
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

IDL Reference
Guide

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

... 46

. 47

... 48

... 49

... 49

... 49

... 52

... 53

.... 54

. 55

.... 56
Contents
Reference:
IDL Commands Reference ... 45
IDL Syntax..

Elements of Syntax...

Procedures...

Functions...

Arguments...

Keywords..

.COMPILE ..

.CONTINUE ...

.EDIT ...

.FULL_RESET_SESSION...

.GO ...
IDL Reference Guide 3

4

.... 57

.. 58

... 60

.... 61

.... 63

.... 65

.... 66

... 67

... 68

.. 69

.... 71

.... 72

. 73

.... 75

... 76

... 77

... 81

 81

.. 83

... 85

.. 87

.... 89

.... 90

.... 92

.... 93

... 96

. 100

.. 101

.. 102

. 103

.. 104

. 105
.OUT ..

.RESET_SESSION..

.RETURN..

.RNEW ...

.RUN ..

.SKIP ..

.STEP...

.STEPOVER...

.TRACE ..

A_CORRELATE ...

ABS ..

ACOS ...

ADAPT_HIST_EQUAL ...

ALOG ..

ALOG10 ...

AMOEBA ...

ANNOTATE ...

Using the Annotation Widget..

ARG_PRESENT..

ARROW ..

ASCII_TEMPLATE ..

ASIN ..

ASSOC...

ATAN ..

AXIS ..

BAR_PLOT ..

BEGIN...END ...

BESELI ..

BESELJ..

BESELY ...

BETA ...

BILINEAR ..
Contents IDL Reference Guide

5

. 107

108

. 110

. 111

. 113

. 115

 117

117

 119

. 122

. 125

.. 126

. 127

0

. 131

 133

. 136

. 139

 140

4

144

145

. 145

146

48

 149

 150

151

 152

.. 153

.. 155
BIN_DATE ...

BINARY_TEMPLATE ...

BINDGEN ...

BINOMIAL ...

BLAS_AXPY ...

BLK_CON ..

BOX_CURSOR...

Using BOX_CURSOR..

BREAKPOINT ..

BROYDEN ...

BYTARR ..

BYTE ...

BYTEORDER...

Note On IEEE to VAX Format Conversion.. 13

BYTSCL ...

C_CORRELATE...

CALDAT ..

CALENDAR ...

CALL_EXTERNAL ..

Note On IEEE to VAX Format Conversion.. 14

String Parameters...

Calling Convention..

Portable...

VMS LIB$CALLG ..

VMS CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL............... 147

Important Changes Since IDL 5.0... 1

CALL_FUNCTION ...

CALL_METHOD ..

CALL_PROCEDURE...

CASE...ENDCASE..

CATCH ..

CD ..
IDL Reference Guide Contents

6

. 156

.. 157

. 158

 159

60

62

163

 165

 166

. 168

. 169

. 171

. 172

.. 174

. 175

. 177

179

 181

181

. 185

. 188

 189

. 192

 194

 195

96

.. 197

. 198

.. 201

202

. 208

208
CDF Routines...

CEIL ...

CHEBYSHEV...

CHECK_MATH ..

CHECK_MATH and !EXCEPT.. 1

Printing Error Messages... 1

Testing Critical Code...

CHISQR_CVF...

CHISQR_PDF...

CHOLDC ..

CHOLSOL ..

CINDGEN...

CIR_3PNT ..

CLOSE...

CLUST_WTS ...

CLUSTER...

COLOR_CONVERT...

COLOR_QUAN ..

Using COLOR_QUAN..

COMFIT ...

COMMON ..

COMPILE_OPT..

COMPLEX ...

COMPLEXARR ..

COMPLEXROUND ..

COMPUTE_MESH_NORMALS.. 1

COND ..

CONGRID ..

CONJ..

CONSTRAINED_MIN..

CONTOUR ...

Smoothing Contours..
Contents IDL Reference Guide

7

220

. 222

 222

. 226

. 228

.. 230

.. 231

. 232

 234

 236

. 239

 240

 242

. 244

. 246

. 249

. 253

. 255

 257

257

262

264

. 265

266

 268

268

 272

 277

 280

80

. 282

. 286
CONVERT_COORD...

CONVOL ..

Using CONVOL ..

COORD2TO3...

CORRELATE...

COS..

COSH...

CRAMER ..

CREATE_STRUCT...

CREATE_VIEW..

CROSSP..

CRVLENGTH ...

CT_LUMINANCE ..

CTI_TEST...

CURSOR ..

CURVEFIT ...

CV_COORD...

CVTTOBM ...

CW_ANIMATE ...

Using CW_ANIMATE ..

CW_ANIMATE_GETP...

CW_ANIMATE_LOAD ..

Example..

CW_ANIMATE_RUN ..

CW_ARCBALL ..

Using CW_ARCBALL ..

CW_BGROUP...

CW_CLR_INDEX ...

CW_COLORSEL..

Using CW_COLORSEL.. 2

CW_DEFROI..

CW_DICE ...
IDL Reference Guide Contents

8

. 288

. 292

. 294

294

 302

302

306

10

13

. 315

317

23

24

 325

 331

31

. 334

. 335

335

. 340

. 341

. 342

 344

 345

52

. 354

 354

. 356

 358

. 359

. 360

.. 361
CW_FIELD ...

CW_FILESEL...

CW_FORM...

Using CW_FORM...

CW_FSLIDER...

Using CW_FSLIDER..

CW_LIGHT_EDITOR ..

CW_LIGHT_EDITOR_GET... 3

CW_LIGHT_EDITOR_SET... 3

CW_ORIENT ...

CW_PALETTE_EDITOR...

CW_PALETTE_EDITOR_GET... 3

CW_PALETTE_EDITOR_SET.. 3

CW_PDMENU ..

CW_RGBSLIDER...

Using CW_RGBSLIDER.. 3

CW_TMPL ...

CW_ZOOM ..

Using CW_ZOOM...

DBLARR ..

DCINDGEN ..

DCOMPLEX...

DCOMPLEXARR ...

DEFINE_KEY ...

Defining New Function Keys.. 3

DEFROI ..

Using DEFROI...

DEFSYSV...

DELETE_SYMBOL..

DELLOG ...

DELVAR ..

DERIV ...
Contents IDL Reference Guide

9

. 362

. 363

. 365

. 368

371

374

77

378

380

82

 384

. 386

 387

. 390

. 391

.. 392

. 393

394

 396

. 399

. 400

.. 402

. 403

. 406

. 408

.. 409

 410

 411

.. 412

12

 414

.. 415
DERIVSIG ..

DETERM ..

DEVICE ..

DFPMIN ...

DIALOG_MESSAGE..

DIALOG_PICKFILE ...

DIALOG_PRINTERSETUP... 3

DIALOG_PRINTJOB..

DIALOG_READ_IMAGE ..

DIALOG_WRITE_IMAGE .. 3

DIGITAL_FILTER ..

DILATE ..

Using DILATE ...

DINDGEN ..

DISSOLVE ...

DIST ...

DLM_LOAD ...

DO_APPLE_SCRIPT..

DOC_LIBRARY ..

DOUBLE ..

DRAW_ROI ...

EFONT...

EIGENQL ...

EIGENVEC...

ELMHES...

EMPTY ..

ENABLE_SYSRTN ..

Special Cases...

EOF ..

Using EOF with VMS Files... 4

EOS_* Routines...

ERASE...
IDL Reference Guide Contents

10

.. 417

 418

. 420

. 421

. 423

.. 424

.. 425

. 426

 427

27

. 430

. 432

 434

.. 438

.. 439

. 440

.. 442

 444

. 446

. 448

. 450

.. 451

.. 452

.. 454

.. 455

.. 456

.. 457

. 459

.. 460

.. 461

62

463
ERODE ..

Using ERODE..

ERRORF...

ERRPLOT...

EXECUTE ..

EXIT ..

EXP ..

EXPAND ..

EXPAND_PATH ...

The Path Definition String... 4

EXPINT ..

EXTRAC ...

EXTRACT_SLICE ..

F_CVF ...

F_PDF..

FACTORIAL ..

FFT ...

Running Time..

FILEPATH ..

FINDFILE ...

FINDGEN ...

FINITE ...

FIX ...

FLICK ..

FLOAT ...

FLOOR ..

FLOW3 ..

FLTARR ...

FLUSH ...

FOR ..

FORMAT_AXIS_VALUES .. 4

FORWARD_FUNCTION...
Contents IDL Reference Guide

11

. 464

.. 465

65

. 468

.. 470

. 471

. 472

. 474

. 476

. 478

. 479

. 480

. 481

. 483

83

. 486

. 489

 490

. 491

. 493

494

 495

. 496

96

97

.. 499

. 500

.. 503

. 506

. 509
FREE_LUN...

FSTAT ...

Fields of the FSTAT Structure... 4

FULSTR..

FUNCT ..

FUNCTION ..

FV_TEST..

FX_ROOT...

FZ_ROOTS...

GAMMA ...

GAMMA_CT ..

GAUSS_CVF..

GAUSS_PDF..

GAUSS2DFIT...

Procedure Used and Other Notes... 4

GAUSSFIT ...

GAUSSINT ...

GET_DRIVE_LIST ...

GET_KBRD..

GET_LUN...

GET_SCREEN_SIZE..

GET_SYMBOL ...

GETENV...

Environment Variables Under VMS.. 4

Special Handling of the IDL_TMPDIR Environment Variable.................. 496

The UNIX Environment.. 4

GOTO ..

GRID_TPS..

GRID3 ..

GS_ITER...

H_EQ_CT...
IDL Reference Guide Contents

12

. 510

10

. 511

 512

 513

4

. 517

8

. 521

.. 523

. 530

. 531

 533

. 535

.. 539

.. 541

.. 543

.. 545

. 547

48

549

50

551

552

53

554

 555

. 556

 558

559

. 562

. 563
H_EQ_INT..

Using the H_EQ_INT Interface... 5

HANNING ..

HDF_* Routines..

HDF_BROWSER..

Graphical User Interface Menu Options.. 51

HDF_READ..

Graphical User Interface Menu Options.. 51

HEAP_GC...

HELP ..

HILBERT ..

HIST_2D...

HIST_EQUAL ...

HISTOGRAM ...

HLS ..

HQR ...

HSV ..

IBETA ..

IDENTITY ..

IDL_Container Object Class.. 5

IDLanROI Object Class...

IDLanROIGroup Object Class... 5

IDLffDICOM Object Class..

IDLffDXF Object Class...

IDLffLanguageCat Object Class.. 5

IDLgr* Object Classes...

IF...THEN...ELSE..

IGAMMA ...

IMAGE_CONT..

IMAGE_STATISTICS ..

IMAGINARY ...

INDGEN ...
Contents IDL Reference Guide

13

.. 565

.. 568

 571

. 573

. 574

 577

. 581

.. 583

.. 586

 587

 590

. 592

. 593

 595

. 596

. 600

. 601

. 604

 605

 607

. 609

. 611

. 612

. 615

.. 616

. 618

. 624

 626

 634

 637

 639
INT_2D ..

INT_3D ..

INT_TABULATED ...

INTARR ..

INTERPOL ...

INTERPOLATE ..

INVERT ..

IOCTL ..

ISHFT ..

ISOCONTOUR..

ISOSURFACE...

JOURNAL ..

JULDAY ...

KEYWORD_SET..

KRIG2D ..

KURTOSIS ...

KW_TEST ..

L64INDGEN ...

LABEL_DATE ..

LABEL_REGION..

LADFIT ..

LEEFILT ...

LINBCG ..

LINDGEN ...

LINFIT ...

LINKIMAGE ..

VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL 621

LIVE_Tools ..

LIVE_CONTOUR ...

LIVE_CONTROL..

LIVE_DESTROY ..

LIVE_EXPORT ...
IDL Reference Guide Contents

14

 642

. 649

. 660

. 664

. 665

. 670

. 678

. 680

. 684

 691

. 699

.. 703

704

.. 706

.. 710

. 713

. 714

. 716

 718

. 719

. 720

.. 721

. 722

.. 723

 728

.. 730

. 732

.. 734

 736

. 738

738
LIVE_IMAGE ...

LIVE_INFO ..

Structure Tables for LIVE_INFO and LIVE CONTROL........................... 650

LIVE_LINE ..

LIVE_LOAD ..

LIVE_OPLOT...

LIVE_PLOT ...

LIVE_PRINT ..

LIVE_RECT ...

LIVE_STYLE ...

LIVE_SURFACE ..

LIVE_TEXT ...

LJLCT ..

LL_ARC_DISTANCE...

LMFIT ..

LMGR ..

LNGAMMA ...

LNP_TEST ...

LOADCT ..

LOCALE_GET ..

LON64ARR ..

LONARR ..

LONG ..

LONG64 ...

LSODE...

LU_COMPLEX ...

LUDC ...

LUMPROVE...

LUSOL ...

M_CORRELATE ..

MACHAR ...

MACHAR Fields ...
Contents IDL Reference Guide

15

 740

743

. 746

. 750

. 754

 758

. 760

.. 771

. 773

.. 775

 776

. 778

. 780

 782

 784

 785

87

. 788

 794

796

 798

 800

. 801

.. 803

804

 808

. 811

. 813

 816

818

821

823
MAKE_ARRAY ..

MAP_CONTINENTS..

MAP_GRID ..

MAP_IMAGE ...

MAP_PATCH...

MAP_PROJ_INFO..

MAP_SET...

MAX ..

MD_TEST...

MEAN ..

MEANABSDEV ..

MEDIAN ...

MESH_CLIP...

MESH_DECIMATE..

MESH_ISSOLID...

MESH_MERGE..

MESH_NUMTRIANGLES... 7

MESH_OBJ..

MESH_SMOOTH..

MESH_SURFACEAREA...

MESH_VALIDATE ..

MESH_VOLUME ...

MESSAGE..

MIN ..

MIN_CURVE_SURF..

MK_HTML_HELP ..

MODIFYCT ..

MOMENT ...

MORPH_CLOSE...

MORPH_DISTANCE..

MORPH_GRADIENT...

MORPH_HITORMISS..
IDL Reference Guide Contents

16

 825

 827

 828

 830

. 831

. 833

. 835

 836

837

 839

.. 841

 842

. 843

. 844

 845

. 846

.. 849

. 851

 852

. 853

. 854

. 856

. 858

. 859

 860

 861

.. 863

3

.. 875

. 878

 879

881
MORPH_OPEN...

MORPH_THIN ..

MORPH_TOPHAT..

MPEG_CLOSE..

MPEG_OPEN...

MPEG_PUT..

MPEG_SAVE...

MSG_CAT_CLOSE..

MSG_CAT_COMPILE...

MSG_CAT_OPEN..

MULTI ...

N_ELEMENTS..

N_PARAMS ...

N_TAGS ...

NCDF_* Routines..

NEWTON ...

NORM ..

OBJ_CLASS...

OBJ_DESTROY..

OBJ_ISA ...

OBJ_NEW ..

OBJ_VALID ...

OBJARR ...

ON_ERROR...

ON_IOERROR..

ONLINE_HELP...

OPEN ...

Note On IEEE to VAX Format Conversion.. 87

OPLOT...

OPLOTERR..

P_CORRELATE..

PARTICLE_TRACE ...
Contents IDL Reference Guide

17

.. 884

.. 888

 892

. 896

. 898

.. 899

. 902

. 904

4

906

 908

.. 910

. 911

. 915

. 916

. 918

 918

. 922

. 924

. 926

. 930

.. 932

. 933

. 936

 937

938

. 940

.. 941

. 942

. 944

. 946

946
PCOMP..

PLOT ..

PLOT_3DBOX ..

PLOT_FIELD ...

PLOTERR...

PLOTS ...

PNT_LINE ..

POINT_LUN...

Use Of POINT_LUN On Compressed Files.. 90

POLAR_CONTOUR...

POLAR_SURFACE..

POLY ...

POLY_2D ...

POLY_AREA ...

POLY_FIT ..

POLYFILL ..

Fill Methods...

POLYFILLV ...

POLYFITW ..

POLYSHADE...

POLYWARP...

POPD ...

POWELL ..

PRIMES ..

PRINT/PRINTF...

Format Compatibility...

PRINTD ..

PRO..

PROFILE ..

PROFILER..

PROFILES..

Using PROFILES..
IDL Reference Guide Contents

18

 948

 951

.. 952

. 953

. 955

. 956

 957

. 959

.. 960

. 961

. 963

.. 966

 968

 970

 971

. 973

 974

 977

 978

. 979

. 981

. 982

. 983

 985

 986

. 988

. 990

. 994

.. 998

 1000

000
PROJECT_VOL ..

PS_SHOW_FONTS ...

PSAFM ..

PSEUDO ...

PTR_FREE ...

PTR_NEW ..

PTR_VALID ...

PTRARR ...

PUSHD ..

QROMB ..

QROMO ..

QSIMP ...

QUERY_* Routines ...

QUERY_BMP ...

QUERY_DICOM ..

QUERY_GIF ..

QUERY_IMAGE ...

QUERY_JPEG ...

QUERY_PICT ...

QUERY_PNG ...

QUERY_PPM ...

QUERY_SRF ..

QUERY_TIFF ...

QUERY_WAV ..

R_CORRELATE ...

R_TEST ..

RANDOMN ..

RANDOMU ..

RANKS ..

RDPIX ..

Using RDPIX ... 1
Contents IDL Reference Guide

19

001

003

1004

007

1009

011

1012

014

016

1017

1021

1023

1025

1027

1028

1030

1033

1039

040

042

1044

 1045

 1047

 1049

049

50

052

1053

053

058

1059

1061
READ/READF .. 1

Format Compatibility... 1

READ_ASCII ..

READ_BINARY ... 1

READ_BMP ..

READ_DICOM ... 1

READ_GIF ..

READ_IMAGE .. 1

READ_INTERFILE .. 1

READ_JPEG..

READ_PICT ..

READ_PNG...

READ_PPM...

READ_SPR...

READ_SRF ...

READ_SYLK ..

READ_TIFF ..

READ_WAV ...

READ_WAVE ... 1

READ_X11_BITMAP... 1

READ_XWD ...

READS ..

READU ..

REBIN ..

Rules Used by REBIN... 1

Endpoint Effects When Expanding.. 10

RECALL_COMMANDS .. 1

RECON3..

Using RECON3... 1

REDUCE_COLORS.. 1

REFORM ...

REGRESS..
IDL Reference Guide Contents

20

064

1065

066

068

070

1071

071

1073

1074

1076

1078

1079

 1083

1085

 1086

1089

1091

092

1095

 1097

 1099

1102

1104

1105

1108

1111

113

115

1116

1117

119

 1122
REPEAT...UNTIL ... 1

REPLICATE ..

REPLICATE_INPLACE... 1

RESOLVE_ALL .. 1

RESOLVE_ROUTINE.. 1

RESTORE..

Note to VMS Users.. 1

RETALL ..

RETURN..

REVERSE..

REWIND ..

RIEMANN ...

RK4 ..

ROBERTS ...

ROT ..

ROTATE ..

ROUND ...

ROUTINE_INFO... 1

RS_TEST...

S_TEST..

SAVE ...

SCALE3 ...

SCALE3D ..

SEARCH2D...

SEARCH3D...

SET_PLOT..

SET_SHADING .. 1

SET_SYMBOL.. 1

SETENV ..

SETLOG ..

SETUP_KEYS... 1

SFIT ...
Contents IDL Reference Guide

21

124

124

128

130

 1133

 1135

1137

 1139

1140

 1141

 1142

142

1146

 1147

1148

9

163

167

1171

 1173

 1175

 1176

1180

1182

1184

1186

 1188

1190

1192

1194

 1196

 1199
SHADE_SURF.. 1

Restrictions.. 1

SHADE_SURF_IRR... 1

SHADE_VOLUME ... 1

SHIFT ..

SHOW3..

SHOWFONT ...

SIN ...

SINDGEN ..

SINH ..

SIZE ...

IDL Type Codes... 1

SKEWNESS..

SKIPF...

SLICER3..

The SLICER3 Graphical User Interface.. 114

Operational Details.. 1

SLIDE_IMAGE ... 1

SMOOTH...

SOBEL ...

SORT ...

SPAWN..

SPH_4PNT...

SPH_SCAT..

SPL_INIT ...

SPL_INTERP...

SPLINE ..

SPLINE_P..

SPRSAB...

SPRSAX ..

SPRSIN..

SQRT ...
IDL Reference Guide Contents

22

200

1202

 1203

1204

1205

207

208

1210

1214

1216

7

1219

1220

221

1222

225

1227

1229

1231

1233

1237

239

241

1243

1244

244

 1249

 1250

 1252

 1257

259

1260
STANDARDIZE .. 1

STDDEV ..

STOP..

STRARR..

STRCMP..

STRCOMPRESS... 1

STREAMLINE .. 1

STREGEX..

STRETCH..

STRING ...

Differences Between STRING and PRINT... 121

STRJOIN..

STRLEN ..

STRLOWCASE... 1

STRMATCH ..

STRMESSAGE... 1

STRMID ..

STRPOS...

STRPUT...

STRSPLIT ...

STRTRIM ..

STRUCT_ASSIGN.. 1

STRUCT_HIDE... 1

STRUPCASE...

SURFACE ...

Restrictions.. 1

SURFR...

SVDC ...

SVDFIT ..

SVSOL ...

SWAP_ENDIAN ... 1

SYSTIME ..
Contents IDL Reference Guide

23

 1262

 1263

 1264

267

 1269

 1270

 1271

1272

1273

274

1275

277

278

 1280

1282

1283

1284

 1286

 1289

290

1291

1293

297

1300

 1307

1309

 1310

1312

1314

1315

1316

1318
T_CVF ...

T_PDF..

T3D ..

TAG_NAMES ... 1

TAN ...

TANH ..

TAPRD ..

TAPWRT ...

TEK_COLOR ..

TEMPORARY ... 1

TETRA_CLIP ..

TETRA_SURFACE... 1

TETRA_VOLUME .. 1

THIN ..

THREED..

TIME_TEST2 ..

TM_TEST ..

TOTAL ..

TRACE ..

TrackBall Object.. 1

TRANSPOSE...

TRI_SURF...

TRIANGULATE ... 1

TRIGRID ...

TRIQL ..

TRIRED ...

TRISOL ..

TRNLOG ...

TS_COEF...

TS_DIFF ..

TS_FCAST ..

TS_SMOOTH..
IDL Reference Guide Contents

24

 1320

 1324

 1326

 1329

 1333

1335

 1336

1337

338

1339

1340

1341

 1342

1343

 1344

1346

348

1350

1351

353

 1354

1356

1358

 1360

1362

364

 1369

1370

372

1374

 1375
TV ..

TVCRS...

TVLCT ...

TVRD ...

Unexpected Results Using TVRD with X Windows................................. 1330

TVSCL ...

UINDGEN ...

UINT ..

UINTARR ..

UL64INDGEN ... 1

ULINDGEN ...

ULON64ARR ..

ULONARR ..

ULONG ..

ULONG64..

UNIQ ..

USERSYM...

VALUE_LOCATE .. 1

VARIANCE ...

VAX_FLOAT ..

VECTOR_FIELD .. 1

VEL ..

VELOVECT ..

VERT_T3D..

VOIGT ...

VORONOI ...

VOXEL_PROJ... 1

WAIT ...

WARP_TRI..

WATERSHED... 1

WDELETE ...

WEOF ..
Contents IDL Reference Guide

25

1376

1379

79

1382

383

0

00

0

0

01

1403

405

2

12

2

12

412

414

443

1

52

2

453

454

9

59

9

461

462

1463

465
WF_DRAW ...

WHERE ...

When WHERE Returns -1... 13

WHILE...DO ..

WIDGET_BASE.. 1

Keywords to WIDGET_CONTROL... 140

Keywords to WIDGET_INFO... 14

Exclusive And Non-Exclusive Bases... 140

Positioning Child Widgets Within a Base... 140

Positioning Top-Level Bases... 14

Iconizing, Layering, and Destroying Groups of Top-Level Bases............ 1401

Events...

WIDGET_BUTTON.. 1

Keywords to WIDGET_CONTROL... 141

Keywords to WIDGET_INFO... 14

Exclusive And Non-Exclusive Bases... 141

Events Returned by Button Widgets.. 14

Bitmap Button Labels.. 1

WIDGET_CONTROL... 1

WIDGET_DRAW .. 1

Keywords to WIDGET_CONTROL... 145

Keywords to WIDGET_INFO... 14

Widget Events Returned by Draw Widgets... 145

Backing Store... 1

WIDGET_DROPLIST... 1

Keywords to WIDGET_CONTROL... 145

Keywords to WIDGET_INFO... 14

Widget Events Returned by Droplist Widgets... 145

WIDGET_EVENT... 1

Event Processing.. 1

Events...

WIDGET_INFO .. 1
IDL Reference Guide Contents

26

477

2

82

2

483

9

89

9

491

7

97

497

98

499

499

9

10

0

514

1

21

521

1524

1528

1530

532

1533

1536

1538

1539

1541

1542
WIDGET_LABEL ... 1

Keywords to WIDGET_CONTROL... 148

Keywords to WIDGET_INFO... 14

Widget Events Returned by Label Widgets... 148

WIDGET_LIST ... 1

Keywords to WIDGET_CONTROL... 148

Keywords to WIDGET_INFO... 14

Widget Events Returned by List Widgets.. 148

WIDGET_SLIDER.. 1

Keywords to WIDGET_CONTROL... 149

Keywords to WIDGET_INFO... 14

Slider Widget Events... 1

Known Implementation Problems... 14

WIDGET_TABLE ... 1

Note on Table Sizing... 1

Keywords to WIDGET_CONTROL... 150

Keywords to WIDGET_INFO... 15

Widget Events Returned by Table Widgets... 151

WIDGET_TEXT .. 1

Keywords to WIDGET_CONTROL... 152

Keywords to WIDGET_INFO... 15

Text Widget Events.. 1

WINDOW ..

WRITE_BMP ..

WRITE_GIF ..

WRITE_IMAGE .. 1

WRITE_JPEG..

WRITE_NRIF ..

WRITE_PICT ..

WRITE_PNG...

WRITE_PPM...

WRITE_SPR..
Contents IDL Reference Guide

27

1543

545

1547

553

554

1556

 1558

1559

 1560

1564

566

 1568

569

69

1574

1576

1579

9

583

1584

1585

586

1589

90

1

593

1595

1597

1599

1600

602
WRITE_SRF..

WRITE_SYLK .. 1

WRITE_TIFF...

WRITE_WAV ... 1

WRITE_WAVE ... 1

WRITEU ..

WSET...

WSHOW ..

WTN ..

XBM_EDIT ...

XDISPLAYFILE ... 1

XFONT ..

XINTERANIMATE .. 1

Using XINTERANIMATE .. 15

XLOADCT ..

XMANAGER ..

Warning..

A Note About Blocking in XMANAGER... 157

XMNG_TMPL ... 1

XMTOOL ..

XOBJVIEW ...

Using XOBJVIEW... 1

XPALETTE ...

Using the XPALETTE Interface.. 15

A Note about the Colors Used in the Interface.. 159

XREGISTERED.. 1

XSQ_TEST..

XSURFACE...

XVAREDIT ...

XYOUTS ...

Scaled Hardware Fonts.. 1
IDL Reference Guide Contents

28

 1603

603

03

1605

605

5

608

1608

1609

611

612

13

614

615

616

17

618

19

1620

22

624

25

27

30

32

634

36

37
ZOOM ..

Using ZOOM ... 1

Using ZOOM with Draw Widgets... 16

ZOOM_24..

Using ZOOM_24... 1

Using ZOOM_24 with Draw Widgets... 160

Appendix A:
IDL Object Class & Method Reference 1607
Using this Appendix.. 1

Syntax ..

Arguments..

Creating Objects from the Graphics Class Library.................................... 1609

IDL_Container... 1

IDL_Container::Add.. 1

IDL_Container::Cleanup.. 16

IDL_Container::Count... 1

IDL_Container::Get... 1

IDL_Container::Init ... 1

IDL_Container::IsContained.. 16

IDL_Container::Move.. 1

IDL_Container::Remove.. 16

IDLanROI ..

IDLanROI::AppendData.. 16

IDLanROI::Cleanup... 1

IDLanROI::ComputeGeometry... 16

IDLanROI::ComputeMask.. 16

IDLanROI::ContainsPoints.. 16

IDLanROI::GetProperty.. 16

IDLanROI::Init .. 1

IDLanROI::RemoveData... 16

IDLanROI::ReplaceData.. 16
Contents IDL Reference Guide

29

639

640

41

642

643

645

46

47

50

52

54

656

57

58

59

1660

2

66

67

68

70

72

74

76

77

78

79

81

684

686

687

688
IDLanROI::Rotate.. 1

IDLanROI::Scale... 1

IDLanROI::SetProperty... 16

IDLanROI::Translate... 1

IDLanROIGroup.. 1

IDLanROIGroup::Add... 1

IDLanROIGroup::Cleanup.. 16

IDLanROIGroup::ComputeMask.. 16

IDLanROIGroup::ComputeMesh.. 16

IDLanROIGroup::ContainsPoints.. 16

IDLanROIGroup::GetProperty.. 16

IDLanROIGroup::Init .. 1

IDLanROIGroup::Rotate... 16

IDLanROIGroup::Scale... 16

IDLanROIGroup::Translate... 16

IDLffDICOM ...

