
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Obsolete IDL
Features

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

... 8

... 8

.. 8

. 9

... 12

.. 13

... 14

.. 16
Contents
Chapter 1:
Overview .. 7
Backwards Compatibility..

IDL Internal Routines...

Routines Written in IDL..

Detecting Use of Obsolete Features..

Where to Find Documentation for Obsolete Routines... 10

Chapter 2:
Obsolete Routines .. 11

DDE Routines...

DEMO_MODE ..

GETHELP...

HANDLE_CREATE..
Obsolete IDL Features 3

4

.. 19

.. 20

.. 22

.. 24

. 26

. 28

. 29

. 31

. 32

. 33

. 35

. 36

. 37

. 38

 42

 44

... 45

... 46

. 47

.... 49

... 55

... 57

... 58

... 60

.... 63

. 64

 67

 67

 67
HANDLE_FREE ...

HANDLE_INFO ..

HANDLE_MOVE ...

HANDLE_VALUE ..

HDF_DFSD_ADDDATA...

HDF_DFSD_DIMGET...

HDF_DFSD_DIMSET...

HDF_DFSD_ENDSLICE...

HDF_DFSD_GETDATA...

HDF_DFSD_GETINFO...

HDF_DFSD_GETSLICE...

HDF_DFSD_PUTSLICE..

HDF_DFSD_READREF..

HDF_DFSD_SETINFO..

HDF_DFSD_STARTSLICE...

INP, INPW, OUTP, OUTPW..

PICKFILE ...

RSTRPOS...

SIZE Executive Command...

SLICER..

STR_SEP..

TIFF_DUMP ...

TIFF_READ ...

TIFF_WRITE..

WIDED ..

WIDGET_MESSAGE..

Chapter 3:
Remote Procedure Calls ... 65
Using IDL as an RPC Server...

The IDL RPC Directory...

Running IDL in Server Mode..
Contents Obsolete IDL Features

5

67

 68

. 69

.. 70

.. 71

. 73

... 74

.. 75

.. 76

.. 77

.. 78

.. 80

.. 81

. 82

 82

... 83

.. 84

.. 85

.. 86

... 87

... 88

... 89

... 90

... 91

92

. 94

4

 95

.. 96
Creating the IDL RPC Library...

Linking your Client Program...

The IDL RPC Library...

free_idl_variable..

get_idl_variable..

idl_server_interactive..

kill_server ...

register_idl_client..

send_idl_command..

set_idl_timeout...

set_idl_variable..

set_rpc_verbosity...

unregister_idl_client..

The varinfo_t Structure...

Variable Creation Functions..

v_make_byte...

v_make_complex...

v_make_dcomplex...

v_make_double..

v_make_float...

v_make_int..

v_make_long...

v_make_string...

v_fill_array ..

More Variable Manipulation Macros...

Notes on Variable Creation and Memory Management...................................... 94

Freeing Resources...

Creating a Statically-Allocated Array.. 9

Allocating Space for Strings..

RPC Examples...
Obsolete IDL Features Contents

6

Contents Obsolete IDL Features

Chapter 1:

Overview
This chapter discusses the following topics:
es
Backwards Compatibility 8
Detecting Use of Obsolete Features 9

WheretoFindDocumentationforObsoleteRoutin
10
Obsolete IDL Features 7

8 Chapter 1: Overview

en

a

led
e,

uled

te
Backwards Compatibility

Research Systems strongly recommends that you not use obsolete routines wh
writing new IDL code. As IDL continues to evolve, the likelihood that obsolete
routines will no longer function as expected increases. While we will continue to
make every effort to ensure that obsolete routines shipped with IDL function, in
small number of cases this may not be possible.

IDL Internal Routines

Routines that are built into the IDL executable—routinesnot written in the IDL
language—will either continue to be included in the executable until the schedu
removal release or will be re-implemented in the IDL language. In the latter cas
obsolete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be sched
for eventual removal.

Routines Written in IDL

Routines written in the IDL language (.pro files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. As long as a given obsole
routine is included in this subdirectory, it will continue to function as always.
Backwards Compatibility Obsolete IDL Features

Chapter 1: Overview 9

etting

ters
Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by s
the fields of the !WARN system variable. Setting !WARN causes IDL to print
informational messages to the command log or console window when it encoun
references to obsolete features. See!WARN in theIDL Reference Guide for details.
Obsolete IDL Features Detecting Use of Obsolete Features

10 Chapter 1: Overview

 in
Where to Find Documentation for Obsolete
Routines

Routines that became obsolete in IDL version 4.0 or earlier are not documented
this book or in the IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header of the.pro file, or use the
DOC_LIBRARY routine. The.pro files for obsolete routines are located in the
obsolete subdirectory of thelib directory of the IDL distribution.
Where to Find Documentation for Obsolete Routines Obsolete IDL Features

Chapter 2:

Obsolete Routines
IDL
these
This chapter contains complete documentation for obsoleted IDL routines. New
code should not use these routines. For a list of the routines that replace each of
obsolete routines, seeAppendix H, “Obsolete Routines” in theIDL Reference Guide.
Obsolete IDL Features 11

12 Chapter 2: Obsolete Routines

t is a

 is a

item

d

DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange (DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented below:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argumen
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

This function returns the items list for the specified server. The server argument
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST(server , topic , item)

This function returns the requested data in string format. The server, topic, and
arguments must be scalar strings.

DDE_EXECUTE, server , topic , command

This procedure causes the DDE server to execute the command for the specifie
topic. The server, topic, and command arguments must be scalar strings.
DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 13

e
1

DEMO_MODE

This routine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns True if IDL is running in the timed demo mod
(i.e., a license manager is not running). Calling this function causes a FLUSH, -
command to be issued.

Syntax

Result = DEMO_MODE()
Obsolete IDL Features DEMO_MODE

14 Chapter 2: Obsolete Routines

ins

y
ure.

not
ing

ion.
ent

ble.

st

nd
GETHELP

This routine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP is called. The function builds a string array that conta
information that follows the format used by the IDL HELP command.

When called without an argument, GETHELP returns a string array that normall
contains variable data that is in the same format as used by the IDL HELP proced
The variables in this list are those defined for the routine (or program level) that
called GETHELP. If there are no variables defined, or the specified variable does
exist, GETHELP returns a null string. Other information can be obtained by sett
keywords.

Syntax

Result = GETHELP([Variable])

Arguments

Variable

A scalar string that contains the name of the variable from which to get informat
If this argument is omitted, GETHELP returns an array of strings where each elem
contains information on a separate variable, one element for each defined varia

Keywords

FULLSTRING

Normally a string that is longer than 45 chars is truncated and followed by “...” ju
like the HELP command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

ONELINE

If a variable name is greater than 15 characters it is usually returned as 2 two
elements of the output array (Variable name in 1st element, variable info in the 2
GETHELP Obsolete IDL Features

Chapter 2: Obsolete Routines 15

g

ne

tion.
element). Setting this keyword will put all the information in one string, separatin
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) functions.

Note
RESTRICTIONS: Due to the diffuculties in determining if a variable is of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

• Associate record type is structure.

• Associated file is opened for update (openu).

• Associate file is not empty.

Another difference between this routine and the IDL help command is that if a
variable is in a common block, the common block name is not listed next to the
variable name. Currently there is no method available to get the common block
names used in a routine.

Example

To obtain a listing in a help format of the variables contained in the current routi
you would make the following call:

HelpData = GetHelp()

The variable HelpData would be a string array containing the requested informa
Obsolete IDL Features GETHELP

16 Chapter 2: Obsolete Routines

s a

res.

er,
ust
its.)

dle.

dle

een
start
f a
aid
ren.
HANDLE_CREATE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_CREATE function creates a new handle. A “handle” is a
dynamically-allocated variable that is identified by a unique integer value known a
“handle ID”. Handles can have a value, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structu
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to all program units at all times. (Rememb
however, that IDL variables containing handle IDs are not global in scope and m
be declared in a COMMON block if you want to share them between program un

Handle Terminology

The following terms are used to describe handles in the documentation for this
function and other handle-related routines:

• Handle ID: The unique integer identifier associated with a handle.

• Handle value: Data of any IDL type and organization associated with a han

• Top-level handle: A handle at the top of a handle hierarchy. A top-level han
can have children, but does not have a parent.

