= DL

Obsolete IDL
Features

IDL Version 5.3
RESEARCH September, 1999 Edition
SYST EMS Copyright © Research Systems, Inc.
‘ All Rights Reserved

oooooooooooooooo

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLY, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

[A) Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
‘: 20% post-consumer waste content and meets all EPA guidelines.

Contents

Chapter 1:

OVEIVIBW ettt et e e e et e e et e e et e e e aa e e eaannns 7
Backwards CompatiDility..........coouuuuiiiiiiieiis e 8
IDL INtErnal ROULINES......ui it e et e e et e e e e e e e e e e eeenes 8
ROULINES WIItEEN 1N ID ... ciiiiieeiie et eeaaaes 8
Detecting Use of ObSolete FEAUIES.uiiiiiiiiiiiieeeeeeeeeeeeee e 9
Where to Find Documentation for Obsolete Routings............coceeeveviieeeennnnnnn. 10

Chapter 2:

ODbsolete ROULINES .oeeeiiiiici e 11

D] BT =]V] [T 12
DEMO _MODKEE ..ot 13
GETHELDP et e e e et et e e an e eas 14
HANDLE CREATE ... e e eaa s 16

Obsolete IDL Features 3

HANDLE _FREEoeiiiiiiiiiiiieieiee ettt r e e e e e e e e e e e e e e e e e e e s aa e 19
(A N I 1 20
HANDLE_MOVE ...ttt ettt e e e e eeaeeeaaaeaeas 22
HANDLE_VALUE ...ttt e e e e e e e e e e e e e e e s n s e s snnnns 24
HDF_DFSD_ADDDATA ... ettt ettt e e e e e e e e e e e e e s s e e e e 26
HDF_DFSD_DIMGETo 28
HDF_DFSD_DIMSET ... oottt e e e e e e e e e e e e e s s s s aaeeeeeeeeeeaeas 29
HDF_DFSD_ENDSLICE.... ..ttt e e e e e e e e e e e e e s e e e nnnnnns 31
HDF_DFSD_GETDATA .. ettt ettt e st ee e e e e aaaaaeaeee e s e e e annnnes 32
HDF_DFSD_GETINFO.....cciiiiiiiiii ettt e e e e e e e e naeeeeeees 33
HDF_DFSD_GETSLICE.... .ttt ettt e e e e e e e e 35
HDF_DFSD_PUTSLICE......cc oottt e e e 36
HDF_DFSD_READREF........cc oottt e e e e e e e e e 37
HDF_DFSD_SETINFQL.....uutiiiiiiiiiiiiiieeee et ee e e e e e s e e e e e e e e s neaennnns 38
HDF_DFSD_STARTSLICE......coi oottt 42
INP, INPW, OQUTP, OUTPW.....ctiiiiiiiiiiiiiiieiee e eeeeena e e e e e e 44
PICKFILE ...ceeiieiiiiiiie ettt e e e e e e e e e e e s e s e s s bbb e e e e e e eaaaeaeeeas 45
RSTRPOS. ..o e e e e e e aaaaaeas 46
SIZE Executive COMMANG.........ccoviiiiiiiiiiiiiiiirse e e e e e e e e eee e e e e e e e e eeeees 47
SLICER ..o —rra et aaaaaaaaaaaaaaaaaaanna 49
STR S E P e e e e e e e e e e e e e e 55
TIFF_DUMP ..ttt e e e e e e e e e e e e e e s e s s s s nnnaebbbbrbeeeeeees 57
TIFF_READ ...ttt ettt e e e e e e e e e e e e e e e e s n e bbb e 58
TIFF _WRITE ..ottt e e e e e e e aaeaeas 60
WIDED .ottt e e e e e e e e e e e ——rarraaaaaaaaaan 63
WIDGET _MESSAGE ...ttt e e e e e e e e e e e e e e e e e s s aeeeees 64
Chapter 3:
Remote Procedure CallSooviiiiiiiiiiiiiiirr e 65
USING IDL @S &N RPC SEIVEL.... oottt 67
The IDL RPC DIr€CIOMNY . uuuuiiiiiiiiiiii e ettt ettt e e et e e e e aaae e 67
RUNNINg IDL iN SErver MOE...........uuuuuiiiiieeie e a e e 67

Contents Obsolete IDL Features

5

Creating the IDL RPC LiDrary...........ueeeeiiiiiiiieieeeeeee e 67
Linking your Clent Program..........cccccuuiiiiiiiieeeeeceee e 68
The IDL RPC LIDIAIY.....coceieiiiiiiiiiee ettt 69
free_idl variable..........cooo i 70
get_idl variable..........coooo oo 71
o | IESY=T V=T G 101 (=T = (o £ = PP 73
IS = V= SO 74
(=70 15510 g o | o3 =T o | USSP 75
SeNd_idl_COMMEANT.......ouiiiiiiiiiee e as 76
St 1Al _tIMEOUL.... .o e e e e e 77
Set Al VarabIe........cco i —————— 78
SEL_IPC _VEIDOSITY....cciiiiieeeeeeee e et s e e e e e e e e e e e e e e eeeeeeranennnnnns 80
unregister_Idl_CHENL.........e e 81
The varinfo_t STIUCKUIE.......ccooi i e e e e e 82
Variable Creation FUNCHONS. ... 82
A 1= L 0/ (=SSR 83
(VA 1= LT o011]] 5 84
V_MAKE _ACOMPIEX.. . iiiiie e e e e e e e e s s s e e e e e e e e e e e eeeeeennne 85
V_MaKe _dOUDBIE..........ooeeeeeee e ——————— 86
V_MAKE _FlOAL.......eeeeiiiieiiie e 87
(0 1= LT L L PP 8€
A 11.F= L (o] o OSSR 89
V_ MAKE SN tuuuiiiei i e i e e e e e e e e e e e e e et e e et e e e e e e e aeeeeeeeeeearannrnnnaa 90
L2 11 L= 11 = 91
More Variable Manipulation Macras...........coocciiiiiiiiiiiiiiieeeee e 92
Notes on Variable Creation and Memory Management...........ccceeeeeeeeeeeeennn. 94
Freeing RESOUICES.......coiiiiiiiiiiitieeee ettt e e e e e e e e e e e e eeeeeenenees 94
Creating a Statically-Allocated Array...........ueeeeeiieiiiieeeeeeiiiie e eeenns 94
Allocating Space fOor StHNQGS......cccouiiiie e 95
O = 10 1] 0] L= SR 96

Obsolete IDL Features Contents

Chapter 1.

Overview

This chapter discusses the following topics:

Backwards Compatibility. 8 WheretoFindDocumentationforObsoleteRoutines
Detecting Use of Obsolete Features. 9 10

Obsolete IDL Features 7

8 Chapter 1: Overview

Backwards Compatibility

Research Systems strongly recommends that you not use obsolete routines when
writing new IDL code. As IDL continues to evolve, the likelihood that obsolete
routines will no longer function as expected increases. While we will continue to
make every effort to ensure that obsolete routines shipped with IDL function, in a
small number of cases this may not be possible.

IDL Internal Routines

Routines that are built into the IDL executable—routimeswritten in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsolete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled
for eventual removal.

Routines Written in IDL

Routines written in the IDL languageio files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. As long as a given obsolete
routine is included in this subdirectory, it will continue to function as always.

Backwards Compatibility Obsolete IDL Features

Chapter 1: Overview 9
Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the 'WARN system variable. Setting 'WARN causes IDL to print
informational messages to the command log or console window when it encounters
references to obsolete features. B8&RN in thelDL Reference Guidéor details.

Obsolete IDL Features Detecting Use of Obsolete Features

10 Chapter 1: Overview

Where to Find Documentation for Obsolete
Routines

Routines that became obsolete in IDL version 4.0 or earlier are not documented in
this book or in the IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header gpfdhefile, or use the
DOC_LIBRARY routine. Thepro files for obsolete routines are located in the
obsolete subdirectory of théb directory of the IDL distribution.

Where to Find Documentation for Obsolete Routines Obsolete IDL Features

Chapter 2:

Obsolete Routines

This chapter contains complete documentation for obsoleted IDL routines. New IDL
code should not use these routines. For a list of the routines that replace each of these
obsolete routines, sé@pendix H, “Obsolete Routinesti thelDL Reference Guide

Obsolete IDL Features 11

12 Chapter 2: Obsolete Routines

DDE Routines

These routines are obsolete and should not be used in new IDL code.
Windows-Only Routines for Dynamic Data Exchange (DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented below:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument is a
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

This function returns the items list for the specified server. The server argument is a
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST(server, topic , item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic , command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.

DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 13
DEMO_MODE

This routine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns True if IDL is running in the timed demo mode
(i.e., a license manager is not running). Calling this function causes a FLUSH, -1
command to be issued.

Syntax

Result= DEMO_MODE()

Obsolete IDL Features DEMO_MODE

14

Chapter 2: Obsolete Routines

GETHELP

This routine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP is called. The function builds a string array that contains
information that follows the format used by the IDL HELP command.

When called without an argument, GETHELP returns a string array that normally
contains variable data that is in the same format as used by the IDL HELP procedure.
The variables in this list are those defined for the routine (or program level) that
called GETHELP. If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax

Result = GETHELHWariable])

Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If this argument is omitted, GETHELP returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

GETHELP

FULLSTRING

Normally a string that is longer than 45 chars is truncated and followed by “...” just
like the HELP command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

ONELINE

If a variable name is greater than 15 characters it is usually returned as 2 two
elements of the output array (Variable name in 1st element, variable info in the 2nd

Obsolete IDL Features

Chapter 2: Obsolete Routines 15

element). Setting this keyword will put all the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) functions.

Note

RESTRICTIONS: Due to the diffuculties in determining if a variable is of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

» Assaciate record type is structure.
» Associated file is opened for update (openu).
» Associate file is not empty.

Another difference between this routine and the IDL help command is that if a
variable is in a common block, the common block name is not listed next to the
variable name. Currently there is no method available to get the common block
names used in a routine.

Example

To obtain a listing in a help format of the variables contained in the current routine
you would make the following call:

HelpData = GetHelp()

The variable HelpData would be a string array containing the requested information.

Obsolete IDL Features GETHELP

16 Chapter 2: Obsolete Routines

HANDLE_CREATE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_CREATE function creates a new handle. A “handle” is a
dynamically-allocated variable that is identified by a unique integer value known as a
“handle ID”. Handles can have a value, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to all program units at all times. (Remember,
however, that IDL variables containing handle IDs are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology

The following terms are used to describe handles in the documentation for this
function and other handle-related routines:

* Handle ID: The unique integer identifier associated with a handle.
* Handle value: Data of any IDL type and organization associated with a handle.

» Top-level handle: A handle at the top of a handle hierarchy. A top-level handle
can have children, but does not have a parent.

« Parents, children, and siblings: These terms describe the relationship between
handles in a handle hierarchy. When a new handle is created, it can be the start
of a new handle hierarchy (a top-level handle) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in this way is said
to be a child of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE|(D])

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 17

Arguments

ID

If this argument is present, it specifies the handle ID relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by ID. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.
Keywords

FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specified by
ID. Any existing children of ID become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value data is taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is a sibling of a top-level
handle.

VALUE
The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
This value is not used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handle is first created.

If the VALUE keyword is not specified, the handle’s initial value is undefined.
Handle values can be retrieved using the HANDLE_VALUE procedure.

Obsolete IDL Features HANDLE_CREATE

18 Chapter 2: Obsolete Routines

Examples

The following commands create a top-level handle with 3 child handles. Each handle
is assigned a different string value:

;Create top-level handle without an initial handle value:

top = HANDLE_CREATE()

;Create first child of the top-level handle:

first = HANDLE_CREATE(top, VALUE="First child’)

;Create second child of the top-level handle:

second = HANDLE_CREATE(top, VALUE="Second child’)

;Create a new sibling between first and second.

;This handle is also a child of the top-level handle:

third = HANDLE_CREATE(first, VALUE="Another child’, /SIBLING)

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 19
HANDLE_ FREE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.

Syntax
HANDLE_FREE,ID
Arguments

ID

The ID of the handle to be freed. Once the handle is freed, further use of it is invalid
and causes an error to be issued.

Example

To free all memory associated with the top-level handle top, and all its children, use
the command:

HANDLE_FREE, top

Obsolete IDL Features HANDLE_FREE

20 Chapter 2: Obsolete Routines
HANDLE INFO

This routine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID is valid. Keywords
can be set to return other types of information.

Syntax
Result = HANDLE_INFOID)
Arguments

ID

The ID of the handle for which information is desired. This argument can be scalar or
array an array of IDs. The result of HANDLE_INFO has the same structure as ID,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle. If
the handle has no children, 0O is returned.

NUM_CHILDREN
Set this keyword to return the number of children related to ID.
PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handle is a top-level handle (i.e., it has no parent), O is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID is a top-level handle, O is returned.

VALID_ID

Set this keyword to return 1 if ID represents a currently valid handle. Otherwise, zero
is returned. This is the default action for HANDLE_INFO if no other keywords are
specified.

HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 21

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a message if handlel is a valid handle ID.

IF HANDLE_INFO(handlel) THEN PRINT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.

handle = HANDLE_INFO(top, /FIRST_CHILD)

;Retrieve the handle ID of the next sibling of handlel.
next= HANDLE_INFO(handlel, /SIBLING)

Obsolete IDL Features HANDLE_INFO

22 Chapter 2: Obsolete Routines
HANDLE MOVE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move_ID) to a new
location. This new position is specified relative to Static_ID.

Syntax
HANDLE_MOVE, Static_ID, Move_ID
Arguments

Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move_ID becomes the last child of Static_ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID is set to 0, Move_ID becomes a top level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID
The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_ID the first child of Static_ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move_|D the sibling handle immediately following
Static_ID. Any siblings currently following Static_ID become later siblings of the

new handle. Note that you cannot move a handle such that is becomes a sibling of a
top-level handle.

Example

; Create top-level handle:
top = HANDLE_CREATE()

HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines 23

; Create first child of top:

childl = HANDLE_CREATE(top)

; Create second child of top:

child2 = HANDLE_CREATE(top)

; Move the first child to be the last child of top:
HANDLE_MOVE, top, childl

Obsolete IDL Features HANDLE_MOVE

24 Chapter 2: Obsolete Routines

HANDLE_VALUE

This routine is obsolete and should not be used in new IDL code.

The HANDLE_VALUE procedure returns or sets the value of an existing handle.
Syntax

HANDLE_VALUE, ID, Value
Arguments

ID
A valid handle ID.
Value

When using HANDLE_VALUE to return an existing handle value (the default),
Value is a named variable in which the value is returned.

When using HANDLE_VALUE to set a handle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE_VALUE works by making a second copy of the source data.
Although this technique is fine for small data, it can have a significant memory cost
when the data being copied is large.

If the NO_COPY keyword is set, HANDLE_VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attaches it directly to
the destination. This feature can be used to move data very efficiently. However, it
has the side effect of causing the source variable to become undefined. On a retrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default is to retrieve
the current handle value.

HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 25

Example

The following commands demonstrate the two different uses of HANDLE VALUE:

: Retrieve the value of handlel into the variable current:
HANDLE_VALUE, handlel, current

; Set the value of handlel to a 2-element integer vector:
HANDLE_VALUE,handlel,[2,3],/SET

Obsolete IDL Features HANDLE_VALUE

26

Chapter 2: Obsolete Routines

HDF_DFSD_ADDDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well as all other information
set via calls to HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDF file.

TheDataarray must have the same dimensions as the array in the file. The new SDS
is appended to the file, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename Data [,/ OVERWRITE]
[, SET_DIM=valugdmust set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename
A scalar string containing the name of the file to be written.
Data

An expression (typically an array) containing the data to write.

Keywords

OVERWRITE

Set this keyword to write Data as the first, and only, SDS in the file. All previously-
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You mustset the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.

HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 27

SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.

Obsolete IDL Features HDF_DFSD_ADDDATA

28 Chapter 2: Obsolete Routines
HDF DFSD DIMGET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGETDimension], /FORMAT] [, /LABEL] [, SCALE=vecto]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.
Keywords

FORMAT

Set this keyword to return the dimension format string.

LABEL

Set this keyword to return the dimension label string.

SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to a vector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.

HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 29
HDF DFSD DIMSET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensions in an HDF. Note that the label, unit, and format of a dataset must be set

simultaneously.
Syntax

HDF_DFSD_DIMSETDimension[, FORMAT=string] [, LABEL=string]
[, SCALE=vecto] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.
Keywords
FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL

A string for the dimension label.

SCALE

A vector of values used to set the dimension scale.
UNIT

A string for the dimension units.
Example

Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of
values representing water content within the volume of a cloud. Assume further that
each element in the 100-element dimension (the “Y” dimension) was sampled at 1/10
mile increments. Appropriate labeling, formatting, unit, and scaling information for
the Y dimension can be set with the following command:

Obsolete IDL Features HDF_DFSD_DIMSET

30 Chapter 2: Obsolete Routines

HDF_DFSD_DIMSET, 1, LABEL ="Y Position', FORMAT ='F8.2', $
UNIT ='Miles', SCALE = 0.1*FINDGEN(100)

HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 31
HDF DFSD ENDSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by
HDF_DFSD_STARTSLICE by closing the internal slice interface and synchronizing
the file.

Syntax
HDF_DFSD_ENDSLICE
Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_ENDSLICE

32 Chapter 2: Obsolete Routines

HDF_DFSD_GETDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA Filename Data[, /GET_DIMS{Set only if you have not
called HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TYPE]

Arguments

Filename
A scalar string containing the name of the file to be read.
Data

A named variable in which the data is returned.
Keywords
GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one hast called HDF_DFSD_GETINFO with the DIMS

keyword
GET_TYPE
Set this keyword to get the data type for the current SDS.

HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 33
HDF DFSD GETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TYPE keywords may
alter which dataset is current. See “Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in tiNCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading a label, unit, format, or coordinate system string that has more than
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFOFilename[, CALDATA= variablg [, /COORDSYS]
[, DIMS=variablg [, /FORMAT] [, /LABEL] [, /LASTREF] [, /NSDS] [, /RANGE]
[, TYPE=variablg [, /UNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filename is only needed
to determine SDS dimensions and/or the number of SDSs in a file.

Keywords
CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The data will be returned in a structure of the form:

{ CAL: 0d, CAL_ERR: 0d, OFFSET: 0d, $
OFFSET_ERR: 0d,NUM_TYPE: OL }

COORDSYS

Set this keyword to return the data coordinate system description string.

DIMS

Set this keyword to a named variable in which the dimensions of the current SDS are

returned in a longword array.

Obsolete IDL Features HDF_DFSD_GETINFO

34

Chapter 2: Obsolete Routines

FORMAT

Set this keyword to return the data format description string.

LABEL

Set this keyword to return the data label description string.

LASTREF

Set this keyword to return the last reference number written or read for an SDS.
NSDS

Set this keyword to return the number of SDSs in the file.

RANGE

Set this keyword to return the valid max/min values for the current SDS.
TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., 'BYTE', 'FLOAT", etc.).

UNIT

Set this keyword to return the data unit description string.

Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_GETINFO, filename, DIMS=d, TYPE=t, RANGE=r, $
LABEL=I, UNIT=u, FORMAT=f, COORDSYS=c

FOR i =0, N_ELEMENTS(d)-1 DO BEGIN

HDF_DFSD_DIMGET, i, LABEL=dl, UNIT=du, FORMAT=df, SCALE=ds
ENDFOR
HDF_DFSD_GETDATA, filename, data

HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 35
HDF DFSD GETSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the
DIMS and TYPE keywords to get the dimensions and type of the next data slice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the data incorrectly, and may cause unexpected results.

Syntax

HDF_DFSD_GETSLICEFilename Data[, COUNT=vectoi [, OFFSET=vectol
Arguments

Filename

A scalar string containing the name of the file to be read.

Data

A named variable in which the data, read from the SDS, is returned.

Keywords
COUNT

An optional vector containing the counts to be used in reading Value. The default is to
read all elements in each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.

Example
See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_GETSLICE

36 Chapter 2: Obsolete Routines
HDF _DFSD PUTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_PUTSLICE procedure writes a data slice to the current HDF file.

Note
Before calling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the slice and HDF_DFSD_STARTSLICE to initialize
the slice interface.

Syntax
HDF_DFSD_PUTSLICEData [, COUNT=vectoi
Arguments

Data

An array containing the data to write. Dimensions used to write the data are taken
from the dimensions dbata, unless the COUNT keyword is used.

Keywords
COUNT

An optional vector containing the counts to be used in wriliata. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

HDF_DFSD_PUTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 37
HDF_DFSD_ READREF

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_READREF procedure specifies the reference number of the HDF
file to be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.

Syntax
HDF_DFSD_READREH-ilename, Refno
Arguments

Filename

A scalar string containing the name of the file to be read.

Refno

The reference number of the desired SDS.

Obsolete IDL Features HDF_DFSD_READREF

38 Chapter 2: Obsolete Routines

HDF_DFSD_SETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set the first time that
HDF_DFSD_SETINFO is called.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call to it. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TYPE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETINFO, LEN_FORMAT=10, FORMAT="12.3F
or

HDF_DFSD_SETINFO, LEN_FORMAT=10
HDF_DFSD_SETINFO, FORMAT="12.3F

Due to the underlying C routines, it is necessary to set all four data strings at the same
time, or the unspecified strings are treated as “' (null strings).

For example:

HDF_DFSD_SETINFO, LABEL = 'hi’
HDF_DFSD_SETINFO, UNIT = ’ergs’

is the same as:

HDF_DFSD_SETINFO, LABEL="hi’, UNIT=", FORMAT=", COORDSYS="
HDF_DFSD_SETINFO, LABEL=", UNIT="ergs’, FORMAT=", COORDSYS="

Syntax

HDF_DFSD_SETINFO [, CALDATAstructurg [, /CLEAR]
[, COORDSYSsstring] [, DIMS=vectoi [, /BYTE | ,/DOUBLE |, /FLOAT, |, /INT |
, [LONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=valudg

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 39

[, LEN_UNIT=valugd [, LEN_FORMAT=valug [, LEN_COORDSYSwalud
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Arguments
None
Keywords

BYTE

Set this keyword to make the SDS data type DFNT_UINTS8 (1-byte unsigned
integer).

CALDATA

Set this keyword to a structure containing calibration information. The structure
should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldat a = { Cal: 1.0d $; Calibration factor.
Cal_Err: 0.1d $; Calibration error.
Offset: 2.5d $; Uncalibrated offset.
Offset_Err: 0.1d $; Uncalibrated offset error.
Num_Type: 5L $; Number type of uncalib.data.

Some typical values for théum_Type field include:

For byte data:

3L (DFNT_UCHARS)
21L (DFNT_UINT8)

For integer data:
22L (DNFT_INT16)
For long-integer data:
241 (DFNT_INT32)
For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not native to IDL. They can be foundialfthe
header file for the HDF library.

Obsolete IDL Features HDF_DFSD_SETINFO

40 Chapter 2: Obsolete Routines

CLEAR

Set this keyword to reset all possible set values to their default value.
COORDSYS

A string for the data coordinate system description.

DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. For
example:

HDF_DFSD_SETINFO, DIMS = [10, 20, 30]
DOUBLE

Set this keyword to make the SDS data type DFNT_FLOAT64 (8-byte floating
point).

FLOAT

Set this keyword to make the SDS data type DFNT_FLOAT32 (4-byte floating
point).

FORMAT

A string for the data format description.
INT

Set this keyword to make the SDS data type DFNT_INT16 (2-byte signed integer).
LABEL

A string for the data label description.
LEN_LABEL

The label string length (default is 255).
LEN_UNIT

The unit string length (default is 255).
LEN_FORMAT

The format string length (default is 255).
LEN_COORDSYS

The format coordinate system string length (default is 255).

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 41

LONG
Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).
RANGE

The minimum and maximum range, represented as a 2-element vector of the same
data type as the data to be written. The first element is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETINFO, RANGE = [10,0]
RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDS in the file.

