
Dynamic Linking Terminology and Dynamic Linking Concepts External Development Guide

Chapter 1: Overview 23

ese
el of
r

r to
e.

an

nd

ment
erve
m.
k

of

th
h

o

When is it Appropriate to Combine External
Code with IDL?

IDL is an interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys a large amount of portability across th
platforms because IDL provides access to system abilities at a relatively high lev
abstraction. The large majority of IDL users have no need to understand its inne
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

• Many sites have an existing investment in other code that they would prefe
use from IDL rather than incurring the cost of rewriting it in the IDL languag

• It is often best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviors to it, and incur the ongoing maintenance costs of supporting it.

• IDL may be largely suitable for a given task, requiring only the addition of
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understa
the following caveats:

• Research Systems attempts to keep the interfaces described in this docu
stable, and we endeavor to minimize gratuitous change. However, we res
the right to make any changes required by the future evolution of the syste
Code linked with IDL is more likely to require updates and changes to wor
with new releases of IDL than programs written in the IDL language.

• The act of linking compiled code to IDL is inherently less portable than use
IDL at the user level.

• Troubleshooting and debugging such applications can be very difficult. Wi
standard IDL, malfunctions in the program are clearly the fault of Researc
Systems, and given a reproducible bug report, we attempt to fix them
promptly. A program that combines IDL with other code makes it difficult t
unambiguously determine where the problem lies. The level of support
Research Systems can provide in such troubleshooting is minimal. The
programmer is responsible for locating the source of the difficulty. If the
problem is in IDL, a simple program demonstrating the problem must be
provided before we can address the issue.
External Development Guide When is it Appropriate to Combine External Code with IDL?

24 Chapter 1: Overview

e,
s on

d a

e
e

el

) is

d in

 the
ight
the

n
sed.

s for
Skills Required to Combine External Code
with IDL

There is a large difference between the level at which a typical user sees IDL
compared to that of the internals programmer. To the user, IDL is an easy-to-us
array-oriented language that combines numerical and graphical abilities, and run
many platforms. Internally, IDL is a large C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, an
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To b
successful, the programmer must have experience and proficiency in many of th
following areas:

ActiveX

To use the IDL ActiveX control, you should be familiar with the programming
environment in which you will be using the control (e.g. Visual Basic). A lower lev
understanding of ActiveX and COM is not necessary, but might be useful.

RPC

To use IDL as an RPC server, a knowledge of Sun RPC (Also known as ONC RPC
required. The Sun documentation on this subject should be sufficient.

ANSI C

IDL is written in ANSI C. To understand the data structures and routines describe
this document, you must have a complete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand
compilation tools being used as well as those used to build IDL and how they m
interact. IDL is built with the standard C compiler used (and usually supplied) by
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions

It is possible to link IDL directly with code written in compiled languages other tha
C although the details differ depending on the machine, language, and compiler u
It is the programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilitie
Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: Overview 25

 For
asy
.

me
s and

eal

y the
sage:

d to

der

–bit

nd
Research Systems to actively support them all. ANSI C is a standard system
programming language on all systems supported by IDL, so it is usually
straightforward to combine it with code written in other compiled languages. You
need to understand:

• The conventions used to pass parameters to functions in both languages.
example, C uses call-by-value while Fortran uses call-by-reference. It is e
to compensate for such conventions, but they must be taken into account

• Any systematic name changes applied by the compilers. For example, so
compilers add underscores at the beginning or ends of names of function
global data.

• Any run-time initialization that must be performed. On many systems, the r
initial entry point for the program is not main(), but a different function that
performs some initialization work and then calls your main() function. Here
are some issues to consider. Usually these issues have been addressed b
system vendor, who has a large interest in allowing such inter-language u

• If you call IDL from a program written in a language other than C, has the
necessary initialization occurred?

• If you use IDL to call code written in a language other than C, do you nee
take steps to initialize the runtime system for that language?

• Are the two runtime systems compatible?

Alternatives to direct linking (Active X, AppleScript) exist on some systems that
simplify the details of inter-language linking.

Operating System Features And Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL is running in or
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32
applications, WIN32S, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, a
possibly even X Windows depending on the scope of the code being linked.
External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: Overview
OpenVMS

You should understand system services, the Run Time Libraries, file I/O, and
processes.
Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: Overview 27

he
 in

is list

d
.

ct.

iler.

6-6
0

9-9

ve
pts

en
Recommended Reading

There are many books written on the topics discussed in the previous section. T
following list includes books we have found to be the most useful over the years
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of a book from th
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie.The C Programming Language, Secon
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9
This is the original C language reference, and is essential reading for this subje

In addition, you should study the vendor supplied documentation for your comp

Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applications that call IDL in the Microsoft Windows environment.

Petzold, Charles.Programming Windows 95. Redmond, Washington: Microsoft
Press, 1996. ISBN 1-55615-676-6

Richter, Jeffery.Advanced Windows, Third Edition. Redmond, Washington:
Microsoft Press, 1997. 1-57231-548-2

Microsoft, 1993.Win32 Programmers Reference Volumes 1-5. Redmond,
Washington: Microsoft Press, 1993. ISBN 1-55615-515-8 (v.1), ISBN 1-55615-51
(v.2), ISBN 1-55615-517-4 (v.3), ISBN 1-55615-518-2 (v.4), ISBN 1-55615-519-
(v.5),

Microsoft, 1997.Microsoft Visual C++ Reference Volumes 1-4. Redmond
Washington: Microsoft Press, 1997. ISBN 1-57231-518-0 (v.1), ISBN 1-57231-51
(v.2), ISBN 1-57231-520 (v.3), ISBN 1-57231-521-0 (v.4).

UNIX

Stevens, W. Richard.Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. This is the definiti
reference for UNIX system programmers. It covers all the important UNIX conce
and covers the major UNIX variants in complete detail.

Rochkind, Marc J.Advanced UNIX Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. This volume is also extremely well writt
External Development Guide Recommended Reading

28 Chapter 1: Overview

ook

ble,

ker

ed
 will

rge
for
ed
this

lity
n of
and does an excellent job of explaining and motivating the UNIX concepts that
underlie the UNIX system calls. This book suffers in comparison to the Stevens b
in that it discusses older UNIX systems rather than current systems and lacks
discussion of networking. However, what it does cover is correct and very reada
and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

OpenVMS

The standard OpenVMS reference manuals published by Digital Equipment
Corporation cover the material needed by OpenVMS programmers; of special
importance are the System Services, Run Time Libraries, C Language, and Lin
documentation.

X Windows

The X Windows series by O’Reilly & Associates contains all the information need
to program for the X Window system. There are several volumes—the ones you
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys.X Window System. Digital Press. This is
purely a reference manual, as opposed to the O’Reilly books which contain a la
amount of tutorial as well as reference information. This book is primarily useful
those using XLIB to draw graphics into Motif Draw Widgets and for those who ne
to understand the base layers of X Windows. Motif programmers may not require
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of qua
and usefulness. Note that most X Windows books are updated with each versio
the system. (X Version 11, Release 6 is the current version at this printing.)
Recommended Reading External Development Guide

Chapter 1: Overview 29

d a

ges

their
for

ery

es
rch

reter.
ch

ine to
all

f this

 the
t.
IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understan
little about its internal operation. This section is intended to give just enough
background to understand the material that follows. Traditional interpreted langua
work according to the following algorithm:

while (statements remaining) {
Get next statement.
Perform lexical analysis and parse statement.
Execute statement.

}

This description is accurate at a conceptual level, and most early interpreters did
work in exactly this way due to its simplicity. However, this scheme is inefficient
the reasons stated below.

• The meaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and ev
time the statement is encountered.

• Since each statement is considered in isolation, any statement that requir
jumping to a different location in the program will require an expensive sea
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interp
The interpreter implements a simple, stack-based postfix language, in which ea
instruction corresponds to a primitive of the IDL language. This internal form is a
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into this internal form by the IDL compiler when the.RUN
executive command is issued, or when any other command requires a new rout
be executed. Once the IDL routine is compiled, the original version is ignored, and
references to the routine are to the compiled version. Some of the advantages o
organization are:

• The expensive compilation process is only performed once, no matter how
often the resulting code is executed.

• Statements are not considered in isolation, so the compiler keeps track of
information required to make jumping to a new location in the program fas

• The binary internal form is much faster to interpret than the original form.
External Development Guide IDL Organization

30 Chapter 1: Overview

ng.

nters

en

sents

if an

nd

ter
alled
• The internal form is compact, leading to better use of main memory, and
allowing more code to fit in any memory cache the computer might be usi

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains poi
to variables, which are implemented byIDL_VARIABLE structures (see“The
IDL_VARIABLE Structure” on page 169). Pointers toIDL_VARIABLEs are
referred to asIDL_VPTR s. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and th
pushing theIDL_VPTR to the resultingIDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element repre
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error
invalid number of arguments is specified.

At execution time, the interpreter instructions that execute system procedures a
functions operate as follows:

1. Look up the requested routine in the internal table of routines.

2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If the routine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpre
does all the work related to pushing and popping elements from the stack. The c
function need only worry about executing its operation and providing a result.
IDL Organization External Development Guide

Chapter 1: Overview 31

al

n. In
ore

n, you

s in

that
External Definitions

The fileexport.h , found in theexternal subdirectory of the IDL distribution,
supplies all the IDL-specific definitions required to write code for inclusion with
IDL. As such, this file defines the interface between IDL and your code. It will be
worth your while to examine this file, reading the comments and getting a gener
idea of what is available. If you are not writing in C, you will have to translate the
definitions in this file to suit the language you are using.

Warning
export.h contains some declarations which are necessary to the compilation
process, but which are still considered private to Research Systems. Such
declarations are likely to be changed in the future and should not be depended o
particular, many of the structure data types discussed in this document have m
fields than are discussed here—such fields should not be used. For this reaso
should always includeexport.h rather than entering the type definitions from
this document. This will also protect you from changes to these data structure
future releases of IDL. Anything inexport.h that is not explicitly discussed in
this document should not be relied upon.

The following two lines should be included near the top of every C program file
is to become part of IDL:

#include <stdio.h>
#include "export.h"
External Development Guide External Definitions

32 Chapter 1: Overview

 it
s of
l in

e
—

Linking Details

Once you’ve written your code, you need to compile it and link it into IDL before
can be run. Information on how to do this is available in the various subdirectorie
the external subdirectory of the IDL distribution. References to files that are usefu
specific situations are contained in this book.

In addition:

• The UNIX IDL distribution has abin subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with these files is aMakefile that shows how to build IDL from
the shareable libraries present in the directory. The link line in this makefil
should be used as a starting point when linking your code with Callable IDL
simply omitmain.o and include your own object files, containing your own
main program.

• A more detailed description of the issues involved in compiling and linking
your code can be found in this book under“Compiling Programs That Call
IDL” on page 360.
Linking Details External Development Guide

Chapter 1: Overview 33

ent
ent of

t

Reading the Remainder of this Book

After reading this chapter, the remainder of this book can be read in many differ
orders. Chapters 2 through 11 can be read in any order and are largely independ
each other. Those wishing to add system routines to IDL will need to readChapter
18, “Adding System Routines”, while those wishing to use Callable IDL should star
with Chapter 19, “Introduction to Callable IDL”.
External Development Guide Reading the Remainder of this Book

34 Chapter 1: Overview
Reading the Remainder of this Book External Development Guide

Chapter 2:

SPAWN
This chapter discusses the following topics:
2

The SPAWN Procedure. 36
Interactive Use of SPAWN 37
Noninteractive Use of SPAWN. 39

Avoiding the Shell Under UNIX 41
Communicating Through the Use of a UNIX
Child Process. 4
External Development Guide 35

36 Chapter 2: SPAWN

eries

r is
an
WN

lar.
as a

d to
wns

to the

ard
ced
The SPAWN Procedure

The IDL SPAWN procedure spawns a child process to execute a command or s
of commands. Under UNIX, the shell used (if any) is obtained from the SHELL
environment variable. Under OpenVMS, the DCL command language interprete
used. Under Windows, a DOS window or Command Shell is opened. SPAWN c
also create an interactive command interpreter process. On the Macintosh, SPA
opens specified files or applications.

The SPAWN procedure has the following syntax:

SPAWN[,Command[, Result]]

where

Command

A string containing the command or commands to be issued. IfCommand is not
present, SPAWN starts an interactive command interpreter process if possible.

Command must be of type string. Under OpenVMS, it is restricted to being a sca
Under UNIX, it can be a string array (each element is passed to the child process
separate argument) if used in conjunction with the NOSHELL keyword. If a new
UNIX shell process is started (that is, if the NOSHELL keyword isnot specified),
Command must be a scalar string.

On the Macintosh,Command must consist of the names of files to be opened.
Multiple filenames can be entered. If the first filename is an application, it is use
open the remaining files. Otherwise, each file is opened by the application that o
it. IDL execution resumes when the files have been opened. Interactive access
Macintosh command interpreter is not supported.

Result

If Resultis not present, the output from the child process simply goes to the stand
output (usually the terminal). Otherwise, the output from the child process is pla
into a string array (one line of output per array element) and assigned toResult.

Under Windows and the Macintosh OS, specifyingResult has no effect.
The SPAWN Procedure External Development Guide

Chapter 2: SPAWN 37

s is
u use
cess,
ion

L

e

he
ed
VMS:
Interactive Use of SPAWN

If SPAWN is called without arguments, an interactive command interpreter proces
started. The user can enter one or more operating system commands. While yo
the command interpreter process, IDL is suspended. When you exit the child pro
control returns to IDL, which resumes at the point where it left off. The IDL sess
remains exactly as you left it.

It should be noted that using SPAWN in this manner is equivalent to using the ID
“$” command. The difference between these two is that “$” can only be used
interactively while SPAWN can be used interactively or in IDL programs.

UNIX Command Interpreter

UNIX offers many shells. The two most common are the Bourne shell (/bin/sh)
and the C shell (/bin/csh). Rather than force use of a given shell, IDL follows th
UNIX convention of using the shell specified by the UNIX environment variable
SHELL. If SHELL does not exist, the Bourne shell is used.

Under UNIX, the interactive form of SPAWN is provided primarily for users of the
Bourne shell and for compatibility with OpenVMS. Shells that offer process
suspension (e.g.,/bin/csh) offer a more convenient and efficient way to get the
same effect.

The following statements demonstrate the use of SPAWN on a UNIX system:

SPAWN
% date
Fri Aug 26 13:55:00 MDT 1998
% exit

OpenVMS Command Interpreter

Under OpenVMS, the command interpreter used is always DCL. If you specify t
NOWAIT keyword to SPAWN, the IDL process is not suspended until the spawn
process completes. The following statements demonstrate SPAWN under Open

SPAWN
$ SHOW TIME
29-JAN-1998 16:32:23
$ LOGOUT
External Development Guide Interactive Use of SPAWN

38 Chapter 2: SPAWN
Windows Command Interpreter

Under Windows 95/98, the command interpreter used is alwaysCOMMAND.COM;
under Windows NT,CMD.EXE is used. Calling SPAWN (or $) with no arguments
creates an interactive command interpreter window as a child process.

Macintosh Command Interpreter

Interactive access to the Macintosh command interpreter is not supported.
Interactive Use of SPAWN External Development Guide

Chapter 2: SPAWN 39

d to
asses
the
n is
le, it

the

 to

h.
e

Noninteractive Use of SPAWN

If SPAWN is called with a single argument, that argument is taken as a comman
be executed. In this case, IDL starts a child command interpreter process and p
the command to it. The argument should be a scalar string. The shell executes
command and exits, at which point IDL resumes operation. This form of operatio
very convenient for executing single commands from IDL programs. For examp
is sometimes useful to create a temporary scratch file. SPAWN can be used as
demonstrated in the following program fragment. First, open a scratch file. Use
GET_LUN keyword to allocate a file unit.

OPENW, UNIT, 'scratch.dat', /GET_LUN

;...IDL commands go here.

;Deallocate the file unit and close the file.
FREE_LUN, UNIT

;Use the !VERSION system variable to determine the proper file
;deletion command for the current operating system. Since this
;operation is not supported on the Macintosh, jump to an error
;message.
CASE !VERSON.OS OF

'vms': CMD = 'DELETE'
'windows': CMD = 'DEL'
'MacOS': GOTO, NOTSUP
ELSE: CMD = 'rm'

ENDCASE

;Delete the file using SPAWN.
SPAWN, CMD + 'scratch.dat'

;Jump to the end of the procedure.
GOTO, DONE
NOTSUP: PRINT, 'This operation is not supported on the Macintosh'
DONE:
END

Note that the DELETE keyword to the OPEN procedures is a more efficient way
handle this job. The above example should serve only to demonstrate use of the
SPAWN procedure.

Macintosh Command Interpreter

You can specify one or more file names when invoking SPAWN on the Macintos
Each file specified is opened by the application that created it, unless the first fil
External Development Guide Noninteractive Use of SPAWN

40 Chapter 2: SPAWN

le to
nt.
s

t of
name is that of an application. In this case, the application is used to open the
remaining files.

Capturing Output

Under Windows and on the Macintosh, it is not possible to capture output from a
spawned command to an IDL variable.

Under UNIX and OpenVMS, by default, any output generated by a spawned
command is sent to the standard output, which is usually the terminal. It is possib
capture this output in an IDL string array by calling SPAWN with a second argume
If this second argument, calledResult,is present, all output from the child process i
put into a string array, one line of output per array element, and is assigned toResult.
For example, the following IDL statements can be used to give a simplistic coun
the number of users logged onto a computer running either UNIX or OpenVMS:

;Use the !VERSION system variable to determine the command to use.
IF (!VERSION.OS EQ 'VMS') THEN CMD='SHOW USERS' ELSE CMD='who'

;Issue the command, catch the result in a string array.
SPAWN, cmd, users

;Count how many lines of output came back. Under UNIX, this is the
;number of users logged in.
N = N_ELEMENTS(users)

;OpenVMS outputs five extra header lines that are not actual users.
IF (!VERSION.OS EQ 'VMS') THEN N = N - 5

;Print the result.
PRINT, 'There are ', N,' users logged on.'

See “SPAWN” in the IDL Reference Guide for further information.
Noninteractive Use of SPAWN External Development Guide

Chapter 2: SPAWN 41

cute
ions

nger

ted
ster;
er has
e a
). The

and

he
e

sue
Avoiding the Shell Under UNIX

As mentioned above, SPAWN usually creates a shell process and passes the
command to this shell, instead of simply creating a child process to directly exe
the command. This default action is taken because the shell provides useful act
such as wildcard expansion and argument processing. Although this is usually
desirable, it has the drawback of being slower than necessary. It simply takes lo
to start a shell. However, it is possible to avoid using the shell by using the
NOSHELL keyword.

When SPAWN is called with the NOSHELL keyword set, the command is execu
as a direct child process, avoiding the extra overhead of starting a shell. This is fa
but since there is no shell to break the command into separate arguments, the us
to do it. Every UNIX program is called with a series of arguments. When you issu
shell command, you separate the arguments with white space (blanks and tabs
shell then breaks up the command into an array of arguments and calls the comm
(the first word of the command), passing it the array of arguments.

In this case, theCommandargument should be a string array. The first element of t
array is the name of the command to use, and the following elements contain th
arguments.

For example, consider the command,

SPAWN, 'ps ax'

that uses the UNIXpscommand to show running processes on the computer. To is
this command without a shell, you would write it as follows:

SPAWN, ['ps', 'ax'], /NOSHELL
External Development Guide Avoiding the Shell Under UNIX

42 Chapter 2: SPAWN

ess

e

are
ws
 of

ify a
hild
and

ing

t

s
the

 a
ns,
the
tional
r the
ize

C
a

e

Communicating Through the Use of a UNIX
Child Process

Using SPAWN in the above examples, the IDL process waited until the child proc
was finished before continuing. It is also possible to start a child process and
immediately continue without waiting for it to finish. In this case, IDL attaches a
bidirectional pipe to the standard input and output of the child process. This pip
appears in the IDL process as a normal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
used to communicate with it. The ability to use a child process in this manner allo
you to solve specialized problems using other languages and to take advantage
existing programs.

In order to start such a process, the UNIT keyword is used with SPAWN to spec
named variable into which the logical file unit number will be stored. Once the c
process has done its work, the FREE_LUN procedure is used to close the pipe
delete the process.

When using a child process in this manner, it is important to understand the follow
points:

• Closing the file unit causes the child process to be killed. Therefore, do no
close the unit until the child process completes its work.

• The EOF function always returns “False” when applied to a pipe. This means
that it is not possible to use this function to know when the child process i
finished. As a result, the child process must be written in such a way that
controlling IDL procedure knows how much data to send and how much is
coming back.

• A UNIX pipe is simply a buffer maintained by the operating system. It has
fixed length and can therefore become completely filled. When this happe
the operating system puts the process that is filling the pipe to sleep until
process at the other end consumes the buffered data. The use of a bidirec
pipe can lead to deadlock situations in which both processes are waiting fo
other. This can happen if the parent and child processes do not synchron
their reading and writing activities.

• Most C programs use the input/output facilities provided by the Standard
Library (stdio). In situations where IDL and the child process are carrying on
running dialog (as opposed to a single transaction), the normal buffering
performed by stdioon the output file can cause communications to hang. W
Communicating Through the Use of a UNIX Child Process External Development Guide

Chapter 2: SPAWN 43

;

utput.
ler
to

heck
recommend calling thestdio setbuf()function as the first statement of the child
program to eliminate such buffering.

(void) setbuf(stdout, (char *) 0);

It is important that this statement occur before any output operation is executed
otherwise, it will have no effect.

Example: Communicating with a Child Process Under UNIX

The C program shown in the following figure (test_pipe.c) accepts floating-
point values from its standard input and returns their average on the standard o
In actual practice, such a trivial program would never be used from IDL. It is simp
and more efficient to perform the calculation within IDL. However, it does serve
illustrate the method by which significant programs can be called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, a real program would need to c
the non-zero return values fromfread(3) andfwrite(3) to ensure that the
desired amount of data was actually transferred.

This program performs the following steps:

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include <stdio.h>
extern int errno; /* System error number */
extern char *sys_errlist[]; /* System error messages */
extern int sys_nerr; /* Length of sys_errlist */
main()
{

float *data, total = 0.0;
long i, n;
/* Make sure the output is not buffered */
setbuf(stdout, (char *) 0);
/* Find out how many points */
if (!fread(&n, sizeof(long), 1, stdin)) goto error;
/* Get memory for the array */
if (!(data = (float *) malloc((unsigned)

(n * sizeof(float))))) goto error;
/* Read the data */
if (!fread(data, sizeof(float), n, stdin)) goto error;
/* Calculate the average */
for (i=0; i < n; i++) total += data[i];
total /= (float) n;

/* Return the answer */
if (!fwrite(&total, sizeof(float), 1, stdout))
goto error;
return;

error:
fprintf(stderr, "test_pipe: %s\n",
sys_errlist[errno]);

}

Table 2-1: testpipe.c
External Development Guide Communicating Through the Use of a UNIX Child Process

44 Chapter 2: SPAWN

t is

.

end,

0

ent
t as
s
ple
:

1. Reads a long integer that tells how many data points to expect, because i
desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory via themalloc()function, and reads the data into it

3. Calculates the average of the points.

4. Returns the answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
because it reads all of its input at the beginning and writes all of its results at the
a deadlock situation cannot occur and use ofEOF is not necessary.

The following IDL statements use test_pipe to determine the average of the values
to 9:

;Start test_pipe. The use of the NOSHELL keyword is not necessary,
;but speeds up the start-up process.
SPAWN, 'test_pipe', UNIT = UNIT, /NOSHELL

;Send the number of points followed by the actual data.
WRITEU, UNIT, 10L, FINDGEN(10)

;Read the answer.
READU, UNIT, ANSWER

;Announce the result.
PRINT, "Average = ", ANSWER

;Close the pipe, delete the child process, and deallocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:

Average = 4.50000

This mechanism provides the UNIX IDL user a simple and efficient way to augm
IDL with code written in other languages such as C or Fortran. It is, however, no
efficient as writing the required operation entirely in IDL. The actual cost depend
primarily on the amount of data being transferred. For example, the above exam
can be performed entirely in IDL using a simple statement such as the following

PRINT, 'Average = ', TOTAL(FINDGEN(10))/10.0
Communicating Through the Use of a UNIX Child Process External Development Guide

Chapter 3:

IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:
4

IDLDrawWidget ActiveX Control 46
Creating an Interface and Handling Events 48
Working with IDL Procedures 54
Advanced Examples 57
Copying and Printing IDL Graphics. 58
XLoadCT Functionality using Visual Basic 62

XPalette Functionality Using Visual Basic . 63
Integrating Your Object Graphics by Utilizing
Visual Basic. 6
Sharing a Grid Control Array with IDL. . . . 65
Handling Events within Visual Basic 66
Distributing Your Application 67
External Development Guide 45

46 Chapter 3: IDLDrawWidget ActiveX Control

 a
ith

guage
are

are

nd

 its

s
c

ing
who

g.

ed
IDLDrawWidget ActiveX Control

The Microsoft Windows version of IDL includes an ActiveX control that provides
powerful way to integrate all the data analysis and visualization features of IDL w
other programming languages that support ActiveX controls. ActiveX is a set of
technologies that enables software components to interact, regardless of the lan
in which they were written. This makes it possible, for example, to design a softw
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

• The IDL ActiveX control makes it possible to display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

• The IDL ActiveX control can respond to events, regardless of whether they
generated by an external program or IDL itself;

• The IDL ActiveX control greatly simplifies the process of moving data to a
from IDL and an external program;

• And finally, the interface to the IDL ActiveX control appears native to the
external application.

The ActiveX interface to IDL consists of a single control calledIDLDrawWidget .
When this control is included in a project, it exposes the features of IDL through
properties and methods. TheIDLDrawWidget can also trigger events. The
properties and methods of theIDLDrawWidget are listed inChapter 4, “IDL
ActiveX Control Command Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that show
how IDL can respond to Visual Basic events and draw graphics in a Visual Basi
window.

Note
The IDL ActiveX control is intended primarily for use in applications developed
with Visual Basic 5.0 or greater. The control can be included in any programm
language designed to use ActiveX controls (e.g. Visual C++ or Delphi). Users
intend to utilize the IDL ActiveX control in Visual C++ applications should be
thoroughly familiar with Microsoft Foundation Classes and ActiveX programmin
The IDL ActiveX control uses Visual Basic-style data types to exchange data
between a Visual Basic application and IDL. A Visual C++ programmer will ne
IDLDrawWidget ActiveX Control External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 47
to use OLE’sVARIANT andSAFEARRAY types. A discussion of how to use the
IDL ActiveX control with these languages is beyond the scope of this manual.
External Development Guide IDLDrawWidget ActiveX Control

48 Chapter 3: IDLDrawWidget ActiveX Control

oft
g

ta”
of
a

ee
Creating an Interface and Handling Events

The goal of this first example is very simple: to create a user interface in Micros
Visual Basic and have IDL respond to events and display an image. The followin
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following table:

As the figure shows, our first example program consists of two buttons (“Plot Da
and “Exit”), a graphics area, and a text box. All of these elements reside on top
what is called a form in Visual Basic parlance. (A form in Visual Basic is similar to
top level base in IDL.) Clicking the “Plot Data” button causes IDL to produce the
surface plot shown. Clicking “Exit” causes IDL and the Visual Basic program to fr
memory and exit.

Figure 3-1: A simple example showing the IDLDrawWidget and
text returned by IDL
Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 49

he

of
ct
Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding t
IDL ActiveX control, and drawing the interface components. Launch Microsoft
Visual Basic and create a new project.

1. Add the IDL ActiveX component to the project. Visual Basic displays a list
all available components when you select the Components from the Proje
menu.

Visual
Basic

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19

Private Sub Form_Load()
 n = IDLDrawWidget1.InitIDL(Form1.hWnd)
 If n <= 0 Then
 MsgBox ("IDL failed to initialize")
 End
 End If
 IDLDrawWidget1.CreateDrawWidget
 IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)
End Sub

Private Sub Plot_Button_Click()
 IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
 IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
 IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
 IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")
End Sub

Private Sub Exit_Button_Click()
 IDLDrawWidget1.DoExit
 End
End Sub

Table 3-1: Source code for a simple example

Figure 3-2: List of Available Components
External Development Guide Creating an Interface and Handling Events

50 Chapter 3: IDLDrawWidget ActiveX Control

ith

s.

y
noted
Select the “IDLDrawX2 ActiveX Control module” check box and close the
Components window. Visual Basic will display the IDLDrawWidget’s icon in
the toolbar, as shown to the left.

2. Begin drawing the interface. The “Plot” and “Exit” buttons were created w
theCommandButton widget, the text box was created with theTextBox
widget, and the graphics display area was created withIDLDrawWidget .

Specifying the IDL Path and Graphics Level

1. Having addedIDLDrawWidget to the Visual Basic project, we now have
access toIDLDrawWidget ’s properties and methods. Use theIdlPath and
GraphicsLevel properties to specify the directory path of the IDL ActiveX
control and to choose between IDL’s direct and object graphics capabilitie
Refer toChapter 4, “IDL ActiveX Control Command Reference” for a
complete list of the properties and methods toIDLDrawWidget . Use Visual
Basic’s Properties window to select theIDLDrawWidget . All of the
IDLDrawWidget ’s properties can be set using the Properties window. Man
properties can also be set within the source code. These distinctions are
in Chapter 4, “IDL ActiveX Control Command Reference”.

Figure 3-3: Visual Basic Properties window
Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 51

he
lly

ll be

the

ram

e

e

2. Locate theIdlPath property and enter the directory path to your IDL
installation. If you installed IDL in its default location, this path will be:

c:\rsi\idl53

3. Locate theGraphicsLevel property and set it equal to1. This selects IDL’s
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of theIDLDrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on t
form which contains all of the interface components, Visual Basic will automatica
generate the following subroutine.

Private Sub Form_Load()
End Sub

Visual Basic’sForm_Load routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create theIDLDrawWidget ,
and direct output from IDL to a text box. The code to accomplish these tasks wi
placed between the two statements listed above.

IDL needs to be initialized before Visual Basic can interact with the
IDLDrawWidget . This is done with theInitIDL method.InitIDL takes thehWnd
of the form containing theIDLDrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that
default names given to the form and theIDLDrawWidget were not changed, IDL
can be initialized with the following statement.

n = IDLDrawWidget1.InitIDL(Form1.hWnd)

A conditional statement is included to display an error message and exit the prog
if IDL failed to initialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX fram
is created. This is a container for theIDLDrawWidget . This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must b
created. This is accomplished with theCreateDrawWidget method, as shown in the
following statement:
External Development Guide Creating an Interface and Handling Events

52 Chapter 3: IDLDrawWidget ActiveX Control

 in

 is

 the
wo
c

icks

g
five
ure

is
IDLDrawWidget1.CreateDrawWidget

Directing IDL Output to a Text Box

The example program displays any output returned by IDL in a text box created
Visual Basic. This is accomplished with theSetOutputWnd method of the
IDLDrawWidget . TheSetOutputWnd method takes thehWnd of the text box that
will contain the IDL output as an argument. The text box in the example program
namedIDL_Output_Box , hence the following statement.

IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)

Note
Although this is the last statement within the Form_Load() subroutine, it could be
placed before the call toInitIDL to get standard IDL version information printed.

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic is to let Visual Basic manage
events and pass instructions to IDL. Recall that our example program contains t
buttons: “Plot Data” and “Exit”. When you double-click on “Plot Data”, Visual Basi
automatically creates the following subroutine:

Private Sub Plot_Button_Click()
End Sub

Visual Basic will execute any statements within this subroutine when the user cl
“Plot Data”. Instructions are passed to IDL using theExecuteStr method to the
IDLDrawWidget . TheExecuteStrmethod takes a string as an argument. This strin
is passed to IDL for execution as if it were entered at the IDL command line. The
statements which follow instruct IDL to produce the surface plot shown in the fig
above.

IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is a two step process. IDL
given a chance to clean up and exit by issuing theDoExit method. The Visual Basic
program then exits with anEnd statement.

Private Sub Exit_Button_Click()
Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 53
IDLDrawWidget1.DoExit
End

End Sub
External Development Guide Creating an Interface and Handling Events

54 Chapter 3: IDLDrawWidget ActiveX Control

e the
user

nd

all

t is
Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Her
same issues apply as when developing a standard IDL program with a graphical
interface. In addition, managing memory when moving from one procedure to
another should be considered. It is important to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructions to IDL is identical to entering the same instructions at the IDL comma
line. In this example Visual Basic is only used to create the user interface and
dispatch events. The data resides in memory controlled by IDL. IDL is used for
data processing and display functions.

The following figure shows the user interface of the example project. The projec
part of the IDL distribution and resides in the following directory:

examples\doc\ActiveX\SecondExample.

The user interface consists of twoIDLDrawWidget objects. The one on the left will
display an image read from aJPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Figure 3-4: The user interface with two draw widgets
Working with IDL Procedures External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 55

s

ents

ram

ts in
Creating the Interface

The interface is created as it was in the first example, by drawing the interface
components in Visual Basic. TwoIDLDrawWidget s are created. Set the path
(c:\rsi\idl53) and graphics level properties (type 1) of both.

Initializing IDL

Although there are twoIDLDrawWidget objects, only one instance of the ActiveX
control needs to be initialized. Both of theIDLDrawWidget objects do need to be
created, however.

This is done with the two statements below:

IDLDrawWidget1.CreateDrawWidget
IDLDrawWidget2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures contained in a.pro file named
SecondExample.pro . This file contains IDL procedures. Before these procedure
can be called from Visual Basic,SecondExample.pro needs to be compiled.
This assumes that the.pro file resides in the same directory as the Visual Basic
project. The path method of theApp object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statem

WorkingDirectory = "CD, ’" + App.Path + "’"
IDLDrawWidget1.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the prog
if IDL was unable to locate the.pro file.

Dispatching Button Events to IDL

Because Visual Basic is used primarily for the user interface components of the
application, IDL’s procedures have been created for processing the button even
the application. This is accomplished through theExecuteStr method of the
IDLDrawWidget , as called in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

Visual
Basic

1
2
3
4

Private Sub Open_Button_Click(Index As Integer)
 IDLCommand = "OpenFile, " + Str(BaseID)
 IDLDrawWidget1.ExecuteStr (IDLCommand)
End Sub

Figure 3-5: User Interface of Example Project
External Development Guide Working with IDL Procedures

56 Chapter 3: IDLDrawWidget ActiveX Control

al

e

OpenFile is a user procedure that utilizes IDL’s DIALOG_PICKFILE function to
enable the user to select a file for display within theIDLDrawWidget .

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An addition
call has been made toDestroyDrawWidget. This isn’t necessary when exiting
because the windowing system will destroy the widget. If you want to change th
GraphicsLevelproperty of theIDLDrawWidget during program execution use this
method.

IDL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

PRO OpenFile, TLB
 WIDGET_CONTROL, TLB, GET_UVALUE = ptr
 PathName = DIALOG_PICKFILE(TITLE = $
 'Select a JPEG file', FILTER = '*.jpg')
 IF (PathName NE '') THEN BEGIN
 DEVICE, DECOMPOSED = 0
 READ_JPEG, PathName, Data, ColorTable

(*(*ptr).OriginalArrayPTR) = Data
(*(*ptr).OrigColorMapPTR) = ColorTable

 TVLCT, (*(*ptr).OrigColorMapPTR)
 TV, (*(*ptr).OriginalArrayPTR)
 ENDIF ELSE BEGIN
 Result = DIALOG_MESSAGE('No JPEG file selected', /ERROR)
 ENDELSE
END

Table 3-2: The Open File Procedure
Working with IDL Procedures External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 57

d in

can be
Advanced Examples

Each of the following examples builds on the concepts that you’ve already learne
this chapter.

The user interface and projects for each of the examples have been created and
found in the distribution in theexamples\doc\ActiveX\ project directory
whereproject is the name of the example. These examples assume that you are
already familiar with the following concepts:

• Creating a new project in Visual Basic;

• Adding theIDLDrawWidget control to the VB control toolbar;

• Drawing theIDLDrawWidget on your form;

• Initializing IDL with InitIDL ;

• Creating the draw widget withCreateDrawWidget;

• Executing commands withExecuteStr;

• Using IDL .pro code to respond to auto-events within theIDLDrawWidget ;

• Setting properties for theIDLDrawWidget objects.
External Development Guide Advanced Examples

58 Chapter 3: IDLDrawWidget ActiveX Control

or

n,
Copying and Printing IDL Graphics

TheVBCopyPrintexample demonstrates how to use either the Windows clipboard
object graphics to print the contents of anIDLDrawWidget window.

This example illustrates the following concepts:

• Opening an existing project in Visual Basic;

• Copying an IDL graphic to the Windows clipboard using theCopyWindow
method;

• Executing IDL user routines;

• Printing an IDL graphic.

Opening the VBCopyPrint project

Select “Existing” from the Visual Basic New Project dialog. In the IDL distributio
change to theexamples\docs\ActiveX\VBCopyPrint directory, and open the
projectVBCopyPrint.vbp , as shown in the following figure.

Figure 3-6: Opening the VBCopyPrint project
Copying and Printing IDL Graphics External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 59

ic

line
Running the VBCopyPrint Example

Select “Start” from the Run menu to run the example. You should see the graph
shown in the following figure.

Copying IDL Graphic to the clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses theCopyWindow
method to copy the contents of the graphic to the Windows clipboard as shown in
6 of the following table.

Figure 3-7: VBCopyPrint example

Visual
Basic

1
2
3
4
5
6
7
8

Private Sub cmdCopy_Click()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidget1.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Table 3-3: Copy button Source Code
External Development Guide Copying and Printing IDL Graphics

60 Chapter 3: IDLDrawWidget ActiveX Control

ect

e

of
Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image obj
and sending the image to a printer object through a user routineVBPrintWindow
(shown in the following table).

Executing IDL user routines with Visual Basic

TheVBCopyPrint example executes a user routine, written in IDL, to support th
printing of theIDLDrawWidget window. This is done with theExecuteStrmethod,
as shown in line 4 below, by passing a string of the routine name along with the ID
theIDLDrawWidget .

IDL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

PRO VBPrintWindow, DrawId
.
.
.

;Get the window index of the drawable to be printed
WIDGET_CONTROL, DrawId, Get_Value=Index

.

.

.
;Create a Printer object and draw the graphic to it
oPrinter = OBJ_NEW ('IDLgrPrinter')

;Display a print dialog box
Result = DIALOG_PRINTERSETUP(oPrinter)

.

.

.
oPrinter->Draw, oView

.

.

.
END ;VBPrintWindow

Table 3-4: IDL VBPrintWindow Code

Visual
Basic

1
2
3
4
5
6

Private Sub cmdPrintIDL_Click()
'Print the current drawable widget's window contents
'using IDL object graphics
Screen.MousePointer = vbHourglass
IDLDrawWidget1.ExecuteStr “VBPrintWindow,” & Str$(IDLDrawWidget1.DrawId)
Screen.MousePointer = vbDefault
MsgBox "Window sent to printer."

End Sub

Table 3-5: Print Button Source Code
Copying and Printing IDL Graphics External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 61

ort
Printing the IDL Graphic Using Visual Basic

TheVBPrint command uses the Windows clipboard and Visual Basic printer supp
to print the IDL Graphic, as shown in the following table.

Visual
Basic

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Private Sub cmdPrintVB_Click()
 CommonDialog1.CancelError = True

 On Error GoTo ErrHandler
 CommonDialog1.ShowPrinter
'-- Copy the window's contents to the clipboard
 'Erase anything currently on the clipboard
 Clipboard.Clear
 IDLDrawWidget1.CopyWindow

'-- Send the picture located on the clipboard,
'to the printer

 Printer.PaintPicture Clipboard.GetData, 0, 0
 Printer.EndDoc 'Send it to the printer
Exit Sub
ErrHandler:

 Exit Sub
End Sub

Table 3-6: VBPrint Command
External Development Guide Copying and Printing IDL Graphics

62 Chapter 3: IDLDrawWidget ActiveX Control

g

XLoadCT Functionality using Visual Basic

TheVBLoadCT example duplicates the XLOADCT functionality using a VB
interface. TheVBLoadCT.pro source code is a functional duplicate of XLOADCT
with procedure calls replacing thexloadct_event procedure as well as IDL
widgets being replaced by VB controls. See the following figure for more
information. In addition, this example extends XLOADCT by adding the followin
features:

• Options menu by clicking the right mouse button on a color;

• Use of IDL syntax to create separate functions for red, blue and green;

• Ability to save user created color tables.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with theIDLDrawWidget ;

• IDL to Visual Basic color table conversion.

Figure 3-8: VBLoadCT example
XLoadCT Functionality using Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 63
XPalette Functionality Using Visual Basic

Like VBLoadCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visual Basic interface. See the following figure. TheVBPalette.pro file
is a functional duplicate of theXPalette source with the event procedure and IDL
widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with theIDLDrawWidget ;

• Converting an IDL event procedure to theIDLDrawWidget auto-event
procedures.

Figure 3-9: VBPalette Example
External Development Guide XPalette Functionality Using Visual Basic

64 Chapter 3: IDLDrawWidget ActiveX Control
Integrating Your Object Graphics by Utilizing
Visual Basic

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using theIDLDrawWidget control. TheIDLDrawWidget
can also use IDL’s object graphics sub-system by changing the
IDLDrawWidget .GraphicsLevel property as demonstrated with theVBObjGraph
example in the following figure.

This example illustrates the following concepts:

• Setting theGraphicsLevel property to create an object graphics window;

• Translating a graphics object using VB controls.

• UsingIDLDrawWidget auto-events.

Figure 3-10: VBObjGraph example
Integrating Your Object Graphics by Utilizing Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 65

nd

data

s of

tes,
Sharing a Grid Control Array with IDL

VBShare1Ddemonstrates sharing one dimensional data between Visual Basic a
IDL using theSetNamedArray method of theIDLDrawWidget object. The data is
presented to the user in a Visual Basic grid control enabling the user to edit the
and see the results in real time. See the following figure:

This example illustrates the following concepts:

• Shows how to process mouse events within VB to get the data coordinate
an IDL plot.

• Demonstrates how to convert (x,y) VB coordinates into IDL data coordina
to give the cursor location in data values relative to the current plot.

• Demonstrates how to use a VB grid control to edit data values that are
reflected in the IDL plot after each keystroke.

Figure 3-11: VBShare1D
External Development Guide Sharing a Grid Control Array with IDL

66 Chapter 3: IDLDrawWidget ActiveX Control

ill
l in

m;

on

B

Handling Events within Visual Basic

TheVBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event w
get the (x,y) location within the window, and modify the color of the current pixe
the image. See the following figure:

This example illustrates the following concepts:

• Converting from a VB pixel coordinate system to the IDL coordinate syste

• Converting a VB color representation (long) into an IDL color representati
(RGB);

• Modifying an IDL RGB color table item with a color chosen/created from V
and the Window's common color dialog;

• Processing mouse events within VB to draw into an IDL window.

Figure 3-12: VBPaint example
Handling Events within Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 67

X

Distributing Your Application

For information on how to distribute an application developed with the IDL Active
control, see theBuilding IDL Applications manual.
External Development Guide Distributing Your Application

68 Chapter 3: IDLDrawWidget ActiveX Control
Distributing Your Application External Development Guide

Chapter 4:

IDL ActiveX Control
Command Reference

This chapter describes the following topics:
9

IDLDrawWidget . 70
Methods. 71
Do Methods (Runtime only). 79
Properties . 81

Read Only Properties. 85
Auto Event Properties 87
Events. 8
External Development Guide 69

70 Chapter 4: IDL ActiveX Control Command Reference
IDLDrawWidget

TheIDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visual
Basic, Fortran, Delphi, etc. Methods and properties of theIDLDrawWidget provide
the interface between IDL and an external application.
IDLDrawWidget External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 71

of an
n
al

the

ual
Methods

In ActiveX terminology, methods are special statements that execute on behalf
object in a program. For example, theExecuteStr method can be used to execute a
IDL statement, function, or procedure when the user clicks on a button in a Visu
Basic program. The syntax of a method statement is:

object. method value

where

• Object is the name of an object you want to control, for example an
IDLDrawWidget .

• Method is the name of the method you want to execute.

• Valueis an optional parameter used by the method. The various methods to
IDLDrawWidget may require zero, one, or multiple parameters.

Note
When a method returns a BOOL, the value TRUE is equal to 1 and FALSE is eq
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.

Parameters

BSTR: The name of the array variable that you wish to copy.

Returns

VARIANT: Reference to the array.

Remarks

This function returns an array reference that is local to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

CopyWindow

This method copies the contents of theIDLDrawWidget window to the Windows
clipboard.
External Development Guide Methods

72 Chapter 4: IDL ActiveX Control Command Reference

e

ts,
Parameters

None.

Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates anIDLDrawWidget in an ActiveX control frame. When you
drag and drop theIDLDrawWidget , you are creating the frame that will contain th
actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters

None.

Returns

LONG: The widget ID of the created draw widget or -1 in the event of an error.

DestroyDrawWidget

This method destroys theIDLDrawWidget , but not the ActiveX control frame.

Parameters

None.

Returns

None.

DoExit

This method exits the ActiveX control and frees any resources in use by IDL.

After all IDL ActiveX control use is complete, but before the EDE application exi
you must callDoExit to allow the ActiveX control to shutdown IDL gracefully and
free any resources in use.

Parameters

None.
Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 73

in
of
lt

e

Returns

None.

Remarks

In spite of the name,DoExit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
OnceDoExit is called, you are not allowed to call methods or set properties with
the IDL ActiveX control from the currently running EDE application, regardless
which IDLDrawWidget the method was called on. Attempting to do so will resu
in a runtime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.

Parameters

BSTR: A string containing the command that IDL will execute.

Returns

LONG: 0 if successful or the IDL error code if it fails.

Remarks

Most IDL commands that are executed withExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.

Parameters

BSTR: A string containing the name of an IDL variable.

Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if th
IDL variable doesn’t exist.
External Development Guide Methods

74 Chapter 4: IDL ActiveX Control Command Reference

ce
Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT data types.

InitIDL

This method initializes IDL. IDL only needs to be initialized once for each instan
of the ActiveX control.

Parameters

LONG: InitIDL is called with thehWnd of the main window for the container
application. If this value is null, the ActiveX control uses the hWnd of the ActiveX
control frame.

Returns

LONG: Long value indicating status of IDL

IDL Type Variant Type

IDL_TYP_BYTE VT_UI1

IDL_TYP_INT VT_I2

IDL_TYP_LONG VT_I4

IDL_TYP_FLOAT VT_R4

IDL_TYP_DOUBLE VT_R8

IDL_TYP_STRING VT_BSTR

Table 4-1: Supported IDL data types and the corresponding
VARIANT data types

Value Meaning

1 Successful

0 Failure

-1 IDL ActiveX control is
not licensed
Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 75

 his

ter

ge.
e
lues

een.
If your application contains more than a singleIDLDrawWidget (e.g.
IDLDrawWidget1 andIDLDrawWidget2) theInitIDL method should only be
called on one of the objects, not both.

TheIDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. TheIdlPath property can be set so the
control can find a valid IDL distribution (theidl32.dll). If a valid distribution is
not found in either the path as set in theIdlPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of
IDL distribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either theInitIDL or
SetOutputWnd methods.

Print

This method prints the contents of the ActiveX control to the current default prin
for both Direct and Object Graphics windows. The Print method will print the
contents of the window at screen resolution (72-96 dpi) with a Direct Graphics
window. For information about controlling print resolution of an object graphics
window, see theBufferId property.

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.

YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.

Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of a single pa
The Y offset plus the height should be less than or equal to the height of a singl
page. The origin of the offset 0,0 is in the upper left corner of a page. If these va
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the scr

-2 IDL is unlicensed (demo)

Value Meaning

Table 4-2: Status of IDL
External Development Guide Methods

76 Chapter 4: IDL ActiveX Control Command Reference

n.
perty.

r is
E

alse
Returns

BOOL: TRUE if printing succeeded.

RegisterForEvents

This method causesIDLDrawWidget to pass the specified events to the applicatio
These events only apply if the user hasn’t set the corresponding auto event pro

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Returns

BOOL: TRUE if successful.

SetNamedArray

This method creates a named IDL array with the specified data. The data pointe
shared with IDL and the EDE application. Thus, changes in either IDL or the ED
will be reflected in both.

Parameters

BSTR: Name of array variable to create in IDL.

VARIANT: Array data to be shared with IDL.

BOOL: True if IDL should free a shared array when IDL releases its reference, f
if not.

Value Meaning

0 Stop forwarding all events

1 Forward mouse move events

2 Forward mouse button events

4 Forward view scrolled events

8 Forward expose events

Table 4-3: Forwarding events
Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 77

the
y of
ting a

ypes.

e

Returns

WORD: 1 if successful, 0 if set failed.

Remarks

BecauseSetNamedArraycreates an array whose data is shared between IDL and
EDE application, IDL constructs that could change the type and/or dimensionalit
the array must be avoided, as these constructs could have the side effect of crea
new array in IDL and thus breaking the shared link.

The array parameter ofSetNamedArray must have a lifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

The following table lists the accepted variant types and the corresponding IDL t

SetNamedData

This method creates an IDL variable with the specified name and value. Both th
EDE and IDL maintain their own copy of the data.SetNamedData can also be used
to change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to create in IDL.

VARIANT: Data to be copied in IDL. If the data is an array, theSetNamedArray
method will be called.

Variant Types IDL Types

VT_UI1 - unsigned char IDL_TYP_BYTE

VT_I1 - signed char IDL_TYP_BYTE

VT_I2 - signed short IDL_TYP_INT

VT_I4 - signed long IDL_TYP_LONG

VT_R4 - float IDL_TYP_FLOAT

VT_R8 - double IDL_TYP_DOUBLE

Table 4-4: Accepted Variant Types and the Corresponding IDL Types
External Development Guide Methods

78 Chapter 4: IDL ActiveX Control Command Reference
Returns

WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.

Parameters

HWND: ThehWnd of the edit control that will receive the output.

Returns

None.

Note
SetOutputWnd is the only method that can be called prior to a call toInitIDL .
Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 79

thods
ent
Do Methods (Runtime only)

Do Methods are methods that execute auto event procedures. Calling these me
is helpful in simulating user interaction with a draw widget by forcing an auto ev
to be called.

DoButtonPress

This method calls the IDL procedure specified in theOnButtonPress property.

Parameters

None.

Returns

None.

DoButtonRelease

This method calls the IDL procedure specified in theOnButtonRelease property.

Parameters

None.

Returns

None.

DoExpose

This method calls the IDL procedure specified in theOnExpose property.

Parameters

None.

Returns

None.

DoMotion

This method calls the IDL procedure specified in theOnMotion property.
External Development Guide Do Methods (Runtime only)

80 Chapter 4: IDL ActiveX Control Command Reference
Parameters

None.

Returns

None.
Do Methods (Runtime only) External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 81

ring
e

rty
s
ld not
 a
Properties

Properties are used to specify the various attributes of anIDLDrawWidget , such as
its color, width and height. Most properties may be set at design time by configu
the properties sheet in Visual Basic, or at runtime by executing statements in th
program code.

The syntax for setting a property in the code is:

object. property = value

where

• Object is the name of the object you want to change, e.g.IDLDrawWidgetn
wheren is the number Visual Basic assigned to theIDLDrawWidget .

• Property is the characteristic you want to change.

• Value is the new property setting.

Note
All properties relating to window size and/or position are in pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget.BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this prope
is set, theIDLDrawWidget will create an IDL variable with this name that contain
the ID of the base widget. Because the base widget is a pseudo base, you shou
destroy it. TheBaseName property can be set at design time or at runtime prior to
call toCreateDrawWidget.

Default=IDLDrawWidgetBase

BufferId

The BufferId controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).
External Development Guide Properties

82 Chapter 4: IDL ActiveX Control Command Reference

at

n
esh

e

se

et,

t

1. A value of -1 will cause the graphics to print using vector output. This form
is suitable for line graphs and mesh surfaces.

2. A value of 0 will cause the graphics to print at roughly two times the scree
resolution. This format is suitable for shaded surfaces or vertex colored m
surfaces. This is the default.

3. A value greater then 0 will be construed as an IDLgrBuffer object referenc
whose data will be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information on IDLgrBuffer, see theIDL Reference Guide.

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for the
print options to work.

The following example shows how to use the new BufferId property:

‘Create an IDLgrBuffer with dimensions of 1280x1024
IDLDrawWidget1.ExecuteStr(“buffer=OBJ_NEW(IDLgrBuffer, $

dimensions=[1280,1024])”)

‘Get the object reference of the buffer we just created
buffer=IDLDrawWidget1.GetNamedData(“buffer”)

‘Set the buffer ID to the object reference
IDLDrawWidget1.BufferId=buffer

‘Increase the size of the buffer to maximum buffer dimensions
IDLDrawWidget1.ExecuteStr(“buffer->SetProperty(dimensions = $

[1600,1200])”)

Tip
Remember to destroy the IDLgrBuffer object after it is no longer needed for
printing purposes.

DrawWidgetName

Returns or sets a variable that IDL will use for the draw widget. If this property is s
theIDLDrawWidget will create an IDL variable with this name that contains the ID
of the draw widget. TheDrawWidgetNameproperty can be set at design time, or a
runtime prior to a call toCreateDrawWidget.

Default=IDLDrawWidget
Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 83

user-

r 2.

ics
alid

ode
Enabled

Returns or sets a value that determines whether a form or control can respond to
generated events such as mouse events.

Default=TRUE

GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal values are 1 o
If you set theGraphicsLevel = 1 and call theCreateDrawWidget method, the
procedure will create an IDL direct graphics window.GraphicsLevel = 2 results in
an IDL object graphics window. TheGraphicsLevel property can be set at design
time or at runtime prior to a call toCreateDrawWidget.

Default=1

IdlPath

This property specifies the fully qualified path to the IDL32.DLL. TheIdlPath
property can be set at design time or at runtime prior to a call toInitIDL or
SetOutputWnd.

Default=NULL

Renderer

This property specifies either the software or hardware renderer for object graph
windows is to be used. It has no effect if the GraphicsLevel property is set to 1. V
values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, the setting in your IDL preferences is used.

Retain (Runtime/Design time)

This property sets the retain mode of the IDLDrawWidget: 0, 1, or 2. The retain m
specifies how IDL should handle backing store for the draw widget.Retain=0
specifies no backing store.Retain=1 requests that the server or window system
provide backing store.Retain=2specifies that IDL provide backing store directly.
TheRetain property can be set at design time or at runtime prior to a call to
CreateDrawWidget.
External Development Guide Properties

84 Chapter 4: IDL ActiveX Control Command Reference

 is
is
ded
Default=1

Visible (Runtime/Design time)

Shows or hides the IDLDrawWidget. When Visible is TRUE the IDLDrawWidget
shown, when FALSE the IDLDrawWidget is hidden. Hiding the IDLDrawWidget
useful when the control is used as an interface to IDL and no graphics are inten
for display.

Default=TRUE

Xsize (Design time)

Virtual width of IDLDrawWidget . If this value is greater than theXviewport value,
scroll bars will be added. TheXsize property can be set at runtime prior to a call to
CreateDrawWidget.

Ysize (Design time)

Virtual height ofIDLDrawWidget . If this value is greater than theYviewport value,
scroll bars will be added. TheYsize property can be set at runtime prior to a call to
CreateDrawWidget.
Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 85

e

rror

et of
Read Only Properties

BaseId (Runtime)

Widget ID of the pseudo base. TheBaseId property is not valid until a call to
CreateDrawWidget has been made.

DrawId (Runtime)

Widget ID of the created draw widget. TheDrawId property is not valid until a call
to CreateDrawWidget has been made.

hWnd (Runtime)

Window handle of the ActiveX control. ThehWnd property is not valid until a call to
CreateDrawWidget has been made.

LastIdlError (Runtime)

A string that contains the last IDL error message. This string will not change if th
ExecuteStr method is called and an error does not occur.

Tip
You can check the return value from the ExecuteStr method to determine if an e
occurred. For more information, see IDLgrWindow in theIDL Reference Guide.

Scroll

True if the widget will contain scroll bars.

Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offs
the draw widget within the parent application.
External Development Guide Read Only Properties

86 Chapter 4: IDL ActiveX Control Command Reference

idth

et of
Xviewport

Set at design time when the control is dropped or moved. Represents the visible w
of the draw widget. If scroll bars are presentXviewport will include the width of the
scroll bars.

Yoffset

Set at design time when the control is dropped or moved. Represents the y offs
the draw widget within the parent application.

Yviewport

Set at design time when the control is dropped or moved. Represents the visible
height of the draw widget. If scroll bars are presentYviewport will include the
height of the scroll bars.
Read Only Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 87

dure

dure

in
Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The proce
must be in the form:

pro button_press, drawId, button, xPos, yPos

Default=NULL

OnButtonRelease

An IDL procedure that will be called when a mouse button is released. The proce
must be in the form:

pro button_release, drawId, button, xPos, yPos

Default=NULL

OnDblClick

An IDL procedure that will be called when a mouse button is double clicked with
the draw widget. The procedure must be in the form:

pro button_dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid
values are:

• 1 — Left mouse button.