IDL 5.3 DICOM v3.0 Conformance Summary... 166

IDLffDICOM::Cleanup ... 16

IDLffDICOM::DumpElements.. 16

IDLffDICOM::GetChildren ... 16

IDLffDICOM::GetDescription .. 16

IDLffDICOM::GetElement.. 16

IDLffDICOM::GetGroup... 16

IDLffDICOM::GetLength.. 16

IDLffDICOM::GetParent... 16

IDLffDICOM::GetPreamble.. 16

IDLffDICOM::GetReference... 16

IDLffDICOM::GetValue ... 16

IDLffDICOM::GetVR ... 1

IDLffDICOM::Init ... 1

IDLffDICOM::Read .. 1

IDLffDICOM::Reset .. 1
IDL Reference Guide Contents

30

1689

691

92

695

95

697

706

707

708

709

10

711

712

713

714

15

16

17

1718

719

720

22

724

33

1734

736

737

738

39

40

42

43
IDLffDXF ..

IDLffDXF::Cleanup... 1

IDLffDXF::GetContents.. 16

IDLffDXF::GetEntity .. 1

Fields Common to all Structures... 16

Structure Formats... 1

IDLffDXF::GetPalette... 1

IDLffDXF::Init .. 1

IDLffDXF::PutEntity ... 1

IDLffDXF::Read .. 1

IDLffDXF::RemoveEntity ... 17

IDLffDXF::Reset ... 1

IDLffDXF::SetPalette.. 1

IDLffDXF::Write ... 1

IDLffLanguageCat... 1

IDLffLanguageCat::IsValid... 17

IDLffLanguageCat::Query... 17

IDLffLanguageCat::SetCatalog... 17

IDLgrAxis ..

IDLgrAxis::Cleanup .. 1

IDLgrAxis::GetCTM ... 1

IDLgrAxis::GetProperty.. 17

IDLgrAxis::Init .. 1

IDLgrAxis::SetProperty... 17

IDLgrBuffer ...

IDLgrBuffer::Cleanup.. 1

IDLgrBuffer::Draw .. 1

IDLgrBuffer::Erase.. 1

IDLgrBuffer::GetContiguousPixels... 17

IDLgrBuffer::GetDeviceInfo... 17

IDLgrBuffer::GetFontnames.. 17

IDLgrBuffer::GetProperty... 17
Contents IDL Reference Guide

31

44

745

748

750

751

53

754

55

756

8

59

61

62

3

765

68

769

70

1

72

774

80

1781

82

83

85

787

94

1795

796

97

798
IDLgrBuffer::GetTextDimensions... 17

IDLgrBuffer::Init ... 1

IDLgrBuffer::PickData.. 1

IDLgrBuffer::Read... 1

IDLgrBuffer::Select... 1

IDLgrBuffer::SetProperty.. 17

IDLgrClipboard.. 1

IDLgrClipboard::Cleanup.. 17

IDLgrClipboard::Draw .. 1

IDLgrClipboard::GetContiguousPixels... 175

IDLgrClipboard::GetDeviceInfo.. 17

IDLgrClipboard::GetFontnames.. 17

IDLgrClipboard::GetProperty.. 17

IDLgrClipboard::GetTextDimensions... 176

IDLgrClipboard::Init .. 1

IDLgrClipboard::SetProperty.. 17

IDLgrColorbar ... 1

IDLgrColorbar::Cleanup.. 17

IDLgrColorbar::ComputeDimensions... 177

IDLgrColorbar::GetProperty.. 17

IDLgrColorbar::Init.. 1

IDLgrColorbar::SetProperty.. 17

IDLgrContour ..

IDLgrContour::Cleanup... 17

IDLgrContour::GetCTM.. 17

IDLgrContour::GetProperty... 17

IDLgrContour::Init ... 1

IDLgrContour::SetProperty... 17

IDLgrFont ..

IDLgrFont::Cleanup... 1

IDLgrFont::GetProperty.. 17

IDLgrFont::Init .. 1
IDL Reference Guide Contents

32

00

1801

803

804

06

808

14

1815

817

18

19

821

27

1828

829

830

32

833

37

1838

840

841

842

43

844

46

847

849

850

851

52

853
IDLgrFont::SetProperty... 18

IDLgrImage..

IDLgrImage::Cleanup.. 1

IDLgrImage::GetCTM... 1

IDLgrImage::GetProperty.. 18

IDLgrImage::Init .. 1

IDLgrImage::SetProperty.. 18

IDLgrLegend..

IDLgrLegend::Cleanup.. 1

IDLgrLegend::ComputeDimensions.. 18

IDLgrLegend::GetProperty.. 18

IDLgrLegend::Init.. 1

IDLgrLegend::SetProperty.. 18

IDLgrLight ...

IDLgrLight::Cleanup... 1

IDLgrLight::GetCTM .. 1

IDLgrLight::GetProperty... 18

IDLgrLight::Init ... 1

IDLgrLight::SetProperty.. 18

IDLgrModel ...

IDLgrModel::Add .. 1

IDLgrModel::Cleanup.. 1

IDLgrModel::Draw .. 1

IDLgrModel::GetByName... 18

IDLgrModel::GetCTM .. 1

IDLgrModel::GetProperty... 18

IDLgrModel::Init ... 1

IDLgrModel::Reset.. 1

IDLgrModel::Rotate.. 1

IDLgrModel::Scale.. 1

IDLgrModel::SetProperty.. 18

IDLgrModel::Translate.. 1
Contents IDL Reference Guide

33

1854

1854

855

56

857

860

861

62

1863

864

865

66

867

869

70

871

72

1873

874

75

876

78

1879

880

881

83

885

891

1892

93

94

96
IDLgrMPEG ..

Subclasses..

IDLgrMPEG::Cleanup... 1

IDLgrMPEG::GetProperty... 18

IDLgrMPEG::Init ... 1

IDLgrMPEG::Put... 1

IDLgrMPEG::Save.. 1

IDLgrMPEG::SetProperty... 18

IDLgrPalette...

IDLgrPalette::Cleanup... 1

IDLgrPalette::GetRGB.. 1

IDLgrPalette::GetProperty... 18

IDLgrPalette::Init... 1

IDLgrPalette::LoadCT... 1

IDLgrPalette::NearestColor... 18

IDLgrPalette::SetRGB... 1

IDLgrPalette::SetProperty.. 18

IDLgrPattern..

IDLgrPattern::Cleanup... 1

IDLgrPattern::GetProperty.. 18

IDLgrPattern::Init .. 1

IDLgrPattern:SetProperty.. 18

IDLgrPlot ...

IDLgrPlot::Cleanup.. 1

IDLgrPlot::GetCTM .. 1

IDLgrPlot::GetProperty... 18

IDLgrPlot::Init ... 1

IDLgrPlot::SetProperty.. 1

IDLgrPolygon ..

IDLgrPolygon::Cleanup... 18

IDLgrPolygon::GetCTM.. 18

IDLgrPolygon::GetProperty.. 18
IDL Reference Guide Contents

34

898

06

1907

1907

08

09

11

913

18

1919

921

922

23

24

25

27

929

33

34

35

1936

938

39

940

944

945

946

947

48

949

50
IDLgrPolygon::Init .. 1

IDLgrPolygon::SetProperty... 19

IDLgrPolyline ..

Subclasses..

IDLgrPolyline::Cleanup... 19

IDLgrPolyline::GetCTM.. 19

IDLgrPolyline::GetProperty.. 19

IDLgrPolyline::Init .. 1

IDLgrPolyline::SetProperty... 19

IDLgrPrinter ...

IDLgrPrinter::Cleanup... 1

IDLgrPrinter::Draw.. 1

IDLgrPrinter::GetContiguousPixels.. 19

IDLgrPrinter::GetFontnames... 19

IDLgrPrinter::GetProperty... 19

IDLgrPrinter::GetTextDimensions.. 19

IDLgrPrinter::Init ... 1

IDLgrPrinter::NewDocument.. 19

IDLgrPrinter::NewPage... 19

IDLgrPrinter::SetProperty.. 19

IDLgrROI ...

IDLgrROI::Cleanup... 1

IDLgrROI::GetProperty... 19

IDLgrROI::Init ... 1

IDLgrROI::PickVertex .. 1

IDLgrROI::SetProperty.. 1

IDLgrROIGroup .. 1

IDLgrROIGroup::Add ... 1

IDLgrROIGroup::Cleanup... 19

IDLgrROIGroup::Init ... 1

IDLgrROIGroup::PickRegion.. 19
Contents IDL Reference Guide

35

1951

952

953

54

55

956

58

1959

960

61

63

965

74

1975

976

77

978

81

982

83

85

986

87

88

1989

990

991

93

995

00

2001

002
IDLgrScene..

IDLgrScene::Add... 1

IDLgrScene::Cleanup.. 1

IDLgrScene::GetByName.. 19

IDLgrScene::GetProperty.. 19

IDLgrScene::Init.. 1

IDLgrScene::SetProperty... 19

IDLgrSurface...

IDLgrSurface::Cleanup.. 1

IDLgrSurface::GetCTM... 19

IDLgrSurface::GetProperty.. 19

IDLgrSurface::Init.. 1

IDLgrSurface::SetProperty.. 19

IDLgrSymbol ...

IDLgrSymbol::Cleanup.. 1

IDLgrSymbol::GetProperty... 19

IDLgrSymbol::Init ... 1

IDLgrSymbol::SetProperty.. 19

IDLgrTessellator.. 1

IDLgrTessellator::AddPolygon.. 19

IDLgrTessellator::Cleanup.. 19

IDLgrTessellator::Init.. 1

IDLgrTessellator::Reset... 19

IDLgrTessellator::Tessellate.. 19

IDLgrText ..

IDLgrText::Cleanup... 1

IDLgrText::GetCTM.. 1

IDLgrText::GetProperty.. 19

IDLgrText::Init .. 1

IDLgrText::SetProperty... 20

IDLgrView ...

IDLgrView::Add .. 2
IDL Reference Guide Contents

36

003

04

05

006

10

011

013

14

15

16

017

19

2020

21

22

23

25

027

35

36

2037

040

041

42

44

45

46

048

51

2052

54

055
IDLgrView::Cleanup... 2

IDLgrView::GetByName... 20

IDLgrView::GetProperty... 20

IDLgrView::Init ... 2

IDLgrView::SetProperty.. 20

IDLgrViewgroup.. 2

IDLgrViewgroup::Add .. 2

IDLgrViewgroup::Cleanup.. 20

IDLgrViewgroup::GetByName... 20

IDLgrViewgroup::GetProperty.. 20

IDLgrViewgroup::Init .. 2

IDLgrViewgroup::SetProperty.. 20

IDLgrVolume ...

IDLgrVolume::Cleanup... 20

IDLgrVolume::ComputeBounds.. 20

IDLgrVolume::GetCTM.. 20

IDLgrVolume::GetProperty... 20

IDLgrVolume::Init ... 2

IDLgrVolume::PickVoxel.. 20

IDLgrVolume::SetProperty.. 20

IDLgrVRML ..

IDLgrVRML::Cleanup .. 2

IDLgrVRML::Draw ... 2

IDLgrVRML::GetDeviceInfo .. 20

IDLgrVRML::GetFontnames.. 20

IDLgrVRML::GetProperty.. 20

IDLgrVRML::GetTextDimensions.. 20

IDLgrVRML::Init .. 2

IDLgrVRML::SetProperty... 20

IDLgrWindow ..

IDLgrWindow::Cleanup.. 20

IDLgrWindow::Draw... 2
Contents IDL Reference Guide

37

056

7

58

60

61

3

065

066

71

073

074

76

78

079

2080

081

083

084

088

9

128

128

0

31

132

33

33

134

34
IDLgrWindow::Erase... 2

IDLgrWindow::GetContiguousPixels.. 205

IDLgrWindow::GetDeviceInfo.. 20

IDLgrWindow::GetFontnames.. 20

IDLgrWindow::GetProperty.. 20

IDLgrWindow::GetTextDimensions... 206

IDLgrWindow::Iconify .. 2

IDLgrWindow::Init .. 2

IDLgrWindow::Pickdata.. 20

IDLgrWindow::Read... 2

IDLgrWindow::Select.. 2

IDLgrWindow::SetCurrentCursor... 20

IDLgrWindow::SetProperty... 20

IDLgrWindow::Show .. 2

TrackBall..

TrackBall::Init .. 2

Trackball::Reset... 2

TrackBall::Update.. 2

Appendix B:
IDL Graphics Devices ... 2087
Supported Devices... 2

Keywords Accepted by the IDL Devices... 208

Window Systems... 2

Backing Store... 2

Image Display On Monochrome Devices.. 213

Printing Graphics Output Files.. 21

Setting Up The Printer... 2

Positioning Graphics Output.. 21

Image Background Color... 21

The CGM Device... 2

Abilities and Limitations... 21
IDL Reference Guide Contents

38

136

37

137

2139

140

140

141

43

144

145

147

148

149

149

151

5

60

60

160

161

161

62

63

164

164

167

169

71

172

73

173
The HP-GL Device.. 2

Abilities And Limitations .. 21

HP-GL Linestyles.. 2

The LJ Device..

LJ Driver Strengths.. 2

LJ Driver Limitations... 2

LJ Suggestions... 2

The Macintosh Display Device.. 21

The Null Display Device... 2

The PCL Device... 2

The Printer Device... 2

The PostScript Device.. 2

Using PostScript Fonts... 2

Color PostScript... 2

PostScript Positioning.. 2

Importing IDL Plots into Other Documents.. 215

The Regis Terminal Device... 21

Defaults for Regis Devices.. 21

Regis Limitations... 2

The Tektronix Device.. 2

The DEVICE Procedure For Tektronix Terminals.................................... 2161

Tektronix Limitations.. 2

Tektronix Device Limitations.. 21

The Microsoft Windows Device.. 21

The X Windows Device... 2

X Windows Visuals... 2

Using Color Under X... 2

Using Pixmaps... 2

Setting the X Window Defaults... 21

The Z-Buffer Device.. 2

Reading and Writing Buffers... 21

Z-Axis Scaling... 2
Contents IDL Reference Guide

39

173

74

178

178

178

179

179

2179

2180

2180

2180

2181

181

181

182

182

2182

2182

183

2183

183

183

2184

185

185

186

2186

 2186

2187
Polyfill Procedure.. 2

Examples Using the Z-Buffer.. 21

Appendix C:
Graphics Keywords ... 2177

BACKGROUND ... 2

CHANNEL .. 2

CHARSIZE .. 2

[XYZ]CHARSIZE ... 2

CHARTHICK .. 2

CLIP ...

COLOR ..

DATA ..

DEVICE ...

FONT ...

[XYZ]GRIDSTYLE .. 2

LINESTYLE .. 2

[XYZ]MARGIN .. 2

[XYZ]MINOR ... 2

NOCLIP ...

NODATA ...

NOERASE... 2

NORMAL ..

ORIENTATION .. 2

POSITION ... 2

PSYM ...

[XYZ]RANGE ... 2

[XYZ]STYLE .. 2

SUBTITLE ... 2

SYMSIZE ..

T3D ..

THICK ...
IDL Reference Guide Contents

40

187

187

2188

188

189

189

189

189

2189

190

2190

 2190

92

193

 2193

2193

2193

 2193

2193

2193

5

2195

195

2196

196

2196

2197

197

197
[XYZ]THICK .. 2

[XYZ]TICKFORMAT ... 2

TICKLEN ..

[XYZ]TICKLEN .. 2

[XYZ]TICKNAME .. 2

[XYZ]TICKS ... 2

[XYZ]TICKV .. 2

[XYZ]TICK_GET .. 2

TITLE ..

[XYZ]TITLE .. 2

ZVALUE ..

Z ...

Appendix D:
System Variables ... 2191
What Are System Variables?... 21

Constant System Variables.. 2

!DPI ..

!DTOR ...

!MAP ..

!PI ...

!RADEG ..

!VALUES ..

Error Handling and Informational System Variables...................................... 219

!ERR ..

!ERROR_STATE.. 2

!ERROR...

!ERR_STRING.. 2

!EXCEPT ...

!MOUSE ..

!MSG_PREFIX.. 2

!SYSERROR... 2
Contents IDL Reference Guide

41

198

2198

99

2199

199

199

200

200

2200

2200

2203

2203

203

204

204

204

07

207

11

221

221

221

221

221

2221

222

2222

222

222
!SYSERR_STRING... 2

!WARN ..

IDL Environment System Variables.. 21

!DIR ...

!DLM_PATH ... 2

!EDIT_INPUT ... 2

!HELP_PATH.. 2

!JOURNAL .. 2

!MORE ...

!PATH ..

!PROMPT ..

!QUIET ..

!VERSION ... 2

Graphics System Variables.. 2

!C System Variable.. 2

!D System Variable.. 2

!ORDER System Variable... 22

!P System Variable.. 2

!X, !Y, !Z System Variables.. 22

Appendix E:
Special Characters .. 2219

Exclamation Point (!)... 2

Apostrophe (').. 2

Semicolon (;).. 2

Dollar Sign ($) ... 2

Quotation Mark (")... 2

Period (.) ..

Ampersand (&).. 2

Colon (:) ...

Asterisk (*) ... 2

At Sign (@).. 2
IDL Reference Guide Contents

42

223

3

4

224

2230

1

231

231

232

232

232

233

34

235

236

236

7

37

38

39

240

0

241

43

247

247

7

Question Mark (?).. 2

Control-C / Control-Break / Command-.. 222

Control-D / Control-Z / Alt-F4 / Command-Q.. 222

Control-\ / Control-Y... 2

Appendix F:
Reserved Words .. 2227

Appendix G:
Fonts ... 2229
Overview..

Fonts in IDL Direct vs. Object Graphics... 223

IDL Direct Graphics.. 2

IDL Object Graphics.. 2

About Vector Fonts.. 2

Using Vector Fonts.. 2

Specifying Font Size.. 2

ISO Latin 1 Encoding.. 2

Customizing the Vector Fonts... 22

About TrueType Fonts... 2

Using TrueType Fonts... 2

Specifying Font Size.. 2

Using Embedded Formatting Commands.. 223

IDL TrueType Font Resource Files... 22

Adding Your Own Fonts.. 22

Where IDL Searches for Fonts.. 22

About Device Fonts... 2

Which Device Fonts Are Available?... 224

Using Device Fonts.. 2

Fonts and the PostScript Device.. 22

Choosing a Font Type.. 2

Appearance.. 2

Three-Dimensional Transformations... 224
Contents IDL Reference Guide

43

2247

248

2248

248

49

49

251

53

254

55

258

261

72

73

74

75

76

7

283
Portability ...

Computational Time.. 2

Flexibility ...

Print Quality... 2

Embedded Formatting Commands.. 22

Changing Fonts within a String... 22

Positioning Commands.. 2

Formatting Command Examples... 22

A Complex Equation.. 2

Vector-Drawn Font Example... 22

TrueType Font Samples... 2

Vector Font Samples.. 2

Appendix H:
Obsolete Routines .. 2271
What Are Obsolete Routines?.. 22

Routines Obsoleted in IDL 5.3.. 22

Routines Obsoleted in IDL 5.2.. 22

Routines Obsoleted in IDL 5.1.. 22

Routines Obsoleted in IDL 5.0.. 22

Routines Obsoleted in IDL 4.0 or Earlier.. 227

Obsolete System Variables.. 2

Index ... 2285
IDL Reference Guide Contents

44
Contents IDL Reference Guide

Reference:

IDL Commands
Reference
and
 its

ce
This reference is a complete listing of all built-in IDL functions, procedures,
statements, executive commands, and objects, collectively referred to as
“commands.” Every IDL language element that can be used either at the comm
line or in a program is listed alphabetically. A description of each routine follows
name.

Note
Descriptions of Scientific Data Formats routines (CDF_*, EOS_*, HDF_*, and
NCDF_* routines) can be found in theScientific Data Formats book.

Routines written in the IDL language are noted as such, and the location of the.pro
file within the IDL distribution is specified. You may wish to inspect the IDL sour
code for some of these routines to gain further insight into their inner workings.

Conventions used in this reference guide are described below.
IDL Reference Guide 45

46

the

ent

r.

ch

y

al
IDL Syntax

The following table lists the elements used in IDL syntax listings:

Element Description

[] (Square brackets) Indicates that the contents are optional. Do not include
brackets in your call.

[] (Italicized square
brackets)

Indicates that the square brackets are part of the statem
(used to define an array).

Argument Arguments are shown in italics, and must be specified in
the order listed.

KEYWORD Keywords are all caps, and can be specified in any orde
For functions, all arguments and keywords must be
contained within parentheses.

/KEYWORD Indicates a boolean keyword.

Italics Indicates arguments, expressions, or statements for whi
you must provide values.

{ } (Braces) • Indicates that you must choose one of the values the
contain

• Encloses a list of possible values, separated by vertic
lines (|)

• Encloses useful information about a keyword

• Defines an IDL structure (this is the only case in which
the braces are included in the call).

| (Vertical lines) Separates multiple values or keywords.

[, Value1, ... ,Valuen] Indicates that any number of values can be specified.

[, Value1, ... ,Value8] Indicates the maximum number of values that can be
specified.

Table 1: Elements of IDL Syntax
IDL Syntax IDL Reference Guide

47

o not

ss
tax:
Elements of Syntax

Square Brackets ([])

• Content between square brackets is optional. Pay close attention to the
grouping of square brackets. Consider the following examples:

ROUTINE_NAME,Value1 [, Value2] [, Value3]: You must includeValue1.
You do not have to includeValue2 or Value3. Value2 andValue3 can be
specified independently.

ROUTINE_NAME,Value1 [, Value2, Value3]: You must includeValue1. You
do not have to includeValue2or Value3, but you must include bothValue2and
Value3, or neither.

ROUTINE_NAME [,Value1 [, Value2]]: You can specifyValue1 without
specifyingValue2, but if you specifyValue2, you must also specifyValue1.

• Do not include square brackets in your statement unless the brackets are
italicized. Consider the following syntax:

Result = KRIG2D(Z [, X, Y] [, BOUNDS=[xmin, ymin, xmax, ymax]])

An example of a valid statement is:

R = KRIG2D(Z, X, Y, BOUNDS=[0,0,1,1])

• Note that when[, Value1, ... ,Valuen] is listed, you can specify any number of
arguments. When an explicit number is listed, as in[, Value1, ... ,Value8], you
can specify only as many arguments as are listed.

Braces ({ })

• For certain keywords, a list of the possible values is provided. This list is
enclosed in braces, and the choices are separated by a vertical line (|). D
include the braces in your statement. For example, consider the following
syntax:

LIVE_EXPORT [, QUALITY={0 | 1 | 2}]

In this example, you must choose either 0, 1, or 2. An example of a valid
statement is:

LIVE_EXPORT, QUALITY=1

• Braces are used to enclose the allowable range for a keyword value. Unle
otherwise noted, ranges provided are inclusive. Consider the following syn
IDL Reference Guide IDL Syntax

48

or

ust
0, an
pect

), or

ost
Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])

An example of a valid statement is:

Result = CVTTOBM(A, THRESHOLD=150)

• Braces are also used to provide useful information about a keyword. For
example:

[, LABEL=n{label everynth gridline}]

Do not include the braces or their content in your statement.

• Certain keywords are prefaced by X, Y, or Z. Braces are used for these
keywords to indicate that you must choose one of the values it contains. F
example, [{X | Y}RANGE=array] indicates that you can specify either
XRANGE=array or YRANGE=array.

• Note that in IDL, braces are used to define structures. When defining a
structure, youdo want to include the braces in your statement.

Italics

• Italicized words are arguments, expressions, or statements for which you m
provide values. The value you provide can be a numerical value, such as 1
expression, such as DIST(100), or a named variable. For keywords that ex
a string value, the syntax is listed as KEYWORD=string. The value you
provide can be a string, such as 'Hello' (enclosed in single quotation marks
a variable that holds a string value.

• The italicized values that must be provided for keywords are listed in the m
helpful terms possible. For example,[, XSIZE=pixels] indicates that the XSIZE
keyword expects a value in pixels, while
[, ORIENTATION=ccw_degrees_from_horiz] indicates that you must provide a
value in degrees, measured counter-clockwise from horizontal.

Procedures

IDL procedures use the following general syntax:

PROCEDURE_NAME,Argument [, Optional_Argument]

where PROCEDURE_NAME is the name of the procedure,Argument is a required
parameter, andOptional_Argument is an optional parameter to the procedure.
IDL Syntax IDL Reference Guide

49

e

s

e,

t
icated

ng an

ote
r.

t.
Functions

IDL functions use the following general syntax:

Result = FUNCTION_NAME(Argument [, Optional_Argument])

whereResult is the returned value of the function, FUNCTION_NAME is the nam
of the function,Argument is a required parameter, andOptional_Argument is an
optional parameter. Note that all arguments and keyword arguments to function
should be suppliedwithin the parentheses that follow the function’s name.

Functions do not always have to be used in assignment statements (i.e.,
A=SIN(10.2)), they can be used just like any other IDL expression. For exampl
you could print the result ofSIN(10.2) by entering the command:

PRINT, SIN(10.2)

Arguments

The “Arguments” section describes each valid argument to the routine. Note tha
these arguments are positional parameters that must be supplied in the order ind
by the routine’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “named variables”. A named
variable is simply a valid IDL variable name. This variabledoes not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sendi
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the routine. N
that keyword arguments are formal parameters that can be supplied in any orde

Keyword arguments are supplied to IDL routines by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be se
The value can be a value, an expression, or anamed variable (a named variable is
simply a valid IDL variable name).
IDL Reference Guide IDL Syntax

50

M

hese
uch
e
x
 set
is

.

isted

u

the

oes

ion

es
n

L.

ne
Note
If you set a keyword equal to anundefined named variable, IDL will quietly ignore
the value.

For example, to produce a plot with diamond-shaped plotting symbols, the PSY
keyword should be set to 4 as follows:

PLOT, FINDGEN(10), PSYM=4

Note the following when specifying keywords:

• Certain keywords are boolean, meaning they can be set to either 0 or 1. T
keywords are switches used to turn an option on and off. Usually, setting s
keywords equal to 1 causes the option to be turned on. Explicitly setting th
keyword to 0 (or not including the keyword) turns the option off. In the synta
listings in this reference, all keywords that are preceded by a slash can be
by prefacing them by the slash. For example, SURFACE, DIST(10), /SKIRT
a shortcut for SURFACE, DIST(10), SKIRT=1. To turn the option back off,
you must set the keyword equal to 0, as in SURFACE, DIST(10), SKIRT=0

In rare cases, a keyword’s default value is 1. In these cases, the syntax is l
as KEYWORD=0, as in SLIDE_IMAGE[, Image] [, CONGRID=0]. In this
example, CONGRID is set to 1 by default. If you specify CONGRID=0, yo
can turn it back on by specifying either /CONGRID or CONGRID=1.

• Some keywords are used to obtain values that can be used upon return from
function or procedure. These keywords are listed as KEYWORD=variable.
Any valid variable name can be used for these keywords, and the variable d
not need to be defined first. Note, however that when a keyword calls for a
named variable, only a named variable can be used—sending an express
causes an error.

For example, the WIDGET_CONTROL procedure can return the user valu
of widgets in a named variable using the GET_UVALUE keyword. To retur
the user value for a widget ID (contained in the variablemywidget) in the
variableuserval , you would use the command:

WIDGET_CONTROL, mywidget, GET_UVALUE = userval

Upon return from the procedure,userval contains the user value. Note that
userval did not have to be defined before the call to WIDGET_CONTRO

• Some routines have keywords that are mutually exclusive, meaning only o
of the keywords can be present in a given statement. These keywords are
IDL Syntax IDL Reference Guide

51

 the

t

, the

IZE.
grouped together, and separated by a vertical line. For example, consider
following syntax:

PLOT, [X,] Y [, /DATA | , /DEVICE | , /NORMAL]

In this example, you can choose either DATA, DEVICE, or NORMAL, but no
more than one. An example of a valid statement is:

PLOT, SIN(A), /DEVICE

• Keywords can be abbreviated to their shortest unique length. For example
XSTYLE keyword can be abbreviated to XST because there are no other
keywords in IDL that begin with XST. You cannot shorten XSTYLE to XS,
however, because there are other keywords that begin with XS, such as XS
IDL Reference Guide IDL Syntax

52

 same

ns
ned

ile

out

t the
.COMPILE

The .COMPILE command compiles and saves procedures and programs in the
manner as .RUN. If one or more filenames are specified, the procedures and
functions contained therein are compiledbut not executed. If you enter this command
at the Command Input Line of the IDLDE and the files are not yet open, IDL ope
the files within Editor windows and compiles the procedures and functions contai
therein.

SeeRESOLVE_ROUTINE for a way to invoke the same operation from within an
IDL routine, andRESOLVE_ALLfor a way to automatically compile all user-written
or library functions called by all currently-compiled routines.