• Parents, children, and siblings: These terms describe the relationship betw
handles in a handle hierarchy. When a new handle is created, it can be the
of a new handle hierarchy (a top-level handle) or it can belong to the level o
handle hierarchy below an existing handle. A handle created in this way is s
to be a child of the specified parent. Parents can have any number of child
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE([ID])
HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 17

dle
e

ed by
e

d

to
rom
 used
e

e

ion.

hen
Arguments

ID

If this argument is present, it specifies the handle ID relative to which the new han
is created. Normally, the new handle becomes the last child of the parent handl
specified by ID. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.

Keywords

FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specifi
ID. Any existing children of ID become later siblings of the new first child (i.e., th
existing first child becomes the second child, the second child becomes the thir
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied
the handle value. If the NO_COPY keyword is set, the value data is taken away f
the source variable and attached directly to the destination. This feature can be
to move data very efficiently. However, it has the side effect of causing the sourc
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of th
new handle. Note that you cannot create a handle that is a sibling of a top-level
handle.

VALUE

The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organizat
This value is not used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value w
the handle is first created.

If the VALUE keyword is not specified, the handle’s initial value is undefined.

Handle values can be retrieved using the HANDLE_VALUE procedure.
Obsolete IDL Features HANDLE_CREATE

18 Chapter 2: Obsolete Routines

ndle
Examples

The following commands create a top-level handle with 3 child handles. Each ha
is assigned a different string value:

;Create top-level handle without an initial handle value:
top = HANDLE_CREATE()
;Create first child of the top-level handle:
first = HANDLE_CREATE(top, VALUE=’First child’)
;Create second child of the top-level handle:
second = HANDLE_CREATE(top, VALUE=’Second child’)
;Create a new sibling between first and second.
;This handle is also a child of the top-level handle:
third = HANDLE_CREATE(first, VALUE=’Another child’, /SIBLING)
HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 19

ic
 are

alid

use
HANDLE_FREE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_FREE procedure frees an existing handle, along with any dynam
memory currently being used by its value. Any child handles associated with ID
also freed.

Syntax

HANDLE_FREE,ID

Arguments

ID

The ID of the handle to be freed. Once the handle is freed, further use of it is inv
and causes an error to be issued.

Example

To free all memory associated with the top-level handle top, and all its children,
the command:

HANDLE_FREE, top
Obsolete IDL Features HANDLE_FREE

20 Chapter 2: Obsolete Routines

rds

r or
,
f ID.

 If

the

s

ero
e

HANDLE_INFO

This routine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID is valid. Keywo
can be set to return other types of information.

Syntax

Result = HANDLE_INFO(ID)

Arguments

ID

The ID of the handle for which information is desired. This argument can be scala
array an array of IDs. The result of HANDLE_INFO has the same structure as ID
and each element gives the desired information for the corresponding element o

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle.
the handle has no children, 0 is returned.

NUM_CHILDREN

Set this keyword to return the number of children related to ID.

PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If
specified handle is a top-level handle (i.e., it has no parent), 0 is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID ha
no later siblings, or if ID is a top-level handle, 0 is returned.

VALID_ID

Set this keyword to return 1 if ID represents a currently valid handle. Otherwise, z
is returned. This is the default action for HANDLE_INFO if no other keywords ar
specified.
HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 21
Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a message if handle1 is a valid handle ID.
IF HANDLE_INFO(handle1) THEN PRINT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.
handle = HANDLE_INFO(top, /FIRST_CHILD)
;Retrieve the handle ID of the next sibling of handle1.
next= HANDLE_INFO(handle1, /SIBLING)
Obsolete IDL Features HANDLE_INFO

22 Chapter 2: Obsolete Routines

w

ged

n
ld

 of a
HANDLE_MOVE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move_ID) to a ne
location. This new position is specified relative to Static_ID.

Syntax

HANDLE_MOVE, Static_ID, Move_ID

Arguments

Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move_ID becomes the last child of Static_ID. This behavior can be chan
by specifying one of the keywords described below.

If Static_ID is set to 0, Move_ID becomes a top level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID

The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_ID the first child of Static_ID. Any existing childre
of Static_ID become later siblings of the new first child (i.e., the existing first chi
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move_ID the sibling handle immediately following
Static_ID. Any siblings currently following Static_ID become later siblings of the
new handle. Note that you cannot move a handle such that is becomes a sibling
top-level handle.

Example

; Create top-level handle:
top = HANDLE_CREATE()
HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines 23
; Create first child of top:
child1 = HANDLE_CREATE(top)
; Create second child of top:
child2 = HANDLE_CREATE(top)
; Move the first child to be the last child of top:
HANDLE_MOVE, top, child1
Obsolete IDL Features HANDLE_MOVE

24 Chapter 2: Obsolete Routines

.

te

a.
ost

n
tly to
, it
trieve
e

eve
HANDLE_VALUE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_VALUE procedure returns or sets the value of an existing handle

Syntax

HANDLE_VALUE, ID, Value

Arguments

ID

A valid handle ID.

Value

When using HANDLE_VALUE to return an existing handle value (the default),
Value is a named variable in which the value is returned.

When using HANDLE_VALUE to set a handle value, Value is the new value. No
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE_VALUE works by making a second copy of the source dat
Although this technique is fine for small data, it can have a significant memory c
when the data being copied is large.

If the NO_COPY keyword is set, HANDLE_VALUE works differently. Rather tha
copy the source data, it takes the data away from the source and attaches it direc
the destination. This feature can be used to move data very efficiently. However
has the side effect of causing the source variable to become undefined. On a re
operation, the handle value becomes undefined. On a set operation, the variabl
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default is to retri
the current handle value.
HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 25

E:
Example

The following commands demonstrate the two different uses of HANDLE_VALU

; Retrieve the value of handle1 into the variable current:
HANDLE_VALUE, handle1, current
; Set the value of handle1 to a 2-element integer vector:
HANDLE_VALUE,handle1,[2,3],/SET
Obsolete IDL Features HANDLE_VALUE

26 Chapter 2: Obsolete Routines

on
.

SDS

ly-

the
HDF_DFSD_ADDDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well as all other informati
set via calls to HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDF file

TheDataarray must have the same dimensions as the array in the file. The new
is appended to the file, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA,Filename, Data [, /OVERWRITE]
[, SET_DIM=value{must set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename

A scalar string containing the name of the file to be written.

Data

An expression (typically an array) containing the data to write.

Keywords

OVERWRITE

Set this keyword to write Data as the first, and only, SDS in the file. All previous
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon
dimensions of Data.

Note
You must set the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.
HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 27

pe of
SET_TYPE

Set this keyword to make the data type of the current SDS based on the data ty
the Data argument.
Obsolete IDL Features HDF_DFSD_ADDDATA

28 Chapter 2: Obsolete Routines

ord
HDF_DFSD_DIMGET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET,Dimension [, /FORMAT] [, /LABEL] [, SCALE=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.

Keywords

FORMAT

Set this keyword to return the dimension format string.

LABEL

Set this keyword to return the dimension label string.

SCALE

Use this keyword to return scale information about the dimension. Set this keyw
to a vector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.
HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 29

 set

g

 of
 that
1/10
or
HDF_DFSD_DIMSET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensions in an HDF. Note that the label, unit, and format of a dataset must be
simultaneously.

Syntax

HDF_DFSD_DIMSET,Dimension [, FORMAT=string] [, LABEL= string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.

Keywords

FORMAT

A string for the dimension format. This string should be a standard IDL formattin
string.

LABEL

A string for the dimension label.

SCALE

A vector of values used to set the dimension scale.

UNIT

A string for the dimension units.

Example

Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array
values representing water content within the volume of a cloud. Assume further
each element in the 100-element dimension (the “Y” dimension) was sampled at
mile increments. Appropriate labeling, formatting, unit, and scaling information f
the Y dimension can be set with the following command:
Obsolete IDL Features HDF_DFSD_DIMSET

30 Chapter 2: Obsolete Routines
HDF_DFSD_DIMSET, 1, LABEL = 'Y Position', FORMAT = 'F8.2', $
UNIT = 'Miles', SCALE = 0.1*FINDGEN(100)
HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 31

ing
HDF_DFSD_ENDSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by
HDF_DFSD_STARTSLICE by closing the internal slice interface and synchroniz
the file.

Syntax

HDF_DFSD_ENDSLICE

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
Obsolete IDL Features HDF_DFSD_ENDSLICE

32 Chapter 2: Obsolete Routines

d

HDF_DFSD_GETDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA,Filename, Data [, /GET_DIMS{Set only if you have not
called HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TYPE]

Arguments

Filename

A scalar string containing the name of the file to be read.