• 2 — Middle mouse button.

• 4 — Right mouse button.

xPos The horizontal position of the mouse when the button was
clicked.
External Development Guide Auto Event Properties

88 Chapter 4: IDL ActiveX Control Command Reference

e

get
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by th
draw widget. The procedure must be in the form:

pro expose, drawId

Default=NULL

OnInit

An IDL procedure that will be called when a draw widget is initially created. The
procedure must be in the form:

pro init, drawId, baseId

This auto event procedure is called once when theCreateDrawWidget method is
invoked.

Default=NULL

OnMotion

An IDL procedure that will be called when the mouse is moved over the draw wid
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

Default=NULL

yPos The vertical position of the mouse when the button was
clicked.

Parameter Description

Table 4-5: OnDblClick Parameters
Auto Event Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 89

 on
nt
the

n
 the

nt
Events

Events are functions or procedures that can be handled by the EDE application
behalf ofIDLDrawWidget . If an auto event property is set, its corresponding eve
will not be called; instead, the auto event procedure will be called. By disabling
auto-events,IDLDrawWidget can respond to the following standard Visual Basic
events:

• MouseDown

• MouseMove

• MouseUp

OnViewScrolled

OnViewScrolled is anIDLDrawWidget event that notifies the container applicatio
when the graphics window has been scrolled. This event will only be sent when
Scroll property is TRUE.

Note
You must callRegisterForEventspassing the flags to indicate the events you wa
to process. Neglecting this step will send the events to IDL for processing.
External Development Guide Events

90 Chapter 4: IDL ActiveX Control Command Reference
Events External Development Guide

Chapter 5:

AppleScript Support
This chapter describes the following topics:
3

AppleScript and IDL. 92
Basic AppleScript Support 93
Using IDL Commands via AppleScript . . . 94
Moving Data To and From IDL 95

Controlling Other Applications. 96
IDL Apple Events . 98
References . 10
External Development Guide 91

92 Chapter 5: AppleScript Support

e
ript

re
AppleScript and IDL

IDL for Macintosh provides support for AppleScript, allowing IDL to control, and b
controlled by, other applications running on the Macintosh. See Apple’s AppleSc
documentation for information on the basics of using AppleScript.

Procedures used when calling IDL for UNIX and IDL for VMS sharable objects a
covered in “Using Callable IDL under Unix and VMS”. Procedures used when
calling the IDL DLL under Microsoft Windows are covered in “Using Callable IDL
under Windows”.
AppleScript and IDL External Development Guide

Chapter 5: AppleScript Support 93

d to
Basic AppleScript Support

IDL for Macintosh supports the four basic AppleScript commands that all
applications are required to support. These allow you to launch and quit IDL, an
open and print documents.

Launching IDL

To launch IDL from AppleScript, use the AppleScript command:

tell application "IDL" to activate

Quitting IDL

To cause IDL to quit, use the AppleScript command:

tell application "IDL" to quit

Opening Documents

To have IDL open the text documenttest.pro on the diskMacintosh HD , use
the AppleScript command:

tell application "IDL" to open file "Macintosh HD:test.pro"

Printing Documents

To have IDL print the text documenttest.pro on the diskMacintosh HD use
the AppleScript command:

tell application "IDL" to print file "Macintosh HD:test.pro"
External Development Guide Basic AppleScript Support

94 Chapter 5: AppleScript Support

to

tly

 a
Using IDL Commands via AppleScript

IDL for Macintosh supports the AppleScriptdo script command. IDL responds to
arbitrary text passed to it via AppleScript as if the text were entered at the IDL
command prompt. Note that IDL must be waiting for input from the command line
accept thedo script command from AppleScript.

For example, to instruct IDL to create an array of floating-point integers with the
value of each element equal to its index and plot the array, use the following
AppleScript command:

tell application "IDL" to do script "plot, findgen(20)"

Note
IDL executes commands it receives from AppleScript in the context of the curren
active routine. Normally, this is the MAIN routine when IDL is waiting for input
from the command line. If, however, IDL has stopped inside another routine (if
routine is active in the debugger, for example), thedo script command will be
executed in that routine’s context.
Using IDL Commands via AppleScript External Development Guide

Chapter 5: AppleScript Support 95

of a
in

le

lex

r
first
nd

rom
mn
Moving Data To and From IDL

IDL supports the AppleScriptget, set, andcopycommands to move data to and from
IDL variables. To retrieve the value of a variable with thegetor copycommands, the
variable must already exist in the currently active routine. When setting the value
variable with thesetor copycommands, the variable will be created automatically
the currently active routine if it does not already exist.

For example, the following AppleScript command retrieves the value of the IDL
variable “v” and saves it in the AppleScript variable“v” :

tell application "IDL" to get variable "v"

The following AppleScript command sets the value of the IDL variable “v” to the
array [1, 2, 3]. If the IDL variable “v” does not exist, it is created.

tell application "IDL" to set variable "v" to {1, 2, 3}

The following AppleScript command copies the array [1, 2, 3] into the IDL variab
“v”. If the IDL variable “v” does not exist, it is created.

tell application "IDL" to copy { 1, 2, 3 } to variable "v"

Notes

• IDL cannot get data from or move data to single- or double-precision comp
variables or structure variables.

• In IDL, arrays areindexed in row-major format, meaning that the linear orde
of the references to data elements proceeds from the first element of the
row through the last element of the first row before beginning on the seco
row, and so on. AppleScript indexes arrays in column-major format, which
means that the linear order of the references to data elements proceeds f
the first element in the first column through the last element in the first colu
before beginning on the second column, and so on. Use the IDL routine
TRANSPOSE to reverse the indexing order before passing the data using
AppleScript.

• Passing large arrays using AppleScript is very inefficient, and is not
recommended. In most cases it is more efficient to pass data in a file.

• Since it is not possible to determine what routine in IDL is executing from
outside IDL, we recommend that you use theget, set andcopycommands by
executing an AppleScript script fromwithin IDL, using the
DO_APPLE_SCRIPT procedure.
External Development Guide Moving Data To and From IDL

96 Chapter 5: AppleScript Support

l

cel.

m

Controlling Other Applications

IDL can execute arbitrary AppleScript scripts using the DO_APPLE_SCRIPT
routine.

Importing Data into IDL

The following example shows how to use IDL to get data from a Microsoft Exce
spreadsheet and plot it using IDL’s surface command.

script = ['tell application "Microsoft Excel"', $
 'get value of range "R1C1:R5C5" of worksheet 1', $
 'end tell']
DO_APPLE_SCRIPT, script, RESULT = a
SURFACE, a

Exporting Data from IDL

The next example shows how to copy data from an IDL variable to Microsoft Ex
Once again, we work within IDL (using the DO_APPLE_SCRIPT procedure) so
there is no confusion as to what routine context the variable comes from.

a = [1, 2, 3, 4, 5]
script = ['tell application "IDL" to copy variable "a" into t', $

'tell application "Excel"', $
'copy t to value of range "R1C1:R5C1" of worksheet 1', $
'end tell']

DO_APPLE_SCRIPT, script

Controlling Other Applications

This example shows how to control the Metrowerks CodeWarrior application fro
within IDL. Note that a file name can be built in IDL and passed to another
application using AppleScript.

First, use IDL to build a path name:

example = $
FILEPATH('Call_Demo_PPC.proj', subdir = ['External', $
'Examples', 'ShareLib'])

Build an AppleScript script to run Metrowerks CodeWarrior:

script = [$
'with timeout of 600 seconds', $
' tell application "MW C/C++ PPC 1.2.1"', $
' activate', $
' open file "' + example + '"', $
' make project', $
Controlling Other Applications External Development Guide

Chapter 5: AppleScript Support 97
' close project', $
' quit', $
' end tell', $
'end timeout']

Execute the script:

DO_APPLE_SCRIPT, script
External Development Guide Controlling Other Applications

98 Chapter 5: AppleScript Support

is
pple

ibed

pt.

r

IDL Apple Events

Application programs can communicate directly with IDL using Apple events. It
beyond the scope of this document to discuss how to write programs that use A
events. For a discussion of this topic refer toInside Macintosh: Interapplication
Communication andApple Event Registry: Standard Suites. This section discusses
the three Apple events that IDL accepts.

Note
IDL understands the Apple events that support theget, set, copy, anddo script
AppleScript statements. In most cases, it is easier to use AppleScript as descr
above than to use the underlying Apple events. Note also that thecopyAppleScript
statement is implemented (by AppleScript) using theGet DataandSet DataApple
events. There is noCopy Data Apple event.

Do Script

TheDo Script Apple event is used to ask IDL to perform actions specified in a scri
IDL executes the specified text as if it were typed at the command line.

Event Class kAEMiscStandards
Event ID kAEDoScript
Parameters
keyDirectObject

Description: The script to execute
Descriptor type: typeChar
Required or Optional: Required

Reply Parameters
keyErrorNumber

Description: The error code
Descriptor Type: typeLongInteger
Required or Optional: Optional (Only returned if an error

occurred)
keyErrorString

Description: A character string describing the erro
Descriptor Type: typeChar
IDL Apple Events External Development Guide

Chapter 5: AppleScript Support 99

he
IN
Get Data

TheGet DataApple event retrieves data from a specified IDL variable. Note that t
specified variable must exist in the currently executing IDL routine, or in the MA
context if no routine is executing.

Required or Optional: Optional (Only returned if an error
occurred)

Notes IDL only accepts the text version of this Apple event. It does
not accept an alias record for specifying a file to execute.

Result Codes
1 IDL Interpreter busy
2 IDL statement too long

Event Class kAECoreSuite
Event ID kAEGetData
Parameters
keyDirectObject

Description: The name of the variable
Descriptor Type: typeObjectSpecifier
Required or Optional: Required

keyAEKeyForm
Description: The type of object specifier (must be

of type formName)
Descriptor Type: typeEnumerated
Required or Optional: Required

keyAEKeyData
Description: The actual variable name
Descriptor Type: typeChar
Required or Optional: Required

Reply Parameters
keyAEResult

Description: The variable’s data
Descriptor Type: Either a single descriptor type or

typeAEList
External Development Guide IDL Apple Events

100 Chapter 5: AppleScript Support

r

is
ata
Required or Optional: Required
keyErrorNumber

Description: The error code
Descriptor Type: typeLongInteger
Required or Optional: Optional (Only returned if an error

occurred)
keyErrorString

Description: A character string describing the erro
Descriptor Type: typeChar
Required or Optional: Optional (Only returned if an error

occurred)
Notes IDL only accepts an object specifier record that specifies the

variable by name.
IDL cannot return data from single- or double-precision
complex variables or structure variables.
IDL indexes data in row-major format. See note under“Do
Script” on page 98 for details.
Passing large arrays using AppleScript is very inefficient, and
not recommended. In most cases it is more efficient to pass d
in a file.
Since it is not possible to determine what routine in IDL is
executing from outside IDL, we recommend that you use the
get, set andcopycommands by executing an AppleScript
script fromwithin IDL, using the DO_APPLE_SCRIPT
procedure. See“Controlling Other Applications” on page 96
for further information.
IDL does not support the optional parameter
keyAERequestedType (‘rtyp’). The returned data type is
always the closest match to the IDL variable’s data type.

Result Codes
errAECoercionFail (-
1700)

Couldn't convert variable to
AppleScript type

memFullErr (-108) Not enough memory to get variable
-2 Variable not specified by name
-1 Invalid variable name
3 Variable undefined
IDL Apple Events External Development Guide

Chapter 5: AppleScript Support 101

le

r

Set Data

The Set Data Apple event copies data to a specified IDL variable in the currently
executing routine, or in the MAIN context if no routine is executing.

Event Class kAECoreSuite
Event ID kAEGetData
Parameters
keyDirectObject

Description: The name of the variable
Descriptor Type: typeObjectSpecifier
Required or Optional: Required

keyAEKeyForm
Description: The type of object specifier (must be

of type formName)
Descriptor Type: typeEnumerated
Required or Optional: Required

keyAEKeyData
Description: The actual variable name.
Descriptor Type: typeChar
Required or Optional: Required

keyAEData
Description: The data to be copied into the variab
Descriptor Type: Either a single descriptor type or

typeAEList
Required or Optional: Required

Reply Parameters
keyErrorNumber

Description: The error code
Descriptor Type: typeLongInteger
Required or Optional: Optional (Only returned if an error

occurred)

keyErrorString
Description: A character string describing the erro
External Development Guide IDL Apple Events

102 Chapter 5: AppleScript Support

is
ata
Descriptor Type: typeChar
Required or Optional: Optional (Only returned if an error

occurred)
Notes IDL only accepts an object specifier record that specifies the

variable by name.
IDL cannot return data from single- or double-precision
complex variables or structure variables.
IDL indexes data in row-major format. See note under“Do
Script” on page 98 for details.
Passing large arrays using AppleScript is very inefficient, and
not recommended. In most cases it is more efficient to pass d
in a file.
Since it is not possible to determine what routine in IDL is
executing from outside IDL, we recommend that you use the
get, set andcopycommands by executing an AppleScript
script fromwithin IDL, using the DO_APPLE_SCRIPT
procedure. See“Controlling Other Applications” on page 96
for further information.

Result Codes
errAECoercionFail (-
1700)

Couldn’t convert variable to
AppleScript type

memFullErr (-108) Not enough memory to get variable
-2 Variable not specified by name
-1 Invalid variable name
3 Couldn’t create variable (variable

undefined)
IDL Apple Events External Development Guide

Chapter 5: AppleScript Support 103
References

Schneider, Derrick.The Tao of AppleScript. Carmel, IN: Hayden Books, 1993. ISBN
1-56830-075-1

The following books, available from Apple Computer, may also be of interest:

Inside Macintosh: Interapplication Communication

Apple Event Registry: Standard Suites
External Development Guide References

104 Chapter 5: AppleScript Support
References External Development Guide

Chapter 6:

Remote Procedure
Calls

This chapter discusses the following topics:
7

IDL and Remote Procedure Calls. 106
Using IDL as an RPC Server 107
Client Variables. 108
Linking to the Client Library 109

Compatibility with Older IDL Code 111
The IDL RPC Library 112
RPC Examples. 12
External Development Guide 105

106 Chapter 6: Remote Procedure Calls

nt and
rent
to

ry
ams

n
the

lient
 the
ess.

y
y

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (theclient process) to have
another process (theserver process) execute a procedure call just as if the caller
process had executed the procedure call in its own address space. Since the clie
server are separate processes, they can reside on the same machine or on diffe
machines. RPC libraries allow the creation of network applications without having
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A libra
of C language routines is included to handle communication between client progr
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your ow
program to be run as a client. IDL commands can be sent from your application to
IDL server, where they are executed. Variable structures can be defined in the c
program and then sent to the IDL server for creation as IDL variables. Similarly,
values of variables in the IDL server session can be retrieved into the client proc

With the release of IDL version 5.0, IDL’s RPC functionality has been completel
revised and an new API created. The new RPC interface mirrors the API used b
callable IDL. See“Compatibility with Older IDL Code” on page 111 for details.
IDL and Remote Procedure Calls External Development Guide

Chapter 6: Remote Procedure Calls 107

0

Using IDL as an RPC Server

The IDL RPC Directory

All of the files related to using IDL’s RPC capabilities are found in therpc
subdirectory of theexternal subdirectory of the main IDL directory. The main IDL
directory is referred to here asidldir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by using theidlrpc
command. The RPC server can be invoked one of two ways:

idlrpc

or

idlrpc -server= server_number

whereserver_number is the hexadecimal server ID number (between 0x2000000
and 0x3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If a server ID number is not supplied, IDL uses the default,
IDL_RPC_DEFAULT_ID, defined in the fileidldir /external/rpc/idl_rpc.h .
This value is originally set to 0x2010CAFE.
External Development Guide Using IDL as an RPC Server

108 Chapter 6: Remote Procedure Calls

iable,

he

ed

to

mic
at

C

sult
Client Variables

The IDL RPC client API uses the same data structure as IDL to represent a var
namely anIDL_VARIABLE structure. By not using a unique data structure to
represent a variable, the IDL RPC client API can follow a format that is similar to t
API of Callable IDL.

When a variable is created by the IDL RPC client API (when a variable is return
from theIDL_RPCGetMainVariable function, for example) dynamic memory is
allocated for the variable and for its value. These dynamic variables are similar
temporary variables which are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dyna
or IDL RPC client temporary variables. These API routines follow the same form
as the Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RP
client program, use theIDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could re
a memory “leak” in the client program.
Client Variables External Development Guide

Chapter 6: Remote Procedure Calls 109

d
ry

the

s for

, etc.
Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

• Include the fileidl_rpc.h in your application.

• Have a copy ofexport.h in the link include path when you compile the
client application.

• Link your client application to the IDL client shared object library
(libidl_rpc).

• If the client library is linked as a shared object, you must set the share
object search path environment variable so that it includes the directo
that contains the IDL client library.

The name of this variable is normally LD_LIBRARY_PATH, except on
HP and IBM systems, where the variable names are:

• HP: SHLIB_PATH

• IBM: LIBPATH

If this variable is not set correctly, an error message will be issued by
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -o example $(PRE_FLAGS) example.o -lidl_rpc
$(POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flag
each UNIX operating system supported by IDL are contained in the file
rpc_link.txt , located in the in therpc subdirectory of theexternal subdirectory of
the main IDL directory.

Example of IDL RPC Client API

To use the IDL client side API, execute the following sequence of steps:

1. Call IDL_RPCInit() to connect to the server

2. Perform actions on the server—get and set variables, run IDL commands

3. Call IDL_RPCCleanup() to disconnect from the server.
External Development Guide Linking to the Client Library

110 Chapter 6: Remote Procedure Calls

 a
d to

te
The code shown in the following figure is an example that can be used to set up
remote session of IDL using the RPC features. Note that this C program will nee
be linked against the supplied shared librarylibidl_rpc . This code is included in the
idldir /external/rpc directory asexample.c .

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library”on page 109. Once this example is compiled, execu
it using the following commands:

% idlrpc

Then, in another process:

% example

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include "idl_rpc.h"
int main()
{
 CLIENT *pClient;
 char cmdBuffer[512];
 int result;

 /* Connect to the server */
 if((pClient = IDL_RPCInit(0, (char*)NULL)) == (CLIENT*)NULL){
 fprintf(stderr, "Can't register with IDL server\n");
 exit(1);
 }

/* Start a loop that will read commands and then send them to idl */
 for(;;){
 printf("RMTIDL> ");
 cmdBuffer[0]='\0';
 gets(cmdBuffer);
 if(cmdBuffer[0] == '\n' || cmdBuffer[0] == '\0')
 break;
 result = IDL_RPCExecuteStr(pClient, cmdBuffer);
 }

 /* Now disconnect from the server and kill it. */
 if(!IDL_RPCCleanup(pClient, 1))
 fprintf(stderr, "IDL_RPCCleanup: failed\n");
 exit(0);
 }

Table 6-1: Remote Execution of IDL via RPC
Linking to the Client Library External Development Guide

Chapter 6: Remote Procedure Calls 111

es:

ing

cribed

of
ted.

or
Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantag

• The new API mirrors the Callable IDL API.

• The RPC client-side library is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

• The RPC server-side executable,idlrpc , is built using Callable IDL,
providing an example of how Callable IDL can be used.

• Source code is provided for both the Server and Client side programs, allow
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in the files
idl_rpc_obsolete.c andidl_rpc_obsolete.h .

To use the compatibility routines, include the filelib_rpc_obsolete.h in your
application and use the following link statement as a template:

% cc -o old_example $(PRE_FLAGS) old_example.o \
idl_rpc_obsolete.o -lidl_rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those des
in “Linking to the Client Library” on page 109.

While the compatibility layer covers most of the old IDL RPC functionality, some
the more obscure operations have either been modified or are no longer suppor
The features which have changed are as follows:

• idl_server_interactive: This function is no longer supported.

• get_idl_variable: The following return values are no longer supported:

-2 Illegal variable name (for example, “213xyz”, “#a”, “!DEVICE”)

-3 Variable not transportable (for example, the variable is a structure
associated variable)

• set_idl_timeout: thetv_usec field of thetimeval struct is ignored.

• idl_set_verbosity(): This function is no longer supported.

All other functionality is supported.
External Development Guide Compatibility with Older IDL Code

112 Chapter 6: Remote Procedure Calls

te
r

ture

n.

 of
The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilita
communication between your application and IDL. There are functions to registe
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.

IDL_RPCCleanup

Calling Sequence

int IDL_RPCCleanup(CLIENT * pClient , int iKill)

Description

Use this function to release the resources associated with the given CLIENT struc
or to kill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill

SetiKill to a non-zero value to kill the server when the connection is broke

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCDeltmp

Calling Sequence

void IDL_RPCDeltmp(IDL_VPTR vTmp)

Description

Use this function to de-allocate all dynamic memory associated with theIDL_VPTR
that is passed into the function. Once this function returns, any dynamic portion
vTmp is deallocated and should not be referenced.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 113

 is

rror
$”
e IDL

ion.

d as
Parameters

vTmp

The variable that will be de-allocated.

Return Value

None.

IDL_RPCExecuteStr

Calling Sequence

int IDL_RPCExecuteStr(CLIENT * pClient , char * pCommand)

Description

Use this function to send IDL commands to the IDL RPC server. The command
executed just as if it had been entered from the IDL command line.

This function cannot be used to send multiple line commands and will return an e
if a “$” is detected at the end of the command string. It will also return an error if “
is the first character, since this would spawn an interactive process and hang th
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

pCommand

A null-terminated IDL command string.

Return Value

This function returns the following values:

1 — Success.

0 — Invalid command string.

For all other errors, the value of !ERROR is returned. This number could be passe
an argument to the IDL functionSTRMESSAGE() to determine the exact cause of
the error.
External Development Guide The IDL RPC Library

114 Chapter 6: Remote Procedure Calls

ion.

ee
IDL_RPCGetMainVariable

Calling Sequence

IDL_VPTR IDL_RPCGetMainVariable(CLIENT * pClient , char * Name)

Description

Call this function to get the value of an IDL RPC server main level variable
referenced by the name contained inName. IDL_RPCGetMainVariable will then
return a pointer to anIDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

Name

The name of the variable to find.

Return Value

On success, this function returns a pointer to anIDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked astemporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, s
“Client Variables” on page 108.

IDL_RPCGettmp

Calling Sequence

IDL_VPTR IDL_RPCGettmp(void)

Description

Use this function to create anIDL_VPTR to a dynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, pass it to
IDL_RPCDeltmp() to free any memory allocated by the variable.

Parameters

None.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 115

ion.

ns

ee

,

Return Value

On success, this function returns anIDL_VPTR . On failure, it returns NULL.

IDL_RPCGetVariable

Calling Sequence

IDL_VPTR IDL_RPCGetVariable(CLIENT * pClient , char * Name)

Description

Use this function to get a pointer to anIDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced byName. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

Name

The name of the variable to find.

Return Value

On success, this function returns a pointer to anIDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function retur
NULL.

Note that the returned variable is marked astemporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, s
“Client Variables” on page 108.

IDL_RPCImportArray

Calling Sequence

IDL_VPTR IDL_RPCImportArray(int n_dim , IDL_MEMINT dim [],
int type , UCHAR * data , IDL_ARRAY_FREE_CB free_cb)

Description

Use this function to create an IDL array variable whose data the server supplies
rather than having the client API allocate the data space.
External Development Guide The IDL RPC Library

116 Chapter 6: Remote Procedure Calls

h

ay

ing

sful.

t the
Parameters

n_dim

The number of dimensions in the array.

dim

An array ofIDL_MAX_ARRAY_DIM elements, containing the size of eac
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in“Type
Codes” on page 160.

data

A pointer to your array data.

free_cb

If non-NULL, free_cb is a pointer to a function that will be called when the
IDL RPC client routines frees the array. This feature gives the caller a sure w
to know when the data is no longer referenced. Use the called function to
perform any required cleanup, such as freeing dynamic memory or releas
shared or mapped memory.

Return Value

An IDL_VPTR that points to anIDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsucces

IDL_RPCInit

Calling Sequence

Client *IDL_RPCInit(long ServerId , char* pHostname)

Description

Use this function to initialize an IDL RPC client session.

The client program is registered as a client of the IDL RPC server. The server tha
client is registered with depends on the values of the parameters passed to the
function.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 117

 If

lue

his
tions

a of
Parameters

ServerId

The ID number of the IDL server that the program is to be registered with.
this value is 0, the default server ID (0x2010CAFE) is used.

pHostname

This is the name of the machine where the IDL server is running. If this va
is NULL or “”, the default, “localhost”, is used.

Return Value

A pointer to the new CLIENT structure is returned upon successful completion. T
opaque data structure is then later used by the client program to perform opera
with the server. This function returns NULL if the operation was unsuccessful.

IDL_RPCMakeArray

Calling Sequence

char * IDL_RPCMakeArray(int type , int n_dim , IDL_MEMINT dim[],
int init , IDL_VPTR * var)

Description

This function creates an IDL RPC client temporary array variable with a data are
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in
“Type Codes” on page 160.

n_dim

The number of array dimensions. The constantIDL_MAX_ARRAY_DIM
defines the upper limit of this value.

dim

A C array ofIDL_MAX_ARRAY_DIM elements containing the array
dimensions. The number of dimensions in the array is given by then_dim
argument.
External Development Guide The IDL RPC Library

118 Chapter 6: Remote Procedure Calls

 the

se.

. The

s
ram

ion.

he
L

init

This parameter specifies the sort of initialization that should be applied to
resulting array.init must be one of the following:

IDL_ARR_INI_NOP — No initialization is done. The data area of the
array will contain whatever garbage was left behind from its previous u

IDL_ARR_INI_ZERO — The data area of the array is zeroed.

var

The address of anIDL_VPTR containing the address of the resulting IDL
RPC client temporary variable.

Return Value

On success, this function returns a pointer to the data area of the allocated array
value returned is the same as is contained in thevar->value.arr->data field of the
variable. On failure, it returns NULL.

As with variables returned fromIDL_RPCGettmp() , the variable allocated via this
function must be de-allocated usingIDL_RPCDeltmp() when the variable is no
longer needed.

IDL_RPCOutputCapture

Calling Sequence

int IDL_RPCOutputCapture(CLIENT * pClient , int n_lines)

Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server wa
started. This function can be used to save this information so that the client prog
can request the lines sent to the output buffer.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

n_lines

If this value is less than or equal to zero, no output lines will be buffered in t
IDL RPC server and output will be sent to the normal output device on the ID
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 119

ed

the

ion.

nd

t

tput

tput
RPC server. If the value of this parameter is greater than zero, the specifi
number of lines will be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCOutputGetStr

Calling Sequence

int IDL_RPCOutputGetStr(CLIENT * pClient , IDL_RPC_LINE_S * pLine ,
int first)

Description

Use this function to get an output line from the line queue being maintained on
RPC server. The routineIDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routine is called.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

pLine

A pointer to a validIDL_RPC_LINE_S structure. Thebuf field of this
structure will contain the output string returned from the IDL RPC server a
the flags field will be set to one of the following (fromexport.h):

IDL_TOUT_F_STDERR — Send the text tostderr rather thanstdout, if
that distinction means anything to your output device.

IDL_TOUT_F_NLPOST — After outputting the text, start a new outpu
line. On a tty, this is equivalent to sending a new line (‘\n) character.

first

If first is set equal to a non-zero value, the first line is popped from the ou
buffer on the IDL RPC server (the output buffer is treated like a stack). Iffirst
is set equal to zero, the last line is de-queued from the output buffer (the ou
buffer is treated like a queue).
External Development Guide The IDL RPC Library

120 Chapter 6: Remote Procedure Calls

e are

ver
e

ion.

per-
Return value

A true value (1) is returned upon success. A false value (0) is returned when ther
no more lines available in the output buffer or when an RPC error is detected.

IDL_RPCSetMainVariable

Calling Sequence

int IDL_RPCSetMainVariable(CLIENT * pClient , char * Name,
IDL_VPTR pVar)

Description

Use this routine to assign a value to a main level IDL variable in the IDL RPC ser
session referred to bypClient. If the variable does not already exist, a new variabl
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

Name

A pointer to the null-terminated name of the variable, which must be in up
case.

pVar

A pointer to anIDL_VARIABLE structure that contains the value that the
IDL RPC main level variable referenced byName should be set to. For more
information on creating this variable, see“Client Variables” on page 108.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCSetVariable

Calling Sequence

int IDL_RPCSetVariable(CLIENT * pClient , char * Name,
IDL_VPTR pVar)
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 121

ion

ion.

per-

.

Description

Use this routine to assign a value to an IDL variable in the IDL RPC server sess
referred to bypClient. If the variable does not already exist, a new variable will be
created. UnlikeIDL_RPCSetMainVariable() , this routine sets the variable in the
current IDL program scope.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL sess

Name

A pointer to the null-terminated name of the variable, which must be in up
case.

pVar

A pointer to anIDL_VARIABLE structure that contains the value that the
IDL RPC variable referenced byNameshould be set to. For more information
on creating this variable, see“Client Variables” on page 108.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCStoreScalar

Calling Sequence

void IDL_RPCStoreScalar(IDL_VPTR dest , int type ,
IDL_ALLTYPES * value)

Description

Use this function to store a scalar value into anIDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existingIDL_VARIABLE is de-
allocated.

Parameters

dest

An IDL_VPTR to theIDL_VARIABLE in which the scalar should be stored
External Development Guide The IDL RPC Library

122 Chapter 6: Remote Procedure Calls
type

The type code for the scalar value. IDL type codes are discussed in“Type
Codes” on page 160.

value

The address of anIDL_ALLTYPES union that contains the value to store.

Return Value

None.

IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDelete(IDL_STRING * str , IDL_MEMINT n)

Description

Use this function to delete a string. See the description ofIDL_StrDelete() in
“Deleting Strings” on page 217.

IDL_RPCStrDup

Calling Sequence

void IDL_RPCStrDup(IDL_STRING * str , IDL_MEMINT n)

Description

Use this function to duplicate a string. See the description ofIDL_StrDup() in
“Copying Strings” on page 216.

IDL_RPCStrEnsureLength

Calling Sequence

void IDL_RPCStrEnsureLength(IDL_STRING * s, int n)

Description

Use this function to check the length of a string. See the description of
IDL_StrEnsureLength() in “Obtaining a String of a Given Length” on page 219.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 123

sts of

 in

d.
IDL_RPCStrStore

Calling Sequence

void IDL_RPCStrStore(IDL_STRING * s, char * fs)

Description

Use this function to store a string. See description ofIDL_StrStore in “Setting an
IDL_STRING Value” on page 218.

IDL_RPCTimeout

Calling Sequence

int IDL_RPCTimeout(long lTimeOut)

Description

Use this function to set the timeout value used when the RPC client makes reque
the server.

Parameters

lTimeOut

A integer value, in seconds, specifying the timeout value that will be used
RPC operations.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCVarCopy

Calling Sequence

void IDL_RPCVarCopy(IDL_VPTR src , IDL_VPTR dst)

Description

Use this function to copy the contents of thesrc variable to thedst variable. Any
dynamic memory associated withdst is de-allocated before the source data is copie
This function emulates the callable IDL functionIDL_VarCopy() .
External Development Guide The IDL RPC Library

124 Chapter 6: Remote Procedure Calls

any
Parameters

src

The source variable to be copied. If this variable is marked as temporary
(returned fromIDL_RPCGettmp() , for example) the dynamic data will be
moved rather than copied to the destination variable.

dst

The destination variable thatsrc is copied to.

Return Value

None.

IDL_RPCVarGetData

Calling Sequence

void IDL_RPCVarGetData(IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

Description

Use this function to obtain a pointer to a variable’s data, and to determine how m
data elements the variable contains.

Parameters

v

The variable for which data is desired.

n

The address of a variable that will contain the number of elements inv.

pd

The address of a variable that will contain a pointer tov’s data, cast to be a
pointer to pointer to char (e.g. (char **) &myptr).

ensure_simple

If TRUE, this routine calls theENSURE_SIMPLE macro on the argumentv
to screen out variables of the types it prevents. Otherwise,EXCLUDE_FILE
is called, because file variables have no data area to return.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 125

es

se
Return Value

On exit,IDL_RPCVarGetData() stores the data count and pointer into the variabl
pointed at byn andpd, respectively.

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. The
macros are defined inidl_rpc.h .

All of these macros accept a single argument,v, of typeIDL_VPTR .

IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.

IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.

IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.

IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsignedchar variable.

IDL_RPCGetVarComplex(v)

This macro returns the value (as astruct, not a pointer) of a complex variable.

IDL_RPCGetVarComplexR(v)

This macro returns the real field of a complex variable.

IDL_RPCGetVarComplexI(v)

This macro returns the imaginary field of a complex variable.

IDL_RPCGetVarDComplex(v)

This macro returns the value (as astruct, not a pointer) of a double precision, complex
variable.

IDL_RPCGetVarDComplexR(v)

This macro returns the real field of a double-precision complex variable.
External Development Guide The IDL RPC Library

126 Chapter 6: Remote Procedure Calls

in
IDL_RPCGetVarDComplexI(v)

This macro returns the imaginary field of a double-precision complex variable.

IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.

IDL_RPCGetVarInt(v)

This macro returns the value of a 2-byte integer variable.

IDL_RPCVarIsArray(v)

This macro returns non-zero ifv is an array variable.

IDL_RPCGetVarLong(v)

This macro returns the value of a 4-byte integer variable.

IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as achar*).

IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed
“Type Codes” on page 160.
The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 127

trate
RPC Examples

A number of example files are included in theidldir /external/rpc directory. A
Makefile for these examples is also included. These short C programs demons
the use of the IDL RPC library.

Source files for theidlrpc server program are located in theidldir /external/rpc

directory. Note that you do not need to build theidlrpc server; it is pre-built and
included in the IDL distribution. Theidlrpc server source files are provided as
examples only.
External Development Guide RPC Examples

128 Chapter 6: Remote Procedure Calls
RPC Examples External Development Guide

Chapter 7:

CALL_EXTERNAL
This chapter discusses the following topics:
IDL and CALL_EXTERNAL 130
The CALL_EXTERNAL Function. 131
Handling Different Data Types. 141
CALL_EXTERNAL under UNIX 147

CALL_EXTERNAL under OpenVMS . . . 148
OpenVMS Compilation and Linking. 155
CALL_EXTERNAL Under Windows. . . . 156
CALL_EXTERNAL on the Macintosh. . . 157
External Development Guide 129

130 Chapter 7: CALL_EXTERNAL

e,
ed

me
IDL and CALL_EXTERNAL

IDL allows you to integrate programs written in other languages with your IDL cod
either by calling a compiled function from an IDL program or by linking a compil
function into IDL’s internal system routine table:

• The CALL_EXTERNAL function allows you to call external functions
(written in C or Fortran, for example) from your IDL programs.

• An alternative to CALL_EXTERNAL is to write an IDL system routine
and merge it with IDL at runtime. Routines merged in this fashion are
added to IDL’s internal system routine table and are available in the sa
manner as IDL built-in routines. This technique is discussed inChapter 18,
“Adding System Routines”.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX, OpenVMS, Windows, and
Macintosh versions of IDL.
IDL and CALL_EXTERNAL External Development Guide

Chapter 7: CALL_EXTERNAL 131

ce.
the
me

f

in

L
 be
The CALL_EXTERNAL Function

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same process address spa
Because of this, CALL_EXTERNAL avoids the overhead of process creation of
SPAWN routine. In addition, the shareable object library is only loaded the first ti
it is referenced, saving overhead on succeeding calls.

CALL_EXTERNAL is much easier to use than the LINKIMAGE routine. Unlike
LINKIMAGE, however, CALL_EXTERNAL does not check the type or number o
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash.

For more information and examples, see one of the following sections:

• “CALL_EXTERNAL under UNIX” on page 147.

• “CALL_EXTERNAL under OpenVMS” on page 148.

• “CALL_EXTERNAL Under Windows” on page 156.

• “CALL_EXTERNAL on the Macintosh” on page 157.

• “CALL_EXTERNAL” in the IDL Reference Guide.

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-
input/output facilities, or by usingIDL_Message(). Using external code options for
input and output, such asstdin or stdout , may generate unexpected results.

Memory Cleanup

IDL does not perform any memory cleanup calls on the values returned from the
CALL_EXTERNAL routine. Because of this, any dynamic memory returned to ID
will not be returned to the system, which results in a memory leak. Users should
aware of this behavior and design their CALL_EXTERNAL routines in such a
manner as not to return dynamically allocated memory to IDL. See“Dynamic
Memory” on page 280 for more information.

Calling Convention and Parameter Passing

IDL calls routines in a shareable object using the C calling convention (argc , argv).
Any routines called by CALL_EXTERNAL should be defined with a prototype
similar to the following:
External Development Guide The CALL_EXTERNAL Function

132 Chapter 7: CALL_EXTERNAL

.

ue or

ring
(the

y

f how

 C
L

e

return_type example(int argc; void *argv[])

wherereturn_type is one of the data types which CALL_EXTERNAL may return
If this return_type is not IDL_LONG, a keyword must be used in the
CALL_EXTERNAL call to indicate the type of the result.

The parameterargc is the count of optional parameters in the CALL_EXTERNAL
call, andargv is an array of the parameters. Parameters are passed either by val
by reference. Parameters passed by value are copied directly into theargv array,
with the exception of scalar strings, which place a pointer to a null-terminated st
in argv[i] . All arrays are passed by reference. Scalar items passed by reference
default) place a pointer to the datum inargv[i] . Strings and string arrays passed b
reference place a pointer to a STRING structure inargv[i] . This structure is
defined as follows:

typedef struct {
unsigned short slen; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} IDL_STRING;

See “CALL_EXTERNAL” in theIDL Reference Guide for additional details about
passing parameters by value. See the Fortran example below for a description o
to implement the (argc, argv) prototype in Fortran.

It is important to note that IDL integer variables correspond to a 16-bit integer (a
signed short integer). For example, an integer variable could be defined in an ID
routine as follows:

IDL> A = 5 ;default type of integer, not LONG

The variable could then be passed by reference in a CALL_EXTERNAL call. Th
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[0];

The corresponding type in Fortran would be INTEGER*2.

Platform-Specific Information

For more information about calling conventions and parameter passing, see

• VMS: “Calling Convention and Parameter Passing” on page 148,

• Windows:“Calling Convention and Parameter Passing” on page 156.

• Macintosh:“Calling Convention and Parameter Passing” on page 157
The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 133

quared
Example: Passing Parameters by Reference to IDL

The routine in the following figure,simple_vars.c , accepts all of IDL’s basic data
types as parameters. The parameters are passed in by reference and the new s
values of the numbers are passed back to IDL.

You can callsimple_vars.c from IDL using the following statements:

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(’simple_vars.so’,’simple_vars’,B,I,L,F,D)

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include <stdio.h>
#include "export.h" /* IDL external definitions */

/* make sure that this routine is exported on the Macintosh */
#if defined(__POWERPC__)
__declspec(export) int simple_vars(int argc,void* argv[]);
#endif

int simple_vars(int argc,void* argv[])
{
 char *byte_var;
 short *short_var;
 /* IDL long variables don’t map cleanly to a C type on

all compilers. The IDL_LONG macro gives you a 32bit
signed integer on all platforms. It is defined in export.h */

 IDL_LONG *long_var;
float *float_var;

 double *double_var;

 /* Ensure that the correct number of arguments were passed in */
 if(argc != 5) return 0;
 /* Cast the pointer in argv to the pointer variables */
 byte_var = (char *) argv[0];
 short_var = (short *) argv[1];
 long_var = (IDL_LONG *) argv[2];
 float_var = (float *) argv[3];
 double_var = (double *) argv[4];

 /* Square each variable. */
 *byte_var *= *byte_var;
 *short_var *= *short_var;
 *long_var *= *long_var;
 *float_var *= *float_var;
 *double_var *= *double_var;
 return 1;
}

Figure 7-1: Passing Parameters by Reference to IDL — simple_vars.c
External Development Guide The CALL_EXTERNAL Function

134 Chapter 7: CALL_EXTERNAL

e

n

re or
The
tem
Example: Calling a C routine

You can add a routine that returns the sum of a floating point array, similar to th
TOTAL function in IDL. Theexample.c routine is shown in the following figure.

You can use the following statements to compile and linkexample.c to produce a
shareable object library for the Solaris operating system. For more information o
compiling and linking, see“UNIX Compilation and Linking” on page 147.

cc -I RSI-Directory / IDL-Directory /external -c -kpic example.c
cc -G -o example.so example.o

whereRSI-directory is the name of the main installation directory andIDL-

Directory indicates the version of IDL installed (for example.idl_5.3).

The compiled routine resides in the shared libraryexample.so , so it can be called
by the following IDL code.

Note
Under some operating systems, an underscore character must be added befo
after the function name in order to match the entry point name in the object file.
entry point name is generated by the compiler according to the rules of the sys
linker, and may be different for different operating systems or compilers.

;Make an array.
X = FINDGEN(10)
S = CALL_EXTERNAL('example.so', $

'sum_array' X, N_ELEMENTS(X), /F_VALUE)

In this example,example.so is the name of the sharable image file,sum_array is
the name of the entry point, andX andN_ELEMENTS(X) are passed to the called
routine as parameters. TheF_VALUE keyword specifies that the returned value is a
floating-point number rather than an IDL_LONG.

C

1
2
3
4
5
6
7
8
9

10

#include <stdio.h>
float sum_array(argc, argv)
int argc;
void *argv[];
{

float *fp, s = 0.0; int n;
for(n = *(int *) argv[1], fp = (float *) argv[0]; n--;)

s += *fp++;
return(s);

}

Figure 7-2: Calling a C routine — example.c
The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 135

ents
ts to

es a
an

The

r

Example: Calling a Fortran Routine Using a C Interface
Routine

Calling Fortran is similar to calling C, with the restriction that Fortran expects all
arguments to be passed by reference. This means that theaddress of the argument is
passed rather than the argument itself.

A C interface routine can easily extract the addresses of the arguments from theargv
array and pass them to the actual routine which will compute the sum. The argum
f, n, andsare pointers that are being passed by value. Fortran expects all argumen
be passed by reference, i.e. it expects all arguments to be addresses. If C pass
pointer (an address) by value, Fortran will interpret it correctly as an address of
argument. The following code segments illustrate this. Theexample_c2f.c file
contains the C interface routine, which would be compiled as illustrated above.
example.f file contains the Fortran routine that actually sums the array.

As in the above example, we assume that the routines are being compiled unde
Solaris. The object name of the Fortran subroutine will besum_array1_ to match
the output of the Solaris Fortran compiler. The contents ofexample_c2f.c and
example.f are shown in the following figures:

C

1
2
3
4
5
6
7
8
9

10
11
12

o13
14

#include <stdio.h>

void sum_array(int argc, void *argv[])
{
 extern void sum_array1_();/* Fortran routine */
 int *n;
 float *s, *f;

 f = (float *) argv[0]; /* Array pntr */
 n = (int *) argv[1]; /* Get # of elements */
 s = (float *) argv[2]; /* Pass back result a parameter */

 sum_array1_(f, n, s); /* Compute sum */
}

Figure 7-3: C Wrapper Used to Call Fortran Code (example_c2f.c)
External Development Guide The CALL_EXTERNAL Function

136 Chapter 7: CALL_EXTERNAL

ee

end
This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, s
the README file contained inRSI-Directory /IDL-Directory/
external/fortran . This directory also contains a makefile, which builds this
example on UNIX platforms. To call the example program from within IDL:

;Make an array.
X = FINDGEN(10)
;A floating result
SUM = 0.0
S = CALL_EXTERNAL('example.so', $

'sum_array', X, N_ELEMENTS(X), sum)

In this example,example.so is the name of the sharable image file,sum_array is
the name of the entry point, andX andN_ELEMENTS(X)are passed to the called routine
as parameters. The returned value is contained in the variablesum.

When passing C null-terminated character strings into a Fortran routine, the C
function should also pass in the string length. This extra parameter is added to the
of the Fortran routine call in the C function, but does not appear in the Fortran
routine.

For example, in C:

char * str1= 'IDL';
char * str2= 'RSI';
int len1=3;
int len2=3;
double data, info;
/* Call a Fortran sub-routine named example1 */
example1_(str1, data, str2, info, len1, len2)

In Fortran:

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14

c This subroutine is called by SUM_ARRAY and has no IDL-specific code.
c
SUBROUTINE sumarray1(array, n, sum)
INTEGER*4 n
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)
PRINT *, sum, array(i)
ENDDO

RETURN
END

Figure 7-4: Fortran Code Called from IDL via C Wrapper (example.f)
The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 137

ents
m.

ng

M
rs

not,
face

ee
SUBROUTINE EXAMPLE1(STR1, DATA, STR2, INFO)
CHARACTER*(*)STR1, STR2
DOUBLE PRECISIONDATA, INFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the restriction that Fortran expects all
arguments to be passed by reference. This means that theaddress of the argument is
passed rather than the argument itself.

A Fortran interface routine can be written to extract the addresses of the argum
from theargv array and pass them to the actual routine which will compute the su
Passing the contents of eachargv element by value has the same effect as converti
the parameter to a normal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %LOC and %VAL. On IB
AIX, the LOC function is an intrinsic operator. The syntax of the call, which diffe
from that used on different platforms, is:

y=loc(x)

Some Fortran compilers may not support these extensions. If your compiler does
use the method discussed in the previous section for calling Fortran with a C inter
routine.

The contents of the fileexample1.f are shown in the following figure. This
example is compiled, linked, and called in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, s
the README file contained inRSI-Directory /IDL-Directory/
external/fortran . This directory also contains a makefile, which builds this
example on UNIX platforms.
External Development Guide The CALL_EXTERNAL Function

138 Chapter 7: CALL_EXTERNAL

 that
To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.
sum = 0.0
S = CALL_EXTERNAL('example1.so', $

'sum_array_', X, N_ELEMENTS(X), sum)

In this example,example1.so is the name of the sharable image file,sum_array_
is the name of the entry point, andX andN_ELEMENTS(X) are passed to the called
routine as parameters. The returned value is contained in the variablesum.

Note
The entry point name generated by the Fortran compiler may be different than
produced by the C compiler. One of the best ways to find out what name was
generated is to use the UNIXnm utility on the object file. See your system’s man
page fornm for details.

f77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

SUBROUTINE SUM_ARRAY(argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) !Argc and Argv are integers

j = LOC(argc) !Obtains the number of arguments (argc)
!Because argc is passed by VALUE.

c Call subroutine SUM_ARRAY1, converting the IDL parameters
c to standard Fortran, passed by reference arguments:

CALL SUM_ARRAY1(%VAL(argv(1)), %VAL(argv(2)), %VAL(argv(3)))
RETURN
END

c This subroutine is called by SUM_ARRAY and has no
c IDL specific code.
c
SUBROUTINE SUM_ARRAY1(array, n, sum)
INTEGER*4 n
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)
ENDDO
RETURN
END

Figure 7-5: Fortran Code Called Directly From IDL
The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 139

t

ve.

 the
edure

tine.
Further Examples

A number of example routines, along with makefiles for the various systems tha
support CALL_EXTERNAL, are located in thecall_external subdirectory of the
external subdirectory of the IDL distribution. The README file in that directory
contains instructions for building the examples.

Wrapper routines

CALL_EXTERNAL routines are often very sensitive to the arguments they recei
In many cases, calling a CALL_EXTERNAL routine with the wrong number of
arguments or with arguments of the wrong type can cause IDL to crash. For this
reason, it is often good to have a wrapper routine (written in IDL) to ensure that
arguments that are passed to the external code are always correct. The IDL proc
shown in the following figure is one example of a wrapper for thesimple_vars
routine.

The routinesimple_vars.pro uses the system routine SIZE() to examine the
arguments that are passed in by the user to thesimple_vars routine. If one of the
arguments is undefined, a default value will be used in the call to the external rou
Otherwise, the argument will be converted to a scalar of the appropriate type.

IDL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

PRO simple_vars,b,i,l,f,d,DEBUG=debug
 if NOT(KEYWORD_SET(debug)) THEN ON_ERROR,2

 ;type checking:
 ;any missing (undefined) arguments will be set to a default
 ;value. All arguments will be forced to a scalar of the apropriate
 ;type, which may cause errors to be thrown if structures are passed in.
 b = (SIZE(b,/TNAME) EQ ’UNDEFINED’) ? 2b : byte(b[0])
 i = (SIZE(i,/TNAME) EQ ’UNDEFINED’) ? 3 : fix(i[0])
 l = (SIZE(l,/TNAME) EQ ’UNDEFINED’) ? 4L : long(l[0])
 f = (SIZE(f,/TNAME) EQ ’UNDEFINED’) ? 5.0 : float(f[0])
 d = (SIZE(d,/TNAME) EQ ’UNDEFINED’) ? 6.0D : double(d[0])

 PRINT,’Calling simple_vars with the following arguments:’
 HELP,b,i,l,f,d
 IF (CALL_EXTERNAL(lib_name(’call_examples’),’simple_vars’,/PORTABLE,$
 b,i,l,f,d) EQ 1) then BEGIN
 PRINT,’After calling simple_vars:’
 HELP,b,i,l,f,d

 ENDIF ELSE MESSAGE,’External call to simple_vars failed’
END

Figure 7-6: Wrapper Routine — simple_vars.pro
External Development Guide The CALL_EXTERNAL Function

140 Chapter 7: CALL_EXTERNAL

th

data
Note
The lib_name function (line 16 in the preceding figure) returns its argument wi
the proper shareable library suffix for the target platform
(for example:.a , .dll , .so , .sl)

The following table lists the IDL supported data types and the corresponding C
types:

IDL C

BYTE char or unsigned char

INT short

UINT unsigned short

LONG IDL_LONG

ULONG IDL_ULONG

LONG64 IDL_LONG64

ULONG64 IDL_ULONG64

FLOAT float

DOUBLE double

STRING IDL_STRING

STRUCT C structure with the same layout

Table 7-1: Data type mapping between IDL and C
The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 141

 C

ion

ptor.
d.

se

the
r

ring

 it.
ry,
Handling Different Data Types

This section describes how to convert complex IDL data types such as strings to
data types, and how to use C data types in IDL.

Strings

IDL represents strings internally as IDL_STRING descriptors. For more informat
about IDL_STRING, seeChapter 9, “IDL Internals: Variables”andChapter 11, “IDL
Internals: String Processing”. These descriptors are defined in the C language as:

typedef struct {
 unsigned short slen;
 unsigned short stype;
 char *s;
} IDL_STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descri
To pass a string by value the string pointer (the s field of the descriptor) is passe
Programmers should be aware of the following when manipulating IDL strings:

• Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify the
values.

• Theslen field contains the length of the string without including the
NULL termination that is required at the end of all C strings.

• Thestype field is used internally by IDL to keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

• s is the pointer to the actual C string represented by the descriptor. If
string is NULL, IDL represents it as a NULL (0) pointer, not as a pointe
to an empty null terminated string. Hence, called code that expects a st
pointer should check for a NULL pointer before dereferencing it.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold
On return, IDL will copy this string. You can use a static buffer or dynamic memo
but do not return the address of an automatic (stack-based) variable.
External Development Guide Handling Different Data Types

142 Chapter 7: CALL_EXTERNAL

bles
ns a
ses
ak.
Note
IDL will not free dynamically-allocated memory for this use.

Example

The following figure is an example that demonstrates how to handle string varia
in external code. This routine takes a string or array of strings as input and retur
copy of the longest string that it received. It is important to note that this routine u
a staticchar array as its return value, which avoids the possibility of a memory le

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#include <stdio.h>
#include "export.h"
/* IDL_STRING is declared like this:
 typedef struct {
 unsigned short slen; Length of string, 0 for null
 short stype; type of string, static or dynamic
 char *s; Addr of string
 } IDL_STRING;

However, you should rely on the definition in export.h instead
of declaring your own string structure.
*/
#include <string.h>

/* make sure that this routine is exported on the Macintosh */
#if defined(__POWERPC__)
__declspec(export) char* string_array(int argc,void* argv[]);
#endif

char* string_array(int argc,void* argv[])
{
 IDL_STRING*str_descr;
 IDL_LONG n;/* number of elements in array*/

 int max_index; /* index of longest string */
 int max_sofar; /* length of longest string*/
 int i;
/* IDL will make a copy of the string that is returned (if it is not NULL).
So, to avoid a memory leak the return value should be a pointer to a stat-
ic buffer containing a null terminated string. */
#define MAX_OUT_LEN 511 /*any string longer than this will be truncated*/
static char result[MAX_OUT_LEN +1]; /*leave a space for a ’\0’ on the
longest string */
/* make sure there are the correct # of arguments.
 IDL will convert the NULL into an empty string (’’). */
 if (argc != 2) return((char *)NULL);

 /* Cast the pointers in argv to local variables. */
 str_descr= (IDL_STRING *) argv[0];
 n= *(int*) argv[1];
Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 143

 a
ing
e and

ay at
nal

ild
For

f a
Arrays

When you pass an IDL array into a CALL_EXTERNAL routine, that routine gets
pointer to the first memory location in the array. In order to perform any process
on the array, an external routine needs more information—such as the array’s siz
number of dimensions. With CALL_EXTERNAL, you will need to pass this
information as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the arr
compile time. In most cases, this means that you will need to treat multi-dimensio
arrays passed in from IDL as one dimensional arrays. However, you can still bu
your own indices to access an array as if it had more than one dimension in C.
example, the IDL array index:

array[x,y]

could be represented in a CALL_EXTERNAL routine as:

array_ptr[x + x_size*y];

The program shown in the following figure calculates the sum of a subsection o
two dimensional array:

C

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

/* Check the size of the array passed in. n should be > 0.*/
 if (n < 1) return (char*)NULL;
 max_index = 0;
 max_sofar = 0;
 for(i=0; i < n; i++) {
 if (str_descr[i].slen > max_sofar) {
 max_index = i;
 max_sofar = str_descr[i].slen;
 }
 }
/* if all strings in the array are empty, the longest
 will still be a NULL string */
 if (str_descr[max_index].s == NULL) return (char*) NULL;
 /* copy the longest string into the buffer. Since result was declared
 static, it will initially be filled with zeros. And, since the buffer
 is 1 byte longer than MAX_OUT_LEN, the last byte of the buffer should
 already be a ’\0’. This is important, because if the input string
 to strncpy() is longer than MAX_OUT_LEN, strcpy() will _not_ write
 a ’\0’.*/
 strncpy(result,str_descr[max_index].s,MAX_OUT_LEN);
 return(result);
#undef MAX_OUT_LEN
}

Figure 7-7: Handling String Variables in External Code — string_array.c
External Development Guide Handling Different Data Types

144 Chapter 7: CALL_EXTERNAL

 of
The System Routine interface provides much more support for the manipulation
IDL array variables. SeeChapter 18, “Adding System Routines” for more
information.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include <stdio.h>
#include "export.h"

/* make sure that this routine is exported on the Macintosh */
#if defined(__POWERPC__)
__declspec(export) double sum_2d_array(int argc,void* argv[]);
#endif

double sum_2d_array(int argc,void* argv[])
{
 /* since we didn’t know the dimensions of the array
 at compile time, we must treat the input array
 as if it were a one dimensional vector. */
 double* arr;
 IDL_LONG x_start,x_end,x_size,y_start,y_end,y_size,x,y;

 double result = 0.0;

 if (argc != 7) return 0.0;

 arr = (double*)argv[0];
 x_start = *(int*)argv[1];
 x_end = *(int*)argv[2];
 x_size = *(int*)argv[3];
 y_start = *(int*)argv[4];
 y_end = *(int*)argv[5];
 y_size = *(int*)argv[6];

 /* make sure that we don’t go outside the array.
 strictly speaking, this is redundant since identical
 checks are performed in the IDL wrapper routine.