If the -f flag is specified, File is compiled from the source stored temporarily in
TempFile rather than on disk in File itself. This allows you to make changes to F
(in an IDLDE editor window, for example), store the modified source into the
temporary file (IDLDE does it automatically), compile, and test the changes with
overwriting the original code stored in File.

Note
.COMPILE is an executive command. Executive commands can only be used a
IDL command prompt, not in programs.

Syntax

.COMPILE [File1, ...,Filen]

.COMPILE -fFile TempFile
.COMPILE IDL Reference Guide

53

cation
o
e re-

ues
; for

d at
.CONTINUE

The .CONTINUE command continues execution of a program that has stopped
because of an error, a stop statement, or a keyboard interrupt. IDL saves the lo
of the beginning of the last statement executed before an error. If it is possible t
correct the error condition in the interactive mode, the offending statement can b
executed by entering .CONTINUE. After STOP statements, .CONTINUE contin
execution at the next statement. The .CONTINUE command can be abbreviated
example, .C. Execution of a program interrupted by typing Ctrl+C also can be
resumed at the point of interruption with the .CONTINUE command.

Note
.CONTINUE is an executive command. Executive commands can only be use
the IDL command prompt, not in programs.

Syntax

.CONTINUE
IDL Reference Guide .CONTINUE

54

IDL
.EDIT

The .EDIT command opens files in IDL Editor windows when called from the
Command Input Line of the IDLDE. This functionality is only available on the
Windows and Motif platforms. Note that filenames are separated by spaces, not
commas.

Note
.EDIT is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.EDIT File1 [File2 ...Filen]
.EDIT IDL Reference Guide

55

n

.FULL_RESET_SESSION

The .FULL_RESET_SESSION command does everything.RESET_SESSIONdoes,
plus the following:

• Removes all system routines installed via LINKIMAGE or a DLM.

• Removes all structure definitions installed via a DLM.

• Removes all message blocks added by DLMs.

• Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

• Re-initializes all DLMs to their unloaded initial state.

Note
The VMS operating system does not support unloading sharable libraries.
Therefore, .FULL_RESET_SESSION is identical to .RESET_SESSION under
VMS, and these extra steps are not performed.

Note
.FULL_RESET_SESSION is an executive command. Executive commands ca
only be used at the IDL command prompt, not in programs.

Syntax

.FULL_RESET_SESSION
IDL Reference Guide .FULL_RESET_SESSION

56

ain

IDL
.GO

The .GO command starts execution at the beginning of a previously-compiled m
program.

Note
.GO is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.GO
.GO IDL Reference Guide

57

il it

 IDL
.OUT

The .OUT command continues executing statements in the current program unt
returns.

Note
.OUT is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.OUT
IDL Reference Guide .OUT

58

hout

ny

ice

m

.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session wit
requiring the user to exit and restart the IDL session.

.RESET_SESSION does the following:

• Returns current execution point to $MAIN$ (RETALL).

• Removes all breakpoints.

• Closes all files except the standard 3 units, the JOURNAL file (if any), and a
files in use by graphics drivers.

• Destroys/Removes the following:

• All local variables in $MAIN$.

• All widgets. Exit handlers are not called.

• All windows and pixmaps for the current window system graphics dev
are closed. No other graphics state is reset.

• All common blocks.

• All handles

• All user defined system variables

• All pointer and object reference heap variables.

• Object destructors are not called.

• All user defined structure definitions.

• All user defined object definitions.

• All compiled user functions and procedures, including the main progra
($MAIN$), if any.

The following are not reset:

• The current values of intrinsic system variables are retained.

• The saved commands and output log are preserved.

• Graphics drivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

• The following files are not closed:
.RESET_SESSION IDL Reference Guide

59

re

be
• Stdin (LUN 0)

• Stdout (LUN -1)

• Stderr (LUN -2)

• The journal file (!JOURNAL) if one is open.

• Any files in use by graphics drivers (e.g. PostScript).

• Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor a
any dynamic sharable libraries containing such drivers, even if the same
library was also used for another purpose such as CALL_EXTERNAL,
LINKIMAGE system routines, or DLMs. See the.FULL_RESET_SESSION
executive command to unload dynamic libraries.

Note
.RESET_SESSION is an executive command. Executive commands can only
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION
IDL Reference Guide .RESET_SESSION

60

the
l so

t the
.RETURN

The .RETURN command continues execution of a program until encountering a
RETURN statement. This is convenient for debugging programs since it allows
whole program to run, stopping before returning to the next-higher program leve
you can examine local variables.

Also see theRETURN command.

Note
.RETURN is an executive command. Executive commands can only be used a
IDL command prompt, not in programs.

Syntax

.RETURN
.RETURN IDL Reference Guide

61

e
e in
ct as

he
.RNEW

The .RNEW command compiles and saves procedures and functions in the sam
manner as .RUN. In addition, all variables in the main program unit, except thos
common blocks, are erased. The -T and -L filename switches have the same effe
with .RUN.

Note
.RNEW is an executive command. Executive commands can only be used at t
IDL command prompt, not in programs.

Syntax

.RNEW [File1, ...,Filen]

To save listing in a file: .RNEW -LListFile.lis File1 [, File2, ...,Filen]

To display listing on screen: .RNEW -TFile1 [, File2, ...,Filen]

Example

Some statements using the .RUN and .RNEW commands are shown below.

Statement Description

.RUN Accept a program from the
keyboard. Retain the present
variables.

.RUN myfile Compile the file myfile.pro. If
it is not found in the current
directory, try to find it in the
directory search path.

.RUN -T A, B, C Compile the files a.pro, b.pro
and c.pro. List the files on the
terminal.

Table 2: Examples using .RUN and .RNEW
IDL Reference Guide .RNEW

62
.RNEW -L myfile.lis myfile, yourfile Erase all variables and compile
the files myfile.pro and
yourfile.pro. Produce a listing
on myfile.lis.

Statement Description

Table 2: Examples using .RUN and .RNEW
.RNEW IDL Reference Guide

63

ed
mas.

he
 See

all
e
ete

 the
to

 IDL

ed
duce
.RUN

The .RUN command compiles procedures, functions, and/or main programs in
memory. Main programs are executed immediately. The command can be follow
by a list of files to be compiled. Filenames are separated by blanks, tabs, or com

If a file specification is included in the command, IDL searches for the file first in t
current directory, then in the directories specified by the system variable !PATH.
“Executing Program Files”in Chapter 2 ofUsing IDL for more information on IDL’s
search strategy.

If a main program unit is encountered, execution of the program will begin after
files have been read if there were no errors. The values of all of the variables ar
retained. If the file isn’t found, input is accepted from the keyboard until a compl
program unit is entered.

Files containing IDL procedures, programs, and functions are assumed to have
file extension (suffix).pro . Files created with the SAVE procedure are assumed
have the extension.sav . See“Preparing and Running Programs” in Chapter 2 of
Using IDL for further information.

Note
.RUN is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.RUN [File1, ...,Filen]

To save listing in a file: .RUN -LListFile.lis File1 [, File2, ...,Filen]

To display listing on screen: .RUN -TFile1 [, File2, ...,Filen]

Note
Subsequent calls to .RUN compile the procedure again.

Using .RUN to Make Program Listings

The command arguments -T for terminal listing or -L filename for listing to a nam
file can appear after the command name and before the program filenames to pro
a numbered program listing directed to the terminal or to a file.
IDL Reference Guide .RUN

64

eft
ying

g is

lock
For instance, to see a listing on the screen as a result of compiling a procedure
contained in a file namedanalyze.pro , use the following command:

.RUN -T analyze

To compile the same procedure and save the listing in a file namedanalyze.lis ,
use the following command:

.RUN -L analyze.lis analyze

In listings produced by IDL, the line number of each statement is printed at the l
margin. This number is the same as that printed in IDL error statements, simplif
location of the statement causing the error.

Note
If the compiled file contains more than one procedure or function, line numberin
reset to “1” each time the end of a program segment is detected.

Each level of block nesting is indented four spaces to the right of the preceding b
level to improve the legibility of the program’s structure.
.RUN IDL Reference Guide

65

tep. It
onal
ngle

on

der of
PEN

 IDL
.SKIP

The .SKIP command skips one or more statements and then executes a single s
is useful for continuing over a program statement that caused an error. If the opti
argument n is present, it gives the number of statements to skip; otherwise, a si
statement is skipped. Note that .SKIP does not skipinto a called routine.

For example, consider the following program segment:

......
OPENR, 1, 'missing'
READF, 1, xxx, ..., ...
...

If the OPENR statement fails because the specified file does not exist, program
execution will halt with the OPENR statement as the current statement. Executi
can not be resumed with the executive command. CONTINUE because it attempts to
re-execute the offending OPENR statement, causing the same error. The remain
the program can be executed by entering .SKIP, which skips over the incorrect O
statement.

Note
.SKIP is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.SKIP [n]
IDL Reference Guide .SKIP

66

arting

IDL
.STEP

The .STEP command executes one or more statements in the current program st
at the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. The optional argumentn indicates the
number of statements to execute. Ifn is omitted, a single statement is executed.

Note
.STEP is an executive command. Executive commands can only be used at the
command prompt, not in programs.

Syntax

.STEP [n] or .S [n]
.STEP IDL Reference Guide

67

gram
.
e
s, a

d at
.STEPOVER

The .STEPOVER command executes one or more statements in the current pro
starting at the current position, stops, and returns control to the interactive mode
Unlike .STEP, if .STEPOVER executes a statement that calls another routine, th
called routine runs until it ends before control returns to interactive mode. That i
statement calling another routine is treated as a single statement.

The optional argument n indicates the number of statements to execute. If n is
omitted, a single statement (or called routine) is executed.

Note
.STEPOVER is an executive command. Executive commands can only be use
the IDL command prompt, not in programs.

Syntax

.STEPOVER [n] or .SO [n]
IDL Reference Guide .STEPOVER

68

se of

the
.TRACE

The .TRACE command continues execution of a program that has stopped becau
an error, a stop statement, or a keyboard interrupt.

Note
.TRACE is an executive command. Executive commands can only be used at
IDL command prompt, not in programs.

Syntax

.TRACE
.TRACE IDL Reference Guide

69

n is

le
A_CORRELATE

The A_CORRELATE function computes the autocorrelationPx(L) or autocovariance
Rx(L) of a sample populationX as a function of the lagL.

wherex is the mean of the sample populationx = (x0, x1, x2, ... ,xN-1).

Note
This routine is primarily designed for use in 1-D time-series analysis. The mea
subtracted before correlating.

This routine is written in the IDL language. Its source code can be found in the fi
a_correlate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = A_CORRELATE(X, Lag [, /COVARIANCE] [, /DOUBLE])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Px L() Px L–()

xk x–() xk L+ x–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑
--= =

Rx L() Rx L–() 1
N
---- xk x–() xk L+ x–()

k 0=

N L– 1–

∑= =
IDL Reference Guide A_CORRELATE

70

etic.
Lag

An n-element integer vector in the interval [-(n-2), (n-2)], specifying the signed
distances between indexed elements ofX.

Keywords

COVARIANCE

Set this keyword to compute the sample autocovariance rather than the sample
autocorrelation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define an n-element sample population:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
; Compute the autocorrelation of X for LAG = -3, 0, 1, 3, 4, 8:
lag = [-3, 0, 1, 3, 4, 8]
result = A_CORRELATE(X, lag)
PRINT, result

IDL Output

0.0146185 1.00000 0.810879 0.0146185 -0.325279 -0.151684

See Also

CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
A_CORRELATE IDL Reference Guide

71

pe.

nding

of X
ABS

The ABS function returns the absolute value of its argument.

Syntax

Result = ABS(X)

Arguments

X

The value for which the absolute value is desired. IfX is of complex type, ABS
returns the magnitude of the complex number:

If X is of complex type, the result is returned as the corresponding floating point ty
For all other types, the result has the same type asX. If X is an array, the result has the
same structure, with each element containing the absolute value of the correspo
element ofX.

ABS applied to any of the unsigned integer types results in the unaltered value
being returned.

Example

To print the absolute value of -25, enter:

PRINT, ABS(-25)

IDL prints:

25

Real2 Imaginary2+
IDL Reference Guide ABS

72

lts.
 the
ACOS

The ACOS function returns the angle, expressed in radians, whose cosine isX (i.e.,
the arc-cosine). The range of ACOS is between 0 andπ.

Syntax

Result = ACOS(X)

Arguments

X

The cosine of the desired angle in the range (-1≤ X ≤ 1). If X is double-precision
floating, the result of ACOS is also double-precision.X cannot be complex. All other
types are converted to single-precision floating-point and yield floating-point resu
If X is an array, the result has the same structure, with each element containing
arc-cosine of the corresponding element ofX.

Example

To find the arc-cosine of 0.707 and store the result in the variable B, enter:

B = ACOS(0.707)

See Also

COS
ACOS IDL Reference Guide

73

a
izer

each

s
trated

t

 data,

the

t

ADAPT_HIST_EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization,
form of automatic image contrast enhancement. The algorithm is described in P
et. al., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement ha
proven to be broadly applicable to a wide range of images and to have demons
effectiveness.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, NREGIONS=nregions]
[, TOP=value])

Return Value

The result of the function is a byte image with the same dimensions as the inpu
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords

CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is no
limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.
IDL Reference Guide ADAPT_HIST_EQUAL

74

 size

255.

 the
NREGIONS

Set this keyword to the size of the overlapped tiles, as a fraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a cerebral angiogram, and then displays both the original image and
adaptive histogram equalized image:

OPENR, 1, DEMO_FILEPATH(’cereb.dat’, &
SUBDIRECTORY=[’examples’,’data’])

;Image size = 512 x 512
a = BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

;Show original
TVSCL, a, 0

;Show processed
TV, ADAPT_HIST_EQUAL(a, TOP=!D.TABLE_SIZE-1), 1

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL, HISTOGRAM
ADAPT_HIST_EQUAL IDL Reference Guide

75

lts.
ALOG

The ALOG function returns the natural logarithm ofX. The result has the same
structure asX.

Syntax

Result = ALOG(X)

Arguments

X

The value for which the natural log is desired. The result of ALOG is double-
precision floating ifX is double-precision, and complex ifX is complex. All other
types are converted to single-precision floating-point and yield floating-point resu
When applied to complex numbers, the definition of the ALOG function is:

ALOG(x) = COMPLEX(log |x|, atanx)

Example

To print the natural logarithm of 5, enter:

PRINT, ALOG(5)

IDL prints:

1.60944

See Also

ALOG10
IDL Reference Guide ALOG

76
ALOG10

The ALOG10 function returns the logarithm to the base 10 ofX. This function
operates in the same manner as the ALOG function.

Syntax

Result = ALOG10(X)

Arguments

X

The value for which the base 10 log is desired.

Example

To find the base 10 logarithm of 5 and store the result in the variable L, enter:

L = ALOG10(5)

See Also

ALOG
ALOG10 IDL Reference Guide

77

f

g-

le

nal

-

AMOEBA

The AMOEBA function performs multidimensional minimization of a function
Func(x), wherex is ann-dimensional vector, using the downhill simplex method o
Nelder and Mead, 1965,Computer Journal, Vol 7, pp 308-313.

The downhill simplex method is not as efficient as Powell’s method, and usually
requires more function evaluations. However, the simplex method requires only
function evaluations—not derivatives—and may be more reliable than Powell’s
method.

If the minimum is found, AMOEBA returns ann-element vector corresponding to the
function’s minimum value. If a minimum within the given tolerance is not found
within the specified number of iterations, AMOEBA returns a scalar value of -1.
Results are returned with the same precision (single- or double-precision floatin
point) as is returned by the user-supplied function to be minimized.

This routine is written in the IDL language. Its source code can be found in the fi
amoeba.pro in the lib subdirectory of the IDL distribution. AMOEBA is based on
the routineamoeba described in section 10.4 ofNumerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = AMOEBA(Ftol [, FUNCTION_NAME=string]
[, FUNCTION_VALUE=variable] [, NCALLS=value] [, NMAX= value]
[, P0=vector, SCALE=vector | , SIMPLEX=array])

Arguments

Ftol

The fractional tolerance to be achieved in the function value—that is, the fractio
decrease in the function value in the terminating step. If the function you supply
returns a single-precision result,Ftol should never be less than your machine’s
floating-point precision—the value contained in the EPS field of the structure
returned by the MACHAR function. If the function you supply returns a double-
precision floating-point value, Ftol should not be less than your machine’ double
precision floating-point precision. SeeMACHAR for details.
IDL Reference Guide AMOEBA

78

ior

 its

ion

r of

tion

lso

and
Keywords

FUNCTION_NAME

Set this keyword equal to a string containing the name of the function to be
minimized. If this keyword is omitted, AMOEBA assumes that an IDL function
named “FUNC” is to be used.

The function to be minimized must be written as an IDL function and compiled pr
to calling AMOEBA. This function must accept ann-element vector as its only
parameter and return a scalar single- or double precision floating-point value as
result.

See theExample section below for an example function.

FUNCTION_VALUE

Set this keyword equal to a named variable that will contain an (n+1)-element vector
of the function values at the simplex points. The first element contains the funct
minimum.

NCALLS

Set this keyword equal to a named variable that will contain a count of the numbe
times the function was evaluated.

NMAX

Set this keyword equal to a scalar value specifying the maximum number of func
evaluations allowed before terminating. The default is 5000.

P0

Set this keyword equal to ann-element single- or double-precision floating-point
vector specifying the initial starting point. Note that if you specify P0, you must a
specify SCALE.

For example, in a 3-dimensional problem, if the initial guess is the point [0,0,0],
you know that the function’s minimum value occurs in the interval:

-10 < X[0] < 10, -100 < X[1] < 100, -200 < X[(2] < 200,

specify: P0=[0,0,0] and SCALE=[10, 100, 200].

Alternately, you can omit P0 and SCALE and specify SIMPLEX.
AMOEBA IDL Reference Guide

79

n
l to

y
,
if

t of
is
SCALE

Set this keyword equal to a scalar orn-element vector containing the problem’s
characteristic length scale for each dimension. SCALE is used with P0 to form a
initial (n+1) point simplex. If all dimensions have the same scale, set SCALE equa
a scalar.

SIMPLEX

Set this keyword equal to ann by n+1 single- or double-precision floating-point array
containing the starting simplex. After AMOEBA has returned, the SIMPLEX arra
contains the simplex enclosing the function minimum. The first point in the array
SIMPLEX[*,0], corresponds to the function’s minimum. This keyword is ignored
the P0 and SCALE keywords are set.

Example

Use AMOEBA to find the slope and intercept of a straight line that fits a given se
points, minimizing the maximum error. The function to be minimized (FUNC, in th
case) returns the maximum error, given p[0] = intercept, and p[1] = slope.

; First define the function FUNC:
FUNCTION FUNC, P
COMMON FUNC_XY, X, Y
RETURN, MAX(ABS(Y - (P[0] + P[1] * X)))
END

; Put the data points into a common block so they are accessible to
; the function:
COMMON FUNC_XY, X, Y

; Define the data points:
X = FINDGEN(17)*5
Y = [12.0, 24.3, 39.6, 51.0, 66.5, 78.4, 92.7, 107.8, $

120.0, 135.5, 147.5, 161.0, 175.4, 187.4, 202.5, 215.4, 229.9]

; Call the function. Set the fractional tolerance to 1 part in
; 10^5, the initial guess to [0,0], and specify that the minimum
; should be found within a distance of 100 of that point:
R = AMOEBA(1.0e-5, SCALE=1.0e2, P0 = [0, 0], FUNCTION_VALUE=fval)

; Check for convergence:
IF N_ELEMENTS(R) EQ 1 THEN MESSAGE, 'AMOEBA failed to converge'

; Print results:
PRINT, 'Intercept, Slope:', r, $

'Function value (max error): ', fval[0]
IDL Reference Guide AMOEBA

80
IDL Output

Intercept, Slope: 11.4100 2.72800
Function value: 1.33000

See Also

POWELL
AMOEBA IDL Reference Guide

81

can

le

s

n.

o
t the

d

ANNOTATE

The ANNOTATE procedure starts an IDL widget program that allows you to
interactively annotate images and plots with text and drawings. Drawing objects
include lines, arrows, polygons, rectangles, circles, and ellipses. Annotation files
be saved and restored, and annotated displays can be written to TIFF, GIF, or
PostScript files. The Annotation widget will work on any IDL graphics window or
draw widget.

This routine is written in the IDL language. Its source code can be found in the fi
annotate.pro in thelib subdirectory of the IDL distribution.

Using the Annotation Widget

Before calling the Annotation widget, plot or display your data in an IDL graphic
window or draw widget. Unless you specify otherwise (using the DRAWABLE or
WINDOW keywords), annotations will be made in the current graphics window.

For information on using the Annotation widget, click on the widget’s “Help” butto

Syntax

ANNOTATE [, COLOR_INDICES=array] [, DRAWABLE=widget_id | ,
WINDOW=index] [, LOAD_FILE=filename] [/TEK_COLORS]

Arguments

This procedure has no required arguments.

Keywords

COLOR_INDICES

An array of color indices from which the user can choose colors. For example, t
allow the user to choose 10 colors, spread evenly over the available indices, se
keyword as follows:

COLOR_INDICES = INDGEN(10) * (!D.N_COLORS-1) / 9

If neither TEK_COLORS or COLOR_INDICES are specified, the default is to loa
10 colors, evenly distributed over those available.
IDL Reference Guide ANNOTATE

82

LE

le
or
ed

oth
DRAWABLE

The widget ID of the draw widget for the annotations. Do not set both DRAWAB
and WINDOW. If neither WINDOW or DRAWABLE are specified, the current
window is used.

LOAD_FILE

The name of an annotation format file to load after initialization.

TEK_COLORS

Set this keyword and the Tektronix color table is loaded starting at color index
TEK_COLORS(0), with TEK_COLORS(1) color indices. The Tektronix color tab
contains up to 32 distinct colors suitable for graphics. If neither TEK_COLORS
COLOR_INDICES are specified, the default is to load 10 colors, evenly distribut
over those available.

WINDOW

The window index number of the window to receive the annotations. Do not set b
DRAWABLE and WINDOW. If neither WINDOW or DRAWABLE are specified,
the current window is used.

Example

; Output an image in the current window:
TVSCL, HANNING(300,200)
; Annotate it:
ANNOTATE

See Also

PLOTS, XYOUTS
ANNOTATE IDL Reference Guide

83

are

ent

will

ble
es

eap
ARG_PRESENT

The ARG_PRESENT function returns a nonzero value if the following conditions
met:

• The argument to ARG_PRESENT was passed as a plain or keyword argum
to the current routine by its caller, and

• The argument to ARG_PRESENT is a named variable into which a value
be copied when the current routine exits.

In other words, ARG_PRESENT returns TRUE if the value of the specified varia
will be passed back to the caller. This function is useful in user-written procedur
that need to know if the lifetime of a value they are creating extends beyond the
current routine’s lifetime. This can be important for two reasons:

1. To avoid expensive computations that the caller is not interested in.

2. To prevent heap variable leakage that would result if the routine creates
pointers or object references and assigns them to arguments that arenotpassed
back to the caller.

Syntax

Result = ARG_PRESENT(Variable)

Arguments

Variable

The variable to be tested.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, RET_PTR = ret_ptr

The intent of the RET_PTR keyword is to pass back a pointer to a new pointer h
variable. The following command could be used to avoid creating (and possibly
losing) a pointer if no named variable is provided by the caller:

IF ARG_PRESENT(ret_ptr) THEN BEGIN
IDL Reference Guide ARG_PRESENT

84
The commands that follow would only be executed ifret_ptr is supplied and will
be copied into a variable in the scope of the calling routine.

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS
ARG_PRESENT IDL Reference Guide

85

le

rs.

 or

,

ted
ARROW

The ARROW procedure draws one or more vectors with arrow heads.

This routine is written in the IDL language. Its source code can be found in the fi
arrow.pro in thelib subdirectory of the IDL distribution.

Syntax

ARROW,X0, Y0, X1, Y1 [, /DATA | , /NORMALIZED] [, HSIZE=length]
[, COLOR=index] [, HTHICK=value] [, /SOLID] [, THICK=value]

Arguments

X0, Y0

Arrays or scalars containing the coordinates of the tail end of the vector or vecto
Coordinates are in DEVICE coordinates unless otherwise specified.

X1,Y1

Arrays or scalars containing the coordinates of the arrowhead end of the vector
vectors.X1 andY1 must have the save number of elements asX0 andY0.

Keywords

DATA

Set this keyword if vector coordinates are DATA coordinates.

NORMALIZED

Set this keyword if vector coordinates are NORMALIZED coordinates.

HSIZE

Use this keyword to set the length of the lines used to draw the arrowhead. The
default is 1/64th the width of the display (!D.X_SIZE / 64.). If the HSIZE is positive
the value is assumed to be in device coordinate units. If HSIZE is negative, the
arrowhead length is set to the vector length * ABS(HSIZE). The lines are separa
by 60 degrees to make the arrowhead.

COLOR

The color of the arrow. The default is the highest color index.
IDL Reference Guide ARROW

86
HTHICK

The thickness of the arrowheads. The default is 1.0.

SOLID

Set this keyword to make a solid arrow, using polygon fills, looks better for thick
arrows.

THICK

The thickness of the body. The default is 1.0.

Examples

Draw an arrow from (100,150) to (300,350) in DEVICE units:

ARROW, 100, 150, 300, 350

Draw a sine wave with arrows from the line Y = 0 to SIN(X/4):

X = FINDGEN(50)
Y = SIN(x/4)
PLOT, X, Y
ARROW, X, REPLICATE(0,50), X, Y, /DATA

See Also

ANNOTATE, PLOTS, VELOVECT
ARROW IDL Reference Guide

87

e.

le

 the

r

ny

le”:
ASCII_TEMPLATE

The ASCII_TEMPLATE function presents a graphical user interface (GUI) which
generates a template defining an ASCII file format. Templates are IDL structure
variables that may be used when reading ASCII files with the READ_ASCII routin
SeeREAD_ASCII for details on reading ASCII files.

This routine is written in the IDL language. Its source code can be found in the fi
ascii_template.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = ASCII_TEMPLATE([Filename] [, BROWSE_LINES=lines]
[, CANCEL=variable] [, GROUP=widget_id])

Arguments

Filename

A string containing the name of a file to base the template on. IfFilename is not
specified, a dialog allows you to choose a file.

Keywords

BROWSE_LINES

Set this keyword equal to the number of lines that will be read in at a time when
“Browse” button is selected. The default is 50 lines.

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the use
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
ASCII_TEMPLATE graphical user interface. When a group leader is killed, for a
reason, all widgets in the group are also destroyed.

Example

Use the following command to generate a template structure from the file “myFi

myTemplate = ASCII_TEMPLATE(myFile)
IDL Reference Guide ASCII_TEMPLATE

88
See Also

READ_ASCII, BINARY_TEMPLATE
ASCII_TEMPLATE IDL Reference Guide

89
ASIN

The ASIN function returns the angle, expressed in radians, whose sine isX (i.e., the
arc-sine). The range of ASIN is between -π/2 andπ/2. Rules for the type and structure
of the result are the same as those given for the ACOS function.

Syntax

Result = ASIN(X)

Arguments

X

The sine of the desired angle, -1≤ X ≤ 1.

Example

To print the arc-sine of 0.707, enter:

PRINT, ASIN(0.707)

IDL prints:

0.785247

See Also

SIN
IDL Reference Guide ASIN

90

c

 type

 an
ot
even

ld be

SS
to
t

.

ASSOC

The ASSOC function associates an array structure with a file. It provides a basi
method of random access input/output in IDL. Anassociated variable, which stores
this association, is created by assigning the result of ASSOC to a variable. This
variable provides a means of mapping a file into vectors or arrays of a specified
and size.

Note
Unformatted data files generated by FORTRAN programs under UNIX contain
extra long word before and after each logical record in the file. ASSOC does n
interpret these extra bytes but considers them to be part of the data. This is true
if the F77_UNFORMATTED keyword is specified in theOPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files shou
processed usingREADU andWRITEU. An example of using IDL to read such data
is given in“Using Unformatted Input/Output” in Chapter 16 ofBuilding IDL
Applcations.

Note
Associated file variables cannot be used with files opened using the COMPRE
keyword to OPEN. Such variables require the ability to rapidly position the file
arbitrary positions. Due to the way compression works, such operations are no
possible. Instead, such files should be processed using READU and WRITEU

Syntax

Result = ASSOC(Unit, Array_Structure [, Offset] [, /PACKED])

Arguments

Unit

The IDL file unit to associate withArray_Structure.

Array_Structure

An expression of the data type and structure to be associated withUnit are taken from
Array_Structure. The actual value ofArray_Structure is not used.
ASSOC IDL Reference Guide

91

es,

o
e C

 one

t

tc.

iated
0].
Offset

The offset in the file to the start of the data in the file. For stream files, and RMS
(VMS) block mode files, this offset is given in bytes. For RMS record-oriented fil
the offset is specified in records. Offset is useful for dealing with data files that
contain a descriptive header block followed by the actual data.