Data

A named variable in which the data is returned.

Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keywor
should only be used if one hasnot called HDF_DFSD_GETINFO with the DIMS
keyword

GET_TYPE

Set this keyword to get the data type for the current SDS.
HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 33

DF

than

ded

form:

are
HDF_DFSD_GETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current H
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TYPE keywords may
alter which dataset is current. See “Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in theNCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading a label, unit, format, or coordinate system string that has more
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFO,Filename [, CALDATA= variable] [, /COORDSYS]
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, /NSDS] [, /RANGE]
[, TYPE=variable] [, /UNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filename is only nee
to determine SDS dimensions and/or the number of SDSs in a file.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The data will be returned in a structure of the

{ CAL: 0d, CAL_ERR: 0d, OFFSET: 0d, $
OFFSET_ERR: 0d,NUM_TYPE: 0L }

COORDSYS

Set this keyword to return the data coordinate system description string.

DIMS

Set this keyword to a named variable in which the dimensions of the current SDS
returned in a longword array.
Obsolete IDL Features HDF_DFSD_GETINFO

34 Chapter 2: Obsolete Routines

f the

ns
FORMAT

Set this keyword to return the data format description string.

LABEL

Set this keyword to return the data label description string.

LASTREF

Set this keyword to return the last reference number written or read for an SDS.

NSDS

Set this keyword to return the number of SDSs in the file.

RANGE

Set this keyword to return the valid max/min values for the current SDS.

TYPE

Set this keyword to a named variable which returns a string describing the type o
current SDS (e.g., 'BYTE', 'FLOAT', etc.).

UNIT

Set this keyword to return the data unit description string.

Example

The following commands read an SDS, including information about its dimensio
but not its annotations:

HDF_DFSD_GETINFO, filename, DIMS=d, TYPE=t, RANGE=r, $
LABEL=l, UNIT=u, FORMAT=f, COORDSYS=c

...
FOR i = 0, N_ELEMENTS(d)-1 DO BEGIN

HDF_DFSD_DIMGET, i, LABEL=dl, UNIT=du, FORMAT=df, SCALE=ds
ENDFOR
HDF_DFSD_GETDATA, filename, data
HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 35

e.
 to

is to

n

HDF_DFSD_GETSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the
DIMS and TYPE keywords to get the dimensions and type of the next data slic
Failure to get the dimensions and type will cause the HDF interface to attempt
read the data incorrectly, and may cause unexpected results.

Syntax

HDF_DFSD_GETSLICE,Filename, Data [, COUNT=vector] [, OFFSET=vector]

Arguments

Filename

A scalar string containing the name of the file to be read.

Data

A named variable in which the data, read from the SDS, is returned.

Keywords

COUNT

An optional vector containing the counts to be used in reading Value. The default
read all elements in each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begi
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
Obsolete IDL Features HDF_DFSD_GETSLICE

36 Chapter 2: Obsolete Routines

le.

e
ize

en

 more
HDF_DFSD_PUTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_PUTSLICE procedure writes a data slice to the current HDF fi

Note
Before calling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set th
dimensions and attributes of the slice and HDF_DFSD_STARTSLICE to initial
the slice interface.

Syntax

HDF_DFSD_PUTSLICE,Data [, COUNT=vector]

Arguments

Data

An array containing the data to write. Dimensions used to write the data are tak
from the dimensions ofData, unless the COUNT keyword is used.

Keywords

COUNT

An optional vector containing the counts to be used in writingData. The counts do
have to match the dimensions (number or sizes), but the count cannot describe
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.
HDF_DFSD_PUTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 37

DF
HDF_DFSD_READREF

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_READREF procedure specifies the reference number of the H
file to be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.

Syntax

HDF_DFSD_READREF,Filename, Refno

Arguments

Filename

A scalar string containing the name of the file to be read.

Refno

The reference number of the desired SDS.
Obsolete IDL Features HDF_DFSD_READREF

38 Chapter 2: Obsolete Routines

DF

e that

e
n for
by
g

ame
HDF_DFSD_SETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_SETINFO procedure controls information associated with an H
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set the first tim
HDF_DFSD_SETINFO is called.

This procedure has many options, controlled by keywords. The order in which th
keywords are specified is unimportant as the routine insures the order of operatio
any given call to it. CLEAR and RESTART requests are performed first, followed
type and dimension setting, followed by length setting, followed by the remainin
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TYPE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETINFO, LEN_FORMAT=10, FORMAT=’12.3F’

or

HDF_DFSD_SETINFO, LEN_FORMAT=10
HDF_DFSD_SETINFO, FORMAT=’12.3F’

Due to the underlying C routines, it is necessary to set all four data strings at the s
time, or the unspecified strings are treated as ‘’ (null strings).

For example:

HDF_DFSD_SETINFO, LABEL = ’hi’
HDF_DFSD_SETINFO, UNIT = ’ergs’

is the same as:

HDF_DFSD_SETINFO, LABEL=’hi’, UNIT=’’, FORMAT=’’, COORDSYS=’’
HDF_DFSD_SETINFO, LABEL=’’, UNIT=’ergs’, FORMAT=’’, COORDSYS=’’

Syntax

HDF_DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]
[, COORDSYS=string] [, DIMS=vector] [, /BYTE | , /DOUBLE | , /FLOAT, | , /INT |
, /LONG] [, FORMAT=string] [, LABEL= string] [, LEN_LABEL=value]
HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 39

t,
[, LEN_UNIT=value] [, LEN_FORMAT=value] [, LEN_COORDSYS=value]
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Arguments

None

Keywords

BYTE

Set this keyword to make the SDS data type DFNT_UINT8 (1-byte unsigned
integer).

CALDATA

Set this keyword to a structure containing calibration information. The structure
should contain five tags, the first four of which are double-precision floating-poin
and fifth of which should be long integer. For example:

caldat a = { Cal: 1.0d $; Calibration factor.
Cal_Err: 0.1d $; Calibration error.
Offset: 2.5d $; Uncalibrated offset.
Offset_Err: 0.1d $; Uncalibrated offset error.
Num_Type: 5L $; Number type of uncalib.data.

Some typical values for theNum_Type field include:

For byte data:

3L (DFNT_UCHAR8)
21L (DFNT_UINT8)

For integer data:

22L (DNFT_INT16)

For long-integer data:

24L (DFNT_INT32)

For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not native to IDL. They can be found in thehdf.h
header file for the HDF library.
Obsolete IDL Features HDF_DFSD_SETINFO

40 Chapter 2: Obsolete Routines

or

r).
CLEAR

Set this keyword to reset all possible set values to their default value.

COORDSYS

A string for the data coordinate system description.

DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. F
example:

HDF_DFSD_SETINFO, DIMS = [10, 20, 30]

DOUBLE

Set this keyword to make the SDS data type DFNT_FLOAT64 (8-byte floating
point).

FLOAT

Set this keyword to make the SDS data type DFNT_FLOAT32 (4-byte floating
point).

FORMAT

A string for the data format description.

INT

Set this keyword to make the SDS data type DFNT_INT16 (2-byte signed intege

LABEL

A string for the data label description.

LEN_LABEL

The label string length (default is 255).

LEN_UNIT

The unit string length (default is 255).

LEN_FORMAT

The format string length (default is 255).

LEN_COORDSYS

The format coordinate system string length (default is 255).
HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 41

r).

me
d is

e

LONG

Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed intege

RANGE

The minimum and maximum range, represented as a 2-element vector of the sa
data type as the data to be written. The first element is the maximum, the secon
the minimum. For example:

HDF_DFSD_SETINFO, RANGE = [10,0]

RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from th
first SDS in the file.

UNIT

A string for the data unit description.

Example

Write a 100x50 array of longs:

data = LONARR(100, 50)
HDF_DFSD_SETINFO, /CLEAR, /LONG, DIMS=[100,50], $

RANGE=[MAX(data), MIN(data)], $
LABEL=’pressure’, UNIT=’pascals’, $
FORMAT=’F10.0’
Obsolete IDL Features HDF_DFSD_SETINFO

42 Chapter 2: Obsolete Routines

of

t be
HDF_DFSD_STARTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write a slice
data to an HDF file. HDF_DFSD_SETINFO must be called before
HDF_DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and mus
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax

HDF_DFSD_STARTSLICE,Filename

Arguments

Filename

A scalar string containing the name of the file to be written.