IDL_MIN() and IDL_MAX() are macros from export.h */
 x_start = IDL_MAX(x_start,0);
 y_start = IDL_MAX(x_start,0);
 x_end = IDL_MIN(x_end,x_size-1);
 y_end = IDL_MIN(y_end,y_size-1);

 /* loop through the subsection */
 for (y = y_start;y <= y_end;y++)
 for (x = x_start;x <= x_end;x++)

 result += arr[x + y*x_size]; /* build the 2d index: arr[x,y] */

 return result;
}

Figure 7-8: Adding the Elements of a 2D IDL Array — sum_2d_array.c
Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 145

is
s,
rom
ame
Structs

IDL structure variables are stored in memory in the same layout that C uses. Th
makes it possible to pass IDL structure variables into CALL_EXTERNAL routine
as long as the layout of the IDL structure is known. To access an IDL structure f
an external routine, you must create a C structure definition that has the exact s
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:

s = {ASTRUCTURE,zero:0B,one:0L,two:0.,three:0D,four: intarr(2)}

the corresponding C structure would look like the following:

typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four[2];

} ASTRUCTURE;

Then, cast the pointer fromargv to the structure type, as follows:

ASTRUCTURE* mystructure;
mystructure = (ASTRUCTURE*) argv[0];

The following figure increments each field of an IDL structure of type
ASTRUCTURE:
External Development Guide Handling Different Data Types

146 Chapter 7: CALL_EXTERNAL

sing

sted
It is not possible to access structures with unknown layouts or nested structures u
the CALL_EXTERNAL interface. The System Routine interface does provide
support for determining the layout of a structure at runtime and for accessing ne
structures. See “CALL_EXTERNAL” in theIDL Reference Guide for more
information.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "export.h"
/*
** C definiton for the structure that this
** routine accepts. The corresponding IDL
** structure definition would look like this:
 s = {zero:0B,one:0L,two:0.,three:0D,four: intarr(2)}
*/
typedef struct {
 unsigned char zero;
 IDL_LONG one;
 float two;
 double three;
 short four[2];
} ASTRUCTURE;

/* make sure that this routine is exported on the Macintosh */
#if defined(__POWERPC__)
__declspec(export) int incr_struct(int argc,void* argv[]);
#endif

int incr_struct(int argc, void *argv[])
{
 ASTRUCTURE* mystructure;
 IDL_LONG n;

 int i;
 if (argc != 2) return 0;
 mystructure = (ASTRUCTURE*) argv[0]; /* 1st arg is structure array */
 n = *(int*) argv[1]; /* 2nd arg is number of elements */

 /* for each structure in the array, increment every field */
 for (i = 0;i<n;i++,mystructure++)
 {
 mystructure->zero++;
 mystructure->one++;
 mystructure->two++;
 mystructure->three++;
 mystructure->four[0]++;
 mystructure->four[1]++;
 }
 return 1;

Figure 7-9: Accessing an IDL Structure from a C Routine — incr_struct.c
Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 147

L and

s

he
r

 be
 for
the
CALL_EXTERNAL under UNIX

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries.

An important advantage to calling external routines with CALL_EXTERNAL, as
opposed to spawning child processes and passing parameters by pipe, is that ID
the called routine share the same memory and data space. CALL_EXTERNAL
avoids the overhead of process creation and parameter passing. In addition, the
shareable object file containing the called routine is only loaded the first time it i
referenced.

UNIX Compilation and Linking

Each UNIX system has different compilation and link statements for producing a
shareable object suitable for usage with CALL_EXTERNAL. Also, the name of t
entry point in the object may be different, because compilers may add leading o
trailing underscores to the name of the source routine.

Compilation and linking statements for the UNIX platforms supported by IDL are
collected in the filecallext_unix.txt in thecall_external subdirectory of the
external subdirectory of the main IDL directory. The statements in this file can
used to for the example routines above. They also show the correct flags to use
any set of C routines. Additional libraries may be added to the link lines by using
-L and-l flags, except on certain systems noted below, where the name of the
library must be specified explicitly.
External Development Guide CALL_EXTERNAL under UNIX

148 Chapter 7: CALL_EXTERNAL

g the

ith the
its

der

by

lue.

ssed

y

L

o. See
CALL_EXTERNAL under OpenVMS

By default under VMS, the CALL_EXTERNAL function loads and calls routines
contained in shareable images that adhere to the OpenVMS calling standard usin
LIB$CALLG() runtime library function. It is also possible to use the portable
convention available on the other platforms (discussed in“CALL_EXTERNAL
under UNIX” on page 147) by specifying the PORTABLE keyword to
CALL_EXTERNAL.

Alpha/OpenVMS Restrictions

IDL uses theLIB$CALLG() function to implement CALL_EXTERNAL under
OpenVMS. The ALPHA/OpenVMS procedure calling specification states that
certain floating values are passed in certain registers and not on the stack as w
VAX. LIB$CALLG() cannot put these arguments into the correct location because
interface does not tell it the types of the arguments it is passing. Accordingly, un
Alpha/OpenVMS, CALL_EXTERNAL is restricted in the following ways:

• A single- or double-precision floating-point argument can only be passed
value if it is one of the first six arguments to the function.

• Single- and double-precision complex arguments cannot be passed by va

Calling Convention and Parameter Passing

IDL calls routines in the shareable image object with the parameters that were pa
to CALL_EXTERNAL. Unlike UNIX routines that are called using the C calling
conventionargc andargv , OpenVMS routines are called with a parameter list. An
routine called by CALL_EXTERNAL should be defined in the following manner:

In IDL:

status = CALL_EXTERNAL(image, 'example', p1, p2, p3, p4)

In C:

return_type example(p1, p2, p3, p4)

wherereturn_type is one of the types which CALL_EXTERNAL may return. If
this type is not IDL_LONG, then a keyword must be used in the CALL_EXTERNA
call to indicate the type of the result.

Arrays are passed by reference. By default, scalars are passed by reference als
“CALL_EXTERNAL” in the IDL Reference Guide for additional details about
passing parameters by value.
CALL_EXTERNAL under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 149

 For

e

he

e.

e

It is important to note that IDL integer variables correspond to a C short integer.
example, an integer variable could be defined in an IDL routine as follows:

IDL> A=5

The variable could then be passed by reference in a CALL_EXTERNAL call. Th
declaration and cast statement in the called C routine should be:

short *a;

The declaration in a called Fortran routine should be:

INTEGER*2 A

Example: Calling a C routine

Assume you wish to add a routine that returns the sum of a floating-point array,
similar to the TOTAL function in IDL. This routine accepts a pointer to the array
(f_arr), a pointer to the number of elements (n_ele), and it passes back a floating
point sum as a parameter (sum). It does not pass back a return value. Even though t
return value is unused, the CALL_EXTERNAL call in IDL must be made as a
function call. In this case, the return value should be assigned to a dummy valu

The following figure shows the contents of theexample.c file. See“OpenVMS
Compilation and Linking”on page 155 for details on compiling and linking the cod
on your platform.

Assuming the compiled routine resides in the executable fileexample.exe , it can be
called with the following IDL code.

;Make an array.
X = FINDGEN(10)

C

1
2
3
4
5
6
7
8
9

10
11

#include <stdio.h>

void sum_array(float *f_arr, long *n_ele, float *sum)
{
 float s;

 for(s=0.0; *n_ele--;) /* Compute the sum */
 s += *f_arr++;

 *sum = s;
}

Figure 7-10: Returning the Sum of a Floating-Point Array — sum_array
External Development Guide CALL_EXTERNAL under OpenVMS

150 Chapter 7: CALL_EXTERNAL

e

ful
;Define a variable to hold the result.
sum = 0.0
S = CALL_EXTERNAL(' [path] example.exe', $

'example' X, N_ELEMENTS(X), sum)

In this example,[path] example.exe is the full path name of the linked executable
file, example is the name of the entry point, andX, N_ELEMENTS(X) , andsum are
passed to the called routine as parameters. Note that the result is returned in th
variablesum, which must be defined as the proper data type (single-precision
floating-point in this case) before calling the external routine. You may find it help
to replace[path] example.exe with an OpenVMS logical name. For example:

$ DEFINE IDL_EXAMPLE [path] example.exe

Example: Calling a Fortran Routine

Calling Fortran is similar to calling C, with the restriction that Fortran expects all
arguments to be passed by reference. This means that theaddress of the argument is
passed rather than the argument itself.

To compute the sum of a float array using Fortran you would use the Fortran
subroutine such as that shown in the following figure (fileexample.f) . See
“OpenVMS Compilation and Linking” on page 155 for details on compiling and
linking the code on your platform.

f77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

SUBROUTINE EXAMPLE(F_ARR, N_ELE, SUM)

INTEGER*4N_ELE

REAL*4F_ARR(N_ELE)
REAL*4SUM

INTEGER I

SUM = 0.0

DO I=1, N_ELE
SUM = SUM + F_ARR(I)
END DO

RETURN
END

Figure 7-11: Fortran Version of sum_array()
CALL_EXTERNAL under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 151

that

age

ce.
Example: Calling the TPU Editor

A simple example uses CALL_EXTERNAL to invoke the TPU text editor directly
from IDL. The TPU editor is provided as a shareable, callable image in the file
SYS$SHARE:TPUSHR.EXE. Its entry point is namedTPU$EDIT. The statement

status = CALL_EXTERNAL('tpushr', 'tpu$edit', 'test.pro', '')

callsTPU to edit the filetest.pro . TPU$EDIT requires two parameters: the file to
be edited and an output file. In this case, the output file is a zero-length string
denoting that the output file is the same as the input.

A procedure named EDIT is easily written to accept a filename parameter, verify
it is a scalar string, and call TPU:

;Edit file using TPU.
PRO EDIT, file

;Is the parameter defined? Print error message.
IF N_ELEMENTS(file) EQ 0 THEN BEGIN

BAD_PAR: PRINT, "Usage: EDIT, 'filename'"

RETURN
ENDIF
;Validate parameter.
S = SIZE(file)

;Is the string scalar?
IF (S(0) NE 0) OR (S(1) NE 7) THEN GOTO, BAD_PAR

;Call the editor.
STATUS = CALL_EXTERNAL('tpushr', 'tpu$edit', 'file', '')
END

Example: Calling a Runtime Library Function

This example presents a procedure called GETMSG that returns the error mess
text given an OpenVMS error message number.

TheOpenVMS Run-Time Library routineLIB$SYS_GETMSG is used. Briefly,
parameters toLIB$SYS_GETMSG are:

LIB$SYS_GETMSG(MSG_ID, MSG_LEN, DEST_STRING, FLAGS)

where

• MSG_ID is the message identification code, a longword passed by referen
External Development Guide CALL_EXTERNAL under OpenVMS

152 Chapter 7: CALL_EXTERNAL

ne

e.
sed

he

ing-
• MSG_LEN is the returned message length, a longword integer passed by
reference.

• DEST_STRING is the string into which the message is placed, passed by
reference to its string descriptor.

• FLAGS is a longword integer, passed by reference, of flag bits that determi
message content (default value 0).

The code of the procedure GETMSG is as follows:

; Return the text to the OpenVMS message MSGID.
FUNCTION GETMSG, msgid

;Destination string length, initialize to longword.
len = 0L

;Destination string, initialize to a string containing 100 blanks.
msg = STRING(REPLICATE(32B, 100))

;Call lib$sys_getmsg; flags parameter is 0.
istat = CALL_EXTERNAL('librtl', 'lib$sys_getmsg', $

LONG(msgid), len, msg, 0L)

;Truncate the string using the returned length.
msg = STRMID(msg, 0, len)

;Return the string.
RETURN, msg
END

This example illustrates one method of returning a string from an external routin
The function creates a 100-character, blank-filled string called MSG, which is pas
by reference to its descriptor toLIB$SYS_GETMSG. The descriptor
LIB$SYS_GETMSG fills the memory pointed to by this descriptor with the result,
which can be up to 100-characters long, and returns the actual string length in t
variable len. The call to STRMID is necessary to truncate the string MSG to the
length of the returned string.

Calling a VMS Fortran Subroutine

This example calls a simple VMS Fortran function that returns the mean of a float
point array:

MEAN = CALL_EXTERNAL(/F_VALUE, 'MY_AVG_EXE', 'MY_AVG', $
FINDGEN(10), 10L)
CALL_EXTERNAL under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 153

ion,

The

 as

me

ctive
 if the
The F_VALUE keyword indicates that the called function returns a single-precis
floating value.

The entry MY_AVG, inside a shareable image pointed to by the logical name
MY_AVG_EXE, is called. The two parameters passed to the routine are a 10-
element, floating-point vector and the element count, passed as a long integer.
Fortran routine, in file MY_AVG.FOR, is shown in the following figure.

The OpenVMS DCL commands to compile, link, and setup the logical name are
follows:

$ FORTRAN MY_AVG
$ LINK MY_AVG, SYS$INPUT/OPT/SHARE
UNIVERSAL = MY_AVG
$ DEFINE MY_AVG_EXE dduu:[xxx]MY_AVG.EXE

The OpenVMS Alpha DCL commands to compile, link, and setup the logical na
are as follows:

$ FORTRAN MY_AVG
$ LINK MY_AVG, SYS$INPUT/OPT/SHARE
SYMBOL_VECTOR = [MY_AVG=PROCEDURE]
$ DEFINE MY_AVG_EXE dduu:[xxx]MY_AVG.EXE

Passing Parameters by Value

Scalar parameters can be passed by value or by reference. The optionalVALUE
keyword parameter is a byte array in which nonzero elements indicate the respe
scalar parameter is to be passed by value. Parameters are passed by reference
VALUE parameter is not present or the respective element is zero.

For example, if the above routine,MY_AVG, is written in the C language and declared
as follows:

float my_avg(float *, int)

The call from IDL becomes:

f77

1
2
3
4
5
6
7
8
9

REAL * 4 FUNCTION MY_AVG(V, N)
REAL*4 V(*)
MY_AVG = 0.0
DO I=1,N

MY_AVG = MY_AVG + V(I)
END DO
MY_AVG = MY_AVG / N
RETURN
END

Figure 7-12: Returning the Mean of a Floating-Point Array Using Fortran— my_avg.for
External Development Guide CALL_EXTERNAL under OpenVMS

154 Chapter 7: CALL_EXTERNAL

lue

of

ble

sing
MEAN = CALL_EXTERNAL(/F VALUE, VALUE = [0B,1B], $
'MY_AVG_EXE', 'MY_AVG', FINDGEN(10), 10L)

causing the second parameter, the number of elements, to be passed byvalue rather
than by reference.

Note
Under Alpha/OpenVMS:

A single- or double-precision floating-point argument can only be passed by va
if it is one of the first six arguments to the function.

Single- and double-precision complex arguments cannot be passed by value.

See“Alpha/OpenVMS Restrictions” on page 148 for a more detailed discussion
these restrictions.

Using CALL_EXTERNAL with Fortran Common Blocks

In Fortran language routines, common blocks are declared as writeable, sharea
PSECTS. This can cause the following error messages:

LIB-E-ACT: error activating image: image.exe
SYSTEM-F-NOTINSTALL: writeable shareable images must be installed
%CALL_EXTERNAL: error in called routine

If this occurs, place a line like the following in the linker options file for each
common block:

PSECT_ATTR = com_block_name , noshr

wherecom_block_name is the name of the common block in your Fortran routine.
These lines must be added for each common block in the routines that you call u
CALL_EXTERNAL.

Further Examples

A number of example routines, along with makefiles, are located in the
call_external subdirectory of theexternal subdirectory of the IDL
distribution. To compile the examples into a shareable object and then run IDL
procedures, see the README files located in eitherRSI-Directory /IDL-
Directory/external/C or RSI-Directory /IDL-Directory/
external/fortran .
CALL_EXTERNAL under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 155

the
OpenVMS Compilation and Linking

Compilation and linking statements for OpenVMS are collected in the file
callext_vms.txt in thecall_external subdirectory of theexternal
subdirectory of the main IDL directory. The statements in this file can be used for
example routines above.
External Development Guide OpenVMS Compilation and Linking

156 Chapter 7: CALL_EXTERNAL

st
ld’s

the
to

lue.

e

CALL_EXTERNAL Under Windows

You can use CALL_EXTERNAL to call your own Win32 Windows-compatible
DLLs.

There are some difficulties in creating Windows-compatible DLLs and we sugge
that you obtain some additional information on this topic (such as Charles Petzo
bookProgramming Windows 95) before attempting to write one.

Calling Convention and Parameter Passing

All DLLs called with CALL_EXTERNAL must use anargc -argv calling
convention described in“CALL_EXTERNAL under UNIX” on page 147. The
parameters you specify in the call to CALL_EXTERNAL are translated into the
argv vector.

Parameters can be passed by value or by reference. See “CALL_EXTERNAL” in
IDL Reference Guide for additional details about specifying how parameters are
be passed.

DLL procedures can return long integers, floating-point integers, or strings by va
They can return any sort of information by reference.

Examples

Example DLL code, a makefile, and an IDL procedure calling the newly-created
DLL are located in thecall_external subdirectory of theexternal subdirectory
of the IDL distribution. To compile the example into a DLL, issue the following
command:

C:\RSI\IDL\EXTERNAL\CALL_EXTERNAL> nmake /f makefile_win.mak

The makefile uses the correct options for the Microsoft C compiler. If you use a
different compiler, you may need to change the compilation or link flags. See th
makefile for details on the compiler used.
CALL_EXTERNAL Under Windows External Development Guide

Chapter 7: CALL_EXTERNAL 157

:

.

ed.

thod

 you
l.

d in

are
en
CALL_EXTERNAL on the Macintosh

You can use CALL_EXTERNAL to call your own Macintosh shared library files.

Calling Convention and Parameter Passing

IDL calls routines in a shared library using the C calling convention (argc , argv)
described in“CALL_EXTERNAL under UNIX” on page 147. Any routines called
by CALL_EXTERNAL should be defined with a prototype similar to the following

return_type resFunction(int argc, void *argv[])

wherereturn_type is one of the data types which CALL_EXTERNAL may return
If this return_type is not IDL_LONG, a keyword must be used in the
CALL_EXTERNAL call to indicate the type of the result.

When you build a shared library, you must tell the linker which symbols are export
You can use any of the following methods:

1. Use a __declspec(export) declaration in your code. This is the easiest me
if the number of exported symbols is small, and is the method used in this
manual. See the example in the following figure for an example of this
approach.

2. Supply an export file to the linker. This is the best option if the number of
symbols is large.

3. Specify that the linker export all symbols.

The details of how to use the linker depend on which development environment
are using (MPW, Code Warrior, and so on) and are not discussed in this manua
Consult your system documentation for details.

Example: Calling a C Routine on a PowerPC Macintosh

CALL_EXTERNAL on the PowerMac expects native PowerPC code to be store
the data fork of a shared library file. It loads the code with the routine
GetDiskFragment(), and finds the requested routine usingFindSymbol(). Because
of this, you may put multiple routines in the same shared library file and even sh
global variables amongst them. The library is only loaded once, and is freed wh
IDL exits.

Consult your compiler manual on how to create a shared library file. Consult the
Code Fragment Manager ofInside Macintosh: PowerPC System Software to learn
aboutGetDiskFragment() andFindSymbol().
External Development Guide CALL_EXTERNAL on the Macintosh

158 Chapter 7: CALL_EXTERNAL

 the
ts.

k
a

This example is a routine that returns the sum of an integer array (similar to the
TOTAL function in IDL) accepts a variable length argument list where the first
parameter is the number of arguments and the second is an array of pointers to
arguments. The function then returns a long integer which is the sum of its inpu

Theexample.c file contains the code shown in the following figure. You must lin
the program as a shared library. In Metrowerks CodeWarrior, this is done using
popup menu in the “Project” section of the “Preferences” dialog.

To use the above example in IDL, enter:

IDL> testarr = INDGEN(10)
IDL> total = CALL_EXTERNAL("example", "sumarray", testarr, 10L)

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#if defined(__POWERPC__)
__declspec(export) long sumarray(int argc, void *argv[]);
#endif

long sumarray(int argc, void *argv[])
{
 longretval;
 short*arrInd;
 inti;

 retval = 0L;

 if (argc == 2) {
 /*
 * IDL integer arrays are arrays of shorts so get the pointer
 * to the array (arrays are always passed to CALL_EXTERNAL by
 * reference
 */
 arrInd = (short *) argv[0];

 /*
 * then just sum the array
 */
 for (i = 0; i < *(int *)argv[1]; i++)
 retval += *arrInd++;
 }

 return(retval);

} /* end of summer routine */

Figure 7-13: Returning the Sum of an Integer Array — sumarray
CALL_EXTERNAL on the Macintosh External Development Guide

Chapter 8:

IDL Internals:
Types

This chapter describes the following topics:
Type Codes . 160
Mapping Of Basic Types. 163

IDL_MEMINT and IDL_FILEINT Types. 165
External Development Guide 159

160 Chapter 8: IDL Internals: Types

 to C

ou

 be

ions
your
Type Codes

Every IDL variable has a data type. The possible type codes and their mapping
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will always have the value zero.

Although it is unlikely, the number of types could change someday. Therefore, y
should always use the symbolic names when referring to any type except
IDL_TYP_UNDEF . Even in the case ofIDL_TYP_UNDEF , using the symbolic
name will add clarity to your code. Note that all IDL structures are considered to
of a single type (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinct
are made at a different level. There are a few constants that can be used to make
code easier to read and less likely to break if/when theexport.h file changes.
These are:

• IDL_MAX_TYPE —The value of the largest type.

• IDL_NUM_TYPES —The number of types. Since the types are numbered
starting at zero,IDL_NUM_TYPES is one greater thanIDL_MAX_TYPE .
Type Codes External Development Guide

Chapter 8: IDL Internals: Types 161

a bit
a
alue
Type Masks

There are some situations in which it is necessary to specify types in the form of
mask rather than the usual type codes, for example when a single argument to
function can represent more than a single type. For any given type, the bit mask v
can be computed as:

Name Type C Type

IDL_TYP_UNDEF Undefined <None>

IDL_TYP_BYTE Unsigned byte UCHAR

IDL_TYP_INT 16–bit integer short

IDL_TYP_LONG 32–bit integer IDL_LONG

IDL_TYP_FLOAT Single precision floating float

IDL_TYP_DOUBLE Double precision floating double

IDL_TYP_COMPLEX Single precision complex IDL_COMPLEX

IDL_TYP_STRING String IDL_STRING

IDL_TYP_STRUCT Structure See“Structure Variables”
on page 175

IDL_TYP_DCOMPLEX Double precision
complex

IDL_DCOMPLEX

IDL_TYP_PTR 32–bit integer IDL_ULONG

IDL_TYP_OBJREF 32–bit integer IDL_ULONG

IDL_TYP_UINT Unsigned 16-bit integer IDL_UINT

IDL_TYP_ULONG Unsigned 32-bit integer IDL_ULONG

IDL_TYP_LONG64 64-bit integer IDL_LONG64

IDL_TYP_ULONG64 Unsigned 64-bit integer IDL_ULONG64

Table 8-1: IDL Types and Mapping to C

Mask 2
TypeCode

=

External Development Guide Type Codes

162 Chapter 8: IDL Internals: Types

.
r all

ne
TheIDL_TYP_MASK preprocessor macro is provided to calculate these masks
Given a type code, it returns the bit mask. For example, to specify a bit mask fo
the integer types:

IDL_TYP_MASK(IDL_TYP_BYTE)|IDL_TYP_MASK(IDL_TYP_INT)|
IDL_TYP_MASK(IDL_TYP_LONG)

Specifying all the possible types would require a long statement similar to the o
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.
Type Codes External Development Guide

Chapter 8: IDL Internals: Types 163

s are
ing

rect
s 64-
Mapping Of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX , IDL_TYP_DCOMPLEX , andIDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structure
built out of the basic types by laying them out in memory in the specified order us
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR is defined to be unsigned char inexport.h .

Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined inexport.h.

Long Integer Data

IDL long integers are defined to be 32-bits in size. The C long data type is not cor
on all systems because C compilers for 64-bit architectures usually define long a
bits. Hence, theIDL_LONG typedef, declared inexport.h is used instead.

Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-bit data type and is defined inexport.h .

64-bit Integer Data

IDL_LONG64 represents the 64-bit data type and is defined inexport.h .

Unsigned 64-bit Integer Data

IDL_ULONG64 represents the unsigned 64-bit data type and is defined in
export.h .

Complex Data

TheIDL_TYP_COMPLEX andIDL_TYP_DCOMPLEX data types are defined
by the following C declarations:

typedef struct { float r, i; } IDL_COMPLEX;
typedef struct { double r, i; } IDL_DCOMPLEX;
External Development Guide Mapping Of Basic Types

164 Chapter 8: IDL Internals: Types

data

e

ed.

 of
This is the same mapping used by Fortran compilers to implement their complex
types, which allows sharing binary data with such programs.

String Data

TheIDL_TYP_STRING data type is implemented by a string descriptor:

typedef struct {
unsigned short slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} IDL_STRING;

The fields of theIDL_STRING struct are defined as follows:

slen

The length of the string, not counting the null termination. For example, th
string “Hello” has 5 characters.

stype

If stype is zero, the string pointed at bys (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero,s points at a string
allocated from dynamic memory, and should be freed before being replac
For information on dynamic memory, see“Dynamic Memory” on page 280
and“Getting Dynamic Memory” on page 188.

s

If slen is non-zero,s is a pointer to a null-terminated string ofslen characters.
If slen is zero,s should not be used. The use of a string pointer to memory
located outside theIDL_STRING structure itself allows IDL strings to have
dynamically-variable lengths.

Note
Strings are the most complicated basic data type, and as such, are at the root
more coding errors than the other types. See“IDL Internals: String Processing” on
page 213.
Mapping Of Basic Types External Development Guide

Chapter 8: IDL Internals: Types 165

thers

to

d

ode
l
used,
IDL_MEMINT and IDL_FILEINT Types

Most of the IDL-supported operating systems limit memory and file lengths to a
signed 32-bit integer (approximately 2.3 GB). These limitations may change
dramatically in the future: some systems have 64-bit memory capabilities and o
support files longer than 231-1 bytes. IDL internals use two special types,
IDL_TYP_MEMINT (data type IDL_MEMINT) and IDL_TYP_FILEINT (data type
IDL_FILEINT) to represent memory and file length limits. Use these special types
ease the evolutionary move to larger memory and files.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappings to the IDL types discussed in“Mapping Of Basic Types” on
page 163. IDL is currently limited to 32-bit signed (231-1) bytes of memory, meaning
that IDL_TYP_MEMINT is currently mapped to IDL_TYP_LONG. On some
systems, IDL allows access to files larger than 32-bits; IDL_TYP_FILEINT is
mapped to IDL_TYP_LONG64. On other systems, IDL_TYP_FILEINT is mappe
to IDL_TYP_LONG.

As an IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your c
runs properly on all systems, use them in the appropriate places without specia
interpretation. These types can be used anywhere that a normal IDL type can be
such as in keyword processing.

Programmers should be aware of the IDL_MEMINTScalar() and
IDL_FILEINTScalar() functions, described in“Converting Arguments to C Scalars”
on page 234.
External Development Guide IDL_MEMINT and IDL_FILEINT Types

166 Chapter 8: IDL Internals: Types
IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 9:

IDL Internals:
Variables

This chapter discusses the following topics:
IDL and Internal Variables 168
The IDL_VARIABLE Structure. 169
Scalar Variables. 172
Array Variables. 173
Structure Variables 175
Heap Variables . 180
Temporary Variables. 181
Creating an Array from Existing Data . . . 186

Getting Dynamic Memory. 188
Accessing Variable Data 190
Copying Variables 191
Storing Scalar Values. 192
Obtaining the Name of a Variable 194
Looking Up Main Program Variables 195
Looking Up Variables in Current Scope . . 196
External Development Guide 167

168 Chapter 9: IDL Internals: Variables

ile
t fits
IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. Wh
reading this chapter, you should refer to the following figure to see how each par
into the overall structure of an IDL variable.

Figure 9-1: Structure of an IDL variable

IDL_MEMINT elt_len
IDL_MEMINT arr_len
IDL_MEMINT n_elts
UCHAR *data
UCHAR n_dim
UCHAR flags
short file_unit
IDL_ARRAY_DIM dim
IDL_ARRAY_FREE_CB free_cb
IDL_FILEINT offset
IDL_LONG data_guard

Usually, data followed by a
trailing data guard.

Imported Data

UCHAR c
short i
UINT ui
IDL_LONG l
IDL_ULONG ul
IDL_LONG64 l64

float f
double d

IDL_COMPLEX <struct>
cmp float r

float i

IDL_DCOMPLEX <struct>
dcmp double r

double i

IDL_STRING <struct>
str unsigned short slen

short stype
char *s

IDL_ARRAY *arr
IDL_HVID hvid

IDL_SREF s <struct>
IDL_ARRAY *arr
IDL_STRUCTURE *sdef

Structures and object

definitions (opaque)

32-bit Assoc offset

IDL_ULONG ul64

UCHAR type
UCHAR flags

IDL_ALLTYPES value <union>

Normal
case
IDL and Internal Variables External Development Guide

Chapter 9: IDL Internals: Variables 169

tures

is
n

 of
The IDL_VARIABLE Structure

IDL variables are represented byIDL_VARIABLE structures. The definition of
IDL_VARIABLE is as follows:

typedef struct {
UCHAR type;
UCHAR flags;
IDL_ALLTYPES value;

} IDL_VARIABLE;

An IDL_VPTR is a pointer to anIDL_VARIABLE structure:

typedef IDL_VARIABLE *IDL_VPTR;

TheIDL_ALLTYPES union is defined as:

typedef union {
UCHAR c; /* Scalar IDL_TYP_BYTE */
short i; /* Scalar IDL_TYP_INT */
IDL_UINT ui; /* Unsigned short integer value */
IDL_LONG l; /* Scalar IDL_TYP_LONG */
IDL_ULONG ul; /* Unsigned long value */

 IDL_LONG64 l64; /* 64-bit integer value */
 IDL_ULONG64 ul64; /* Unsigned 64-bit integer value */

float f; /* Scalar IDL_TYP_FLOAT */
double d; /* Scalar IDL_TYP_DOUBLE */
IDL_COMPLEX cmp; /* Scalar IDL_TYP_COMPLEX */
IDL_DCOMPLEX dcmp; /* Scalar IDL_TYP_DCOMPLEX */
IDL_STRING str; /* Scalar IDL_TYP_STRING */
IDL_ARRAY *arr; /* Pointer to array descriptor */
IDL_SREF s; /* Structure descriptor */
IDL_HVID hvid; /* Heap variable identifier */

}IDL_ALLTYPES;

The basic scalar types are contained directly in this union, while arrays and struc
are represented by theIDL_ARRAY andIDL_SREF structures that are discussed
later in this chapter. The type field of theIDL_VARIABLE structure contains one of
the type codes discussed in“Type Codes” on page 160. When a variable is initially
created, it is given the type codeIDL_TYP_UNDEF , indicating that the variable
contains no value.

Theflags field is a bit mask that specifies information about the variable. As a
programmer adding code to the IDL system, you will rarely need to set bits in th
mask. These bits are set by whatever portion of IDL created the variable. You ca
check them to make sure the characteristics of the variable fit the requirements
External Development Guide The IDL_VARIABLE Structure

170 Chapter 9: IDL Internals: Variables

k

 the
on

e

ch
ns on

rm

E

your routine (see“Checking Arguments” on page 231). The defined bits in the mas
are:

IDL_V_CONST

If this flag is set, the variable is actually a constant. This means that storage for
IDL_VARIABLE resides inside the code section of the user procedure or functi
that used it. The IDL compiler generates suchIDL_VARIABLE s when an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A

causes the compiler to generate a constant for the “23”. You must not change th
value of this type of “variable”.

IDL_V_TEMP

If this flag is set, the variable is a temporary variable. IDL maintains a pool of
namelessIDL_VARIABLE s that can be checked out and returned as needed. Su
variables are used by the interpreter to temporarily store the results of expressio
the stack. For example, the statement:

PRINT, 2 * 3

will cause the interpreter to go through a sequence of events similar to:

1. Push a constant variable for the 2 on the stack.

2. Push a constant variable for the 3 on the stack.

3. Allocate a temporary variable, pop the two constants from the stack, perfo
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.

5. Call thePRINT system procedure specifying one argument.

6. Remove the argument toPRINT from the stack, and return the temporary
variable.

Temporary variables are also used inside user procedures and functions. See
“Temporary Variables” on page 181.

IDL_V_ARR

If this flag is set, the variable is an array, and the value field of the IDL_VARIABL
points to an array descriptor.
The IDL_VARIABLE Structure External Development Guide

Chapter 9: IDL Internals: Variables 171

ion.

, all
IDL_V_FILE

If this flag is set, the variable is a file variable, as created by IDL’s ASSOC funct

IDL_V_DYNAMIC

If this flag is set, the memory used by thisIDL_VARIABLE is dynamically
allocated. This bit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced via the string pointer is
dynamic).

IDL_V_STRUCT

If this flag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons
structure variables are also arrays, soIDL_V_STRUCT also impliesIDL_V_ARR .
Therefore, it is impossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their type field set toIDL_TYP_STRUCT , the
IDL_V_STRUCT bit is redundant. It exists for efficiency reasons.
External Development Guide The IDL_VARIABLE Structure

172 Chapter 9: IDL Internals: Variables

L

Scalar Variables

A scalarIDL_VARIABLE is distinguished by not having theIDL_V_ARR bit set in
its flags field. A scalar variable must have one of the thirteen basic data types (ID
structures are never scalar). The data for a scalar variable is stored in the
IDL_VARIABLE itself, using theIDL_ALLTYPES union. The following table
gives the relationship between the data type and the field used.

Scalar Data Type Field that Stores
Data

IDL_TYP_UNDEF None.

IDL_TYP_BYTE value.c

IDL_TYP_INT value.i

IDL_TYP_UINT value.ui

IDL_TYP_LONG value.l

IDL_TYP_ULONG value.ul

IDL_TYP_LONG64 value.l64

IDL_TYP_ULONG64 value.ul64

IDL_TYP_FLOAT value.f

IDL_TYP_DOUBLE value.d

IDL_TYP_COMPLEX value.cmp

IDL_TYP_DCOMPLEX value.dcmp

IDL_TYP_STRING value.str

Table 9-1: Scalar Variable Data Locations
Scalar Variables External Development Guide

Chapter 9: IDL Internals: Variables 173

keep
 get

the
ame
t the
fsets

ect
Array Variables

Array variables have the IDL_V_ARR bit of theirflags field set, and thevalue.arr
field points to an array descriptor defined by theIDL_ARRAY structure:

typedef struct {
IDL_MEMINT elt_len;
IDL_MEMINT arr_len;
IDL_MEMINT n_elts;
char *data;
UCHAR n_dim;
UCHAR flags;
short file_unit;
IDL_ARRAY_DIM dim;

} IDL_ARRAY;

The meaning of the fields of an array descriptor are:

elt_len

The length of each array element in bytes (chars). The array descriptor does not
track of the types of the array elements, only their lengths. Single elements can
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align
data along required boundaries. On a given platform, IDL creates structures the s
way a C compiler does on that platform. As a result, you should not assume tha
size of a structure is the sum of the sizes of the structure fields, or that the field of
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts

The number of elements in the array.

data

A pointer to the data area for the array. This is a region of dynamically allocated
memoryarr_len bytes long. This pointer should be cast to be a pointer of the corr
type for the data being manipulated. For example, if the array variable being
External Development Guide Array Variables

174 Chapter 9: IDL Internals: Variables

e is

ed

be
processed is pointed at by anIDL_VPTR namedv and containsIDL_TYP_INT
data:

short *data; /* Declare a pointer variable */
data = (short *) v->value.arr->data;

n_dim

The number of array dimensions. The constantIDL_MAX_ARRAY_DIM defines
the upper limit of this value.

flags

A bit mask that specifies characteristics of the array. Currently, only one bit valu
defined for this field:

IDL_A_FILE — This flag indicates that the array is a file variable, as creat
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The data field of the
IDL_ARRAY structure does not contain useful information, and should not
used.

file_unit

When theIDL_A_FILE bit is set in theflags field,file_unit contains the IDL
Logical Unit Number associated with the variable.

dim

An array that contains the dimensions of the IDL variable. There can be up to
IDL_MAX_ARRAY_DIM dimensions. Thenumber of dimensions in the current
array is given by then_dim field.
Array Variables External Development Guide

Chapter 9: IDL Internals: Variables 175

e it
o
e

Structure Variables

Structure variables have the type codeIDL_TYP_STRUCT . They also have the
IDL_V_STRUCT bit set in theirflags field. Thevalue.s field of such a variable
contains a structure descriptor defined by theIDL_SREF structure:

typedef struct {
IDL_ARRAY *arr; /* ^ to IDL_ARRAY containing data */
void *sdef; /* ^ to structure definition */

} IDL_SREF;

Thearr field points at an array block, as described on page173. It is worth noting
that in the definition of theIDL_ALLTYPES union (described on page169), thearr
field is a pointer toIDL_ARRAY , while thesfield is anIDL_SREF, a structure that
contains a pointer toIDL_ARRAY as its first member.

The resulting definition looks like:

union {
IDL_ARRAY arr;
struct {

IDL_ARRAY arr;
void *sdef;

} s;
} value;

Due to the way C lays out fields in structs and unions,value.arr will have the same
offset and size within the value union asvalue.s.arr. Therefore, it is possible to
access the array block of a structure variable asvar->value.arr rather than the more
correctvar->value.s.arr. You should avoid use of this shorthand, however, becaus
is not strictly correct usage and because Research Systems reserves the right t
change theIDL_SREF definition in a way that could cause the memory layout of th
ALLTYPES union to change.

Creating Structures

The actual structure definition is accessed through thesdeffield, which is a pointer to
an opaque IDL structure definition. Although the implementation of structure
definitions is not public information, they can be created using the
IDL_MakeStruct() function from a structure name and a list of tags:

void *IDL_MakeStruct(char *name, IDL_STRUCT_TAG_DEF *tags)

name

The name of the structure definition, or NULL for anonymous structures.
External Development Guide Structure Variables

176 Chapter 9: IDL Internals: Variables

st
he

.g.,

that
tags

An array ofIDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed toIDL_ImportArray() or
IDL_ImportNamedArray() , as described on page186.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *name;
IDL_LONG *dims;
void *type;
UCHAR flags;

} IDL_STRUCT_TAG_DEF;

name

Null-terminated uppercase name of the tag.

dims

An array that contains information about the dimensions of the structure. The fir
element of this array is the number of dimensions. Following elements contain t
size of each dimension.

type

Either a pointer to another structure definition, or a simple IDL type cast to void (e
(void *) IDL_TYP_BYTE).

flags

This field is reserved to RSI, and must be set to 0.

The following example shows how to define an anonymous structure. Suppose
you want to create a structure whose definition in the IDL language is:

{TAG1: 0L, TAG2: FLTARR(2,3,4), TAG3: STRARR(10)}

It can be created withIDL_MakeStruct() as follows:

static IDL_LONG one = 1;
static IDL_LONG tag2_dims[] = { 3, 2, 3, 4};
static IDL_LONG tag3_dims[] = { 1, 10 };
static IDL_STRUCT_TAG_DEF s_tags[] = {

{ "TAG1", 0, (void *) IDL_TYP_LONG},
{ "TAG2", tag2_dims, (void *) IDL_TYP_FLOAT},
{ "TAG3", tag3_dims, (void *) IDL_TYP_STRING},
{ 0 }

};
Structure Variables External Development Guide

Chapter 9: IDL Internals: Variables 177

ta

e

typedef struct data_struct {
IDL_LONG tag1_data;
float tag2_data [2] [3] [4];
IDL_STRING tag_3_data [10];

} DATA_STRUCT;
static DATA_STRUCT s_data;
void *s;
IDL_VPTR v;

/* Create the structure definition */
s = IDL_MakeStruct(0, s_tags);
/* Import the data area s_data into an IDL structure,

note that no data are moved. */
v = IDL_ImportArray(1, &one, IDL_TYP_STRUCT,

(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opaque IDL structure definition, you can determine the offset of the da
and a description of its size and form (scalar, array, etc) for a given tag.
IDL_StructTagInfoByName() returns this information given the name of the tag.
IDL_StructTagInfoByIndex() does the same thing, given the numeric index of th
tag. They are essentially the same routine, althoughIDL_StructTagInfoByIndex()
is slightly more efficient:

IDL_LONG IDL_StructTagInfoByName(IDL_StructDefPtr sdef, char
*name,

int msg_action, IDL_VPTR *var)
IDL_LONG IDL_StructTagInfoByIndex(IDL_StructDefPtr sdef, int
index, int msg_action, IDL_VPTR *var)

where:

sdef

Structure definition for which offset is needed.

name (IDL_StructTagInfoByName)

Name of tag for which information is required.

index (IDL_StructTagInfoByIndex)

Zero based index of tag for which information is required.

msg_action

The parameter that will be passed directly toIDL_Message() if the specified tag
cannot be found in the supplied structure definition.
External Development Guide Structure Variables

178 Chapter 9: IDL Internals: Variables

ulting
e
nter

g, a

ake
var

NULL, or the address of anIDL_VPTR to be filled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the res
call to IDL_Message() returns to the caller, a -1 is returned. The data offset can b
added to the data pointer of an IDL variable of this structure type to obtain a poi
to the actual data for that tag.

If the tag is successfully located and the var argument is non-NULL, theIDL_VPTR
it points at is filled in with a pointer to anIDL_VARIABLE structure that describes
the type and organization of the tag. It is important to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array ta
valid data pointer). Hence, the data part of theIDL_VARIABLE description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition has in order to m
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_StructNumTags(IDL_StructDefPtr sdef)

where:

sdef

Structure definition for which offset is needed.

Determining the Names Of Structures and their Tags

TheIDL_StructTagNameByIndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *IDL_StructTagNameByIndex(IDL_StructDefPtr sdef, int index,
int msg_action, char **struct_name)

where:

sdef

Structure definition for which name information is needed.

index

Zero based index of tag within the structure.
Structure Variables External Development Guide

Chapter 9: IDL Internals: Variables 179

 to

to

 be
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to be filled in with a pointer
the name of the structure. If the structure is anonymous, the string
“<Anonymous>” is returned.

On success, a pointer to the tag name is returned. On error, if the resulting call
IDL_Message()returns to the caller, a NULL pointer is returned.

All strings returned by this function must be considered read-only, and must not
modified by the caller.
External Development Guide Structure Variables

180 Chapter 9: IDL Internals: Variables

ap

ular
Heap Variables

Direct access to pointer and object reference heap variables (typesIDL_TYP_PTR
andIDL_TYP_OBJREF , respectively) is not allowed. Rather than accessing the he
variable directly, store the value of the heap variable (an IDL pointer or object
reference) in a regular IDL variable at the IDL user level. Access the data in the reg
variable, then store the results back in the heap variable (via the pointer or object
reference) when done.

Note
You can use IDL’s TEMPORARY function to avoid making copies of the data.
Heap Variables External Development Guide

Chapter 9: IDL Internals: Variables 181

ary
s and
tain

turn
ou

xit
mic

 an
d
rn,

here
ment:

h

.

Temporary Variables

As discussed previously, IDL maintains a pool of nameless variables known as
temporary variables. These variables are used by the interpreter to hold tempor
results from evaluating expressions, and are also used within system procedure
functions that need temporary workspace. In addition, system functions often ob
a temporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

• All temporaries, when initially allocated, are of typeIDL_TYP_UNDEF .

• Temporary variables do not have a name associated with them.

• Routines that check out temporaries must either check them back in or re
them as the result of the function. Once you return a temporary variable, y
cannot access it again.

• Temporary variables are reclaimed by the interpreter when it is about to e
after executing a program, so it is not possible to lose them and leak dyna
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If the interpreter is exiting because
error was detected, allocated temporaries are expected, and are reclaime
quietly. Hence, your routines need only return temporaries on normal retu
not before issuing errors. See“IDL Internals: Error Handling” on page 221.

The interpreter uses temporary variables to hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack w
they are often passed as arguments to other routines. For example, the IDL state

PRINT, MAX(FINDGEN(100))

causes the interpreter to perform the following steps:

1. Push a constant variable with the value 100 onto the stack.

2. Call the system function FINDGEN, passing it one argument.

3. FINDGEN returns a temporary variable which is a 100-element vector wit
each element set to the value of its index.

4. The interpreter removes the arguments to FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack
External Development Guide Temporary Variables

182 Chapter 9: IDL Internals: Variables

y

a
t.

e

the

e

ns it

 a
rol
5. The MAX system function is called with a single argument—the temporar
result from FINDGEN.

6. MAX finds the largest element in its argument (99), places that value into
temporary scalar variable, and returns that temporary variable as its resul

7. The interpreter removes the argument to MAX from the stack. This was th
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX is then pushed onto
stack.

8. The PRINT system procedure is called with a single argument, which is th
temporary scalar variable from MAX. It prints the value of the variable and
returns.

9. The interpreter removes the argument to PRINT from the stack, and retur
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained via theIDL_Gettmp() function:

IDL_VPTR IDL_Gettmp(void);

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to a temporary
variable. This variable must be returned to the pool of temporary variables (with
call to IDL_Deltmp()) or be returned as the value of a system function before cont
returns to the interpreter, or an error will occur.

Creating a Temporary Array

Temporary array variables can be obtained via theIDL_MakeTempArray()
function:

char *IDL_MakeTempArray(int type, int n_dim, IDL_MEMINT dim[], int
init, IDL_VPTR *var)

where:

type

The type code for the resulting array. See“Type Codes” on page 160.

n_dim

The number of array dimensions. The constantIDL_MAX_ARRAY_DIM defines
the upper limit of this value.
Temporary Variables External Development Guide

Chapter 9: IDL Internals: Variables 183

e

ts
g

le

 of a

rried
dim

An array ofIDL_MAX_ARRAY_DIM elements containing the array dimensions.
Thenumber of dimensions in the array is given by then_dim argument.

init

Specifies the sort of initialization that should be applied to the resulting array. Th
init argument must be one of the following:

IDL_ARR_INI_INDEX — Each element of the array is set to the value of i
index. The INDGEN family of built-in system functions is implemented usin
this feature.

IDL_ARR_INI_NOP — No initialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.
Experience has shown thatIDL_TYP_STRING data should never be left
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore,IDL_TYP_STRING data is zeroed when
IDL_ARR_INI_NOP is specified.

IDL_ARR_INI_ZERO — The data area of the array is zeroed.

var

The address of anIDL_VPTR where the address of the resulting temporary variab
will be put.

The data area of an arrayIDL_VARIABLE is accessible from itsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the data area,IDL_MakeTempArray() returns the data area pointer as its
value. As withIDL_Gettmp() , the variable allocated viaIDL_MakeTempArray()
must be returned to the pool of temporary variables or be returned as the value
system function before control returns to the interpreter, or an error will occur.

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be ca
out more conveniently using theIDL_MakeTempVector() function:

char *IDL_MakeTempVector(int type, IDL_MEMINT dim, int init,
IDL_VPTR *var)

where:
External Development Guide Temporary Variables

184 Chapter 9: IDL Internals: Variables

le

eter,
type, init, var

These arguments are the same as forIDL_MakeTempArray() .

dim

The number of elements in the resulting vector.

Creating a Temporary Structure

TheIDL_MakeTempStruct() allows you to create an IDL structure variable using
memory allocated by IDL, in much the same way thatIDL_MakeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained via the
IDL_MakeTempStruct() function:

char *IDL_MakeTempStruct(IDL_StructDefPtr sdef, int n_dim,
IDL_MEMINT dim[], IDL_VPTR *var, int zero)

where:

sdef

A pointer to the structure definition.

n_dim

The number of structure dimensions. The constantIDL_MAX_ARRAY_DIM
defines the upper limit of this value.

dim

A C array ofIDL_MAX_ARRAY_DIM elements containing the structure
dimensions. Thenumber of dimensions in the array is given by then_dim argument.

var

The address of anIDL_VPTR where the address of the resulting temporary variab
will be put.

The data area of an arrayIDL_VARIABLE is accessible from itsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the data area,IDL_MakeTempStruct() returns the data area pointer as its
value. As withIDL_Gettmp() , the variable allocated viaIDL_MakeTempStruct()
must be returned to the pool of temporary variables (with a call toIDL_Deltmp()) or
be returned as the value of a system function before control returns to the interpr
or an error will occur.
Temporary Variables External Development Guide

Chapter 9: IDL Internals: Variables 185

LSE

rried

rary
zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FA
otherwise. Unless the caller intends to immediately copy a valid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be ca
out more conveniently using theIDL_MakeTempStructVector() function:

char *IDL_MakeTempStructVector(IDL_StructDefPtr sdef, IDL_MEMINT dim,
IDL_VPTR *var, int zero)

where:

sdef, var, zero

These arguments are the same as forIDL_MakeTempStruct() .

dim

The number of elements in the resulting vector.

Freeing A Temporary Variable

UseIDL_Deltmp() to free a temporary variable:

void IDL_Deltmp(IDL_VPTR p)

wherep is anIDL_VPTR to the temporary variable to be returned.IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated a tempo
variable, you may not access it again. There is also a macro namedIDL_DELTMP
which checks its argument to make sure it’s a temporary, and if so, calls
IDL_Deltmp() to return it.
External Development Guide Temporary Variables

186 Chapter 9: IDL Internals: Variables

ta
utine

e,
 The
e
inter

itly
Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose da
points at data you supply rather than having IDL allocate the data space. The ro
IDL_ImportArray() returns a temporary variable, while
IDL_ImportNamedArray() returns a named variable in the current execution scop
creating the new variable if necessary. Your data must already exist in memory.
data area, which can be quite large, is not copied. These functions simply creat
variable and array descriptors that point to the data you supply and return the po
to the resulting variable. Their definitions are:

IDL_VPTR IDL_ImportArray(int n_dim, IDL_MEMINT dim[], int type,
UCHAR *data, IDL_ARRAY_FREE_CB free_cb, void *s)

IDL_VPTR IDL_ImportNamedArray(char *name, int n_dim,
IDL_MEMINT dim[], int type, UCHAR *data,
IDL_ARRAY_FREE_CB free_cb, void *s)

typedef void (* IDL_ARRAY_FREE_CB) (UCHAR *);

where:

name

The name of the variable to be created or modified.

n_dim

The number of dimensions in the array.

dim

An array ofIDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. See“Type Codes” on page 160.

data

A pointer to your array data. Your data will not be modified unless the user explic
modifies elements of the array using subscripts.
Creating an Array from Existing Data External Development Guide

Chapter 9: IDL Internals: Variables 187

e

e

as
tion
The temporary variable returned byIDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also b
assigned to a longer-lived variable usingIDL_VarCopy() .

Note
IDL frees only the memory that it allocates for the descriptors,not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using thefree_cb argument, described below.

free_cb

If non-NULL, free_cbis a pointer to a function that will be called when IDL frees th
array. This feature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such
freeing dynamic memory or releasing shared or mapped memory. The called func
should have no return value and should accept as its argument a(uchar *) , which is a
pointer to the memory to be freed.

s

If the type of the variable isIDL_TYP_STRUCT , s points to the blind structure
definition, as returned byIDL_MakeStruct() .
External Development Guide Creating an Array from Existing Data

188 Chapter 9: IDL Internals: Variables

the

es

ory.

up.

n, if
laim
ded
Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In
C language, the functionsmalloc() andfree() are used for this purpose, while other
languages have their own facilities. IDL provides its own memory allocation routin
(see“Dynamic Memory” on page 280). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic mem
The following code fragment demonstrates how this can happen.

For example, assume that there is a need for 100 IDL_LONG integers:

char *c;

c = (char *) IDL_MemAlloc((unsigned) (sizeof(IDL_LONG) * 100)
(char *) 0, IDL_MSG_RET);

.

.

.
if (some_error_condition) IDL_Message(…, IDL_MSG LONGJMP,…);
.
.
.
IDL_MemFree((void *) c, (char *) 0, IDL_MSG_RET);

In the normal case, the allocated memory is returned exactly as it should be.
However, if an error causes theIDL_Message()function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean

The IDL_GetScratch Function

To solve this problem, use a temporary variable to obtain dynamic memory. The
an error should cause execution to return to the interpreter, the interpreter will rec
the temporary variable and no dynamic memory will be lost. This frequently-nee
operation is provided by theIDL_GetScratch() function:

char *IDL_GetScratch(IDL_VPTR *p, IDL_MEMINT n_elts,
IDL_MEMINT elt_size)

where:

p

The address of anIDL_VPTR that should be set to the address of the temporary
variable allocated.
Getting Dynamic Memory External Development Guide

Chapter 9: IDL Internals: Variables 189

ng the
n_elts

The number of elements for which memory should be allocated.

elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned usi
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
IDL_VPTR v;

c = IDL_GetScratch(&v, 100L, (IDL_LONG) sizeof(IDL_LONG));
.
.
.
if (some error condition) IDL_Message(...,MSG LONGJMP,...);
.
.
.
IDL_Deltmp(v);

Using theIDL_GetScratch() andIDL_Deltmp() functions is similar to using
IDLMemAlloc() directly. In fact, IDL usesIDL_MemAlloc() andIDL_MemFree()
internally to implement array variables. The important difference is that dynamic
memory doesn’t leak when error conditions occur.

To avoid losing dynamic memory, always use theIDL_GetScratch() function in
preference to other ways of allocating dynamic memory, and useIDL_Deltmp() to
return it.
External Development Guide Getting Dynamic Memory

190 Chapter 9: IDL Internals: Variables

ents

inter
Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elem
there are.IDL_VarGetData() can be used to obtain this information:

void IDL_VarGetData(IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

where:

v

The variable for which data is desired.

n

The address of a variable that will hold the number of elements.

pd

The address of variable that will hold a pointer to data, cast to be a pointer to a po
to a character (for example (char **) &myptr).

ensure_simple

If TRUE, this routine calls theIDL_ENSURE_SIMPLE macro on the argumentv to
screen out variables of the types it prevents. Otherwise,IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit,IDL_VarGetData() stores the data count and pointer into the variables
pointed at byn andpd, respectively.
Accessing Variable Data External Development Guide

Chapter 9: IDL Internals: Variables 191

t of
rned
e
nd
Copying Variables

To copy the contents of one variable to another, use theIDL_VarCopy() function:

void IDL_VarCopy(IDL_VPTR src, IDL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() uses the following rules when copying variables:

• If the destination variable already has a dynamic part, this dynamic part is
released.

• The destination becomes a copy of the source.

• If the source is a temporary variable,IDL_VarCopy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic par
the source is given to the destination, and the source variable itself is retu
to the pool of free temporary variables. This is the equivalent of freeing th
temporary variable. Therefore, the variable must not be used any further a
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
special case occurs frequently.
External Development Guide Copying Variables

192 Chapter 9: IDL Internals: Variables

,

ry
Storing Scalar Values

TheIDL_StoreScalar() function sets anIDL_VARIABLE to a scalar value:

void IDL_StoreScalar(IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

where:

dest

An IDL_VPTR to theIDL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. See“Type Codes” on page 160.

value

The address of the IDL_ALLTYPES union that contains the value to store.

If dest is a location that cannot be stored into (for example, a temporary variable
constant, and so on), an error is issued and control returns to the interpreter.
Otherwise, any dynamic part of dest is freed and value is stored into it.

TheIDL_StoreScalarZero() function is a specialized variation of
IDL_StoreScalar(). It stores a zero scalar value of any specified type into the
specified variable:

void IDL_StoreScalarZero(IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

where:

dest

An IDL_VPTR to the IDL_VARIABLE in which the scalar zero should be stored.

type

The type code for the scalar zero value. See“Type Codes” on page 160“.

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function,IDL_StoreScalar() and
IDL_StoreScalarZero() have two very useful side effects:

1. Storing a scalar value in a variable causes IDL to free any dynamic memo
currently used by that variable.
Storing Scalar Values External Development Guide

Chapter 9: IDL Internals: Variables 193

lows
tion.

ent

ng is
2. These routines do the required error checking to make sure the variable al
a new value to be stored into it before performing the actual storage opera

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returns to its caller, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argum
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checki
done, and you’ve improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

IDL_StoreScalarZero(&v, IDL_TYP_LONG);

Error handling is discussed further in“IDL Internals: Error Handling” on page 221.
External Development Guide Storing Scalar Values

194 Chapter 9: IDL Internals: Variables

ion
ve
Obtaining the Name of a Variable

TheIDL_VarName() function returns the name of a variable, constant, or express
given its address. If the item is a named variable, it must be in the currently acti
program unit:

char *IDL_VarName(IDL_VPTR v)
Obtaining the Name of a Variable External Development Guide

Chapter 9: IDL Internals: Variables 195

.

the

e as
e or

.

e

o

Looking Up Main Program Variables

TheIDL_GetVarAddr() function returns the address of amain programvariable,
given its name:

IDL_VPTR IDL_GetVarAddr(char *name)

name

Points to the null terminated name of the variable, which must be in upper case

The return value is NULL if the variable does not exist, otherwise the pointer to
variable is returned.

Alternatively,IDL_GetVarAddr1() will enter a new variable into the symbol table
of the main program if called with the parameterienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation is the sam
IDL_GetVarAddr() . Note that new variables cannot be created if a user procedur
function is active.IDL_GetVarAddr1() is called as shown following:

IDL_VPTR IDL_GetVarAddr1(char *name, int enter)

name

Points to the null-terminated name of the variable, which must be in upper case

ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If ienter is TRUE and the specified variable name does not already exist, it will b
added to the symbol table of the main program. Ifienter is FALSE,
IDL_GetVarAddr1() is equivalent toIDL_GetVarAddr() .

Note that new variables can only be created at the MAIN level. Make sure that n
user procedures or functions are active when you call these function.
External Development Guide Looking Up Main Program Variables

196 Chapter 9: IDL Internals: Variables

t

Looking Up Variables in Current Scope

TheIDL_FindNamedVariable() function returns the address of a variable in the
current execution scope given its name:

IDL_VPTR IDL_FindNamedVariable(char *name, int ienter)

name

Name of the variable to find.

ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If the variable is found (or created ifienter is TRUE), itsIDL_VPTR is returned.
Otherwise, NULL is returned.