Keywords

PACKED

When ASSOC is applied to structures, the default action is to map the actual
definition of the structure for the current machine, including any holes required t
properly align the fields. (IDL uses the same rules for laying out structures as th
language). If the PACKED keyword is specified, I/O using the resulting variable
instead works in the same manner as READU and WRITEU, and data is moved
field at a time and there are no alignment gaps between the fields.

Example

Suppose that the fileimages.dat holds 5 images as 256-element by 256-elemen
arrays of bytes. Open the file for reading and create an associated variable by
entering:

OPENR, 1, 'images.dat' ;Open the file as file unit 1.
A = ASSOC(1, BYTARR(256, 256)) ;Make an associated variable.

Now A[0] corresponds to the first image in the file, A[1] is the second element, e
To display the first image in the file, you could enter:

TV, A[0]

The data for the first image is read and then displayed. Note that the data assoc
with A[0] is not held in memory. It is read in every time there is a reference to A[
To store the image in the memory-resident array B, you could enter:

B = A[0]

See Also

OPEN, READU
IDL Reference Guide ASSOC

92

ual to

e

lar
ATAN

The ATAN function returns the angle, expressed in radians, whose tangent isX (i.e.,
the arc-tangent). If two parameters are supplied, the angle whose tangent is eq
Y/X is returned. The range of ATAN is between -π/2 andπ/2 for the single argument
case, and between -π andπ if two arguments are given.

Syntax

Result = ATAN(X)

or

Result = ATAN(Y, X)

Arguments

X

The tangent of the desired angle.

Y

An optional argument. If this argument is supplied, ATAN returns the angle whos
tangent is equal toY/X. If both arguments are zero, the result is undefined.

Example

To find the arc-tangent of 0.707 and store the result in the variable B, enter:

B = ATAN(0.707)

The following code defines a function that converts Cartesian coordinates to po
coordinates. It returns “r” and “theta” given an “x” and “y” position:

;Define function TO_POLAR that accepts X and Y as arguments:
FUNCTION TO_POLAR, X, Y

;Return the distance and angle as a two-element array:
RETURN, [SQRT(X^2 + Y^2), ATAN(Y, X)]

END

See Also

TAN, TANH
ATAN IDL Reference Guide

93

ition.

e

ways

shed
 or
AXIS

The AXIS procedure draws an axis of the specified type and scale at a given pos
The new scale is saved for use by subsequent overplots if the SAVE keyword
parameter is set. The keyword parameters XAXIS, YAXIS, and ZAXIS specify th
type of axis to be drawn, and its position.

Syntax

AXIS [, X [, Y [, Z]]] [, /SAVE] [, XAXIS={0 | 1} | YAXIS={0 | 1} | ZAXIS={0 | 1 | 2
| 3}] [, /XLOG] [, /YNOZERO] [, /YLOG] [, /ZLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer]
[, COLOR=value] [, /DATA | , /DEVICE | , /NORMAL] [, FONT=integer]
[, /NODATA] [, /NOERASE] [, SUBTITLE=string] [, /T3D] [, TICKLEN=value]
[, {X | Y | Z}CHARSIZE=value] [, {X | Y | Z}GRIDSTYLE=integer{0 to 5}] [, {X |
Y | Z}MARGIN= [left, right]] [, {X | Y | Z}MINOR= integer] [, {X | Y |
Z}RANGE=[min, max]] [, {X | Y | Z}STYLE= value] [, {X | Y | Z}THICK= value]
[, {X | Y | Z}TICKFORMAT= string] [, {X | Y | Z}TICKLEN= value] [, {X | Y |
Z}TICKNAME= string_array] [, {X | Y | Z}TICKS= integer] [, {X | Y |
Z}TICKV= array] [, {X | Y | Z}TICK_GET=variable] [, {X | Y | Z}TITLE= string]
[, ZVALUE=value{0 to 1}]

Arguments

X, Y, and Z

Scalars giving the starting coordinates of the new axis. If no coordinates are
specified, the axis is drawn in its default position as given by the [XYZ]AXIS
keyword. When drawing an X axis, theX coordinate is ignored, similarly theYandZ
parameters are ignored when drawing their respective axes (i.e., new axes will al
point in the correct direction).

Keywords

SAVE

Set this keyword to indicate that the scaling to and from data coordinates establi
by the call to AXIS is to be saved in the appropriate axis system variable, !X, !Y,
!Z. If this keyword is not present, the scaling is not changed.
IDL Reference Guide AXIS

94

and
rks
d
ely.

 the

s to

ata
g

e

IS
XAXIS

Set this keyword to draw an X axis. If theX parameteris not present, setting XAXIS
equal to 0 draws an axis under the plot window with the tick marks pointing up,
setting XAXIS equal to one draws an axis above the plot window with the tick ma
pointing down. If theX parameteris present, the X axis is positioned accordingly, an
setting XAXIS equal to 0 or 1 causes the tick marks to point up or down, respectiv

XLOG

Set this keyword to specify a logarithmic X axis

YAXIS

Set this keyword to draw a Y axis. If theY parameteris not present, setting YAXIS
equal to 0 draws an axis on the left side of the plot window with the tick marks
pointing right, and setting YAXIS equal to one draws an axis on the right side of
plot window with the tick marks pointing left. If theYparameteris present, the Y axis
is positioned accordingly, and setting YAXIS equal to 0 or 1 causes the tick mark
point right or left, respectively.

YLOG

Set this keyword to specify a logarithmic Y axis.

YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when the Y d
are all positive and non-zero, and no explicit minimum Y value is specified (usin
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4 in !Y.STYLE to mak
this option the default.

ZAXIS

Set this keyword to draw a Z axis. If theZ parameter is not present, setting ZAXIS
has the following meanings:

• 0 = lower (front) right, with tickmarks pointing left

• 1 = lower (front) left, with tickmarks pointing right

• 2 = upper (back) left, with tickmarks pointing right

• 3 = upper (back) right, with tickmarks pointing left

If the Z parameteris present, the Z axis is positioned accordingly, and setting ZAX
equal to 0 or 1 causes the tick marks to point left or right, respectively.
AXIS IDL Reference Guide

95

l or
Note that AXIS uses the 3D plotting transformation stored in the system variable
field !P.T.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE, FONT, NODATA,
NOERASE, NORMAL, SUBTITLE, T3D, TICKLEN, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN , [XYZ]MINOR , [XYZ]RANGE,
[XYZ]STYLE , [XYZ]THICK , [XYZ]TICKFORMAT , [XYZ]TICKLEN ,
[XYZ]TICKNAME , [XYZ]TICKS , [XYZ]TICKV , [XYZ]TICK_GET,
[XYZ]TITLE , ZVALUE.

Example

The following example shows how the AXIS procedure can be used with norma
polar plots to draw axes through the origin, dividing the plot window into four
quadrants:

; Make the plot, polar in this example, and suppress the X and Y
; axes using the XSTYLE and YSTYLE keywords:
PLOT, /POLAR, XSTYLE=4, YSTYLE=4, TITLE='Polar Plot', r, theta

; Draw an X axis, through data Y coordinate of 0. Because the XAXIS
; keyword parameter has a value of 0, the tick marks point down:
AXIS,0,0,XAX=0,/DATA

; Similarly, draw the Y axis through data X = 0. The tick marks
; point left:
AXIS,0,0,0,YAX=0,/DATA

See Also

LABEL_DATE, PLOT
IDL Reference Guide AXIS

96

L

ault,

els
e

bar
ted
BAR_PLOT

The BAR_PLOT procedure creates a bar graph. This routine is written in the ID
language. Its source code can be found in the filebar_plot.pro in thelib
subdirectory of the IDL distribution.

Syntax

BAR_PLOT,Values [, BACKGROUND=color_index]
[, BARNAMES=string_array] [, BAROFFSET=scalar] [, BARSPACE=scalar]
[, BARWIDTH=value] [, BASELINES=vector] [, BASERANGE=scalar{0.0 to
1.0}] [, COLORS=vector] [, /OUTLINE] [, /OVERPLOT] [, /ROTATE]
[, TITLE=string] [, XTITLE= string] [, YTITLE= string]

Arguments

Values

A vector containing the values to be represented by the bars. Each element inValues
corresponds to a single bar in the output.

Keywords

BACKGROUND

A scalar that specifies the color index to be used for the background color. By def
the normal IDL background color is used.

BARNAMES

A string array, containing one string label per bar. If the bars are vertical, the lab
are placed beneath them. If horizontal (rotated) bars are specified, the labels ar
placed to the left of the bars.

BAROFFSET

A scalar that specifies the offset to be applied to the first bar, in units of “nominal
width”. This keyword allows, for example, different groups of bars to be overplot
on the same graph. If not specified, the default offset is equal to BARSPACE.
BAR_PLOT IDL Reference Guide

97

For

th.

le

h

otal
ot

r.
idely

g

 to
BARSPACE

A scalar that specifies, in units of “nominal bar width”, the spacing between bars.
example, if BARSPACE is 1.0, then all bars will have one bar-width of space
between them. If not specified, the bars are spaced apart by 20% of the bar wid

BARWIDTH

A floating-point value that specifies the width of the bars in units of “nominal bar
width”. The nominal bar width is computed so that all the bars (and the space
between them, set by default to 20% of the width of the bars) will fill the availab
space (optionally controlled with the BASERANGE keyword).

BASELINES

A vector, the same size asValues, that contains the base value associated with eac
bar. If not specified, a base value of zero is used for all bars.

BASERANGE

A floating-point scalar in the range 0.0 to 1.0, that determines the fraction of the t
available plotting area (in the direction perpendicular to the bars) to be used. If n
specified, the full available area is used.

COLORS

A vector, the same size asValues, containing the color index to be used for each ba
If not specified, the colors are selected based on spacing the color indices as w
as possible within the range of available colors (specified by !D.N_COLORS).

OUTLINE

If set, this keyword specifies that an outline should be drawn around each bar.

OVERPLOT

If set, this keyword specifies that the bar plot should be overplotted on an existin
graph.

ROTATE

If set, this keyword indicates that horizontal rather than vertical bars should be
drawn. The bases of horizontal bars are on the left, “Y” axis and the bars extend
the right.

TITLE

A string containing the main title for the bar plot.
IDL Reference Guide BAR_PLOT

98

arts,

tical
by the

:

 use
f

p

XTITLE

A string containing the title for the X axis.

YTITLE

A string containing the title for the Y axis.

Example

By using the overplotting capability, it is relatively easy to create stacked bar ch
or different groups of bars on the same graph.

For example, if ARRAY is a two-dimensional array of 5 columns and 8 rows, it is
natural to make a plot with 5 bars, each of which is a “stacked” composite of 8
sections. First, create a 2D COLORS array, equal in size to ARRAY, that has iden
color index values across each row to ensure that the same item is represented
same color in all bars.

array = INDGEN(5,8)
colors = INTARR(5,8)
FOR I = 0, 7 DO colors[*,I]=(20*I)+20

With ARRAYS and COLORS defined, the following code fragment illustrates the
creation of stacked bars (note that the number of rows and columns is arbitrary)

;Scale range to accommodate the total bar lengths:
!Y.RANGE = [0, MAX(array)]
nrows = N_ELEMENTS(array[0,*])
base = INTARR(nrows)
FOR I = 0, nrows-1 DO BEGIN

BAR_PLOT, array[*,I], COLORS=colors[*,I], BASELINES=base, $
BARWIDTH=0.75, BARSPACE=0.25, OVER=(I GT 0)

base = array[*,I]
ENDFOR

To plot each row of ARRAY as a clustered group of bars within the same graph,
the BASERANGE keyword to restrict the available plotting region for each set o
bars. The sample code fragment below illustrates this method:

ncols = N_ELEMENTS(array[*,0])
FOR I = 0, nrows-1 DO $

BAR_PLOT, array[*,I], COLORS=colors[*,I], BARWIDTH=0.8, $
BARSPACE=0.2, BAROFFSET=I*(1.5*ncols), $
OVER=(I GT 0), BASERANGE=0.19

where NCOLS is the number of columns in ARRAY. (In this example, each grou
uses the same set of colors, but this could easily be changed.)
BAR_PLOT IDL Reference Guide

99
See Also

PLOT, PSYM Graphics Keyword
IDL Reference Guide BAR_PLOT

100

ts is
when

as in

), the
wn
ith
BEGIN...END

The BEGIN...END statement defines a block of statements. A block of statemen
a group of statements that is treated as a single statement. Blocks are necessary
more than one statement is the subject of a conditional or repetitive statement,
the FOR, WHILE, and IF statements.

Note
BEGIN...END is an IDL statement. For information on using statements, see
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

BEGIN

statements

END

To ensure proper nesting of compound statements (one or more different blocks
“END” statement terminating the block can be followed by the block type as sho
in the following table. The compiler checks the end of each block, comparing it w
the type of the enclosing statement. Any block can be terminated by the generic
END, although no type checking is performed.

END Statement Use

ENDCASE CASE statement

ENDELSE IF statement, ELSE clause

ENDFOR FOR statement

ENDIF IF statement, THEN clause

ENDREP REPEAT statement

ENDWHILE WHILE statement

Table 3: Types of END Statements
BEGIN...END IDL Reference Guide

101

he
BESELI

The BESELI function returns the I Bessel function of orderN for the argumentX. If X
is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Syntax

Result = BESELI(X, N)

Arguments

X

The expression for which the I Bessel function is required. The result will have t
same dimensions asX.

N

The order of the I Bessel function to calculate.N must be an integer greater than or
equal to 0.

See Also

BESELJ, BESELY
IDL Reference Guide BESELI

102

ame
BESELJ

The BESELJ function returns the J Bessel function of orderN for the argumentX. If
X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point. BESELJ uses thej0(3M) ,
j1(3M) , andjn(3M) functions from the standard C math library.

Syntax

Result = BESELJ(X, N)

Arguments

X

The expression for which the J Bessel function is required. The result has the s
dimensions asX.

N

The order of the J Bessel function to calculate.N must be an integer greater than or
equal to 0.

See Also

BESELI, BESELY
BESELJ IDL Reference Guide

103

r

BESELY

The BESELY function returns the Y Bessel function of orderN for the argumentX. If
X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point. BESELY uses the
y0(3M) , y1(3M) , andyn(3M) functions from the standard C math library.

Syntax

Result = BESELY(X, N)

Arguments

X

The expression for which the Y Bessel function is required.X must be greater than 0.
The result has the same dimensions asX.

N

The order of the Y Bessel function to calculate.N must be an integer greater than o
equal to 0.

See Also

BESELI, BESELJ
IDL Reference Guide BESELY

104

etic.
BETA

The BETA function returns the value of the beta function B(Z, W). This routine is
written in the IDL language. Its source code can be found in the filebeta.pro in the
lib subdirectory of the IDL distribution.

Syntax

Result = BETA(Z, W [, /DOUBLE])

Arguments

Z, W

The point at which the beta function is to be evaluated.Z andW can be scalar or
array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To evaluate the beta function at the point (1.0, 1.1) and print the result:

PRINT, BETA(1.0, 1.1)

IDL prints:

0.909091

The exact solution is:

((1.00 * .95135077) / (1.10 * .95135077)) = 0.909091.

See Also

GAMMA , IBETA, IGAMMA , LNGAMMA
BETA IDL Reference Guide

105

ue

le

h a
BILINEAR

The BILINEAR function uses a bilinear interpolation algorithm to compute the val
of a data array at each of a set of subscript values. The function returns a two-
dimensional, floating-point interpolated array.

This routine is written in the IDL language. Its source code can be found in the fi
bilinear.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = BILINEAR(P, IX, JY)

Arguments

P

A two-dimensional data array.

IX and JY

Arrays containing the X and Y “virtual subscripts” ofP for which to interpolate
values.IX andJY can be either of the following:

• One-dimensional,n-element floating-point arrays of subscripts to look up inP.
One-dimensional arrays will be converted to two-dimensional arrays in suc
way thatIX containsn identical rows andJY containsn identical columns.

• Two-dimensional,n-element floating-point arrays that uniquely specify the X
subscripts (theIX array) and the Y subscripts (theJYarray) of the points to be
computed from the input arrayP.

In either case,IX must satisfy the expressions

0 <= MIN(IX) < N0 and 0 < MAX(IX) <= N0

whereN0 is the total number of columns in the arrayP. JY must satisfy the
expressions

0 <= MIN(JY) < M0 and 0 < MAX(JY) <= M0

whereM0 is the total number of rows in the arrayP.

It is better to use two-dimensional arrays forIX andJY because the algorithm is
somewhat faster. IfIX andJY are specified as one-dimensional, the returned two-
IDL Reference Guide BILINEAR

106

e of

nd
dimensional arraysIX andJYcan be re-used on subsequent calls to take advantag
the faster 2D algorithm.

Example

Create a 3 x 3 floating point array P:

P = FINDGEN(3,3)

Suppose we wish to find the value of a point half way between the first and seco
elements of the first row ofP. Create the subscript arraysIX andJY:

IX = 0.5 ;Define the X subscript.
JY = 0.0 ;Define the Y subscript.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the value at the point IX,JY within P.

IDL prints:

0.500000

Suppose we wish to find the values of a 2 x 2 array of points inP. Create the subscript
arraysIX andJY:

IX = [[0.5, 1.9], [1.1, 2.2]] ;Define the X subscripts.
JY = [[0.1, 0.9], [1.2, 1.8]] ;Define the Y subscripts.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the array of values.

IDL prints:

0.800000 4.60000
4.70000 7.40000

See Also

INTERPOL, INTERPOLATE, KRIG2D
BILINEAR IDL Reference Guide

107

ry

le

ter
BIN_DATE

The BIN_DATE function converts a standard form ASCII date/time string to a bina
string. The function returns a six-element integer array where:

• Element 0 is the year (e.g., 1994)

• Element 1 is the month (1-12)

• Element 2 is the day (1-31)

• Element 3 is the hour (0-23)

• Element 4 is minutes (0-59)

• Element 5 is seconds (0-59)

This routine is written in the IDL language. Its source code can be found in the fi
bin_date.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = BIN_DATE(Ascii_Time)

Arguments

Ascii_Time

A string containing the date/time to convert in standard ASCII format. If this
argument is omitted, the current date/time is used. Standard form is a 24 charac
string:

DOW MON DD HH:MM:SS YYYY

where DOW is the day of the week, MON is the month, DD is the day of month,
HH:MM:SS is the time in hours, minutes, second, and YYYY is the year.

See Also

CALDAT, JULDAY, SYSTIME
IDL Reference Guide BIN_DATE

108

s
RY.

nary

of
usly

ed

e

n the

r

ll
BINARY_TEMPLATE

The BINARY_TEMPLATE function presents a graphical user interface which allow
the user to interactively generate a template structure for use with READ_BINA

The graphical user interface allows the user to define one or more fields in the bi
file. The file may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type
data to be read. Where necessary, fields can be defined in terms of other previo
defined fields using IDL expressions. Fields can also be designated as “Verify”.
When a file is read using a template with “Verify” fields, those fields will be check
against a user defined value supplied via the template.

Syntax

Template = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=filename])

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test th
template. As the user interacts with the BINARY_TEMPLATE graphical user
interface, the user’s input will be tested for correctness against the binary data i
file. If filename is not specified, a dialog allows the user to choose the file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the use
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader is killed, for any reason, a
widgets in the group are also destroyed.
BINARY_TEMPLATE IDL Reference Guide

109

’s

plied

ser
ffset
N_ROWS

Set this keyword to the number of rows to be visible in the BINARY_TEMPLATE
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the
Y_SCROLL_SIZE keywords.

TEMPLATE

Use this keyword to specify an initial template for viewing and editing via the
BINARY_TEMPLATE graphical user interface.

Note
A greater than (“>”) or less than (“<“) symbol can appear in the
BINARY_TEMPLATE’s “New Field” and the “Modify Field” dialogs where the
offset value is displayed. The presence of either symbol indicates that the sup
offset value is “relative” from the end of the previous field or from the initial
position in the file. Greater than means offset forward. Less than means offset
backward. “>0” and “<0” are synonymous and mean “offset zero bytes”. The u
can delete these special symbols (thereby indicating that their corresponding o
value is not “relative”) by typing over them in the “New Field” or “Modify Field”
dialogs where the offset value is displayed.

See Also

READ_BINARY, ASCII_TEMPLATE
IDL Reference Guide BINARY_TEMPLATE

110

ts are
w

u

BINDGEN

The BINDGEN function returns a byte array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = BINDGEN(D1, ...,D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create a four-element by four-element byte array, and store the result in the
variable A, enter:

A = BINDGEN(4,4)

Each element in A holds the value of its one-dimensional subscript. That is, if yo
enter the command:

PRINT, A

IDL prints the result:

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

See Also

CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
BINDGEN IDL Reference Guide

111

ce

le

rs in

.0,
ent

he

e

BINOMIAL

The BINOMIAL function computes the probability that in a cumulative binomial
(Bernoulli) distribution, a random variableX is greater than or equal to a user-
specified valueV, givenN independent performances and a probability of occurren
or successP in a single performance.

This routine is written in the IDL language. Its source code can be found in the fi
binomial.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = BINOMIAL(V, N, P)

Arguments

V

A non-negative integer specifying the minimum number of times the event occu
N independent performances.

N

A non-negative integer specifying the number of performances. If the number of
performances exceeds 25, the Gaussian distribution is used to approximate the
cumulative binomial distribution.

P

A non-negative single- or double-precision floating-point scalar, in the interval [0
1.0], that specifies the probability of occurrence or success of a single independ
performance.

Examples

Compute the probability of obtaining at least two 6s in rolling a die four times. T
result should be 0.131944.

result = binomial(2, 4, 1.0/6.0)

Compute the probability of obtaining exactly two 6s in rolling a die four times. Th
result should be 0.115741.

result = binomial(2, 4, 1./6.) - binomial(3, 4, 1./6.)
IDL Reference Guide BINOMIAL

112

he
Compute the probability of obtaining three or fewer 6s in rolling a die four times. T
result should be 0.999228.

result = (binomial(0, 4, 1./6.) - binomial(1, 4, 1./6.)) + $
(binomial(1, 4, 1./6.) - binomial(2, 4, 1./6.)) + $
(binomial(2, 4, 1./6.) - binomial(3, 4, 1./6.)) + $
(binomial(3, 4, 1./6.) - binomial(4, 4, 1./6.))

See Also

CHISQR_PDF, F_PDF, GAUSS_PDF, T_PDF
BINOMIAL IDL Reference Guide

113

ectors

ion

hen

y

BLAS_AXPY

The BLAS_AXPY procedure updates an existing array by adding a multiple of
another array. It can also be used to update one or more one-dimensional subv
of an array according to the following vector operation:

where A is a scale factor and X is an input vector.

BLAS_AXPY can be faster and use less memory than the usual IDL array notat
(e.g.Y=Y+A*X) for updating existing arrays.

Note
BLAS_AXPY is much faster when operating on entire arrays and rows, than w
used on columns or higher dimensions.

Syntax

BLAS_AXPY, Y, A, X [, D1, Loc1[, D2, Range]]

Arguments

Y

The array to be updated.Ycan be of any numeric type. BLAS_AXPY does not
change the size and type ofY.

A

The scaling factor to be multiplied withX. A may be any scalar or one-element arra
that IDL can convert to the type ofX. BLAS_AXPY does not changeA.

X

The array to be scaled and added to arrayY, or the vector to be scaled and added to
subvectors ofY.

D1

An optional parameter indicating which dimension ofX is to be updated.

Y aX Y+=
IDL Reference Guide BLAS_AXPY

114

r

of
Loc1

A variable with the same number of elements as the number of dimensions ofX. The
Loc1andD1 arguments together determine which one-dimensional subvector (o
subvectors, ifD1 andRange are provided) ofX is to be updated.

D2

An optional parameter, indicating in which dimension ofX a group of one-
dimensional subvectors are to be updated.D2 should be different fromD1.

Range

A variable containingD2 indices indicating where to put one-dimensional updates
X.

Example

;A seed value needs to be defined:
seed = 5L

;Create a multidimensional array:
A = FINDGEN(40, 90, 10)

;Create a random update:
B = RANDOMU(40, 90, 10)

;Add a multiple of B to A.(i.e., A = A + 4.5*B):
BLAS_AXPY, A, 4.5, B

;Add a constant to a subvector of A
;(i.e. A[*,4,9] = A[*,4,9] + 4.3):
BLAS_AXPY, A, 1., REPLICATE(4.3, 40), 1, [0,4,9]

;Create a vector update:
C = FINDGEN(90)

;Add C to a group of subvectors of A
;(i.e. A[9,*,*] = A[9,*,*] + C):
BLAS_AXPY, A, 1., C, 2, [9,0,0], 3, LINDGEN(10)

See Also

REPLICATE_INPLACE
BLAS_AXPY IDL Reference Guide

115

le

 the

d

BLK_CON

The BLK_CON function computes a “fast convolution” of a digital signal and an
impulse-response sequence. It returns the filtered signal.

This routine is written in the IDL language. Its source code can be found in the fi
blk_con.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = BLK_CON(Filter, Signal [, B_LENGTH=scalar])

Arguments

Filter

A P-element floating-point vector containing the impulse-response sequence of
digital filter.

Signal

An n-element floating-point vector containing the discrete signal samples.

Keywords

B_LENGTH

A scalar specifying theblock length of the subdivided signal segments. If this
parameter is not specified, a near-optimal value is chosen by the algorithm base
upon the lengthP of the impulse-response sequence. IfP is a value less than 11 or
greater than 377, then B_LENGTH must be specified.

B_LENGTH must be greater than the filter length,P, and less than the number of
signal samples.

Example

; Create a filter of length P = 32:
filter = REPLICATE(1.0,32);Set all points to 1.0
filter(2*INDGEN(16)) = 0.5;Set even points to 0.5

; Create a sampled signal with random noise:
signal = SIN((FINDGEN(1000)/35.0)^2.5)
noise = (RANDOMU(SEED,1000)-.5)/2.
signal = signal + noise
IDL Reference Guide BLK_CON

116
; Convolve the filter and signal using block convolution:
result = BLK_CON(filter, signal)

See Also

CONVOL
BLK_CON IDL Reference Guide

117

rsor

ee

le

e the
ing.

utton

box
BOX_CURSOR

The BOX_CURSOR procedure emulates the operation of a variable-sized box cu
(also known as a “marquee” selector).

Warning
BOX_CURSOR does not function properly when used within a draw widget. S
the BUTTON_EVENTS and MOTION_EVENTS keywords inWIDGET_DRAW.

This routine is written in the IDL language. Its source code can be found in the fi
box_cursor.pro in thelib subdirectory of the IDL distribution.

Using BOX_CURSOR

Once the box cursor has been realized, hold down the left mouse button to mov
box by dragging. Hold down the middle mouse button to resize the box by dragg
(The corner nearest the initial mouse position is moved.) Press the right mouse b
to exit the procedure and return the current box parameters.

Syntax

BOX_CURSOR, [X0, Y0, NX, NY [, /INIT] [, /FIXED_SIZE]] [, /MESSAGE]

Arguments

X0, Y0

Named variables that will contain the coordinates of the lower left corner of the
cursor.

NX, NY

Named variables that will contain the width and height of the cursor, in pixels.

Keywords

INIT

If this keyword is set, the argumentsX0, Y0, NX, andNY contain the initial position
and size of the box.
IDL Reference Guide BOX_CURSOR

118

t

FIXED_SIZE

If this keyword is set,NXandNYcontain the initial size of the box. This size may no
be changed by the user.

MESSAGE

If this keyword is set, IDL prints a message describing operation of the cursor.

See Also

Routines:CURSOR

Keywords to DEVICE:“CURSOR_CROSSHAIR” on page 2097,
“CURSOR_IMAGE” on page 2097,“CURSOR_STANDARD” on page 2098,
“CURSOR_XY” on page 2099
BOX_CURSOR IDL Reference Guide

119

he
le
the
.

BREAKPOINT

The BREAKPOINT procedure allows you to insert and remove breakpoints in
programs for debugging. A breakpoint causes program execution to stop after t
designated statement is executed. Breakpoints are specified using the source fi
name and line number. For multiple-line statements (statements containing “$”,
continuation character), specify the line number of the last line of the statement

You can insert breakpoints in programs without editing the source file. Enter the
following:

HELP, /BREAKPOINT

to display the breakpoint table which gives the index, module and source file
locations of each breakpoint.

Syntax

BREAKPOINT [,File], Index [, AFTER=integer] [, /CLEAR]
[, CONDITION=‘expression’] [, /DISABLE] [, /ENABLE] [, /ONCE] [, /SET]

Arguments

File

An optional string argument that contains the name of the source file. Note that ifFile
is not in the current directory, the full path name must be specified even ifFile is in
one of the directories specified by !PATH.

Index

The line number at which to clear or set a breakpoint.