UNIT

A string for the data unit description.
Example

Write a 100x50 array of longs:

data = LONARR(100, 50)
HDF_DFSD_SETINFO, /CLEAR, /LONG, DIMS=[100,50], $
RANGE=[MAX(data), MIN(data)], $
LABEL="pressure’, UNIT="pascals’, $
FORMAT='F10.0’

Obsolete IDL Features HDF_DFSD_SETINFO

42 Chapter 2: Obsolete Routines

HDF_DFSD_STARTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write a slice of
data to an HDF file. HDF_DFSD_SETINFO must be called before
HDF_DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax
HDF_DFSD_STARTSLICEFilename
Arguments

Filename

A scalar string containing the name of the file to be written.
Example

; Open an HDF file:
fidc=HDF_OPEN('test.hdf',/ALL)

; Create two datasets:
slicedatal=FINDGEN(5,10,15)
slicedata2=DINDGEN(4,5)

; Use HDF_DFSD_SETINFO to set the dimensions, then add

; the first slice:

HDF_DFSD_SETINFO,LABEL="labell’, DIMS=[5,10,15], /FLOAT
HDF_DFSD_STARTSLICE,test.hdf'

HDF_DFSD_PUTSLICE, slicedatal

HDF_DFSD_ENDSLICE

; Repeat the process for the second slice:
HDF_DFSD_SETINFO, LABEL="label2', DIMS=[4,5], /DOUBLE
HDF_DFSD_STARTSLICE,'test.hdf"

HDF_DFSD_PUTSLICE, slicedata2

HDF_DFSD_ENDSLICE

HDF_DFSD_SETINFO, /RESTART

; Use HDF_DFSD_GETINFO to advance slices and set slice
; attributes, then get the slices:

HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 43

HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, outl
HDF_DFSD_GETINFO, name, DIMS=dims, TYPE=type
HDF_DFSD_GETSLICE, out2

; Close the HDF file:
HDF_CLOSE(‘test.hdf")

;Check the first slice to see if everything worked:

IF TOTAL(outl EQ slicedatal) EQ N_ELEMENTS(outl) THEN $
PRINT, 'SLICE 1 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 1 WRITTEN/READ INCORRECTLY"

; Check the second slice to see if everything worked:

IF TOTAL(out2 EQ slicedata2) EQ N_ELEMENTS(out2) THEN $
PRINT, 'SLICE 2 WRITTEN/READ CORRECTLY' ELSE $
PRINT, 'SLICE 2 WRITTEN/READ INCORRECTLY"

IDL Ouput

SLICE 1 WRITTEN/READ CORRECTLY

SLICE 2 WRITTEN/READ CORRECTLY

Obsolete IDL Features HDF_DFSD_STARTSLICE

44 Chapter 2: Obsolete Routines
INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.
Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each casegrt is specified using the hexadecimal address of
the hardware port. For example, if serial port #1 of your PC is at address 3F8, you
would use the following IDL commands to read that port:

paddr = '3F8'x Setpaddr to hexadecimal value.
data = INPW(paddr) Read data.

Result = INP(Port, [D;...DpJ)

This function returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specifiedy. . . D\) read from the specified
hardware port. Port is the hardware port number. For example,

result = INP(paddr)
would read a single byte, and
result = INP(paddr, 2,4)
would read a two-element by four-element array.

Result = INPW(Port, [D;...DpJ)

This function returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specifidd,hy. . Dy) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardware
port. Port is the hardware port numbéalueis the byte value or array to be written.

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specified
hardware port. Port is the hardware port numbatueis the integer value or array to
be written.

INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 45
PICKFILE

This routine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it had in
previous releases. See DIALOG_PICKFILE in tB& Reference Guide

Obsolete IDL Features PICKFILE

46

Chapter 2: Obsolete Routines

RSTRPOS

This routine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. S&TRPOSnN thelDL Reference Guide

The RSTRPOS function finds thest occurrence of a substring within an object

string (the STRPOS function finds the first occurrence of a substring). If the substring
is found in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax

Result= RSTRPOSEXxpressionSearch_String, Poq)

Arguments

Expression

The expression string in which to search for the substring.
Search_String

The substring to be searched for witkixpression

Pos

The character position before which the search is beguradis omitted, the search
begins at the last charactertpression

Example

RSTRPOS

; Define the expression:

exp = 'Holy smokes, Batman!'

; Find the position of a substring:
pos = RSTRPOS(exp, 'smokes')
; Print the substring’s position:
PRINT, pos

IDL prints:
5

Note
Substring begins at position 5 (the sixth character).

Obsolete IDL Features

Chapter 2: Obsolete Routines a7
SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.
SIZE Code Size, Data_Size

The.SIZE command resizes the memory area used to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and al
main program variables. For example, to extend the code and data areas to 30,000
and 5,000 bytes, respectively, use the following statement:

.SIZE 30000 5000

Each user-defined procedure, function, and main program has its own code area tha
contains the compiled code and constants. Although the maximum size of these areas
is set by theSIZE command, there is virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and
common blocks for each procedure, function, or main program. Note that the “data
area” is not the space available for variable storage, but the space available for that
program unit's symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note th:
there are separate code and data areas for each compiled function, routine, or mai
program. The HELP command can be used to see the current sizes of the code an
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data areas. If the
compiled routine does not use the full amount of code space allocated by the default

Obsolete IDL Features SIZE Executive Command

48 Chapter 2: Obsolete Routines

code area size, the code area “shrinks” to just the size the routine needs. For example,
enter and compile a simple procedure from the IDL prompt by entering:

.RUN

- PRO EXAMPLE

- PRINT, "Here are the code and data areas for this procedure:"
- HELP

- END

Call the EXAMPLE procedure from the command line to see the result:
EXAMPLE

The third line of output from the HELP procedure displays:
Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code area for the EXAMPLE procedure is completely filled and that the
total size of the code area is just 100 bytes.

SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 49

SLICER

This routine is obsolete and should not be used in new IDL code.

The IDL SLICER is a widget-based application to show 3D volume slices and

isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. The image may be redisplayed on a different device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Data is passed to the SLICER via the common block VOLUME_DATA. Note that the
variable used to contain the volume data must be defined as part of the common
block beforethe volume data is read into the variable. (Se&xamplesection,

below.)

The SLICER has the following modes:

« Slices: Displays or removes orthogonal or oblique slices through the data
volume.

» Block: Displays the surfaces of a selected block inside the volume.
» Cutout: Cuts blocks from previously drawn objects.

e Isosurface: Draws an isosurface contour.

» Probe: Displays the position and value of objects using the mouse.
e Colors: Manipulates the color tables and contrast.

* Rotations: Sets the orientation of the display.

» Journal: Records or plays back files of SLICER commands.

See the SLICER's help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A
A =your_volume_data
SLICER

Obsolete IDL Features SLICER

50

Chapter 2: Obsolete Routines

Arguments

A

A 3D array containing volume data. Note that the variAbteust be included in the
common block VOLUME_DATAbeforebeing equated with the volume datas
not an explicit argument to SLICER.

Keywords

SLICER

CMD_FILE

Set this keyword to a string that contains the name of a file containing SLICER
commands to execute as described urBldCER Commandgelow. The file should
contain one command per line.

Command files can be created interactively, using the SLICER'’s “Journal” feature.
COMMAND

Set this keyword equal to a 1rxstring array containing commands to be executed by
the SLICER before entering interactive mode. Available commands are described
underSLICER Commang$elow.

Note that commands passed to the SLICER with the COMMAND keyword must be
in a 1 xn array, rather than in anelement vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the slicer:

com=TRANSPOSE([COLOR 5', TRANS 1 20", 'ISO 17 11)
SLICER, COMMAND=com

DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP is
specified, a command to destroy the calling widget also destroys the SLICER.

NO_BLOCK

Set this keyword equal to zero to have XMANAGHEIBckwhen this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting

Obsolete IDL Features

Chapter 2: Obsolete Routines 51

NO_BLOCK=0 will causeall widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to a two-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum values.

RESOLUTION

Set this keyword to a two-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

The slicer accepts a number of commands that replicate the action of controls in the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using the
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blanks. The following are
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color table3able_Indexs the pre-defined color table number (see

LOADCT), or -1 to retain the present tableowis the contrast minimuntligh is the
contrast maximum, an8hadingis the differential shading, all expressed in percent.
For example, the following command picks color table number 2, sets the minimum
contrast to 10%, the maximum contrast to 90%, and the differential shading to 50%:

COLOR 2109050
CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1

Defines the volume used for “Block” and “Cutout” operations. l8etle=1 for Block
mode orMode=2 for Cutout mode. Setut_Ovr=0 to mimic selecting the “Cut Into”
button orCut_Ovr1 to mimic selecting the “Cut Over” button.