Note
Even if ienter is TRUE, this routine can return NULL if creating the variable is no
possible due to memory constrain.
Looking Up Variables in Current Scope External Development Guide

Chapter 10:

IDL Internals:
Keyword Processing

This chapter discusses the following topics:
7

IDL and Keyword Processing. 198
Creating Routines that Accept Keywords. 199
The IDL_KW_PAR Structure. 200
The IDL_KW_ARR_DESC Structure . . . 203

Keyword Processing Options. 204
Processing Keywords. 205
Cleaning Up. 20
Keyword Examples 208
External Development Guide 197

198 Chapter 10: IDL Internals: Keyword Processing

de
y.

rt is
IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They allow a multitu
of options to be specified to a routine in a straightforward, easily understood wa
The price of this added power is that it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effo
well worth it.
IDL and Keyword Processing External Development Guide

Chapter 10: IDL Internals: Keyword Processing 199

e

ing
Creating Routines that Accept Keywords

As described in“Adding System Routines” on page 295, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments by OR-ing the constant
IDL_SYSFUN_DEF_KEYWORDS into theflags field of the
IDL_SYSFUN_DEF2 struct passed toIDL_SysRtnAdd(), or by setting the
KEYWORDS keyword in a call to LINKIMAGE.

Routines defined in this way must be designed to handle keyword processing. A
routine that does not allow keyword processing knows that itsargc argument gives
the number of positional arguments, andargv contains only those positional
arguments. In contrast, a routine that accepts keywords receives anargc that gives
the total number of positional and keyword arguments, and these arguments are
delivered inargv mixed together.

The functionIDL_KWGetParams() is used to process keywords and separate th
positional and keyword arguments. It is passed an array ofIDL_KW_PAR structures
that give information about the allowed keywords and their attributes. Finally, the
IDL_KWCleanup() function is used in certain circumstances to clean up.

More information about these routines and structures can be found in the follow
sections.
External Development Guide Creating Routines that Accept Keywords

200 Chapter 10: IDL Internals: Keyword Processing

g.

he
hem.
 of

 be

L

are

e

The IDL_KW_PAR Structure

TheIDL_KW_PAR struct provides the basic specification for keyword processin
TheIDL_KWGetParams() function is passed a null-terminated array of these
structures.IDL_KW_PAR structures specify which keywords a routine accepts, t
attributes required of them, and the kinds of processing that should be done to t
IDL_KW_PAR structures must be defined in lexical order according to the value
the keyword field.

The definition ofIDL_KW_PAR is:

typedef struct {
char *keyword;
UCHAR type;
unsigned short mask;
unsigned short flags;
int *specified;
char *value;

} IDL_KW_PAR;

where:

keyword

A pointer to a null-terminated string. This is the name of the keyword, and must
entirely upper case. The array ofIDL_KW_PAR structures passed to
IDL_KWGetParams() must be lexically sorted by the strings pointed to by this
field. The final element in the array is signified by setting the keyword field to NUL
((char *) 0).

type

IDL_KWGetParams() automatically converts the keywords to a specified type.
This field specifies the desired type code. For scalars, the only allowable types
IDL_TYP_LONG, IDL_TYP_FLOAT, IDL_TYP_DOUBLE , and
IDL_TYP_STRING . Any type can be specified for arrays, or for no conversion,
IDL_TYP_UNDEF (0).

mask

The enable mask. This field is ANDed with the mask argument to
IDL_KWGetParams() and if the result is non-zero, the keyword is accepted. If th
result is 0, the keyword is ignored. This ability allows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.
The IDL_KW_PAR Structure External Development Guide

Chapter 10: IDL Internals: Keyword Processing 201

e to

ount
akes

ng

y.

ut
. In
ent,
e

nted
is
For example, the IDL graphics and plotting routines have a large number of
keywords in common. In addition, each routine has a few keywords that are uniqu
it. Keywords are implemented using a single shared array ofIDL_KW_PAR with
appropriate values of the mask field. This technique dramatically reduces the am
of data that would otherwise be required by graphics keyword processing, and m
IDL easier to maintain.

flags

This field specifies special processing instructions. It is a bit mask made by ORi
the following values:

IDL_KW_ARRAY — Set this bit to specify that the keyword must be an arra
Otherwise, a scalar is required.

IDL_KW_OUT — Set this bit to indicate that the keyword specifies an outp
parameter, passed by reference. Expressions and constants are excluded
other words, the routine is going to change the value of the keyword argum
as opposed to the more usual case of simply reading it. The address of th
IDL_VARIABLE will be placed in theIDL_VPTR pointed to by the value
field (discussed below).IDL_KW_OUT implies that no type checking or
processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for positional
arguments.

A standard approach to find out if anIDL_KW_OUT parameter is present in a
call to a system routine is to specifyIDL_TYP_UNDEF (0) for the type field
andIDL_KW_OUT | IDL_KW_ZERO for flags. TheIDL_VPTR pointed to
by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE .

IDL_KW_VIN — Set this bit to indicate that the keyword parameter is an
input parameter passed by reference. The address of theIDL_VARIABLE or
expression is stored in the value field as withIDL_KW_OUT . Expressions
and/or constants are valid. IfIDL_KW_VIN is specified,IDL_KWCleanup()
must be called with aIDL_KW_MARK parameter before
IDL_KWGetParams() is called.IDL_KWCleanup() must be called with a
IDL_KW_CLEAN parameter before your routine exits to properly return
temporary variables that may have been allocated byIDL_KWGetParams() .

IDL_KW_ZERO — Set this bit in order tozerothe C variable pointed to by
the value field before parsing the keywords. This means that the object poi
to by value will always be zero unless it was specified by the user. Use th
technique to create keywords that have Boolean (on or off) meanings.
External Development Guide The IDL_KW_PAR Structure

202 Chapter 10: IDL Internals: Keyword Processing

e

)
ould
IDL_KW_VALUE — If this bit is set and the specified keyword is present, th
low 12 bits of this field (flags) will be bitwise ORed with the longword pointed
to by thevalue field. Note that this implies theIDL_TYP_LONG type code,
and is incompatible with theIDL_KW_ARRAY andIDL_KW_OUT flags.

specified

The address of a C int variable that will be set to TRUE (non-zero) or FALSE (0
based on whether the routine was called with the keyword present. This field sh
be set to NULL ((int *) 0) if this information is not needed.

value

If the keyword is a read-only scalar, this field is a pointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONG64, IDL_ULONG64, float,
double, or IDL_STRING).

In the case of a read-only array, value is a pointer to anIDL_KW_ARR_DESC ,
which is discussed in“The IDL_KW_ARR_DESC Structure” on page 203. In the
case of an output variable (i.e., theIDL_KW_OUT flag is set), this field should point
to anIDL_VPTR that will be filled byIDL_KWGetParams() with the address of
the keyword argument.
The IDL_KW_PAR Structure External Development Guide

Chapter 10: IDL Internals: Keyword Processing 203

ped

 by
The IDL_KW_ARR_DESC Structure

When a keyword is specified to be a read-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of theIDL_KW_PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct {
char *data;
int nmin;
int nmax;
int n;

} IDL_KW_ARR_DESC;

where:

data

The address of a C array to receive the data. This array must be of the C type map
into by thetype field of theIDL_KW_PAR struct. For example,IDL_TYP_LONG
maps into a CIDL_LONG . There must benmax elements in the array.

nmin

The minimum number of elements allowed.

nmax

The maximum number of elements allowed.

n

The number of elements actually present. Unlike the other fields, this field is set
IDL_KWGetParams() .
External Development Guide The IDL_KW_ARR_DESC Structure

204 Chapter 10: IDL Internals: Keyword Processing

em
ents

re,
ut

self,

ast
Keyword Processing Options

The following cases occur in keyword processing:

Scalar Input-Only

For scalar, input-only keywords, the user never sees theIDL_VARIABLE passed as
the keyword argument. Instead, the value of theIDL_VARIABLE is converted to the
type specified by thetype field of theIDL_KW_PAR struct and is placed into the C
variable specified by thevalue field.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that thevalue
field points to anIDL_KW_ARR_DESC struct that supplies the added information
required to convert the passed array elements to the specified type and place th
into a C array for easy access. As part of this process, the number of array elem
passed is checked to be within the range specified in theIDL_KW_ARR_DESC
struct, and if no error results, the number is written into then field of that struct.

It is worth noting that input-only array keywords don’t pass information about the
number of dimensions or their sizes, only the total number of elements. Therefo
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Outp
keyword instead.

Input/Output

This case occurs if theIDL_KW_OUT or IDL_KW_VIN flag is set in the
IDL_KW_PAR struct. In this case, you receive theIDL_VPTR to the actual
keyword argument, and you must do all error checking and type conversion your
just like with positional arguments. This is certainly the most flexible method.
However, the other two cases are much easier to use, and are suitable for the v
majority of keywords.
Keyword Processing Options External Development Guide

Chapter 10: IDL Internals: Keyword Processing 205

e.

e

stem

le
Processing Keywords

TheIDL_KWGetParams() function is used to process keywords.
IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

• Verify that the keywords passed to the routine are all allowed by the routin

• Carry out the type checking and conversions required for each keyword.

• Find the positional (non-keyword) arguments that are scattered among th
keyword arguments inargv and copy them in order into theplain_args array.

• Return the number of plain arguments copied intoplain_args.

IDL_KWGetParams() has the form:

int IDL_KWGetParams(int argc, IDL_VPTR *argv,char *argk,
IDL_KW_PAR *kw_list, IDL_VPTR plain_args[], int mask)

where:

argc

The number of arguments passed to the caller. This is the first parameter to all sy
routines.

argv

The array ofIDL_VPTR to arguments that was passed to the caller. This is the
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. This is the third
parameter to all system routines that accept keyword arguments.

kw_list

An array ofIDL_KW_PAR structures (see“The IDL_KW_PAR Structure” on
page 200) that specifies the acceptable keywords for this routine. This array is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

plain_args

An array ofIDL_VPTR into which theIDL_VPTR s of the positional arguments will
be copied. This array must have enough elements to hold the maximum possib
number of positional arguments, as defined inIDL_SYSFUN_DEF2. See“Don’t
External Development Guide Processing Keywords

206 Chapter 10: IDL Internals: Keyword Processing

 the

d
d is

of
elds
ew

r

allow the macros used in the above switch statement to remain defined beyond
scope of this function.” on page 316.

mask

Mask enable. This variable is ANDed with the mask field of eachIDL_KW_PAR
struct in the array given bykw_list. If the result is non-zero, the keyword is accepte
as a valid keyword for the called system routine. If the result is zero, the keywor
ignored.

Speeding Keyword Processing

As mentioned above, thekw_list argument toIDL_KWGetParams() is a null
terminated list ofIDL_KW_PAR structures. The time required to scan each item
the keyword array and zero the required fields (those fields specified, and value fi
with IDL_KW_ZERO set), can become significant, especially when more than a f
keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specifyIDL_KW_FAST_SCAN as the first keyword array
element. IfIDL_KW_FAST_SCAN is the first keyword array element, the keyword
array is compiled byIDL_KWGetParams() into a more efficient form the first time
it is used. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage ofIDL_KW_FAST_SCAN is optional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. Fo
example, the following list does not use fast scanning:

static IDL_KW_PAR kw_pars[] = {
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) },
{ NULL }

};

To use fast scanning, it would be written as:

static IDL_KW_PAR kw_pars[] = {
IDL_KW_FAST_SCAN,
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) },
{ NULL }

};
Processing Keywords External Development Guide

Chapter 10: IDL Internals: Keyword Processing 207

m

st be

ing
Cleaning Up

TheIDL_KWCleanup() function is necessary if the keywords allowed by a syste
routine include any input-only keywords of typeIDL_TYP_STRING , or if the
IDL_KW_VIN flag is used by any of the keywordIDL_KW_PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that mu
cleaned up after they’ve outlived their usefulness. CallIDL_KWCleanup() as
follows:

void IDL_KWCleanup(int fcn)

wherefcn specifies the operation to be performed, and must be one of the follow
values:

IDL_KW_MARK

Mark the stack by placing the statement:

IDL_KWCleanup(IDL_KW_MARK);

above the call toIDL_KWGetParams() . In addition, you will need to make a call
with IDL_KW_CLEAN at the end.

IDL_KW_CLEAN

Clean up from the last call toIDL_KWGetParams() by placing the line:

IDL_KWCleanup(IDL_KW_CLEAN);

just above thereturn statement.
External Development Guide Cleaning Up

208 Chapter 10: IDL Internals: Keyword Processing

. It

mbers

,

Keyword Examples

The following C function implements KEYWORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for a routine
prints the values of its keywords, changes the value of READWRITE to 42 if it is
present, and returns. Each line is numbered to make discussion easier. These nu
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in a simple
uncluttered example. In actual code, you would not use theprintf mechanism used
on lines 35-39.

C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <stdio.h>

#include <export.h>

void keyword_demo(int argc, IDL_VPTR *argv, char *argk)

{

int i;

IDL_ALLTYPES newval;

static int d_there, s_there, arr_there;

static IDL_LONG l;

static float f;

static double d;

static IDL_STRING s;

static IDL_LONG arr_data[10];

static IDL_KW_ARRAY_DESC arr_d = {(char *) arr_data,3,10,0};

static IDL_VPTR var;

static IDL_KW_PAR kw_pars[] = { IDL_KW_FAST_SCAN,

{ "ARRAY", IDL_TYP_LONG, 1, IDL_KW_ARRAY, &arr_there,

IDL_CHARA(arr_d) },

{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, IDL_CHARA(d) },

{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, IDL_CHARA(f) },

{ "LONG", IDL_TYP_LONG, 1, IDL_KW_ZERO|IDL_KW_VALUE|15, 0,

IDL_CHARA(l) },

{ "READWRITE", IDL_TYP_UNDEF, 1, IDL_KW_OUT|IDL_KW_ZERO,

0, IDL_CHARA(var) },

{ "STRING",TYP_STRING, 1, 0, &s_there, IDL_CHARA(s) },

{ NULL }

};
Keyword Examples External Development Guide

Chapter 10: IDL Internals: Keyword Processing 209
Executing this routine from the IDL command line, by entering:

KEYWORD_DEMO

gives the output:

LONG: <not present>
FLOAT: 0.000000
DOUBLE: <not present>
STRING: <not present>
ARRAY: <not present>
READWRITE: <not present>

Executing it again with keywords specified:

A = 56
KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$

STRING="hello", ARRAY=FINDGEN(10), READWRITE=A
PRINT, 'Final Value of A: ', A

C

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

IDL_KWCleanup(IDL_KW_MARK);

(void) IDL_KWGetParams(argc, argv, argk, kw_pars, NULL, 1);

printf("LONG: <%spresent>\n", l ? "": "not ");

printf("FLOAT: %f\n", f);

printf("DOUBLE: <%spresent>\n", d_there ? "": "not ");

printf("STRING: %s\n", s_there ? IDL_STRING_STR(&s) : "<not present>");

printf("ARRAY: ");

if (arr_there)

for (i = 0; i < arr_d.n; i++)

printf(" %d", arr_data[i]);

else

printf("<not present>");

printf("\n");

printf("READWRITE: ");

if (var) {

IDL_Print(1, &var, (char *) 0);

newval.l = 42;

IDL_StoreScalar(var, TYP_LONG, &newval);

} else {

printf("<not present>");

}

printf("\n");

IDL_KWCleanup(IDL_KW_CLEAN);

}

External Development Guide Keyword Examples

210 Chapter 10: IDL Internals: Keyword Processing

sing

in

ll the
piler

y

e.
gives the output:

LONG: <present>
FLOAT: 2.000000
DOUBLE: <present>
STRING: hello
ARRAY: 0 1 2 3 4 5 6 7 8 9
READWRITE: 56
Final Value of A: 42

Those features of this procedure that are interesting in terms of keyword proces
are, by line number:

7

TheIDL_StoreScalar() function used on line 51 requires the scalar to be provided
anIDL_ALLTYPES struct.

9

These variables are used to determine if a given keyword is present. Note that a
keyword-related variables are declared static. This is necessary so that the C com
can build theIDL_KW_PAR structure at compile time.

10 – 13

C variables to receive the scalar read-only keyword values.

14

C array to be used for the ARRAY read-only array keyword.

15

The array descriptor used for ARRAY.arr_data is the address where the array
contents should be copied. The minimum number of elements allowed is 3, the
maximum is 10. The value set in the last field (0) is not important, because the
keyword processing routine never reads its value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword uses theIDL_KW_OUT flag, so the routine receives an
IDL_VPTR instead of a processed value.

18

The keyword definition array. Notice that all of the keywords are ordered lexicall
(ASCII) and that there is a NULL entry at the end (line 28). Also, all of the mask
fields are set to 1, as is the mask argument toIDL_KWGetParams() on line 33. This
means that all of the keywords in the list are to be considered valid in this routin
Keyword Examples External Development Guide

Chapter 10: IDL Internals: Keyword Processing 211

nt,

 the

the
s
gle,

he
The IDL_KW_FAST_SCAN macro is used to define the first keyword array eleme
speeding the processing of a long IDL_KW_PAR list.

19 – 20

ARRAY is defined to be a read-only array keyword of IDL_TYP_LONG. The
arr_there variable will be set to non-zero if the keyword is present. In that case,
array contents will be placed in the variablearr_data and the number of elements
will be placed intoarr_d.n.

21

DOUBLE is a scalar keyword ofIDL_TYP_DOUBLE . It uses the variabled_there
to know if the keyword is present.

22

FLOAT is anIDL_TYP_FLOAT scalar keyword. It does not use thespecified field
of theIDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it uses theIDL_KW_ZERO flag to make sure that the variablef is always
zeroed. If the keyword is present, the value will be written intof, otherwise it will
remain 0. The important point is that the routine can’t tell the difference between
keyword being absent, or being present with a user-supplied value of zero. If thi
distinction doesn’t matter, such as when the keyword is to serve as an on/off tog
use this method. If it does matter, use the specified field as demonstrated with t
DOUBLE keyword, above.

23 – 24

LONG is a scalar keyword ofIDL_TYP_LONG . It sets theIDL_KW_ZERO flag
to get the variablel zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variablel.

25 – 26

TheIDL_KW_OUT flag indicates that the routine wants gets theIDL_VPTR for
READWRITE if it is present. SinceIDL_KW_ZERO is also set, the variablevar will
be zero unless the keyword is present. The specification ofIDL_TYP_UNDEF here
indicates that there is no type conversion or processing applied toIDL_KW_OUT
keywords.

27

This keyword is included here to force the need forIDL_KWCleanup() on line 58.
External Development Guide Keyword Examples

212 Chapter 10: IDL Internals: Keyword Processing
28

Every array of IDL_KW_PAR structs must end with a NULL entry.

31

Mark the stack in preparation for the IDL_KWCleanup() call on line 58.

33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
this routine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35

The l variable will be 0 if LONG is not present, and 1 if it is.

36

The f variable will always have some usable value, but if it is zero there is no way to
know if the keyword was actually specified or not.

37 – 38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values” on page 215.

39– 45

Accessing the ARRAY keyword is simple. The arr_there variable indicates if the
keyword is present, and arr_d.n gives the number of elements.

47 – 55

Since theREADWRITE keyword isaccessed via theargument’s IDL_VPTR, weuse
the IDL_Print() function to print itsvalue. Thishas thesameeffect asusing theuser-
level PRINT procedure when running IDL. See “Output of IDL Variables” on
page256. Then, we change its value to 42 using IDL_StoreScalar().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_PRINT()) in your own code.

57

The use of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, which is of IDL_TYP_STRING.
Keyword Examples External Development Guide

Chapter 11:

IDL Internals:
String Processing

This chapter discusses the following topics:
String Processing and IDL 214
Accessing IDL_STRING Values 215
Copying Strings. 216

Deleting Strings. 217
Setting an IDL_STRING Value. 218
Obtaining a String of a Given Length 219
External Development Guide 213

214 Chapter 11: IDL Internals: String Processing
String Processing and IDL

A number of functions exist to simplify the processing ofIDL_STRING descriptors.
By using these functions instead of doing your own string management, you can
eliminate a common source of errors.
String Processing and IDL External Development Guide

Chapter 11: IDL Internals: String Processing 215

nt

ng,
ro
Accessing IDL_STRING Values

It is important to realize that thesfield of anIDL_STRING struct does not contain a
valid string pointer in the case of a null string (i.e., whenslen is zero). A common
error that can cause IDL to crash is illustrated by the following code fragment:

void print_str(IDL_STRING *s)
{

printf("%s", s->s);
}

The problem with this code is that it fails to consider the case where the argumes
describes a null string. The proper way to write this code is as follows:

void print str(IDL_STRING *s)
{

printf("%s", IDL_STRING_STR(s));
}

The macroIDL_STRING_STR takes as its argument a pointer to anIDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated stri
otherwise it returns the string pointer from the struct. Consistent use of this mac
will avoid the most common sort of error involving strings.
External Development Guide Accessing IDL_STRING Values

216 Chapter 11: IDL Internals: String Processing

e are

tring.
f the

of
esh
Copying Strings

It is often necessary to copy one string to another. Assume, for example, that ther
two string descriptorss_src ands_dst, and thats_dst contains garbage. It would
almost suffice to simply copy the contents ofs_src into s_dst. The reason this is not
quite correct is that both descriptors would then contain a pointer to the same s
This aliasing can cause some strange effects, or even cause IDL to crash if one o
two descriptors is freed and the string from the other is accessed.

IDL_StrDup() takes care of this problem by allocating memory for a second copy
the string, and replacing the string pointer in the descriptor with a pointer to the fr
copy. Naturally, if the string descriptor is for a null string, nothing is done.

void IDL_StrDup(IDL_STRING *str, IDL_MEMINT n)

where:

str

Pointer to one or moreIDL_STRING descriptors which need their strings
duplicated.

n

The number of descriptors.

The proper way to copy a string is:

s_dst = s_src; /* Copy the descriptor */
IDL_StrDup(&s_dst, 1L); /* Duplicate the string */
Copying Strings External Development Guide

Chapter 11: IDL Internals: String Processing 217

ny

not be
Deleting Strings

Before anIDL_STRING can be discarded or re-used, it is important to release a
dynamic memory it might be using. TheIDL_StrDelete() function should be used to
delete strings:

void IDL_StrDelete(IDL_STRING *str, IDL_MEMINT n)

where:

str

Pointer to one or moreIDL_STRING descriptors which need their contents freed.

n

The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by theIDL_STRING s. The
descriptors contain garbage once this has been done, and their contents should
used.

TheIDL_Deltmp() function automatically callsIDL_StrDelete() when returning
temporary variables of typeIDL_TYP_STRING , so it is not necessary or desirable
to call IDL_StrDelete() explicitly in this case.
External Development Guide Deleting Strings

218 Chapter 11: IDL Internals: String Processing

to
Setting an IDL_STRING Value

TheIDL_StrStore() function should be used to store a null-terminated C string in
anIDL_STRING descriptor:

void IDL_StrStore(IDL_STRING *s, char *fs)

where:

s

Pointer to anIDL_STRING descriptor. This descriptor is assumed to contain
garbage, so callIDL_StrDelete() on it first if this is not the case.

fs

Pointer to the null-terminated string to be copied into s.

IDL_StrStore() is useful for placing a string value into anIDL_STRING . This
IDL_STRING does not need to be a component of aVARIABLE , which makes this
function very flexible.

One often needs a temporary, scalarVARIABLE of typeIDL_TYP_STRING with
a given value. The functionIDL_StrToSTRING() fills this need:

VPTR IDL_StrToSTRING(char *s)

where:

s

Pointer to the null-terminated string to be copied into the resulting temporary
variable.
Setting an IDL_STRING Value External Development Guide

Chapter 11: IDL Internals: String Processing 219

of
w

ing
Obtaining a String of a Given Length

Sometimes you need to make sure that the string in anIDL_STRING descriptor has
a specific length. TheIDL_StrEnsureLength() function can be used in this case:

void IDL_StrEnsureLength(IDL_STRING *s, int n)

where:

s

A pointer to theIDL_STRING that will have its length checked.

n

The number of characters the string must be able to contain, not including the
terminating null character.

If the IDL_STRING passed already has enough room for the specified number
characters, it is not re-allocated. Otherwise, the existing string is freed and a ne
string of sufficient length is allocated. In either case, theslen field of the
IDL_STRING will be set to the requested length.

If a new dynamic string is allocated, it will contain garbage values because
IDL_StrEnsureLength() only allocates memory of the specified size, it does not
copy a value into it. Therefore, the calling routine must copy a null-terminated str
into the new dynamic string.
External Development Guide Obtaining a String of a Given Length

220 Chapter 11: IDL Internals: String Processing
Obtaining a String of a Given Length External Development Guide

Chapter 12:

IDL Internals:
Error Handling

This chapter discusses the following topics:
Message Blocks . 222
Issuing Error Messages. 224
Specifying errno Explicitly. 228

Issuing OpenVMS Messages. 229
Looking Up A Message Code by Name . . 230
Checking Arguments. 231
External Development Guide 221

222 Chapter 12: IDL Internals: Error Handling

when

es
t

nt
Message Blocks

IDL maintains messages in opaque data structures known asMessage Blocks. A
message block contains all the messages for a logically related area.

When IDL starts, there is only one defined block namedIDL_MBLK_CORE ,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DLMs) each define a message block for their error messages
they are loaded (See“Dynamically Loadable Modules”on page 331 for a description
of DLMs).

There are often two versions of IDL message module functions. Those with nam
that end inFromBlock require an explicit message block. The versions that do no
end inFromBlock use the IDL_MBLK_CORE message block.

To define a message block, you must supply an array ofIDL_MSG_DEF structures:

typedef struct {
 char *name;
 char *format;
} IDL_MSG_DEF;

where:

name

A string giving the name of the message. We suggest that you adopt a consiste
unique prefix for all your error codes. All message codes defined by Research
Systems start with the prefixIDL_M_ . You should not use this prefix when naming
your blocks in order to avoid unnecessary name collisions.

format

A format string, in printf(3) format. There is one extension to the printf formatting
codes: If the first two letters of the format are “%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message is issued. For example:

IDL> print, undefined_var
% PRINT: Variable is undefined: UNDEFINED_VAR.

TheIDL_MessageDefineBlock() function is used to define a new message block:

IDL_MSG_BLOCK IDL_MessageDefineBlock
(char *block_name, int n, IDL_MSG_DEF *defs)

The arguments toIDL_MessageDefineBlock() are as follows:
Message Blocks External Development Guide

Chapter 12: IDL Internals: Error Handling 223

pper
likely
art

t
g
oes

rned.

m. If

of the

essor

ns
block_name

Name of the message block. This can be any string, but it will be case folded to u
case. We suggest a single word be used. It is important to pick names that are un
to be used by any other application. All blocks defined by Research Systems st
with the prefixIDL_MBLK_ . You should not use this prefix when naming your
blocks in order to avoid unnecessary confusion.

n

of message definitions pointed at by defs.

defs

An array of message definition structs, each one supplying the name and forma
string for a message in printf(3) format. The memory used for this array, includin
the strings it points at, must be in permanently allocated read-only storage. IDL d
not copy this memory, but simply uses it in place.

If possible, the new message block is defined and an opaque pointer to it is retu
This pointer must be supplied to subsequent calls to the “FromBlock” message
module functions to identify the message block a given error is being issued fro
it is not possible to define the message block, this function returns NULL.

The message functions require a message block pointer and the negative index
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preproc
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contai
two messages:

static IDL_MSG_DEF msg_arr[] =
{
#define M_TM_INPRO 0

{ "M_TM_INPRO", "%NThis is from a loadable module procedure."
},
#define M_TM_INFUN -1
 { "M_TM_INFUN", "%NThis is from a loadable module function."
},
};

msg_block = IDL_MessageDefineBlock("Testmodule",
sizeof(msg_arr)/sizeof(msg_arr[0]),
msg_arr);
External Development Guide Message Blocks

224 Chapter 12: IDL Internals: Error Handling

is a

e two
use

turn

ued.
Issuing Error Messages

Errors are reported using theIDL_Message() or IDL_MessageFromBlock()
functions. These functions are patterned after the standard C libraryprintf() function.

void IDL_Message(int code, int action, ...)
void IDL_MessageFromBlock(IDL_MSG_BLOCK block,int code,int action,
...)

The arguments to are as follows:

block

Pointer to the IDL message block from which the error should be issued. If block
NULL pointer, the default IDL core block (IDL_MBLK_CORE) is used.

code

This is the error code associated with the error message to be issued. There ar
error codes that are available to programmers adding system routines to IDL. The
of these codes is described below. See“IDL_M_GENERIC” on page 227 and
“IDL_M_NAMED_GENERIC” on page 227.

action

IDL_Message() can take a number of different actions after issuing the error
message. The action to take is specified by theaction argument:

IDL_MSG_RET

Use this argument to makeIDL_Message() return to the caller after issuing
the error message. In this case, the calling routine can either continue or re
to the interpreter as it sees fit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is simply
informational in nature. The message is output andIDL_Message()returns to
the caller. Normally,IDL_Message()sets the values of IDL’s !ERR, !ERROR,
and !ERR_STRING system variables, but not in this case.

IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message is iss
This code should never be used in a system function or procedure—it is
intended for use in other sections of the system.
Issuing Error Messages External Development Guide

Chapter 12: IDL Internals: Error Handling 225

the

I/O
, so

.

en
IDL_MSG_LONGJMP

Use this argument to causeIDL_Message() to exit directly back to the
interpreter after issuing the message. In this case,IDL_Message() does not
return to its caller. It is an error to use this action code in code not called by
IDL interpreter since the resulting call tolongjmp() will be invalid.

IDL_MSG_IO_LONGJMP

This action code is exactly likeIDL_MSG_LONGJMP , except that it is
issued in response to an input/output error. This code is only used by the
module. User written system routines should use the existing I/O routines
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code
They modify the normal behavior ofIDL_Message():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything else in the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the Unixmore command to display the output. This
option exists primarily for use by the IDL compiler, and is unlikely to be of
interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL_Message() prefixes the output message with the string
contained in IDL’s !MSG_PREFIX system variable.
IDL_MSG_ATTR_NOPREFIX suppresses this prefix string.

IDL_MSG_ATTR_QUIET

If the IDL_MSG_INFO action has been specified and this bit mask has be
included, and the IDL user has IDL’s !QUIET system variable,
IDL_Message() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE

Set this code to inhibit the traceback portion of the error message.

IDL_MSG_ATTR_BELL

Set this code to ring the bell when the message is output.
External Development Guide Issuing Error Messages

226 Chapter 12: IDL Internals: Error Handling

he

 a

n

a 1,
r

s in
do

or

se

et

ose

y

IDL_MSG_ATTR_SYS

IDL_Message() always issues a single-line error message that describes t
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file”, while the underlying system reaso
for the error is “no such directory”.

The Unix system provides a global variable namederrno for communicating
such system level errors. The OpenVMS Standard C Library (stdio) also
provides this variable. Whenever a call to a system function fails, it returns
and puts an error code intoerrno that specifies the reason for the failure. Othe
functions, such as those provided by the standard C library, do not seterrno.
Note that the OpenVMS stdio contains emulations of the Unix system call
addition to the functions normally found in the Unix stdio. These functions
seterrno.

SpecifyingIDL_MSG_ATTR_SYS tells IDL_Message()to checkerrno, and
if it is non-null, to issue a second line containing the text of the system err
message.

SpecifyIDL_MSG_ATTR_SYS only if you are callingIDL_Message() as
the result of a failed Unix system call. Under OpenVMS, this applies to tho
functions that emulate the Unix system calls. Otherwise,errno might contain
an unrelated garbage value resulting in an incorrect error message.

The Macintosh and Microsoft Windows operating systems haveerrno for
compatibility with the expectations of C programmers, but typically do not s
it. On these operating systems, it is possible to specify
IDL_MSG_ATTR_SYS, but it has no effect.

...

The message format string (specified by thecodeargument) specifies a format
string to be used for the error message. This format string is exactly like th
used by the standard C libraryprintf() function. Any arguments following
action are taken to be arguments for this format string.

Error Codes

As mentioned above, Research Systems has reserved two error codes for use b
writers of system routines. They are:
Issuing Error Messages External Development Guide

Chapter 12: IDL Internals: Error Handling 227

after
ng.

of the
f the

is
IDL_M_GENERIC

This message code simply specifies a format string of “%s”. The first argument
action is taken to be a null-terminated string that is substituted into the format stri
For example, the C statement:

IDL_Message(IDL_M_GENERIC, IDL_MSG_LONGJMP, "Error! Help!")

causes IDL to abort the current routine and issue the message:

% Error! Help!

IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name
system routine in front of the error string. For example, assuming that the name o
routine is MY_PROC, the C statement:

IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
"Error! Help!")

causes IDL to interrupt the current routine and issue the message:

% MY PROC: Error! Help!

Choosing an Error Code

The choice of which code to use depends on the context in which the message
issued, butIDL_M_NAMED_GENERIC is usually preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into a temporary
buffer, and then supply the buffer as the argument toIDL_Message(). For example,
executing the code:

char buf[128];
int unit = 23;

sprintf(buf, "Help! Error number %d.", unit);
IDL_Message(IDL_M_GENERIC, IDL_MSG_LONGJMP, buf);

interrupts the current routine and issues the message:

% Help! Error number 23.
External Development Guide Issuing Error Messages

228 Chapter 12: IDL Internals: Error Handling

n
call
Specifying errno Explicitly

There are times when specifying theIDL_MSG_ATTR_SYS modifier code in the
action argument toIDL_Message()is inadequate. This situation usually occurs whe
your code attempts to perform some cleanup operation when an operating system
fails before callingIDL_Message() and this cleanup code might alter the value of
errno. In such cases, it is preferable to use theIDL_MessageErrno() or
IDL_MessageErrnoFromBlock() functions to issue the message:

void IDL_MessageErrno(int code, int errno, int action, …)
void IDL_MessageErrnoFromBlock(IDL_MSG_BLOCK block, int code, int
errno, int action, ...)

These function differs fromIDL_Message() in two ways:

1. There is an additional argument used to specify the value oferrno. See the
discussion oferrno in “IDL_MSG_ATTR_SYS” on page 226 for additional
information abouterrno and its use.

2. TheIDL_MSG_ATTR_SYS modifier code for the action argument is
ignored.
Specifying errno Explicitly External Development Guide

Chapter 12: IDL Internals: Error Handling 229

-
ns

d

m

e

 the
em
iled

does
Issuing OpenVMS Messages

TheIDL_Message() function is used when issuing general errors, or issuing Unix
specific errors. This includes those errors reported by standard C library functio
under any operating system, as such libraries generally emulate the Unix
functionality reasonably well. However,IDL_Message() is not adequate for
reporting errors that come from OpenVMS system routines (System Services an
Run-Time Library). Therefore, OpenVMS-specific errors are reported using the
IDL_MessageVMS() or IDL_MessageVMSFromBlock() function.

TheIDL_MessageVMS() function is only available under OpenVMS, and should
only be used in code that can’t work under other operating systems due to syste
dependencies. In cases where either would work, always useIDL_Message().

IDL_MessageVMS() is very similar toIDL_Message():

void IDL_MessageVMS(int code, int err1, int err2, int action, …)
void IDL_MessageVMSFromBlock(IDL_MSG_BLOCK block, int code, int
err1, int err2, int action, …)

The arguments are identical to those forIDL_Message() (see“Issuing Error
Messages” on page 224) with the following exceptions:

err1

IDL_MessageVMS() always issues a single line error message that describes th
problem from the IDL point of view. Theerr1 argument is used to specify that a
second line containing a system error message should also be issued, allowing
user to get a complete picture of what went wrong. If this argument is 0, no syst
error is issued. Otherwise, it should be set to the OpenVMS status code for the fa
operation.

err2

Some OpenVMS system routines return 2 error codes. For example, RMS often
this. If there are 2 error codes,err2 should be used to report the second one. If this
argument is 0, no second system error is issued.
External Development Guide Issuing OpenVMS Messages

230 Chapter 12: IDL Internals: Error Handling

to

een
rk

ore

should
Looking Up A Message Code by Name

Given a message block pointer and the name of a message from that block, the
IDL_MessageNameToCode()function returns the message code that corresponds
it. This is especially useful for dynamically loadable modules that need to throw
errors from the IDL core block. The actual error codes are subject to change betw
IDL releases, so looking them up this way at run-time allows a given DLM to wo
with different IDL versions.

int IDL_MessageNameToCode(IDL_MSG_BLOCK block, char *name)

where:

block

Message block name should be translated against, or NULL to use the default c
IDL block.

name

The message name for which the code is desired. Name is case sensitive, and
usually be specified as uppercase.

IDL_MessageNameToCode () returns the message code, or 0 if it is not found.
Looking Up A Message Code by Name External Development Guide

Chapter 12: IDL Internals: Error Handling 231

e
 for

. The

hould

tine.

must

ng it

e of
d to
Checking Arguments

IDL allows a user to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for a valid number of arguments, but the
routine itself must check the validity of types. This task consists of examining th
argv argument to the routine checking the type and flags field of each argument
suitability. TheIDL_StoreScalar() function (see“Storing Scalar Values” on
page 192) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question
macros check for a desired condition and use theIDL_Message() function with the
IDL_MSG_LONGJMP action to return to the interpreter if an argument type
doesn’t agree. Some of these macros overlap, and some are contradictory. You s
select the smallest set that covers your requirements for each argument. For an
example that uses one of these macros, see“Example: A Complete Numerical
Routine Example (FZ_ROOTS2)” on page 302.

IDL_EXCLUDE_UNDEF

The argument must not be of typeIDL_TYP_UNDEF . This condition is usually
imposed if the argument is intended to provide some input information to the rou

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or a temporary variable (i.e., the argument
be a named variable). Specify this condition if you intend to return a value in the
argument. Returning a value in a temporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causi
to be freed for re-use.

TheIDL_VarCopy() andIDL_StoreScalar() functions automatically check their
destination and issue an error if it is an expression. Therefore, if you are using on
these functions to write the new value into the argument variable, you do not nee
perform this check first.
External Development Guide Checking Arguments

232 Chapter 12: IDL Internals: Error Handling

n.

able,
IDL_EXCLUDE_FILE

The argument cannot be a file variable (as returned by the IDL ASSOC) functio
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check is also handled by theIDL_ENSURE_SIMPLE
macro, which also excludes structure variables.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.

IDL_EXCLUDE_COMPLEX

The argument cannot beIDL_TYP_COMPLEX .

IDL_EXCLUDE_STRING

The argument cannot beIDL_TYP_STRING .

IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.

IDL_ENSURE_ARRAY

The argument must be an array.

IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.

IDL_ENSURE_PTR

The argument must be a pointer heap variable.

IDL_ENSURE_SCALAR

The argument must be a scalar.

IDL_ENSURE_STRING

The argument must beIDL_TYP_STRING .

IDL_ENSURE_SIMPLE

The argument cannot be a file variable, a structure variable, a pointer heap vari
or an object reference heap variable.

IDL_ENSURE_STRUCTURE

The argument must beIDL_TYP_STRUCT .
Checking Arguments External Development Guide

Chapter 13:

IDL Internals:
Type Conversion

This chapter discusses the following topics:
Converting Arguments to C Scalars 234
General Type Conversion 235

Converting to Specific Types. 236
External Development Guide 233

234 Chapter 13: IDL Internals: Type Conversion

file
reter.
ibed

e

r.
Converting Arguments to C Scalars

TheIDL_LongScalar() andIDL_DoubleScalar() functions convert the value of
their argument to a C scalar. In addition,IDL_MEMINTScalar() and
IDL_FILEINTScalar() exist for processing memory and file sizes.The converted
value is returned as the function value. The functions are defined as:

IDL_LONG IDL_LongScalar(IDL_VPTR p)
double IDL_DoubleScalar(IDL_VPTR p)
IDL_MEMINT IDL_MEMINTScalar(IDL_VPTR p)
IDL_FILEINT IDL_FILEINTScalar(IDL_VPTR p)

If these functions are unable to perform the conversion (e.g., the argument is a
variable, an array, etc.), they issue a descriptive error and jump back to the interp
By using these functions, you avoid having to do any of the type checking descr
in “Checking Arguments” on page 231.IDL_DoubleScalar() works exactly like
IDL_LongScalar() except that it returns a double-precision, floating-point value.

For example, the following IDL system function (named PRINT_LONG) prints th
value of its first argument, converted to long integer:

IDL_VPTR print_long(int argc, IDL_VPTR argv[], char *argk)
{

printf("%d\n", IDL_LongScalar(argv[0]));
}

Executing it as:

PRINT_LONG, 23D

gives the output:

23

as expected, while the statement:

PRINT_LONG, FINDGEN(10)

causes the error:

% PRINT_LONG: Expression must be a scalar in this context:
<FLOAT Array(10)>

% Execution halted at $MAIN$.

because it is not possible to convert an array (the result of FINDGEN) to a scala
Converting Arguments to C Scalars External Development Guide

Chapter 13: IDL Internals: Type Conversion 235

y

the
bles
General Type Conversion

TheIDL_BasicTypeConversion() function provides general purpose type
conversion:

IDL_VPTR IDL_BasicTypeConversion(int argc, IDL_VPTR argv[]
int type)

where:

argc

The number ofIDL_VPTR s contained inargv.

argv

An array of pointers toVARIABLE arguments.

type

The desired type code of the result. See“Type Codes” on page 160.

If argc is 1, this function returns a pointer to a temporaryVARIABLE containing the
value ofargv[0] converted to the type specified by thetype argument. If the variable
is already of the correct type, the variable itself is returned.

If argv is greater than 1,argv[1] is taken to be an offset into the variable specified b
argv[0], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy
requirements of the dimensions given. This second form does not work for varia
of type string, so an error is issued in that case.

The IDL BYTE and STRING system routines (implemented by theIDL_CvtByte()
andIDL_CvtString() functions, described below) treat conversions between
variables of type byte and string in a special way.IDL_BasicTypeConversion()does
not handle this special case. Instead, it simply performs a straightforward type
conversion between those types.
External Development Guide General Type Conversion

236 Chapter 13: IDL Internals: Type Conversion

n

e

Converting to Specific Types

A series of functions exist to convertVARIABLE s to specific types:

IDL_VPTR IDL_CvtByte(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtBytscl(int argc, IDL_VPTR argv[], char *argk)
IDL_VPTR IDL_CvtFix(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtUInt(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtLng(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtULng(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtLng64(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtULng64(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtFlt(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtDbl(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtComplex(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtDComplex(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtString(int argc, IDL_VPTR argv[], char *argk)

When calling these functions, you should set theargk argument to NULL.

These functions are the direct implementations of the IDL commands BYTE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functions i
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functions is the same asIDL_BasicTypeConversion() except
when converting between bytes and strings. CallingIDL_CvtByte() with a single
argument of string type causes each string to be converted to a byte vector of th
same length as the string. Each array element is the character code of the
corresponding character in the string. CallingIDL_CvtString() with a single
argument of IDL_TYP_BYTE has the opposite effect.
Converting to Specific Types External Development Guide

Chapter 14:

IDL Internals:Files
and Input/Output

This chapter discusses the following topics:
IDL and Input/Output files 238
File Information . 239
Opening Files . 244
Closing Files. 247
Preventing File Closing. 248
Checking File Status. 249

Allocating and Freeing File Units 251
Detecting End of File. 253
Flushing Buffered Data 254
Reading a Single Character 255
Output of IDL Variables 256
Adding to the Journal File. 257
External Development Guide 237

238 Chapter 14: IDL Internals:Files and Input/Output

ary
S is

tter
t in
O
files

es

tines
IDL and Input/Output files

On most platforms supported by IDL, file handling is built on the standard C libr
stream package. For OpenVMS this is true only in the case of stream files—RM
used in all other cases.

Most system routines should not do Input/Output directly. It is almost always be
to write a function or procedure that returns a result, which a user can then prin
any format supported by the IDL I/O subsystem. For this reason, only minimal I/
abilities are available. Most stream file abilities are present, but access to RMS
is only marginally supported.

If your applicationmust perform I/O, it is best to use stream files. Using stream fil
gives your application the best chance of working with all operating systems
supported by IDL. Most of the routines associated with the standard C library I/O
package can be used in the normal manner. Note, however, that the C library rou
listed in the following table should not be used; use the IDL-specific functions
instead.

C Library Function IDL Function

fclose() IDL_FileClose()

fdopen() IDL_FileOpen()

feof() IDL_FileEOF()

fflush() IDL_FileFlushUnit()

fopen() IDL_FileOpen()

freopen() IDL_FileOpen()

Table 14-1: Disallowed C Library Routines and their IDL counterparts.
IDL and Input/Output files External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 239

ith

be

.
not
.

s
er

th.
File Information

IDL maintains a file table in which it keeps a file descriptor for each file opened w
IDL_FileOpen(). This table is indexed by the file Logical Unit Number, or LUN.
These are the same LUNs IDL users use.

The IDL_FileStat() function is used to get information about a file.

IDL_FileStat()

void IDL_FileStat(int unit, IDL_FILE_STAT *stat_blk)

unit

The Logical Unit Number of the file unit to be checked. This function should only
called on file units that are known to be open.

stat_blk

A pointer to an IDL_FILE_STAT struct to be filled in with information about the file
The information returned is valid only as long as the file remains open. You must
access the fields of an IDL_FILE_STAT once the file it refers to has been closed
This struct has the definition:

typedef struct {
char *name;
short access;
IDL_LONG64 flags;
FILE *fptr;
struct {

unsigned short mrs;
} rms;

} IDL_FILE_STAT;

Warning
In IDL versions prior to IDL 5.3, the flags field of the IDL_FILE_STAT struct wa
a 32-bit number. In IDL 5.3, flags has been widened to a 64-bit number. All us
code that calls the IDL_FileStat() function must be recompiled.

The fields of this struct are listed below:

name

A pointer to a null-terminated string containing the name the file was opened wi
External Development Guide File Information

240 Chapter 14: IDL Internals:Files and Input/Output

ted

d in

s

e
).
access

A bit mask describing the access allowed to the file. The allowed bit values are lis
in the following table:

flags

A bit mask that gives special information about the file. The defined bits are liste
the following table:

Bit Value Description

IDL_OPEN_R The file is open for input.

IDL_OPEN_W The file is open for output.

IDL_OPEN_TRUNC The file was truncated when it was opened. This implie
that IDL_OPEN_W is also set.

IDL_OPEN_APND The file was opened with the file pointer set just past th
last byte of data in the file (the file is open for appending

Table 14-2: Bit values for the access field

Bit Value Description

IDL_F_ISATTY The file is a terminal.

IDL_F_ISAGUI The file is a Graphical User Interface.

IDL_F_NOCLOSE The CLOSE command will refuse to close the
file.

IDL_F_MORE If the file is a terminal, output is sent through
a pager similar to the UNIXmore command.
Details on this pager are not included in this
document, and it is therefore not available for
general use.

IDL_F_XDR The file is read/written using XDR (eXternal
Data Representation).

IDL_F_DEL_ON_CLOSE The file will be deleted when it is closed.

IDL_F_SR The file is a SAVE/RESTORE file.

Table 14-3: Bit values for the flags field
File Information External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 241

t

s.
IDL_F_SWAP_ENDIAN The file has opposite byte order than that of
the current system.

IDL_F_VAX_FLOAT Binary float and double are in VAX F and D
format.

IDL_F_COMPRESS The file is in compressed gzip format. If
IDL_F_SR is set (the file is a
SAVE/RESTORE file), the file contains zlib
compressed data.

IDL_F_UNIX_F77 The file is read/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_UNIX_PIPE The file is a bi-directional data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No stdio buffering will be performed for the
file and all data transfers will go directly to
the operating system for processing. Note tha
setting this bit does not guarantee that data
will be written to the file immediately,
because the operating system may buffer the
data. This bit value was formerly called
IDL_F_UNIX_NOSTDIO.
IDL_F_UNIX_RAWIO is the preferred
value, but both values are supported.

IDL_F_UNIX_SPECIAL The file is a UNIX device special file, most
likely a pipe. This differs from
IDL_F_UNIX_PIPE because it applies to any
file, not only those opened with the SPAWN
procedure.

IDL_F_VMS_FIXED The file has fixed-length records.

IDL_F_VMS_VARIABLE The file has variable-length records.

IDL_F_VMS_SEGMENTED The file has VMS Fortran segmented record

Bit Value Description

Table 14-3: Bit values for the flags field
External Development Guide File Information

242 Chapter 14: IDL Internals:Files and Input/Output

.

.

IDL_F_VMS_STREAM The file is treated as a VMS stream file,
opened via the standard C library, just like
under UNIX. VMS attempts to convert non-
stream files into a logical stream in order to
mask the fact that the file is not really a
stream file.

IDL_F_VMS_STREAM_STRICT The file is treated as a VMS stream file,
opened via the standard C library, just like
under UNIX. In the case of non-stream files,
no attempt is made to convert the file contents
to a logical stream.

IDL_F_VMS_RMSBLK The file is open for RMS block mode access
New files are created with fixed-length 512-
byte records.

IDL_F_VMS_RMSBLKUDF The file is open for RMS block mode access
New files are created with the UNDEFINED
record type. One result of this is that most
VMS utilities won’t be able to read this file.

IDL_F_VMS_INDEXED The file has indexed organization.

IDL_F_VMS_PRINT The file will be sent to the VMS system
printer SYS$PRINT when it is closed.

IDL_F_VMS_SUBMIT The file will be sent to the standard VMS
system batch queue SYS$BATCH when it is
closed.

IDL_F_VMS_TRCLOSE When closed, the file allocation will be
truncated to the amount actually used.

IDL_F_VMS_CCLIST The file has carriage return carriage control.

IDL_F_VMS_CCFORTRAN The file has Fortran-style carriage control.

IDL_F_VMS_CCNONE The file data contains explicit carriage
control.

IDL_F_VMS_SHARED Shared access to the file is allowed.

Bit Value Description

Table 14-3: Bit values for the flags field
File Information External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 243

his
fptr

The stream file pointer to the file. This field can be used with standard library
functions to perform I/O. This field is always valid under non-VMS operating
systems although you shouldn’t use it if the file is an XDR file. You can check for t
by looking for the IDL_F_XDR bit in the flags field. Under VMS, the stream file
pointer is only valid if the file is open for stream access. In this case the
IDL_F_VMS_STREAM bit will be set in the flags field.

rms.mrs

For RMS (VMS) record oriented files, this field contains the record length.

IDL_F_VMS_SUPERCEDE Supersede existing version on open.

IDL_F_DOS_BINARY The file is in binary mode.

Bit Value Description

Table 14-3: Bit values for the flags field
External Development Guide File Information

244 Chapter 14: IDL Internals:Files and Input/Output

()
4-bit
ed.

ing

s

Opening Files

Files are opened using the IDL_FileOpen() function.

Warning
In IDL versions prior to IDL 5.3, the extra_flags argument to the IDL_FileOpen
function was a 32-bit number. In IDL 5.3, extra_flags has been widened to a 6
number. All user code that calls the IDL_FileOpen() function must be recompil

IDL_FileOpen()

int IDL_FileOpen(int argc, IDL_VPTR *argv, char *argk, int
access_mode, IDL_LONG64 extra_flags, int longjmp_safe)

argc

The number of arguments inargv. This value should always be 2.

argv

The arguments to IDL_File_Open(). argv[0] should be a scalar integer value giv
the file unit number (LUN) to be opened. argv[1] is a scalar string giving the file
name.

argk

Keywords. Set this argument to NULL.

access_mode

A bit mask that specifies the access to be allowed to the file being opened. The
allowed bit values are listed in the following table:

Bit Value Description

IDL_OPEN_R The file is open for input.

IDL_OPEN_W The file is open for output.

IDL_OPEN_TRUNC The file was truncated when it was opened. This implie
that IDL_OPEN_W is also set.
Opening Files External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 245

fy

n of

()
4-bit
ed.

E
 to

 both
as an
eld

s.

e
).
It is important that conflicting bits not be set together (for example, do not speci
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of
IDL_OPEN_READ and IDL_OPEN_WRITE must always be specified.

extra_flags

Used to specify additional file attributes using the flags defined in the descriptio
the flags field of the IDL_FILE_STAT struct (see“File Information” on page 239).
Note that it makes no sense to set the IDL_F_ISATTY bit in this mask.

Warning
In IDL versions prior to IDL 5.3, the extra_flags argument to the IDL_FileOpen
function was a 32-bit number. In IDL 5.3, extra_flags has been widened to a 6
number. All user code that calls the IDL_FileOpen() function must be recompil

longjmp_safe

If set to TRUE, IDL_FileOpen() is being called in a context where an
IDL_MSG_LONGJMPIDL_Message action code is okay. If set to FALSE, the
routine won’tlongjmp() .

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALS
otherwise. Of course, if longjmp_safe is TRUE, the usual course is to jump back
the IDL interpreter, in which case the routine won’t return.

Special File Units

There are three files that are always open. Under VMS, these units are open as
stream and RMS files—each unit is opened twice, once as a stream and again
RMS variable length record file. This means that you can always refer to the fptr fi
for these units without checking the IDL_F_VMS_STREAM bit of the flags field.
These are the only three units for which this is true. Finally, the constant
IDL_NON_UNIT always has a value which is not a valid file unit. The three units
are:

• IDL_STDIN_UNIT — Unit 0 (zero) is the standard input for the IDL proces

IDL_OPEN_APND The file was opened with the file pointer set just past th
last byte of data in the file (the file is open for appending

Bit Value Description

Table 14-4: Bit values for the access_mode argument
External Development Guide Opening Files

246 Chapter 14: IDL Internals:Files and Input/Output
• IDL_STDOUT_UNIT — Unit -1 is the standard output.

• IDL_STDERR_UNIT — Unit -2 is the standard error.
Opening Files External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 247

g the
Closing Files

Files are closed using the IDL_FileClose() function.

IDL_FileClose()

void IDL_FileClose(int argc, IDL_VPTR *argv, char *argk)

argc

The number of arguments inargv.

argv

The arguments to the close function. These should be scalar integer values givin
Logical Unit Numbers of the file units to close.

argk

Keywords. Set this argument to NULL.
External Development Guide Closing Files

248 Chapter 14: IDL Internals:Files and Input/Output

r

t the

s

bit
an
Preventing File Closing

Use the IDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F_NOCLOSE bit in the flags field of the file descripto
(see“File Information” on page 239). This feature is used primarily in graphics
drivers for printers. For example, the PostScript driver uses this feature to preven
user from closing the plot data file prematurely.

IDL_FileSetClose()

void IDL_FileSetClose(int unit, int allow)

unit

The Logical Unit Number (LUN) of the file in question. The file must be open for
this function to have effect.

allow

Set this field to TRUE if users are allowed to close the file. Set to FALSE if user
should be prevented from closing the file.

There are two macros provided to make preventing/enabling of this bit easy:

• IDL_FILE_NOCLOSE(unit) — Given the file LUN, this macro sets the
IDL_F_NOCLOSE bit.

• IDL_FILE_CLOSE(unit) — Given the file LUN this macro clears the
IDL_F_NOCLOSE bit.

When IDL exits, it only closes open files that do not have the IDL_F_NOCLOSE
set. Files with close inhibited are simply left alone. Often, you will want to declare
exit handler which takes care of closing such files.
Preventing File Closing External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 249

r

e

. In
. The
Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() fo
this.

IDL_FileEnsureStatus()

int IDL_FileEnsureStatus(int action, int unit, int flags)

action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (se
“Issuing Error Messages” on page 224). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG_LONGJMP, or
IDL_MSG_IO_LONGJMP.

unit

The Logical Unit Number of the file to be checked.

flags

IDL_FileEnsureStatus() always checks to make sure unit is a valid logical file unit
addition, flags is a bit mask specifying the file attributes that should be checked
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS_USER The file must be a user unit. This means that the
file is not one of the three special files, stdin,
stdout, or stderr.

IDL_EFS_IDL_OPEN The file unit must be open.

IDL_EFS_CLOSED The file unit must be closed.

IDL_EFS_READ The file unit must be open for input.

IDL_EFS_WRITE The file unit must be open for output.

IDL_EFS_NOTTY The file unit cannot be a tty.

Table 14-5: Bit values for the flags argument
External Development Guide Checking File Status

250 Chapter 14: IDL Internals:Files and Input/Output

t.

. If

.

Note
Some of these values are contradictory. The caller must select a consistent se

If the file unit meets the desired conditions, IDL_FileEnsureStatus() returns TRUE
it does not meet the conditions, and action was IDL_MSG_RET, then it returns
FALSE.

IDL_EFS_NOGUI The file unit cannot be a Graphical User Interface

IDL_EFS_NOPIPE The file unit cannot be a pipe.

IDL_EFS_NOXDR The file unit cannot be a XDR file.

IDL_EFS_ASSOC The file unit can be ASSOC’ed. This implies
IDL_EFS_USER, IDL_EFS_OPEN,
IDL_EFS_NOTTY, IDL_EFS_NOPIPE, and
IDL_EFS_NOXDR, in addition to other operating
system specific concerns.

IDL_EFS_NOT_NOSTDIO The file was not opened with
IDL_F_UNIX_NOSTDIO attribute under UNIX.

Bit Value Description

Table 14-5: Bit values for the flags argument
Checking File Status External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 251

s.
ed.
g

file

tes
Allocating and Freeing File Units

System routines must allocate and deallocate file units in order to avoid conflict
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are us
When writing system-level routines, you can access the same routines by callin
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to allocate file units:

IDL_FileGetUnit()

void IDL_FileGetUnit(int argc, IDL_VPTR *argv)

argc

argc should always be 1.

argv

argv[0] contains an IDL_VPTR to the IDL_VARIABLE that will be filled in with the
resulting unit number.