Keywords

AFTER

Set this keyword equal to an integern. Execution will stop only after thenth time the
breakpoint is hit. For example:

BREAKPOINT, /SET, 'test.pro', 8, AFTER=3

sets a breakpoint at the eighth line of the filetest.pro , but only stops execution
after the breakpoint has been encountered three times.
IDL Reference Guide BREAKPOINT

120

ified

 non-
e

can

n be
CLEAR

Set this keyword to remove a breakpoint. The breakpoint to be removed is spec
either by index, or by the source file and line number. Use commandHELP,
/BREAKPOINT to display the indices of existing breakpoints. For example:

; Clear breakpoint with an index of 3:
BREAKPOINT, /CLEAR, 3

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /CLEAR, 'test.pro',8

CONDITION

Set this keyword to a string containing an IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the expression is true (if it returns a
zero value), program execution is interrupted. The expression is evaluated in th
context of the program containing the breakpoint. For example:

BREAKPOINT, 'myfile.pro', 6, CONDITION='i gt 2'

If i is greater than 2 at line 6 ofmyfile.pro , the program is interrupted.

DISABLE

Set this keyword to disable the specified breakpoint, if it exists. The breakpoint
be specified using the breakpoint index or file and line number:

; Disable breakpoint with an index of 3:
BREAKPOINT, /DISABLE, 3

; Disable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /DISABLE, 'test.pro',8

ENABLE

Set this keyword to enable the specified breakpoint if it exists. The breakpoint ca
specified using the breakpoint index or file and line number:

; Enable breakpoint with an index of 3:
BREAKPOINT, /ENABLE, 3

; Enable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /ENABLE, 'test.pro',8
BREAKPOINT IDL Reference Guide

121

nt is

ord
ONCE

Set this keyword to make the breakpoint temporary. If ONCE is set, the breakpoi
cleared as soon as it is hit. For example:

BREAKPOINT, /SET, 'file.pro', 12, AFTER=3, /ONCE

sets a breakpoint at line 12 offile.pro . Execution stops when line 12 is
encountered the third time, and the breakpoint is automatically cleared.

SET

Set this keyword to set a breakpoint at the designated source file line. If this keyw
is set, the first input parameter,File must be a string expression that contains the
name of the source file. The second input parameter must be an integer that
represents the source line number.

For example, to set a breakpoint at line 23 in the source filexyz.pro , enter:

BREAKPOINT, /SET, 'xyz.pro', 23
IDL Reference Guide BREAKPOINT

122

the
BROYDEN

The BROYDEN function solves a system ofn nonlinear equations (wheren ≥ 2) in n
dimensions using a globally-convergent Broyden’s method. The result is ann-
element vector containing the solution.

BROYDEN is based on the routinebroydn described in section 9.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = BROYDEN(X, Vecfunc [, CHECK=variable] [, /DOUBLE]
[, ITMAX= value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN= value]
[, TOLX=value])

Arguments

X

An n-element vector (wheren ≥ 2) containing an initial guess at the solution of the
system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines
system of non-linear equations. This function must accept a vector argumentX and
return a vector result.

For example, suppose we wish to solve the following system:

To represent this system, we define an IDL function named BROYFUNC:

3x yz() 1 2⁄–cos–

x
2

81 y 0.1+()2– z() 1.06+sin+

e xy– 20z 10π 3–
3

------------------+ +

0=
BROYDEN IDL Reference Guide

123

h
e

ess

etic.

ault

hes.

he
FUNCTION broyfunc, X
RETURN, [3.0 * X[0] - COS(X[1]*X[2]) - 0.5,$
X[0]^2 - 81.0*(X[1] + 0.1)^2 + SIN(X[2]) + 1.06,$
EXP(-X[0]*X[1]) + 20.0 * X[2] + (10.0*!PI - 3.0)/3.0]

END

Keywords

CHECK

BROYDEN calls an internal function namedfmin() to determine whether the
routine has converged to a local rather than a global minimum (seeNumerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable whic
will be set to 1 if the routine has converged to a local minimum or to 0 if not. If th
routine does converge to a local minimum, try restarting from a different initial gu
to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The def
is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searc
The default value is 100.0.

TOLF

Set the convergence criterion on the function values. The default value is 1.0× 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0× 10-6.

TOLX

Set the convergence criterion onX. The default value is 1.0× 10-7.

Example

We can use BROYDEN to solve the non-linear system of equations defined by t
BROYFUNC function above:
IDL Reference Guide BROYDEN

124
;Provide an initial guess as the algorithm’s starting point:
X = [-1.0, 1.0, 2.0]

;Compute the solution:
result = BROYDEN(X, 'BROYFUNC')

;Print the result:
PRINT, result

IDL prints:

0.500000 -1.10731e-07 -0.523599

The exact solution (to eight-decimal accuracy) is [0.5, 0.0, -0.52359877].

See Also

FX_ROOT, FZ_ROOTS, NEWTON
BROYDEN IDL Reference Guide

125

ues)

r:
BYTARR

The BYTARR function returns a byte vector or array.

Syntax

Result = BYTARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, BYTARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed (array elements contain random val
and BYTARR executes faster.

Example

To create B as a 3 by 3 by 5 byte array where each element is set to zero, ente

B = BYTARR(3, 3, 5)

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide BYTARR

126

h as
g

n

n.

lt.
s can

ar.

te
BYTE

The BYTE function returns a result equal toExpression converted to byte type. If
Expression is a string, each string is converted to a byte vector of the same lengt
the string. Each element of the vector is the character code of the correspondin
character in the string. The BYTE function can also be used to extract data from
Expression and place it in a byte scalar or array without modification, if more tha
one parameter is present. See“Type Conversion Functions” on page 110 for details.

Syntax

Result = BYTE(Expression[, Offset[, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to type byte.

Offset

The byte offset from the beginning ofExpression. Specifying this argument allows
fields of data extracted fromExpressionto be treated as byte data without conversio

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

Example

If the variable A contains the floating-point value 10.0, it can be converted to by
type and saved in the variable B by entering:

B = BYTE(A)

See Also

COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
BYTE IDL Reference Guide

127

at.
ng

ow,
.

ger
ars
d may

in

to
BYTEORDER

The BYTEORDER procedure converts integers between host and network byte
ordering or floating-point values between the native format and XDR (IEEE) form
This routine can also be used to swap the order of bytes within both short and lo
integers. If the type of byte swapping is not specified via one of the keywords bel
bytes within short integers are swapped (even and odd bytes are interchanged)

The size of the parameter, in bytes, must be evenly divisible by two for short inte
swaps, and by four for long integer swaps. BYTEORDER operates on both scal
and arrays. The parameter must be a variable, not an expression or constant, an
not contain strings. The contents ofVariable are overwritten by the result.

Network byte ordering is “big endian”. That is, multiple byte integers are stored
memory beginning with the most significant byte.

Syntax

BYTEORDER,Variable1, ...,Variablen [, /DTOVAX] [, /DTOXDR] [, /FTOVAX]
[, /FTOXDR] [, /HTONL] [, /HTONS] [, /L64SWAP] [, /LSWAP] [, /NTOHL]
[, /NTOHS] [, /SSWAP] [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAXTOD] [, /VAXTOF] [, /XDRTOD]
[, /XDRTOF]

VMS keywords: [, /DTOGFLOAT] [, /GFLOATTOD]

Arguments

Variable n

A named variable (not an expression or constant) that contains the data to be
converted. The contents ofVariable are overwritten by the new values.

Keywords

DTOVAX

Set this keyword to convert native (IEEE) double-precision floating-point format
VAX D float format. See“Note On IEEE to VAX Format Conversion” on page 130.

DTOXDR

Set this keyword to convert native double-precision floating-point format to XDR
(IEEE) format.
IDL Reference Guide BYTEORDER

128

o

s
d

ers.
 if no

he
FTOVAX

Set this keyword to convert native (IEEE) single-precision floating-point format t
VAX F float format. See“Note On IEEE to VAX Format Conversion” on page 130.

FTOXDR

Set this keyword to convert native single-precision floating-point format to XDR
(IEEE) format.

HTONL

Set this keyword to perform host to network conversion, longwords.

HTONS

Set this keyword to perform host to network conversion, short integers.

L64SWAP

Set this keyword to perform a 64-bit swap (8 bytes). Swap the order of the bytes
within each 64-bit word. For example, the eight bytes within a 64-bit word are
changed from (B0, B1, B2, B3 B4, B5, B6, B7), to (B7, B6, B5, B4, B3, B2, B1, B0).

LSWAP

Set this keyword to perform a 32-bit longword swap. Swap the order of the byte
within each longword. For example, the four bytes within a longword are change
from (B0, B1, B2, B3), to (B3, B2, B1, B0).

NTOHL

Set this keyword to perform network to host conversion, longwords.

NTOHS

Set this keyword to perform network to host conversion, short integers.

SSWAP

Set this keyword to perform a short word swap. Swap the bytes within short integ
The even and odd numbered bytes are interchanged. This is the default action,
other keyword is set.

SWAP_IF_BIG_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “big endian” byte ordering. On little endian machines, t
BYTEORDER request quietly returns without doing anything. Note that this
BYTEORDER IDL Reference Guide

129

r

he

r

g-

-

to
ny
keyword does not refer to the byte ordering of the input data, but to the compute
hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “little endian” byte ordering. On big endian machines, t
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the compute
hardware.

VAXTOD

Set this keyword to convert VAX D float format to native (IEEE) double-precision
floating-point format. See“Note On IEEE to VAX Format Conversion” on page 130.

Note
If you have VAX G float format data, see the“VMS-Only Keywords” on page 129.

VAXTOF

Set this keyword to convert VAX F float format to native (IEEE) single-precision
floating-point format. See“Note On IEEE to VAX Format Conversion” on page 130.

Note
If you have VAX G float format data, see the“VMS-Only Keywords” on page 129.

XDRTOD

Set this keyword to convert XDR (IEEE) format to native double-precision floatin
point.

XDRTOF

Set this keyword to convert XDR (IEEE) format to native single-precision floating
point.

VMS-Only Keywords

DTOGFLOAT

Set this keyword to convert native (IEEE) double-precision floating-point format
VAX G float format. Note that IDL does not support the VAX G float format via a
other mechanism. See“Note On IEEE to VAX Format Conversion” on page 130.
IDL Reference Guide BYTEORDER

130

y

X
,

red

ed

oth

ting
he
GFLOATTOD

Set this keyword to convert VAX G float format to native (IEEE) double-precision
floating-point format. Note that IDL does not support the VAX G float format via an
other mechanism.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VA
formats and back (IEEE to VAX to IEEE) is not a completely reversible operation
and should be avoided when possible. There are many cases where the recove
values will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are convert
to VAX format and cannot be recovered.

• Differences in precision and range can also cause information to be lost in b
directions.

Research Systems recommends using IEEE/VAX conversions only to read exis
VAX format data, and strongly recommends that all new files be created using t
IEEE format.

See Also

SWAP_ENDIAN
BYTEORDER IDL Reference Guide

131

nal

al to

l to

ing-

ote
BYTSCL

The BYTSCL function scales all values ofArray that lie in the range (Min ≤ x ≤ Max)
into the range (0≤ x ≤ Top). The returned result has the same structure as the origi
parameter and is of byte type.

Syntax

Result = BYTSCL(Array [, MAX= value] [, MIN= value] [, /NAN] [, TOP=value])

Arguments

Array

The array to be scaled and converted to bytes.

Keywords

MAX

The maximum value ofArray to be considered. If MAX is not provided,Array is
searched for its maximum value. All values greater or equal to MAX are set equ
TOP in the result.

MIN

The minimum value ofArray to be considered. If MIN is not provided,Array is
searched for its minimum value. All values less than or equal to MIN are set equa
0 in the result.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values”on page 346 for more information
on IEEE floating-point values.)

TOP

The maximum value of the scaled result. If TOP is not specified, 255 is used. N
that the minimum value of the scaled result is always 0.
IDL Reference Guide BYTSCL

132

ys.
Example

BYTSCL is often used to scale images into the appropriate range for 8-bit displa
As an example, enter the following commands:

; Create a simple image array:
IM = DIST(200)

; Display the array as an image:
TV, IM

; Scale the image into the full range of bytes (0 to 255) and
; re-display it:
IM = BYTSCL(IM)

; Display the new image:
TV, IM

See Also

BYTE, TVSCL
BYTSCL IDL Reference Guide

133

le
C_CORRELATE

The C_CORRELATE function computes the cross correlationPxy(L) or cross
covarianceRxy(L) of two sample populationsX andY as a function of the lagL

wherex andy are the means of the sample populationsx = (x0, x1, x2, ... ,xN-1) and
y = (y0, y1, y2, ... ,yN-1), respectively.

This routine is written in the IDL language. Its source code can be found in the fi
c_correlate.pro in thelib subdirectory of the IDL distribution.

Pxy L()

xk L+ x–() yk y–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑
-- For L < 0

xk x–() yk L+ y–()
k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑
-- For L 0≥

=

Rxy L()

1
N
---- xk L+ x–() yk y–()

k 0=

N L– 1–

∑ For L < 0

1
N
---- xk x–() yk L+ y–()

k 0=

N L– 1–

∑ For L 0≥

=

IDL Reference Guide C_CORRELATE

134

cross

etic.
Syntax

Result = C_CORRELATE(X, Y, Lag [, /COVARIANCE] [, /DOUBLE])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Lag

A scalar orn-element integer vector in the interval [-(n-2), (n-2)], specifying the
signed distances between indexed elements ofX.

Keywords

COVARIANCE

Set this keyword to compute the sample cross covariance rather than the sample
correlation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define two n-element sample populations:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
Y = [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95]

; Compute the cross correlation of X and Y for LAG = -5, 0, 1, 5,
; 6, 7:
lag = [-5, 0, 1, 5, 6, 7]
result = C_CORRELATE(X, Y, lag)
PRINT, result

IDL Output

-0.428246 0.914755 0.674547 -0.405140 -0.403100 -0.339685
C_CORRELATE IDL Reference Guide

135
See Also

A_CORRELATE, CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide C_CORRELATE

136

d

ected
AT
mple

le

=

-31).

,

CALDAT

The CALDAT procedure computes the month, day, year, hour, minute, or secon
corresponding to a given Julian date. The inverse of this procedure is JULDAY.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corr
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALD
procedure reflects the adjustment for dates after October 4, 1582. See the exa
below for an illustration.

This routine is written in the IDL language. Its source code can be found in the fi
caldat.pro in thelib subdirectory of the IDL distribution.

Syntax

CALDAT, Julian, Month[, Day [, Year [, Hour [, Minute [, Second]]]]]

Arguments

Julian

A numeric value or array that specifies the Julian Day Number (which begins at
noon) to be converted to a calendar date.

Note
AlthoughJulian can be of any numeric value, CALDAT will convert all values to
longword integer, retaining the same dimensionality.

Month

A named variable that, on output, contains the number of the desired month (1
January, ..., 12 = December).

Day

A named variable that, on output, contains the number of the day of the month (1

Year

A named variable that, on output, contains the number of the desired year (e.g.
1994).
CALDAT IDL Reference Guide

137

-23).

(0-

racy
 4,
he

an

s the
Hour

A named variable that, on output, contains the number of the hour of the day (0

Minute

A named variable that, on output, contains the number of the minute of the day
1439).

Second

A named variable that, on output, contains the number of the second of the day
(0-86399).

Examples

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccu
of slightly more than 11 minutes per year. As a result, the day following October
1582 was October 15, 1582. CALDAT follows this convention, as illustrated by t
following commands:

CALDAT, 2299160, Month, Day, Year
PRINT, Month, Day, Year

IDL prints:

10 4 1582

Warning
You should be aware of this discrepancy between the original and revised Juli
calendar reckonings if you calculate dates before October 15, 1582.

Be sure to distinguish betweenMonth andMinute when assigning variable names.
For example, the following code would cause the Minute value to be the same a
Month value:

;Find date corresponding to Julian day 2529161.36:
CALDAT, 2529161.36, M, D, Y, H, M, S
PRINT, M, D, Y, H, M, S

IDL prints:

7 4 2212 18 7 0.00000000

Instead, use something like:

CALDAT, 2529161.36, Month, Day, Year, Hour, Minute, Second
PRINT, Month, Day, Year, Hour, Minute, Second
IDL Reference Guide CALDAT

138
You can use arrays for theJulian argument:

CALDAT,FINDGEN(4)+2449587L, m, d, y
PRINT, m, d, y

IDL prints:

 8 8 8 8
 22 23 24 25
 1994 1994 1994 1994

See Also

BIN_DATE, JULDAY, SYSTIME
CALDAT IDL Reference Guide

139

 the

le

ary,
 for

ed
ts,
CALENDAR

The CALENDAR procedure displays a calendar for a month or an entire year on
current plotting device. This IDL routine imitates the UNIXcal command.

This routine is written in the IDL language. Its source code can be found in the fi
calendar.pro in thelib subdirectory of the IDL distribution.

Syntax

CALENDAR [[, Month] , Year]

Arguments

Month

The number of the month for which a calendar is desired (1 is January, 2 is Febru
..., 12 is December). If called without arguments, CALENDAR draws a calendar
the current month.

Year

The number of the year for which a calendar should be drawn. If YEAR is provid
without MONTH, a calendar for the entire year is drawn. If called without argumen
CALENDAR draws a calendar for the current month.

Example

;Display a calendar for May, 1995.
CALENDAR, 5, 1995

See Also

SYSTIME
IDL Reference Guide CALENDAR

140

nd
by

 by
s
n the

 to

in
for

o the

ged
CALL_EXTERNAL

The CALL_EXTERNAL function calls a function in an external sharable object a
returns a scalar value. Parameters can be passed by reference (the default) or
value. See the “Call External” chapter of theExternal Development Guide for
examples.

CALL_EXTERNAL is supported under all systems operating systems supported
IDL, although there are system specific details of which you must be aware. Thi
function requires no interface routines and is much simpler and easier to use tha
LINKIMAGE procedure. However, CALL_EXTERNAL performs no checking of
the type and number of parameters. Programming errors are likely to cause IDL
crash or to corrupt your data.

Warning
Input and output actions should be performed within IDL code, using IDL’s built-
input/output facilities, or by using IDL_Message(). Using external code options
input and output, such as stdin or stdout, may generate unexpected results.

CALL_EXTERNAL supports theIDL Portable Convention, a portable calling
convention that works on all platforms. This convention passes two arguments t
called routine, an argument count (argc) and an array of arguments (argv). On non-
VMS systems, this is the only available convention. Under VMS, the VMS
LIB$CALLG convention is also available,. This convention, which is the default,
uses the VMS LIB$CALLG runtime library routine to call functions without
requiring a special (argc , argv) convention.

The result of the CALL_EXTERNAL function is a scalar value returned by the
external function. By default, this is a scalar long integer. This default can be chan
by specifying one of the keywords described below that alter the result type.

Syntax

Result = CALL_EXTERNAL(Image, Entry [, P0, ...,PN-1] [, /ALL_VALUE]
[, B_VALUE | , /D_VALUE | , /F_VALUE | , /I_VALUE | , /L64_VALUE | ,
/S_VALUE | , /UI_VALUE | , /UL_VALUE | , /UL64_VALUE] [, /CDECL]
[, RETURN_TYPE=value] [, /UNLOAD] [, VALUE= byte_array])

VMS keywords: [, DEFAULT=string] [, /PORTABLE] [, /VAX_FLOAT]
CALL_EXTERNAL IDL Reference Guide

141

IX

 of

ents
ce, but
ust
meters
s on
 IDL

some
s

ards

and
en
lled
Arguments

Image

The name of the file, which must be a sharable image (VMS), sharable library (UN
and Macintosh), or DLL (Windows), which contains the routine to be called.

Under VMS the full interpretation of this argument is discussed in“VMS
CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL” on page 147.

Entry

A string containing the name of the symbol in the library which is the entry point
the routine to be called.

P0, ..., PN-1

The parameters to be passed to the external routine. All array and structure argum
are passed by reference (address). The default is to also pass scalars by referen
the ALL_VALUE or VALUE keywords can be used to pass them by value. Care m
be taken to ensure that the type, structure, and passing mechanism of the para
passed to the external routine match what it expects. There are some restriction
data types that can be passed by value, and the user needs to be aware of how
passes strings. Both issues discussed in further detail below.

Keywords

ALL_VALUE

Set this keyword to indicate that all parameters are passed by value. There are
restrictions on data types that should be considered when using this keyword., a
discussed below.

B_VALUE

If set, this keyword indicates that the called function returns a byte value.

CDECL

The Microsoft Windows operating system has two distinct system defined stand
that govern how routines pass arguments:stdcall , which is used by much of the
operating system as well as languages such as Visual Basic, andcdecl , which is
used widely for programming in the C language. These standards differ in how
when arguments are pushed onto the system stack. The standard used by a giv
function is determined when the function is compiled, and can usually be contro
by the programmer. If you call function using the wrong standard (e.g. calling a
IDL Reference Guide CALL_EXTERNAL

142

for

L

e

e.

n
G
ble,
stdcall function as if it werecdecl , or the reverse), you could get incorrect
results, corrupted memory, or you could crash IDL. Unfortunately, there is no way
IDL to know which convention a given function uses; this information must be
supplied by the user of CALL_EXTERNAL. If the CDECL keyword is present, ID
will use thecdecl convention to call the function. Otherwise,stdcall is used.

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string
containing the default device, directory, file name, and file type information for th
file that contains the sharable image. See“VMS CALL_EXTERNAL and
LIB$FIND_IMAGE_SYMBOL” on page 147 for additional information.

D_VALUE

If set, this keyword indicates that the called function returns a double-precision
floating value.

F_VALUE

If set, this keyword indicates that the called function returns a single-precision
floating value.

I_VALUE

If set, this keyword indicates that the called function returns an integer value.

L64_VALUE

If set, this keyword indicates that the called function returns a 64-bit integer valu

PORTABLE

Under VMS, causes CALL_EXTERNAL to use the IDL Portable calling conventio
for passing arguments to the called function instead of the default VMS LIB$CALL
convention. Under other operating systems, only the portable convention is availa
so this keyword is quietly ignored. The details of these calling conventions are
described in“Calling Convention” on page 145.

RETURN_TYPE

The type code to set the type of the result. See the description of theSIZE function
for a list of the IDL type codes.

S_VALUE

If set, this keyword indicates that the called function returns a pointer to a
null-terminated string.
CALL_EXTERNAL IDL Reference Guide

143

r

ger

e a

 In

able

g the
ter P

g this

le)
UI_VALUE

If set, this keyword indicates that the called function returns an unsigned intege
value.

UL_VALUE

If set, this keyword indicates that the called function returns an unsigned long inte
value.

UL64_VALUE

If set, this keyword indicates that the called function returns an unsigned 64-bit
integer value.

UNLOAD

Normally, IDL keepsImage loaded in memory after the call to CALL_EXTERNAL
completes. This is done for efficiency—loading a sharable object can be a slow
operation. Setting the UNLOAD keyword will cause IDL to unloadImage after the
call to it is complete. This is useful if you are debugging code inImage, as it allows
you to iterate on your code without having to exit IDL between tests. It can also b
good idea if you do not intend to make any subsequent calls to routines withinImage.

If IDL is unable to unload the sharable object, it will issue an error to that effect.
addition to any operating system reported problem that might occur, there are 2
situations in which IDL cannot perform the UNLOAD operation:

• If the sharable library has been used for any other purpose in addition to
CALL_EXTERNAL (e.g. LINKIMAGE).

• The VMS operating system does not offer a mechanism for unloading shar
objects from a running program. Use of the UNLOAD keyword under VMS
will therefore cause an error to be issued.

VALUE

A byte array, with as many elements as there are optional parameters, indicatin
method of parameter passing. Arrays are always passed by reference. If paramei
is a scalar, it is passed by reference if VALUE[i] is 0; and by value if it is non-zero.
There are some restrictions on data types that should be considered when usin
keyword, as discussed below.

VAX_FLOAT (VMS Only)

If specified, all data passed to the called function is first converted to VAX F (sing
or D (double) floating point formats. On return, any data passed by reference is
IDL Reference Guide CALL_EXTERNAL

144

de

X
nd
alues

ed

oth

ting
he

 in

ptor.
converted back to the IEEE format used by IDL. This feature allow you to call co
compiled to work with earlier versions of IDL, which used the old VAX formats.

The default setting for this keyword is FALSE, unless IDL was started with the
VAX_FLOAT startup option, in which case the default is TRUE. See“Command
Line Options”in Chapter 4 ofUsing IDL for details on this qualifier. You can change
this setting at runtime using theVAX_FLOAT function.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VA
format and back (IEEE to VAX to IEEE) is not a completely reversible operation, a
should be avoided when possible. There are many cases where the recovered v
will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are convert
to VAX format and cannot be recovered.

• Differences in precision and range can also cause information to be lost in b
directions.

Research Systems recommends using IEEE/VAX conversions only to read exis
VAX format data, and strongly recommends that all new files be created using t
IEEE format.

String Parameters

IDL represents strings internally as IDL_STRING descriptors, which are defined
the C language as:

typedef struct {
 unsigned short slen;
 unsigned short stype;
 char *s;
} IDL_STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descri
To pass a string by value the string pointer (thes field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

• Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.
CALL_EXTERNAL IDL Reference Guide

145

ring
ty
uld

 is
ch

 of C
ay

via

irectly
nced
 the
n

• Theslen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

• Thestype field is used internally by IDL to know keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

• s is the pointer to the actual C string represented by the descriptor. If the st
is NULL, IDL represents it as a NULL (0) pointer, not as a pointer to an emp
null terminated string. Hence, called code that expects a string pointer sho
check for a NULL pointer before dereferencing it.

These issues are examined in greater detail in the IDLExternal Development Guide.

Calling Convention

CALL_EXTERNAL supports two distinct calling conventions for calling user-
supplied routines. The primary convention is the IDL Portable convention, which
supported on all platforms. The second is the VMS LIB$CALLG convention whi
is only available under VMS.

Portable

The portable interface convention passes all arguments as elements of an array
void pointers (void *). The C language prototype for a user function called this w
looks like one of the following:

RET_TYPE xxx(int argc, void *argv[])

Where RET_TYPE is one of the following:UCHAR, short , IDL_UINT , IDL_LONG,
IDL_ULONG, IDL_LONG64, IDL_ULONG64, float , double , or char * . The return
type used must agree with the type assumed by CALL_EXTERNAL as specified
the keywords described above.

Argc is the number of arguments, and the vectorargv contains the arguments
themselves, one argument per element. Arguments passed by reference map d
to these (void *) pointers, and can be cast to the proper type and then derefere
directly by the called function. Passing arguments by value is allowed, but since
values are passed in (void *) pointers, there are some limitations and restrictions o
what is possible:

• Types that are larger than a pointer cannot be passed by value, and
CALL_EXTERNAL will issue an error if this is attempted.
IDL Reference Guide CALL_EXTERNAL

146

er
g a

oint
t.
ct C
non-

n

e

e,
ata
s as

not

y

lue.

e
ines

 by
er
• Integer values can be easily passed by value. IDL widens any of the integ
types to the C int type and they are then converted to a (void *) pointer usin
C cast operation.

• There is no C language-defined conversion between pointers and floating p
types, so IDL copies the data for the value directly into the pointer elemen
Although such values can be retrieved by the called routine with the corre
casting operations, this is inconvenient and error prone. It is best to pass
integer data by reference.

VMS LIB$CALLG

The LIB$CALLG calling convention is built directly upon the VMS LIB$CALLG
runtime library function. This function allows calling functions with a natural
interface without requiring a special (argc , argv) convention. In Fortran, a typical
routine might be declared:

INTEGER *4 FUNCTION XXX(P1, P2, ..., PN)

As with the Portable convention described above, the return type for the functio
must be one of the following types:UCHAR, short , IDL_UINT , IDL_LONG,
IDL_ULONG, IDL_LONG64, IDL_ULONG64, float , double , or char * .

It is possible to pass arguments of any data type by reference, but there are som
limitations and restrictions on passing arguments by value. Unfortunately, the
interface to LIB$CALLG was designed explicitly for the VAX hardware architectur
and does not provide sufficient information to the operating system to pass all d
types by value properly on ALPHA Risc CPUs which pass arguments in register
well as on the system stack. To the best of our knowledge, Digital Equipment
Corporation has no plans to supply an updated version of LIB$CALLG that does
have these limitations. Therefore, this calling convention has the following
restrictions on ALPHA/VMS:

• A single or double-precision floating-point argument can only be passed b
value if it is one of the first six arguments to the function.

• Single- and double-precision complex arguments cannot be passed by va

The LIB$CALLG calling convention is the default for VMS IDL because it was th
original convention supported on that platform, and because it allows calling rout
that do not adhere to the (argc , argv) style interface required by the portable
convention. The Portable convention, described above, can be used under VMS
setting the PORTABLE keyword. If you are writing external code to be used und
operating systems other than VMS, using the portable interface simplifies cross
platform development.
CALL_EXTERNAL IDL Reference Guide

147

d is

of the
o be
aded.

me.

e.

nd
tion

er,
ssed
VMS CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL

The VMS implementation of CALL_EXTERNAL uses the system runtime library
function LIB$FIND_IMAGE_SYMBOL to perform the dynamic linking. This
function has a complicated interface in which the name of the library to be linke
given in two separate arguments. We encourage VMS users wishing to use
CALL_EXTERNAL to read and fully understand the documentation for
LIB$FIND_IMAGE_SYMBOL in order to understand how it is used by IDL. The
following discussion assumes that you have a copy of the
LIB$FIND_IMAGE_SYMBOL documentation available to consult as you read.