Obsolete IDL Features SLICER

52 Chapter 2: Obsolete Routines

Note

These buttons have no effect in Block mode. See the online help on SLICER for
further explanation of Cut Into and Cut Over.

SetInterp=1 for bilinear interpolation sampling owterp=0 for nearest neighbor
sampling.

X0,Y0,Z0 are the coordinates of the lower corner of the volume,hd1,Z1 are the
coordinates of the upper corner. For example:

CUBE 1012005660 7542

selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume’s corners at (20, 0, 56) and (60, 75, 42).

ERASE
Erases the display. Mimics clicking on the “Erase” button.
ISO Threshold Hi_Lo

Draws an iso-surfac@hresholds the isosurface threshold value. &t Lo equal to
1 to view the low side, or equal to O to view the high side.

ORI X _Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. SeX_Axis Y_Axis andZ_Axisto 0, 1, or 2, where O represents
the data X axis, 1 the data Y axis, and 2 the data Z axisXSBeyY_ReyandZ_Rev

to O for normal orientation or to 1 for reversed. $eRotandZ_Rotto the desired
rotations of the X and Z axes, in degrees (30 is the defaulthsp#t the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and Z
axes and reverse the Y use the string:

ORI21001030301
SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. S&kisto 0 to draw a slice parallel to the X axis, to 1 for
the Y axis, or to 2 for the Z axis. S¥tlueto the pixel value of the slice. Skiterp=1

for bilinear interpolation sampling émterp=0 for nearest neighbor sampling. Set
Exposel to cut out of an existing image (mimicking the “Expose” button) or set
Expose0 to draw the slice on top of the current display (mimicking the “Draw”
button). The final zero indicates that the slice is orthogonal rather than oblique. For
example, the following command draws an orthogonal slice parallel to the X axis, at
the pixel value 31, using bilinear interpolation.

SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 53

SLICE031100
SLICE Azimuth Elev Interp Expose 1 X0 YO0 Z0

Draws an oblique slice. The oblique plane crosses the XY plane atfemgleth

with an elevation oElev Setinterp=1 for bilinear interpolation sampling dmterp=0

for nearest neighbor sampling. &&pose1l to cut out of an existing image

(mimicking the “Expose” button) or sexpose0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the slice is
oblique rather than orthogonal. The plane passes through theX@in(Z0). For
example, the following command exposes an oblique slice with an azimuth of 42 and
an elevation of 24, using bilinear interpolation. The plane passes through the point
(52, 57, 39).

SLICE 42241115257 39
TRANS On_Off Threshold

Turns transparency on or off and sets the transparency threshold val@n Sat-1

to turn transparency o@n_Off0 to turn transparency offhresholds expressed in
percent of data range (0 = minimum data value, 100 = maximum data value). For
example, this command turns transparency on and sets the threshold at 20 percent:

TRANS 1 20
UNDO
Undoes the previous operation.
WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.
Example

Data is transferred to the SLICER via the VOLUME_DATA common block instead

of as an argument. This technigque is used because volume datasets can be very larg
and the duplication that occurs when passing values as arguments is a waste of
memory.

Suppose that you want to read some data from thedide.dat , which is included in
the IDL examples directory, into IDL for use in the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COMMON VOLUME_DATA, VOL

Obsolete IDL Features SLICER

54 Chapter 2: Obsolete Routines

The VOLUME_DATA common block has just one variable in it. (The variable can
have any name; here, we're using the naroe) Now read the data from the file into
VoL For example:

OPENR, UNIT, /GET, FILEPATH(head.dat', SUBDIRECTORY=['examples’,
'data’])

VOL = BYTARR(80, 100, 57, INOZERO)

READU, UNIT, VOL

CLOSE, UNIT

Now you can run the SLICER widget application by entering:
SLICER

The data stored in VOL is the data being worked on by the SLICER.

To obtain the image in the slicer window after slicer is finished:

SET_PLOT, 'z Use the Z buffer graphics device.
A=TVRD() Read the image.

SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 55
STR _SEP

This routine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. See
STRSPLITin thelDL Reference Guide

The STR_SEP function divides a string into pieces as designated by a separator
string. STR_SEP returns a string array where each element is a separated piece of the
original string.

Syntax
Result= STR_SEPGEtr, Separatol], /TRIM] [, /REMOVE_ALL] [, /ESC])
Arguments

Str
The string to be separated.
Separator

The separator string.
Keywords
TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIS(ing 2).

REMOVE_ALL

Set this keyword to remove all blanks from each element of the returned string array.
REMOVE_ALL performs STRCOMPRESS({ring /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character literally
and not as separators. For example, if the separator is a comma and the escape
character is a backslash, the character sequence “a\,b” is interpreted as a single fielc
containing the characters “a,b”.

Obsolete IDL Features STR_SEP

56 Chapter 2: Obsolete Routines

Example

; Create a string:
str = 'Doug.is.a.cool.dude!'

; Separate the parts between the periods:
parts = STR_SEP(str, ".")

; Confirm that the string has been broken up into 5 elements:

HELP, parts

PRINT, parts[3]
IDL Output

PARTS STRING = Array[5]
cool

STR_SEP

Obsolete IDL Features

Chapter 2: Obsolete Routines 57

TIFF_DUMP

This routine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumps the Image File Directories of a TIFF file directly
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not all of the tags have names encoded. In particular, Facsimile, Document
Storage and Retrieval, and most no-longer-recommended fields are not encoded.

Syntax
TIFF_DUMP,File
Arguments
File

A scalar string containing the name of file to read.

Obsolete IDL Features TIFF_DUMP

58 Chapter 2: Obsolete Routines
TIFF_READ

This routine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it had
in previous releases. See READ_TIFF inlibe Reference Guide

The TIFF_READ function reads 8-bit or 24-bit images in TIFF format files (classes
G, P, and R) and returns the image and color table vectors in the form of IDL
variables. Only one image per file is read. TIFF_READ returns a byte array
containing the image data. The dimensions of the result are the same as defined in the
TIFF file (Columns, Rows

For TIFF images that are RGB interleaved by pixel, the output dimensiorg are (
Columns, Rows

For TIFF images that are RGB interleaved by image, TIFF_READ returns the integer
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variables defined by the R, G, and B arguments.

Syntax
Result = TIFF_REALXile [, R, G, B)
Arguments
File
A scalar string containing the name of file to read.
R,G,B

Named variables that will contain the Red, Green, and Blue color vectors extracted
from TIFF Class P, Palette Color images. For TIFF images that are RGB interleaved
by image (when the variable specified by the PLANARCONFIG keyword is returned
as 2) the R, G, and B variables each hold an image with the dimerG@uom(s,

Rows.

Keywords
ORDER

Set this keyword to a named variable that will contain the order parameter from the
TIFF File. This parameter is returned as 0 for images written bottom to top, and 1 for

TIFF_READ Obsolete IDL Features

Chapter 2: Obsolete Routines 59

images written top to bottom. If the Orientation parameter does not appear in the
TIFF file, an order of 1 is returned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter from
the TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read the fileny.tif in the current directory into the varialieage , and save the
color tables in the variableg, G, andB by entering:

image = TIFF_READ('my.tif, R, G, B)
To view the image, load the new color table and display the image by entering:

TVLCT,R, G, B
TV, image

Obsolete IDL Features TIFF_READ

60 Chapter 2: Obsolete Routines
TIFF_WRITE

This routine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functionality it
had in previous releases. See WRITE_TIFF infHeReference Guide

The TIFF_WRITE procedure writes 8- or 24-bit images to a TIFF file. Files are
written in a single strip, or in three strips when the PLANARCONFIG keyword is set
to 2.

Syntax

TIFF_WRITE, File, Array [, Orientation]
Arguments

File

A scalar string containing the name of file to create.

Array

The image data to be written. If not already a byte array, itis made a byte array. Array
may be either am(m) array for Grayscale or Palette classes, or g,(8) array for

RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then theArray parameter is ignored (and may be omitted).

Orientation

This parameter should be 0 if the image is stored from bottom-to-top (the default).
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in doubt,
first convert the image to top-to-bottom order (use the REVERSE function), and set
Orientationto 1.