Use IDL_FileFreeUnit() to free file units:

IDL_FileFreeUnit()

void IDL_FileFreeUnit(int argc, IDL_VPTR *argv)

argc

argc gives the number of elements inargv.

argv

argv should contain scalar integer values giving the Logical Unit Numbers of the
units to be returned.

Read the description of GET_LUN and FREE_LUN in theIDL Reference Guide for
additional details about these functions. The following code fragment demonstra
how these functions might be used to open and close a file namedjunk.dat :

IDL_VPTR argv[2];
IDL_VARIABLE unit;
IDL_VARIABLE name;
.
.
.

External Development Guide Allocating and Freeing File Units

252 Chapter 14: IDL Internals:Files and Input/Output
/* Allocate a file unit. */
argv[0] = &unit;
unit.type = TYP LONG;
unit.flags = 0;
IDL_FileGetUnit(1, argv);

/* Set up the file name */
name.type = TYP STRING;
name.flags = V CONST;
name.value.str.s = "junk.dat";
name.value.str.slen = sizeof("junk.dat") - 1;
name.value.str.stype = 0;
argv[1] = &name;
.
.
.
IDL_FileOpen(2, argv, (char *) 0, IDL_OPEN_R, IDL_F_VMS_STREAM,
1);

/* Perform any required actions. */
.
.
.
/* Free the file unit. This will also close the file. */
IDL_FileFreeUnit(1, argv);
Allocating and Freeing File Units External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 253

t

Detecting End of File

IDL_FileEOF()

The IDL_FileEOF() function returns TRUE if the file specified by the Logical Uni
Number unit is at EOF, and FALSE otherwise:

int IDL_FileEOF(int unit)

unit

The Logical Unit Number (LUN) of the file in question.
External Development Guide Detecting End of File

254 Chapter 14: IDL Internals:Files and Input/Output

file
Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered data for the
specified by the Logical Unit Number unit to be written out:

int IDL_FileFlushUnit(int unit)

unit

The Logical Unit Number (LUN) of the file in question.
Flushing Buffered Data External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 255

y)
the
Reading a Single Character

IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int IDL_GetKbrd(int should_wait)

should_wait

Set this argument to TRUE if IDL_GetKbrd() should wait for a key to be struck,
FALSE otherwise.

If should_wait is FALSE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waits until a key is struck (if necessar
and then returns its ASCII value. This function will generate an error and return to
interpreter if IDL_STDIN_UNIT is not a terminal.
External Development Guide Reading a Single Character

256 Chapter 14: IDL Internals:Files and Input/Output

.

INT
Output of IDL Variables

IDL_Print() and IDL_PrintF()

The IDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLEs
IDL_Print() simply outputs to IDL_STDOUT_UNIT, while IDL_PrintF() outputs to
a specified unit:

void IDL_Print(int argc, IDL_VPTR *argv, char *argk)
void IDL_PrintF(int argc, IDL_VPTR *argv, char *argk)

argc

The number of arguments to argv.

argv

IDL_VPTRs of the IDL_VARIABLEs to be output.

argk

Keywords. Set this argument to NULL ((char *) 0).

These functions are the implementation of the built-in IDL system procedures PR
and PRINTF. See the discussion in theIDL Reference Guide for additional details.
Output of IDL Variables External Development Guide

Chapter 14: IDL Internals:Files and Input/Output 257

:

a
n

Adding to the Journal File

IDL_Logit()

The IDL_Logit() function can be used to add lines of output to the journal log file

void IDL_Logit(char *s)

s

A pointer to a NULL terminated string to be added to the journal log file.

If a journal log file is currently open, this function writes the specified string to it on
new line. If no journal file is open, IDL_Logit() returns quietly. The only way to ope
or close the journal file is via the user-system-level JOURNAL procedure.
External Development Guide Adding to the Journal File

258 Chapter 14: IDL Internals:Files and Input/Output
Adding to the Journal File External Development Guide

Chapter 15:

IDL Internals:
Signals

This chapter discusses the following topics:
IDL and Signals . 260
Signal Handlers. 263
Establishing a Signal Handler. 264

Removing a Signal Handler. 265
UNIX Signal Masks. 266
External Development Guide 259

260 Chapter 15: IDL Internals: Signals

r.
are
ed.
one,
this

ls.

This
ust

nt

am

ns.

w
lish
IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programme
Although seemingly simple, they are a tough portability problem because there
several variants, and their semantics are subtle, inconvenient, and easily confus
IDL has always done whatever is necessary with signals in order to get its job d
but its signal assumptions can also affect user written code linked to it. Although
discussion refers primarily to UNIX IDL, signalsare used in minimal ways under
other operating systems supported by IDL.

The following is a brief list of problems and contradictions inherent in UNIX signa
For a more complete description, see Chapter 10 ofExternal Programming in the
UNIX Environment by W. Richard Stevens.

• Posix signals (sigaction) promise to unify and simplify signals, but not all
platforms support them fully. Also, some platforms that do support Posix
signals fail to provide needed information forSIGFPE andSIGTRAP, which
are very important to IDL’s exception handling.

• You can only have one signal handler function registered for each signal.
means that if one part of a program uses a signal, the rest of the program m
leave that signal alone.

• In order to meet the needs of programs originally developed under differe
UNIX systems (AT&T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, a given progr
is restricted to one of these libraries. If a programmer using
CALL_EXTERNAL, LINKIMAGE, or Callable IDL chooses a library
different from that used by IDL itself, unexpected results may occur.

• The number and exact semantics of some signals differ in different versio

• Details of signal blocking differ.

• Some System V implementations of signals are unreliable, meaning that
signals can occur in a process and be missed.

• Some older System V systems reset the handling action toSIG_DFL before
calling the handler. This opens a window in time where two signals in a ro
can cause the process to be killed. Also, the signal handler must re-estab
itself every time it is called.
IDL and Signals External Development Guide

Chapter 15: IDL Internals: Signals 261

ed,
IX

d
ils
ften

use to
r to

PI
nal

o

an

ds.
ese

l

lity
(like
• On most platforms, if a signal is generated more than once while it is block
the second and subsequent occurrences are lost. In other words, most UN
implementations do not queue signals.

• Most systems provide extra information forSIGFPE andSIGTRAP that
allow the program to deduce what type of arithmetic problem occurred an
continue execution. The format of this information differs widely. The deta
of continuing execution are highly OS- and hardware-dependent, and are o
undocumented.

These are among the reasons that most libraries avoid signals, and leave their
the end programmer. IDL, however, must use signals to function properly. In orde
allow users to link their code into IDL while using signals, IDL provides a signal A
built on top of the signal mechanism supported by the target platform. The IDL sig
API has the following attributes:

• It disallows use ofSIGTRAP andSIGFPE. These signals are reserved to
IDL.

• It disallows use ofSIGALRM . Most uses forSIGALRM are provided by the
IDL timer API.

• It works with all other signals, including those IDL doesn’t currently use, s
the interface won’t change over time.

• It allows multiple signal handlers for each signal, so IDL and other code c
use the same signal simultaneously.

• It unifies the signal interface by supplying a constant set of definitions and
routines, and by handling details like re-establishing handlers.

• It keeps IDL in charge of which signal package is used and how.

This is not a perfect solution, it is a compromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstraction is
sufficient, but it does have the following limitations:

• The calling program must not attempt to catchSIGTRAP or SIGFPE, either
directly or through library routines that use these signals to achieve their en
Furthermore, the IDL signal abstraction does not allow the caller to catch th
signals, so your program must leave exception handling to IDL.

• The caller loses control over signal package choice and some minor signa
abilities.

• Having multiple signal handler routines for a given signal opens the possibi
that one handler might do something that causes problems for the others
External Development Guide IDL and Signals

262 Chapter 15: IDL Internals: Signals

ode
ot
h

ignal,

e
ess.

se an
change the signal mask, or longjmp()). To minimize such problems, user c
linked into IDL must not call the actual system signal routines, and must n
longjmp() out of signal handlers—a tactic that is usually allowed, but whic
would seriously damage IDL’s signal state.

• Since there may be more than one signal handler registered for a given s
the signal dispositions ofSIG_IGN andSIG_DFL are not directly available to
the caller as they would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances ar
your code is not compatible with IDL and should be executed in a separate proc
We then encourage you to consider running IDL in a separate process and to u
interprocess communication mechanism such as RPC.
IDL and Signals External Development Guide

Chapter 15: IDL Internals: Signals 263

lled.
age

ignal
Signal Handlers

IDL signal handler functions are defined as:

typedef void (* IDL_SignalHandler_t)(int signo);

When a signal is delivered to the process, all registered signal handlers are ca
signo is the integer number of the signal delivered, as defined by the C langu
header filesignal.h (found in/usr/include/signal.h on most UNIX
systems).signo can be used by a signal handler registered for more than one s
to tell which signal called it.
External Development Guide Signal Handlers

264 Chapter 15: IDL Internals: Signals

ause

ble

no
Establishing a Signal Handler

To register a signal handler, use theIDL_SignalRegister() function:

int IDL_SignalRegister(int signo, IDL_SignalHandler_t func,
int msg_action)

where:

signo

The numeric value of the signal to register for, as defined insignal.h .

func

The signal handler to be called when the signal specified bysigno is raised.

msg_action

One of theIDL_MSG_* action codes forIDL_Message(). If there is an error in
registering the signal handler, this action code is passed toIDL_Message() to direct
its recovery action. Note that it is incorrect to use any of the message codes that c
IDL_Message()to longjmp() back to the IDL interpreter if your code is running in a
context where the IDL interpreter is not active—specifically as part of using Calla
IDL.

If func is successfully registered forsigno , this routine returns TRUE. Otherwise,
FALSE is returned andIDL_Message() is called withmsg_action to control its
behavior. Note that there are values ofmsg_action that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has
additional effect—the handler will only be called once.
Establishing a Signal Handler External Development Guide

Chapter 15: IDL Internals: Signals 265
Removing a Signal Handler

To remove a signal handler, use theIDL_SignalUnregister() function:

export int IDL_SignalUnregister(int signo,
IDL_SignalHandler_t func,

int msg_action)

where:

signo

The signal to unregister.

func

The handler to be unregistered.

msg_action

One of theIDL_MSG_* action codes forIDL_Message(). If there is an error in
removing the signal handler, this action code is passed toIDL_Message()to direct its
recovery action.

OnceIDL_SignalUnregister() has been called,func is unregistered and will no
longer be called if the signal is raised.IDL_SignalUnregister() returns TRUE for
success, FALSE for failure. Requests to unregister a function that has not been
previously registered are ignored.
External Development Guide Removing a Signal Handler

266 Chapter 15: IDL Internals: Signals

red
e

l the
type

ts

e for
UNIX Signal Masks

UNIX processes contain a signal mask that defines which signals can be delive
and which are blocked from delivery at any given time. When a signal arrives, th
UNIX kernel checks the signal mask: If the signal is in the process mask, it is
delivered, otherwise it is noted as undeliverable and nothing further is done unti
signal mask changes. Sets of signals are represented within IDL with the opaque
IDL_SignalSet_t. UNIX IDL provides several functions that manipulate signal se
to change the process mask and allow/disallow delivery of signals.

IDL_SignalSetInit()

IDL_SignalSetInit() initializes a signal set to be empty, and optionally sets it to
contain one signal.

void IDL_SignalSetInit(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to be emptied/initialized.

signo

If non-zero, a signal to be added to the new set. This is provided as a convenienc
the large number of cases where a set contains only one signal. Use
IDL_SignalSetAdd() to add additional signals to a set.

IDL_SignalSetAdd()

IDL_SignalSetAdd() adds the specified signal to the specified signal set:

void IDL_SignalSetAdd(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to be added to. The signal set must have been initialized by
IDL_SignalSetInit() .

signo

The signal to be added to the signal set.
UNIX Signal Masks External Development Guide

Chapter 15: IDL Internals: Signals 267

al,
IDL_SignalSetDel()

IDL_SignalSetDel() deletes the specified signal from a signal set:

void IDL_SignalSetDel(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to delete from. The signal set must have been initialized by
IDL_SignalSetInit() .

signo

The signal to be removed from the signal set.

IDL_SignalSetIsMember()

IDL_SignalSetIsMember() tests a signal set for the presence of a specified sign
returning TRUE if the signal is present and FALSE otherwise:

int IDL_SignalSetIsMember(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to test. The signal set must have been initialized by
IDL_SignalSetInit() .

signo

The signal to be removed from the signal set.

IDL_SignalMaskGet()

IDL_SignalMaskGet() sets a signal set to contain the signals from the current
process signal mask:

void IDL_SignalMaskGet(IDL_SignalSet_t *set)

where:

set

The signal set in which the current process signal mask will be stored.
External Development Guide UNIX Signal Masks

268 Chapter 15: IDL Internals: Signals

s

d by

ignal

ful

d by
IDL_SignalMaskSet()

IDL_SignalMaskSet() sets the current process signal mask to contain the signal
specified in a signal mask:

void IDL_SignalMaskSet(IDL_SignalSet_t *set,
IDL_SignalSet_t *omask)

where:

set

The signal set from which the current process signal mask will be set.

omask

If omask is non-NULL, the unmodified process signal mask is stored in it. This is
useful for restoring the mask later usingIDL_SignalMaskSet().

There are some signals that cannot be blocked. This limitation is silently enforce
the operating system.

IDL_SignalMaskBlock()

IDL_SignalMaskBlock() adds signals to the current process signal mask:

void IDL_SignalMaskBlock(IDL_SignalSet_t *set,
IDL_SignalSet_t *oset)

where:

set

The signal set containing the signals that will be added to the current process s
mask.

oset

If osetis non-NULL, the unmodified process signal mask is stored in it. This is use
for restoring the mask later usingIDL_SignalMaskSet().

There are some signals that cannot be blocked. This limitation is silently enforce
the operating system.

IDL_SignalBlock()

IDL_SignalBlock() does the same thing asIDL_SignalMaskBlock() except it
accepts a single signal number instead of requiring a mask to be built:
UNIX Signal Masks External Development Guide

Chapter 15: IDL Internals: Signals 269

d by

hen
ignal

ignal
void IDL_SignalBlock(int signo, IDL_SignalSet_t *oset)

where:

signo

The signal to be blocked.

There are some signals that cannot be blocked. This limitation is silently enforce
the operating system.

IDL_SignalSuspend()

IDL_SignalSuspend()replaces the process signal mask with the ones in set and t
suspends the process until a signal is delivered. On return, the original process s
mask is restored:

void IDL_SignalSuspend(IDL_SignalSet_t *set)

where:

set

The signal set containing the signals that will be added to the current process s
mask.
External Development Guide UNIX Signal Masks

270 Chapter 15: IDL Internals: Signals
UNIX Signal Masks External Development Guide

Chapter 16:

IDL Internals:
Timers

This chapter discusses the following topics:
IDL and Timers. 272
Making Timer Requests 273

Canceling Asynchronous Timer Requests. 275
Blocking UNIX Timers 276
External Development Guide 271

272 Chapter 16: IDL Internals: Timers

t of

er

de
IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors” of UNIX, for
example). IDL’s timer module is intended to provide a constant interface to the res
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’s timer module performs a more important function. UNIX
processes contain a single timer that must be shared by all users. When the tim
fires, it raises theSIGALRM signal which must be caught and handled by the
process. The IDL timer routines transparently multiplex this single timer to provi
multiple virtual timers.

Under UNIX and VMS, IDL provides both blocking and non-blocking timers.
Blocking timers put the calling process to sleep until they go off. Non-blocking
timers are delivered asynchronously when they fire.

Under Microsoft Windows and Macintosh OS, only the blocking form of timer
requests are supported.
IDL and Timers External Development Guide

Chapter 16: IDL Internals: Timers 273

e-
ust

can

n

E

p

er
from
Making Timer Requests

TheIDL_TimerSet() function registers a timer request. IDL timer requests are on
shot timers. If you wish to have a timer go off repeatedly, your callback function m
make a new request each time it is called to set up the next timer.

void IDL_TimerSet(length, callback, from_callback, context)

where:

length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX and VMS, ifcallback is non-NULL, the timer request is queued
andIDL_TimerSet() returns immediately. When the alarm is due, the functio
pointed at bycallback is called. Ifcallback is NULL (and not
from_callback), the request is queued andIDL_TimerSet() blocks until the
requested time expires.

Under Windows and the Macintosh OS,callback should always be NULL.
IDL_TimerSet() does not support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if this invocation is from a callback function
previously set up via a call toIDL_TimerSet() . Set this argument to FALSE if
this is the first invocation. In other words, this argument should only be TRU
if you call IDL_TimerSet() from within a timer callback.

context

This argument is a pointer to a variable of typeIDL_TIMER_CONTEXT , an
opaque IDL data type that uniquely identifies a timer request. If this is a to
level request (iffrom_callback is FALSE), the context pointed at will be
assigned a unique value that identifies the request.

If this request is coming from within a timer callback in order to make anoth
request on the same timer, the context pointed at should contain the value
the previous request.
External Development Guide Making Timer Requests

274 Chapter 16: IDL Internals: Timers

sults

ared
If context is NULL, no context value is returned.

Note
It is an error to queue more than one request using the same callback. The re
are undefined.

For the timer module to perform adequately, the time request must be large comp
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.
Making Timer Requests External Development Guide

Chapter 16: IDL Internals: Timers 275
Canceling Asynchronous Timer Requests

Under UNIX and OpenVMS,IDL_TimerCancel() can be used to cancel a timer
request that has not yet been delivered:

void IDL_TimerCancel(context)

where:

context

A timer request context returned by a previous call toIDL_TimerSet() .
External Development Guide Canceling Asynchronous Timer Requests

276 Chapter 16: IDL Internals: Timers

stem

 it

such

n do
ring

ble

e
is

t

arily
mer
ary

ing
,
r to
al

his
k
X

Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such asSIGALRM (used to
manage timers) can cause system calls to be interrupted. In such cases, the sy
call returns a status of-1 and the globalerrno variable is set to the valueEINTR . It is
the caller’s responsibility to check for this result and restart the system call when
occurs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfaces in libraries (even those provided by the system,
aslibc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. There is very little that the end user ca
about such libraries except take steps that prevent signals from being raised du
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it is inevita
that the delivery ofSIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of th
timer signal. This can be used to provide a window in which no timer will fire. Th
routine should always be called in pairs, so the timer doesn’t get turned off
permanently. It is important to be sure alongjmp() (such as caused by calling
IDL_Message() with theIDL_MSG_LONGJMP action code) doesn’t happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery is that the UNIXSIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will no
be delivered until timers are unblocked. At that time, the timer module resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitr
delayed from being queued and processed. Clearly, excessive blocking of the ti
can lead to poor timer performance and should only be performed when necess
and on the smallest possible critical section of code. Of course, the act of block
and unblocking signals requires a context switch into the UNIX kernel and back
making them relatively computationally expensive operations. It is therefore bette
block a longer section of code rather than block and unblock around every critic
library call.

It has been our experience that some UNIX platforms have more problem with t
issue than others. You should let experience guide you in deciding when to bloc
signals and when to let them go. Input/Output to device special files under HP-U
and SGI IRIX are known to be especially vulnerable.

void IDL_TimerBlock(stop)
Blocking UNIX Timers External Development Guide

Chapter 16: IDL Internals: Timers 277
where:

stop

TRUE if the timer should be suspended, FALSE to restart it.
External Development Guide Blocking UNIX Timers

278 Chapter 16: IDL Internals: Timers
Blocking UNIX Timers External Development Guide

Chapter 17:

IDL Internals:
Miscellaneous
Information

This chapter discusses the following topics:
1
2

Dynamic Memory. 280
Exit Handlers . 282
User Interrupts . 283
System Variables. 284
Terminal Information 286
Ensuring UNIX TTY State. 287

Type Information. 288
User Information . 290
Constants . 29
Macros . 29
IDL Global Data Under VAX/OpenVMS . 293
External Development Guide 279

280 Chapter 17: IDL Internals: Miscellaneous Information

y.

se

y is
Dynamic Memory

IDL provides access to the dynamic memory allocation routines it uses internall
Use these routines rather than system-provided routines such asmalloc()/free()when
possible.

Please note that system routines (routines added to IDL using LINKIMAGE or
CALL_EXTERNAL) should not use the IDL dynamic memory routines. Instead, u
IDL_GetScratch() (see“Getting Dynamic Memory” on page 188) which prevents
memory from being lost under error conditions.

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.

void *IDL_MemAlloc(IDL_MEMINT n, char *err_str, int action)

where:

n

The number of bytes to allocate.

err_str

NULL, or a null terminated text string describing the memory being allocated.

action

An action parameter to be passed toIDL_Message() if IDL_MemAlloc() is unable
to allocate the desired memory anderr_str is non-NULL.

IDL_MemAlloc() attempts to allocate the desired amount of memory. If the
requested amount is allocated, a pointer to the memory is returned. The memor
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory fails anderr_str is non-NULL, IDL_Message()is
called as:

IDL_Message(M_CNTGETMEM, action|IDL_MSG_ATTR_SYS, err_str)

If IDL_Message() returns, or iferr_str is NULL andIDL_Message() is not called,
IDL_MemAlloc() returns a NULL pointer indicating its failure.
Dynamic Memory External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 281

ks to

t

IDL_MemFree()

Memory allocated viaIDL_MemAlloc() should only be returned via
IDL_MemFree():

void IDL_MemFree(REGISTER void *m, char *err_str, int action)

m

A pointer to memory previously allocated viaIDL_MemAlloc() .

err_str

NULL, or a null terminated text string describing the memory being freed.

action

An action parameter to be passed toIDL_Message() if unable to free memory and
err_str is non-NULL.

IDL_MemFree() attempts to free the specified memory. If the attempt to free
memory fails anderr_str is non-NULL,IDL_Message() is called as:

IDL_Message(M_CNTFREMEM, action|IDL_MSG_ATTR_SYS, err_str)

The following actions have undefined consequences, and should not be done:

• Returning memory allocated from a source other thanIDL_MemAlloc() .

• Freeing the same allocation more than once.

• Dereferencing memory once it has been freed.

IDL_MemAllocPerm()

Another memory allocation routine,IDL_MemAllocPerm() , exists to allocate
dynamic memory that will not be returned for reuse.IDL_MemAllocPerm()
allocates memory in moderately large units and carves out pieces of these bloc
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

void *IDL_MemAllocPerm(IDL_MEMINT n, char *err_str, int action)

IDL_MemAllocPerm() takes the same arguments asIDL_MemAlloc() , differing
only in that the memory allocated will not be freed until the process exits. Do no
attempt to free memory allocated byIDL_MemAllocPerm() . The results of such an
action are undefined.
External Development Guide Dynamic Memory

282 Chapter 17: IDL Internals: Miscellaneous Information

lers

end
ich
e

an

s is
Exit Handlers

IDL maintains a list of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to its initial state. Exit hand
accept no arguments and return no value.

A typical declaration would be:

void my_exit_handler(void)
{

/* Cleanup Code Here */
}

IDL_ExitRegister()

To register an exit handler, use theIDL_ExitRegister() function:

void IDL_ExitRegister(IDL_PRO_PTR proc)

proc

IDL will call proc just before it exits.

The order in which exit handlers are called is undefined, and you should not dep
on any particular ordering. If you have several exit handlers and the order in wh
they are called is important, you should register a single handler that calls all th
others in the required order.

Note: Under some operating systems, it is possible that the IDL process will die in
abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly via thekill(1) command) will cause the
process to die immediately. IDL always calls exit handlers when possible, so thi
rarely a significant problem.
Exit Handlers External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 283

f the
able
ach
urrent
 and

 be

only

e to
if

,

 its
User Interrupts

IDL catches certain operating system signals includingSIGINT , which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution o
program to stop at the next sequence statement. The interpreter clears this vari
every time it is invoked, and checks to see if it has been set before it executes e
statement. This means that when the user presses the interrupt character, the c
statement must complete before the interpreter checks the value of the variable
halts execution.

Typical statements do not take long to complete, so this delay is not noticeable.
However, some system routines take a long time to complete, and the user can
fooled by the long delay into thinking that IDL is ignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interrupts is the
way to maintain acceptable performance in the usual case where no interrupt is
pending. Therefore, it is the responsibility of system routines that take a long tim
complete to check the value of this internal variable and to clean up and return
SIGINT is seen. IDL’s Input/Output and FFT routines, among others, do this.

IDL_BailOut()

TheIDL_BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed
otherwise FALSE.

int IDL_BailOut(int stop)

where:

stop

Set to FALSE to sense the state of the keyboard interrupt flag without changing
value. Set to TRUE to set the keyboard interrupt flag.
External Development Guide User Interrupts

284 Chapter 17: IDL Internals: Miscellaneous Information

In all

les
ed
System Variables

The values of certain system variables are available globally to user programs.
cases, these variables should be considered READ-ONLY. These variables are
summarized in the following table.

Functions for Returning System Variable Values

The following functions return the same information as the global system variab
described above, but in a functional form. Note these values should be consider
READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer toIDL_SysvVersion.arch.

IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer toIDL_SysvVersion.os.

IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer toIDL_SysvVersion.os_family.

IDL_STRING *IDL_SysvVersionRelease(void)

This function returns a pointer toIDL_SysvVersion.release.

IDL System Variable Internal Variable Type

!DIR IDL_SysvDir IDL_STRING

!VERSION.ARCH IDL_SysvVersion.arch IDL_STRING

!VERSION.OS IDL_SysvVersion.os IDL_STRING

!VERSION.OS_FAMILY IDL_SysvVersion.os_family IDL_STRING

!VERSION.RELEASE IDL_SysvVersion.release IDL_STRING

!ERR IDL_SysvErrCode IDL_LONG

!ERROR IDL_SysvErrorCode IDL_LONG

!ORDER IDL_SysvOrder IDL_LONG

Table 17-1: IDL System Variables Available to User Programs
System Variables External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 285
IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer toIDL_SysvDir.

IDL_STRING *IDL_SysvErrStringFunc(void)

This function returns a pointer toIDL_SysvErrString.

IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer toIDL_SysvSyserrString.

IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of !ERR.

IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of !ERROR.

IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of !ORDER.
External Development Guide System Variables

286 Chapter 17: IDL Internals: Miscellaneous Information

d
s

ns

in a
Terminal Information

The global variableIDL_FileTerm is a structure of typeIDL_TERMINFO :

typedef struct {
char *name; /* Name Of Terminal Type */
char is_tty; /* True if stdin is a terminal */
int lines; /* Lines on screen */
int columns; /* Width of output */

} IDL_TERMINFO;

Note
Under operating systems that do not support the concept of a terminal (the
Macintosh OS and Microsoft Windows) thename andis_tty fields are not present.

IDL_FileTerm is initialized when IDL is started. Few, if any, user routines will nee
this information, because user routines should not do their own I/O. User routine
that must do their own I/O should use this variable instead of making assumptio
about the output device.

Functions for Returning IDL_FileTerm Variable Values

The following functions can be used to return values from theIDL_FileTerm
variable. They return the same information contained in the global variable, but
functional form.

char *IDL_FileTermName(void)

This function returns the value ofIDL_FileTerm.name. This function is only
available under UNIX and OpenVMS.

int IDL_FileTermIsTty(void)

This function returns the value ofIDL_FileTerm.is_tty . This function is only
available under UNIX and OpenVMS.

int IDL_FileTermLines(void)

This function returns the value ofIDL_FileTerm.lines.

int IDL_FileTermColumns(void)

This function returns the value ofIDL_FileTerm.columns.
Terminal Information External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 287

ed
ar as
the
s

ause
tate

an
ged
Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the users terminal in araw mode,
required to implement command line editing. On these platforms, externally link
code that performs output to the terminal will find that the output does not appe
expected. A usual symptom of this is that newline characters (’\n’) do not move
cursor to the left margin of the screen, and commands such as more(1) (perhap
started via the C runtime librarysystem()function) do not control the screen
properly.

This is not an issue for IDL routines such as SPAWN that start sub-programs, bec
they are written to be aware of this issue and to ensure the TTY is in the correct s
before they do their work. Externally linked code can call theIDL_TTYReset()
function to do the same thing:

void IDL_TTYReset(void)

This function is available under all operating systems. On systems where such
operation is not needed, it is a stub. On platforms that require the TTY to be mana
in this way, this operation ensures that the terminal is returned to its standard
configuration.
External Development Guide Ensuring UNIX TTY State

288 Chapter 17: IDL Internals: Miscellaneous Information

uilt-

e

pe.

hat
Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not available; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointers to character strings.IDL_OutputFormat is indexed by type
code, and specifies the default output formats for the different data types (see“Type
Codes”on page 160). The default formats are used by the PRINT and STRING b
in routines as well as for type conversions.

IDL_OutputFormatLen

An array of integers.IDL_OutputFormatLen gives the length in characters of the
corresponding elements ofIDL_OutputFormat .

IDL_TypeSize

An array of long integers.IDL_TypeSize is indexed by type code, and gives the siz
of the data object used to represent each type.

IDL_TypeName

An array of pointers to character strings.IDL_TypeName is indexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in a functional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that ty
This is equivalent to accessing theIDL_OutputFormat array.

int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, this function returns the default output format length for t
type. This is equivalent to accessing theIDL_OutputFormatLen array.
Type Information External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 289
int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. This is equivalent to accessing theIDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as a null
terminated character string. This is equivalent to accessing theIDL_TypeName
array.
External Development Guide Type Information

290 Chapter 17: IDL Internals: Miscellaneous Information

y

User Information

Use theIDL_GetUserInfo() function to get information about the current session.
This is the sort of information that can be used in the header of files produced b
graphics drivers. It is used, for example, by the PostScript driver:

void IDL_GetUserInfo(IDL_USER_INFO *user_info)

where theIDL_USER_INFO struct is defined as:

typedef struct {
char *logname; /* User’s login name */
char host[64]; /* Machine name */
char wd[IDL_MAX_PATH]; /* Working Directory */

char date[25]; /* Current System Time */
} IDL_USER_INFO;
User Information External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 291

me of
ts

, we
Constants

Preprocessor constants defined in theexport.h file should be used in preference to
hardwired values. To accommodate the needs of various operating systems, so
these constants have different values in different versions of IDL. Those constan
that are not discussed elsewhere in this book are listed below.

IDL_TRUE

A more readable alternative to the constant 1.

IDL_FALSE

A more readable alternative to the constant 0.

IDL_REGISTER

Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, many C compilers
won’t put any variables into registers unless register definitions are used. Our
solution is to useIDL_REGISTER to declare variables we feel should be placed
into registers. For machines that we feel have a good register allocation scheme
defineIDL_REGISTER to be a null macro. For lesser compilers, it is defined.

IDL_MAX_ARRAY_DIM

The maximum number of dimensions an array can have.

IDL_MAXIDLEN

The maximum number of characters IDL allows in an identifier (variable names,
program names, and so on).

IDL_MAXPATH

The maximum number of characters allowed in a filepath.
External Development Guide Constants

292 Chapter 17: IDL Internals: Miscellaneous Information

each

e, so
h an

lute
n

Macros

The macros defined inexport.h handle recurring small jobs. Those macros not
discussed elsewhere in this book are covered here.

IDL_MIN(x,y) and IDL_MAX(x,y)

The arguments can be of any numeric C type as long as they are compatible with
other.IDL_MIN() andIDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than onc
be careful to avoid unwanted side effects, and for efficiency do not call them wit
expression.

IDL_ABS(x)

IDL_ABS() accepts a single argument of any numeric C type, and returns its abso
value.IDL_ABS() evaluates its argument more than once, so do not call it with a
expression.

IDL_ROUND_UP(x, m)

IDL_ROUND_UP() returns the value ofx rounded up modulom. m must be a
power of 2. This macro is useful for extending data regions out to a specified
alignment.

IDL_CHAR(ptr)

IDL_CHAR() casts its argument to be a pointer tochar. It is used to convert an
existing pointer into a generic pointer to a memory location.

IDL_CHARA(addr)

IDL_CHARA() takes the address of its argument and casts it to be a pointer tochar.
It is used to get a generic pointer to a memory location.
Macros External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 293

L
e
ese

se

E
een

ems
 the
IDL Global Data Under VAX/OpenVMS

Under VAX/OpenVMS, IDL’s global variables are available as linker UNIVERSA
symbols. However, the locations of these symbols within the IDL sharable imag
change from release to release. Therefore, if your program directly accesses th
symbols, you must re-link your application every time you install a new IDL
distribution.

However, it is possible to minimize the problem of re-linking with each IDL relea
by using the functions—described in“Functions for Returning System Variable
Values” on page 284,“Functions for Returning IDL_FileTerm Variable Values” on
page 286, and“Functions for Returning Data Type Variable Values” on page 288—
that also provide access to global data. These functions are found in the IDL.EX
transfer vector. Therefore, if the functions are used, no re-linking is needed betw
releases as long as the transfer vector is not changed. Although Research Syst
cannot always avoid changing the transfer vector, it is less likely to change than
locations of UNIVERSAL symbols.

Under ALPHA/OpenVMS, global variables are found in the SYMBOL_VECTOR
just like the exported functions, so the previously-described VAX/OpenVMS
problem does not occur with ALPHA/OpenVMS. Under ALPHA/OpenVMS,
accessing the global variable is equivalent to using the function.
External Development Guide IDL Global Data Under VAX/OpenVMS

294 Chapter 17: IDL Internals: Miscellaneous Information
IDL Global Data Under VAX/OpenVMS External Development Guide

Chapter 18:

Adding System
Routines

This chapter discusses the following topics:
9

IDL and System Routines. 296
The System Routine Interface. 297
Example: Hello World 298
Example: Doing A Little More (MULT2) 299
Example: A Complete Numerical Routine
Example (FZ_ROOTS2). 302

Example: An Example Using Routine Design
Iteration (RSUM). 310
Registering Routines 318
Enabling and Disabling System Routines . 321
LINKIMAGE . 32
Dynamically Loadable Modules 331
External Development Guide 295

296 Chapter 18: Adding System Routines

ed
he

le

and
IDL and System Routines

An IDL system routine is an IDL procedure or function that is written in a compil
language and linked into IDL, instead of being written in the IDL language itself.T
best way to create an IDL system routine is to compile and link the routine into a
sharable library and then to add the routine to IDL at runtime using either the
LINKIMAGE procedure or by making your routines part of a Dynamically Loadab
Module (DLM).

This chapter explains how to write a system routine, including several examples,
discusses the various options for adding such routines to IDL.
IDL and System Routines External Development Guide

Chapter 18: Adding System Routines 297

g

nt:

rd
The System Routine Interface

All system routines must supply the same calling interface to the system, differin
only in that system functions must return anIDL_VPTR to theIDL_VARIABLE
that contains the result while system procedures do not return anything. Typical
system routine definitions are:

IDL_VPTR my_function(int argc, IDL_VPTR argv[], char *argk)
void my_procedure(int argc, IDL_VPTR argv[], char *argk)

System routines that do not accept keywords are called with two arguments:

argc

The number of elements inargv.

argv

An array ofIDL_VPTR s. These point to theIDL_VARIABLE s which comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argume

argk

The keywords which were present when the routine was called.argk is an opaque
object—the called routine is not intended to understand its contents.argk is provided
to the functionIDL_KWGetParams() , which processes the keywords in a standa
way. For more information on keywords, see“IDL Internals: Keyword Processing”
on page 197.
External Development Guide The System Routine Interface

298 Chapter 18: Adding System Routines

his
llo

g.
Example: Hello World

Thanks to the definitive text on the C language (Kernighan and Ritchie,The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of a trivial program. Our version of t
program is a system function that returns a scalar string containing the text “He
World!”:

#include <stdio.h>
#include "export.h"

IDL_VPTR hello_world(int argc, IDL_VPTR argv[])
{

return(IDL_StrToSTRING("Hello World!"));
}

This is about as simple as an IDL system routine can be. The function
IDL_StrToSTRING() , returns a temporary variable which contains a scalar strin
Since this is exactly what is wanted,hello_world() simply returns the variable.

After compiling this function into a sharable object (named, say,hello_exe), we can
link it into IDL with the following LINKIMAGE call:

LINKIMAGE, 'HELLO_WORLD', 'hello_exe', 1, 'hello_world', $
MAX_ARGS=0, MIN_ARGS=0

We can now issue the IDL command:

PRINT, HELLO_WORLD()

In response, IDL writes to the screen:

Hello World!
Example: Hello World External Development Guide

Chapter 18: Adding System Routines 299

 an
rom

f the

, so
Example: Doing A Little More (MULT2)

The system function shown in the following figure does a little more than the
previous one, though not by much. It expects a single argument, which must be
array. It returns a single-precision, floating-point array that contains the values f
the argument multiplied by two.

Each line is numbered to make discussion easier. These numbers are not part o
actual program. Each line of this routine is discussed below:

1 – 2

Include the required header files.

4

Every system routine takes the same two or three arguments.argc is the number of
arguments,argv is an array of arguments. This routine does not accept keywords
argk is not present.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include <stdio.h>
#include "export.h"

IDL_VPTR mult2(int argc, IDL_VPTR argv[])
{
 IDL_VPTR dst, src;
 float *src_d, *dst_d;
 int n;
 src = dst = argv[0];

 IDL_ENSURE_SIMPLE(src);
 IDL_ENSURE_ARRAY(src);

 if (src->type != IDL_TYP_FLOAT)
 src = dst = IDL_CvtFlt(1, argv);

 src_d = dst_d = (float *) src->value.arr->data;

 if (!(src->flags & IDL_V_TEMP))
 dst_d = (float *)
 IDL_MakeTempArray(IDL_TYP_FLOAT,src->value.arr->n_dim,
 src->value.arr->dim,
 IDL_ARR_INI_NOP, &dst);

 for (n = src->value.arr->n_elts; n--;)
 *dst_d++ = 2.0 * *src_d++;

 return(dst);
}

Figure 18-1: mult2.c
External Development Guide Example: Doing A Little More (MULT2)

300 Chapter 18: Adding System Routines

tion.

t is

array

int
nd
6

dst will become a pointer to the resulting variable’s descriptor.src points at the input
variable which is found inargv[0].

7

src_d anddst_d will point to the source and destination data areas.

8

n will contain the number of elements insrc.

10

Assume, for now, that the input variable will serve as both the source and destina
This will only be true if the parameter is a temporary floating-point array.

11 – 12

Screen out any input that is not of a basic type, and only allow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If the input is not ofIDL_TYP_FLOAT , we call theIDL_CvtFlt() function to create
a floating-point copy of the argument (see“Converting to Specific Types” on
page 236 for information about converting types).

Note that the routine could also be written, more efficiently, with a C switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be more in the spirit of the IDL
language, where system routines work with all possible data types and sizes, bu
outside the scope of this example.

17

Here, we initialize the pointers to the source and destination data areas from the
block structure pointed to by the input variable descriptor.

19 – 23

If the input variable is not a temporary variable, we cannot change its value and
return it as the function result. Instead, we allocate a new temporary floating po
array into which the result will be placed. Notice how the number of dimensions a
their sizes are taken from the source variable array block. See“Array Variables” on
page 173 and“Temporary Variables” on page 181.
Example: Doing A Little More (MULT2) External Development Guide

Chapter 18: Adding System Routines 301
25

Loop over each element of the arrays.

26

Do the multiplication for each element.

28

Return the temporary variable containing the result.

Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRINT, INDGEN(5)

prints the following on the screen:

0 1 2 3 4

To test our new function we use INDGEN to provide an input argument:

PRINT, MULT2(INDGEN(5))

The result, as expected, is:

0.00000 2.00000 4.00000 6.00000 8.00000
External Development Guide Example: Doing A Little More (MULT2)

302 Chapter 18: Adding System Routines

S,
d.

rd,

hed

ell

upport

iving

en

es.
Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

The following is a complete implementation of the IDL system function FZ_ROOT
used to find the roots of anm-degree complex polynomial, using Laguerre’s metho
The result is anm-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keywo
TC_INPUT, that is not present in the real routine.

FZ_ROOTS2 uses the routinezroots(), described in section 9.5 ofNumerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press:

void zroots(fcomplex a[], int m, fcomplex roots[], int polish)

Quoting from the referenced book:

Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial
, this routine successively callslaguer and finds all m complex roots in

roots[1..m]. The boolean variablepolish should be input as true (1) if polishing (also
by Laguerre’s method) is desired, false (0) if the roots will be subsequently polis
by other means.

FZ_ROOTS2 will support both single and double precision complex values as w
as give the caller control over the error tolerance, which is hard wired into the
Numerical Recipes code as a C preprocessor constant named EPS. In order to s
these requirements, we have copied thezroots() function given in the book and
altered it to support both data types and make EPS a user specified parameter, g
two functions:

void zroots_f(fcomplex a[], int m, fcomplex roots[], int polish,
float eps);

void zroots_d(dcomplex a[], int m, dcomplex roots[], int polish,
double eps);

Note thatfcomplex anddcomplex are Numerical Recipes defined types that happ
to have the same definition as the IDL typesIDL_COMPLEX and
IDL_DCOMPLEX , a convenient fact that eliminates some type conversion issu

The definition of FZ_ROOTS2 from the IDL user perspective is:

a i()xi
i 0=
m∑
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 303

n. If
ue
ing it

od.

esent
low.
Calling Sequence

Result = FZ_ROOTS2(C)

Arguments

C

A vector of lengthm+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROOTS2 normally uses the type of C to determine the type of the computatio
DOUBLE is specified, it overrides this default. Setting DOUBLE to a non-zero val
causes the computation type and the result to be double precision complex. Sett
to zero forces single precision complex.

EPS

The desired fractional accuracy. The default value is 2.0× 10-6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s meth

TC_INPUT

If present, TC_INPUT specifies a named variable that will be assigned the input
value C, with its type converted to the type of the result.

Example

The following figure gives the code for fzroots2.c,. This is ANSI C code that
implements FZ_ROOTS2. The line numbers are not part of the code and are pr
to make the discussion easier to follow. Each line of this routine is discussed be

4

nr.h is the header file provided with Numerical Recipes in C code.

7

FZROOTS2 has the usual three standard arguments.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

304 Chapter 18: Adding System Routines
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#include <stdio.h>
#include <stdarg.h>
#include "export.h"
#include <nr/nr.h>

IDL_VPTR fzroots2(int argc, IDL_VPTR *argv, char *argk)
{
 static int force_type;
 static IDL_LONG do_double;
 static double eps;
 static IDL_LONG no_polish;
 static IDL_VPTR tc_input;
 static IDL_KW_PAR kw_pars[] = {
 {"DOUBLE", IDL_TYP_LONG, 1, 0, &force_type,
 IDL_CHARA(do_double) },
 { "EPS", IDL_TYP_DOUBLE, 1, 0, 0, IDL_CHARA(eps) },
 { "NO_POLISH", IDL_TYP_LONG, 1, IDL_KW_ZERO, 0,
 IDL_CHARA(no_polish) },
 { "TC_INPUT", 0, 1, IDL_KW_OUT|IDL_KW_ZERO, 0,
 IDL_CHARA(tc_input) },
 { NULL }
 };

 IDL_VPTR result;
 IDL_VPTR c_raw;
 IDL_VPTR c_tc;

IDL_MEMINT m;
 void *outdata;
 IDL_MEMINT dim[IDL_MAX_ARRAY_DIM];
 int rtype;
 static IDL_ALLTYPES zero;

 eps = 2.0e-6;
 (void) IDL_KWGetParams(argc, argv, argk, kw_pars,&c_raw,1);

 IDL_ENSURE_ARRAY(c_raw);
 IDL_ENSURE_SIMPLE(c_raw);
 if (c_raw->value.arr->n_dim != 1)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "Input argument must be a column vector.");
 m = c_raw->value.arr->dim[0];
 if (--m <= 0)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "Input array does not have enough elements");

 if (tc_input)
 IDL_StoreScalar(tc_input, IDL_TYP_LONG, &zero);

 if (force_type) {
 rtype = do_double ? IDL_TYP_DCOMPLEX : IDL_TYP_COMPLEX;
 } else {
 rtype = ((c_raw->type == IDL_TYP_DOUBLE)
 || (c_raw->type == IDL_TYP_DCOMPLEX))
 ? IDL_TYP_DCOMPLEX : IDL_TYP_COMPLEX;
 }

Figure 18-2: fzroots2.c
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 305

,
for

sult
9

force_type will be TRUE if the user specifies the DOUBLE keyword. In this case
the value of the DOUBLE keyword will determine the result type without regard
the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex re
and non-zero forces double precision complex.

11

The value of the EPS keyword.

12

The value of the NO_POLISH keyword.

13

The value of the TC_INPUT keyword.

14

This array defines the keywords accepted by FZ_ROOTS2.

C

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

 dim[0] = m;
 outdata = (void *)
 IDL_MakeTempArray(rtype,1,dim,IDL_ARR_INI_NOP,&result);

 if (c_raw->type == rtype) {
 c_tc = c_raw;
 } else {
 c_tc = IDL_BasicTypeConversion(1, &c_raw, rtype);
 }

 if (rtype == IDL_TYP_COMPLEX) {
 zroots_f((fcomplex *) c_tc->value.arr->data, m,
 ((fcomplex *)outdata)-1,!no_polish,(float)eps);
 } else {
 zroots_d((dcomplex *) c_tc->value.arr->data, m,
 ((dcomplex *) outdata) - 1, !no_polish, eps);
 }

 if (tc_input) IDL_VarCopy(c_tc, tc_input);
 else if (c_raw != c_tc) IDL_Deltmp(c_tc);

 return result;
}

Figure 18-2: fzroots2.c
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

306 Chapter 18: Adding System Routines

ord
 its

lue
 the

ue

ype,
15

Since setting DOUBLE to 0 has a different meaning than not specifying the keyw
at all,force_type is used to detect the fact that the keyword is set independent of
value.

17

The EPS keyword allows the user to specify theeps tolerance parameter.eps is
specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default va
for this keyword is non-zero, so no zeroing is specified here. If the user includes
EPS keyword, the value will be placed ineps, otherwiseeps will not be changed.

18

This keyword lets the user suppress the usual polishing performed byzroots(). Since
specifying a value of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO is used to initialize the variable.

20

If present, TC_INPUT is an output keyword that will have the type converted val
of the input argument stored in it. By specifyingIDL_KW_OUT and
IDL_KW_ZERO , we ensure that TC_INPUT is either zero or a pointer to a valid
IDL variable.

25

This variable will receive the function result.

26

The input argument prior to any type conversion.

27

The type converted input variable. If the input variable is already of the correct t
this will be the same asc_raw, otherwise it will be different.

28

The value ofm to be passed tozroots().

29

Pointer to the data area of the result variable. We declare it as(void *) so that it can
point to data of any type.
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 307

s

EPS,

file

e

ct of
 will
is
30

Used to specify dimensions of the result. This will always be a vector ofm elements.

31

IDL type code for result variable.

32

Used byIDL_StoreScalar() to type check the TC_INPUT keyword. It is declared a
static to ensure it is initialized to zero.

35

Set the default EPS value before doing keyword processing. If the user specifies
the supplied value will override this. Otherwise, this value will still be inepsand will
be passed tozroots() unaltered.

36

Perform keyword processing.

38 – 39

Ensure that the input argument is an array, and is one of the basic types (not a
variable or structure).

40– 42

The input variable must be a vector, and therefore should have only a single
dimension.

43 – 46

Ensure that the input variable is long enough form to be non-zero.m is one less than
the number of elements in the input vector, so this is equivalent to saying that th
input must have at least 2 elements.

48

If the TC_INPUT keyword was present, useIDL_StoreScalar() to make sure the
named variable specified can receive the converted input value. A nice side effe
this operation is that any dynamic memory currently being used by this variable
be freed now instead of later after we have allocated other dynamic memory. Th
freed memory might be immediately reusable if it is large enough, which would
reduce memory fragmentation and lower overall memory requirements.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

308 Chapter 18: Adding System Routines

e,

.

d at
the

x it

 the
52

If the user specified the DOUBLE keyword, it is used to control the resulting typ
otherwise the input argument type is used to decide.

53

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX , otherwiseIDL_TYP_COMPLEX .

55 – 57

Use the input type to decide the result type. If the input isIDL_TYP_DOUBLE or
IDL_TYP_DCOMPLEX , useIDL_TYP_DCOMPLEX , otherwise
IDL_TYP_COMPLEX .

59 – 61

Create the output variable that will be passed back as the result of FZ_ROOTS2

63– 67

If necessary, convert the input argument to the result type. This is doneaftercreation
of the output variable because it is likely to have a short lifetime. If it does get free
the end of this routine, it won’t cause memory fragmentation by leaving a hole in
process virtual memory.

69

The version ofzroots() to call depends on the data type of the result.

70 – 71

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensates for the fact that the Numerical Recipe routine will inde
from [1..m] rather than [0..m-1] as is the usual C convention. Also,eps is cast to
single precision.

73– 74

Double precision complex case.

77

If the user specified the TC_INPUT keyword, copy the type converted input into
keyword variable. SinceVarCopy() frees its source variable if it is a temporary
variable, we are relieved of the usual responsibility to callIDL_Deltmp() if c_tc
contains a temporary variable created on line 61.
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 309
78

The user didn’t specify the TC_INPUT keyword. In this case, if we allocatedc_tcon
line 66, we must free it before returning.

80

Return the result.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

310 Chapter 18: Adding System Routines

ction

ment

ut
the

f the

y

urn
Example: An Example Using Routine Design
Iteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM is a fun
that returns the running sum of the values in its single input argument. We will
present three versions of this routine, each one of which represents an improve
in functionality and flexibility.

All three versions use the functionresult_var() shown in the following figure. The
result of RSUM always has the same general shape and dimensions as the inp
argument.result_var() encapsulates the task of creating a temporary variable of
desired type and shape using the input argument as a template.

Running Sum (Example 1)

The first example of RSUM is very simple. Here is a simple “Reference Manual”
style description of it:

RSUM1

Compute a running sum on the array input. The result is a floating point array o
same dimensions.

Calling Sequence

Result = RSUM1(Array)

Arguments

Array

Array for which a running sum will be computed.

This is a minimal design that lacks some important characteristics that IDL
system routines usually embody:

• It does not handle scalar input.

• The type of the input is inflexible. IDL routines usually try to handle an
input type and do whatever type conversions are necessary.

• The result type is always single precision floating point. IDL routines
usually perform computations in the type of the input arguments and ret
a value of the same type.
Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 311

ent
de
 is

ds.
We will improve on this design in our subsequent attempts. The code to implem
RSUM1 is shown in the following figure. The line numbers are not part of the co
and are present to make the discussion easier to follow. Each line of this routine
discussed below:

1

The standard signature for an IDL system function that does not accept keywor

3

This variable is used to access the input argument in a convenient way.

4

This IDL_VPTR will be used to return the result.

5–6

As the running sum is computed, f_src will point at the input data andf_dst will
point at the output data.

7

The number of elements in the input.

1 char *result_var(IDL_VPTR template, int type, IDL_VPTR *res)
2 /*
3 * Allocate a result variable, using the template IDL_VPTR to determine
4 * the structure, and type to determine the type. *res is set to
5 * the new variable, and a pointer to its data area is returned.
6 */
7 {
8 char *data;
9 IDL_VPTR lres;

10
11 if (template->flags & IDL_V_ARR) {
12 data = IDL_MakeTempArray(type, template->value.arr->n_dim,
13 template->value.arr->dim, IDL_ARR_INI_NOP, res);
14 } else {
15 lres = *res = IDL_Gettmp();
16 lres->type = type;
17 data = (char *) &(lres->value.c);
18 }
19
20 return data;
21 }

Figure 18-3: result_var() function for RSUM example
External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

312 Chapter 18: Adding System Routines

o

or.

h
ually
ble

he
10

Obtain the input variable pointer from argv[0].

11

If the input is not single precision floating point, throw an error and quit. This is
overly rigid. Real IDL routines would attempt to either type convert the input or d
the computation in the input type.

14

This version can only handle arrays. If the user passes a scalar, it throws an err

15

This routine cannot handle ASSOC file variables. Most IDL routines exclude suc
variables as they do not contain any data to work with. ASSOC variable data us
comes into a routine as the result of an expression that yields a temporary varia
(e.g.TMP = RSUM(MY_ASSOC_VAR(2))).

17

Create a single precision floating point temporary variable of the same size as t
input variable and get a pointer to its data area.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

IDL_VPTR IDL_rsum1(int argc, IDL_VPTR argv[])
{
 IDL_VPTR v;
 IDL_VPTR r;
 float *f_src;
 float *f_dst;
 IDL_MEMINT n;

 v = argv[0];
 if (v->type != IDL_TYP_FLOAT)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "argument must be float");
 IDL_ENSURE_ARRAY(v);
 IDL_EXCLUDE_FILE(v);

 f_dst = (float *) result_var(v, IDL_TYP_FLOAT, &r);
 f_src = (float *) v->value.arr->data;
 n = v->value.arr->n_elts - 1;
 *f_dst++ = *f_src++;/* First element */
 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;

 return r;
}

Figure 18-4: Code for IDL_rsum1()
Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 313

ble

ng
than
can

of

the
18

Get a pointer to the data area of the input variable. At this point we know this varia
is always a floating point array.

19

The number of data elements in the input.

20–21

The running sum computation.

23

Return the result.

Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in several ways:

• RSUM2 accepts scalar input.

• If the input is not of floating type, we type convert it instead of throwing an
error.

• If the input is a temporary variable of the correct type, we will do the runni
sum computation in place and return the input as our result variable rather
creating an extra temporary. This optimization reduces memory use, and
have positive effects on dynamic memory fragmentation.

As always, the first step in writing a system routine is to write a simple description
its interface and intended behavior:

RSUM2

Compute a running sum on the input. The result is a floating point variable with
same structure.

Calling Sequence

Result = RSUM2(Input)

Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.
External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

314 Chapter 18: Adding System Routines

he

ed.

ng
The code for RSUM2 is given in the following figure.

Discussion of the code for the improvements introduced in this version follow:

10

If the input has the wrong type, obtain one of the right type. If it was already of t
correct type,IDL_BasicTypeConversion() will simply return the input value
without allocating a temporary variable. Hence, no explicit check for that is requir
Also, if the input argument cannot be converted to the desired type (e.g. it is a
structure or file variable)IDL_BasicTypeConversion()will throw an error. Hence,
we know that the result from this function will be what we want without requiring
any further checking.

13

IDL_GetVarData() is a more elegant way to obtain a pointer to variable data alo
with a count of elements. A further benefit is that it automatically handles scalar
variables which removes the restriction from RSUM1.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

IDL_VPTR IDL_rsum2(int argc, IDL_VPTR argv[])
{
 IDL_VPTR v;
 IDL_VPTR r;
 float *f_src;
 float *f_dst;
 IDL_MEMINT n;

 v = IDL_BasicTypeConversion(1, argv, IDL_TYP_FLOAT);
 /* IDL_BasicTypeConversion calls IDL_ENSURE_SIMPLE, so
 skip it here. */
 IDL_VarGetData(v, &n, (char **) &f_src, FALSE);

 /* Get a result var, reusing the input if possible */
 if (v->flags & V_TEMP) {
 r = v;
 f_dst = f_src;
 } else {
 f_dst = (float *) result_var(v, IDL_TYP_FLOAT, &r);
 }

 *f_dst++ = *f_src++;/* First element */
 n--;
 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;

 return r;
}

Figure 18-5: Code for IDL_rsum2().
Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 315

the
sult.

om

ll
s to
n a
put

 and

e

e

15–21

If the input variable is a temporary, we will do the computation in place and return
input. Otherwise, we create a temporary variable of the desired type to be the re

Note that ifIDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value ofargv[0], that value will be a temporary variable which will then
be turned into the function result by this code. Hence, we never free the value fr
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 is a big improvement over RSUM1, but it still suffers from the fact that a
computation is done in a single data type. A real IDL system routine always trie
perform computations in the most significant type presented by its arguments. I
single argument case like RSUM, that would mean doing computations in the in
data type whatever that might be. Our final version, RSUM3, resolves this
shortcoming.

RSUM3

Compute a running sum on the input. The result is a variable with the same type
structure as the input.

Calling Sequence

Result = RSUM3(Input)

Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.

The code forRSUM3 is given in the following figure. Discussion of the code for th
improvements introduced in this version follow:

17

f_src andf_dst are no longer pointers to float. They are now theIDL_ALLPTR
type, which can point to data of any IDL type. To reflect this change in scope, th
leading f_ prefix has been dropped.
External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

316 Chapter 18: Adding System Routines

ither

plex

 C
ror

m on
ning

ond
22-23

Strings are the only input type that now require conversion. The other types can e
support the computation, or are not convertable to a type that can.

35-37

The code for the running sum computation is logically the same for all non-com
data types, differing only in theIDL_ALLPTR field that is used for each type.

Using a macro for this means that the expression is only typed in once, and the
compiler automatically fills in the different parts for each data type. This is less er
prone than entering the expression manually for each type, and leads to more
readable code. This is one of the rare cases where a macro makes thingsmorereliable
and readable.

39-44

A macro for the 2 complex types.

46-60

A switch statement that uses the macros defined above to perform the running su
all possible types. Note the default case, which traps attempts to compute a run
sum on structures.