LIB$FIND_IMAGE_SYMBOL uses an argument calledfilename to specify the
name of the sharable library or executable to be loaded. This means that none
file specification punctuation characters (:, [, <, ;, .) are allowed. Filename can als
a logical name, in which case its translated value is the name of the file to be lo
The translation of such a logical name is allowed to contain additional file
specification information. VMS uses this information to find the file to load, using
SYS$SHARE as the default location if a location is not specified via a logical na
Alternatively, the user can supply theimage-nameargument, which is used as a
“default filespec” to fill in the parts of the file specification not contained in filenam
IDL uses the following rules, in the order listed, to determine how to call
LIB$FIND_IMAGE_SYMBOL:

1. If CALL_EXTERNAL is called with both the Image argument and DEFAULT
keyword, Image is passed to LIB$FIND_IMAGE_SYMBOL as filename, a
DEFAULT is passed as image-name. Both are passed directly to the func
without any interpretation.

2. If DEFAULT is not present and Image does not contain a file specification
character (: , [, <, ; , .) then it is passed to LIB$CALL_IMAGE_SYMBOL as
it’s filename argument without any further interpretation.

3. If DEFAULT is not present and Image contains a file specification charact
then IDL examines it and locates the filename part. The filename part is pa
to LIB$FIND_IMAGE_SYMBOL as filename and the entire string from
Image is passed asimage-name.

This means that although LIB$CALL_IMAGE_SYMBOL has a complicated
interface, the CALL_EXTERNAL user can supply a simple file specification for
Image and it will be properly loaded by IDL. Full control of
LIB$CALL_IMAGE_SYMBOL is still available for those who require it.
IDL Reference Guide CALL_EXTERNAL

148

to

n.
s.

lue
eir

er

nd
rs
Important Changes Since IDL 5.0

The current version of CALL_EXTERNAL differs from IDL versions up to and
including IDL 5.0 in a few important ways that are important to users moving code
the current version:

• Under Windows, CALL_EXTERNAL would pass IDL strings by value no
matter how the ALL_VALUE or VALUE keywords were set. This was
inconsistent with all the other platforms and created unnecessary confusio
IDL now uses these keywords to decide how to pass strings on all platform
Windows users with existing code that expects strings to be passed by va
without having specified it via one of these keywords will need to adjust th
use of CALL_EXTERNAL or their code.

• VMS IDL through version 5.0 was only capable of using the LIB$CALLG
calling convention. Newer versions can also use the portable convention.

• Older versions of IDL would quietly pass by value arguments that are larg
than a pointer without issuing an error when using the portable calling
convention. Although this might work on some hardware, it is error prone a
can cause IDL to crash. IDL now issues an error in this case. Programme
with existing code moving to a current version of IDL should change their
code to pass such data by reference.

Example

See the IDLExternal Development Guide for examples using CALL_EXTERNAL.

See Also

LINKIMAGE , VAX_FLOAT
CALL_EXTERNAL IDL Reference Guide

149

ed

a

CALL_FUNCTION

CALL_FUNCTION calls the IDL function specified by the stringName, passing any
additional parameters as its arguments. The result of the called function is pass
back as the result of this routine.

Although not as flexible as the EXECUTE function, CALL_FUNCTION is much
faster. Therefore, CALL_FUNCTION should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_FUNCTION(Name [, P1, ...,Pn])

Arguments

Name

A string containing the name of the function to be called. This argument can be
variable, which allows the called function to be determined at runtime.

Pi

The arguments to be passed to the function given byName. These arguments are the
positional and keyword arguments documented for the called function, and are
passed to the called function exactly as if it had been called directly.

Example

The following command indirectly calls the IDL function SQRT (the square root
function) with an argument of 4 and stores the result in the variable R:

R = CALL_FUNCTION('SQRT', 4)

See Also

CALL_PROCEDURE, CALL_METHOD, EXECUTE
IDL Reference Guide CALL_FUNCTION

150

 or a

a

ssed
CALL_METHOD

CALL_METHOD calls the object method specified byName, passing any additional
parameters as its arguments. CALL_METHOD can be used as either a function
procedure, depending on whether the called method is a function or procedure.

Although not as flexible as the EXECUTE function, CALL_METHOD is much
faster. Therefore, CALL_METHOD should be used in preference to EXECUTE
whenever possible.

Syntax

CALL_METHOD, Name, ObjRef, [, P1, ...,Pn]

or

Result = CALL_METHOD(Name, ObjRef, [, P1, ...,Pn])

Arguments

Name

A string containing the name of the method to be called. This argument can be
variable, which allows the called method to be determined at runtime.

ObjRef

A scalar object reference that will be passed to the method as theSelf argument.

Pi

The arguments to be passed to the method given byName. These arguments are the
positional and keyword arguments documented for the called method, and are pa
to the called method exactly as if it had been called directly.

See Also

CALL_FUNCTION, CALL_PROCEDURE, EXECUTE
CALL_METHOD IDL Reference Guide

151

h
TE

be a

e

CALL_PROCEDURE

CALL_PROCEDURE calls the procedure specified byName, passing any additional
parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_PROCEDURE is muc
faster. Therefore, CALL_PROCEDURE should be used in preference to EXECU
whenever possible.

Syntax

CALL_PROCEDURE,Name[, P1, ..., Pn]

Arguments

Name

A string containing the name of the procedure do be called. This argument can
variable, which allows the called procedure to be determined at runtime.

Pi

The arguments to be passed to the procedure given byName. These arguments are the
positional and keyword arguments documented for the called procedure, and ar
passed to the called procedure exactly as if it had been called directly.

Example

The following example shows how to call the PLOT procedure indirectly with a
number of arguments. First, create a dataset for plotting by entering:

B = FINDGEN(100)

Call PLOT indirectly to create a polar plot by entering:

CALL_PROCEDURE, 'PLOT', B, B, /POLAR

A “spiral” plot should appear.

See Also

CALL_FUNCTION, CALL_METHOD, EXECUTE
IDL Reference Guide CALL_PROCEDURE

152

see
CASE...ENDCASE

The CASE...ENDCASE statement selects one statement for execution, depending on
the value of an expression.

Note
CASE...ENDCASE is an IDL statement. For information on using statements,
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

CASEexpression OF

expression: statement

...

expression: statement

[ELSE:statement]

ENDCASE
CASE...ENDCASE IDL Reference Guide

153

the
g

dure
rror

all to
R

are
age is
e
 the

r

CATCH

The CATCH procedure provides a generalized mechanism for the handling of
exceptions and errors within IDL. Calling CATCH establishes an error handler for
current procedure that intercepts all errors that can be handled by IDL, excludin
non-fatal warnings such as math errors.

When an error occurs, each active procedure, beginning with the offending proce
and proceeding up the call stack to the main program level, is examined for an e
handler. If an error handler is found, control resumes at the statement after the c
CATCH. The index of the error is returned in the argument to CATCH. The !ERRO
(or !SYSERROR) and !ERR_STRING (or !SYSERR_STRING) system variables
also set. If no error handlers are found, program execution stops, an error mess
issued, and control reverts to the interactive mode. A call to ON_IOERROR in th
procedure that causes an I/O error supersedes CATCH, and takes the branch to
label defined by ON_IOERROR.

This mechanism is similar, but not identical to, thesetjmp/longjmp facilities in C
and thecatch/throw facilities in C++.

Error handling is discussed in more detail inChapter 15, “Controlling Errors” in
Building IDL Applcations.

Syntax

CATCH, Variable [, /CANCEL]

Arguments

Variable

A named variable in which the error index is returned. When an error handler is
established by a call to CATCH,Variable is set to zero. If an error occurs,Variable is
set to the error index, and control is transferred to the statement after the call to
CATCH.

Keywords

CANCEL

Set this keyword to cancel the error handler for the current procedure. This
cancellation does not affect other error handlers that may be established in othe
active procedures.
IDL Reference Guide CATCH

154

trol
Example

The following procedure illustrates the use of CATCH:

PRO ABC

;Define variable A:
A = FLTARR(10)

;Establish error handler. When errors occur, the index of the error
;is returned in the variable Error_status:
CATCH, Error_status

;This statement begins the error handler:
IF Error_status NE 0 THEN BEGIN
PRINT, 'Error index: ', Error_status

PRINT, 'Error message:', !ERR_STRING
A=FLTARR(12);Handle the error by extending A.

ENDIF

;Cause an error:
A[11]=12

;Even though an error occurs in the line above, program execution
;continues to this point because the event handler extended the
;definition of A so that the statement can be re-executed.
HELP, A
END

Running the ABC procedure causes IDL to produce the following output and con
returns to the interactive prompt:

Error index: -101
Error message:
Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array[12]

See Also

ON_ERROR, ON_IOERROR, Chapter 15, “Controlling Errors” in Building IDL
Applcations.
CATCH IDL Reference Guide

155

his
es
IX,

d.

ing
tory
ory
IDL Reference Guide

CD

The CD procedure is used to set and/or change the current working directory. T
routine changes the working directory for the IDL session and any child process
started from IDL during that session after the directory change is made. Under UN
CD does not affect the working directory of the process that started IDL. The
PUSHD, POPD, and PRINTD procedures provide a convenient interface to CD.

Syntax

CD [, Directory] [, CURRENT=variable]

Arguments

Directory

A scalar string specifying the path of the new working directory. IfDirectory is
specified as a null string, the working directory is changed to the user’s home
directory (UNIX and VMS) or to the directory specified by !DIR (Windows and
Macintosh). If this argument is not specified, the working directory is not change

Keywords

CURRENT

If CURRENT is present, it specifies a named variable into which the current work
directory is stored as a scalar string. The returned directory is the working direc
before the directory is changed. Thus, you can obtain the current working direct
and change it in a single statement:

CD, new_dir, CURRENT=old_dir

Example

Under UNIX, to change the working directory to the “data” subdirectory of the
current directory, enter:

CD, 'data'

Under VMS, you could use:

CD, '[.data]'

See Also

PUSHD, POPD
CD

156
CDF Routines

See“Alphabetical Listing of CDF Routines” in theScientific Data Formats manual.
CDF Routines IDL Reference Guide

157

nt.
t

gle-
er
CEIL

The CEIL function returns the closest integer greater than or equal to its argume
This value is returned as a longword integer with the same structure as the inpu
argument.

Syntax

Result = CEIL(X)

Arguments

X

The value for which the ceiling function is to be evaluated. This value can be sin
or double-precision, real or complex floating-point. CEIL returns a longword integ
with the same structure asX.

Example

To print the ceiling function of 5.1, enter:

PRINT, CEIL(5.1)

IDL prints:

6

See Also

COMPLEXROUND, FLOOR, ROUND
IDL Reference Guide CEIL

158

al
off

le
CHEBYSHEV

The CHEBYSHEV function returns the forward or reverse Chebyshev polynomi
expansion of a set of data. Note: Results from this function are subject to round
error given discontinuous data.

This routine is written in the IDL language. Its source code can be found in the fi
chebyshev.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CHEBYSHEV(D, N)

Arguments

D

A vector containing the values at the zeros of Chebyshev polynomial.

N

A flag that, if set to -1, returns a set of Chebyshev polynomials. If set to +1, the
original data is returned.

See Also

FFT, WTN
CHEBYSHEV IDL Reference Guide

159

tus.
 of

ber

r
reter
ding
CHECK_MATH

The CHECK_MATH function returns and clears the accumulated math error sta
The returned value is the sum of the bit values (described in the following table)
the accumulated errors. Note that not all machines detect all errors.

Note that each type of error is only represented once in the return value—any num
of “Integer divided by zero” errors will result in a return value of 1.

The math error status is cleared (reset to zero) when CHECK_MATH is called, o
when errors are reported. Math errors are reported either never, when the interp
returns to an interactive prompt, or after execution of each IDL statement, depen
on the value of the !EXCEPT system variable (see“!EXCEPT” on page 2196). See
“Examples” below for further discussion.

Syntax

Result = CHECK_MATH([, MASK=bitmask] [, /NOCLEAR] [, /PRINT])

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH

1 Integer divided by zero

2 Integer overflow

16 Floating-point divided by zero

32 Floating-point underflow

64 Floating-point overflow

128 Floating-point operand error. An illegal operand was
encountered, such as a negative operand to the SQRT or
ALOG functions, or an attempt to convert to integer a
number whose absolute value is greater than 231 - 1

Table 4: Math Error Status Values
IDL Reference Guide CHECK_MATH

160

ed.
t

o be

K
t,

lts,

avior
able

lly,
ce

rns
n

Keywords

MASK

If present, the mask of exceptions to check. Otherwise, all exceptions are check
Exceptions that are pending but not specified by MASK are not reported, and no
cleared. Set this keyword equal to the sum of the bit values for each exception t
checked. For a list of the bit values corresponding to various exceptions, see
CHECK_MATH.

NOCLEAR

If set, CHECK_MATH returns the pending exceptions (as specified via the MAS
keyword) and clears them from its list of pending exceptions. If NOCLEAR is se
the exceptions are not cleared and remain pending.

PRINT

Set this keyword to print an error message to the IDL command log if any
accumulated math errors exist. If this keyword is not present, CHECK_MATH
executes silently.

Examples

To simply check and clear the accumulated math error status using all the defau
enter:

PRINT, CHECK_MATH()

IDL prints the accumulated math error status code and resets to zero.

CHECK_MATH and !EXCEPT

Because the accumulated math error status is cleared when it is reported, the beh
and appropriate use of CHECK_MATH depends on the value of the system vari
!EXCEPT.

• If !EXCEPT is set equal to 0, math exceptions are not reported automatica
and thus CHECK_MATH will always return the error status accumulated sin
the last time it was called.

• If !EXCEPT is set equal to 1, math exceptions are reported when IDL retu
to the interactive command prompt. In this case, CHECK_MATH will retur
appropriate error codes when usedwithin an IDL procedure, but will always
return zero when called at the IDL prompt.
CHECK_MATH IDL Reference Guide

161

gue
• If !EXCEPT is set equal to 2, math exceptions are reported after each IDL
statement. In this case, CHECK_MATH will return appropriate error codes
only when usedwithin an IDL statement, and will always return zero
otherwise.

For example:

;Set value of !EXCEPT to zero.
!EXCEPT=0

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1

The special floating-point value Inf is returned for 1./0. There is no integer analo
to the floating-point Inf.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

17

CHECK_MATH reports floating-point and integer divide-by-zero errors.

;Set value of !EXCEPT to one.
!EXCEPT=1

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0

This time IDL also prints error messages.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

0

The status was reset.
IDL Reference Guide CHECK_MATH

162

g

s has
IDL

red:
However, if we do not allow IDL to return to an interactive prompt before checkin
the math error status:

;Set value of !EXCEPT to one.
!EXCEPT=1

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
17

In this case, the math error status code (17) is printed, but because the error statu
been cleared by the call to CHECK_MATH, no error messages are printed when
returns to the interactive command prompt. Finally,

;Set value of !EXCEPT to two.
!EXCEPT=2

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0
% Detected at $MAIN$
 0

Errors are printed before executing the CHECK_MATH function, so
CHECK_MATH reports no errors. However, if we include the call to
CHECK_MATH in the first PRINT command, we see the following:

;Call to CHECK_MATH is part of a single IDL statement.
PRINT, 1./0., 1/0, CHECK_MATH()

IDL prints:

Inf 1 17

Printing Error Messages

The following code fragment prints abbreviated names of errors that have occur

;Create a string array of error names.
ERRS = ['Divide by 0', 'Underflow', 'Overflow', $
CHECK_MATH IDL Reference Guide

163
'Illegal Operand']

;Get math error status.
J = CHECK_MATH()
FOR I = 4, 7 DO IF ISHFT(J, -I) AND 1 THEN $

;Check to see if an error occurred and print the corresponding
;error message.

PRINT, ERRS(I-4), ' Occurred'

Testing Critical Code

Example 1

Assume you have a critical section of code that is likely to produce an error. The
following example shows how to check for errors, and if one is detected, how to
repeat the code with different parameters.

; Clear error status from previous operations, and print error
; messages if an error exists:
JUNK = CHECK_MATH(/PRINT)

; Disable automatic printing of subsequent math errors:
!EXCEPT=0

;Critical section goes here.
AGAIN: ...

; Did an arithmetic error occur? If so, print error message and
; request new values:
IF CHECK_MATH() NE 0 THEN BEGIN
PRINT, 'Math error occurred in critical section.'

; Get new parameters from user:
READ, 'Enter new values.',...

; Enable automatic printing of math errors:
!EXCEPT=2

;And retry:
GOTO, AGAIN
ENDIF
IDL Reference Guide CHECK_MATH

164

c

Example 2

This example demonstrates the use of the MASK keyword to check for a specifi
error, and the NOCLEAR keyword to prevent exceptions from being cleared:

PRO EXAMPLE2_CHECKMATH

PRINT, 1./0
PRINT, CHECK_MATH(MASK=16,/NOCLEAR)
PRINT, CHECK_MATH(MASK=2,/NOCLEAR)

END

IDL Output

Inf
16
0
% Program caused arithmetic error: Floating divide by 0

See Also

FINITE, ISHFT, MACHAR, “!VALUES” on page 2193,“!EXCEPT” on page 2196,
“Math Errors” in Chapter 15 ofBuilding IDL Applcations
CHECK_MATH IDL Reference Guide

165

le

.0,

 the

tion
 is
CHISQR_CVF

The CHISQR_CVF function computes the cutoff valueV in a Chi-square distribution
with Df degrees of freedom such that the probability that a random variableX is
greater thanV is equal to a user-supplied probabilityP.

This routine is written in the IDL language. Its source code can be found in the fi
chisqr_cvf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_CVF(P, Df)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the Chi-square distribution.

Example

Use the following command to compute the cutoff value in a Chi-square distribu
with three degrees of freedom such that the probability that a random variable X
greater than the cutoff value is 0.100. The result should be 6.25139.

PRINT, CHISQR_CVF(0.100, 3)

IDL prints:

6.25139

See Also

CHISQR_PDF, F_CVF, GAUSS_CVF, T_CVF
IDL Reference Guide CHISQR_CVF

166

le

toff

 the

,
qual

n
61.
CHISQR_PDF

The CHISQR_PDF function computes the probabilityP that, in a Chi-square
distribution withDf degrees of freedom, a random variableX is less than or equal to a
user-specified cutoff valueV.

This routine is written in the IDL language. Its source code can be found in the fi
chisqr_pdf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_PDF(V, Df)

Arguments

V

An integer, single-, or double-precision floating-point scalar that specifies the cu
value.

Df

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the Chi-square distribution.

Examples

Use the following command to compute the probability that a random variable X
from the Chi-square distribution with three degrees of freedom, is less than or e
to 6.25. The result should be 0.899939.

result = CHISQR_PDF(6.25, 3)
PRINT, result

IDL prints:

0.899939

Compute the probability that a random variable X from the Chi-square distributio
with three degrees of freedom, is greater than 6.25. The result should be 0.1000

PRINT, 1 - chisqr_pdf(6.25, 3)

IDL prints:

0.100061
CHISQR_PDF IDL Reference Guide

167
See Also

BINOMIAL , CHISQR_CVF, F_PDF, GAUSS_PDF, T_PDF
IDL Reference Guide CHISQR_PDF

168

etic.
CHOLDC

Given a positive-definite symmetricn by n arrayA, the CHOLDC procedure
constructs its Cholesky decomposition A = LLT, whereL is a lower triangular array
and LT is the transpose ofL.

CHOLDC is based on the routinecholdc described in section 2.9 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

CHOLDC,A, P [, /DOUBLE]

Arguments

A

An n by n array. On input, only the upper triangle ofA need be given. On output,L is
returned in the lower triangle ofA, except for the diagonal elements, which are
returned in the vectorP.

P

An n-element vector containing the diagonal elements ofL.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

See the description of CHOLSOL for an example using this function.

See Also

CHOLSOL
CHOLDC IDL Reference Guide

169

er

etic.
CHOLSOL

The CHOLSOL function returns ann-element vector containing the solution to the
set of linear equations Ax = b, where A is the positive-definite symmetric array
returned by the CHOLDC procedure.

CHOLSOL is based on the routinecholsl described in section 2.9 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = CHOLSOL(A, P, B [, /DOUBLE])

Arguments

A

An n by n positive-definite symmetric array, as output by CHOLDC. Only the low
triangle ofA is accessed.

P

The diagonal elements of the Cholesky factorL, as computed by CHOLDC.

B

An n-element vector containing the right-hand side of the equation.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To solve a positive-definite symmetric system Ax = b:

;Define the coefficient array:
A = [[6.0, 15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

;Define the right-hand side vector B:
B = [9.5, 50.0, 237.0]
IDL Reference Guide CHOLSOL

170
;Compute Cholesky decomposition of A:
CHOLDC, A, P

;Compute and print the solution:
PRINT, CHOLSOL(A, P, B)

IDL prints:

-0.499998 -1.00000 0.500000

The exact solution vector is [-0.5, -1.0, 0.5].

See Also

CHOLDC, CRAMER, GS_ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL
CHOLSOL IDL Reference Guide

171

the

ts are
w

value
CINDGEN

The CINDGEN function returns a complex, single-precision, floating-point array
with the specified dimensions. Each element of the array has its real part set to
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax

Result = CINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create C, a 4-element vector of complex values with the real parts set to the
of their subscripts, enter:

C = CINDGEN(4)

See Also

BINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide CINDGEN

172

s on

lar

le

0.0

he

e

CIR_3PNT

The CIR_3PNT procedure returns the radius and center of a circle, given 3 point
the circle. This is analogous to finding the circumradius and circumcircle of a
triangle; the center of the circumcircle is the point at which the three perpendicu
bisectors of the triangle formed by the points meet.

This routine is written in the IDL language. Its source code can be found in the fi
cir_3pnt.pro in thelib subdirectory of the IDL distribution.

Syntax

CIR_3PNT,X, Y, R, X0, Y0

Arguments

X

A three-element vector containing the X-coordinates of the points.

Y

A three-element vector containing the Y-coordinates of the points.

R

A named variable that will contain the radius of the circle. The procedure returns
if the points are co-linear.

X0

A named variable that will contain the X-coordinate of the center of the circle. T
procedure returns 0.0 if the points are co-linear.

Y0

A named variable that will contain the Y-coordinate of the center of the circle. Th
procedure returns 0.0 if the points are co-linear.

Example

X = [1.0, 2.0, 3.0]
Y = [1.0, 2.0, 1.0]
CIR_3PNT, X, Y, R, X0, Y0
PRINT, 'The radius is: ', R
PRINT, 'The center of the circle is at: ', X0, Y0
CIR_3PNT IDL Reference Guide

173
See Also

PNT_LINE, SPH_4PNT
IDL Reference Guide CIR_3PNT

174

s are

ich
.

g the
CLOSE

The CLOSE procedure closes the file units specified as arguments. All open file
also closed when IDL exits.

Syntax

CLOSE[,Unit1, ...,Unitn] [, /ALL] [, /FILE]

Arguments

Unit i

The IDL file units to close.

Keywords

ALL

Set this keyword to close all open file units. In addition, any file units that were
allocated via GET_LUN are freed.

FILE

Set this keyword to close all file units from 1 to 99. File units greater than 99, wh
are associated with the GET_LUN and FREE_LUN procedures, are not affected

Example

If file units 1 and 3 are open, they can both be closed at the same time by enterin
command:

CLOSE, 1, 3

See Also

OPEN
CLOSE IDL Reference Guide

175

on

etic.

te

e
riable
les
CLUST_WTS

The CLUST_WTS function computes the weights (the cluster centers) of anm-
column,n-row array, wherem is the number of variables andn is the number of
observations or samples. The result is anm-column, N_CLUSTERS-row array of
cluster centers.

Syntax

Result = CLUST_WTS(Array [, /DOUBLE] [, N_CLUSTERS=value]
[, N_ITERATIONS=integer] [, VARIABLE_WTS=vector])

Arguments

Array

An m-column,n-row array of any data type except string, single- or double-precisi
complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

N_CLUSTERS

Set this keyword equal to the number of cluster centers. The default is to compun
cluster centers.

N_ITERATIONS

Set this keyword equal to the number of iterations used when in computing the
cluster centers. The default is to use 20 iterations.

VARIABLE_WTS

Set this keyword equal to anm-element vector of floating-point variable weights. Th
elements of this vector are used to give greater or lesser importance to each va
(each column) in determining the cluster centers. The default is to give all variab
equal weighting using a value of 1.0.

Example

See the documentation for CLUSTER.
IDL Reference Guide CLUST_WTS

176
See Also

CLUSTER, “Multivariate Analysis” in Chapter 16 ofUsing IDL.
CLUST_WTS IDL Reference Guide

177

.
he

o

ion.

etic.

 row
CLUSTER

The CLUSTER function computes the classification of anm-column,n-row array,
wherem is the number of variables andn is the number of observations or samples
The classification is based upon a cluster analysis of sample-based distances. T
result is a 1-column,n-row array of cluster number assignments that correspond t
each sample.

Syntax

Result = CLUSTER(Array, Weights [, /DOUBLE] [, N_CLUSTERS=value])

Arguments

Array

An M-column, N-row array of type float or double.

Weights

An array of weights (the cluster centers) computed using the CLUST_WTS funct
The dimensions of this array vary according to keyword values.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

N_CLUSTERS

Set this keyword equal to the number of clusters. The default is based upon the
dimension of theWeights array.

Example

Define an array with 4 variables and 10 observations.

array = $
[[1.5, 43.1, 29.1, 1.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 7.0, 18.7], $
[9.8, 4.3, 31.1, 0.1], $
[19.1, 42.2, 0.9, 12.9], $
[25.6, 13.9, 3.7, 21.7], $
[1.4, 58.5, 27.6, 7.1], $
IDL Reference Guide CLUSTER

178
[7.9, 2.1, 30.6, 5.4], $
[22.1, 49.9, 3.2, 21.3], $
[5.5, 53.5, 4.8, 19.3]]

;Compute the cluster weights, using two distinct clusters:
weights = CLUST_WTS(array, N_CLUSTERS=2)

;Compute the classification of each sample:
result = CLUSTER(array, weights, N_CLUSTERS=2)

;Print each sample (each row) of the array and its corresponding
;cluster assignment:
FOR k = 0, N_ELEMENTS(result)-1 DO PRINT, $
array[*,k], result(k), FORMAT = '(4(f4.1, 2x), 5x, i1)'

IDL prints:

1.5 43.1 29.1 1.9 1
24.7 49.8 28.2 22.8 0
30.7 51.9 7.0 18.7 0
 9.8 4.3 31.1 0.1 1
19.1 42.2 0.9 12.9 0
25.6 13.9 3.7 21.7 0
 1.4 58.5 27.6 7.1 1
 7.9 2.1 30.6 5.4 1
22.1 49.9 3.2 21.3 0
 5.5 53.5 4.8 19.3 0

See Also

CLUST_WTS, PCOMP, STANDARDIZE, “Multivariate Analysis”in Chapter 16 of
Using IDL.
CLUSTER IDL Reference Guide

179

med
 input
rned

e
een

same
COLOR_CONVERT

The COLOR_CONVERT procedure converts colors to and from the RGB (Red
Green Blue), HLS (Hue Lightness Saturation), and HSV (Hue Saturation Value)
color systems. A keyword parameter indicates the type of conversion to be perfor
(one of the keywords must be specified). The first three parameters contain the
color triple(s) which may be scalars or arrays of the same size. The result is retu
in the last three parameters,O0, O1, andO2. RGB values are bytes in the range 0 to
255.

Hue is measured in degrees, from 0 to 360. Saturation, Lightness, and Value ar
floating-point numbers in the range 0 to 1. A Hue of 0 degrees is the color red. Gr
is 120 degrees. Blue is 240 degrees. A reference containing a discussion of the
various color systems is: Foley and Van Dam,Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co., 1982.

Syntax

COLOR_CONVERT,I0, I1, I2, O0, O1, O2 {, /HLS_RGB | , /HSV_RGB | ,
/RGB_HLS | , /RGB_HSV}

Arguments

I0, I1, I2
The input color triple(s). These arguments may be either scalars or arrays of the
length.

O0, O1, O2

The variables to receive the result. Their structure is copied from the input
parameters.

Keywords

HLS_RGB

Set this keyword to convert from HLS to RGB.

HSV_RGB

Set this keyword to convert from HSV to RGB.
IDL Reference Guide COLOR_CONVERT

180

ty
rees.
RGB_HLS

Set this keyword to convert from RGB to HLS.

RGB_HSV

Set this keyword to convert from RGB to HSV.

Example

The command:

COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

converts the RGB color triple (255, 255, 0), which is the color yellow at full intensi
and saturation, to the HSV system. The resulting hue in the variable h is 60.0 deg
The saturation and value, s and v, are set to 1.0.