Keywords
RED, GREEN, BLUE

If you are writing a Class P, Palette color image, set these keywords equal to the color
table vectors, scaled from 0 to 255.

TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 61

If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword equal to 2 if writing an RGB image that is contained in three
separate images (color planes). The three images must be stored in the variables
specified by the RED, GREEN, and BLUE keywords. Otherwise, omit this parameter
(orsetitto 1).

XRESOL
The horizontal resolution, in pixels per inch. The default is 100.
YRESOL

The vertical resolution, in pixels per inch. The default is 100.
Examples

Four types of TIFF files can be written:
TIFF Class G, Grayscale.

The variablearray contains the 8-bit image array. A value of 0 is black, 255 is white.
The Red, Green, and Blue keywords are omitted.

TIFF_WRITE, 'a.tif', array
TIFF Class P, Palette Color

The variablearray contains the 8-bit image array. The keyword parameters RED,
GREEN, and BLUE contain the color tables, which can have up to 256 elements,
scaled from O to 255.

TIFF_WRITE, ‘a.tif", array, RED =r, GREEN = g, BLUE = b

TIFF Class R, RGB Full Color, color interleaved by pixel

The variablearray contains the byte data, and is dimensiordgagls, rows
TIFF_WRITE, 'a.tif', array

TIFF Class R, RGB Full Color, color interleaved by image

Input is three separate images, provided in the keyword parameters RED, GREEN,
and BLUE. The input argumeAtray is ignored. The keyword PLANARCONFIG
must be set to 2 in this case.

Obsolete IDL Features TIFF_WRITE

62 Chapter 2: Obsolete Routines

TIFF_WRITE, 'a.tif, RED =r, GREEN = g, BLUE = b, PLAN = 2

TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 63
WIDED

This routine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL's graphical user interface designer, known as the
Widget Builder. This functionality has been replaced by the GUIBuilder, which is
documented iBuilding IDL Applcations

Syntax

WIDED

Obsolete IDL Features WIDED

64 Chapter 2: Obsolete Routines
WIDGET_MESSAGE

This routine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See DIALOG_MESSAGE itQhe
Reference Guide

WIDGET_MESSAGE Obsolete IDL Features

Chapter 3.
Remote Procedure
Calls

Note
Remote Procedure Calls are still included in IDL. The RPC API described here (the
API included with IDL version 4.0) has been replaced with a new API. See the
External Development Guide for details on the RPC API included with IDL version
5.0 and later.

Remote Procedure Calls (RPCs) allow one procesglfdre process) to have

another process (ttserverprocess) execute a procedure call just as if the caller
process had executed the procedure call in its own address space. Since the client an
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routines is included to handle communication between client programs
and the IDL servemote that remote procedure calls are supported only on

UNIX platforms.

Obsolete IDL Features 65

66

Chapter 3: Remote Procedure Calls

The current implementation allows IDL to be run as an RPC server and your own
program to be run as a client. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variables in the IDL server session can be retrieved into the client process.

Obsolete IDL Features

Chapter 3: Remote Procedure Calls 67

Using IDL as an RPC Server

The IDL RPC Directory

All of the files related to using IDL's RPC capabilities are found inplae
subdirectory of thexternal subdirectory of the main IDL directory. The main
IDL directory is referred to here afidir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by usingéineer
command line option. This option can be invoked one of two ways:

idl -server process_id
or
idl -server= server_number process_id

whereserver_numbeis the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If a server ID number is not supplied, IDL uses the default, IDL_DEFAULT _ID,
defined in the filedldir/external/rpc/rpc_idl.h . This value is originally
set to Ox2010CAFE.

Theprocess_id argument is an optional argument that specifies the process ID of a
UNIX process that should be contacted when IDL has finished running in interactive
mode. If the IDL rpc server is placed in interactive mode and a process ID has been
supplied on the command line, IDL sends the UNIX signal SIGUSR1 to the specified
process. This signal allows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL RPC
library. The make file for this library is contained in the directory

idldir/external/rpc . If the machine that runs the client program is not licensed
to run IDL, simply copy the contents of the IDc directory to an appropriate

location on the client machine.

Obsolete IDL Features Using IDL as an RPC Server

68 Chapter 3: Remote Procedure Calls

To build the IDL RPC library, copy the IDL rp ¢ directoly to anew directory, change
to that directoy, and enter the make command:

cp-R idldir /external/rpc newrpcdir
cd newrpcdir
make
The created library is contained in the fiewrpcdir/rpcidl.a . The functions

contained in the library are describedTie IDL RPC Library” on pag69.
Linking your Client P rogram

Your client program must include theefitildir/external/rpc/rpc_idl.h

You must also link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC Iiargou
might enter:

cc-c rpcclient .c
cc-o0 rpcclient .o idldir lexternal/rpc/rpcidl.a

whetre rpcclientc is the nane of your program Note tha your actua commarnl lines
and flag settings may be differert than the ones shown above, dependig upan your C
compila. The Makefile contains details on modifications faarious systems.

Using IDL as an RPC Server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 69

The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.

Obsolete IDL Features The IDL RPC Library

70 Chapter 3: Remote Procedure Calls

free idl_ variable

Syntax
void free_idl_var(varinfo_t* var);
Description

This function frees all dynamt memogy associateé with the given variable Attempts
to free a stativariable are silently ignored. (S8¢otes onVariable Creation and
Memory Management” on pa@4.)

Parameters

var

The addres of thevarinfo_t structue tha contairs the information abou the variable
to be freed.

Return Value

None

free_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 71
get _idl variable

Syntax

int get_idl_variable(CLIENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call this function to retrieve the value of an IDL variable in the IDL session referred
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve values
from an IDL structure, “decompose” the structure into regular variables in IDL, then
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to a regular IDL variable. The value of
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */

send_idl_command(client, "X = IP.T");
get_idl_variable(client, "X", &pt, 0);

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
name

A null terminated string that contains the name of the IDL variable to be retrieved.
Only the firstMAXIDLENcharacters of this string are us&dAXIDLENIs defined in
the fileidldir/external/rpc/rpc_idl.h

var

The address ofaarinfo_t structure in which to store the returned variable
information. Upon return, thidamefield of thevar structure contains the name of
the variable as found in IDL. If the name supplied is an illegal IDL variable name, the
Namefield is set to<ILLEGAL_NAME> If the variable is a structure or associated
variable, theNamefield is set to<BAD-VAR-TYPE>.

Obsolete IDL Features get _idl_variable

72 Chapter 3: Remote Procedure Calls

typecode

If you want IDL to typecast a variable (i.e., guarantee the value to be of a particular
type) before it is transported, $gpecode to one of the following values (defined
in the fileexport.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

For example, the command:
get_idl_variable(client, "x", &xv, IDL_TYP_LONG)
guarantees that the valuexins returned as a 32-bit integer.

If typecode is O, the variable is transferred with whatever data type it has in the
server. Typecasting only affects the variables in the client — the server side is not
affected.

Return Value

This function returns a status value that denotes the success or failure of this function
as described below.

-1 Failure: bad arguments supplied (e.g., name or var is NULL).
0 RPC mechanism failed (an error message may also be printed).

1 Success
-2 lllegal variable name (e.g., “213xyz", “#a”, “'DEVICE")
-3 Variable not transportable (e.g., the variable is a structure or associated

variable)

get_idl variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 73

idl_server_interactive

Syntax
int idl_server_interactive(CLIENT*client)
Description

Call this function to cause the IDL server to become an interactive IDL session. It is
likely that this command will time out. Some alternative mechanism for determining
when the server is finished should be implemented. See the exsanec in
theidldir/examples/rpc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.
Return Value

This function returns TRUE if the interactive IDL session did not time out. FALSE is
returned if the session times out or otherwise fails.

Obsolete IDL Features idl_server_interactive

74 Chapter 3: Remote Procedure Calls

kill_server

Syntax
int Kkill_server(CLIENT*client)
Description
Call this function to kill the IDL RPC server.
Parameters

client

The pointer to a CLIENT structure registered with the server to be Kkilled.
Return Value

This function returns TRUE if the server was successfully killed. FALSE is returned
otherwise.

kill_server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 75
register_idl_client

Syntax
CLIENT* register_idl_client(long server_id, char* hostname,
struct timeval* timeout)

Description

Call this function to register your program as a client of an IDL server. Note that a
program can be the client of a number of different servers at the same time and a
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server is running. If this value is NULL or
" the defaultlocalhost , is used.

timeout

A pointer to the timeout value for all communication with IDL servers. If this value is
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure is returned. This function returns NULL if it
IS unsuccessful.