Example

; Open an HDF file:
fid=HDF_OPEN('test.hdf',/ALL)

; Create two datasets:
slicedata1=FINDGEN(5,10,15)
slicedata2=DINDGEN(4,5)

; Use HDF_DFSD_SETINFO to set the dimensions, then add
; the first slice:
HDF_DFSD_SETINFO,LABEL='label1', DIMS=[5,10,15], /FLOAT
HDF_DFSD_STARTSLICE,'test.hdf'
HDF_DFSD_PUTSLICE, slicedata1
HDF_DFSD_ENDSLICE

; Repeat the process for the second slice:
HDF_DFSD_SETINFO, LABEL='label2', DIMS=[4,5], /DOUBLE
HDF_DFSD_STARTSLICE,'test.hdf'
HDF_DFSD_PUTSLICE, slicedata2
HDF_DFSD_ENDSLICE
HDF_DFSD_SETINFO, /RESTART

; Use HDF_DFSD_GETINFO to advance slices and set slice
; attributes, then get the slices:
HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 43
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out1
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out2

; Close the HDF file:
HDF_CLOSE('test.hdf')

;Check the first slice to see if everything worked:
IF TOTAL(out1 EQ slicedata1) EQ N_ELEMENTS(out1) THEN $

PRINT, 'SLICE 1 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 1 WRITTEN/READ INCORRECTLY'

; Check the second slice to see if everything worked:
IF TOTAL(out2 EQ slicedata2) EQ N_ELEMENTS(out2) THEN $

PRINT, 'SLICE 2 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 2 WRITTEN/READ INCORRECTLY'

IDL Ouput

SLICE 1 WRITTEN/READ CORRECTLY

SLICE 2 WRITTEN/READ CORRECTLY
Obsolete IDL Features HDF_DFSD_STARTSLICE

44 Chapter 2: Obsolete Routines

e
f
ou

ray

r is

are
.

d

INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using th
following routines. In each case,Port is specified using the hexadecimal address o
the hardware port. For example, if serial port #1 of your PC is at address 3F8, y
would use the following IDL commands to read that port:

paddr = '3F8'x Setpaddr to hexadecimal value.
data = INPW(paddr) Read data.

Result = INP(Port, [D1 . . . DN])

This function returns either one byte (if only the port number is specified) or an ar
(the dimensions of which are specified byD1 . . . DN) read from the specified
hardware port. Port is the hardware port number. For example,

result = INP(paddr)

would read a single byte, and

result = INP(paddr, 2,4)

would read a two-element by four-element array.

Result = INPW(Port, [D1 . . . DN])

This function returns either one 16-bit word, as an integer (if only the port numbe
specified), or an array (the dimensions of which are specified byD1 . . . DN) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardw
port. Port is the hardware port number.Value is the byte value or array to be written

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specifie
hardware port. Port is the hardware port number.Valueis the integer value or array to
be written.
INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 45

d in
PICKFILE

This routine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it ha
previous releases. See DIALOG_PICKFILE in theIDL Reference Guide.
Obsolete IDL Features PICKFILE

46 Chapter 2: Obsolete Routines

ring
h,
RSTRPOS

This routine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. SeeSTRPOS in theIDL Reference Guide.

The RSTRPOS function finds thelast occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of a substring). If the subst
is found in the expression, RSTRPOS returns the character position of the matc
otherwise it returns -1.

Syntax

Result = RSTRPOS(Expression, Search_String [, Pos])

Arguments

Expression

The expression string in which to search for the substring.

Search_String

The substring to be searched for withinExpression.

Pos

The character position before which the search is begun. IfPosis omitted, the search
begins at the last character ofExpression.

Example

; Define the expression:
exp = 'Holy smokes, Batman!'
; Find the position of a substring:
pos = RSTRPOS(exp, 'smokes')
; Print the substring’s position:
PRINT, pos

IDL prints:

5

Note
Substring begins at position 5 (the sixth character).
RSTRPOS Obsolete IDL Features

Chapter 2: Obsolete Routines 47

fault

 of
.
d to

nd all
000

a that
areas

 into

ata
that

te that
r main
e and

level,

fault
SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.

.SIZE Code_Size, Data_Size

The.SIZE command resizes the memory area used to compile programs. The de
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation
memory. User procedures and functions are compiled in this large program area
After successful compilation, a new memory area of the required size is allocate
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program a
main program variables. For example, to extend the code and data areas to 30,
and 5,000 bytes, respectively, use the following statement:

.SIZE 30000 5000

Each user-defined procedure, function, and main program has its own code are
contains the compiled code and constants. Although the maximum size of these
is set by the.SIZE command, there is virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken
multiple program units.

The data area contains information describing the user-defined variables and
common blocks for each procedure, function, or main program. Note that the “d
area” is not the space available for variable storage, but the space available for
program unit’s symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. No
there are separate code and data areas for each compiled function, routine, o
program. The HELP command can be used to see the current sizes of the cod
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data areas. If the
compiled routine does not use the full amount of code space allocated by the de
Obsolete IDL Features SIZE Executive Command

48 Chapter 2: Obsolete Routines

mple,

the
code area size, the code area “shrinks” to just the size the routine needs. For exa
enter and compile a simple procedure from the IDL prompt by entering:

.RUN
- PRO EXAMPLE
- PRINT, "Here are the code and data areas for this procedure:"
- HELP
- END

Call the EXAMPLE procedure from the command line to see the result:

EXAMPLE

The third line of output from the HELP procedure displays:

Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code area for the EXAMPLE procedure is completely filled and that
total size of the code area is just 100 bytes.
SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 49

the
ffer

ory.

he
n

R

SLICER

This routine is obsolete and should not be used in new IDL code.

The IDL SLICER is a widget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by
SLICER. The image may be redisplayed on a different device by reading the Z-bu
contents plus the current color table. Note that the volume data must fit in mem

Using the SLICER

Data is passed to the SLICER via the common block VOLUME_DATA. Note that t
variable used to contain the volume data must be defined as part of the commo
blockbefore the volume data is read into the variable. (See theExample section,
below.)

The SLICER has the following modes:

• Slices: Displays or removes orthogonal or oblique slices through the data
volume.

• Block: Displays the surfaces of a selected block inside the volume.

• Cutout: Cuts blocks from previously drawn objects.

• Isosurface: Draws an isosurface contour.

• Probe: Displays the position and value of objects using the mouse.

• Colors: Manipulates the color tables and contrast.

• Rotations: Sets the orientation of the display.

• Journal: Records or plays back files of SLICER commands.

See the SLICER’s help file (available by clicking the “Help” button on the SLICE
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A

A = your_volume_data

SLICER
Obsolete IDL Features SLICER

50 Chapter 2: Obsolete Routines

re.

y
d

 be

the

hen

is
Arguments

A

A 3D array containing volume data. Note that the variableA must be included in the
common block VOLUME_DATAbefore being equated with the volume data.A is
not an explicit argument to SLICER.

Keywords

CMD_FILE

Set this keyword to a string that contains the name of a file containing SLICER
commands to execute as described underSLICER Commands, below. The file should
contain one command per line.

Command files can be created interactively, using the SLICER’s “Journal” featu

COMMAND

Set this keyword equal to a 1 xn string array containing commands to be executed b
the SLICER before entering interactive mode. Available commands are describe
underSLICER Commands, below.

Note that commands passed to the SLICER with the COMMAND keyword must
in a 1 xn array, rather than in ann-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example,
following passes three commands to the slicer:

com=TRANSPOSE(['COLOR 5', 'TRANS 1 20', 'ISO 17 1'])

SLICER, COMMAND=com

DETACHED

Set this keyword to put the drawable in a separate window. This can be useful w
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP
specified, a command to destroy the calling widget also destroys the SLICER.

NO_BLOCK

Set this keyword equal to zero to have XMANAGERblock when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 51

.

a
d

 the
line

 the

g are

t.
um
0%:
NO_BLOCK=0 will causeall widget applications to block, not just this application
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to a two-element array containing minimum and maximum dat
values of interest. If RANGE is omitted, the data is scanned for the minimum an
maximum values.