61-62

Don’t allow the macros used in the above switch statement to remain defined bey
the scope of this function.

1 cx_public IDL_VPTR IDL_rsum3(int argc, IDL_VPTR argv[])
2 {
3 IDL_VPTR v, r;
4 union {
5 char *sc; /* Standard char */
6 UCHAR *c; /* IDL_TYP_BYTE */
7 short *i; /* IDL_TYP_INT */
8 IDL_UINT *ui; /* IDL_TYP_UINT */
9 IDL_LONG *l; /* IDL_TYP_LONG */

10 IDL_ULONG *ul; /* IDL_TYP_ULONG */
11 IDL_LONG64 *l64; /* IDL_TYP_LONG64 */
12 IDL_ULONG64 *ul64; /* IDL_TYP_ULONG64 */
13 float *f; /* IDL_TYP_FLOAT */
14 double *d; /* IDL_TYP_DOUBLE */

C 15 IDL_COMPLEX *cmp; /* IDL_TYP_COMPLEX */
16 IDL_DCOMPLEX *dcmp; /* IDL_TYP_DCOMPLEX */
17 } src, dst;
18 IDL_LONG n;
19
Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 317
20
21 v = argv[0];
22 if (v->type == IDL_TYP_STRING)
23 v = IDL_BasicTypeConversion(1, argv, IDL_TYP_FLOAT);
24 IDL_VarGetData(v, &n, &(src.sc), TRUE);
25 n--; /* First is a special case */
26
27 /* Get a result var, reusing the input if possible */
28 if (v->flags & IDL_V_TEMP) {
29 r = v;
30 dst = src;
31 } else {
32 dst.sc = result_var(v, v->type, &r);
33 }
34
35 #define DOCASE(type, field) \
36 case type: for (*dst.field++ = *src.field++; n--;dst.field++)\
37 *dst.field = *(dst.field - 1) + *src.field++; break
38
39 #define DOCASE_CMP(type, field) case type: \
40 for (*dst.field++ = *src.field++; n--; \
41 dst.field++, src.field++) { \
42 dst.field->r = (dst.field - 1)->r + src.field->r; \
43 dst.field->i = (dst.field - 1)->i + src.field->i; } \
44 break
45

C 46 switch (v->type) {
47 DOCASE(IDL_TYP_BYTE, c);
48 DOCASE(IDL_TYP_INT, i);
49 DOCASE(IDL_TYP_LONG, l);
50 DOCASE(IDL_TYP_FLOAT, f);
51 DOCASE(IDL_TYP_DOUBLE, d);
52 DOCASE_CMP(IDL_TYP_COMPLEX, cmp);
53 DOCASE_CMP(IDL_TYP_DCOMPLEX, dcmp);
54 DOCASE(IDL_TYP_UINT, ui);
55 DOCASE(IDL_TYP_ULONG, ul);
56 DOCASE(IDL_TYP_LONG64, l64);
57 DOCASE(IDL_TYP_ULONG64, ul64);
58 default: IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
59 "unexpected type");
60 }
61 #undef DOCASE
62 #undef DOCASE_CMP
63
64 return r;
65 }
External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

318 Chapter 18: Adding System Routines

.

Registering Routines

The IDL_SysRtnAdd() function adds system routines to IDL’s internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you arelinking aversion of IDL to which you areadding routines,
although this isvery rareand not considered to be agood practice for maintainability
reasons. More commonly, you use IDL_SysRtnAdd() in the IDL_Load() function
of a Dynamically Loadable Module (DLM). DLMs are discussed on page 331.

Note
LINKIM AGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

Syntax

int IDL_SysRtnAdd(IDL_SYSFUN_DEF2 *defs, int is_function, int cnt)

It returns True if it succeeds in adding the routine or False in the event of an error.

Arguments

defs

An array of IDL_SYSFUN_DEF2 structures, one per routine to be declared
This array must be defined with the C languagestatic storage class because
IDL keeps pointers to it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SYSFUN_DEF2 structures contained in thedefs array.

The definition of IDL_SYSFUN_DEF2 is:

typedef IDL_VARIABLE *(* IDL_FUN_RET)();

typedef struct {
IDL_FUN_RET funct_addr;
Registering Routines External Development Guide

Chapter 18: Adding System Routines 319

ld
f the
ns

an
ify
char *name;
unsigned short arg_min;
unsigned short arg_max;
int flags
void *extra;

} IDL_SYSFUN_DEF2;

IDL_VARIABLE structures are described in“The IDL_VARIABLE Structure” on
page 169.

funct_addr

Address of the function implementing the system routine.

name

The name by which the routine is to be invoked from within IDL. This shou
be a pointer to a null terminated string. The name should be capitalized. I
routine is an object method, the name should be fully qualified, which mea
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g.CLASS::METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS .

flags

A bitmask that provides additional information about the routine. Its value c
be any combination of the following values (bitwise OR-ed together to spec
more than one at a time) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.
External Development Guide Registering Routines

320 Chapter 18: Adding System Routines

th
IDL_SYSFUN_DEF_F_METHOD

This routine is an object method.

extra

Reserved to Research Systems, Inc. The caller should set this to 0.

Example

The following example shows how to register a system routine linked directly wi
IDL. For simplicity, everything is placed in a single file. Normally, you would
modularize things to allow easier code maintenance.

#include <stdio.h>
#include "export.h"

void prox1(int argc, IDL_VPTR argv[])
{

printf("prox1 %d\n", IDL_LongScalar(argv[0]));
}

main(int argc, char *argv[])
{

static IDL_SYSFUN_DEF2 new_pros[] = {
{(IDL_FUN_RET) prox1, "PROX1", 1, 1, 0, 0}

};

if (!IDL_SysRtnAdd(new_pros, IDL_FALSE, 1))
IDL_Message(IDL_M_GENERIC, IDL_MSG_RET,

"Error adding system routine");
return IDL_Main(0, argc, argv);

}

This adds a system procedure namedPROX1 which accepts a single argument. It
converts this argument to a scalar longword integer and prints it.
Registering Routines External Development Guide

Chapter 18: Adding System Routines 321

ead
Enabling and Disabling System Routines

The following IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code inst
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.
External Development Guide Enabling and Disabling System Routines

322 Chapter 18: Adding System Routines

es.

l

Enabling Routines

TheIDL_SysRtnEnable() function is used to enable and/or disable system routin

Syntax

void IDL_SysRtnEnable(int is_function, IDL_STRING *names,
IDL_MEMINT n, int option,
IDL_FUN_RET disfcn)

Arguments

is_function

Set to TRUE if functions are being manipulated, FALSE for procedures.

names

NULL, or an array of names of routines.

n

The number of names innames.

option

One of the values from the following table which specify what this routine
should do.

Bit Description

IDL_SRE_ENABLE Enable specified routines.

IDL_SRE_ENABLE_EXCLUSIVE Enable specified routines and disable all
others.

IDL_SRE_DISABLE Disable specified routines.

IDL_SRE_DISABLE_EXCLUSIVE Disable specified routines and enable al
others.

Table 18-1: Values for option Argument
Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 323

er
e is

d, it
also
disfcn

NULL, or address of an IDL system routine to be called by the IDL interpret
for these disabled routines. If this argument is not provided, a default routin
used.

Result

All routines are enabled/disabled as specified. If a non-existent routine is specifie
is quietly ignored. Attempts to enable routines disabled for licensing reasons are
quietly ignored.

Note
The routines: CALL_FUNCTION CALL_METHOD (function and procedure)
CALL_PROCEDURE EXECUTE are not real system routines, but are actually
special cases that result in different IDL pcode. For this reason, they cannot be
disabled. However, anything theycan call can be disabled, so this is not a serious
drawback.
External Development Guide Enabling and Disabling System Routines

324 Chapter 18: Adding System Routines

f
ing

.

l
d

s of
Obtaining Enabled/Disabled Routine Names

TheIDL_SysRtnGetEnabledNames() function can be used to obtain the names o
all system routines which are currently enabled or disabled, either due to licens
reasons (i.e., some routines are disabled in IDL demo mode) or due to a call to
IDL_SysRtnEnable().

Syntax

void IDL_SysRtnGetEnabledNames(int is_function,
IDL_STRING *str, int enabled)

Arguments

is_function

Set to TRUE if a list of functions is desired, FALSE for a list of procedures

str

Points to a buffer of IDL_STRING descriptors to fill in. The caller must cal
IDL_SysRtnNumEnabled() to determine how many such routines exist, an
this buffer must be large enough to hold that number.

enabled

Set to TRUE to receive names of enabled routines, FALSE to receive name
disabled ones.

Result

The memory supplied via str is filled in with the desired names.
Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 325

ffer.

ber
Obtaining the Number of Enabled/Disabled Routines

TheIDL_SysRtnGetEnabledNames()function requires you to supply a buffer large
enough to hold all of the names to be returned.IDL_SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the bu

Syntax

IDL_MEMINT IDL_SysRtnNumEnabled(int is_function, int enabled)

Arguments

is_function

Set to TRUE if the number of functions is desired, FALSE for procedures.

enabled

Set to TRUE to receive number of enabled routines, FALSE to receive num
of disabled ones.

Result

Returns the requested count.
External Development Guide Enabling and Disabling System Routines

326 Chapter 18: Adding System Routines

L
e.

tual

xist,
Obtaining the Real Function Pointer

TheIDL_SysRtnGetRealPtr() routine returns the pointer to the actual internal ID
function that implements the system function or procedure of the specified nam

This routine can be used to interpose your own code in between IDL and the ac
routine. This process is sometimes calledhooking in other systems. To implement
such a hook function, you must use theIDL_SysRtnEnable() function to register the
interposed routine, which in turn usesIDL_SysRtnGetRealPtr() to obtain the actual
IDLfunction pointer for the routine.

Syntax

IDL_FUN_RET IDL_SysRtnGetRealPtr(int is_function, char *name)

Arguments

is_function

Set to TRUE if functions are being manipulated, FALSE for procedures.

name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...

• exists and is not disabled, it’s function pointer is returned.

• does not exist, a NULL pointer is returned.

• has been disabled by the user, its actual function pointer is returned.

• has been disabled for licensing reasons, the real function pointer does not e
and the pointer to its stub is returned.

Note
This routine can cause an IDL_MSG_LONGJMP message to be issued if the
function comes from a DLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unless the IDL interpreter is active. The
Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 327

ion
prime intent for this routine is to call it from the stub routine of a disabled funct
when the interpreter invokes the associated system routine.
External Development Guide Enabling and Disabling System Routines

328 Chapter 18: Adding System Routines

em
er
Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL_SysRtnGetCurrentName(void)

This function returns a pointer to the name of the currently executing syst
routine. If there is no currently executing system routine, a NULL (0) point
is returned.

This routine will never return NULL if called from within a system routine.
Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 329

e’s
ame
in

l to
r a

rk,

ed

 in

e

LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It allows IDL programs to
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines a new system procedure or function by specifying the routin
name, the name of the file containing the code, and the entry point name. The n
of your routine is added to IDL’s internal system routine table, making it available
the same manner as any other IDL built-in routine.

LINKIMAGE is the easiest way to add your routines to IDL. It does not require
linking a separate version of the IDL program with your code the way a direct cal
IDL_SysRtnAdd() does, and it does not require writing the extra code required fo
Dynamically Loadable Module (DLM). It is therefore commonly used for simple
applications, and for testing during the development of a system routine.

If you are developing a larger application, or if you intend to redistribute your wo
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-users to install and use than LINKIMAGE calls.

If your IDL application relies on code written in languages other than IDL and link
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE are linked into IDL before any code that calls them is
restored. In practice, the best way to do this is to make the calls to LINKIMAGE
your MAIN procedure, and include the code that uses the linked routines in a
secondary.SAV file. In this case your MAIN procedure may look something like
this:

PRO main

;Link the external code.
LINKIMAGE, 'link_function', 'new.dll'

;Restore code that uses linked code.
RESTORE, 'secondary.sav'

;Run your application.
myapp

END

In this scenario, the IDL code that calls the LINK_FUNCTION routine (the routin
linked into IDL in the LINKIMAGE call) is contained in the secondary.SAV file
'secondary.sav' .
External Development Guide LINKIMAGE

330 Chapter 18: Adding System Routines
Note
When creating your secondary.SAV file, you will need to issue the LINKIMAGE
command before calling the SAVE procedure to link your routine into IDL after
you have exited and restarted. The RESOLVE_ALL routine does not resolve
routines linked to IDL with the LINKIMAGE procedure.
LINKIMAGE External Development Guide

Chapter 18: Adding System Routines 331

d
re

able

e

nts

e is
only

ines
of

rts
n

ust
that
on.

ou
ll
Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routines in a simple an
efficient manner. However, it quickly becomes inconvenient if you are adding mo
than a few routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that calls it is compiled makes it difficult to use and
complicates the process of redistributing your routines to others. IDL offers an
alternative method of packaging your system routines, called Dynamically Load
Modules (DLMs) that address these and other problems.

The IDL_SYSFUN_DEF2 structure, which is described in“Registering Routines”on
page 318, contains all the information required by IDL for it to be able to compil
calls to a given system routine and call it:

• A routine signature (Name, minimum and maximum number of
arguments, if the routine accepts keywords).

• A pointer to a compiled language function (usually C) that supplies the
standard IDL system routine interface (argc, argv, argk) which impleme
it.

IDL does not require the actual code that implements the function until the routin
called: It is able to compile other routines and statements that reference it based
on its signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The rout
in a DLM are not loaded by IDL unless the user calls one of them. A DLM consists
two files:

1. A module description file (human readable text) that IDL reads when it sta
running. This file tells IDL the signature for all system routines contained i
the loadable module.

2. A sharable library that implements the actual system routines.This library m
be coded to present a specific IDL mandated interface (described below)
allows IDL to automatically load it when necessary without user interventi

DLMs are a powerful way to extend IDL’s built in system routines. This form of
packaging offers many advantages:

• Unlike LINKIMAGE, IDL automatically discovers DLMs when it starts
up without any user intervention. This makes them easy to install — y
simply copy the two files into a directory on your system where IDL wi
look for them.
External Development Guide Dynamically Loadable Modules

332 Chapter 18: Adding System Routines

s

ode.

d

e
ith
n

om

stry.
small
he

.

L
e

ged
• DLM routines work exactly like standard built in routines, and are
indistinguishable from them. There is no need for the user to load them
(for example, using LINKIMAGE) before compiling code that reference
them.

Example

As the amount of code added to IDL grows, using sharable libraries in this way
prevents name collisions in unrelated compiled code from fooling the linker into
linking the wrong code together. DLMs thus act as a firewall between unrelated c

• There are instances where unrelated routines both use a common thir
party library, but they require different versions of this library (e.g. The
HDF support in IDL requires its own version of the NetCDF library. Th
NetCDF support uses a different incompatible version of this library w
the same names). Use of DLMs allows each module to link with its ow
private copy of such code.

• Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedule independent of IDL releases.

• System routines packaged as DLMs are effectively indistinguishable fr
routines built into IDL by Research Systems.

Use of sharable libraries in this manner has ample precedent in the computer indu
Most modern operating systems use loadable kernel modules to keep the kernel
while the functionality grows. The same technique is used in user programs in t
form of sharable libraries, which allows unrelated programs to share code and
memory space (e.g. a single copy of the C runtime library is used by all running
programs on a given system).

How DLMs Work

IDL manages DLMs in the following manner:

1. When IDL starts, it looks in the current working directory for module
definition (.dlm) files. It reads any file found and adds the routines thus
defined to the table of known routines as “stubs”. Stubs are entries in the
system routine dispatch table that lack an actual compiled function to call
They contain sufficient information for IDL to properly compile calls to the
routines, but not to actually call them. After the current working directory, ID
searches !DLM_PATH for .dlm files and adds them to the table in the sam
manner. The default value of !DLM_PATH is the directory in the IDL
distribution where the binary executables are kept. This default can be chan
by defining the IDL_DLM_PATH environment variable (similarly to the way
Dynamically Loadable Modules External Development Guide

Chapter 18: Adding System Routines 333

ge of
ay.
re

e
e
le
ed

e

d the

the

a
to

he

se

l the

cter.
fit

 the

 a
the IDL_PATH environment variable works with !PATH). This process
happens once at startup, and never again. This means that IDL’s knowled
loadable modules is static and unchangeable once the session is underw
This is very different from the way !PATH works, and reflects the static natu
of built in routines. The format of .dlm files is discussed in“The Module
Description File” on page 333.

2. The IDL session then continues in the usual fashion until a call to a routin
from a loadable module occurs. At that time, the IDL interpreter notices th
fact that the routine is a stub, and loads the sharable library for the loadab
module that supplies the routine. It then looks up and calls a function nam
IDL_Load(), which is required to exist, from the library. It’s job is to replac
the stubs from that module with real entries (by usingIDL_SysRtnAdd()) and
otherwise prepare the module for use.

3. Once the module is loaded, the interpreter looks up the routine that cause
load one more time. If it is still a stub then the module has failed to load
properly and an error is issued. Normally, a full routine entry is found and
interpreter successfully calls the routine.

4. At this point the module is fully loaded, and cannot be distinguished from
compiled in part of IDL. A module is only loaded once, and additional calls
any routine from the module are made immediately once it is loaded.

The Module Description File

The module description file is a simple text file that is read by IDL when it starts. T
information in this file tells IDL everything it needs to know about the routines
supplied by a loadable module. With this information, IDL can compile calls to the
routines and otherwise behave as if it contains the actual routine. The loadable
module itself remains unloaded until a call to one of its routines is made, or unti
user forces the module to load by calling the IDL DLM_LOAD procedure.

Empty lines are allowed in dlm files. Comments are indicated using the # chara
All text from a # to the end of the line is ignored by IDL and is for the users bene
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on
keyword. Possible lines are:

MODULE Name

Gives the name of the DLM. This should always be the first non-comment line in
dlm file.There can only be one MODULE line.
External Development Guide Dynamically Loadable Modules

334 Chapter 18: Adding System Routines

tion

sion
s

.
efit.

L

e
the
MODULE JPEG

DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. This informa
is displayed by HELP,/DLM. This line is optional.

DESCRIPTION IDL JPEG support

VERSION VersionString

Supplies a version string that can be used by the IDL user to determine which ver
of the module will be used. IDL does not interpret this string, it only displays it a
part of theHELP,/DLM output. This line is optional.

VERSION 6a

BUILD_DATE DateString

If present, IDL will display this information as part of the output from HELP,/DLM
IDL does not parse this string to determine the date, it is simply for the users ben
This line is optional.

BUILD_DATE JAN 8 1998

SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. This line is optional.

SOURCE Research Systems, Inc.

CHECKSUM CheckSumValue

This directive is used by RSI to sign the authenticity of the DLMs supplied with ID
releases. It is not required for user-written DLMs.

STRUCTURE StructureName

There should be one STRUCTURE line in the DLM file for every named structur
definition supplied by the loadable module. If you refer to such a structure before
DLM is loaded, IDL uses this information to cause the DLM to load. TheIDL_Init()
function for the DLM will define the structure.
Dynamically Loadable Modules External Development Guide

Chapter 18: Adding System Routines 335

it

s

is

 to

to

here:
FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]

PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE line in the DLM file for every
IDL routine supplied by the loadable module. These lines give IDL the information
needs to compile calls to these routines before the module is loaded.

RtnName

The IDL user level name for the routine.

MinArgs

The minimum number of arguments accepted by this routine. If not supplied, 0 i
assumed.

MaxArgs

The maximum number of arguments accepted by this routine. If not supplied, 0
assumed.

Options

Zero or more of the following:

OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.

KEYWORDS

This routine accepts keywords as well as plain arguments.

PROCEDURE READ_JPEG 1 3 KEYWORDS

The IDL_Load() function

Every loadable module sharable library must export a single symbol called
IDL_Load(). This function is called when IDL loads the module, and is expected
do all the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call
IDL_SysRtnAdd(). It usually also requires a call to:IDL_MessageDefineBlock()if
the module defines any messages. Any other initialization needed would also go

int IDL_Load(void)
External Development Guide Dynamically Loadable Modules

336 Chapter 18: Adding System Routines

the

r a
les

at

dule
on.

he
This function takes no arguments. It is expected to returnTrue(non-zero) if it was
successful, andFalse(0) if some initialization step failed.

DLM Example

This example creates a loadable module namedTESTMODULE . TESTMODULE
provides 2 routines:

TESTFUN

A function that issues a message indicating that it was called, and then returns
string “TESTFUN” This function accepts between 0 andIDL_MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between 0 andIDL_MAX_ARRAY_DIM arguments, but it does not use
them for anything.

The intent of this example is to show the support code required to write a DLM fo
completely trivial application. This framework can be easily adapted to real modu
by replacing TESTFUN and TESTPRO with other routines.

The first step is to create the module definition file for TESTMODULE, named
testmodule.dlm:

MODULE testmodule
DESCRIPTION Test code for loadable modules
VERSION 1.0
SOURCE Research Systems, Inc.
BUILD_DATE JAN 8 1998
FUNCTION TESTFUN 0 IDL_MAXPARAMS
PROCEDURE TESTPRO 0 IDL_MAX_ARRAY_DIM

The next step is to write the code for the sharable library. The contents of
testmodule.c is shown in the following figure. Comments in the code explain wh
each step is doing.

If building a DLM for Microsoft Windows, a linker definition file (testmodule.def) is
also needed. All of these files, along with the commands required to build the mo
can be found in the dlm subdirectory of the external directory of the IDL distributi

Once the loadable module is built, you can cause IDL to find it by doing one of t
following:

• Move to the directory containing the .dlm and sharable library for the
module.
Dynamically Loadable Modules External Development Guide

Chapter 18: Adding System Routines 337
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#include <stdio.h>
#include “export.h”

/* Handy macro */
#define ARRLEN(arr) (sizeof(arr)/sizeof(arr[0]))

/* Define message codes and their corresponding printf(3) format
 * strings. Note that message codes start at zero and each one is
 * one less that the previous one. Codes must be monotonic and
 * contiguous. */
static IDL_MSG_DEF msg_arr[] = {
#define M_TM_INPRO 0
 { “M_TM_INPRO”, “%NThis is from a loadable module procedure.” },
#define M_TM_INFUN -1
 { “M_TM_INFUN”, “%NThis is from a loadable module function.” },
};

/* The load function fills in this message block handle with the
 * opaque handle to the message block used for this module. The other
 * routines can then use it to throw errors from this block. */
static IDL_MSG_BLOCK msg_block;

/* Implementation of the TESTPRO IDL procedure */
static void testpro(int argc, IDL_VPTR *argv)
{ IDL_MessageFromBlock(msg_block, M_TM_INPRO, IDL_MSG_RET); }

/* Implementation of the TESTFUN IDL function */
static IDL_VPTR testfun(int argc, IDL_VPTR *argv)
{
 IDL_MessageFromBlock(msg_block, M_TM_INFUN, IDL_MSG_RET);
 return IDL_StrToSTRING(“TESTFUN”);
}

int IDL_Load(void)
{
 /* These tables contain information on the functions and procedures
 * that make up the TESTMODULE DLM. The information contained in these
 * tables must be identical to that contained in testmodule.dlm.
 */
 static IDL_SYSFUN_DEF2 function_addr[] = {
 { testfun, “TESTFUN”, 0, IDL_MAXPARAMS, 0, 0},
 };
 static IDL_SYSFUN_DEF2 procedure_addr[] = {
 { (IDL_FUN_RET) testpro, “TESTPRO”, 0, IDL_MAX_ARRAY_DIM, 0, 0},
 };

 /* Create a message block to hold our messages. Save its handle where
 * the other routines can access it. */
 if (!(msg_block = IDL_MessageDefineBlock(“Testmodule”, ARRLEN(msg_arr),

 msg_arr))) return IDL_FALSE;

 /* Register our routine. The routines must be specified exactly the same
 * as in testmodule.dlm. */
 return IDL_SysRtnAdd(function_addr, TRUE, ARRLEN(function_addr))
 && IDL_SysRtnAdd(procedure_addr, FALSE, ARRLEN(procedure_addr));
}

Figure 18-6: testmodule.c
External Development Guide Dynamically Loadable Modules

338 Chapter 18: Adding System Routines

n

ed,
dule
• Define the IDL_DLM_PATH environment variable to include the
directory.

Running IDL to demonstrate the resulting module:

IDL> help,/DLM,’testmodule’
** TESTMODULE - Test code for loadable modules (not loaded)
Version:1.0,Build Date:JAN 8 1998,Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so
IDL> testpro
% Loaded DLM: TESTMODULE.
% TESTPRO: This is from a loadable module procedure.
IDL> help,/DLM,’testmodule’
** TESTMODULE - Test code for loadable modules (loaded)
Version:1.0,Build Date:JAN 8 1998,Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so
IDL> print, testfun()
% TESTFUN: This is from a loadable module function.
TESTFUN

The initial HELP output shows that the module starts out unloaded. The call to
TESTPRO causes the module to be loaded. As IDL loads the module, it prints a
announcement of the fact (similar to the way it announces the .pro files it
automatically compiles to satisfy calls to user routines). Once the module is load
subsequent calls to HELP show that it is present. Calls to routines from this mo
do not cause the module to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued.
Dynamically Loadable Modules External Development Guide

Chapter 19:

Introduction to
Callable IDL

This chapter discusses the following topics:
Callable IDL . 340
How Callable IDL is Implemented. 341
When is Callable IDL Appropriate?. 342

Licensing Issues and Callable IDL 345
Using Callable IDL 346
Documentation for Callable IDL. 348
External Development Guide 339

340 Chapter 19: Introduction to Callable IDL

d to
Callable IDL

IDL can be called as a subroutine from other programs. This capability is referre
asCallable IDL to distinguish it from the more common case of calling your codefrom
IDL via CALL_EXTERNAL or LINKIMAGE.

This chapter provides a basic description of Callable IDL. Subsequent chapters
discuss the specifics of using Callable IDL under UNIX and VMS (“Using Callable
IDL Under UNIX and VMS” on page 349) and under Microsoft Windows (“Using
Callable IDL Under Windows” on page 375).“AppleScript Support” on page 91,
discusses “calling” IDL for Macintosh via AppleScript.
Callable IDL External Development Guide

Chapter 19: Introduction to Callable IDL 341

iffer

.

How Callable IDL is Implemented

IDL for Windows, IDL for UNIX, and IDL for VMS are packaged in a sharable form
that allows other programs to call IDL as a subroutine. The details of packaging d
between platforms:

• IDL for Windows has a small driver program linked to a Dynamic Link
Library (DLL).

• IDL for UNIX has a small driver program linked to a sharable object library

• IDL for VMS is a sharable executable.

In all three cases, it is possible to link the sharable portion of IDL into your own
programs. Note that Callable IDL isnot a separate object that implements a library
version of IDL. Interactive IDL as seen by the user calls the sharable IDL library
itself.

IDL for Macintosh, is “callable” using AppleScript. See“AppleScript Support” on
page 91.
External Development Guide How Callable IDL is Implemented

342 Chapter 19: Introduction to Callable IDL

asier

is

th
he
llable
d to

ke it
L is

t the
s to
ly

anner
ough

nges

he
s.

 in
When is Callable IDL Appropriate?

Although Callable IDL is very powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually e
approaches that will solve a given problem. See“Inter-language Communication
Techniques Which are Supported” on page 15 for alternatives.

IDL will not integrate withall programs. Understanding the issues described in th
section will help you decide when Callable IDL is and is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL users interface wi
the computer. It is natural to think that calling IDL from other programs will have t
same effect, and under the correct circumstances this is true. However, using Ca
IDL is not as easy as using IDL. Programmers who wish to use Callable IDL nee
possess the skills described in“Skills Required to Combine External Code with IDL”
on page 24.

Be aware that the same things that make IDL powerful at the user level can ma
difficult to include in other programs. As an interactive, interpreted language, ID
a decidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes a compiler, a language interpreter, and related code tha
caller must work around. As an interactive program, IDL must control the proces
a high degree, which can conflict with the caller’s wishes. The following (certain
incomplete) list summarizes some of the issues that must be dealt with.

IDL Signal API

IDL uses UNIX signals to manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the m
in which they are used can change from IDL release to release as necessary. Alth
the IDL signal API (described in“IDL Internals: Signals”on page 259) allows you to
use signals in an IDL-compatible way, the resulting constraints may require cha
to your code.

IDL Timer API

IDL’s use of the process timer requires you to use the IDL timer API instead of t
standard system routines. This restriction may require changes to some program
Under UNIX, the timer module can interrupt system calls. Timers are discussed
“IDL Internals: Timers” on page 271.
When is Callable IDL Appropriate? External Development Guide

Chapter 19: Introduction to Callable IDL 343

at
id

as

its
or if

her

w
ed

r use
ask-

ith
ms,
hat
ere
GUI Considerations

Most applications will call IDL and display IDL graphics in an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows th
IDL did not create. It is not always possible for IDL to draw into windows that it d
not create for the reasons described below:

X Windows

The IDL X Windows graphics driver can draw in windows it did not create as long
the window is compatible with the IDL display connection (see “IDL Graphics
Devices in Chapter 8 of theIDL Reference Guidefor details). However, the design of
IDL’s X Windows driver requires that it open its own display connection and run
own event loop. If your program cannot support a separate display connection,
dividing time between two event loops is not acceptable, consider the following
options:

• Run IDL in a separate process and use interprocess communication
(possibly Remote Procedure Calls, to control it.

• If you choose to use Callable IDL, use the IDL Widget stub interface,
described in“Adding External Widgets to IDL”on page 395, to obtain the
IDL display connection, and create your GUI using that connection rat
than creating your own. The IDL event loop will dispatch your events
along with IDL’s, creating a well-integrated system.

Microsoft Windows

At this time, the IDL for Windows graphics driver does not have the ability to dra
into windows that were not created by IDL. However, the ActiveX control describ
in Chapter 3, “IDLDrawWidget ActiveX Control”, can do this.

Program Size Considerations

On systems that support preemptive multitasking, a single huge program is a poo
of system capabilities. Such programs inevitably end up implementing primitive t
scheduling mechanisms better left to the operating system.

Troubleshooting

Troubleshooting and debugging applications that call IDL can be very difficult. W
standard IDL, malfunctions in the program are clearly the fault of Research Syste
and given a reproducible bug report, we attempt to fix them promptly. A program t
combines IDL with other code makes it difficult to unambiguously determine wh
the problem lies. The level of support Research Systems can provide in such
External Development Guide When is Callable IDL Appropriate?

344 Chapter 19: Introduction to Callable IDL

e of
m

.

t it

e a
t

r,

of
troubleshooting is minimal. The programmer is responsible for locating the sourc
the difficulty. If the problem is in IDL, a simple program demonstrating the proble
must be provided before we can address the issue.

Threading

IDL was not designed to be used in a threaded program, nor is it threaded itself
Attempting to integrate IDL in a threaded application may cause unpredictable
results.

Inter-language Calling Conventions

IDL is written in standard ANSI C. Calling it from other languages is possible, bu
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL is most appropriate in the following situations:

• Callable IDL is clearly the correct choice when the resulting program is to b
front-end that creates a different interface for IDL. For example, you migh
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL as a module in a distributed system.

• Callable IDL is appropriate if either the calling program or IDL handlesall
graphics, including the Graphical User Interface,without the involvement of
the other. Intermediate situations are possible, but more difficult. In particula
beware of attempts to have two event/message loops.

• Callable IDL is appropriate when the calling program makes little or no use
signals, timers, or exception handling, or is able to operate within the
constraints imposed by IDL.
When is Callable IDL Appropriate? External Development Guide

Chapter 19: Introduction to Callable IDL 345

ur
Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of yo
application must have access to a properly licensed copy of the IDL library. For
availability of a runtime version of IDL, contact Research Systems or your IDL
distributor.
External Development Guide Licensing Issues and Callable IDL

346 Chapter 19: Introduction to Callable IDL

m
s as

our

st

X

,

d
all

s

 to
Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just as if a user were typing commands at anIDL>
prompt. In addition to the usual IDL abilities, you can import data from your progra
and cause IDL to see it as an IDL variable. IDL can use such data in computation
if it had created the variable itself. In addition, you can obtain pointers to data
currently held by IDL variables and access the results of IDL computations from y
program.

Initialization

Before calling IDL to execute instructions, you must initialize it usingIDL_Init() (or
IDL_Win32Init() for Windows applications). This is a one-time operation, and mu
occur before calling any other IDL function. Before writing your application, read
carefully the platform-specific initialization details in the following chapters. (UNI
and VMS users see“Initialization” on page 351. Windows users see“Initialization”
on page 377.)

Call IDL

Once Callable IDL is initialized, you can perform two types of operations:

1. Send IDL commands to IDL for execution. Commands are sent as strings
using the same syntax as interactive IDL. Note that there is not a separate
function for every IDL command—any valid IDL command can be execute
as IDL statements. This approach allows us to keep the callable IDL API sm
and simple while allowing full access to IDL’s abilities. (UNIX and VMS user
see“Executing IDL Statements” on page 355. Windows users see“Executing
IDL Statements” on page 380.)

2. Call any of the several routines that interact with IDL through other means
perform operations such as:

• Importing data into IDL. (See“Creating an Array from Existing Data” on
page 186.)

• Accessing data within IDL. (See“Looking Up Variables in Current Scope”
on page 196.)
Using Callable IDL External Development Guide

Chapter 19: Introduction to Callable IDL 347

e

by

e
IX
• Changing items in the process, such as signal handling or timers. (Se
“IDL Internals: Signals” on page 259, or“IDL Internals: Timers” on
page 271.)

• Redirecting IDL output to your own function for processing. (UNIX and
VMS users see“Diverting IDL Output” on page 353. Windows users see
“Diverting IDL Output” on page 378.)

The above list is not complete, but is representative of the possibilities afforded
Callable IDL.

Cleanup

After all IDL use is complete, but before the program exits, you must call
IDL_Cleanup() to allow IDL to shutdown gracefully and clean up after itself. Onc
this has been done, you are not allowed to call IDL again from this process. (UN
and VMS users see“Cleanup” on page 358, Windows users see“Cleanup” on
page 383.)
External Development Guide Using Callable IDL

348 Chapter 19: Introduction to Callable IDL

nd
Documentation for Callable IDL

The following chapters discuss the specifics of using Callable IDL under UNIX a
VMS (“Using Callable IDL Under UNIX and VMS” on page 349) and under
Microsoft Windows (“Using Callable IDL Under Windows” on page 375).
“AppleScript Support” on page 91 discusses “calling” IDL for Macintosh via
AppleScript.
Documentation for Callable IDL External Development Guide

Chapter 20:

Using Callable IDL
Under UNIX and VMS

This chapter discusses the following topics:
9
Callable IDL and UNIX and VMS 350
Initialization . 351
Diverting IDL Output 353
Executing IDL Statements 355
Runtime IDL and Embedded IDL 357
Cleanup . 358

Interactive IDL . 35
Compiling Programs That Call IDL 360
Example: Calling IDL From C 362
Example: Calling an IDL Math Function . 365
Example: Calling IDL from Fortran 368
Compilation and Linking Statements 374
External Development Guide 349

350 Chapter 20: Using Callable IDL Under UNIX and VMS

s

in
”

L
r

Callable IDL and UNIX and VMS

This chapter discusses the procedures used when calling IDL’s sharable librarie
under UNIX and VMS. If you have not yet read“Introduction to Callable IDL” on
page 339, please do so before continuing.

Procedures used when calling the IDL DLL under Microsoft Windows are covered
“Using Callable IDL Under Windows”on page 375. Procedures used when “calling
IDL for Macintosh using AppleScript are covered in“AppleScript Support” on
page 91.

Note
The functions documented in this chapter should only be used when calling ID
from other programs—their use in code called by IDL via CALL_EXTERNAL o
LINKIMAGE is not supported and is certain to corrupt and/or crash the IDL
process.
Callable IDL and UNIX and VMS External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 351

le

UI

E)
r

e
L
 user
t

ing.
Initialization

TheIDL_Init() function prepares Callable IDL for use. This must be the first IDL
routine called.

int IDL_Init(int options, int *argc, char *argv[]);

where:

options

A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_EMBEDDED

Setting this bit causes IDL to initialize to run applications from a Save/Restore fi
that contains an embedded license.IDL_RuntimeExec() is then used to run the
application(s). Note thatIDL_Execute() andIDL_ExecuteStr() are disabled when
IDL is initialized with this option.

IDL_INIT_GUI

Setting this bit causes IDL to use the IDL Development Environment (IDLDE) G
rather than using the standard tty based interface. This option is ignored under
Windows.

IDL_INIT_GUI_AUTO

Setting this bit causes IDL to try to use the IDL Development Environment (IDLD
GUI. If that fails, IDL uses the standard tty interface. This option is ignored unde
Windows.

IDL_INIT_NOLICALIAS

Our FLEXlm floating licence policy is to alias all IDL sessions that share the sam
user/system/display to the same license. If IDL_INIT_NOLICALIAS is set, this ID
session will force a unique license to be checked out. In this case, we allow the
to change the DISPLAY environment variable. This is useful for RPC servers tha
don’t know where their output will need to go before invocation.

IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)

Indicates to IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user’s input command process
External Development Guide Initialization

352 Chapter 20: Using Callable IDL Under UNIX and VMS

ing

the
 all
th a

ge of

 a
One effect of this is that XMANAGER will realize that the active command line
functionality for processing widget events is not available, and XMANAGER will
block to manage events when it is called rather than return immediately.

Normally under UNIX, if IDL sees thatstdin andstdout are ttys, it puts the tty into
raw mode and uses termcap/terminfo to handle command line editing. When us
callable IDL in a background process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from
shell) with a message like “Stopped (tty output) idl”. Setting this option prevents
tty edit functions and disables the calls to termcap. I/O to the tty is then done wi
simplefgets()/printf() . If the IDL_INIT_GUI bit is set, this option is ignored.

For historical reasons, this option used to be calledIDL_INIT_NOTTYEDIT . Use
of that name is still supported.

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and messa
the day.

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license.IDL_RuntimeExec() is then used to run an IDL application restored from
Save/Restore file. Note thatIDL_Execute() andIDL_ExecuteStr() are disabled
when IDL is initialized with this option.

argc

As passed by the operating system tomain().

argv

As passed by the operating system tomain().

IDL_Init() returns TRUE if the initialization is successful, and FALSE for failure.
Arguments not directly intended for IDL are removed fromargv andargc is
decremented to match.
Initialization External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 353

en

r

d

 bit

ing

cter
rs.
Diverting IDL Output

When using a tty-based interface (UNIX or VMS), IDL sends its output to the scre
for the user to see. When using a GUI based interface (Windows, Macintosh, or
UNIX), the output goes to the log window. The default output function is
automatically installed by IDL at startup. To divert IDL output to a function of you
own design, useIDL_ToutPush() andIDL_ToutPop() to change the output function
called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() andIDL_ToutPop()) to manage them. The most recently pushe
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_OUTF)(int flags, char *buf, int n);

The arguments to an output function are:

flags

A bitmask of flag values that specify how the text should be output. The allowed
values are:

IDL_TOUT_F_STDERR

Send the text tostderr rather thanstdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start a new output line. On a tty, this is equivalent to send
a newline ('\n') character.

buf

The text to be output. There may or may not be a NULL termination, so the chara
count provided byn must be used to move only the specified number of characte

n

The number of characters inbuf to be output.
External Development Guide Diverting IDL Output

354 Chapter 20: Using Callable IDL Under UNIX and VMS

ove
IDL_ToutPush()

UseIDL_ToutPush() to push a new output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void IDL_ToutPush(IDL_TOUT_OUTF outf);

IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

Warning
Do not pop an output function you did not push. It is an error to attempt to rem
the last remaining function.

IDL_TOUT_OUTF IDL_ToutPop(void);
Diverting IDL Output External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 355

ll

L

on

lue
ded
Executing IDL Statements

There are two functions that allow you to execute IDL statements.
IDL_ExecuteStr() executes a single command, whileIDL_Execute() takes an array
of commands and executes them in order. In both cases, the commands are nu
terminated strings—just as they would be typed by an IDL user at theIDL> prompt.
It is important to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines written in IDL from the IDL Library (found via the IDL
!PATH system variable). This ability to “download” complicated programs into ID
and then run them via a simple command can be very powerful.

Warning
If the IDL_INIT_EMBEDDED option toIDL_Init() is set,IDL_Execute() and
IDL_ExecuteStr() are disabled. This is also true when using an IDL student editi
license.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the va
of !ERROR after the final command has executed. If the value of !ERROR is nee
for an intermediate command, you should useIDL_ExecuteStr() instead of
IDL_Execute().

int IDL_Execute(int argc, char *argv[]);

argc

The number of commands contained inargv.

argv

An array of pointers to NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

IDL_ExecuteStr() returns the value of the !ERROR system variable after the
command has executed.

int IDL_ExecuteStr(char *cmd);
External Development Guide Executing IDL Statements

356 Chapter 20: Using Callable IDL Under UNIX and VMS
cmd

A NULL-terminated string containing an IDL statement to execute.
Executing IDL Statements External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 357

ed
th

x of
Runtime IDL and Embedded IDL

If you distribute programs that call IDL with a runtime license or an embedded
license, useIDL_RuntimeExec(). After initialization (using either the
IDL_INIT_RUNTIME or IDL_INIT_EMBEDDED option)IDL_RuntimeExec()
can be used to run self-contained IDL applications from a Save/Restore file.
IDL_RuntimeExec() restores the file, then attempts to call an IDL procedure nam
MAIN. If no MAIN procedure is found, the function attempts to call a procedure wi
the same name as the restored Save file. (That is, if the Save file is named
“myprog.sav”,IDL_RuntimeExec() looks for a procedure named “myprog”.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned statusdoes not
indicate whether the actual IDL code ran successfully.

int IDL_RuntimeExec(char *file);

where:

file

The complete path specification to the Save file to be restored, in the native synta
the platform in use.

Warning
If either the IDL_INIT_EMBEDDED option or the IDL_INIT_RUNTIME option
to IDL_Init() is set,IDL_Execute() andIDL_ExecuteStr() are disabled.
External Development Guide Runtime IDL and Embedded IDL

358 Chapter 20: Using Callable IDL Under UNIX and VMS

all

lly
Cleanup

After your program is finished using IDL (typically just before it exits) it should c
IDL_Cleanup() to allow IDL to shut down gracefully.IDL_Cleanup() returns a
status value that can be passed toExit() .

int IDL_Cleanup(int just_cleanup);

where:

just_cleanup

If TRUE, IDL_Cleanup() does all the process shutdown tasks, but doesn’t actua
exit the process. If FALSE (the usual), the process exits.
Cleanup External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 359

.

Interactive IDL

IDL_Main() implements IDL as seen by the interactive user. In the interactive
version of IDL as shipped by Research Systems, the actualmain() function simply
decodes its arguments to determine which options to specify and then calls
IDL_Main() to do the rest.IDL_Main() callsexit() and does not return to its caller

int IDL_Main(int init_options, int argc, char *argv[]);

where:

init_options

The options argument to be passed toIDL_Init() .

argc, argv

Frommain(). Arguments that correspond to options specified via theinit_options
argument should be removed and converted toinit_options flags prior to calling this
routine.
External Development Guide Interactive IDL

360 Chapter 20: Using Callable IDL Under UNIX and VMS

ic

user
iler,

y the
ms
le,

while
e
fer

,
ms

s

tive

ors
ry
Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. The following is a brief list of bas
concepts to consider when building programs that call IDL.

• Compilers for some languages add underscores at the beginning or end of
defined names. To check the naming convention employed by your comp
use the UNIXnm(1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently b
compiler, linker, and debugger. If you use more than one language, proble
arise if the different compilers use different naming conventions. For examp
the SunOS Fortran compiler adds an underscore to the end of each name,
the C compiler does not. To call a Fortran routine from C, you must includ
this underscore in your code (to call the function “my_code”, you would re
to it as “my_code_”). Note that you may also need to set a compiler flag to
make case significant.

To determine whether your compilers use compatible naming conventions
consult your compiler documentation or experiment with small test progra
using the compilers and thenm command.

• Every program starts execution at a known routine. In the C language, thi
routine is explicitly namedmain(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

• When linking a C program, use thecc command instead of theld command.
cc calls ld to perform the link operation, and when necessary adds a direc
to ld that causes the C runtime library to be used.

If you don’t usecc to link your program (if you are usingld directly or are
using a Fortran compiler, for example) and you get “unsatisfied symbol” err
for symbols that are in the standard C library, try including the runtime libra
explicitly in your link command. Usually, adding the string “-lc ” to the end of
the command is all that is necessary.

Note that under Hewlett-Packard’s HP-UX operating system, if you useld
directly you may also need to include thePA1.1 math library in order to locate
mathematics routines at runtime. Add the flag-L/lib/pa1.1 prior to -lm on
the link line to link with thePA1.1 math libraries.
Compiling Programs That Call IDL External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 361
See“Compilation and Linking Statements”on page 374 for examples showing
how to compile and link programs with the IDL libraries under various
operating systems.
External Development Guide Compiling Programs That Call IDL

362 Chapter 20: Using Callable IDL Under UNIX and VMS

ain

e of

rray.

oint

to

t part
Example: Calling IDL From C

The program in the following figure(calltest.c , found in thecallable
subdirectory of theexternal subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obt
data from IDL variables. It performs the following actions:

1. Create an array of 10 floating point values with each element set to the valu
its index. This is equivalent to the IDL command FINDGEN(10).

2. Initialize Callable IDL.

3. Import the floating point array into IDL as a variable named TMP.

4. Have IDL print the value of TMP.

5. Execute a short sequence of IDL statements from a string array:

tmp2 = total(tmp)
print,'IDL total is ',tmp2
plot, tmp

6. Set TMP to zero, causing IDL to release the pointer to the floating point a

7. Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 is a scalar floating p
value.

8. From our C program, print the value of the IDL TMP2 variable.

9. Execute a small widget program. Pressing the button allows the program
end:

a = widget_base()
b = widget_button(a, value='Press When Done',xsize=300,

ysize=200)
widget_control, /realize, a
dummy = widget_event(a)
widget_control, /destroy, a

See“Compilation and Linking Statements” on page 374 for details on
compiling and linking this program.

Each line is numbered to make discussion easier. The line numbers are no
of the actual program.
Example: Calling IDL From C External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 363
Following is commentary on this program, by line number:

24

C equivalent to IDL command “F = FINDGEN(10)”

25

Initialize IDL

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "export.h"

static void free_callback(UCHAR *addr)
{
 printf("IDL released(%u)\n", addr);
}

int main(int argc, char **argv)
{
 float f[10];
 int i;
 IDL_VPTR v;
 IDL_MEMINT dim[IDL_MAX_ARRAY_DIM];
 static char *cmds[] = { "tmp2 = total(tmp)",
 "print,’IDL total is ’,tmp2", "plot,tmp" };
 static char *cmds2[] = { "a = widget_base()",
 "b = widget_button(a, value=’Press When Done’, xsize=300, ysize=200)",

"widget_control,/realize, a",
 "dummy = widget_event(a)",
 "widget_control,/destroy, a" };

 for (i=0; i < 10; i++) f[i] = (float) i;
 if (IDL_Init(0, &argc, argv)) {
 dim[0] = 10;
 printf("ARRAY ADDRESS(%u)\n", f);
 if (v=IDL_ImportNamedArray("TMP", 1, dim, IDL_TYP_FLOAT,
 (UCHAR *) f, free_callback, (void *) 0)) {
 (void) IDL_ExecuteStr("print, tmp");
 (void) IDL_Execute(sizeof(cmds)/sizeof(char *), cmds);
 (void) IDL_ExecuteStr("print, ’Free the user memory’");
 (void) IDL_ExecuteStr("tmp = 0");
 if (v = IDL_FindNamedVariable("tmp2", IDL_FALSE))
 printf("Program total is %f\n", v->value.f);
 (void) IDL_Execute(sizeof(cmds2)/sizeof(char *), cmds2);
 IDL_Cleanup(IDL_FALSE); /* Don’t return */
 }
 }

 return 1;
}

Figure 20-1: Calling IDL from C
External Development Guide Example: Calling IDL From C

364 Chapter 20: Using Callable IDL Under UNIX and VMS

ry

l to
ced
26–29

Import C arrayF into IDL as a FLTARR vector namedTMP with 10 elements. Note
use of the callback argumentfree_callback. This function will be called when IDL is
finished with the arrayF, giving us a chance to properly clean up at that time.

30

Have IDL print the value ofTMP.

31

Execute the commands contained in the C string arraycmds defined on lines 15–16.
These commands create a new IDL variable namedTMP2 containing the sum of the
elements ofTMP, print its value, and plot the vector.

32–33

SetTMP to a new value. This will cause IDL to release the user supplied memo
from lines 26–29 and callfree_callback.

34–35

From C, get a reference to the IDL variableTMP2 and print its value. This should
agree with the value printed by IDL on line 31. It is important to realize that the
pointer to the variable or anything it points at can only be used until the next cal
execute an IDL statement. After that, the pointer and the contents of the referen
IDL_VARIABLE may become invalid as a result of IDL’s execution.

36

Run the simple IDL widget program contained in the array C string arraycmds2
defined on lines 17–21.

37

Shut down IDL. The IDL_FALSE argument instructsIDL_Cleanup() to exit the
process, so this call should not return.

41

This line should never be reached. If it is, return the UNIX failing status.
Example: Calling IDL From C External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 365

s

is
Example: Calling an IDL Math Function

This example demonstrates how to write a simple C wrapper function that allow
calling IDL commands simply from another language. We implement a function
namedcall_idl_fft() that calls the IDL FFT function operating on data imported from
our C program. It returns TRUE on success, FALSE for failure:

int call_idl_fft(IDL_COMPLEX *data, int n, int direction);

data

A pointer to a linear array of complex data to be processed.

n

The number of data points contained in the array data.

dir

The direction of the FFT transform to take. Specify-1 for a forward transform,1 for
the reverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program.Following
commentary on the above program, by line number:

7

The variabler holds the result from the function.

8

dim is used to import the data into IDL as an array.

9

A temporary buffer to format the IDL FFT command.

11–13

Import data into IDL as the variableTMP_FFT_DATA . We don’t set up a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set !ERROR to zero so previous errors don’t confuse our results.
External Development Guide Example: Calling an IDL Math Function

366 Chapter 20: Using Callable IDL Under UNIX and VMS

le
r data

e,
15–16

Format an FFT command to IDL intobuf. Note the use of the OVERWRITE
keyword. This tells the IDL FFT function to place the results into the input variab
rather than creating a separate output variable. Hence, the results end up in ou
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement.IDL_ExecuteStr() returns the value of
!ERROR, which should be zero for success and non-zero in case of error. Henc

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "export.h"

int call_idl_fft(IDL_COMPLEX *data, IDL_MEMINT n, int dir)
{
 int r;
 IDL_MEMINT dim[IDL_MAX_ARRAY_DIM];
 char buf[64];

 dim[0] = n;
 if (IDL_ImportNamedArray("TMP_FFT_DATA", 1, dim,
 IDL_TYP_COMPLEX, (UCHAR *) data, 0, 0)) {
 (void) IDL_ExecuteStr("!ERROR=0");
 sprintf(buf,"TMP_FFT_DATA=FFT(TMP_FFT_DATA,/OVERWRITE)"
 ,dir);
 r = !IDL_ExecuteStr(buf);
 (void) IDL_ExecuteStr("TMP_FFT_DATA=0");
 } else {
 r = FALSE;
 }

 return r;
}

main(int argc, char **argv)
{
#define NUM_PNTS 10
 IDL_COMPLEX data[NUM_PNTS];
 int i;

 for (i = 0; i < NUM_PNTS; i++) data[i].r = data[i].i = i;
 if (IDL_Init(0, &argc, argv)) {
 call_idl_fft(data, NUM_PNTS, -1);
 call_idl_fft(data, NUM_PNTS, 1);
 for (i = 0; i < NUM_PNTS; i++)
 printf("(%f, %f)\n", data[i].r, data[i].i);
 IDL_Cleanup(IDL_FALSE);
 }

 return 1;
}

Figure 20-2: call_idl_fft()
Example: Calling an IDL Math Function External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 367

r

negating the result ofIDL_ExecuteStr() yields the status value we require for the
result of this function.

18

SetTMP_FFT_DATA to 0 within IDL. This causes IDL to release the data pointe
imported previously.

20

If the call toIDL_ImportNamedArray() fails, we must report failure.

26

In order to test thecall_idl_fft() function, this main program calls it twice. Taking
numerical error into account the end result should be equal to the original data.

32

Set the real and imaginary part of each element to the index value.

33

Initialize Callable IDL.

34

Call call_idl_fft() to perform a forward transform.

35

Call call_idl_fft() to perform a reverse transform.

36–37

Print the results.

38

Shut down IDL and exit the process.

41

This line should never be reached. If it is, return the UNIX failing status.
External Development Guide Example: Calling an IDL Math Function

368 Chapter 20: Using Callable IDL Under UNIX and VMS

d

 this

of the

pe

ilers,

ary
Example: Calling IDL from Fortran

The program shown in the following figure (CALLTEST, found in thecallable
subdirectory of theexternal subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, an
obtain data from IDL variables. See“Compilation and Linking Statements” on
page 374 for details on compiling and linking this program. The source code for
file can be found in the filecalltest.f , located in thecallable subdirectory of
theexternal subdirectory of the IDL distribution.

Each line is numbered to make discussion easier. The line numbers are not part
actual program:

1-27

In order to print variables returned from IDL, we must define a Fortran structure ty
for IDL_VARIABLE s. This subroutine creates theIDL_VARIABLE structure and
defines a way to print the floating-point value returned in the an IDL variable.

14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure is implemented. The structure is
padded for the largest data type contained in the union. With some Fortran comp
the combination ofUNION andMAP can be used to implement theALLTYPES
union portion of theIDL_VARIABLE structure.

29-42

This subroutine is called when IDL releases the user-supplied memory.

44-164

This is the main Fortran program.

51-57

External definitions for IDL internal routines. These definitions may not be necess
with some Fortran compilers.

59-62

Define theargc andargv arguments required byIDL_Init() .
Example: Calling IDL from Fortran External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 369
f77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

C---
C Routine to print a floating point value from an IDL variable.

 SUBROUTINE PRINT_FLOAT(VPTR)

C Declare a Fortran Record type that has a compatible form with
C the IDL C struct IDL_VARIABLE for a floating point value.
C Note this structure contains a union which is the size of
C the largest data type. This structure has been padded to
C support the union. Fortran records are not part of
C F77, but most compilers have this option.

 STRUCTURE /IDL_VARIABLE/
 CHARACTER*1 TYPE
 CHARACTER*1 FLAGS
 INTEGER*4 PAD !Pad for largest data type
 REAL*4 VALUE_F
 END STRUCTURE

 RECORD /IDL_VARIABLE/ VPTR

 WRITE(*, 10) VPTR.VALUE_F
 10 FORMAT(’Program total is: ’, F6.2)

 RETURN

 END

C---
C This function will be called when IDL is finished with the
C array F.

 SUBROUTINE FREE_CALLBACK(ADDR)

 INTEGER*4 ADDR

 WRITE(*,20) LOC(ADDR)
 20 FORMAT (’IDL Released:’, I12)

 RETURN

 END

C---
C This program demonstrates how to import data from a Fortran
C program into IDL, execute IDL statements and obtain data
C from IDL variables.

 PROGRAM CALLTEST

C Some Fortran compilers require external defs. for IDL routines:
 EXTERNAL IDL_Init !$pragma C(IDL_Init)
 EXTERNAL IDL_Cleanup !$pragma C(IDL_Cleanup)
 EXTERNAL IDL_Execute !$pragma C(IDL_Execute)
 EXTERNAL IDL_ExecuteStr !$pragma C(IDL_ExecuteStr)
 EXTERNAL IDL_ImportNamedArray !$pragma C(IDL_ImportNamedArray)
 EXTERNAL IDL_FindNamedVariable !$pragma C(IDL_FindNamedVariable)

Figure 20-3: Calling IDL from Fortran
External Development Guide Example: Calling IDL from Fortran

370 Chapter 20: Using Callable IDL Under UNIX and VMS
f77

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

C Define arguments for IDL_Init routine
 INTEGER*4 ARGC
 INTEGER*4 ARGV(1)
 DATA ARGC, ARGV(1) /2 * 0/

C Define IDL Definitions for IDL_ImportNamedArray

 PARAMETER (IDL_MAX_ARRAY_DIM = 8)
 PARAMETER (IDL_TYP_FLOAT = 4)

 REAL*4 F(10)
 INTEGER*4 DIM(IDL_MAX_ARRAY_DIM)
 DATA DIM /10, 7*0/
 INTEGER*4 FUNC_PTR !Address of function
 INTEGER*4 VAR_PTR !Address of IDL variable
 EXTERNAL FREE_CALLBACK !Declare ext routine for use as arg

 PARAMETER (MAXLEN=80)
 PARAMETER (N=10)

C Define commands to be executed by IDL

 CHARACTER*(MAXLEN) CMDS(3)
 DATA CMDS /"tmp2 = total(tmp)",
 & "print, ’IDL total is ’, tmp2",
 & "plot, tmp"/
 INTEGER*4 CMD_ARGV(10)

C Define widget commands to be executed by IDL

 CHARACTER*(MAXLEN) WIDGET_CMDS(5)
 DATA WIDGET_CMDS /"a = widget_base()",
 & "b = widget_button(a,val=’Press When Done’,xs=300,ys=200)",
 & "widget_control, /realize, a",
 & "dummy = widget_event(a)",
 & "widget_control, /destroy, a"/

 INTEGER*4 ISTAT

C Null Terminate command strings and store the address
C for each command string in CMD_ARGV

 DO I = 1, 3
 CMDS(I)(MAXLEN:MAXLEN) = CHAR(0)
 CMD_ARGV(I) = LOC(CMDS(I))
 ENDDO

C Initialize floating point array, equivalent to IDL FINDGEN(10)

 DO I = 1, N
 F(I) = FLOAT(I-1)
 ENDDO

C Print address of F

 WRITE(*,30) LOC(F)
 30 FORMAT(’ARRAY ADDRESS:’, I12)

Figure 20-3: Calling IDL from Fortran
Example: Calling IDL from Fortran External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 371
f77

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

C Initialize Callable IDL

 ISTAT = IDL_Init(%VAL(0), ARGC, ARGV(1))

 IF (ISTAT .EQ. 1) THEN

C Import the floating point array into IDL as a variable named TMP

 CALL IDL_ImportNamedArray(’TMP’//CHAR(0), %VAL(1), DIM,
 & %VAL(IDL_TYP_FLOAT), F, FREE_CALLBACK, %VAL(0))

C Have IDL print the value of tmp

 CALL IDL_ExecuteStr(’print, tmp’//CHAR(0))

C Execute a short sequence of IDL statements from a string array

 CALL IDL_Execute(%VAL(3), CMD_ARGV)

C Set tmp to zero, causing IDL to release the pointer to the
C floating point array.