Obsolete IDL Features register_idl_client

76 Chapter 3: Remote Procedure Calls

send_idl_command

Syntax

int send_idl_command(CLIENT* client, char* command);

Description

Call this function to send an IDL command to the IDL server referred to by client.
The command is executed just as if it had been entered from the IDL command line.

This function cannot be used to send multi-line commands. If the first part of a multi-
line command is sent, for example:

send_idl_command(client, "FOR 1=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent commands
are not executed.

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
command

A null-terminated string with no more th&AX_ STRING_LENharacters.
MAX_STRING_LENSs defined in the filedldir/external/rpc/rpc_idl.h

Return Value

This function returns a status value that denotes success or failure as described below.
e -1 =RPC communication failure (an error message is also printed).
e 0 =Command is NULL.

. 1 = Success.

For all other errors, the error number is returned. This number could be passed as an
argument t&6TRMESSAGE();.

send_idl_command Obsolete IDL Features

Chapter 3: Remote Procedure Calls 77
set_idl_timeout

Syntax
int set_idl_timeout(struct timeval* timeout)
Description

Call this function to replace the current timeout used by the RPC mechanism with the
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no default.
Return Value

This function returns TRUE if the timeout was replaced. FALSE is returned if the
timeout value was NULL or zero.

Obsolete IDL Features set_idl_timeout

78

Chapter 3: Remote Procedure Calls

set_idl_variable

Syntax

int set_idl_variable(CLIENT* client, varinfo_t* var);

Description

Call this function to assignwalue to an IDLvariable in the IDL session referred to
by client . The addresvar points toavarinfo_t structure that contains
information about theariable to be set. The “helper” functions can be uséditd
var. (Se€‘The varinfo_t Structure” on pag82.) Any scalar or arrayariable type
can be seWariables can be set only in the main IDL progravell

Notethat it isnot possibéto sd the value of an IDL structure To se valuesin an IDL
structure s the individud elemens of the structueto scala IDL variablesthen use
thesend_idl_ command function to create the structure in IDL.

It is not possible to set thalue of IDL systenvariables direcyl. To set thevalue of
an IDL systen variable first sd the value of aregular IDL variable The value of the
regularvariable can then be assigned to the sysi@mable.For example:

set_idl_variable(client, &newvar); /* newvar describes the */
/* IDL variable "NEW" */
send_idl_command(client, "IP.T = NEW");

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
var

The address of #wvarinfo_t structure that contains information about the
variable to be set.

Return Value

This function returrs astatis value tha denote the succes or failure of this function
as described ba.

e -1 =Failure: bad eguments supplied (e.giar is NULL).

* 0 =RPC mechanism failed (an error message is also printed).

set_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 79

e 1 =Success

Obsolete IDL Features set_idl_variable

80 Chapter 3: Remote Procedure Calls
set_rpc_verbosity

Syntax
void set_rpc_verbosity(verbosity)

Description

This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines to
explain what failed. If verbosity is FALSE, return codes continue to indicate success
or failure, but no error messages are printed.

Parameters

verbosity

Anint specifying TRUE or FALSE as explained above.
Return Value

None

set_rpc_verbosity Obsolete IDL Features

Chapter 3: Remote Procedure Calls 81
unregister_idl_client

Syntax
void unregister_idl_client(CLIENT* client)
Description

Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically releases the resources associated witl
all CLIENT structures when your program exits. This function does not affect the

IDL server.

Parameters

client

The pointer to the CLIENT structure to be unregistered.
Return Value

None

Obsolete IDL Features unregister_idl_client

82 Chapter 3: Remote Procedure Calls

The varinfo_t Structure

Thevarinfo_t structure is used to pass variables to and from the IDL server.

Thevarinfo_t structure is defined in thidldir/external/rpc/rpc_idl.h
file. The structure is:

typedef struct _VARINFO {
char Name[MAXIDLEN+1];
IDL_VPTR Variable;
IDL_LONG Length;

} varinfo_t;

Variable Creation Functions

A number of functions are provided to help bwittinfo_t structures. These
functions are contained in the fitHdir/external/rpc/helper.c

The variable creation functions are described below. Unless otherwise noted, all of
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passingvarinfo_t structure pointer, if th¥ariable field is
NULL, the variable creation functions attempt to allocate that field.

The varinfo_t Structure Obsolete IDL Features

Chapter 3: Remote Procedure Calls 83
v_make_byte

Syntax

int v_make_byte(varinfo_t* var_struct, char* var_name,
unsigned value)

Description

Create an IDL byte variable with the given name and value.

Obsolete IDL Features v_make_byte

84 Chapter 3: Remote Procedure Calls

V_make_complex

Syntax

int v_make_complex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL complex variable.

v_make_complex Obsolete IDL Features

Chapter 3: Remote Procedure Calls 85

v_make_dcomplex

Syntax

int v_make_dcomplex(varinfo_t* var_struct, char* var_name,
double real_value, double imag_value)

Description

Create an IDL double-precision complex variable.

Obsolete IDL Features v_make_dcomplex

86 Chapter 3: Remote Procedure Calls

v_make double

Syntax

int v_make_double(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL double-precision, floating-point variable.

v_make_double Obsolete IDL Features

Chapter 3: Remote Procedure Calls 87

v_make float

Syntax

int v_make_float(varinfo_t* var_struct, char* var_name,
double value)

Description

Create an IDL single-precision, floating-point variable.

Obsolete IDL Features v_make_float

88 Chapter 3: Remote Procedure Calls
v_make int

Syntax
int v_make_int(varinfo_t* var_struct, char* var_name, int value)
Description

Create an IDL (16-bit) integer variable.

v_make_int Obsolete IDL Features

Chapter 3: Remote Procedure Calls 89
v_make_long

Syntax

int v_make_long(varinfo_t* var_struct, char* var_name,
IDL_LONGVvalue)

Description

Create an IDL long variable.

Obsolete IDL Features v_make_long

90 Chapter 3: Remote Procedure Calls
V_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* name,
char* value)

Description

Create an IDL string variable.

v_make_string Obsolete IDL Features

Chapter 3: Remote Procedure Calls 91
v_fill_arr ay

Syntax

int v_fill_array(varinfo_t* var, char* name, int type,
int ndimension, IDL_LONG dims][], UCHAR%alue,
IDL_long length)

Description
Create an IDL arrayariable. Tk typeargument should be one of the fmlling
values (defined in the &lexport.h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG, IDL_TYP_FLOAT,
IDL_TYP_DOUBLE, IDL_TYP_STRING, IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX

This function allocatevar->Variable->value.ar r.
If value is NULL then var->Variable->value.arr->data is allocated.
Thedims[] agument shoulddve at leasndimension valid elements.

If value is suppliedout length is 0,var->Length is filled with the computed size
of the array (in bytes) arvalue is assumed to point to at least thatynaytes of
memoy. If valu e ardlengt h are suppliedlengt h isassumd to be the size (in
byteg of the region of memoy tha value pointsto. (See “Notes on Variabk Creation
and Memory Management” on @g4.)

Obsolete IDL Features v_fill_array

92 Chapter 3: Remote Procedure Calls
More Variable Manipulation Macros

The following macros can be used to get information franmfo_t structures.
Like the variable creation functions, these macros are defined in the file
rpc_idl.h

All of these macros accept a single argunveoitvarinfo_t type.
GetArrayData(v)

This macro returns a pointer to the array data described lvartindo_t
structure.

GetArrayDimensions(V)

This macro returns the dimensions of the array described lwatiméo_t
structure. The dimensions are returnetbag dimensions]

GetArrayNumDims(V)

This macro returns the number of dimensions of the array.
GetVarByte(v)

This macro returns the value of a 1-byte, unsigried variable
GetVarComplex(v)

This macro returns the value (asteuct not a pointer) of a complex variable.
GetVarDComplex(v)

This macro returns the value (asteuct not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)
This macro returns the value of a double-precision, floating-point variable.

GetVarFloat(v)

This macro returns the value of a single-precision, floating point variable.