See Also

HLS, HSV
COLOR_CONVERT IDL Reference Guide

181

-
. The

d,

lor-

st

pace

rg
a

COLOR_QUAN

The COLOR_QUAN function quantizes a true-color image and returns a pseudo
color image and palette to display the image on standard pseudo-color displays
output image and palette can have from 2 to 256 colors.

COLOR_QUAN solves the general problem of accurately displaying decompose
true-color images, that contain a palette of up to 224 colors, on pseudo-color displays
that can only display 256 (or fewer) simultaneous colors.

Syntax

Result = COLOR_QUAN(Image_R, Image_G, Image_B, R, G, B)

or

Result = COLOR_QUAN(Image, Dim, R, G, B)

Keywords: [, COLORS=integer{2 to 256}] [, CUBE={2 | 3 | 4 | 5 | 6} | ,
GET_TRANSLATION=variable[, /MAP_ALL]] [, /DITHER] [, ERROR=variable]
[, TRANSLATION=vector]

Note that the input image parameter can be passed as either three, separate co
component arrays (Image_R, Image_G, Image_B) or as a three-dimensional array
containing all three components,Image, and a scalar,Dim, indicating the dimension
over which the colors are interleaved.

Using COLOR_QUAN

One of two color quantization methods can be used:

• Method 1 is a statistical method that attempts to find the N colors that mo
accurately represent the original color distribution. This algorithm uses a
variation of the Median Cut Algorithm, described in “Color Image
Quantization for Frame Buffer Display”, fromComputer Graphics, Volume
16, Number 3 (July, 1982), Page 297. It repeatedly subdivides the color s
into smaller and smaller rectangular boxes, until the requested number of
colors are obtained.

The original colors are then mapped to the nearest output color, and the
original image is resampled to the new palette with optional Floyd-Steinbe
color dithering. The resulting pseudo-color image and palette are usually
good approximation of the original image.
IDL Reference Guide COLOR_QUAN

182

s
f

ree-
ed

e

color
 255.

ge.

utput
The number of colors in the output palette defaults to the number of color
supported by the currently-selected graphics output device. The number o
colors can also be specified by the COLOR keyword parameter.

• Method 2, selected by setting the keyword parameter CUBE, divides the th
dimensional color space into equal-volume cubes. Each color axis is divid
into CUBE segments, resulting in CUBE3 volumes. The original input image
is sampled to this color space using Floyd-Steinberg dithering, which
distributes the quantization error to adjacent pixels.

The CUBE method has the advantage that the color tables it produces are
independent of the input image, so that multiple quantized images can be
viewed simultaneously. The statistical method usually provides a better-
looking result and a smaller global error.

COLOR_QUAN can use the same color mapping for a series of images. See th
descriptions of the GET_TRANSLATION, MAP_ALL, and TRANSLATION
keywords, below.

Arguments

Image_R, Image_G, Image_B

Arrays containing the red, green, and blue components of the decomposed true-
image. For best results, the input image(s) should be scaled to the range of 0 to

Image

A three-dimensional array containing all three components of the true-color ima

Dim

A scalar that indicates the method of color interleaving in theImage parameter. A
value of 1 indicates interleaving by pixel: (3,n, m). A value of 2 indicates
interleaving by row: (n, 3,m). A value of 3 indicates interleaving by image: (n, m, 3).

R, G, B

Three output byte arrays containing the red, green, and blue components of the o
palette.
COLOR_QUAN IDL Reference Guide

183

eater

e of

e of

or is
GB

l

-
e
es

s

Keywords

COLORS

The number of colors in the output palette. This value must at least 2 and not gr
than 256. The default is the number of colors supported by the current graphics
output device.

CUBE

If this keyword is set, the color space is divided into CUBE3 volumes, to which the
input image is quantized. This result is always Floyd-Steinberg dithered. The valu
CUBE can range from 2 to 6; providing from 23 = 8, to 63 = 216 output colors. If this
keyword is set, the COLORS, DITHER, and ERROR keywords are ignored.

DITHER

Set this keyword to dither the output image. Dithering can improve the appearanc
the output image, especially when using relatively few colors.

ERROR

Set this optional keyword to a named variable. A measure of the quantization err
returned. This error is proportional to the square of the Euclidean distance, in R
space, between corresponding colors in the original and output images.

GET_TRANSLATION

Set this keyword to a named variable in which the mapping between the origina
RGB triples (in the true-color image) and the resulting pseudo-color indices is
returned as a vector. Do not use this keyword if CUBE is set.

MAP_ALL

Set this keyword to establish a mapping for all possible RGB triples into pseudo
color indices. Set this keyword only if GET_TRANSLATION is also present. Not
that mapping all possible colors requires more compute time and slightly degrad
the quality of the resultant color matching.

TRANSLATION

Set this keyword to a vector of translation indices obtained by a previous call to
COLOR_QUAN using the GET_TRANSLATION keyword. The resulting image i
quantized using this vector.
IDL Reference Guide COLOR_QUAN

184

isk
:

Example

The following code segment reads a true-color, row interleaved, image from a d
file, and displays it on the current graphics display, using a palette of 128 colors

;Open an input file:
OPENR, unit, 'XXX.DAT', /GET_LUN

;Dimensions of the input image:
a = BYTARR(512, 3, 480)

;Read the image:
READU, unit, a

;Close the file:
FREE LUN, unit

;Show the quantized image. The 2 indicates that the colors are
;interleaved by row:
TV, COLOR_QUAN(a, 2, r, g, b, COLORS=128)

;Load the new palette:
TVLCT, r, g, b

To quantize the image into 216 equal-volume color cubes, replace the call to
COLOR_QUAN with the following:

TV, COLOR_QUAN(a, 2, r, g, b, CUBE=6)

See Also

PSEUDO
COLOR_QUAN IDL Reference Guide

185

sult is

le

ing
n

COMFIT

The COMFIT function fits the paired data {xi, yi} to one of six common types of
approximating models using a gradient-expansion least-squares method. The re
a vector containing the model parametersa0, a1, a2, etc.

This routine is written in the IDL language. Its source code can be found in the fi
comfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result= COMFIT(X, Y, A {, /EXPONENTIAL | , /GEOMETRIC | , /GOMPERTZ | ,
/HYPERBOLIC | , /LOGISTIC | , /LOGSQUARE} [, SIGMA=variable]
[, WEIGHTS=vector] [, YFIT=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

A

A vector of initial estimates for each model parameter. The length of this vector
depends upon the type of model selected.

Keywords

Note
One of the following keywords specifying a type of model must be set when us
COMFIT. If you do not specify a model, IDL will display a warning message whe
COMFIT is called.

EXPONENTIAL

Set this keyword to compute the parameters of the exponential model.

y a0a1
x a2+=
IDL Reference Guide COMFIT

186

ions
GEOMETRIC

Set this keyword to compute the parameters of the geometric model.

GOMPERTZ

Set this keyword to compute the parameters of the Gompertz model.

HYPERBOLIC

Set this keyword to compute the parameters of the hyperbolic model.

LOGISTIC

Set this keyword to compute the parameters of the logistic model.

LOGSQUARE

Set this keyword to compute the parameters of the logsquare model.

SIGMA

Set this keyword to a named variable that will contain a vector of standard deviat
for the computed model parameters.

WEIGHTS

Set this keyword equal to a vector of weights forYi. This vector should be the same
length asX andY. The error for each term is weighted by WEIGHTSi when
computing the fit. Frequently, WEIGHTSi = 1.0/σ2

i, whereσ is the measurement
error or standard deviation ofYi (Gaussian or instrumental weighting), or
WEIGHTS = 1/Y (Poisson or statistical weighting). If WEIGHTS is not specified,
WEIGHTSi is assumed to be 1.0.

y a0xa1 a2+=

y a0a1
a2x a3+=

y 1
a0 a1x+
--------------------=

y 1
a0a1

x a2+
----------------------=

y a0 a1 x() a2 x()2log+log+=
COMFIT IDL Reference Guide

187
YFIT

Set this keyword to a named variable that will contain ann-element vector of y-data
corresponding to the computed model parameters.

Example

; Define two n-element vectors of paired data:
X = [2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, $

62.12, 64.66, 71.66, 79.94, 85.67, 114.95]
Y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, $

43.91, 44.62, 46.44, 48.43, 49.70, 55.31]

; Define a 3-element vector of initial estimates for the logsquare
; model:
A = [1.5, 1.5, 1.5]

; Compute the model parameters of the logsquare model, A[0], A[1],
; & A[2]:
result = COMFIT(X, Y, A, /LOGSQUARE)

The result should be the 3-element vector: [1.42494, 7.21900, 9.18794].

See Also

CURVEFIT, LADFIT, LINFIT, LMFIT, POLY_FIT, POLYFITW, SVDFIT
IDL Reference Guide COMFIT

188
COMMON

The COMMON statement creates a common block.

Note
COMMON is an IDL statement. For information on using statements, seeChapter
10, “Statements” in Building IDL Applcations.

Syntax

COMMON Block_Name, Variable1, ..., Variablen
COMMON IDL Reference Guide

189

 use

.g.

he
t

e

COMPILE_OPT

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears.

Research Systems recommends the use of

COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e
helper routines that are part of a larger package).

Note
COMPILE_OPT is an IDL statement. For information on using statements, see
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

COMPILE_OPTopt1 [, opt2, ...,optn]

Arguments

opt n

This argument can be any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants default to t
32-bit type rather than the usual default of 16-bit integers. This takes effec
from the point where the COMPILE_OPT statement appears in the routin
being compiled and remains in effect until the end of the routine. The
IDL Reference Guide COMPILE_OPT

190

L
es

le
to

that
re
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants:

• HIDDEN — This routine should not be displayed by HELP, unless the FUL
keyword to HELP is used. This directive can be used to hide helper routin
that regular IDL users are not interested in seeing.

A side-effect of making a routine hidden is that IDL will not print a “Compi
module” message for it when it is compiled from the library to satisfy a call
it. This makes hidden routines appear built-in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages
this routine is obsolete. This directive can be used to warn people that the
may be better ways to perform the desired task.

Constant Normal Type DEFINT32 Type

Without type specifier:

42 INT LONG

'2a'x INT LONG

42u UINT ULONG

'2a'xu UINT ULONG

With type specifier:

0b BYTE BYTE

0s INT INT

0l LONG LONG

42.0 FLOAT FLOAT

42d DOUBLE DOUBLE

42us UINT UINT

42ul ULONG ULONG

42ll LONG64 LONG64

42ull ULONG64 ULONG64

Table 5: Examples of the effect of the DEFINT32 argument
COMPILE_OPT IDL Reference Guide

191

N

• STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTIO
definition.
IDL Reference Guide COMPILE_OPT

192

lars
ro,

re
s. If

lt.
s can

ar.

tain
uch
COMPLEX

The COMPLEX function returns complex scalars or arrays given one or two sca
or arrays. If only one parameter is supplied, the imaginary part of the result is ze
otherwise it is set to the value of theImaginary parameter. Parameters are first
converted to single-precision floating-point. If either or both of the parameters a
arrays, the result is an array, following the same rules as standard IDL operator
three parameters are supplied, COMPLEX extracts fields of data fromExpression.

Syntax

Result = COMPLEX(Real [, Imaginary])

or

Result = COMPLEX(Expression, Offset, Dim1 [, ...,Dim8])

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as complex data. See the
description inChapter 5, “Constants” of Using IDL for details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid floating-point value and no conversion is possible. The default action in s
COMPLEX IDL Reference Guide

193

e can

nds:
cases is to print a warning message and return 0. The ON_IOERROR procedur
be used to establish a statement to be jumped to in case of such errors.

Example

Create a complex array from two integer arrays by entering the following comma

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = COMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.00000, 4.00000)(2.00000, 5.00000)
(3.00000, 6.00000)

See Also

BYTE, CONJ, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide COMPLEX

194

O
er.
COMPLEXARR

The COMPLEXARR function returns a complex, single-precision, floating-point
vector or array.

Syntax

Result = COMPLEXARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, COMPLEXARR sets every element of the result to zero. If the NOZER
keyword is set, this zeroing is not performed, and COMPLEXARR executes fast

Example

To create an empty, 5-element by 5-element, complex array C, enter:

C = COMPLEXARR(5, 5)

See Also

DBLARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
COMPLEXARR IDL Reference Guide

195

le
COMPLEXROUND

The COMPLEXROUND function rounds real and imaginary components of a
complex array and returns the resulting array.

This routine is written in the IDL language. Its source code can be found in the fi
complexround.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = COMPLEXROUND(Input)

Arguments

Input

The complex array to be rounded.

Example

X = [COMPLEX(1.245, 3.88), COMPLEX(9.1, 0.3345)]
PRINT, COMPLEXROUND(X)

IDL prints:

(1.00000, 4.00000)(9.00000, 0.00000)

See Also

ROUND
IDL Reference Guide COMPLEXROUND

196

 of
COMPUTE_MESH_NORMALS

The COMPUTE_MESH_NORMALS function computes normal vectors for a set
polygons described by the input array. The return value is a 3 xM array containing a
unit normal for each vertex in the input array.

Syntax

Result= COMPUTE_MESH_NORMALS(fVerts[, iConn])

Arguments

fVerts

A 3 x M array of vertices.

iConn

A connectivity array (see the POLYGONS keyword to IDLgrPolygon::Init). If no
iConn array is provided, it is assumed that the vertices infVerts constitute a single
polygon.

Keywords

None.
COMPUTE_MESH_NORMALS IDL Reference Guide

197

le

etic.
COND

The COND function returns the condition number of ann by n real or complex array
A by explicitly computing NORM(A)·NORM(A-1). If A is real andA-1 is invalid (due
to the singularity ofA or floating-point errors in the INVERT function), COND
returns -1. IfA is complex andA-1 is invalid (due to the singularity ofA), calling
COND results in floating-point errors.

This routine is written in the IDL language. Its source code can be found in the fi
cond.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = COND(A [, /DOUBLE])

Arguments

A

An n by n real or complex array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define a complex array A:
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3, 1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

; Compute the condition number of the array using internal
; double-precision arithmetic:
PRINT, COND(A, /DOUBLE)

IDL prints:

5.93773

See Also

DETERM, INVERT
IDL Reference Guide COND

198

n
ry
en

is of

le

d

ion,
CONGRID

The CONGRID function shrinks or expands the size of an array by an arbitrary
amount. CONGRID is similar to REBIN in that it can resize a one, two, or three
dimensional array, but where REBIN requires that the new array size must be a
integer multiple of the original size, CONGRID will resize an array to any arbitra
size. (REBIN is somewhat faster, however.) REBIN averages multiple points wh
shrinking an array, while CONGRID just resamples the array.

The returned array has the same number of dimensions as the original array and
the same data type.

This routine is written in the IDL language. Its source code can be found in the fi
congrid.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CONGRID(Array, X, Y, Z [, CUBIC=value{-1 to 0}] [, /INTERP]
[, /MINUS_ONE])

Arguments

Array

A 1-, 2-, or 3-dimensional array to resize.Array can be any type except string or
structure.

X

The new X-dimension of the resized array.X must be an integer or a long integer, an
must be greater than or equal to 2.

Y

The new Y-dimension of the resized array. If the original array has only 1 dimens
Y is ignored. If the original array has 2 or 3 dimensionsY MUST be present.

Z

The new Z-dimension of the resized array. If the original array has only 1 or 2
dimensions,Z is ignored. If the original array has 3 dimensions thenZ MUST be
present.
CONGRID IDL Reference Guide

199

tting

that a
.

s

or
do

c

- or
ut
is to
Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Se
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest
value of -0.5 significantly improves the reconstruction properties of this algorithm
This keyword has no effect when used with 3-dimensional arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal,f, is a band-limited signal, with no frequency
component larger thanω0, andf is sampled with spacing less than or equal to 1/(2ω0),
thenf can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation i
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques f
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redon
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubi
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

INTERP

Set this keyword to force CONGRID to use linear interpolation when resizing a 1
2-dimensional array. CONGRID automatically uses linear interpolation if the inp
array is 3-dimensional. When the input array is 1- or 2-dimensional, the default
employ nearest-neighbor sampling.

MINUS_ONE

Set this keyword to prevent CONGRID from extrapolating one row or column
beyond the bounds of the input array. For example, if the input array has the
dimensions (i, j) and the output array has the dimensions (x, y), then by default the
array is resampled by a factor of (i/x) in the X direction and (j/y) in the Y direction. If
IDL Reference Guide CONGRID

200

 90,
MINUS_ONE is set, the array will be resampled by the factors (i-1)/(x-1) and (j-
1)/(y-1).

Example

Givenvol is a 3-D array with the dimensions (80, 100, 57), resize it to be a (90,
80) array

vol = CONGRID(vol, 90, 90, 80)

See Also

REBIN
CONGRID IDL Reference Guide

201
CONJ

The CONJ function returns the complex conjugate ofX. The complex conjugate of
the real-imaginary pair (x, y) is (x, -y). If X is not complex, a complex-valued copy of
X is used.

Syntax

Result = CONJ(X)

Arguments

X

The value for which the complex conjugate is desired. IfX is an array, the result has
the same structure, with each element containing the complex conjugate of the
corresponding element ofX.

Example

Print the conjugate of the complex pair (4.0, 5.0) by entering:

PRINT, CONJ(COMPLEX(4.0, 5.0))

IDL prints:

(4.00000, -5.00000)

See Also

CINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DCOMPLEX,
DCOMPLEXARR
IDL Reference Guide CONJ

202

he

re no
e

hod.
CONSTRAINED_MIN

The CONSTRAINED_MIN procedure solves nonlinear optimization problems of t
following form:

Minimize or maximize gp(X), subject to:

glbi ≤ gi(X) ≤ gubi for i = 0,...,nfuns-1, i≠ p

xlbj ≤ xj ≤ xubj for j = 0,...,nvars-1

X is a vector ofnvars variables,x0 ,...,xnvars-1, andG is a vector ofnfuns functions
g0 ,...,gnfuns-1, which all depend onX. Any of these functions may be nonlinear. Any
of the bounds may be infinite and any of the constraints may be absent. If there a
constraints, the problem is solved as an unconstrained optimization problem. Th
program solves problems of this form by the Generalized Reduced Gradient Met
See References 1-4.

CONSTRAINED_MIN uses first partial derivatives of each functiongi with respect
to each variablexj. These are automatically computed by finite difference
approximation (either forward or central differences).

CONSTRAINED_MIN is based on an implementation of the GRG algorithm
supplied by Windward Technologies, Inc. See Reference 11.

Syntax

CONSTRAINED_MIN,X, Xbnd, Gbnd, Nobj, Gcomp, Inform [, ESPTOP=value]
[, LIMSER=value] [, /MAXIMIZE] [, NSTOP=value] [, REPORT=filename]
[, TITLE=string]

Arguments

X

An nvars-element vector. On input,X contains initial values for the variables. On
output,X contains final values of the variable settings determined by
CONSTRAINED_MIN.

Xbnd

Bounds on variables.Xbnd is annvars x 2 element array.

• Xbnd[j,0] is the lower bound for variablex[j] .

• Xbnd[j,1] is the upper bound for variablex[j] .
CONSTRAINED_MIN IDL Reference Guide

203

n

,

• Use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Gbnd

Bounds on constraint functions.Gbnd is annfuns x 2 element array.

• Gbnd[i,0] is the lower bound for functiong[i] .

• Gbnd[i,1] is the upper bound for functiong[i] .

• use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Bounds on the objective function are ignored; set them to 0.

Nobj

Index of the objective function.

Gcomp

A scalar string specifying the name of a user-supplied IDL function. This functio
must accept annvars-element vector argumentx of variable values and return an
nfuns-element vectorG of function values.

Inform

Termination status returned from CONSTRAINED_MIN.

Inform value Message

0 Kuhn-Tucker conditions satisfied.
This is the best possible indicator that an optimal point has
been found.

1 Fractional change in objective less than EPSTOP for NSTOP
consecutive iterations. See Keywords below.
This is not as good asInform=0, but still indicates the
likelihood that an optimal point has been found.

2 All remedies have failed to find a better point.
User should check functions and bounds for consistency and
perhaps, try other starting values.

Table 6: Inform argument values
IDL Reference Guide CONSTRAINED_MIN

204

,

n
e,

ut
3 Number of completed 1-dimensional searches exceeded
LIMSER. See Keywords below.
User should check functions and bounds for consistency and
perhaps, try other starting values. It might help to increase
limser. Use LIMSER=larger_value to do this.

4 Objective function is unbounded.

CONSTRAINED_MIN has observed dramatic change in the
objective function over several steps. This is a good indicatio
that the objective function is unbounded. If this is not the cas
the user should check functions and bounds for consistency.

5 Feasible point not found.
CONSTRAINED_MIN was not able to find a feasible point. If
the problem is believed to be feasible, the user should check
functions and bounds for consistency and perhaps try other
starting values.

6 Degeneracy has been encountered.
The point returned may be close to optimal. The user should
check functions and bounds for consistency and perhaps try
other starting values.

7 Noisy and nonsmooth function values. Possible singularity or
error in the function evaluations.

8 Optimization process terminated by user request.

9 Maximum number of function evaluations exceeded.

-1 Fatal Error.
Some condition, such asnvars < 0, was encountered.
CONSTRAINED_MIN documented the condition in the report
and terminated. In this case, the user needs to correct the inp
and rerun CONSTRAINED_MIN.

Inform value Message

Table 6: Inform argument values
CONSTRAINED_MIN IDL Reference Guide

205

r

e

e
ted,
Keywords

EPSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, the program will accept the current point as optimal.
CONSTRAINED_MIN will accept the current point as optimal if the Kuhn-Tucke
optimality conditions are satisfied to EPSTOP. By default, EPSTOP = 1.0e-4.

LIMSER

If the number of completed one dimensional searches exceeds LIMSER,
CONSTRAINED_MIN terminates and returns inform = 3. By default: LIMSER =
10000.

MAXIMIZE

By default, the CONSTRAINED_MIN procedure performs a minimization. Set th
MAXIMIZE keyword to perform a maximization instead.

NSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, CONSTRAINED_MIN will accept the current point as
optimal. By default, NSTOP = 3.

REPORT

Set this keyword to specify a name for the CONSTRAINED_MIN report file. If th
specified file does not exist, it will be created. Note that if the file cannot be crea
no error message will be generated. If the specified file already exists, it will be
overwritten. By default, CONSTRAINED_MIN does not create a report file.

TITLE

Set this keyword to specify a title for the problem in the CONSTRAINED_MIN
report.

Example

This example has 5 variables {X0, X1, ..., X4}, bounded above and below, a
quadratic objective function {G3}, and three quadratic constraints {G0, G1, G2},
with both upper and lower bounds. See the Himmelblau text [7], problem 11.

Minimize:
IDL Reference Guide CONSTRAINED_MIN

206

2

110

25
G3 = 5.3578547X2X2 + 0.8356891X0X4 + 37.293239X0 - 40792.141

Subject to:

0 < G0 = 85.334407 + 0.0056858X1X4 + 0.0006262X0X3 - 0.0022053X2X4 < 9

90 < G1 = 80.51249 + 0.0071317X1X4 + 0.0029955X0X1 + 0.0021813X2X2 <

20 < G2 = 9.300961 + 0.0047026X2X4 + 0.0012547X0X2 + 0.0019085X2X3 <

and,

78 < X0 < 102

33 < X1 < 45

27 < X2 < 45

27 < X3 < 45

27 < X4 < 45

This problem is solved starting from X = {78, 33, 27, 27, 27} which is infeasible
because constraint G2 is not satisfied at this point.

The constraint functions and objective function are evaluated by HMBL11:

; Himmelblau Problem 11
; 5 variables and 4 functions
FUNCTION HMBL11, x

g = DBLARR(4)
g[0] = 85.334407 + 0.0056858*x[1]*x[4] + 0.0006262*x[0] $

*x[3] - 0.0022053*x[2]*x[4]
g[1] = 80.51249 + 0.0071317*x[1]*x[4] + 0.0029955*x[0] $

*x[1] + 0.0021813*x[2]*x[2]
g[2] = 9.300961 + 0.0047026*x[2]*x[4] + 0.0012547*x[0]* $

x[2] + 0.0019085*x[2]*x[3]
g[3] = 5.3578547*x[2]*x[2] + 0.8356891*x[0]*x[4] $

+ 37.293239*x[0] - 40792.141
RETURN, g
END

; Example problem for CONSTRAINED_MIN
; Himmelblau Problem 11
; 5 variables and 3 constraints
; Constraints and objective defined in HMBL11
xbnd = [[78, 33, 27, 27, 27], [102, 45, 45, 45, 45]]
gbnd = [[0, 90, 20, 0], [92, 110, 25, 0]]
nobj = 3
CONSTRAINED_MIN IDL Reference Guide

207

of

,

72.

.

,

gcomp = 'HMBL11'
title = 'IDL: Himmelblau 11'
report = 'hmbl11.txt'
x = [78, 33, 27, 27, 27]
CONSTRAINED_MIN, x, xbnd, gbnd, nobj, gcomp, inform, $

REPORT = report, TITLE = title
g = HMBL11(x)
; Print minimized objective function for HMBL11 problem:
PRINT, g[nobj]

References

1. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming”, ACM
Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp. 34-50.

2. Lasdon, L.S. and Waren, A.D., “Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems”, in “Design and Implementation
Optimization Software”, H. Greenberg, ed., Sijthoff and Noordhoff, pubs, 1979.

3. Abadie, J. and Carpentier, J. “Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints”, in Optimization, R. Fletcher (ed.)
Academic Press London; 1969, pp. 37-47.

4. Murtagh, B.A. and Saunders, M.A. “Large-scale Linearly Constrained
Optimization”, Mathematical Programming, Vol. 14, No. 1, January 1978, pp. 41-

5. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, Vol. 12, No. 2, April 1977, pp. 241-255.

6. Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” I.B.M
T.R. no. 320-2949 (1968).

7. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Co.,
New York, 1972.

8. Fletcher, R., “A New Approach to Variable Metric Algorithms”, Computer
Journal, Vol. 13, 1970, pp. 317-322.

9. Smith, S. and Lasdon, L.S., Solving Large Sparse Nonlinear Programs Using
GRG, ORSA Journal on Computing, Vol. 4, No. 1,Winter 1992, pp. 1-15.

10. Luenbuerger, David G., Linear and Nonlinear Programming, Second Edition
Addison-Wesley, Reading Massachusetts, 1984.

11. Windward Technologies, GRG2 Users’s Guide, http://web.wt.net/~wti, 1997.
IDL Reference Guide CONSTRAINED_MIN

208

ar
lots
 time.
ed
ith

,

ary

ces
r
e

CONTOUR

The CONTOUR procedure draws a contour plot from data stored in a rectangul
array or from a set of unstructured points. Both line contours and filled contour p
can be created. Note that outline and fill contours cannot be drawn at the same
To create a contour plot with both filled contours and outlines, first create the fill
contour plot, then add the outline contours by calling CONTOUR a second time w
the OVERPLOT keyword.

Contours can be smoothed by using the MIN_CURVE_SURF function on the
contour data before contouring.

Using various keywords, described below, it is possible to specify contour levels
labeling, colors, line styles, and other options. CONTOUR draws contours by
searching for each contour line and then following the line until it reaches a bound
or closes.

Smoothing Contours

The MIN_CURVE_SURF function can be used to smoothly interpolate both
regularly and irregularly sampled surfaces before contouring. This function repla
the older SPLINE keyword to CONTOUR, which was inaccurate and is no longe
supported. MIN_CURVE_SURF interpolates the entire surface to a relatively fin
grid before drawing the contours.

Syntax

CONTOUR,Z [, X, Y] [, C_ANNOTATION=vector_of_strings]
[, C_CHARSIZE=value] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LABELS=vector{each element 0 or 1}] [, C_LINESTYLE=vector] [, /FILL | ,
/CELL_FILL [, C_ORIENTATION=degrees] [, C_SPACING=value]]
[, C_THICK=vector] [, /CLOSED] [, /DOWNHILL] [, /FOLLOW]
[, /IRREGULAR] [, LEVELS=vector |NLEVELS=integer{1 to 60}]
[, MAX_VALUE= value] [, MIN_VALUE= value] [, /OVERPLOT]
[{, /PATH_DATA_COORDS, PATH_FILENAME=string, PATH_INFO=variable,
PATH_XY=variable} | , TRIANGULATION=variable] [, /XLOG] [, /YLOG]
[, /ZAXIS] [, /ZLOG]

Graphics Keywords: [, BACKGROUND=color_index] [, CHARSIZE=value]
[, CHARTHICK=integer] [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer] [, /NOCLIP] [, /NODATA]
[, /NOERASE] [, POSITION=[X0, Y0, X1, Y1]] [, SUBTITLE=string] [, /T3D]
CONTOUR IDL Reference Guide

209

e
 as a

has

ts
n

f
,
,

[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN= [left, right]]
[, {X | Y | Z}MINOR= integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value] [, {X | Y | Z}THICK= value]
[, {X | Y | Z}TICKFORMAT= string]
[, {X | Y | Z}TICKLEN= value]
[, {X | Y | Z}TICKNAME= string_array]
[, {X | Y | Z}TICKS= integer]
[, {X | Y | Z}TICKV= array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE= string] [, ZVALUE= value{0 to 1}]

Arguments

Z

A one- or two-dimensional array containing the values that make up the contour
surface. If argumentsX andYare provided, the contour is plotted as a function of th
(X, Y) locations specified by their contents. Otherwise, the contour is generated
function of the two-dimensional array index of each element ofZ.