RESOLUTION

Set this keyword to a two-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

The slicer accepts a number of commands that replicate the action of controls in
graphical user interface. These commands can be specified at the IDL command
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blanks. The followin
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color tables.Table_Index is the pre-defined color table number (see
LOADCT), or -1 to retain the present table.Low is the contrast minimum,High is the
contrast maximum, andShading is the differential shading, all expressed in percen
For example, the following command picks color table number 2, sets the minim
contrast to 10%, the maximum contrast to 90%, and the differential shading to 5

COLOR 2 10 90 50

CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1

Defines the volume used for “Block” and “Cutout” operations. SetMode=1 for Block
mode orMode=2 for Cutout mode. SetCut_Ovr=0 to mimic selecting the “Cut Into”
button orCut_Ovr=1 to mimic selecting the “Cut Over” button.
Obsolete IDL Features SLICER

52 Chapter 2: Obsolete Routines

or

 Z

For
s, at
Note
These buttons have no effect in Block mode. See the online help on SLICER f
further explanation of Cut Into and Cut Over.

SetInterp=1 for bilinear interpolation sampling orInterp=0 for nearest neighbor
sampling.

X0,Y0,Z0are the coordinates of the lower corner of the volume, andX1,Y1,Z1are the
coordinates of the upper corner. For example:

CUBE 1 0 1 20 0 56 60 75 42

selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume’s corners at (20, 0, 56) and (60, 75, 42).

ERASE

Erases the display. Mimics clicking on the “Erase” button.

ISO Threshold Hi_Lo

Draws an iso-surface.Thresholdis the isosurface threshold value. SetHi_Lo equal to
1 to view the low side, or equal to 0 to view the high side.

ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. SetX_Axis, Y_Axis, andZ_Axisto 0, 1, or 2, where 0 represents
the data X axis, 1 the data Y axis, and 2 the data Z axis. SetX_Rev, Y_Rev, andZ_Rev
to 0 for normal orientation or to 1 for reversed. SetX_Rot andZ_Rot to the desired
rotations of the X and Z axes, in degrees (30 is the default). SetAsp to the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and
axes and reverse the Y use the string:

ORI 2 1 0 0 1 0 30 30 1

SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. SetAxisto 0 to draw a slice parallel to the X axis, to 1 for
the Y axis, or to 2 for the Z axis. SetValueto the pixel value of the slice. SetInterp=1
for bilinear interpolation sampling orInterp=0 for nearest neighbor sampling. Set
Expose=1 to cut out of an existing image (mimicking the “Expose” button) or set
Expose=0 to draw the slice on top of the current display (mimicking the “Draw”
button). The final zero indicates that the slice is orthogonal rather than oblique.
example, the following command draws an orthogonal slice parallel to the X axi
the pixel value 31, using bilinear interpolation.
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 53

and
int

r
ent:

d
y large
f

SLICE 0 31 1 0 0

SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0

Draws an oblique slice. The oblique plane crosses the XY plane at angleAzimuth,
with an elevation ofElev. SetInterp=1 for bilinear interpolation sampling orInterp=0
for nearest neighbor sampling. SetExpose=1 to cut out of an existing image
(mimicking the “Expose” button) or setExpose=0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the slice is
oblique rather than orthogonal. The plane passes through the point (X0, Y0, Z0). For
example, the following command exposes an oblique slice with an azimuth of 42
an elevation of 24, using bilinear interpolation. The plane passes through the po
(52, 57, 39).

SLICE 42 24 1 1 1 52 57 39

TRANS On_Off Threshold

Turns transparency on or off and sets the transparency threshold value. SetOn_Off=1
to turn transparency on,On_Off=0 to turn transparency off.Thresholdis expressed in
percent of data range (0 = minimum data value, 100 = maximum data value). Fo
example, this command turns transparency on and sets the threshold at 20 perc

TRANS 1 20

UNDO

Undoes the previous operation.

WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.

Example

Data is transferred to the SLICER via the VOLUME_DATA common block instea
of as an argument. This technique is used because volume datasets can be ver
and the duplication that occurs when passing values as arguments is a waste o
memory.

Suppose that you want to read some data from the filehead.dat , which is included in
the IDL examples directory, into IDL for use in the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COMMON VOLUME_DATA, VOL
Obsolete IDL Features SLICER

54 Chapter 2: Obsolete Routines
The VOLUME_DATA common block has just one variable in it. (The variable can
have any name; here, we’re using the nameVOL.) Now read the data from the file into
VOL. For example:

OPENR, UNIT, /GET, FILEPATH('head.dat', SUBDIRECTORY=['examples',
'data'])
VOL = BYTARR(80, 100, 57, /NOZERO)
READU, UNIT, VOL
CLOSE, UNIT

Now you can run the SLICER widget application by entering:

SLICER

The data stored in VOL is the data being worked on by the SLICER.

To obtain the image in the slicer window after slicer is finished:

SET_PLOT, 'Z' Use the Z buffer graphics device.
A = TVRD() Read the image.
SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 55

ee

r
of the

rray.

lly
e
e field
STR_SEP

This routine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. S
STRSPLIT in theIDL Reference Guide.

The STR_SEP function divides a string into pieces as designated by a separato
string. STR_SEP returns a string array where each element is a separated piece
original string.

Syntax

Result = STR_SEP(Str, Separator [, /TRIM] [, /REMOVE_ALL] [, /ESC])

Arguments

Str

The string to be separated.

Separator

The separator string.

Keywords

TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIM(String, 2).

REMOVE_ALL

Set this keyword to remove all blanks from each element of the returned string a
REMOVE_ALL performs STRCOMPRESS(String, /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character litera
and not as separators. For example, if the separator is a comma and the escap
character is a backslash, the character sequence “a\,b” is interpreted as a singl
containing the characters “a,b”.
Obsolete IDL Features STR_SEP

56 Chapter 2: Obsolete Routines
Example

; Create a string:
str = 'Doug.is.a.cool.dude!'

; Separate the parts between the periods:
parts = STR_SEP(str, '.')

; Confirm that the string has been broken up into 5 elements:
HELP, parts

PRINT, parts[3]

IDL Output

PARTS STRING = Array[5]
cool
STR_SEP Obsolete IDL Features

Chapter 2: Obsolete Routines 57

tly

ent
d.
TIFF_DUMP

This routine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumps the Image File Directories of a TIFF file direc
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not all of the tags have names encoded. In particular, Facsimile, Docum
Storage and Retrieval, and most no-longer-recommended fields are not encode

Syntax

TIFF_DUMP,File

Arguments

File

A scalar string containing the name of file to read.
Obsolete IDL Features TIFF_DUMP

58 Chapter 2: Obsolete Routines

had

es

in the

ger

ents.

ted
aved
ed

the
for
TIFF_READ

This routine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it
in previous releases. See READ_TIFF in theIDL Reference Guide.

The TIFF_READ function reads 8-bit or 24-bit images in TIFF format files (class
G, P, and R) and returns the image and color table vectors in the form of IDL
variables. Only one image per file is read. TIFF_READ returns a byte array
containing the image data. The dimensions of the result are the same as defined
TIFF file (Columns, Rows).

For TIFF images that are RGB interleaved by pixel, the output dimensions are (3,
Columns, Rows).

For TIFF images that are RGB interleaved by image, TIFF_READ returns the inte
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variables defined by the R, G, and B argum

Syntax

Result = TIFF_READ(File [, R, G, B])

Arguments

File

A scalar string containing the name of file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors extrac
from TIFF Class P, Palette Color images. For TIFF images that are RGB interle
by image (when the variable specified by the PLANARCONFIG keyword is return
as 2) the R, G, and B variables each hold an image with the dimensions (Columns,
Rows).

Keywords

ORDER

Set this keyword to a named variable that will contain the order parameter from
TIFF File. This parameter is returned as 0 for images written bottom to top, and 1
TIFF_READ Obsolete IDL Features

Chapter 2: Obsolete Routines 59

e

rom
images written top to bottom. If the Orientation parameter does not appear in th
TIFF file, an order of 1 is returned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter f
the TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read the filemy.tif in the current directory into the variableimage , and save the
color tables in the variables,R, G, andB by entering:

image = TIFF_READ('my.tif', R, G, B)

To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image
Obsolete IDL Features TIFF_READ

60 Chapter 2: Obsolete Routines

lity it

et

rray

lt).

ubt,
 set

olor
TIFF_WRITE

This routine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functiona
had in previous releases. See WRITE_TIFF in theIDL Reference Guide.

The TIFF_WRITE procedure writes 8- or 24-bit images to a TIFF file. Files are
written in a single strip, or in three strips when the PLANARCONFIG keyword is s
to 2.

Syntax

TIFF_WRITE,File, Array [, Orientation]

Arguments

File

A scalar string containing the name of file to create.

Array

The image data to be written. If not already a byte array, it is made a byte array. A
may be either an (n, m) array for Grayscale or Palette classes, or a (3,n, m) array for
RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then theArray parameter is ignored (and may be omitted).