More Variable Manipulation Macros Obsolete IDL Features

Chapter 3: Remote Procedure Calls 93

GetVarint(v)

This macro returns the value of a 2-byte integer variable.
GetVarLong(v)

This macro returns the value of a 4-byte integer variable.
GetVarString(v)

This macro returns the value of a string variable (@saa*).
GetVarType(v)

This macro returns the type of the variable described byatefo t structure.
The type is returned dBL_TYP_XXX as described under the documentation for the
get_idl_variable function.

VarlsArray(v)

This macro returns non-zerovfis an array variable.

Obsolete IDL Features More Variable Manipulation Macros

94 Chapter 3: Remote Procedure Calls

Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.
Freeing Resources

The variable creation functions (i.&.,make_xxx) do notfree resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated witlhvélimfo t structure being passed.

To prevent memory leakage, memory associated with a variable is freed before new
memory is allocated. You should make sure thamdwenfo_t structure passed to
theget_idl_variable function contains valid information or has been cleared

(to zeroes) first. If an array of the same size, dimensions, and type is being read into
the existing array variable, no allocation is performed and the same space is re-used.
For example:

/* Assume that:
X = FLTARR(1000, 1000)
Y = FLTARR(1000, 1000)
Z = LONARR(1000, 1000)same size, different type
*/
bzero(&vinfo, sizeof(vinfo));
get_idl_variable(client, "X", &vinfo, 0); /* array allocated */

get_idl_variable(client, "Y", &vinfo, 0); /* memory re-used */

get_idl_variable(client, "Z", &vinfo, 0); /* array allocated */
free_idl_var(&vinfo);

Theget_idl_variable function callsfree_idl_var before doing any
allocation. So, in the example above, we only needed t&ZfréandY were freed
when we re-usedinfo

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from the
server without having the overhead of memory reallocation every time information is
received.

If the Length field of thevarinfo_t structure is not zero, it is assumed to be the
size of the array data. Thee_idl_var function will not do anything to a
variable where length is non-zero. Itis up to the programmer to do their own memory

Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 3: Remote Procedure Calls 95

management if this is the case. Storing a scalar in a static variable (i.e., a variable that
has a non-zerbength field) fails as does attempting to store an array that does not
fit the statically-allocated array. For example:

I* X =FLTARR(10) 40 bytes of data (10*4)
Y =LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
W=12 scalar
*/
char buf[40]
varinfo_t v;
VARIABLE var;
ARRAY arr;
[* Build a static array. Fill in the minimum amount of */
[* information required. */
v.Variable = &var;
v.Length =40;
var.type =IDL_TYP_BYTE;
var.flags =V_ARR;
var.value.arr = &arr;
arr.data = buf;

get_idl_variable(client, "X", &v, 0); /* ok */
get_idl_variable(client, "Y", &v, 0); /* ok */
get_idl_variable(client, "Z", &v, 0); /* fails — too big */
get_idl_variable(client, "W", &v, 0); /* fails — scalar */

Allocating Space for Strings

All space for strings is assumed to be obtainesnafoc(3) . This factis
important only when receiving variables (using gie¢ idl_variable
function). For example, the following code fragment is valid:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(client, &foo);

Here is an example of code that will crash your program:

v_make_string(&foo, "UGH", "blug");
set_idl_variable(me, &foo);
send_idl_command(me, "UGH="hello world™);
get_idl_variable(me, "UGH", &foo, 0);

In this case, thget_idl_variable function attempts to free the old resources
before allocating new storage. Freeing the con$lagt results in an error. You
could achieve the desired result without an error by changing the first line to:

v_make_string(&foo, "UGH", strdup("blug"));

Obsolete IDL Features Notes on Variable Creation and Memory Management

96 Chapter 3: Remote Procedure Calls
RPC Examples

A number of example files are included in tlkdir /external/examples/rpc
directory. AMakefile for these examples is also included. These short C programs
demonstrate the use of the IDL RPC library.

RPC Examples Obsolete IDL Features

	Online Guide
	Contents
	Overview
	Backwards Compatibility
	IDL Internal Routines
	Routines Written in IDL

	Detecting Use of Obsolete Features
	Where to Find Documentation for Obsolete Routines

	Obsolete Routines
	DDE Routines
	Result = DDE_GETSERVERS()
	Result = DDE_GETTOPICS(server)
	Result = DDE_GETITEMS(server)
	Result = DDE_REQUEST(server, topic, item)
	DDE_EXECUTE, server, topic, command

	DEMO_MODE
	GETHELP
	Variable
	FULLSTRING
	FUNCTIONS
	ONELINE
	PROCEDURES
	SYS_PROCS
	SYS_FUNCS

	HANDLE_CREATE
	ID
	FIRST_CHILD
	NO_COPY
	SIBLING
	VALUE

	HANDLE_FREE
	ID

	HANDLE_INFO
	ID
	FIRST_CHILD
	NUM_CHILDREN
	PARENT
	SIBLING
	VALID_ID

	HANDLE_MOVE
	Static_ID
	Move_ID
	FIRST_CHILD
	SIBLING

	HANDLE_VALUE
	ID
	Value
	NO_COPY
	SET

	HDF_DFSD_ADDDATA
	Filename
	Data
	OVERWRITE
	SET_DIM
	SET_TYPE

	HDF_DFSD_DIMGET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_DIMSET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	Filename
	Data
	GET_DIMS
	GET_TYPE

	HDF_DFSD_GETINFO
	Filename
	CALDATA
	COORDSYS
	DIMS
	FORMAT
	LABEL
	LASTREF
	NSDS
	RANGE
	TYPE
	UNIT

	HDF_DFSD_GETSLICE
	Filename
	Data
	COUNT
	OFFSET

	HDF_DFSD_PUTSLICE
	Data
	COUNT

	HDF_DFSD_READREF
	Filename
	Refno

	HDF_DFSD_SETINFO
	BYTE
	CALDATA
	CLEAR
	COORDSYS
	DIMS
	DOUBLE
	FLOAT
	FORMAT
	INT
	LABEL
	LEN_LABEL
	LEN_UNIT
	LEN_FORMAT
	LEN_COORDSYS
	LONG
	RANGE
	RESTART
	UNIT

	HDF_DFSD_STARTSLICE
	Filename
	IDL Ouput

	INP, INPW, OUTP, OUTPW
	Result = INP(Port, [D1 . . . DN])
	Result = INPW(Port, [D1 . . . DN])
	OUTP, Port, Value
	OUTPW, Port, Value

	PICKFILE
	RSTRPOS
	Expression
	Search_String
	Pos

	SIZE Executive Command
	SLICER
	A
	CMD_FILE
	COMMAND
	DETACHED
	GROUP
	NO_BLOCK
	RANGE
	RESOLUTION
	COLOR Table_Index Low High Shading
	CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1
	ERASE
	ISO Threshold Hi_Lo
	ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp
	SLICE Axis Value Interp Expose 0
	SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0
	TRANS On_Off Threshold
	UNDO
	WAIT Secs

	STR_SEP
	Str
	Separator
	TRIM
	REMOVE_ALL
	ESC
	IDL Output

	TIFF_DUMP
	File

	TIFF_READ
	File
	R, G, B
	ORDER
	PLANARCONFIG

	TIFF_WRITE
	File
	Array
	Orientation
	RED, GREEN, BLUE
	PLANARCONFIG
	XRESOL
	YRESOL
	TIFF Class G, Grayscale.
	TIFF Class P, Palette Color
	TIFF Class R, RGB Full Color, color interleaved by pixel
	TIFF Class R, RGB Full Color, color interleaved by image

	WIDED
	WIDGET_MESSAGE

	Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode
	Creating the IDL RPC Library
	Linking your Client Program

	The IDL RPC Library
	free_idl_variable
	var

	get_idl_variable
	client
	name
	var
	typecode

	idl_server_interactive
	client

	kill_server
	client

	register_idl_client
	server_id
	hostname
	timeout

	send_idl_command
	client
	command

	set_idl_timeout
	timeout

	set_idl_variable
	client
	var

	set_rpc_verbosity
	verbosity

	unregister_idl_client
	client

	The varinfo_t Structure
	Variable Creation Functions

	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	Freeing Resources
	Creating a Statically-Allocated Array
	Allocating Space for Strings

	RPC Examples