 CALL IDL_ExecuteStr(’tmp = 0’//CHAR(0))

C Obtain the address of the IDL variable containing the
C the floating point data

 VAR_PTR = IDL_FindNamedVariable(’tmp2’//CHAR(0), %VAL(0))

C Call a Fortran routine to print the value of the IDL tmp2 variable
 CALL PRINT_FLOAT(%VAL(VAR_PTR))

C Null Terminate command strings and store the address
C for each command string in CMD_ARGV

 DO I = 1, 5
 WIDGET_CMDS(I)(MAXLEN:MAXLEN) = CHAR(0)
 CMD_ARGV(I) = LOC(WIDGET_CMDS(I))
 ENDDO

C Execute a small widget program. Pressing the button allows
C the program to end

 CALL IDL_Execute(%VAL(5), CMD_ARGV)

C Shut down IDL
 CALL IDL_Cleanup(%VAL(0))

 ENDIF

 END

Figure 20-3: Calling IDL from Fortran
External Development Guide Example: Calling IDL from Fortran

372 Chapter 20: Using Callable IDL Under UNIX and VMS

ns

mand

nd

t of

ed
66-67

Define constants equivalent to C IDL constants for the maximum array dimensio
and typefloat.

69-77

Define parameters necessary forIDL_ImportNamedArray() .

79-85

Define an array of IDL commands to be executed.

87-96

Define an array of IDL widget commands to be executed.

98-104

Null-terminate each of the command strings and store the address of each com
to pass to IDL.

106-110

Initialize the floating-point array. This is the Fortran equivalent to the IDL comma
F=FINDGEN(10) .

117-121

Initialize IDL.

125-126

Import the Fortran arrayF in the IDL as a 10-element FLTARR vector namedTMP.
Note the use of the callback argumentFREE_CALLBACK() , which will be called
when IDL is finished with the arrayF, giving us a chance to clean up at that time.

134

Execute the commands contained in the character arrayCMDS defined on lines 71-
77. The address for each command is stored in the corresponding array elemen
CMD_ARGV.

139

Set theTMP variable to a new value. This causes IDL to release the user-suppli
memory and callFREE_CALLBACK() .
Example: Calling IDL from Fortran External Development Guide

Chapter 20: Using Callable IDL Under UNIX and VMS 373

 IDL
144

Get a reference to the IDL variableTMP2.

147

Call the routinePRINT_FLOAT to print the value ofTMP2. This should agree with
the value printed by line 130. Note that the address of the IDL variableTMP2, and its
contents, can only be used until the next call to execute an IDL statement, since
may change the value of the referencedIDL_VARIABLE .

150-161

Execute the commands contained in the character arrayWIDGET_CMDS defined
on lines 79-88.

163-168

Shut down IDL. The 0 argument instructsIDL_CLEANUP() to exit the process, so
this call should not return.
External Development Guide Example: Calling IDL from Fortran

374 Chapter 20: Using Callable IDL Under UNIX and VMS

e

s
ntry
add
Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on a UNIX system ar
described in the filecalltest_unix.txt in thecallable subdirectory of the
external subdirectory of the main IDL directory. Note that different UNIX system
have different compilation and link statements. Note also that the name of the e
point in the object may be different than that shown here, because compilers may
leading or trailing underscores to the name of the source routine.

Note
TheMakefile in the architecture-specific subdirectory of thebin subdirectory of
the IDL distribution also contains a make rule for building thecalltest
application. The text ofcalltest_unix.txt is derived from those files.

Compilation and linking statements used when calling IDL on a VMS system are
included inmake_vms.com , a VMS command file located in thecallable
subdirectory of theexternal subdirectory of the main IDL directory.
Compilation and Linking Statements External Development Guide

Chapter 21:

Using Callable IDL
Under Windows

This chapter discusses the following topics:
3

Callable IDL and Windows. 376
Initialization . 377
Diverting IDL Output 378
Executing IDL Statements 380

Runtime IDL and Embedded IDL. 382
Cleanup . 38
Building an Application that Calls IDL. . . 384
Example: A Simple Application 385
External Development Guide 375

376 Chapter 21: Using Callable IDL Under Windows

u

32.

cts

in

L
r

Callable IDL and Windows

This chapter discusses calling the IDL Win32 DLL under Microsoft Windows. If yo
have not yet read“Introduction to Callable IDL” on page 339, please do so before
continuing. The first sections of this chapter describe calling IDL from a 32-bit
Win32 Windows application. Note that IDL does not support calls from 16-bit
Windows applications, or from applications built using 32-bit APIs other than Win

Procedures used when calling the IDL for UNIX and IDL for VMS sharable obje
are covered in“Using Callable IDL Under UNIX and VMS” on page 349.
Procedures used when “calling” IDL for Macintosh using AppleScript are covered
“AppleScript Support” on page 91.

Note
The functions documented in this chapter should only be used when calling ID
from other programs—their use in code called by IDL via CALL_EXTERNAL o
LINKIMAGE is not supported and is certain to corrupt and/or crash the IDL
process.
Callable IDL and Windows External Development Guide

Chapter 21: Using Callable IDL Under Windows 377
Initialization

TheIDL_Win32Init() function prepares the IDL DLL for use.IDL_Win32Init()
must be called before any other function exceptIDL_ToutPush().

int IDL_Win32Init(int iOpts, void *hinstExe, void *hwndExe,
void *hAccel);

where:

iOpts

Reserved. This argument should always be 0 (zero).

hinstExe

HINSTANCE from the application that will be calling IDL.

hwndExe

HWND for the application’s main window.

hAccel

Reserved. This argument should always be NULL.

IDL_Win32Init() returns TRUE if the initialization is successful, and FALSE for
failure.
External Development Guide Initialization

378 Chapter 21: Using Callable IDL Under Windows

en
goes
t

d

 bit

ing

cter
rs.
Diverting IDL Output

When using a tty-based interface (UNIX or VMS), IDL sends its output to the scre
for the user to see. When using a GUI based interface (any platform), the output
to the log window. The default output function is automatically installed by IDL a
startup. To divert IDL output to a function of your own design, useIDL_ToutPush()
andIDL_ToutPop() to change the output function called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() andIDL_ToutPop()) to manage them. The most recently pushe
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_OUTF)(int flags, char *buf, int n);

The arguments to an output function are:

flags

A bitmask of flag values that specify how the text should be output. The allowed
values are:

IDL_TOUT_F_STDERR

Send the text tostderr rather thanstdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start a new output line. On a tty, this is equivalent to send
a newline ('\n') character.

buf

The text to be output. There may or may not be a NULL termination, so the chara
count provided byn must be used to move only the specified number of characte

n

The number of characters inbuf to be output.
Diverting IDL Output External Development Guide

Chapter 21: Using Callable IDL Under Windows 379
IDL_ToutPush()

UseIDL_ToutPush() to push a new output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void IDL_ToutPush(IDL_TOUT_OUTF outf);

IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.Caution: Do not pop an output function you did not
push. It is an error to attempt to remove the last remaining function.

IDL_TOUT_OUTF IDL_ToutPop(void);
External Development Guide Diverting IDL Output

380 Chapter 21: Using Callable IDL Under Windows

ll

L

lue
ded
Executing IDL Statements

There are two functions that allow you to execute IDL statements.
IDL_ExecuteStr() executes a single command, whileIDL_Execute() takes an array
of commands and executes them in order. In both cases, the commands are nu
terminated strings—just as they would be typed by an IDL user at theIDL> prompt.
It is important to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines written in IDL from the IDL Library (found via the IDL
!PATH system variable). This ability to “download” complicated programs into ID
and then run them via a simple command can be very powerful.

Warning
If IDL is called with either a runtime or embedded license,IDL_Execute() and
IDL_ExecuteStr() are disabled.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the va
of !ERROR after the final command has executed. If the value of !ERROR is nee
for an intermediate command, you should useIDL_ExecuteStr() instead of
IDL_Execute().

int IDL_Execute(int argc, char *argv[]);

argc

The number of commands contained inargv.

argv

An array of pointers to NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

IDL_ExecuteStr() returns the value of the !ERROR system variable after the
command has executed.

int IDL_ExecuteStr(char *cmd);
Executing IDL Statements External Development Guide

Chapter 21: Using Callable IDL Under Windows 381
cmd

A NULL-terminated string containing an IDL statement to execute.
External Development Guide Executing IDL Statements

382 Chapter 21: Using Callable IDL Under Windows

N
e as

x of
Runtime IDL and Embedded IDL

If you distribute programs that call IDL with a runtime license, use
IDL_RuntimeExec(). After initialization,IDL_RuntimeExec() can be used to run
self-contained IDL applications from a Save/Restore file.IDL_RuntimeExec()
restores the file, then attempts to call an IDL procedure named MAIN. If no MAI
procedure is found, the function attempts to call a procedure with the same nam
the restored Save file. (That is, if the Save file is named “myprog.sav”,
IDL_RuntimeExec() looks for a procedure named “myprog”.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned statusdoes not
indicate whether the actual IDL code ran successfully.

int IDL_RuntimeExec(char *file);

where:

file

The complete path specification to the Save file to be restored, in the native synta
the platform in use.

Warning
If IDL is called with a student license,IDL_Execute() andIDL_ExecuteStr() are
disabled.
Runtime IDL and Embedded IDL External Development Guide

Chapter 21: Using Callable IDL Under Windows 383

all

lly
Cleanup

After your program is finished using IDL (typically just before it exits) it should c
IDL_Cleanup() to allow IDL to shut down gracefully.IDL_Cleanup() returns a
status value that can be passed toExit() .

int IDL_Cleanup(int just_cleanup);

where:

just_cleanup

If TRUE, IDL_Cleanup() does all the process shutdown tasks, but doesn’t actua
exit the process. If FALSE (the usual), the process exits.

This call should be placed in your MainWndProc and be called as a result of the
WM_CLOSE message.

switch(msg){
...

case WM_CLOSE:
IDL_Cleanup(TRUE);
any additional processing
...
External Development Guide Cleanup

384 Chapter 21: Using Callable IDL Under Windows

g

Building an Application that Calls IDL

To build your 32-bit, Win32 application that calls IDL, you must take the followin
steps:

1. Includeexports.h , found in theexternal subdirectory of the IDL
distribution, in your source code.

2. Compile your application.

3. Link your application withIDL32.LIB .

4. PlaceIDL32.DLL in a directory with your application or see the readme.txt
file located in theRSI-directory /external/callable for an alternative
method.
Building an Application that Calls IDL External Development Guide

Chapter 21: Using Callable IDL Under Windows 385

,
bles.

a

f the
Example: A Simple Application

The following program demonstrates how to display message text sent from IDL
execute IDL statements entered by a user, and how to obtain data from IDL varia
It performs the following actions:

1. Creates a Main window with four client controls; a scrolling edit control to
display text messages from IDL, a single line edit control to allow a user to
enter an IDL command, aSendbutton to send the user command to IDL, and
Quit button to exit the application.

2. Registers a callback function to handle text messages sent by IDL to the
application.

3. Initializes Callable IDL.

4. Call IDL_Cleanup() when we receive theWM_CLOSE message.

Each line is numbered to make discussion easier. These numbers are not part o
actual program. The source code for this program can be found in the filesimple.c ,
located in thecallable subdirectory of theexternal subdirectory of the IDL
distribution. See the source code for details of the program not printed here.

1 /*---
--
2 * simple.c Source code for sample IDL callable application
3 *
4 * Copyright (c) 1992-1995, Research Systems Inc.
9 *--
*/
10 #include <windows.h>
11 #include <windowsx.h>
12 #include <ctl3d.h>
13 #include <string.h>
14 #include <stdio.h>
15 #include "simple.h"
16 #include "export.h"
17
18 /*---
19 * WinMain
20 *
21 * This is the required entry point for all windows
applications.
22 *
23 * RETURNS: TRUE if successful
External Development Guide Example: A Simple Application

386 Chapter 21: Using Callable IDL Under Windows
24 *---*/
25 int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE
hInstancePrev,
26 LPSTR lpszCmndline, int nCmdShow)
27 {
28 HWND hwnd;
29 MSG msg;
30
31 // Register the main window class.
32 if (!RegisterWinClass(hInstance)) {
33 return(0);
34 }
35
36 ...
37
38 // Create and display the main window.
39 if ((hwnd = InitMainWindow(hInstance)) == NULL) {
40 return(0);
41 }
42 MainhWnd = hwnd;
43
44 // Register our output function with IDL.
45 IDL_ToutPush(OutFunc);
46
47 // Initialize IDL
48 if (!IDL_Win32Init(0, hInstance, hwnd, NULL))
49 return(FALSE);
50
51 // Main message loop.
52 while (GetMessage(&msg, NULL, 0, 0)) {
53 TranslateMessage(&msg);
54 DispatchMessage(&msg);
55 }
56
57 return(msg.wParam);
58 }
59
60 /*---
61 * RegisterWinClass
62 *
63 * To create a Main window (TLB in IDL speak). You must first
64 * register the class for that window
65 *
66 * RETURNS: TRUE if successful
67 *---*/
68 BOOL RegisterWinClass(HINSTANCE hInst)
69 {
70 WNDCLASS wc;
71
Example: A Simple Application External Development Guide

Chapter 21: Using Callable IDL Under Windows 387
72 wc.style = CS_HREDRAW | CS_VREDRAW;
73 wc.lpfnWndProc = MainWndProc;
74 wc.cbClsExtra = 0;
75 wc.cbWndExtra = 0;
76 wc.hInstance = hInst;
77 wc.hIcon = NULL;
78 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
79 wc.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
80 wc.lpszMenuName = NULL;
81 wc.lpszClassName = "Simple";
82
83 if (!RegisterClass(&wc)) {
84 return(FALSE);
85 }
86
87 return(TRUE);
88 }
89
90 /*---
91 * InitMainWindow
92 *
93 * This is where our Main window is created and displayed
94 *
95 * RETURNS: Handle to window
96 *---*/
97 HWND InitMainWindow(HINSTANCE hInst)
98 {
99 HWND hwnd;
100 CREATESTRUCT cs;
101
102
103 hwnd = CreateWindow("Simple",
104 "Callable IDL Sample Application",
105 WS_DLGFRAME | WS_SYSMENU | WS_MINIMIZEBOX | WS_VISIBLE,
106 CW_USEDEFAULT,
107 0,
108 600,
109 480,
110 NULL,
111 NULL,
112 hInst,
113 &cs);
114
115 if (hwnd) {
116 ShowWindow(hwnd, SW_SHOWNORMAL);
117 UpdateWindow(hwnd);
118 }
119
120 return(hwnd);
External Development Guide Example: A Simple Application

388 Chapter 21: Using Callable IDL Under Windows
121 }
122
123 /*--
124 * MainWndProc
125 *
126 * The window procedure (event handler) for our main window.
127 * All messages (events) sent to our app are routed through
128 * here
129 * RETURNS: Depends of message.
130 *--*/
131 LRESULT WINAPI MainWndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
132 {
133 static int nDisplayable = 0;
134
135
136 switch (uMsg) {
137 //When our app is first created, we are sent this message.
138 //We take this opportunity to create our child controls and
139 //place them in their desired locations on the window.
140 case WM_CREATE:
141 if (!CreateControls(((LPCREATESTRUCT)lParam)->hInstance, hwnd)) {
142 return(0);
143 }
144 if (!LayoutControls(hwnd)) {
145 return(0);
146 }
147 nDisplayable = GetCharacterHeight(GetDlgItem(hwnd, IDE_COMMANDLOG));
148 break;
149
150 ...
151
152 case WM_DESTROY:
153 PostQuitMessage(1);
154 break;
155
156 //Each time a button or menu item is selected, we get this message
157 case WM_COMMAND:
158 OnCommand(hwnd, LOWORD(wParam), wParam, lParam);
159 return(FALSE);
160
161 //This is a message we send ourselves to indicate the need to
162 //display a text message in our log window.
163 case IDL_OUTPUT:
164 OutputMessage(wParam, lParam, nDisplayable);
165 return(FALSE);
166
167 case WM_CLOSE:
168 IDL_Cleanup(TRUE);
169 return(FALSE);
Example: A Simple Application External Development Guide

Chapter 21: Using Callable IDL Under Windows 389
170
171 default:
172 break;
173 }
174
175 return(DefWindowProc(hwnd, uMsg, wParam, lParam));
176 }
177
178 /*--
179 * OnCommand
180 *
181 * This is the message handle for our WM_COMMAND messages
182 *
183 * RETURNS: FALSE
184 *--*/
185 BOOL OnCommand(HWND hWnd, UINT uId, WPARAM wParam, LPARAM lParam)
186 {
187
188 switch(uId){
189 case IDB_SENDCOMMAND:{
190 LPSTR lpCommand;
191 LPSTR lpOut;
192
193 lpCommand = GlobalAllocPtr(GHND, 256);
194 lpOut = GlobalAllocPtr(GHND, 256);
195 if(!lpCommand)
196 return(FALSE);
197
198 /* First we get the string that is in the input window */
199 GetDlgItemText(hWnd, IDE_COMMANDLINE, lpCommand,
255);
200
201 /* and then clear the window */
202 SetDlgItemText(hWnd, IDE_COMMANDLINE, "");
203
204 lstrcpy(lpOut, "\r\nSent to IDL: ");
205 lstrcat(lpOut, lpCommand);
206
207 /* Send the string to our "log" window */
208 OutFunc(IDL_TOUT_F_NLPOST, lpOut, strlen(lpOut));
209
210 /* then send the string to IDL */
211 IDL_ExecuteStr(lpCommand);
212
213 /* Now clean up */
214 GlobalFreePtr(lpCommand);
215 GlobalFreePtr(lpOut);
216 }
217 break;
External Development Guide Example: A Simple Application

390 Chapter 21: Using Callable IDL Under Windows
218 }
219 return(FALSE);
220 }
221
222 /*--
223 * OutFunc
224 *
225 * This is the output function that receives messages from IDL
226 * and displays them for the user
227 *
228 * RETURNS: NONE
229 *--*/
230 void OutFunc(long flags, char *buf, long n)
231 {
232 static fShowMain = FALSE;
233
234 /* If there is a message, post it to our MAIN window */
235 if (n){
236 SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM)buf);
237 }
238
239 /* If we need to post a new line message... */
240 if (flags & IDL_TOUT_F_NLPOST){
241 SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM)(LPSTR)"\r\n\0");
242 }
243
244 /* This message gets sent to the log window to have it scroll
245 and display the last message at the bottom of the window.
246 With this, the user will always see the last screen full of
247 messages sent
248 */
249 SendMessage (MainhWnd, IDL_OUTPUT, (WPARAM)TRUE,
250 (LPARAM)(LPSTR)”\0”);
251
252 return;
253 }
254
255 /*--
256 * OutputMessage
257 *
258 * Here we do the actual display of the text to our log window
259 *
260 * RETURNS: nothing
261 *
262 *--*/
263 void OutputMessage(WPARAM wParam, LPARAM lParam, int nDisplayable)
264 {
265 LRESULT lRet;
266 LONG lBufflen, lNumLines, lFirstView;
Example: A Simple Application External Development Guide

Chapter 21: Using Callable IDL Under Windows 391
267
268 /* Turn off the READONLY bit and postpone redraw */
269 lRet = SendMessage(hwndLog, EM_SETREADONLY, FALSE, 0L);
270 lRet = SendMessage(hwndLog, WM_SETREDRAW, FALSE, 0L);
271
272 /* Get the length of the text in the log window*/
273 lBufflen = SendMessage (hwndLog, WM_GETTEXTLENGTH, 0, 0L);
274 lNumLines = SendMessage (hwndLog, EM_GETLINECOUNT, 0, 0L);
275 lFirstView = SendMessage (hwndLog, EM_GETFIRSTVISIBLELINE, 0, 0L);
276 lRet = SendMessage (hwndLog, EM_SETSEL, lBufflen, lBufflen);
277
278 /* If we are adding text, wParam will be 0 */
279 if(!wParam)
280 lRet = SendMessage (hwndLog, EM_REPLACESEL, 0, lParam);
281 else{
282 if (lNumLines > (lFirstView + nDisplayable)){
283 int iLineLen = 0;
284 int iChar;
285 int iLines = 0;
286 lNumLines--;
287 while(!iLineLen){
288 iChar = SendMessage(hwndLog, EM_LINEINDEX,
289 (WPARAM)lNumLines, 0L);
290 iLineLen = SendMessage(hwndLog, EM_LINELENGTH,
291 iChar, 0L);
292 if(!iLineLen)
293 lNumLines--;
294 }
295 iLines = lNumLines-(lFirstView + (nDisplayable - 1));
296 iLines = iLines >= 0 ? iLines : 0;
297 SendMessage (hwndLog, EM_LINESCROLL, 0, (LPARAM)iLines);
298 }
299 }
300
301 /* Set the window to redraw and reset the READONLY bit */
302 lRet = SendMessage(hwndLog, WM_SETREDRAW, TRUE, 0L);
303 lRet = SendMessage(hwndLog, EM_SETREADONLY, TRUE, 0L);
304
305 return;
306 }

The following is a commentary on the program, by line number:

16

export.h contains theIDL_ function prototypes, IDL specific structures, and IDL
constants.
External Development Guide Example: A Simple Application

392 Chapter 21: Using Callable IDL Under Windows

 the

sage
e).

o the

d

45

Call IDL_ToutPush() with the address of the output function (OutFunc) as it’s only
argument. This will registerOutFunc as a callback for IDL. IDL will callOutFunc
when it needs to display text.

48

Initialize IDL with the handle to the main window and the HINSTANCE of the
application.

52

Start the windows message loop.

131-176

This is the Main window procedure. It will handle any messages that are sent to
main window. This includesWM_COMMAND messages that occur as a result of
user interaction with the client controls. In addition, it handles a user defined mes
calledIDL_OUTPUT (the name doesn’t matter but this is a clue as to its purpos

158

When the user presses either the “Send” or “Quit” buttons, route the message t
OnCommand function.

164

When we receive anIDL_OUTPUT message, call the function that displays text in
the scrolling window (OutputMessage. See line 263).

168

When we receive theWM_CLOSE message, callIDL_Cleanup() to unlink IDL
from our application.

185-220

OnCommand handles theWM_COMMAND messages generated when the user
clicks on the application’s buttons.

199

Get the IDL command that the user has entered in the single line edit control an
store it in a buffer.
Example: A Simple Application External Development Guide

Chapter 21: Using Callable IDL Under Windows 393

 to

w
urce
202

Clear the text in the edit control.

208

Call theIDL_TOUT_ function to display the command sent to IDL in the output
window.

211

Call IDL_ExecuteStr() with the IDL command retrieved in line 199.

230-253

OutFunc is the callback registered with IDL to handle text messages IDL sends
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

263-306

OutputMessagehandles displaying the text to the output window. Since this windo
is a multi-line edit control, we have created it as a read-only window. See the so
code for additional information on handling this situation.

280

OutputMessage appends new messages to the existing text in the control.

281-299

When the text has been displayed,OutputMessagescrolls the window to display the
last line of text in the bottom of the window.
External Development Guide Example: A Simple Application

394 Chapter 21: Using Callable IDL Under Windows
Example: A Simple Application External Development Guide

Chapter 22:

Adding External
Widgets to IDL

This chapter discusses the following topics:
IDL and External Widgets 396
WIDGET_STUB. 397
WIDGET_CONTROL/WIDGET_STUB. 398

Functions for Use with Stub Widgets 400
Internal Callback Functions. 402
OpenVMS With WIDGET_STUB 404
External Development Guide 395

396 Chapter 22: Adding External Widgets to IDL

he
.x

our
IDL and External Widgets

This chapter describes an IDL widget type not documented in theIDL Reference
Guide, called the stub widget. It also describes a small set of internal functions to
manipulate stub widgets. Stub widgets allow CALL_EXTERNAL, LINKIMAGE,
and Callable IDL users to add their own widgets to IDL widget hierarchies.

This feature does not always work with versions of IDL that statically link against t
window system libraries, particularly those for Sun workstations. When Solaris 2
ships from Sun with sharable Motif libraries, this limitation will disappear.

The next two sections describe IDL’s WIDGET_STUB function and changes to
WIDGET_CONTROL when used with WIDGET_STUB.“Functions for Use with
Stub Widgets” on page 400 describes support functions that can be called from y
external code to manipulate stub widgets.“Internal Callback Functions”on page 402
describes how to make stub widgets generate IDL widget events. Finally,“OpenVMS
With WIDGET_STUB” on page 404 illustrates the use of stub widgets with an
external program.

Note
IDL’s WIDGET_STUB functionality was designed for the X/Motif windowing
system, and is not supported under Microsoft Windows or on the Macintosh.
IDL and External Widgets External Development Guide

Chapter 22: Adding External Widgets to IDL 397

et

of
e

get.

stub

 for
WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widg
types into IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to call additional custom code to handle the rest. A number
internal functions are provided to manipulate widgets from this custom code. Se
“Functions for Use with Stub Widgets” on page 400.

The returned value of this function is the widget ID of the newly-created stub wid

Calling Sequence

Result = WIDGET_STUB(Parent)

Arguments

Parent

The widget ID of the parent widget. Stub widgets can only have bases or other
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as
other widget creation functions:

EVENT_FUNC SCR_XSIZE
EVENT_PRO SCR_YSIZE
FUNC_GET_VALUE UVALUE
GROUP_LEADER XOFFSET
KILL_NOTIFY XSIZE
NO_COPY YOFFSET
PRO_SET_VALUE YSIZE
External Development Guide WIDGET_STUB

398 Chapter 22: Adding External Widgets to IDL

sed
ds

ps

s are
WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in theIDL Reference Guide.
These differences are described below.

Keywords

Only the most general keywords are allowed with WIDGET_CONTROL when u
with stub widgets. All other keywords are ignored. Here is a list of those keywor
that behave identically with all widgets including stub widgets:

BAD_ID PRO_SET_VALUE
CLEAR_EVENTS RESET
EVENT_FUNC SET_UVALUE
EVENT_PRO SHOW
FUNC_GET_VALUE TIMER
GET_UVALUE TLB_GET_OFFSET
GROUP_LEADER TLB_GET_SIZE
HOURGLASS TLB_SET_TITLE
ICONIFY TLB_SET_XOFFSET
KILL_NOTIFY TLB_SET_YOFFSET
MANAGED XOFFSET
NO_COPY YOFFSET

The following keywords also work with stub widgets, but require additional
commentary:

DESTROY

When a widget hierarchy containing stub widgets is destroyed, the following ste
are taken:

• The lower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

• All IDL widget records are added to the free list for re-use.

• Any requested KILL_NOTIFY callbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callback
issued, so don’t attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.
WIDGET_CONTROL/WIDGET_STUB External Development Guide

Chapter 22: Adding External Widgets to IDL 399

ny
ated

g

e of

b

MAP, REALIZE, and SENSITIVE

These keywords cause the toolkit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, a
real widgets used by the stub widgets will be processed, along with the ones cre
by the non-stub widgets, in the usual way. Any additional processing must be
provided via CALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and offsets of the surroundin
widgets.

IDL tries to do something reasonable with these requests but, without knowledg
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, theIDL_WidgetStubSetSizeFunc()function can be used
to specify a routine that IDL can call to perform the necessary sizing for your stu
widget.
External Development Guide WIDGET_CONTROL/WIDGET_STUB

400 Chapter 22: Adding External Widgets to IDL

ss
et
the

gets
. Any

t
to
l
ory

d

L.
ing

t
nal
Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget cla
that gives the user enough access to IDL widget internals to make the stub widg
work but hides the bulk of the actual internals. These functions are exported by
IDL program for use by CALL_EXTERNAL code, but are not advertised in
export.h .

void IDL_WidgetStubLock(int set);

IDL event processing occurs asynchronously, so any code that manipulates wid
must execute in a protected region. This function is used to create such a region
code that manipulates widgets must be surrounded by two calls to
IDL_WidgetStubLock() as follows:

IDL_WidgetStubLock(TRUE);
/* Do your widget stuff */

IDL_WidgetStubLock(FALSE);

char *IDL_WidgetStubLookup(IDL_ULONG id);

When IDL creates a widget, it returns an integer value to the caller of the widge
creation function. Internally, however, IDL widgets are represented by a pointer
memory. TheIDL_WidgetStubLookup() function is used to translate the user-leve
integer value to this memory pointer. All the other internal routines use the mem
pointer to reference the widget.

Id is the integer returned at the user level. Your call to CALL_EXTERNAL shoul
pass this integer to your C-level code for use withIDL_WidgetStubLookup() which
translates the integer to the pointer.

If the specified id does not represent a valid IDL widget, this function returns NUL
This situation can occur if a widget was killed but its integer handle is still linger
somewhere.

void IDL_WidgetIssueStubEvent(char *rec, LONG value);

Given a handle to the IDL widget, obtained viaIDL_WidgetStubLookup() , this
function queues an IDLWIDGET_STUB_EVENT . Such an event is a structure tha
contains the three standard fields (ID, TOP, and HANDLER) as well as an additio
field named VALUE that contains the specifiedvalue.
Functions for Use with Stub Widgets External Development Guide

Chapter 22: Adding External Widgets to IDL 401

s
L

r
andle

in

e
vior,
ses,
VALUE can provide a way to access additional information about the widget,
possibly by providing a memory address to the information.

void IDL_WidgetSetStubIds(char *rec, unsigned long t_id,
unsigned long b_id);

IDL widgets are built out of one or more actual widgets. Every IDL widget carrie
two pointers that are used to locate the top and bottom real widget for a given ID
widget. This function allows you to set these top and bottom pointers in the stub
widget for later use.

Since the actual pointer type differs from toolkit to toolkit, this function declarest_id
(the top real widget) andb_id (the bottom real widget) as unsigned long, an intege
data type large enough to safely contain any pointer. Use a C cast operator to h
the difference.

After calling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additional code that creates the real widgets that
represent the stub. Having done that, useIDL_WidgetSetStubIds() to save the top
and bottom widget pointers.

void IDL_WidgetGetStubIds(char *rec, unsigned long *t_id,
unsigned long *b_id);

This function returns the top (t_id) and bottom (b_id) real widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, it is the caller’s responsibility to avoid damaging the IDL-created widgets
any way.

void IDL_WidgetStubSetSizeFunc(char *rec,
IDL_WIDGET_STUB_SET_SIZE_FUNCfunc)

typedef void (* IDL_WIDGET_STUB_SET_SIZE_FUNC);
(IDL_ULONG id, int width, int height);

When IDL needs to set the size of a stub widget, it attempts to set the size of th
bottom real widget to the necessary dimensions. Often, this is the desired beha
but cases can arise where it would be better to handle sizing differently. In such ca
useIDL_WidgetStubSetSizeFunc()to register a function that IDL will call to do the
actual sizing.
External Development Guide Functions for Use with Stub Widgets

402 Chapter 22: Adding External Widgets to IDL

ge
 are

e
l

in

that

vel
Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C langua
programs register interest in specific events by providing callback functions that
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgets to generate IDL events, you must use
CALL_EXTERNAL to invoke code that sets up real widget event callbacks for th
events you are interested in. This setup can be done as part of creating the rea
widgets after the initial call to WIDGET_STUB. These callbacks then call
IDL_WidgetIssueStubEvent() to issue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_widget_call()
{

char *idl_widget;
IDL_WidgetStubLock(TRUE);

/* Get the IDL user-level identifier for this widget */
if (idl_widget = IDL_WidgetStubLookup(id)) {

/* Do whatever work is required */
...

/* Optionally, issue an IDL event */
IDL_WidgetIssueStubEvent(idl_widget, value)

}
IDL_WidgetStubLock(FALSE);

}

Commentary on the Example Shown Above

Note thatIDL_WidgetStubLock() is used to protect the critical section where
widgets are being manipulated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, this is done
one of two ways:

• When registering the callback, it is sometimes possible to specify a value
will be passed to the callback without interpretation. For example, the X
windowsXtAddCallback() function takes an argument namedclient_data.
This value is passed to the callback and can be used to supply the user-le
identifier.
Internal Callback Functions External Development Guide

Chapter 22: Adding External Widgets to IDL 403

ch
es.

tifier.

a
ne

ot
• Some widget toolkits have a set of attributes that they carry along with ea
widget. Under the X windows Xt toolkit, these attributes are called resourc
Xt widgets usually have a resource capable of holding a single integer or
memory address. This resource can be used to supply the user level iden

IDL_WidgetStubLookup() is used to translate the user level widget identifier into
memory pointer. If this function returns NULL, no further event processing is do
since it would be a fatal error to issue an IDL event for a non-existent widget.

The event is issued viaIDL_WidgetIssueStubEvent(). This step is not required.
Many of the IDL widget types process real widget events via callbacks that do n
always result in an IDL widget event being sent.
External Development Guide Internal Callback Functions

404 Chapter 22: Adding External Widgets to IDL

n

n.
). If

he

d

n

OpenVMS With WIDGET_STUB

The following example adds the Motif ArrowButton widget to the OpenVMS versio
of IDL in the form of an IDL program namedwidget_arrowb.pro . It would be
straightforward to do the same with any version of IDL supporting
CALL_EXTERNAL.

The WIDGET_ARROWB widget implemented below acts like a normal pushbutto
Events are sent when the button is pressed (VALUE=1) and released (VALUE=0
the USE_OWN_SIZE keyword is set to zero, IDL performs its default sizing on t
stub widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWB implementation to be registered to handle such sizing.

The IDL Program for WIDGET_ARROWB

The following text is the IDL program for WIDGET_ARROWB. It should be save
in a file namedWIDGET_ARROWB.PRO:

FUNCTION widget_arrowb, parent, use_own_size, $
UVALUE=uvalue, _EXTRA=extra

parent = LONG(parent)
result = WIDGET_STUB(parent,_extra=extra)
if (N_ELEMENTS(uvalue) NE 0) THEN $

WIDGET_CONTROL, result, SET_UVALUE=uvalue
JUNK = CALL_EXTERNAL('widget_arrowb','widget_arrowb', $

def='diska:[idl.ali.arrowb].exe', parent, result, $
use_own_size, value=[1, 1, 1])

RETURN, result
END

The C Program for widget_arrowb.c

The code invoked by the call to CALL_EXTERNAL is contained in a file named
widget_arrowb.c (this file can be found in thewidstub subdirectory of the
external subdirectory of the IDL distribution). The contents of this file are show
below:

/*
*
*
* arrowb.c - This file contains C code to be called from VMS IDL
* via CALL_EXTERNAL. It uses the IDL stub widget to add a
* Motif ArrowButton to an IDL-created widget hierarchy. The
* button issues a WIDGET_STUB_EVENT every time the button is
* released.
OpenVMS With WIDGET_STUB External Development Guide

Chapter 22: Adding External Widgets to IDL 405
*
*/
#include <stdio.h>
#include <X11:keysym.h> /* Keysyms for text widget events */
#include <X11:Intrinsic.h>
#include <X11:StringDefs.h>
#include <X11:Shell.h>
#include <Xm:ArrowB.h>
#include "idl_dir:[external]export.h"
/*ARGSUSED*/
static void arrowb_CB(Widget w, caddr_t client_data, caddr_t
call_data)
{

char *rec;
XmArrowButtonCallbackStruct *abcs;
IDL_WidgetStubLock(TRUE);
if (rec = IDL_WidgetStubLookup((unsigned long) client_data)) {

abcs = (XmArrowButtonCallbackStruct *) call_data;
IDL_WidgetIssueStubEvent(rec, abcs->reason == XmCR_ARM);

}
IDL_WidgetStubLock(FALSE);

}
static void arrowb_size_func(int stub, int width, int height)
{

char *stub_rec;
unsigned long t_id, b_id;
IDL_WidgetStubLock(TRUE);
if (stub_rec = IDL_WidgetStubLookup(stub)) {

IDL_WidgetGetStubIds(stub_rec, &t_id, &b_id);
printf("Setting WIDGET %d to width %d and height %d\n",

stub, width,height);
XtVaSetValues((Widget) b_id, XmNwidth, width, XmNheight,

height, NULL);
}
IDL_WidgetStubLock(FALSE);

}
int widget_arrowb(IDL_LONG parent, IDL_LONG stub,

int use_own_size_func)
{

Widget parent_w;
Widget stub_w;
char *parent_rec;
char *stub_rec;
unsigned long t_id, b_id;
IDL_WidgetStubLock(TRUE);
if ((parent_rec = IDL_WidgetStubLookup(parent))

&& (stub_rec = IDL_WidgetStubLookup(stub))) {
/* Bottom widget of parent is parent to arrow button */
External Development Guide OpenVMS With WIDGET_STUB

406 Chapter 22: Adding External Widgets to IDL
IDL_WidgetGetStubIds(parent_rec, &t_id, &b_id);
parent_w = (Widget) b_id;
stub_w = XtVaCreateManagedWidget("arrowb",

xmArrowButtonWidgetClass,
parent_w, NULL);

IDL_WidgetSetStubIds(stub_rec, (unsigned long) stub_w,
(unsigned long) stub_w);

XtAddCallback(stub_w, XmNarmCallback, (XtCallbackProc)
arrowb_CB,

(XtPointer) stub);
XtAddCallback(stub_w, XmNdisarmCallback,

(XtCallbackProc)arrowb_CB,
(XtPointer) stub);

if (use_own_size_func)
IDL_WidgetStubSetSizeFunc(stub_rec,arrowb_size_func);

}
IDL_WidgetStubLock(FALSE);
return stub;

}

Compiling and Linking the C File

This C file is compiled and linked into a sharable image usable by
CALL_EXTERNAL by a DCL command file namedWIDGET_ARROWB.COM:

$ if "’’f$search("SYS$SYSTEM:VAXVMSSYS.PAR")’" .eqs. ""
$ then
$! ALPHA
$ cc widget_arrowb.c
$ link/share widget_arrowb, sys$input/opt
/exe=widget_arrowb.exe

IDL_DIR:[BIN.BIN_ALPHA]idl/share
SYS$SHARE:DECW$XMLIBSHR12.EXE/SHARE
SYS$SHARE:DECW$XTLIBSHRR5.EXE/SHARE
SYS$SHARE:DECW$XLIBSHR/SHARE
SYMBOL_VECTOR=(widget_arrowb=PROCEDURE)

$ else
$! VAX
$ cc widget_arrowb.c
$ link /share widget_arrowb, sys$input/opt
/exe=widget_arrowb.exe

IDL_DIR:[BIN.BIN_VAX]IDL/SHARE
SYS$SHARE:DECW$XMLIBSHR12.EXE/SHARE
SYS$SHARE:DECW$XTLIBSHRR5.EXE/SHARE
SYS$SHARE:DECW$XLIBSHR/SHARE
sys$share:vaxcrtl/share
universal = widget_arrowb

$ endif
OpenVMS With WIDGET_STUB External Development Guide

Chapter 22: Adding External Widgets to IDL 407

am
Execute the file by entering:

$ @WIDGET_ARROWB

An IDL Program to Test the External Widget

Shown below is an IDL widget program to test the ARROWB widget. This progr
should be saved in a file calledTEST.PRO. Note that one arrow button uses IDL’s
default sizing, while the other uses the WIDGET_ARROWB version:

PRO test_event, ev
WIDGET_CONTROL, GET_UVALUE=val, ev.id
IF (val EQ 0) THEN BEGIN

WIDGET_CONTROL, /DESTROY, ev.top
ENDIF ELSE BEGIN

HELP, /STRUCT, ev
IF (ev.value EQ 1) THEN BEGIN

WIDGET_CONTROL, val, SET_VALUE=’New label string’
tmp = WIDGET_INFO(ev.id,/GEOMETRY)
WIDGET_CONTROL, XSIZE=tmp.xsize+25, YSIZE=tmp.ysize+25,

ev.id
ENDIF

ENDELSE
END

PRO test
a = WIDGET_BASE(/COLUMN)
b = WIDGET_BUTTON(a, VALUE=’Done’, UVALUE = 0)
label = WIDGET_LABEL(a, VALUE=’A label’)
arrow_w = WIDGET_ARROWB(a, 0, XSIZE=100, YSIZE=100, UVALUE=label)
arrow_w = WIDGET_ARROWB(a, 1, XSIZE=100, YSIZE=50, UVALUE=label)
WIDGET_CONTROL, /REALIZE, a
XMANAGER, ’TEST’, a
END

Start IDL and run the test program by entering:

$ IDL
IDL> TEST
External Development Guide OpenVMS With WIDGET_STUB

408 Chapter 22: Adding External Widgets to IDL
OpenVMS With WIDGET_STUB External Development Guide

Appendix A:

Obsolete Internal
Interfaces

This chapter discusses the following topics:
Registering Routines. 410
Simplified Routine Invocation 413

Compatibility with Versions 2 and 3 420
IDL Version 1 Compatibility. 421
External Development Guide 409

410 Appendix A: Obsolete Internal Interfaces

m
F
new
n
en

ing

all

sms

ps
Interfaces Obsoleted in IDL 5.3

Changes were required to implement the ability to enable and disable IDL syste
routines from runtime and callable IDL. Rather than alter the IDL_SYSFUN_DE
structure, and the IDL_AddSystemRoutine() function in an incompatible way, a
structure (IDL_SYSFUN_DEF2) and new function (IDL_SysRtnAdd()) have bee
created to accomplish the new tasks, and the old structure and function have be
obsoleted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by Research Systems. This section is
supplied to help those maintaining older code. New code should be written us
the information found in“Registering Routines” in Chapter 18.

Registering Routines

TheIDL_AddSystemRoutine() function adds system routines to IDL’s internal
tables of system functions and procedures. As a programmer, you will need to c
this function directly if you are linking a version of IDL to which you are adding
routines, although this is very rare and not considered to be a good practice for
maintainability reasons. More commonly, you useIDL_AddSystemRoutine() in the
IDL_Load() function of a Dynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. These mechani
are discussed in the following sections of this chapter.

int IDL_AddSystemRoutine(IDL_SYSFUN_DEF *defs, int is_function,
int cnt);

It returnsTrue if it succeeds in adding the routine orFalsein the event of an error:

defs

An array ofIDL_SYSFUN_DEF structures, one per routine to be declared. This
array must be defined with the C language static storage class because IDL kee
pointers to it.defs must be sorted by routine name in ascending lexical order.
Interfaces Obsoleted in IDL 5.3 External Development Guide

Appendix A: Obsolete Internal Interfaces 411

a
 is

wed

not
is_function

Set this parameter to IDL_TRUE if the routines indefs are functions, and
IDL_FALSE if they are procedures.

cnt

The number ofIDL_SYSFUN_DEF structures contained in thedefs array.

The definition ofIDL_SYSFUN_DEF is:

typedef IDL_VARIABLE *(* IDL_FUN_RET)();

typedef struct {
IDL_FUN_RET funct_addr;
char *name;
UCHAR arg_min;
UCHAR arg_max;
UCHAR flags

} IDL_SYSFUN_DEF;

IDL_VARIABLE structures are described in“The IDL_VARIABLE Structure” on
page 169.

funct_addr

Address of the function implementing the system routine.

name

The name by which the routine is to be invoked from within IDL. This should be
pointer to a null terminated string. The name should be capitalized. If the routine
an object method, the name should be fully qualified, which means that it should
include the class name at the beginning followed by two consecutive colons, follo
by the method name (e.g.CLASS::METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

The maximum number of arguments allowed for the routine. If the routine does
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS .
External Development Guide Interfaces Obsoleted in IDL 5.3

412 Appendix A: Obsolete Internal Interfaces

any
ne
flags

A bitmask that provides additional information about the routine. Its value can be
combination of the following values (bitwise OR’’d together to specify more than o
at a time) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.
Interfaces Obsoleted in IDL 5.3 External Development Guide

Appendix A: Obsolete Internal Interfaces 413

ed,
d by
de.
g

g
nd

s

h

f the

ted
o

Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely us
and are considered functionally obsolete although they continue to be supporte
Research Systems. This section is supplied to help those maintaining older co
New code should be written using the information found in Chapter 18:, “Addin
System Routines”.

A great deal of the work involved in writing IDL system routines involves checkin
positional arguments, screening out illegal combinations of type and structure, a
converting them to desired type. The functionIDL_EzCall() provides a simplified
way to handle this task. It processes an array ofIDL_EZ_ARG structs which
describe the processing to be applied to each positional argument.

TheIDL_EzCall() function is similar to the facility provided for keyword argument
by IDL_KWGetParams() :

void IDL_EzCall(int argc, IDL_VPTR argv[],
IDL_EZ_ARG arg_struct[]);

where:

argc

The number of positional arguments present.

argv

An array of pointers to the positional arguments.

arg_struct

An array ofIDL_EZ_ARG structures defining the desired characteristics for eac
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order o
IDL_EZ_ARG structures is the same as the order in which the arguments are
specified in the call. (See“The IDL_EZ_ARG struct” on page 414.)

There are some things you need to be aware of when usingIDL_EzCall() :

• IDL_EzCall() automatically excludes file variables (such as those crea
by the ASSOC function) so you don’t have to take any special action t
screen such variables out.
External Development Guide Simplified Routine Invocation

414 Appendix A: Obsolete Internal Interfaces

e
g

s

that
le, to
• Every call toIDL_EzCall() must have a matching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

• IDL_EzCall() does not handle keyword arguments. If the calling routin
allows keyword arguments, it must do its own keyword processing usin
IDL_KWGetParams() (see“IDL Internals: Keyword Processing” on
page 197) and pass anargv containing only positional arguments to
IDL_EzCall() .

• If you mark a variable as being write-only, you shouldn’t count on
anything useful being in theuargv or value fields. This implies that it is
not a good idea to set theIDL_EZ_POST_WRITEBACK field in the
post field. Instead, you will have to allocate a new temporary variable,
place the desired value into it, and use theIDL_VarCopy() function to
write its value back into the originalargv entry yourself.

Note
IDL_EZ_POST_WRITEBACK is only useful when the access field is set to
IDL_EZ_ACCESS_RW.

The IDL_EZ_ARG struct

TheIDL_EZ_ARG struct has the following definition:

typedef struct {
short allowed_dims;
short allowed_types;
short access;
short convert;
short pre;
short post;
IDL_VPTR to_delete;
IDL_VPTR uargv;
IDL_ALLTYPES value;

} IDL_EZ_ARG;

where:

allowed_dims

A bit mask that specifies the allowed dimensions. Bit 0 means scalar, bit 1 mean
one-dimensional, etc. TheIDL_EZ_DIM_MASK macro can be used to specify
certain bits. It accepts a single argument that specifies the number of dimensions
are accepted, and returns the bit value that represents that number. For examp
specify that the argument can be scalar or have 2 dimensions:
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 415

ype

at it
IDL_EZ_DIM_MASK(0) | IDL_EZ_DIM_MASK(2)

In addition, the following constants are defined to simplify the writing of common
cases:

IDL_EZ_DIM_ARRAY

Allow all but scalar.

IDL_EZ_DIM_ANY

Allow anything.

allowed_types

This is a bit mask defining the allowed data types for the argument. To convert t
codes to the appropriate bits, use the formula:

or use theIDL_TYP_MASK macro (see“Type Masks” on page 161).

Note
If you specify a value for the convert field, its a good idea to specify
IDL_TYP_B_ALL or IDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR’d together to set the proper value:

IDL_EZ_ACCESS_R

The value of the argument is used by the system routine.

IDL_EZ_ACCESS_W

The value of the argument is changed by the system routine. This means th
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW

This is equivalent toIDL_EZ_ACCESS_R | IDL_EZ_ACCESS_W.

BitMask 2
TypeCode

=

External Development Guide Simplified Routine Invocation

416 Appendix A: Obsolete Internal Interfaces

n the

n the

nt.

s

nts
convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF means that no conversion will be applied.

pre

A bitmask that specifies special purpose processing that should be performed o
variable byIDL_EzCall() . These bits are specified with the following constants:

IDL_EZ_PRE_SQMATRIX

The argument must be a square matrix.

IDL_EZ_PRE_TRANSPOSE

Transpose the argument.

Note
This processing occurs after any type conversions specified byconvert, and is only
done if the access field has theIDL_EZ_ACCESS_R bit set.

post

A bit mask that specifies special purpose processing that should be performed o
variable byIDL_EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK

Transfer the contents of theuargv field back to the actual argument.

IDL_EZ_POST_TRANSPOSE

Transposeuargv prior to transferring its contents back to the actual argume

Note
This processing occurs only when theaccess field has theIDL_EZ_ACCESS_W
bit set. If IDL_EZ_POST_WRITEBACK is not present, none of the other action
are considered, since that would imply wasted effort.

to_delete

Do not make use of this field. This field is reserved for use by the EZ module. If
IDL_EzCall() allocated a temporary variable to satisfy the conversion requireme
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 417

y

r a
’t

eld
from

dle

er):
given by the convert field, theIDL_VPTR to that temporary is saved here for use b
IDL_EzCallCleanup().

uargv

After calling IDL_EzCall() , uargv contains a pointer to theIDL_VARIABLE
which is the argument. This is theIDL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, o
temporary variable containing a converted version of the original. This field won
contain anything useful if theIDL_EZ_ACCESS_R bit is not set in theaccess field.

value

This is a copy of thevalue field of theIDL_VARIABLE pointed at byuargv. For
scalar variables, it contains the value, for arrays it points at the array block. This fi
is here to make reading read-only variables faster. Note that this is only a copy
uargv, and changing it will not cause the actualvalue field inuargv to be updated.

Cleaning Up

Every call toIDL_EzCall() must be bracketed by a call toIDL_EzCallCleanup():

void IDL_EzCallCleanup(int argc, IDL_VPTR argv[],
IDL_EZ_ARG arg_struct[]);

The arguments are exactly the same as those passed toIDL_EzCall() .

Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to han
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SVD accepts the following positional arguments (in ord

A

An m by n matrix (input, required).

w

An n-element vector (output, required).

U

An n by m matrix (output, optional)

V

An n by n matrix (output, optional)
External Development Guide Simplified Routine Invocation

418 Appendix A: Obsolete Internal Interfaces

f the
Each line is numbered to make discussion easier. These numbers are not part o
actual program.

1 void nr_svdcmp(int argc, IDL_VPTR argv[])
2 {
3 .
4 .
5 .
6 static IDL_EZ_ARG arg_struct[] = {
7 { IDL_EZ_DIM_MASK(2), IDL_TYP_B_SIMPLE, IDL_EZ_ACCESS_R,
8 IDL_TYP_FLOAT, 0, 0 }, /* A */
9 { IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,
10 IDL_EZ_ACCESS_W, 0, 0, 0 }, /* w */
11 { IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,
12 IDL_EZ_ACCESS_W, 0, 0, 0 }, /* U */
13 { IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,
14 IDL_EZ_ACCESS_W, 0, 0, 0 } /* V */
15 };
16
17 IDL_EzCall(argc, argv, arg_struct);
18 .
19 .
20 .
21 /* Do the SVD calculation and prepare temporary
22 variables to be returned as w, U, and V */
23 .
24 .
25 .
26 IDL_EzCallCleanup(argc, argv, arg_struct);
27 }

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the various fields of theIDL_EZ_ARG struct for the first positional
argument (A) specifies:

allowed_dims

The argument must be 2-dimensional.

allowed_types

It can have any simple type. Types and type codes are discussed in“IDL Internals:
Types” on page 159.
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 419

 are
 only

sing
access

The routine will examine the argument’s value, but will not attempt to change it.

convert

The argument should be converted toIDL_TYP_FLOAT if necessary.

pre

No pre-processing is required.

post

No post-processing is required.

…

The remaining fields are all set byIDL_EzCall() in response to the above.

9-14

Arguments two through four are allowed to have any number of dimensions and
allowed any type. This is because the routine does not intend to examine them,
to change them. For the same reason, a zero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-proces
is specified.

17

Process the positional arguments.

26

Clean up.
External Development Guide Simplified Routine Invocation

420 Appendix A: Obsolete Internal Interfaces

e, so

ed

use

es,

.
rent
Compatibility with Versions 2 and 3

IDL for UNIX and IDL for VMS provide support for code written against the IDL
internal interfaces of previous versions of IDL. IDL for Windows and IDL for
Macintosh are new enough that there is no legacy code of this nature in existenc
they do not provide these interfaces.

Support for interface routines used by IDL Version 2 and IDL Version 3 is provid
by a set of compatibility wrapper routines that recognize code written for the old
interfaces and translates it into a form recognizable by the current interface. To
these compatibility routines, you should include the C header fileobsolete.h at the
top of your file:

#include <stdio.h>
#include "export.h"
#include "obsolete.h"

Theobsolete.h file uses the C preprocessor to convert old constants, data typ
and functions with variable numbers of arguments to their new names. It also
contains prototypes for the compatibility wrapper functions.

Under UNIX, the compatibility wrapper functions are contained in an additional
sharable library namedlibidl_obsolete that must be linked against your code
Under VMS, they are contained in the IDL sharable executable along with the cur
interface.
Compatibility with Versions 2 and 3 External Development Guide

Appendix A: Obsolete Internal Interfaces 421

en
port

at can

efine
 that

ode
IDL Version 1 Compatibility

The routines described in this section provide compatibility with the interface
routines used by IDL for VMS Version 1. These routines should not be used wh
writing new code. They are documented here for the sole purpose of making the
of older code to the current version easier.

Data Type Codes

IDL Version 1 used a Fortran include file namedTYPEDEF.PAR to define the type
codes as Parameter Statements. Here are the contents of a version of that file th
be used to port existing code to the current version of IDL:

c TYPEDEF.PAR (Fortran Include File)
c
c Define type codes for VMS IDL Version 2. Define both the
c old Version 1 names and the current Version 2 names.
c
c New type names:
Parameter TYP_BYTE = 1, TYP_INT = 2, TYP_LONG = 3
Parameter TYP_FLOAT = 4, TYP_DOUBLE = 5, TYP_COMPLEX = 6
Parameter TYP_STRING = 7, TYP_STRUCT = 8
c
c Version 1 type names with Version 2 values:
Parameter TBYTE = 1, TINT = 2, TLONG = 3
Parameter TFLT=4, TDOUBL=5, TCOMPLEX = 6, TASCII = 7

Both the old and the new data type names are defined. The actual values that d
the type codes, as well as the variable structure, have been changed. Programs
symbolically refer to the type codes need only be recompiled. Note that the
compatibility routines referred to in the previous section require the newer type c
values.

Routines

The following table is a summary of the IDL Version 1 VMS interface routines
documented in the fileWRITEYOUR.RNO(which was distributed with IDL Version 1)
and their implementation in newer versions:

Version 1 Routine Changes

BYTE Renamed BYTE_V1

Table 22-1: IDL for VMS Version 1 Routines Mapped to Later Versions of IDL.
External Development Guide IDL Version 1 Compatibility

422 Appendix A: Obsolete Internal Interfaces
FIX Renamed FIX_V1

FLOAT_IDL

LONG

DOUBLE

COMPLEX Renamed COMPLEX_V1

STRING Renamed STRING_V1

CONVERT_TYPE

FOR_CHKPAR Routine must be called using CALL_V1

GETLON_SCL

GETFLOAT_SCL

GETDOUBLE_SCL

FOR_GETSTRING

FOR_GETTMP

FOR_GETDIMS

CREARR

TSTDELTMP

FOR_STORE_SCALAR

COPYVAR

PRINTERRMSG

IDLERR

IO_ERROR

FOR_IO_ERROR Not implemented

BYTE1

INTEGER2

INTEGER4

Version 1 Routine Changes

Table 22-1: IDL for VMS Version 1 Routines Mapped to Later Versions of IDL.
IDL Version 1 Compatibility External Development Guide

Appendix A: Obsolete Internal Interfaces 423
Calling Convention

IDL Version 1 modules are defined as follows:

SUBROUTINE XXX(P1,, Pn)

IDL Version 2 and later modules have the following Fortran definition:

SUBROUTINE XXX(N N, ARG LIST)
C ARG LIST is an array of pointers to VARIABLE structures:
INTEGER * 4 ARG LIST(*)
NARGS = %LOC(N N)

The routine CALL_V1 is provided in IDL Version 2 and later to convert the new
calling sequence to the old. To use CALL_V1, you must write a short wrapper
routine similar to the following, which calls the function XXX:

INTEGER*4 FUNCTION XXX WRAPPER(ARGC, ARGV)
EXTERNAL XXX
INTEGER*4 CALL_V1
XXX WRAPPER = CALL_V1(ARGC, ARGV, XXX)
RETURN
END
SUBROUTINE XXX(P1, P2, ..., Pn)
... Body of original routine XXX

The same method can be used to call procedures, which are defined as Fortran
subroutines, rather than as functions.