Orientation

This parameter should be 0 if the image is stored from bottom-to-top (the defau
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in do
first convert the image to top-to-bottom order (use the REVERSE function), and
Orientation to 1.

Keywords

RED, GREEN, BLUE

If you are writing a Class P, Palette color image, set these keywords equal to the c
table vectors, scaled from 0 to 255.
TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 61

es
ter

e.

,
s,

EN,
If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword equal to 2 if writing an RGB image that is contained in three
separate images (color planes). The three images must be stored in the variabl
specified by the RED, GREEN, and BLUE keywords. Otherwise, omit this parame
(or set it to 1).

XRESOL

The horizontal resolution, in pixels per inch. The default is 100.

YRESOL

The vertical resolution, in pixels per inch. The default is 100.

Examples

Four types of TIFF files can be written:

TIFF Class G, Grayscale.

The variablearray contains the 8-bit image array. A value of 0 is black, 255 is whit
The Red, Green, and Blue keywords are omitted.

TIFF_WRITE, 'a.tif', array

TIFF Class P, Palette Color

The variablearray contains the 8-bit image array. The keyword parameters RED
GREEN, and BLUE contain the color tables, which can have up to 256 element
scaled from 0 to 255.

TIFF_WRITE, 'a.tif', array, RED = r, GREEN = g, BLUE = b

TIFF Class R, RGB Full Color, color interleaved by pixel

The variablearray contains the byte data, and is dimensioned (3, cols, rows).

TIFF_WRITE, 'a.tif', array

TIFF Class R, RGB Full Color, color interleaved by image

Input is three separate images, provided in the keyword parameters RED, GRE
and BLUE. The input argumentArray is ignored. The keyword PLANARCONFIG
must be set to 2 in this case.
Obsolete IDL Features TIFF_WRITE

62 Chapter 2: Obsolete Routines
TIFF_WRITE, 'a.tif', RED = r, GREEN = g, BLUE = b, PLAN = 2
TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 63

the
WIDED

This routine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL’s graphical user interface designer, known as
Widget Builder. This functionality has been replaced by the GUIBuilder, which is
documented inBuilding IDL Applcations.

Syntax

WIDED
Obsolete IDL Features WIDED

64 Chapter 2: Obsolete Routines
WIDGET_MESSAGE

This routine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See DIALOG_MESSAGE in theIDL
Reference Guide.
WIDGET_MESSAGE Obsolete IDL Features

Chapter 3:

Remote Procedure
Calls
(the

on

nt and
rent
to

ry
ams
Note
Remote Procedure Calls are still included in IDL. The RPC API described here
API included with IDL version 4.0) has been replaced with a new API. See the
External Development Guide for details on the RPC API included with IDL versi
5.0 and later.

Remote Procedure Calls (RPCs) allow one process (theclient process) to have
another process (theserver process) execute a procedure call just as if the caller
process had executed the procedure call in its own address space. Since the clie
server are separate processes, they can reside on the same machine or on diffe
machines. RPC libraries allow the creation of network applications without having
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A libra
of C language routines is included to handle communication between client progr
and the IDL server.Note that remote procedure calls are supported only on

UNIX platforms.
Obsolete IDL Features 65

66 Chapter 3: Remote Procedure Calls

n
the

lient
 the
ess.
The current implementation allows IDL to be run as an RPC server and your ow
program to be run as a client. IDL commands can be sent from your application to
IDL server, where they are executed. Variable structures can be defined in the c
program and then sent to the IDL server for creation as IDL variables. Similarly,
values of variables in the IDL server session can be retrieved into the client proc
Obsolete IDL Features

Chapter 3: Remote Procedure Calls 67

0

of a
tive
een

fied

PC

d

Using IDL as an RPC Server

The IDL RPC Directory

All of the files related to using IDL’s RPC capabilities are found in therpc
subdirectory of theexternal subdirectory of the main IDL directory. The main
IDL directory is referred to here asidldir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by using the-server
command line option. This option can be invoked one of two ways:

idl -server process_id

or

idl -server= server_number process_id

whereserver_number is the hexadecimal server ID number (between 0x2000000
and 0x3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If a server ID number is not supplied, IDL uses the default, IDL_DEFAULT_ID,
defined in the fileidldir /external/rpc/rpc_idl.h . This value is originally
set to 0x2010CAFE.

Theprocess_id argument is an optional argument that specifies the process ID
UNIX process that should be contacted when IDL has finished running in interac
mode. If the IDL rpc server is placed in interactive mode and a process ID has b
supplied on the command line, IDL sends the UNIX signal SIGUSR1 to the speci
process. This signal allows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL R
library. The make file for this library is contained in the directory
idldir /external/rpc . If the machine that runs the client program is not license
to run IDL, simply copy the contents of the IDLrpc directory to an appropriate
location on the client machine.
Obsolete IDL Features Using IDL as an RPC Server

68 Chapter 3: Remote Procedure Calls
To build theIDL RPC library, copy theIDL rp c directory to anew directory, change
to that directory, and enter the make command:

cp -R idldir /external/rpc newrpcdir
cd newrpcdir
make

The created library is contained in the filenewrpcdir/rpcidl.a . The functions
contained in the library are described in “The IDL RPC Library” on page 69.

Linking your Client P rogram

Your client program must include the file idldir /external/rpc/rpc_idl.h .

You must also link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC library, you
might enter:

cc -c rpcclient .c
cc -o rpcclient .o idldir /external/rpc/rpcidl.a

where rpcclient.c is thenameof your program. Note that your actual command lines
and flag settingsmay bedifferent than theonesshown above, depending upon your C
compiler. TheMakefile contains details on modifications for various systems.
Using IDL as an RPC Server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 69

te
r

The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilita
communication between your application and IDL. There are functions to registe
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.
Obsolete IDL Features The IDL RPC Library

70 Chapter 3: Remote Procedure Calls
free_idl_ variable

Syntax

void free_idl_var(varinfo_t* var);

Description

This function freesall dynamic memory associated with thegiven variable. Attempts
to free a static variable are silently ignored. (See “Notes on Variable Creation and
Memory Management” on page94.)

Paramete rs

var

Theaddressof thevarinfo_t structurethat containstheinformation about thevariable
to be freed.

Return Value

None
free_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 71

red

s
hen

 of

d.

the
get_idl_variable

Syntax

int get_idl_variable(CLIENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call this function to retrieve the value of an IDL variable in the IDL session refer
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve value
from an IDL structure, “decompose” the structure into regular variables in IDL, t
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to a regular IDL variable. The value
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */
send_idl_command(client, "X = !P.T");
get_idl_variable(client, "X", &pt, 0);

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

name

A null terminated string that contains the name of the IDL variable to be retrieve
Only the firstMAXIDLENcharacters of this string are used.MAXIDLENis defined in
the fileidldir /external/rpc/rpc_idl.h .

var

The address of avarinfo_t structure in which to store the returned variable
information. Upon return, theName field of thevar structure contains the name of
the variable as found in IDL. If the name supplied is an illegal IDL variable name,
Name field is set to<ILLEGAL_NAME>. If the variable is a structure or associated
variable, theName field is set to<BAD-VAR-TYPE>.
Obsolete IDL Features get_idl_variable

72 Chapter 3: Remote Procedure Calls

lar

e
t

ction
typecode

If you want IDL to typecast a variable (i.e., guarantee the value to be of a particu
type) before it is transported, settypecode to one of the following values (defined
in the fileexport.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

For example, the command:

get_idl_variable(client, "x", &xv, IDL_TYP_LONG)

guarantees that the value inx is returned as a 32-bit integer.

If typecode is 0, the variable is transferred with whatever data type it has in th
server. Typecasting only affects the variables in the client – the server side is no
affected.

Return Value

This function returns a status value that denotes the success or failure of this fun
as described below.

-1 Failure: bad arguments supplied (e.g., name or var is NULL).
0 RPC mechanism failed (an error message may also be printed).
1 Success
-2 Illegal variable name (e.g., “213xyz”, “#a”, “!DEVICE”)
-3 Variable not transportable (e.g., the variable is a structure or associated

variable)
get_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 73

It is
ing

is
idl_server_interactive

Syntax

int idl_server_interactive(CLIENT* client)

Description

Call this function to cause the IDL server to become an interactive IDL session.
likely that this command will time out. Some alternative mechanism for determin
when the server is finished should be implemented. See the exampleserver.c in
the idldir /examples/rpc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.