GET_KBINT

STORE1

STORE2

STORE4

Version 1 Routine Changes

Table 22-1: IDL for VMS Version 1 Routines Mapped to Later Versions of IDL.
External Development Guide IDL Version 1 Compatibility

424 Appendix A: Obsolete Internal Interfaces
IDL Version 1 Compatibility External Development Guide

Index

Symbols
!DIR system variable, 284
!ERR system variable, 224, 284
!ERR_STRING system variable, 224
!ERROR system variable, 224, 284, 355
!ORDER system variable, 284
!VERSION.ARCH system variable, 284
!VERSION.OS system variable, 284
!VERSION.OS_FAMILY system variable,
284
!VERSION.RELEASE system variable, 284

A
absolute value, 292
access field, 240, 415
access_mode argument, 244

Accessing Structure Tags, 177
Accessing Variable Data, 190
action argument, 224, 249, 280
ActiveX

drawing the interface, 49
major features, 46
specifying the path, 50

adding code to IDL
overview, 23
skills required, 24
system routines, 296

Adding To The Journal File, 257
Allocating and Freeing File Units, 251
allow argument, 248
allowed_dims field, 414
allowed_types field, 415
anonymous structures, 175, 176
ANSI C, 24
External Development Guide 425

426
Apple events
Do Script, 98
Get Data, 99
overview, 98
Set Data, 101

AppleScript
controlling other applications, 96, 96
exporting data from IDL, 96
importing data into IDL, 96
launching IDL, 93
moving data to and from IDL, 95
opening documents, 93
overview, 92
printing documents, 93
quitting IDL, 93
running IDL commands, 94

Appropriate Applications of Callable IDL, 344
arg_max field, 319, 411
arg_min field, 319, 411
arg_struct argument, 413
argc argument, 199, 205, 244, 247, 251, 251,
256, 297, 352, 355, 359, 413
argk argument, 205, 244, 247, 256, 297
arguments

checking, 231
keywordsee keywords

argv argument, 199, 205, 231, 244, 247, 251,
251, 256, 297, 352, 355, 359, 413
arr_len field, 173
array variables, 173
arrays, creating from existing data, 186
ASSOC function, 171, 174
associated input/output, 171, 174
avoiding shell under Unix, 41

B
BackColor, 81
Baseld, 85
BaseName, 81
Basic AppleScript Support, 93

bell, ringing with error messages, 225
blocking timers, 272
Blocking Unix Timers, 276
buf argument, 353
buffered data, flushing, 254

C
C

ANSI, 24
stream package, 238

CALL_EXTERNAL
alpha/open VMS restrictions, 148
calling a C routine, 134
calling a VMS Fortran subroutine, 152
Fortran common blocks, 154
sharable object libraries, 147

CALL_EXTERNAL function, 131
for Macintosh, 157
for OpenVMS, 148
for Unix, 147
for Windows, 156

CALL_EXTERNAL function, overview, 18
Callable IDL

appropriate uses, 344
cleanup, 347, 358
compiling and linking C programs, 360
diverting IDL output, 353, 378
example programs, 362, 365, 368
executing IDL statements, 355
for Unix and VMS, 350
implementation, 341
initialization, 346
interactive IDL sessions, 359
inter-language calling conventions, 344
introduction to, 340
licensing issues, 345, 351
on the Macintoshsee AppleScript
overview, 20, 340
program size considerations, 343
threading, 344
Index External Development Guide

427
troubleshooting, 343
using, 346
using the Windows graphics driver, 343
when to use, 342

callback argument, 273
callbacks, timer, 273
Calling A Simple Mathematical Function, 365
calling other programs from IDL, 147
calltest program listing

C, 362
Fortran, 368

Canceling Asynchronous Timer Requests, 275
capturing output, 40
characters, reading from the keyboard, 255
checking arguments, 231
Checking File Status, 249
child processes

under Unix, 42
Cleaning Up, 417
Cleanup, 358
client process, 106
Client Variables, 108
Closing Files, 247
cmd argument, 356
cnt argument, 318, 411
code argument, 224
communicating with a child process, 42
compatibility with earlier IDL versions, 420
Compatibility with older IDL code, 111
Compilation and Link Statements, 374
Compiling and Linking Programs that Call
IDL, 360
complex data types, 163
Constants, 291
context argument, 273, 275
Controlling Macintosh Applications, 96
convert field, 416
copying strings, 216
Copying Variables, 191
copying variables, 191
Creating an array from existing data, 186

creating arrays from existing data, 186
Creating Routines that Accept Keywords, 199
creating structures, 175

D
data argument, 186
data field, 173, 203
data types

default output formats, 288
data typessee types
default output formats for data types, 288
definitions, external, 31, 31
defs argument, 318, 410
deleting strings, 217
dest argument, 192
Detecting End Of File, 253
device files, special, 241
dim argument, 183, 184, 186
dim field, 174
dims field, 176
Diverting IDL Output, 353
DL_Load(), 335
DO_APPLE_SCRIPT procedure, 96
DoButtonPress, 79
DoButtonRelease, 79
DoExpose, 79
DoMotion, 79
Drawld, 85
DrawWidgetName, 82
dynamic memory, 188, 280

freed when deleting strings, 217
freeing, 192
IDL_MemAlloc(), 280
IDL_MemAllocPerm(), 281
IDL_MemFree(), 281

E
elt_len field, 173
External Development Guide Index

428
elt_size argument, 189
ensure_simple argument, 190
ensuring length of, 219
err_str argument, 280
err1 argument, 229
err2 argument, 229
errno global variable

setting, 228
system level errors, 226

errors
checking arguments, 231
issuing, 224
issuing OpenVMS messages, 229
message format string, 226
ringing bell with error message, 225
setting errno explicitly, 228
suppressing error message, 225
suppressing message prefix, 225
suppressing traceback portion of message,
225
system, 226
system variables, 224

Establishing A Signal Handler, 264
etData, 190
Example

Calling a C routine, 149
Calling a C Routine on a Macintosh, 157
Calling a Fortran Routine, 150
Calling a Fortran Routine Using a C Interface
Routine, 135
Calling a Runtime Library Function, 151
Calling the TPU Editor, 151

examples
calling a simple math function, 365
Hello World for IDL, 298
simple system routine, 299
using callable IDL from C, 362
using callable IDL from Fortran, 368
using IDL_EzCall(), 417
widget stub, 402, 404

ExecuteStr, 52

Executing IDL Commands from AppleScript,
94
Executing IDL Statements, 355
exit handlers

IDL_ExitRegister(), 282
export.h file, 31
external definitions, 31
extra_flags argument, 245

F
fcn argument, 207
file access

IDL_FILE_STAT struct, 240
mode, 244

file argument, 357, 382
file attributes, 249
file descriptor, 239
file information

IDL_FILE_STAT struct, 239
file status, checking, 249
file_unit field, 174
files

always open, 245
and input/output, 238
closing, 247
detecting file end, 253
ensuring proper attributes, 249
journal, 257
opening, 244
preventing closure, 248

flags argument, 249, 353
flags field, 169, 174, 201, 240
FLEXlm floating licence policy, 351
Flushing Buffered Data, 254
Form_Load

VisualBasic, 51
Fortran

binary data, unformatted, 241
calling

using Fortran interface routine, 137
Index External Development Guide

429
calling convention, 423
carriage control, 242
child processes, 44
compiler, 360
complex data types, 164
data type codes, 421
external functions, calling, 130
passing parameters, 25
VMS, segmented records, 241

fptr field, 243
free() function, 188
free_cb argument, 187
from_callback argument, 273
fs argument, 218
func argument, 264, 265
funct_addr field, 319, 411
FZ_ROOTS example, 302

G
Getting Dynamic Memory, 188, 188
getting file information, 239
GraphicsLevel, 83

H
heap variables, 180
Hello World Example, 298
How Callable IDL is Implemented on Different
Platforms, 341
hWnd, 85

I
i/o, 238
IDL Apple Events, 98
IDL for VAX/VMS Version 1 Compatibility,
421
IDL organization, 29
IDL output, diverting, 353, 378

IDL RPC Client API Example, 109
IDL RPC variable accessor macros, 125
IDL signal API, 261
IDL statements, executing, 355
IDL timer module, 272
IDL Version 2 and IDL Version 3 Compatibil-
ity, 420
IDL, organization of, 29
IDL_A_FILE bit value, 174
IDL_ABS() macro, 292
IDL_ALLTYPES union, 169, 172
IDL_ARR_INI_INDEX bit value, 183
IDL_ARR_INI_NOP bit value, 183
IDL_ARR_INI_ZERO bit value, 183
IDL_ARRAY structure, 169
IDL_BailOut() function, 283
IDL_BasicTypeConversion() function, 235
IDL_CHAR() macro, 292
IDL_CHARA() macro, 292
IDL_Cleanup() function, 347, 358
IDL_CvtByte function, 236
IDL_CvtBytscl function, 236
IDL_CvtComplex function, 236
IDL_CvtDbl function, 236
IDL_CvtDComplex function, 236
IDL_CvtFix function, 236
IDL_CvtFlt function, 236
IDL_CvtLng function, 236
IDL_CvtString function, 236
IDL_Deltmp() function, 185, 189
IDL_EFS_ASSOC bit value, 250
IDL_EFS_CLOSED bit value, 249
IDL_EFS_IDL_OPEN bit value, 249
IDL_EFS_NOGUI bit value, 250
IDL_EFS_NOPIPE bit value, 250
IDL_EFS_NOT_NOSTDIO bit value, 250
IDL_EFS_NOTTY bit value, 249
IDL_EFS_NOXDR bit value, 250
IDL_EFS_READ bit value, 249
IDL_EFS_USER bit value, 249
IDL_EFS_WRITE bit value, 249
External Development Guide Index

430
IDL_ENSURE_ARRAY macro, 232
IDL_ENSURE_OBJREF macro, 232
IDL_ENSURE_PTR macro, 232
IDL_ENSURE_SCALAR macro, 232
IDL_ENSURE_SIMPLE macro, 232
IDL_ENSURE_STRING macro, 232
IDL_ENSURE_STRUCTURE macro, 232
IDL_EXCLUDE_COMPLEX macro, 232
IDL_EXCLUDE_CONST macro, 231
IDL_EXCLUDE_EXPR macro, 231
IDL_EXCLUDE_FILE macro, 232
IDL_EXCLUDE_SCALAR macro, 232
IDL_EXCLUDE_STRING macro, 232
IDL_EXCLUDE_STRUCT macro, 232
IDL_EXCLUDE_UNDEF macro, 231
IDL_Execute() function, 355
IDL_ExecuteStr() function, 355
IDL_ExitRegister() function, 282
IDL_EZ_ACCESS_R bit value, 415
IDL_EZ_ACCESS_RW bit value, 415
IDL_EZ_ACCESS_W bit value, 415
IDL_EZ_ARG struct, 414
IDL_EZ_DIM_ANY bit value, 415
IDL_EZ_DIM_ARRAY bit value, 415
IDL_EZ_POST_TRANSPOSE bit value, 416
IDL_EZ_POST_WRITEBACK bit value, 416
IDL_EZ_PRE_SQMATRIX bit value, 416
IDL_EZ_PRE_TRANSPOSE bit value, 416
IDL_EzCall() function, 413
IDL_EzCallCleanup() function, 417
IDL_F_COMPRESS bit value, 241
IDL_F_DEL_ON_CLOSE bit value, 240
IDL_F_DOS_BINARY bit value, 243
IDL_F_ISAGUI bit value, 240
IDL_F_ISATTY bit value, 240
IDL_F_MORE bit value, 240
IDL_F_NOCLOSE bit value, 240
IDL_F_SR bit value, 240
IDL_F_SWAP_ENDIAN bit value, 241
IDL_F_UNIX_F77 bit value, 241
IDL_F_UNIX_NOSTDIO bit value, 241

IDL_F_UNIX_PIPE bit value, 241
IDL_F_UNIX_SPECIAL bit value, 241
IDL_F_VMS_CCFORTRAN bit value, 242
IDL_F_VMS_CCLIST bit value, 242
IDL_F_VMS_CCNONE bit value, 242
IDL_F_VMS_FIXED bit value, 241
IDL_F_VMS_INDEXED bit value, 242
IDL_F_VMS_PRINT bit value, 242
IDL_F_VMS_RMSBLK bit value, 242
IDL_F_VMS_RMSBLKUDF bit value, 242
IDL_F_VMS_SEGMENTED bit value, 241
IDL_F_VMS_SHARED bit value, 242
IDL_F_VMS_STREAM bit value, 242
IDL_F_VMS_STREAM_STRICT bit value,
242
IDL_F_VMS_SUBMIT bit value, 242
IDL_F_VMS_SUPERCEED bit value, 243
IDL_F_VMS_TRCLOSE bit value, 242
IDL_F_VMS_VARIABLE bit value, 241
IDL_F_XDR bit value, 240
IDL_FALSE preprocessor constant, 291
IDL_FILE_CLOSE() macro, 248
IDL_FILE_NOCLOSE() macro, 248
IDL_FILE_STAT struct, 239
IDL_FileClose() function, 247
IDL_FileEnsureStatus() function, 249
IDL_FileEOF() function, 253
IDL_FileFlushUnit() function, 254
IDL_FileFreeUnit() function, 251
IDL_FileGetUnit() function, 251
IDL_FileOpen() function, 244
IDL_FileSetClose() function, 248
IDL_FileStat() function, 239
IDL_FileTerm global variable, 286
IDL_FileTermColumns function, 286
IDL_FileTermIsTty function, 286
IDL_FileTermLines function, 286
IDL_FileTermName function, 286
IDL_FindNamedVariable() function, 196
IDL_GetKbrd() function, 255
IDL_GetScratch function, 188
Index External Development Guide

431
IDL_Gettmp() function, 182
IDL_GetUserInfo() function, 290
IDL_GetVarAddr() function, 195
IDL_GetVarAddr1() function, 195
IDL_ImportArray() function, 176, 186
IDL_ImportNamedArray() function, 176, 186
IDL_Init() function, 346, 351
IDL_INIT_BACKGROUND, 351
IDL_INIT_EMBEDDED bit value, 351
IDL_INIT_GUI bit value, 351
IDL_INIT_GUI_AUTO bit value, 351
IDL_INIT_NOLICALIAS bit value, 351
IDL_INIT_NOTTYEDIT bit value, 351
IDL_KW_ARR_DESC structure, 203
IDL_KW_ARRAY bit value, 201
IDL_KW_CLEAN bit value, 207
IDL_KW_FAST_SCAN macro, 206
IDL_KW_MARK bit value, 207
IDL_KW_OUT bit value, 201
IDL_KW_PAR structure, 199, 200
IDL_KW_VALUE bit value, 202
IDL_KW_VIN bit value, 201
IDL_KW_ZERO bit value, 201
IDL_KWCleanup() function, 199, 207
IDL_KWGetParams() function, 199, 205
IDL_Load(), 318, 410
IDL_Logit() function, 257
IDL_LONG type definition, 163
IDL_LONG64, 163
IDL_M_GENERIC message string, 227
IDL_M_NAMED_GENERIC message code,
227
IDL_Main() function, 359
IDL_MakeStruct() function, 175
IDL_MakeTempArray function, 182
IDL_MakeTempStruct() function, 184
IDL_MAX() macro, 292
IDL_MAX_ARRAY_DIM preprocessor con-
stant, 291
IDL_MAX_TYPE constant, 160
IDL_MAXIDLEN preprocessor constant, 291

IDL_MAXPATH preprocessor constant, 291
IDL_MBLK_CORE, 222
IDL_MemAlloc() function, 280
IDL_MemAllocPerm() function, 281
IDL_MemFree() function, 281
IDL_Message() function, 224, 264
IDL_MessageDefineBlock(), 222
IDL_MessageErrno() function, 228
IDL_MessageNameToCode(), 230
IDL_MessageVMS() function, 229
IDL_MIN() macro, 292
IDL_MSG_ATTR_BELL bit value, 225
IDL_MSG_ATTR_MORE bit value, 225
IDL_MSG_ATTR_NOPREFIX bit value, 225
IDL_MSG_ATTR_NOPRINT bit value, 225
IDL_MSG_ATTR_NOTRACE bit value, 225
IDL_MSG_ATTR_QUIET bit value, 225
IDL_MSG_ATTR_SYS bit value, 226
IDL_MSG_DEF, 222
IDL_MSG_EXIT bit value, 224
IDL_MSG_INFO bit value, 224
IDL_MSG_IO_LONGJMP bit value, 225
IDL_MSG_LONGJMP bit value, 225
IDL_MSG_RET bit value, 224
IDL_NUM_TYPES constant, 160
IDL_OPEN_APND bit value, 240, 245
IDL_OPEN_R bit value, 240, 244
IDL_OPEN_TRUNC bit value, 240, 244
IDL_OPEN_W bit value, 240, 244
IDL_OutputFormat global variable, 288
IDL_OutputFormatFunc function, 288
IDL_OutputFormatLen global variable, 288
IDL_OutputFormatLenFunc function, 288
IDL_Print() function, 256
IDL_PrintF() function, 256
IDL_REGISTER preprocessor constant, 291
IDL_ROUND_UP() macro, 292
IDL_RPCCleanup, 112
IDL_RPCDeltmp, 112
IDL_RPCExecuteStr, 113
IDL_RPCGetArrayData, 125
External Development Guide Index

432
IDL_RPCGetArrayNumDims, 125
IDL_RPCGetArrrayDimensions, 125
IDL_RPCGetMainVariable, 114
IDL_RPCGettmp, 114
IDL_RPCGetVarByte, 125
IDL_RPCGetVarComplex, 125
IDL_RPCGetVarComplexl, 125
IDL_RPCGetVarComplexR, 125
IDL_RPCGetVarDComplex, 125
IDL_RPCGetVarDComplexI, 126
IDL_RPCGetVarDComplexR, 125
IDL_RPCGetVarDouble, 126
IDL_RPCGetVarFloat, 126
IDL_RPCGetVariable, 115
IDL_RPCGetVarInt, 126
IDL_RPCGetVarLong, 126
IDL_RPCGetVarString, 126
IDL_RPCGetVarType, 126
IDL_RPCImportArray, 115
IDL_RPCInit, 116
IDL_RPCMakeArray, 117
IDL_RPCOutputCapture, 118
IDL_RPCOutputGetStr, 119
IDL_RPCSetMainVariable, 120
IDL_RPCSetVariable, 120
IDL_RPCStoreScalar, 121
IDL_RPCStrDelete, 122
IDL_RPCStrDup, 122
IDL_RPCStrEnsureLength, 122
IDL_RPCStrStore, 123
IDL_RPCTimeout, 123
IDL_RPCVarCopy, 123
IDL_RPCVarGetData, 124
IDL_RPCVarIsArray, 126
IDL_RuntimeExec() function, 357, 382
IDL_SignalBlock() function, 268
IDL_SignalMaskBlock() function, 268
IDL_SignalMaskGet() function, 267
IDL_SignalMaskSet() function, 268
IDL_SignalRegister() function, 264
IDL_SignalSetAdd() function, 266

IDL_SignalSetDel() function, 267
IDL_SignalSetInit() function, 266
IDL_SignalSetIsMember() function, 267
IDL_SignalSuspend() function, 269
IDL_SignalUnregister() function, 265
IDL_SREF structure, 169, 175
IDL_STDERR_UNIT file unit, 246
IDL_STDIN_UNIT file unit, 245
IDL_STDOUT_UNIT file unit, 246
IDL_StoreScalar() function, 192, 231
IDL_StoreScalarZero(), 192
IDL_StrDelete() function, 217
IDL_StrDup() function, 216
IDL_StrEnsureLength() function, 219
IDL_STRING struct, 164
IDL_STRING structure, 214
IDL_STRING_STR macro, 215
IDL_StrStore() function, 218
IDL_StrToSTRING() function, 218
IDL_STRUCT_TAG_DEF type definition,
176
IDL_StructNumTags(), 178
IDL_StructTagInfoByIndex() function, 177
IDL_StructTagInfoByName() function, 177
IDL_StructTagNameByIndex function, 178
IDL_SYSFUN_DEF, 318, 411
IDL_SYSFUN_DEF struct, 318, 411
IDL_SYSFUN_DEF_KEYWORDS, 199
IDL_SYSFUN_DEF2 struct, 199
IDL_SysRtnAdd function, 199
IDL_SysvDir variable, 284
IDL_SysvDirFunc function, 285
IDL_SysvErrCode variable, 284
IDL_SysvErrCodeValue function, 285
IDL_SysvErrorCode variable, 284
IDL_SysvErrorCodeValue function, 285
IDL_SysvErrStringFunc function, 285
IDL_SysVersionArch function, 284
IDL_SysVersionOS function, 284
IDL_SysVersionOSFamily function, 284
IDL_SysVersionRelease function, 284
Index External Development Guide

433
IDL_SysvOrder variable, 284
IDL_SysvOrderValue function, 285
IDL_SysvSyserrStringFunc function, 285
IDL_SysvVersion.arch variable, 284
IDL_SysvVersion.os variable, 284
IDL_SysvVersion.os_family variable, 284
IDL_SysvVersion.release variable, 284
IDL_TERMINFO struct, 286
IDL_TIMER_CONTEXT variable, 273
IDL_TimerBlock() function, 276
IDL_TimerCancel() function, 275
IDL_TimerSet() function, 273
IDL_TOUT_F_NLPOST bit value, 353
IDL_TOUT_F_STDERR bit value, 353
IDL_ToutPop() function, 354
IDL_ToutPush() function, 354
IDL_TRUE preprocessor constant, 291
IDL_TTYReset function, 287
IDL_TYP_B_ALL constant, 162
IDL_TYP_BYTE type code, 161
IDL_TYP_COMPLEX type code, 161, 163
IDL_TYP_DCOMPLEX type code, 161, 163
IDL_TYP_DOUBLE type code, 161
IDL_TYP_FLOAT type code, 161
IDL_TYP_INT type code, 161
IDL_TYP_LONG type code, 161
IDL_TYP_LONG64 type code, 161
IDL_TYP_MASK preprocessor macro, 162
IDL_TYP_OBJREF type code, 161
IDL_TYP_PTR type code, 161
IDL_TYP_STRING type code, 161, 164
IDL_TYP_STRUCT type code, 161, 175
IDL_TYP_UINT type code, 161
IDL_TYP_ULONG type code, 161
IDL_TYP_ULONG64 type code, 161
IDL_TYP_UNDEF, 160
IDL_TYP_UNDEF type code, 161
IDL_TypeName global variable, 288
IDL_TypeNameFunc function, 289
IDL_TypeSize global variable, 288
IDL_TypeSizeFunc function, 289

IDL_ULONG, 163
IDL_ULONG64, 163
IDL_USER_INFO struct, 290
IDL_V_ARR bit value, 170
IDL_V_CONST bit value, 170
IDL_V_DYNAMIC bit value, 171
IDL_V_FILE bit value, 171
IDL_V_STRUCT bit value, 171, 175
IDL_V_TEMP bit value, 170
IDL_VarCopy() function, 191
IDL_VARIABLE structure, 169
IDL_VarName() function, 194
IDL_VPTR, 30, 169
IDL_WidgetGetStubIds() function, 401
IDL_WidgetIssueStubEvent() function, 400
IDL_WidgetSetStubIds() function, 401
IDL_WidgetStubLock() function, 400
IDL_WidgetStubLookup() function, 400
IDL_WidgetStubSetSizeFunc() function, 401
IDL_Win32Init() function, 346, 377
IDLDrawWidget

auto event properties, 87
compiling IDL code, 55
creating, 51
creating an interface and handling events, 48
do methods (runtime only), 79
events, 89
initializing IDL, 51, 55
integrating object graphics, 64
methods, 71
modifying IDL library code, 62
properties, 81
read only properties, 85
register for events, 76
sharing grid control array, 65
specifying IDL path, 50

IdlPath, 83
IdlPath property, 51
ienter argument, 195, 196
information on open files

IDL_FILE_STAT struct, 239
External Development Guide Index

434
init argument, 183
init_options argument, 359
input/output, 238
Interactive IDL, 359
inter-language calling conventions, 24
Inter-language Communication Techniques
Supported by IDL, 15
Internal Callback Functions (widget stub), 402
Internal Functions for Use with Stub Widgets,
400
internal interfaces, obsolete, 420
interpreted languages, 29
interpreter stack, 30
interrupt flag, internal, 283
is_function argument, 318, 411

J
journal file, adding to, 257
just_cleanup argument, 358

K
keyword field, 200
KEYWORD_DEMO procedure, 208
keywords

array, 201, 204
Boolean, 201
creating, 199
examples, 208
input, 201
input/output, 204
output, 201
overview, 198
processing, 205
processing options, 204
read-only, 203
scalar, 204
speeding processing of, 206

kw_list argument, 205

L
length argument, 273
licensing, 351
Licensing Issues, 345
LINKIMAGE procedure

overview, 19
linking

C programs with Callable IDL, 360
external code into IDL, 32

linking details, 32
Linking to the Client Library, 109
logical unit numbers, 174
LONG

IDLDrawWidget parameters, 76
long integer data type, 163
longjmp() function, 225
longjmp_safe argument, 245
LUNs see logical unit numbers

M
Macintosh

calling convention and parameter passing,
157

Macros, 292
Main Program Variables

looking up, 195
main program variables, 195
Makefile file, 32
Making A Timer Request, 273
malloc() function, 188
Mapping Of Basic Types, 163
Mapping of basic types, 163
mask argument, 206
mask field, 200
maximum, 292
memory

allocating, 280
allocating permanent, 281
freeing, 281
Index External Development Guide

435
message block, 222
message format string, 226
minimum, 292
more command, 225
Moving data to and from IDL, 95
msg_action argument, 264, 265

N
n argument, 190, 216, 217, 219, 280, 353
n field, 203
n_dim argument, 182, 184, 186
n_dim field, 174
n_elts argument, 189
n_elts field, 173
name argument, 175, 186, 195, 195, 196
name field, 176, 239, 319, 411
names of variables, 194
nmax field, 203
nmin field, 203

O
obsolete internal interfaces, 420
obtaining names of variables, 194
omask argument, 268
OnButtonPress, 87
OnButtonRelease, 87
OnDblClick, 87
OnExpose, 88
OnInit, 88
OnMotion, 88
OnViewScrolled, 89
Opening Files, 244
OpenVMS, 153

access to global data, 293
Example Using WIDGET_STUB, 404
status code, 229

options argument, 351
organization, 29

oset argument, 268
Output of IDL Variables, 256
Overview, 13

P
p argument, 185, 188
parameters

passing mechanism, 131
pd argument, 190
plain_args argument, 205
Platform-specific Documentation for Callable
IDL, 348
post field, 416
pre field, 416
preprocessor constants, 291
Preventing File Closing, 248
printf() function, 224
printing IDL variables, 256
printing, VisualBasic, 61
proc argument, 282
procedure calls, remote, 106
Program Size Considerations, 343

R
Reading a Character, 255
recommended reading, 27, 27
registering exit handlers, 282
registering routines using IDL_SysRtnAdd(),
310, 316
Remote Procedure Calls, 17, 106

example code, 127
Removing A Signal Handler, 265
Retain, 83
returning address in current execution scope
from name, 196
ringing bell with error messages, 225
RMS, 238
rms.mrs field, 243
External Development Guide Index

436
rounding values, 292
RPC Examples, 127
RPCssee Remote Procedure Calls
Running IDL in Server Mode, 107
Runtime IDL and Embedded IDL, 357, 382

S
s argument, 187, 218, 218, 219, 257
s field, 164
scalar values

storing, 192
scalar variables, 172
Scroll, 85
sdef argument, 184
sdef field, 175
server ID number, 107
server process, 106
set argument, 266, 266, 267, 267, 267, 268,
268, 269
SetNamedArray, 76
SetNamedData, 77
SetOutputWnd, 78
SetOutputWnd method, 52
shell

avoiding under Unix, 41
should_wait argument, 255
shutting down IDL, 282
SIG_DFL, 260, 262
SIG_IGN, 262
SIGALRM, 261, 276
SIGFPE, 260, 261, 261
SIGINT, 283
signal handlers

establishing, 264
removing, 265

signal masks
IDL_SignalBlock(), 268
IDL_SignalMaskBlock(), 268
IDL_SignalMaskGet(), 267
IDL_SignalMaskSet(), 268

IDL_SignalSetAdd(), 266
IDL_SignalSetDel(), 267
IDL_SignalSetInit(), 266
IDL_SignalSetIsMember(), 267
IDL_SignalSuspend(), 269
overview, 266

signals, 260
IDL API, 261
IDL limitations, 261
problems, 260

signo argument, 264, 265, 266, 266, 267, 267,
269
SIGTRAP, 260, 261, 261
Simplified Routine Invocation, 413
Skills Required to Add Code to IDL, 24
slen field, 164
Spawn

communicating with a Unix child process, 42
interactive use of, 37
noninteractive use of, 39, 41

SPAWN procedure, 15, 36
Special File Units, 245
specified field, 202
stack, interpreter, 30
standard error, 246
standard input, 245
standard output, 246
stat_blk argument, 239
stdio buffering, 241
stop argument, 277, 283
Storing Scalar Values, 192
storing scalar values, 192
str argument, 216, 217
stream files, 238
string data type, 164
strings, 219

accessing, 215
copying, 216
deleting, 217
processing, 214
setting value of, 218
Index External Development Guide

437
Structure
creating temporary, 184

structure variables, 175
structures, 175

anonymous, 175, 176
creating, 175

stub widgets
internal functions, 400
overview, 396
WIDGET_STUB function, 397

stype field, 164
symbol table, 195
system routines

examples, 298, 299, 417
interface, 297
invocation, 413
overview, 296

System Variables, 284
system variables, 284

T
tags argument, 176
Temporary array

getting, 182
Temporary variable

freeing, 185
getting, 182

temporary variables, 181
Terminal Information, 286
The IDL RPC directory, 107
The IDL_EZ_ARG struct, 414
timers, 272

blocking, 272, 276
callbacks, 273
cancelling requests, 275
IDL_TimerBlock(), 276
IDL_TimerCancel(), 275
IDL_TimerSet(), 273

to_delete field, 416
transfer vector, 293

type argument, 182, 186, 192
type codes, 160
type field, 176, 200
Type Information, 288
Types, 159
types

complex, 163
long integer, 163
mapping of, 163
string, 164
type codes, 160
type masks, 161
unsigned byte, 163

U
uargv field, 417
UCHAR type definition, 163
unit argument, 239, 248, 249, 253, 254
UNIVERSAL symbols, 293
Unix

avoiding shell, 41
OS-specific abilities, 42

Unix Signal Masks, 266
unsigned byte data type, 163
User Information, 290
User Interrupts, 283
Using Callable IDL

from C, 362
from Fortran, 368
overview, 346

Using IDL as an RPC Server, 107
Using IDL as an RPC server, 107

V
v argument, 190
value argument, 192
value field, 202, 417
value.arr field, 173
External Development Guide Index

438
value.c field, 172
value.cmp field, 172
value.d field, 172
value.dcmp field, 172
value.f field, 172
value.i field, 172
value.l field, 172
value.l64 field, 172
value.s field, 175
value.str field, 172
value.ui field, 172
value.ul field, 172
value.ul64 field, 172
var argument, 183, 184
Variable Name

obtaining, 194
Variables, 167
variables, 196

array, 173
copying, 191
obtaining names of, 194
returning address in main program from
name, 195
scalar, 172
setting to scalar values, 192
structure, 175
system, 284
temporary, 181

Variables in current scope
looking up, 196

VBCopyPrint
copying and printing IDL graphics, 58

VBPaint
handling events within VB, 66

VBShare1D, 65
Visible, 84
VisualBasic

printing, 61

VMS
calling convention and parameter passing,
148

VMS See OpenVMS

W
When is it Appropriate to Add Code to IDL?,
23
When is it Appropriate to use Callable IDL?,
342
widget stub

examples, 402, 404
function, 397
interface, 343, 396

WIDGET_CONTROL Used with
WIDGET_STUB, 398
WIDGET_STUB function, 397
widgets

adding custom to IDL, 396
internal functions, 400
WIDGET_CONTROL, 398
WIDGET_STUB, 397

Windows
calling convention and parameter passing,
156

X
XLoadCT functionality using VB, 62
Xoffset, 85
Xsize, 84
Xviewport, 86

Y
Yoffset, 86
Ysize, 84
Yviewport, 86
Index External Development Guide

439
Z
zero argument, 185
External Development Guide Index

440
Index External Development Guide

	Online Guide
	Contents
	Overview
	About this Manual
	Using this Document with Previous Versions of IDL

	Inter-language Communication Techniques Which are Supported
	Translate into IDL
	Advantages
	Disadvantages
	Recommendation

	SPAWN
	Advantages
	Disadvantages
	Recommendation

	ActiveX
	Advantages
	Disadvantages
	Recommendation

	AppleScript
	Advantages
	Disadvantages
	Recommendation

	Remote Procedure Calls (RPCs)
	Advantages
	Disadvantages
	Recommendation

	CALL_EXTERNAL
	Advantages
	Disadvantages
	Recommendation

	IDL System Routine (LINKIMAGE, Dynamically Loadable Modules)
	Advantages
	Disadvantages
	Recommendation

	Callable IDL
	Advantages
	Disadvantages
	Recommendation

	Dynamic Linking Terminology and Dynamic Linking Concepts
	CALL_EXTERNAL
	LINKIMAGE and Dynamically Loadable Modules (DLMs)
	Callable IDL
	Remote Procedure Calls (RPCs)

	When is it Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	ActiveX
	RPC
	ANSI C
	System C Compiler, Linker, and Libraries
	Inter-language Calling Conventions
	Operating System Features And Conventions
	Microsoft Windows
	UNIX
	OpenVMS

	Recommended Reading
	The C Language
	Microsoft Windows
	UNIX
	OpenVMS
	X Windows

	IDL Organization
	The Interpreter Stack

	External Definitions
	Linking Details
	Reading the Remainder of this Book

	SPAWN
	The SPAWN Procedure
	Command
	Result

	Interactive Use of SPAWN
	UNIX Command Interpreter
	OpenVMS Command Interpreter
	Windows Command Interpreter
	Macintosh Command Interpreter

	Noninteractive Use of SPAWN
	Macintosh Command Interpreter
	Capturing Output

	Avoiding the Shell Under UNIX
	Communicating Through the Use of a UNIX Child Process
	Example: Communicating with a Child Process Under UNIX

	IDLDrawWidget ActiveX Control
	IDLDrawWidget ActiveX Control
	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	This example illustrates the following concepts:
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the clipboard
	Printing the IDL Graphic using IDL Object Graphics
	Executing IDL user routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality using Visual Basic
	This example illustrates the following concepts:

	XPalette Functionality Using Visual Basic
	This example illustrates the following concepts:

	Integrating Your Object Graphics by Utilizing Visual Basic
	This example illustrates the following concepts:

	Sharing a Grid Control Array with IDL
	This example illustrates the following concepts:

	Handling Events within Visual Basic
	This example illustrates the following concepts:

	Distributing Your Application

	IDL ActiveX Control Command Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	Parameters
	Returns
	Remarks

	CopyWindow
	Parameters
	Returns

	CreateDrawWidget
	Parameters
	Returns

	DestroyDrawWidget
	Parameters
	Returns

	DoExit
	Parameters
	Returns
	Remarks

	ExecuteStr
	Parameters
	Returns
	Remarks

	GetNamedData
	Parameters
	Returns
	Remarks

	InitIDL
	Parameters
	Returns

	Print
	Parameters
	Returns

	RegisterForEvents
	Parameters
	Returns

	SetNamedArray
	Parameters
	Returns
	Remarks

	SetNamedData
	Parameters
	Returns

	SetOutputWnd
	Parameters
	Returns

	Do Methods (Runtime only)
	DoButtonPress
	Parameters
	Returns

	DoButtonRelease
	Parameters
	Returns

	DoExpose
	Parameters
	Returns

	DoMotion
	Parameters
	Returns

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	AppleScript Support
	AppleScript and IDL
	Basic AppleScript Support
	Launching IDL
	Quitting IDL
	Opening Documents
	Printing Documents

	Using IDL Commands via AppleScript
	Moving Data To and From IDL
	Notes

	Controlling Other Applications
	Importing Data into IDL
	Exporting Data from IDL
	Controlling Other Applications

	IDL Apple Events
	Do Script
	Get Data
	Set Data

	References

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode

	Client Variables
	Linking to the Client Library
	Example of IDL RPC Client API

	Compatibility with Older IDL Code
	The IDL RPC Library
	IDL_RPCCleanup
	Calling Sequence
	Description
	Parameters
	pClient
	iKill

	Return Value

	IDL_RPCDeltmp
	Calling Sequence
	Description
	Parameters
	vTmp

	Return Value

	IDL_RPCExecuteStr
	Calling Sequence
	Description
	Parameters
	pClient
	pCommand

	Return Value

	IDL_RPCGetMainVariable
	Calling Sequence
	Description
	Parameters
	pClient
	Name

	Return Value

	IDL_RPCGettmp
	Calling Sequence
	Description
	Parameters
	Return Value

	IDL_RPCGetVariable
	Calling Sequence
	Description
	Parameters
	pClient
	Name

	Return Value

	IDL_RPCImportArray
	Calling Sequence
	Description
	Parameters
	n_dim
	dim
	type
	data
	free_cb

	Return Value

	IDL_RPCInit
	Calling Sequence
	Description
	Parameters
	ServerId
	pHostname

	Return Value

	IDL_RPCMakeArray
	Calling Sequence
	Description
	Parameters
	type
	n_dim
	dim
	init
	var

	Return Value

	IDL_RPCOutputCapture
	Calling Sequence
	Description
	Parameters
	pClient
	n_lines

	Return Value

	IDL_RPCOutputGetStr
	Calling Sequence
	Description
	Parameters
	pClient
	pLine
	first

	Return value

	IDL_RPCSetMainVariable
	Calling Sequence
	Description
	Parameters
	pClient
	Name
	pVar

	Return Value

	IDL_RPCSetVariable
	Calling Sequence
	Description
	Parameters
	pClient
	Name
	pVar

	Return Value

	IDL_RPCStoreScalar
	Calling Sequence
	Description
	Parameters
	dest
	type
	value

	Return Value

	IDL_RPCStrDelete
	Calling Sequence
	Description

	IDL_RPCStrDup
	Calling Sequence
	Description

	IDL_RPCStrEnsureLength
	Calling Sequence
	Description

	IDL_RPCStrStore
	Calling Sequence
	Description

	IDL_RPCTimeout
	Calling Sequence
	Description
	Parameters
	lTimeOut

	Return Value

	IDL_RPCVarCopy
	Calling Sequence
	Description
	Parameters
	src
	dst

	Return Value

	IDL_RPCVarGetData
	Calling Sequence
	Description
	Parameters
	v
	n
	pd
	ensure_simple

	Return Value

	Variable Accessor Macros
	IDL_RPCGetArrayData(v)
	IDL_RPCGetArrayDimensions(v)
	IDL_RPCGetArrayNumDims(v)
	IDL_RPCGetVarByte(v)
	IDL_RPCGetVarComplex(v)
	IDL_RPCGetVarComplexR(v)
	IDL_RPCGetVarComplexI(v)
	IDL_RPCGetVarDComplex(v)
	IDL_RPCGetVarDComplexR(v)
	IDL_RPCGetVarDComplexI(v)
	IDL_RPCGetVarDouble(v)
	IDL_RPCGetVarFloat(v)
	IDL_RPCGetVarInt(v)
	IDL_RPCVarIsArray(v)
	IDL_RPCGetVarLong(v)
	IDL_RPCGetVarString(v)
	IDL_RPCGetVarType(v)

	RPC Examples

	CALL_EXTERNAL
	IDL and CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Input and Output
	Memory Cleanup
	Calling Convention and Parameter Passing
	Platform-Specific Information

	Example: Passing Parameters by Reference to IDL
	Example: Calling a C routine
	Example: Calling a Fortran Routine Using a C Interface Routine
	Example: Calling a Fortran Routine Using a Fortran Interface Routine
	Further Examples
	Wrapper routines

	Handling Different Data Types
	Strings
	Returning a String Value

	Example
	Arrays
	Structs

	CALL_EXTERNAL under UNIX
	UNIX Compilation and Linking

	CALL_EXTERNAL under OpenVMS
	Alpha/OpenVMS Restrictions
	Calling Convention and Parameter Passing
	Example: Calling a C routine
	Example: Calling a Fortran Routine
	Example: Calling the TPU Editor
	Example: Calling a Runtime Library Function
	Calling a VMS Fortran Subroutine
	Passing Parameters by Value
	Using CALL_EXTERNAL with Fortran Common Blocks
	Further Examples

	OpenVMS Compilation and Linking
	CALL_EXTERNAL Under Windows
	Calling Convention and Parameter Passing
	Examples

	CALL_EXTERNAL on the Macintosh
	Calling Convention and Parameter Passing
	Example: Calling a C Routine on a PowerPC Macintosh

	IDL Internals: Types
	Type Codes
	Type Masks

	Mapping Of Basic Types
	Unsigned Byte Data
	Unsigned Integer Data
	Long Integer Data
	Unsigned Long Integer Data
	64-bit Integer Data
	Unsigned 64-bit Integer Data
	Complex Data
	String Data
	slen
	stype
	s

	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	IDL_V_CONST
	IDL_V_TEMP
	IDL_V_ARR
	IDL_V_FILE
	IDL_V_DYNAMIC
	IDL_V_STRUCT

	Scalar Variables
	Array Variables
	elt_len
	arr_len
	n_elts
	data
	n_dim
	flags
	file_unit
	dim

	Structure Variables
	Creating Structures
	name
	tags
	name
	dims
	type
	flags

	Accessing Structure Tags
	sdef
	name (IDL_StructTagInfoByName)
	index (IDL_StructTagInfoByIndex)
	msg_action
	var

	Determining the Number Of Structure Tags
	sdef

	Determining the Names Of Structures and their Tags
	sdef
	index
	msg_action
	struct_name

	Heap Variables
	Temporary Variables
	Getting a Temporary Variable
	Creating a Temporary Array
	type
	n_dim
	dim
	init
	var
	Creating a Temporary Vector
	type, init, var
	dim

	Creating a Temporary Structure
	sdef
	n_dim
	dim
	var
	zero

	Creating a Temporary Vector
	sdef, var, zero
	dim

	Freeing A Temporary Variable

	Creating an Array from Existing Data
	name
	n_dim
	dim
	type
	data
	free_cb
	s

	Getting Dynamic Memory
	The IDL_GetScratch Function
	p
	n_elts
	elt_size

	Accessing Variable Data
	v
	n
	pd
	ensure_simple

	Copying Variables
	Storing Scalar Values
	dest
	type
	value
	dest
	type
	Using IDL_StoreScalar() to Free Dynamic Resources

	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	name
	name
	ienter

	Looking Up Variables in Current Scope
	name
	ienter

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	The IDL_KW_PAR Structure
	keyword
	type
	mask
	flags
	specified
	value

	The IDL_KW_ARR_DESC Structure
	data
	nmin
	nmax
	n

	Keyword Processing Options
	Scalar Input-Only
	Array Input-Only
	Input/Output

	Processing Keywords
	argc
	argv
	argk
	kw_list
	plain_args
	mask
	Speeding Keyword Processing

	Cleaning Up
	IDL_KW_MARK
	IDL_KW_CLEAN

	Keyword Examples
	7
	9
	10 – 13
	14
	15
	16
	18
	19 – 20
	21
	22
	23 – 24
	25 – 26
	27
	28
	31
	33
	35
	36
	37 – 38
	39– 45
	47 – 55
	57

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	Copying Strings
	str
	n

	Deleting Strings
	str
	n

	Setting an IDL_STRING Value
	s
	fs
	s

	Obtaining a String of a Given Length
	s
	n

	IDL Internals: Error Handling
	Message Blocks
	name
	format
	block_name
	n
	defs
	Example: Defining A Message Block

	Issuing Error Messages
	block
	code
	action
	IDL_MSG_RET
	IDL_MSG_INFO
	IDL_MSG_EXIT
	IDL_MSG_LONGJMP
	IDL_MSG_IO_LONGJMP
	IDL_MSG_ATTR_NOPRINT
	IDL_MSG_ATTR_MORE
	IDL_MSG_ATTR_NOPREFIX
	IDL_MSG_ATTR_QUIET
	IDL_MSG_ATTR_NOTRACE
	IDL_MSG_ATTR_BELL
	IDL_MSG_ATTR_SYS
	...

	Error Codes
	IDL_M_GENERIC
	IDL_M_NAMED_GENERIC

	Choosing an Error Code

	Specifying errno Explicitly
	Issuing OpenVMS Messages
	err1
	err2

	Looking Up A Message Code by Name
	block
	name

	Checking Arguments
	IDL_EXCLUDE_UNDEF
	IDL_EXCLUDE_CONST
	IDL_EXCLUDE_EXPR
	IDL_EXCLUDE_FILE
	IDL_EXCLUDE_STRUCT
	IDL_EXCLUDE_COMPLEX
	IDL_EXCLUDE_STRING
	IDL_EXCLUDE_SCALAR
	IDL_ENSURE_ARRAY
	IDL_ENSURE_OBJREF
	IDL_ENSURE_PTR
	IDL_ENSURE_SCALAR
	IDL_ENSURE_STRING
	IDL_ENSURE_SIMPLE
	IDL_ENSURE_STRUCTURE

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	argc
	argv
	type

	Converting to Specific Types

	IDL Internals:Files and Input/Output
	IDL and Input/Output files
	File Information
	IDL_FileStat()
	unit
	stat_blk
	name
	access
	flags
	fptr
	rms.mrs

	Opening Files
	IDL_FileOpen()
	argc
	argv
	argk
	access_mode
	extra_flags
	longjmp_safe

	Special File Units

	Closing Files
	IDL_FileClose()
	argc
	argv
	argk

	Preventing File Closing
	IDL_FileSetClose()
	unit
	allow

	Checking File Status
	IDL_FileEnsureStatus()
	action
	unit
	flags

	Allocating and Freeing File Units
	IDL_FileGetUnit()
	argc
	argv

	IDL_FileFreeUnit()
	argc
	argv

	Detecting End of File
	IDL_FileEOF()
	unit

	Flushing Buffered Data
	IDL_FileFlushUnit()
	unit

	Reading a Single Character
	IDL_GetKbrd()
	should_wait

	Output of IDL Variables
	IDL_Print() and IDL_PrintF()
	argc
	argv
	argk

	Adding to the Journal File
	IDL_Logit()
	s

	IDL Internals: Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	signo
	func
	msg_action

	Removing a Signal Handler
	signo
	func
	msg_action

	UNIX Signal Masks
	IDL_SignalSetInit()
	set
	signo

	IDL_SignalSetAdd()
	set
	signo

	IDL_SignalSetDel()
	set
	signo

	IDL_SignalSetIsMember()
	set
	signo

	IDL_SignalMaskGet()
	set

	IDL_SignalMaskSet()
	set
	omask

	IDL_SignalMaskBlock()
	set
	oset

	IDL_SignalBlock()
	signo

	IDL_SignalSuspend()
	set

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	length
	callback
	from_callback
	context

	Canceling Asynchronous Timer Requests
	context

	Blocking UNIX Timers
	stop

	IDL Internals: Miscellaneous Information
	Dynamic Memory
	IDL_MemAlloc()
	n
	err_str
	action

	IDL_MemFree()
	m
	err_str
	action

	IDL_MemAllocPerm()

	Exit Handlers
	IDL_ExitRegister()
	proc

	User Interrupts
	IDL_BailOut()
	stop

	System Variables
	Functions for Returning System Variable Values
	IDL_STRING *IDL_SysvVersionArch(void)
	IDL_STRING *IDL_SysvVersionOS(void)
	IDL_STRING *IDL_SysvVersionOSFamily(void)
	IDL_STRING *IDL_SysvVersionRelease(void)
	IDL_STRING *IDL_SysvDirFunc(void)
	IDL_STRING *IDL_SysvErrStringFunc(void)
	IDL_STRING *IDL_SysvSyserrStringFunc(void)
	IDL_LONG IDL_SysvErrCodeValue(void)
	IDL_LONG IDL_SysvErrorCodeValue(void)
	IDL_LONG IDL_SysvOrderValue(void)

	Terminal Information
	Functions for Returning IDL_FileTerm Variable Values
	char *IDL_FileTermName(void)
	int IDL_FileTermIsTty(void)
	int IDL_FileTermLines(void)
	int IDL_FileTermColumns(void)

	Ensuring UNIX TTY State
	Type Information
	IDL_OutputFormat
	IDL_OutputFormatLen
	IDL_TypeSize
	IDL_TypeName
	Functions for Returning Data Type Variable Values
	char *IDL_OutputFormatFunc(int type)
	int IDL_OutputFormatLenFunc(int type)
	int IDL_TypeSizeFunc(int type)
	char *IDL_TypeNameFunc(int type)

	User Information
	Constants
	IDL_TRUE
	IDL_FALSE
	IDL_REGISTER
	IDL_MAX_ARRAY_DIM
	IDL_MAXIDLEN
	IDL_MAXPATH

	Macros
	IDL_MIN(x,y) and IDL_MAX(x,y)
	IDL_ABS(x)
	IDL_ROUND_UP(x, m)
	IDL_CHAR(ptr)
	IDL_CHARA(addr)

	IDL Global Data Under VAX/OpenVMS

	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	argc
	argv
	argk

	Example: Hello World
	Example: Doing A Little More (MULT2)
	1 – 2
	4
	6
	7
	8
	10
	11 – 12
	14
	17
	19 – 23
	25
	26
	28
	Testing the Example

	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Calling Sequence
	Arguments
	C

	Keywords
	DOUBLE
	EPS
	NO_POLISH
	TC_INPUT

	Example
	4
	7
	9
	11
	12
	13
	14
	15
	17
	18
	20
	25
	26
	27
	28
	29
	30
	31
	32
	35
	36
	38 – 39
	40– 42
	43 – 46
	48
	52
	53
	55 – 57
	59 – 61
	63– 67
	69
	70 – 71
	73– 74
	77
	78
	80

	Example: An Example Using Routine Design Iteration (RSUM)
	Running Sum (Example 1)
	RSUM1
	Calling Sequence
	Arguments
	Array
	1
	3
	4
	5–6
	7
	10
	11
	14
	15
	17
	18
	19
	20–21
	23

	Running Sum (Example 2)
	RSUM2
	Calling Sequence
	Arguments
	Input
	10
	13
	15–21

	Running Sum (Example 3)
	RSUM3
	Calling Sequence
	Arguments
	Input
	17
	22-23
	35-37
	39-44
	46-60
	61-62

	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS
	IDL_SYSFUN_DEF_F_METHOD
	extra
	Example

	Enabling and Disabling System Routines
	Enabling Routines
	is_function
	names
	n
	option
	disfcn

	Obtaining Enabled/Disabled Routine Names
	is_function
	str
	enabled

	Obtaining the Number of Enabled/Disabled Routines
	is_function
	enabled

	Obtaining the Real Function Pointer
	is_function
	name

	Obtaining the IDL Name of the Current System Routine
	LINKIMAGE
	Dynamically Loadable Modules
	Example
	How DLMs Work
	The Module Description File
	MODULE Name
	DESCRIPTION DescriptiveText
	VERSION VersionString
	BUILD_DATE DateString
	SOURCE SourceString
	CHECKSUM CheckSumValue
	STRUCTURE StructureName
	FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
	PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]
	RtnName
	MinArgs
	MaxArgs
	Options
	OBSOLETE
	KEYWORDS

	The IDL_Load() function
	DLM Example
	TESTFUN
	TESTPRO

	Introduction to Callable IDL
	Callable IDL
	How Callable IDL is Implemented
	When is Callable IDL Appropriate?
	Technical Issues Relating to Callable IDL
	IDL Signal API
	IDL Timer API
	GUI Considerations
	X Windows
	Microsoft Windows
	Program Size Considerations
	Troubleshooting
	Threading
	Inter-language Calling Conventions

	Appropriate Applications of Callable IDL

	Licensing Issues and Callable IDL
	Using Callable IDL
	Initialization
	Call IDL
	Cleanup

	Documentation for Callable IDL

	Using Callable IDL Under UNIX and VMS
	Callable IDL and UNIX and VMS
	Initialization
	options
	IDL_INIT_EMBEDDED
	IDL_INIT_GUI
	IDL_INIT_GUI_AUTO
	IDL_INIT_NOLICALIAS
	IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)
	IDL_INIT_QUIET
	IDL_INIT_RUNTIME

	argc
	argv

	Diverting IDL Output
	flags
	IDL_TOUT_F_STDERR
	IDL_TOUT_F_NLPOST

	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()
	argc
	argv

	IDL_ExecuteStr()
	cmd

	Runtime IDL and Embedded IDL
	file

	Cleanup
	just_cleanup

	Interactive IDL
	init_options
	argc, argv

	Compiling Programs That Call IDL
	Example: Calling IDL From C
	24
	25
	26–29
	30
	31
	32–33
	34–35
	36
	37
	41

	Example: Calling an IDL Math Function
	data
	n
	dir
	7
	8
	9
	11–13
	14
	15–16
	17
	18
	20
	26
	32
	33
	34
	35
	36–37
	38
	41

	Example: Calling IDL from Fortran
	1-27
	14-17
	29-42
	44-164
	51-57
	59-62
	66-67
	69-77
	79-85
	87-96
	98-104
	106-110
	117-121
	125-126
	134
	139
	144
	147
	150-161
	163-168

	Compilation and Linking Statements

	Using Callable IDL Under Windows
	Callable IDL and Windows
	Initialization
	iOpts
	hinstExe
	hwndExe
	hAccel

	Diverting IDL Output
	flags
	IDL_TOUT_F_STDERR
	IDL_TOUT_F_NLPOST

	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()
	argc
	argv

	IDL_ExecuteStr()
	cmd

	Runtime IDL and Embedded IDL
	file

	Cleanup
	just_cleanup

	Building an Application that Calls IDL
	Example: A Simple Application
	16
	45
	48
	52
	131-176
	158
	164
	168
	185-220
	199
	202
	208
	211
	230-253
	263-306
	280
	281-299

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	Calling Sequence
	Arguments
	Parent

	Keywords

	WIDGET_CONTROL/WIDGET_STUB
	Keywords
	DESTROY
	MAP, REALIZE, and SENSITIVE
	XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

	Functions for Use with Stub Widgets
	void IDL_WidgetStubLock(int set);
	char *IDL_WidgetStubLookup(IDL_ULONG id);
	void IDL_WidgetIssueStubEvent(char *rec, LONG value);
	void IDL_WidgetSetStubIds(char *rec, unsigned long t_id, ��...
	void IDL_WidgetGetStubIds(char *rec, unsigned long *t_id, ���������������������������������������...
	void IDL_WidgetStubSetSizeFunc(char *rec, �����������������������������IDL_WIDGET_STUB_SET_SIZE_F...

	Internal Callback Functions
	Commentary on the Example Shown Above

	OpenVMS With WIDGET_STUB
	The IDL Program for WIDGET_ARROWB
	The C Program for widget_arrowb.c
	Compiling and Linking the C File
	An IDL Program to Test the External Widget

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 5.3
	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS

	Simplified Routine Invocation
	argc
	argv
	arg_struct
	The IDL_EZ_ARG struct
	allowed_dims
	IDL_EZ_DIM_ARRAY
	IDL_EZ_DIM_ANY

	allowed_types
	access
	IDL_EZ_ACCESS_R
	IDL_EZ_ACCESS_W
	IDL_EZ_ACCESS_RW

	convert
	pre
	IDL_EZ_PRE_SQMATRIX
	IDL_EZ_PRE_TRANSPOSE

	post
	IDL_EZ_POST_WRITEBACK
	IDL_EZ_POST_TRANSPOSE

	to_delete
	uargv
	value

	Cleaning Up
	Example— using IDL_EzCall()
	A
	w
	U
	V
	7-8
	allowed_dims
	allowed_types
	access
	convert
	pre
	post
	…
	9-14
	17
	26

	Compatibility with Versions 2 and 3
	IDL Version 1 Compatibility
	Data Type Codes
	Routines
	Calling Convention

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