Return Value

This function returns TRUE if the interactive IDL session did not time out. FALSE
returned if the session times out or otherwise fails.
Obsolete IDL Features idl_server_interactive

74 Chapter 3: Remote Procedure Calls

ed
kill_server

Syntax

int kill_server(CLIENT* client)

Description

Call this function to kill the IDL RPC server.

Parameters

client

The pointer to a CLIENT structure registered with the server to be killed.

Return Value

This function returns TRUE if the server was successfully killed. FALSE is return
otherwise.
kill_server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 75

 a
 a

 or

is

 it
register_idl_client

Syntax
CLIENT* register_idl_client(long server_id, char* hostname,

struct timeval* timeout)

Description

Call this function to register your program as a client of an IDL server. Note that
program can be the client of a number of different servers at the same time and
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server is running. If this value is NULL
"" , the default,localhost , is used.

timeout

A pointer to the timeout value for all communication with IDL servers. If this value
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure is returned. This function returns NULL if
is unsuccessful.
Obsolete IDL Features register_idl_client

76 Chapter 3: Remote Procedure Calls

t.
 line.

ulti-

ands

below.

 as an
send_idl_command

Syntax

int send_idl_command(CLIENT* client, char* command);

Description

Call this function to send an IDL command to the IDL server referred to by clien
The command is executed just as if it had been entered from the IDL command

This function cannot be used to send multi-line commands. If the first part of a m
line command is sent, for example:

send_idl_command(client, "FOR I=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent comm
are not executed.

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

command

A null-terminated string with no more thanMAX_STRING_LEN characters.
MAX_STRING_LEN is defined in the fileidldir /external/rpc/rpc_idl.h .

Return Value

This function returns a status value that denotes success or failure as described

• -1 = RPC communication failure (an error message is also printed).

• 0 = Command is NULL.

• 1 = Success.

For all other errors, the error number is returned. This number could be passed
argument toSTRMESSAGE();.
send_idl_command Obsolete IDL Features

Chapter 3: Remote Procedure Calls 77

the
set_idl_timeout

Syntax

int set_idl_timeout(struct timeval* timeout)

Description

Call this function to replace the current timeout used by the RPC mechanism with
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no default.

Return Value

This function returns TRUE if the timeout was replaced. FALSE is returned if the
timeout value was NULL or zero.
Obsolete IDL Features set_idl_timeout

78 Chapter 3: Remote Procedure Calls
set_idl_ variable

Syntax

int set_idl_variable(CLIENT* client, varinfo_t* var);

Description

Call this function to assign a value to an IDL variable in the IDL session referred to
by client . The addressvar points to avarinfo_t structure that contains
information about the variable to be set. The “helper” functions can be used to build
va r . (See “The varinfo_t Structure” on page82.) Any scalar or array variable type
can be set. Variables can be set only in the main IDL program level.

Notethat it isnot possibleto set thevalueof an IDL structure. To set valuesin an IDL
structure, set the individual elementsof thestructureto scalar IDL variables, then use
thesend_idl_command function to create the structure in IDL.

It is not possible to set the value of IDL system variables directly. To set the value of
an IDL system variable, first set thevalueof a regular IDL variable. Thevalueof the
regular variable can then be assigned to the system variable. For example:

set_idl_variable(client, &newvar); /* newvar describes the */
 /* IDL variable "NEW" */
send_idl_command(client, "!P.T = NEW");

Paramete rs

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.

var

The address of thevarinfo_t structure that contains information about the
variable to be set.

Return Value

This function returns astatusvalue that denotes thesuccessor failureof this function
as described below.

• -1 = Failure: bad arguments supplied (e.g., var is NULL).

• 0 = RPC mechanism failed (an error message is also printed).
set_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 79
• 1 = Success
Obsolete IDL Features set_idl_variable

80 Chapter 3: Remote Procedure Calls

o
ess
set_rpc_verbosity

Syntax

void set_rpc_verbosity(verbosity)

Description

This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines t
explain what failed. If verbosity is FALSE, return codes continue to indicate succ
or failure, but no error messages are printed.

Parameters

verbosity

An int specifying TRUE or FALSE as explained above.

Return Value

None
set_rpc_verbosity Obsolete IDL Features

Chapter 3: Remote Procedure Calls 81

d with
e

unregister_idl_client

Syntax

void unregister_idl_client(CLIENT* client)

Description

Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically releases the resources associate
all CLIENT structures when your program exits. This function does not affect th
IDL server.

Parameters

client

The pointer to the CLIENT structure to be unregistered.

Return Value

None
Obsolete IDL Features unregister_idl_client

82 Chapter 3: Remote Procedure Calls

l of
The varinfo_t Structure

Thevarinfo_t structure is used to pass variables to and from the IDL server.

Thevarinfo_t structure is defined in theidldir /external/rpc/rpc_idl.h
file. The structure is:

typedef struct _VARINFO {
char Name[MAXIDLEN+1];
IDL_VPTR Variable;
IDL_LONG Length;
} varinfo_t;

Variable Creation Functions

A number of functions are provided to help buildvarinfo_t structures. These
functions are contained in the fileidldir /external/rpc/helper.c .

The variable creation functions are described below. Unless otherwise noted, al
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passing avarinfo_t structure pointer, if theVariable field is
NULL, the variable creation functions attempt to allocate that field.
The varinfo_t Structure Obsolete IDL Features

Chapter 3: Remote Procedure Calls 83
v_make_byte

Syntax

int v_make_byte(varinfo_t* var_struct, char* var_name,
unsigned value)

Description

Create an IDL byte variable with the given name and value.
Obsolete IDL Features v_make_byte

84 Chapter 3: Remote Procedure Calls
v_make_complex

Syntax

int v_make_complex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL complex variable.
v_make_complex Obsolete IDL Features

Chapter 3: Remote Procedure Calls 85
v_make_dcomplex

Syntax

int v_make_dcomplex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL double-precision complex variable.
Obsolete IDL Features v_make_dcomplex

86 Chapter 3: Remote Procedure Calls
v_make_double

Syntax

int v_make_double(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL double-precision, floating-point variable.
v_make_double Obsolete IDL Features

Chapter 3: Remote Procedure Calls 87
v_make_float

Syntax

int v_make_float(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL single-precision, floating-point variable.
Obsolete IDL Features v_make_float

88 Chapter 3: Remote Procedure Calls
v_make_int

Syntax

int v_make_int(varinfo_t* var_struct, char* var_name, int value)

Description

Create an IDL (16-bit) integer variable.
v_make_int Obsolete IDL Features

Chapter 3: Remote Procedure Calls 89
v_make_long

Syntax

int v_make_long(varinfo_t* var_struct, char* var_name,
IDL_LONG value)

Description

Create an IDL long variable.
Obsolete IDL Features v_make_long

90 Chapter 3: Remote Procedure Calls
v_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* name,
char* value)

Description

Create an IDL string variable.
v_make_string Obsolete IDL Features

Chapter 3: Remote Procedure Calls 91
v_fill_arr ay

Syntax

int v_fill_array(varinfo_t* var, char* name, int type,
int ndimension, IDL_LONG dims[], UCHAR* value,
IDL_long length)

Description

Create an IDL array variable. The type argument should be one of the following
values (defined in the fileexport.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

This function allocates var->Variable->value.ar r .

If value is NULL then var->Variable->value.arr->data is allocated.

Thedims[] argument should have at least ndimension valid elements.

If value is supplied but length is 0, var->Length is filled with the computed size
of the array (in bytes) and value is assumed to point to at least that many bytes of
memory. If valu e and lengt h aresupplied, lengt h isassumed to be thesize (in
bytes) of theregion of memory that valuepoints to. (See“Noteson VariableCreation
and Memory Management” on page94.)
Obsolete IDL Features v_fill_array

92 Chapter 3: Remote Procedure Calls
More Variable Manipulation Macros

The following macros can be used to get information fromvarinfo_t structures.
Like the variable creation functions, these macros are defined in the file
rpc_idl.h .

All of these macros accept a single argumentv of varinfo_t type.

GetArrayData(v)

This macro returns a pointer to the array data described by thevarinfo_t
structure.

GetArrayDimensions(v)

This macro returns the dimensions of the array described by thevarinfo_t
structure. The dimensions are returned aslong dimensions[] .

GetArrayNumDims(v)

This macro returns the number of dimensions of the array.

GetVarByte(v)

This macro returns the value of a 1-byte, unsignedchar variable .

GetVarComplex(v)

This macro returns the value (as astruct, not a pointer) of a complex variable.

GetVarDComplex(v)

This macro returns the value (as astruct, not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

GetVarFloat(v)

This macro returns the value of a single-precision, floating point variable.
More Variable Manipulation Macros Obsolete IDL Features

Chapter 3: Remote Procedure Calls 93

e

GetVarInt(v)

This macro returns the value of a 2-byte integer variable.

GetVarLong(v)

This macro returns the value of a 4-byte integer variable.

GetVarString(v)

This macro returns the value of a string variable (as achar*).

GetVarType(v)

This macro returns the type of the variable described by thevarinfo_t structure.
The type is returned asIDL_TYP_XXX as described under the documentation for th
get_idl_variable function.

VarIsArray(v)

This macro returns non-zero ifv is an array variable.
Obsolete IDL Features More Variable Manipulation Macros

94 Chapter 3: Remote Procedure Calls

 new

d
 into
used.

the
n is

e

ory
Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.

Freeing Resources

The variable creation functions (i.e.,v_make_xxx) do notfree resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated with thevarinfo_t structure being passed.

To prevent memory leakage, memory associated with a variable is freed before
memory is allocated. You should make sure that thevarinfo_t structure passed to
theget_idl_variable function contains valid information or has been cleare
(to zeroes) first. If an array of the same size, dimensions, and type is being read
the existing array variable, no allocation is performed and the same space is re-
For example:

/* Assume that:
X = FLTARR(1000, 1000)
Y = FLTARR(1000, 1000)
Z = LONARR(1000, 1000)same size, different type

*/
bzero(&vinfo, sizeof(vinfo));
get_idl_variable(client, "X", &vinfo, 0); /* array allocated */
...
get_idl_variable(client, "Y", &vinfo, 0); /* memory re-used */
...
get_idl_variable(client, "Z", &vinfo, 0); /* array allocated */
free_idl_var(&vinfo);

Theget_idl_variable function callsfree_idl_var before doing any
allocation. So, in the example above, we only needed to freeZ. X andY were freed
when we re-usedvinfo .

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from
server without having the overhead of memory reallocation every time informatio
received.

If the Length field of thevarinfo_t structure is not zero, it is assumed to be th
size of the array data. Thefree_idl_var function will not do anything to a
variable where length is non-zero. It is up to the programmer to do their own mem
Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 3: Remote Procedure Calls 95

that
not
management if this is the case. Storing a scalar in a static variable (i.e., a variable
has a non-zeroLength field) fails as does attempting to store an array that does
fit the statically-allocated array. For example:

/* X = FLTARR(10) 40 bytes of data (10*4)
Y = LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
W = 12 scalar

*/
char buf[40]
varinfo_t v;
VARIABLE var;
ARRAY arr;
/* Build a static array. Fill in the minimum amount of */
/* information required. */
v.Variable = &var;
v.Length = 40;
var.type = IDL_TYP_BYTE;
var.flags = V_ARR;
var.value.arr = &arr;
arr.data = buf;
get_idl_variable(client, "X", &v, 0); /* ok */
get_idl_variable(client, "Y", &v, 0); /* ok */
get_idl_variable(client, "Z", &v, 0); /* fails — too big */
get_idl_variable(client, "W", &v, 0); /* fails — scalar */

Allocating Space for Strings

All space for strings is assumed to be obtained viamalloc(3) . This fact is
important only when receiving variables (using theget_idl_variable
function). For example, the following code fragment is valid:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(client, &foo);

Here is an example of code that will crash your program:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(me, &foo);
send_idl_command(me, "UGH='hello world'");
get_idl_variable(me, "UGH", &foo, 0);

In this case, theget_idl_variable function attempts to free the old resources
before allocating new storage. Freeing the constantblug results in an error. You
could achieve the desired result without an error by changing the first line to:

v_make_string(&foo, "UGH", strdup("blug"));
Obsolete IDL Features Notes on Variable Creation and Memory Management

96 Chapter 3: Remote Procedure Calls

ms
RPC Examples

A number of example files are included in theidldir /external/examples/rpc
directory. AMakefile for these examples is also included. These short C progra
demonstrate the use of the IDL RPC library.
RPC Examples Obsolete IDL Features

	Online Guide
	Contents
	Overview
	Backwards Compatibility
	IDL Internal Routines
	Routines Written in IDL

	Detecting Use of Obsolete Features
	Where to Find Documentation for Obsolete Routines

	Obsolete Routines
	DDE Routines
	Result = DDE_GETSERVERS()
	Result = DDE_GETTOPICS(server)
	Result = DDE_GETITEMS(server)
	Result = DDE_REQUEST(server, topic, item)
	DDE_EXECUTE, server, topic, command

	DEMO_MODE
	GETHELP
	Variable
	FULLSTRING
	FUNCTIONS
	ONELINE
	PROCEDURES
	SYS_PROCS
	SYS_FUNCS

	HANDLE_CREATE
	ID
	FIRST_CHILD
	NO_COPY
	SIBLING
	VALUE

	HANDLE_FREE
	ID

	HANDLE_INFO
	ID
	FIRST_CHILD
	NUM_CHILDREN
	PARENT
	SIBLING
	VALID_ID

	HANDLE_MOVE
	Static_ID
	Move_ID
	FIRST_CHILD
	SIBLING

	HANDLE_VALUE
	ID
	Value
	NO_COPY
	SET

	HDF_DFSD_ADDDATA
	Filename
	Data
	OVERWRITE
	SET_DIM
	SET_TYPE

	HDF_DFSD_DIMGET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_DIMSET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	Filename
	Data
	GET_DIMS
	GET_TYPE

	HDF_DFSD_GETINFO
	Filename
	CALDATA
	COORDSYS
	DIMS
	FORMAT
	LABEL
	LASTREF
	NSDS
	RANGE
	TYPE
	UNIT

	HDF_DFSD_GETSLICE
	Filename
	Data
	COUNT
	OFFSET

	HDF_DFSD_PUTSLICE
	Data
	COUNT

	HDF_DFSD_READREF
	Filename
	Refno

	HDF_DFSD_SETINFO
	BYTE
	CALDATA
	CLEAR
	COORDSYS
	DIMS
	DOUBLE
	FLOAT
	FORMAT
	INT
	LABEL
	LEN_LABEL
	LEN_UNIT
	LEN_FORMAT
	LEN_COORDSYS
	LONG
	RANGE
	RESTART
	UNIT

	HDF_DFSD_STARTSLICE
	Filename
	IDL Ouput

	INP, INPW, OUTP, OUTPW
	Result = INP(Port, [D1 . . . DN])
	Result = INPW(Port, [D1 . . . DN])
	OUTP, Port, Value
	OUTPW, Port, Value

	PICKFILE
	RSTRPOS
	Expression
	Search_String
	Pos

	SIZE Executive Command
	SLICER
	A
	CMD_FILE
	COMMAND
	DETACHED
	GROUP
	NO_BLOCK
	RANGE
	RESOLUTION
	COLOR Table_Index Low High Shading
	CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1
	ERASE
	ISO Threshold Hi_Lo
	ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp
	SLICE Axis Value Interp Expose 0
	SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0
	TRANS On_Off Threshold
	UNDO
	WAIT Secs

	STR_SEP
	Str
	Separator
	TRIM
	REMOVE_ALL
	ESC
	IDL Output

	TIFF_DUMP
	File

	TIFF_READ
	File
	R, G, B
	ORDER
	PLANARCONFIG

	TIFF_WRITE
	File
	Array
	Orientation
	RED, GREEN, BLUE
	PLANARCONFIG
	XRESOL
	YRESOL
	TIFF Class G, Grayscale.
	TIFF Class P, Palette Color
	TIFF Class R, RGB Full Color, color interleaved by pixel
	TIFF Class R, RGB Full Color, color interleaved by image

	WIDED
	WIDGET_MESSAGE

	Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode
	Creating the IDL RPC Library
	Linking your Client Program

	The IDL RPC Library
	free_idl_variable
	var

	get_idl_variable
	client
	name
	var
	typecode

	idl_server_interactive
	client

	kill_server
	client

	register_idl_client
	server_id
	hostname
	timeout

	send_idl_command
	client
	command

	set_idl_timeout
	timeout

	set_idl_variable
	client
	var

	set_rpc_verbosity
	verbosity

	unregister_idl_client
	client

	The varinfo_t Structure
	Variable Creation Functions

	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	Freeing Resources
	Creating a Statically-Allocated Array
	Allocating Space for Strings

	RPC Examples