If the IRREGULAR keyword is set, X, Y, and Z are treated as vectors. Each point
a value of Zi and a location of (Xi, Yi)

This argument is converted to single-precision floating-point before plotting. Plo
created with CONTOUR are limited to the range and precision of single-precisio
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates for the contour
surface. IfX is a vector, each element ofX specifies the X coordinate for a column o
Z (e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array
each element of X specifies the X coordinate of the corresponding point in Z (i.e.Xij
specifies the X coordinate forZij).

Y

A vector or two-dimensional array specifying the Y coordinates for the contour
surface. IfY a vector, each element ofY specifies the Y coordinate for a row of Z
(e.g., Y[0] specifies the Y coordinate for Z[*,0]). IfY is a two-dimensional array,
IDL Reference Guide CONTOUR

210

lue.
l is
d,

ure.
g

bels

l

rd

ts.
.

d to
each element ofY specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate forZij).

Keywords

C_ANNOTATION

The label to be drawn on each contour. Usually, contours are labeled with their va
This parameter, a vector of strings, allows any text to be specified. The first labe
used for the first contour drawn, and so forth. If the LEVELS keyword is specifie
the elements of C_ANNOTATION correspond directly to the levels specified,
otherwise, they correspond to the default levels chosen by the CONTOUR proced
If there are more contour levels than elements in C_ANNOTATION, the remainin
levels are labeled with their values.

Use of this keyword implies use of the FOLLOW keyword.

Example

To produce a contour plot with three levels labeled “low”, “medium”, and “high”:

CONTOUR, Z, LEVELS = [0.0, 0.5, 1.0], $
C_ANNOTATION = ['low', 'medium', 'high']

C_CHARSIZE

The size of the characters used to annotate contour labels. Normally, contour la
are drawn at 3/4 of the size used for the axis labels (specified by the CHARSIZE
keyword or !P.CHARSIZE system variable. This keyword allows the contour labe
size to be specified directly. Use of this keyword implies use of the FOLLOW
keyword.

C_CHARTHICK

The thickness of the characters used to annotate contour labels. Set this keywo
equal to an integer value specifying the line thickness of the vector drawn font
characters. This keyword has no effect when used with the hardware drawn fon
The default value is 1. Use of this keyword implies use of the FOLLOW keyword

C_COLORS

The color index used to draw each contour. This parameter is a vector, converte
integer type if necessary. If there are more contour levels than elements in
C_COLORS, the elements of the color vector are cyclically repeated.
CONTOUR IDL Reference Guide

211

e

r
ify
ry. If
tly
y the
tour

a
ine

r
tion,
ur

,
id
Example

If C_COLORS contains three elements, and there are seven contour levels to b
drawn, the colorsc0, c1, c2, c0, c1, c2, c0 will be used for the seven levels. To call
CONTOUR and set the colors to [100,150,200], use the command:

CONTOUR, Z, C_COLORS = [100,150,200]

C_LABELS

Specifies which contour levels should be labeled. By default, every other contou
level is labeled. C_LABELS allows you to override this default and explicitly spec
the levels to label. This parameter is a vector, converted to integer type if necessa
the LEVELS keyword is specified, the elements of C_LABELS correspond direc
to the levels specified, otherwise, they correspond to the default levels chosen b
CONTOUR procedure. Setting an element of the vector to zero causes that con
label to not be labeled. A nonzero value forces labeling.

Use of this keyword implies use of the FOLLOW keyword.

Example

To produce a contour plot with four levels where all but the third level is labeled:

CONTOUR, Z, LEVELS = [0.0, 0.25, 0.75, 1.0], $
C_LABELS = [1, 1, 0, 1]

C_LINESTYLE

The line style used to draw each contour. As with C_COLORS, C_LINESTYLE is
vector of line style indices. If there are more contour levels than line styles, the l
styles are cyclically repeated. See“LINESTYLE” on page 2181 for a list of available
styles.

Note
The cell drawing contouring algorithm draws all the contours in each cell, rathe
than following contours. Since an entire contour is not drawn as a single opera
the appearance of the more complicated linestyles will suffer. Use of the conto
following method (selected with the FOLLOW keyword) will give better looking
results in such cases.

Example

To produce a contour plot, with the contour levels directly specified in a vector V
with all negative contours drawn with dotted lines, and with positive levels in sol
lines:
IDL Reference Guide CONTOUR

212

tor

l line
l

e
en
plot.

or
ause
lly to

n,
ures
he

is
CONTOUR, Z, LEVELS = V, C_LINESTYLE = (V LT 0.0)

C_ORIENTATION

If the FILL keyword is set, this keyword can be set to the angle, in degrees
counterclockwise from the horizontal, of the lines used to fill contours. If neither
C_ORIENTATION or C_SPACING are specified, the contours are solid filled.

C_SPACING

If the FILL keyword is set, this keyword can be used to control the distance, in
centimeters, between the lines used to fill the contours.

C_THICK

The line used to draw each contour level. As with C_COLORS, C_THICK is a vec
of line thickness values, although the values are floating point. If there are more
contours than thickness elements, elements are repeated. If omitted, the overal
thickness specified by the THICK keyword parameter or !P.THICK is used for al
contours.

CELL_FILL

Set this keyword to produce a filled contour plot using a “cell filling” algorithm. Us
this keyword instead of FILL when you are drawing filled contours over a map, wh
you have missing data, or when contours that extend off the edges of the contour
CELL_FILL is less efficient than FILL because it makes one or more polygons f
each data cell. It also gives poor results when used with patterned (line) fills, bec
each cell is assigned its own pattern. Otherwise, this keyword operates identica
the FILL keyword, described below.

Tip
In order for CONTOUR to fill the contours properly when using a map projectio
the X and Y arrays (if supplied) must be arranged in increasing order. This ens
that the polygons generated will be in counterclockwise order, as required by t
mapping graphics pipeline.

Warning
Do not draw filled contours over the poles on Cylindrical map projections. In th
case, the polar points map to lines on the map, and the interpolation becomes
ambiguous, causing errors in filling. One possible work-around is to limit the
latitudes to the range of -89.9 degrees to + 89.9 degrees, avoiding the poles.
CONTOUR IDL Reference Guide

213

tour

oint
is

or
he

nd
ther.

 are
d;
tours

d

R

CLOSED

Set this keyword to close contours that intersect the plot boundaries. After a con
hits a boundary, it is follows the plot boundary until it connects with its other
boundary intersection.

DOWNHILL

Set this keyword to label each contour with short, perpendicular tick marks that p
in the “downhill” direction, making the direction of the grade readily apparent. If th
keyword is set, the contour following method is used in drawing the contours.

FILL

Set this keyword to produce a filled contour plot. The contours are filled with solid
line-filled polygons. For solid polygons, use the C_COLOR keyword to specify t
color index of the polygons for each contour level. For line fills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the backgrou
color before the fill lines are drawn, to avoid superimposing one pattern over ano

Contours that are not closed can not be filled because their interior and exterior
undefined. Contours created from data sets with missing data may not be close
many map projections can also produce contours that are not closed. Filled con
should not be used in these cases.

Note
If the current graphics device is the Z-buffer, the algorithm used when the FILL
keyword is specified will not work when a Z value is also specified with the
graphics keyword ZVALUE. In this situation, use the CELL_FILL keyword instea
of the FILL keyword.

FOLLOW

In IDL version 5, CONTOUR always uses a line-following method. The FOLLOW
keyword remains available for compatibility with existing code, but is no longer
necessary. As in previous versions of IDL, setting FOLLOW will cause CONTOU
to draw contour labels.

IRREGULAR

Set this keyword to indicate that the input data is irregularly gridded. Setting
IRREGULAR is the same as performing an explicit triangulation. That is:
IDL Reference Guide CONTOUR

214

ure.

ta)

 data)
CONTOUR, Z, X, Y, /IRREGULAR

is the same as

TRIANGULATE, X, Y, tri;Get triangulation.
CONTOUR, Z, X, Y, TRIANGULATION=tri

ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2183 for more information.

LEVELS

Specifies a vector containing the contour levels drawn by the CONTOUR proced
A contour is drawn at each level in LEVELS.

Example

To draw a contour plot with levels at 1, 100, 1000, and 10000:

CONTOUR, Z, LEVELS = [1, 100, 1000, 10000]

To draw a contour plot with levels at 50, 60, ..., 90, 100:

CONTOUR, Z, LEVELS = FINDGEN(6) * 10 + 50

MAX_VALUE

Data points with values above this value are ignored (i.e., treated as missing da
when contouring. Cells containing one or more corners with values above
MAX_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

MIN_VALUE

Data points with values less than this value are ignored (i.e., treated as missing
when contouring. Cells containing one or more corners with values below
MIN_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
CONTOUR IDL Reference Guide

215

f the

y six

en
s in

nits
Y

is
 file
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

NLEVELS

The number of equally spaced contour levels that are produced by CONTOUR. I
LEVELS parameter, which explicitly specifies the value of the contour levels, is
present, this keyword has no effect. If neither parameter is present, approximatel
levels are drawn. NLEVELS should be an integer between 1 and 60.

OVERPLOT

Set this keyword to make CONTOUR “overplot”. That is, the current graphics scre
is not erased, no axes are drawn and the previously established scaling remain
effect. You must explicitly specify either the values of the contour levels or the
number of levels (via the NLEVELS keyword) when using this option, unless
geographic mapping coordinates are in effect.

PATH_DATA_COORDS

Set this keyword to cause the output contour positions to be measured in data u
rather than the default normalized units. This keyword is useful only if the PATH_X
or PATH_FILENAME keywords are set.

PATH_FILENAME

Specifies the name of a file to contain the contour positions. If PATH_FILENAME
present, CONTOUR does not draw the contours, but rather, opens the specified
and writes the positions, in normalized coordinates, into it. The file consists of a
series of logical records containing binary data. Each record is preceded with a
header structure defining the contour as follows:

{CONTOUR_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L, VALUE:0.0}

The fields are:

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed.

HIGH A byte that is 1 if the contour is closed and above its
surroundings, and is 0 if the contour is below. This field is
meaningless if the contour is not closed.

Table 7: CONTOUR Fields
IDL Reference Guide CONTOUR

216

d by

n an
Following the header in each record are NUM X-coordinate values followed by
NUM Y-coordinate values, expressed in normalized coordinates.

PATH_XY is ignored if the TRIANGULATION keyword is set. Use of this keyword
implies use of the FOLLOW keyword.

PATH_INFO

Set this keyword to a named variable that will return path information for the
contours. This information can be used, along with data stored in a variable name
the PATH_XY keyword, to trace closed contours. If PATH_INFO is present,
CONTOUR does not draw the contours, but rather records the path information i
array of structures of the following type:

{CONTOUR_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, $
LEVEL:0, N:0L, OFFSET:0L, VALUE:0.0}

The fields are:

LEVEL A short integer with value greater or equal to zero (It is an
index into the LEVELS array).

NUM The longword number of data points in the contour.

VALUE The contour value. This is a single precision floating point
value.

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed. In the present implementation, all contours are
closed.

HIGH_LOW A byte that is 1 if the contour is above its surroundings,
and is 0 if the contour is below.

LEVEL A short integer indicating the index of the contour level,
from zero to the number of levels minus one.

Table 8: PATH_INFO Fields

Field Description

Table 7: CONTOUR Fields
CONTOUR IDL Reference Guide

217

 a set
n be
o

y.

he
PATH_INFO is ignored if the TRIANGULATION keyword is set.

See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

PATH_XY

Set this keyword to a named variable that returns the normalized coordinates of
of closed polygons defining the closed paths of the contours. This information ca
used, along with data stored in a variable named by the PATH_INFO keyword, t
trace closed contours. If PATH_XY is present, CONTOUR does not draw the
contours, but rather records the normalized path coordinates in the named arra
PATH_XY is ignored if the TRIANGULATION keyword is set.

See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

TRIANGULATION

Set this keyword to a variable that contains an array of triangles returned from t
TRIANGULATE procedure. Providing triangulation data allows you to contour
irregularly gridded data directly, without gridding.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

N A long integer indicating the number of XY pairs in the
contour’s path.

OFFSET A long integer that is the offset into the array defined by
PATH_XY, representing the first XY coordinate for this
contour.

VALUE The contour value. This is a single precision floating point
value.

Field Description

Table 8: PATH_INFO Fields
IDL Reference Guide CONTOUR

218

 Z
n is

led:

se of
ZAXIS

Set this keyword to draw a Z axis for the CONTOUR plot. CONTOUR draws no
axis by default. This keyword is of use only if a three-dimensional transformatio
established.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN , [XYZ]MINOR , [XYZ]RANGE, [XYZ]STYLE , [XYZ]THICK ,
[XYZ]TICKFORMAT , [XYZ]TICKLEN , [XYZ]TICKNAME , [XYZ]TICKS ,
[XYZ]TICKV , [XYZ]TICK_GET, [XYZ]TITLE , ZVALUE.

Examples

To create a contour plot with 10 contour levels where every other contour is labe

;Create a simple dataset to plot.
Z = DIST(100)

;Draw the plot.
CONTOUR, Z, NLEVELS=10, /FOLLOW, TITLE='Simple Contour Plot'

The following commands describe a more complicated example that shows the u
polygon filling and smoothing.

First, create a surface to contour:

;Create a 2D array of random numbers.
A = RANDOMU(seed, 5, 6)

;Smooth the dataset before contouring.

Draw solid-filled contours:

; Load discrete colors for contours:
TEK_COLOR

; Draw filled contours:
CONTOUR, B, /FILL, NLEVELS=5, C_COLOR=INDGEN(5)+2

; Overplot the contour lines with tickmarks:
CONTOUR, B, NLEVELS=5, /DOWNHILL, /OVERPLOT
CONTOUR IDL Reference Guide

219

d

ss
Draw line-filled contours:

CONTOUR, B, C_ORIENTATION=[0, 22, 45]

; Overplot the contours:
CONTOUR, B, /OVERPLOT, NLEVELS=5

The following program saves the closed path information of a set of contours an
plots the result:

PRO path
; Create a 2D array of random numbers:
A = RANDOMU(seed, 8, 10)

; Smooth the dataset before contouring:
B = MIN_CURVE_SURF(A)

; Compute contour paths:
CONTOUR, B, PATH_XY=xy, PATH_INFO=info
FOR I = 0, (N_ELEMENTS(info) - 1) DO BEGIN

S = [INDGEN(info(I).N), 0]

; Plot the closed paths:
PLOTS, xy(*,INFO(I).OFFSET + S), /NORM

ENDFOR
END

To contour irregularly-gridded data without having to call TRIGRID, first use the
TRIANGULATE procedure to get the Delaunay triangulation of your data, then pa
the triangulation array to CONTOUR:

;Get triangulation.
TRIANGULATE, X, Y, tri

;Draw the contours.
CONTOUR, Z, X, Y, TRIANGULATION = tri

See Also

IMAGE_CONT, SHADE_SURF, SHOW3, SURFACE
IDL Reference Guide CONTOUR

220

and
,

lt

to

s. If
.,
CONVERT_COORD

The CONVERT_COORD function transforms one or more sets of coordinates to
from the coordinate systems supported by IDL. The result of the function is a (3n)
vector containing the (x, y, z) components of the n output coordinates.

The input coordinatesX and, optionally,Y and/orZ can be given in data, device, or
normalized form by using the DATA, DEVICE, or NORMAL keywords. The defau
input coordinate system is DATA. The keywords TO_DATA, TO_DEVICE, and
TO_NORMAL specify the output coordinate system.

If the input points are in 3D data coordinates, be sure to set the T3D keyword.

Warning
For devices that support windows, CONVERT_COORD can only provide valid
results if a window is open and current. Also, CONVERT_COORD only applies
Direct Graphics devices.

Syntax

Result = CONVERT_COORD(X [, Y [, Z]] [, /DATA | , /DEVICE | , /NORMAL]
[, /T3D] [, /TO_DATA | , /TO_DEVICE | , /TO_NORMAL])

Arguments

X

A vector or scalar argument providing the X components of the input coordinate
only one argument is specified,X must be an array of either two or three vectors (i.e
(2,*) or (3,*)). In this special case,X[0,*] are taken as the X values,X[1,*] are
taken as the Y values, and, if present,X[2,*] are taken as the Z values.

Y

An optional argument providing the Y input coordinate(s).

Z

An optional argument providing the Z input coordinate(s).
CONVERT_COORD IDL Reference Guide

221

 the
Keywords

DATA

Set this keyword if the input coordinates are in data space (the default).

DEVICE

Set this keyword if the input coordinates are in device space.

NORMAL

Set this keyword if the input coordinates are in normalized space.

T3D

Set this keyword if the 3D transformation !P.T is to be applied.

TO_DATA

Set this keyword if the output coordinates are to be in data space.

TO_DEVICE

Set this keyword if the output coordinates are to be in device space.

TO_NORMAL

Set this keyword if the output coordinates are to be in normalized space.

Example

Convert, using the currently established viewing transformation, 11 points along
parametric linex = t, y = 2t, z = t2, along the interval [0, 1] from data coordinates to
device coordinates:

;Make a vector of X values:
X = FINDGEN(11)/10.

;Convert the coordinates. D will be an (3,11) element array:
D = CONVERT_COORD(X, 2*X, X^2, /T3D, /TO_DEVICE)

See Also

CV_COORD
IDL Reference Guide CONVERT_COORD

222

g,

he

t.

 1:
CONVOL

The CONVOL function convolves an array with a kernel, and returns the result.
Convolution is a general process that can be used for various types of smoothin
signal processing, shifting, differentiation, edge detection, etc. The CENTER
keyword controls the alignment of the kernel with the array and the ordering of t
kernel elements. If CENTER is explicitly set to 0, convolution is performed in the
strict mathematical sense, otherwise the kernel is centered over each data poin

Syntax

Result = CONVOL(Array, Kernel [, Scale_Factor] [, /CENTER] [, /EDGE_WRAP]
[, /EDGE_TRUNCATE])

Using CONVOL

Assume R = CONVOL(A, K, S), whereA is ann-element vector,K is anm-element
vector (m < n), andS is the scale factor. If the CENTER keyword is omitted or set to

where the valuem/2 is determined byinteger division. This means that the result of
the division is the largestinteger value less than or equal to the fractional number.

If CENTER is explicitly set to 0:

In the two-dimensional, zero CENTER case whereA is anmby n-element array, and
K is thel by l element kernel; the resultR is anm by n-element array:

The centered case is similar, except thet-i andu-j subscripts are replaced byt+i-l /2
andu+j-l /2.

Rt

1
S
--- At i m 2⁄–+ Kii 0=

m 1–∑ if m 2⁄ t n m 2⁄–<≤

0 otherwise

=

Rt

1
S
--- At i– Kii 0=

m 1–∑ if t m 1–≥

0 otherwise

=

CONVOL IDL Reference Guide

223

ype

5.

ze of

ach
ids

is
al

y.
Arguments

Array

An array of any basic type except string. The result of CONVOL has the same t
and dimensions asArray.

If the Array parameter is of byte type, the result is clipped to the range of 0 to 25
Negative results are set to 0, and values greater than 255 are set to 255.

Kernel

An array of any type except string. If the type ofKernel is not the same asArray, a
copy ofKernel is made and converted to the appropriate type before use. The si
the kernel dimensions must be smaller than those ofArray.

Scale_Factor

A scale factor, for use with integer and byte type data only, that is divided into e
resulting value. This argument allows the use of fractional kernel values and avo
overflow with byte arguments. If omitted, a scale factor of 1 is used.

Keywords

CENTER

Set or omit this keyword to center the kernel over each array point. If CENTER
explicitly set to zero, the CONVOL function works in the conventional mathematic
sense. In many signal and image processing applications, it is useful to center a
symmetric kernel over the data, thereby aligning the result with the original arra

Note that for the kernel to be centered, it must be symmetric about the point
K(FLOOR(m/2), wherem is the number of elements in the kernel.

Rt u,

1
S
--- At i u j–,– Ki j,j 0=

l 1–∑i 0=
l 1–∑ if t l 1–≥ and u l 1–≥

0 otherwise

=

IDL Reference Guide CONVOL

224

 of

of

 of

nts

 plot
EDGE_WRAP

Set this keyword to make CONVOL compute the values of elements at the edge
Array by “wrapping” the subscripts ofArray at the edge. For example, if CENTER is
set to zero:

wheren is the number of elements inArray. The mod operator in the formula above is
defined asa mod b = a - b * floor(a/b) . For example, -1 mod 5 is 4. If
neither EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values
elements at the edges ofArray to zero.

EDGE_TRUNCATE

Set this keyword to make CONVOL compute the values of elements at the edge
Array by repeating the subscripts ofArray at the edge. For example, if CENTER is
set to zero:

wheren is the number of elements inArray. The “<” and “>” operators in the above
formula return the smaller and larger of their operands, respectively. If neither
EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values of eleme
at the edges ofArray to zero.

Example

Convolve a vector of random noise and a one-dimensional triangular kernel and
the result. Create a simple vector as the original dataset and plot it by entering:

A = RANDOMN(SEED, 100) & PLOT, A

Create a simple kernel by entering:

K = [1, 2, 3, 2, 1]

Rt
1
S
--- A t i–()mod n()()Kii 0=

m 1–∑[]

=

Rt
1
S
--- A t i–() 0 n 1–()<>()Kii 0=

m∑

=

CONVOL IDL Reference Guide

225
Convolve the two and overplot the result by entering:

OPLOT, CONVOL(A, K, TOTAL(K))

See Also

BLK_CON
IDL Reference Guide CONVOL

226

ree

le

data

pply

 the
COORD2TO3

The COORD2TO3 function returns a three-element vector containing 3D data
coordinates given the normalized X and Y screen coordinates and one of the th
data coordinates.

Note
A valid 3D transform must exist in !P.T or be specified by the PTI keyword. The
axis scaling variables, !X.S, !Y.S and !Z.S must be valid.

This routine is written in the IDL language. Its source code can be found in the fi
coord2to3.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = COORD2TO3(Mx, My, Dim, D0 [, PTI])

Arguments

Mx, My

The normalized X and Y screen coordinates.

Dim

A parameter used to specify which data coordinate is fixed. Use 0 for a fixed X
coordinate, 1 for a fixed Y data coordinate, or 2 for a fixed Z data coordinate.

D0

The value of the fixed data coordinate.

PTI

The inverse of !P.T. If this parameter is not supplied, or set to 0, COORD2TO3
computes the inverse. If this routine is to be used in a loop, the caller should su
PTI for highest efficiency.

Example

To return the data coordinates of the mouse, fixing the data Z value at 10, enter
commands:

;Make sure a transformation matrix exists.
COORD2TO3 IDL Reference Guide

227
CREATE_VIEW

;Get the normalized mouse coords.
CURSOR, X, Y, /NORM

;Print the 3D coordinates.
PRINT, COORD2TO3(X, Y, 2, 10.0)

See Also

CONVERT_COORD, CREATE_VIEW, CV_COORD, SCALE3, T3D
IDL Reference Guide COORD2TO3

228

f

nd a

nce

le

etic.
CORRELATE

The CORRELATE function computes the linear Pearson correlation coefficient o
two vectors or the correlation matrix of anm x n array. If vectors of unequal lengths
are specified, the longer vector is truncated to the length of the shorter vector a
single correlation coefficient is returned. If anm x n array is specified, the result will
be anmx m array of linear Pearson correlation coefficients, with the elementi,j
corresponding to correlation of theith andjth columns of the input array.

Alternatively, this function computes the covariance of two vectors or the covaria
matrix of anm x n array.

This routine is written in the IDL language. Its source code can be found in the fi
correlate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CORRELATE(X [, Y] [, /COVARIANCE] [, /DOUBLE])

Arguments

X

A vector or anm x n array.X can be integer, single-, or double-precision floating-
point.

Y

An integer, single-, or double-precision floating-point vector. IfX is anmx n array,Y
should not be supplied.

Keywords

COVARIANCE

Set this keyword to compute the sample covariance rather than the correlation
coefficient.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Examples

Define the data vectors.
CORRELATE IDL Reference Guide

229

 be
X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71]
Y = [68, 66, 68, 65, 69, 66, 68, 65, 71, 67, 68, 70]

Compute the linear Pearson correlation coefficient of x and y. The result should
0.702652:

PRINT, CORRELATE(X, Y)

IDL prints:

0.702652

Compute the covariance of x and y. The result should be 3.66667.

PRINT, CORRELATE(X, Y, /COVARIANCE)

IDL prints:

3.66667

Define an array with x and y as its columns.

A = TRANSPOSE([[X],[Y]])

Compute the correlation matrix.

PRINT, CORRELATE(A)

IDL prints:

1.00000 0.702652
0.702652 1.00000

See Also

A_CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide CORRELATE

230

 the
COS

The periodic function COS returns the trigonometric cosine of X.

Syntax

Result = COS(X)

Arguments

X

The angle for which the cosine is desired, specified in radians. IfX is double-
precision floating or complex, the result is of the same type. All other types are
converted to single-precision floating-point and yield floating-point results. When
applied to complex numbers:

COS(x) = COMPLEX(cosI coshR, -sinR sinh (-I))

whereR andI are the real and imaginary parts ofx.

If X is an array, the result has the same structure, with each element containing
cosine of the corresponding element ofX.

Example

Find the cosine of 0.5 radians and print the result by entering:

PRINT, COS(.5)

IDL prints:

0.877583

See Also

ACOS, COSH
COS IDL Reference Guide

231

not

 the
COSH

The COSH function returns the hyperbolic cosine ofX.

Syntax

Result = COSH(X)

Arguments

X

The value for which the hyperbolic cosine is desired, specified in radians. IfX is
double-precision floating, the result is also double- precision. Complex values are
allowed. All other types are converted to single-precision floating-point and yield
floating-point results. COSH is defined as:

COSH(u) = (eu + e-u) / 2

If X is an array, the result has the same structure, with each element containing
hyperbolic cosine of the corresponding element ofX.

Example

Find the hyperbolic cosine of 0.5 radians and print the result by entering:

PRINT, COSH(.5)

IDL prints:

1.12763

See Also

ACOS, COS
IDL Reference Guide COSH

232

le

etic.

 on

R.
CRAMER

The CRAMER function solves ann by n linear system of equations using Cramer’s
rule.

This routine is written in the IDL language. Its source code can be found in the fi
cramer.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CRAMER(A, B [, /DOUBLE] [, ZERO=value])

Arguments

A

An n by n single- or double-precision floating-point array.

B

An n-element single- or double-precision floating-point vector.

 Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ZERO

Use this keyword to set the value of the floating-point zero. A floating-point zero
the main diagonal of a triangular array results in a zero determinant. A zero
determinant results in a “Singular matrix” error and stops the execution of CRAME
For single-precision inputs, the default value is 1.0× 10-6. For double-precision
inputs, the default value is 1.0× 10-12.

Example

Define an array A and right-hand side vector B.

A = [[2.0, 1.0, 1.0], $
[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

B = [3.0, 10.0, -5.0]

;Compute the solution and print.
CRAMER IDL Reference Guide

233
PRINT, CRAMER(A,B)

IDL prints:

1.00000 -1.00000 2.00000

See Also

CHOLSOL, GS_ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL
IDL Reference Guide CRAMER

234

d

string
array
sed
CREATE_STRUCT

The CREATE_STRUCT function creates a structure given pairs of tag names an
values. CREATE_STRUCT can also be used to concatenate structures.

Syntax

Result = CREATE_STRUCT([Tag1, Value1, ..., Tagn, Valuen])

or

Result = CREATE_STRUCT(NAME=string, [Tag1, ...,Tagn] , Value1, ...,Valuen)

Arguments

Tags

The structure tag names. Tag names may be specified either as scalar strings or
arrays. If scalar strings are specified, values alternate with tag names. If a string
is provided, values must still be specified individually. Tag names must be enclo
in quotes.

Values

The value of each field of the structure must be provided.

Keywords

Name

Use this keyword to create a named structure using the specified string as the
structure name.

Examples

To create the anonymous structure { A: 1, B:' xxx' } in the variableP, enter:

p = CREATE_STRUCT('A', 1, 'B', 'xxx')

To add the fields “FIRST” and “LAST” to the structure, enter the following:

p = CREATE_STRUCT('FIRST', 0, p, 'LAST', 3)

The resulting structure contains { FIRST: 0, A: 1, B: 'xxx', LAST: 3}.

Finally, the statement:
CREATE_STRUCT IDL Reference Guide

235
p = CREATE_STRUCT(name='list', ['A','B','C'], 1, 2, 3)

creates the structure { LIST, A: 1, B: 2, C: 3}.

See Also

N_TAGS, TAG_NAMES, Chapter 7, “Structures” in Building IDL Applcations.
IDL Reference Guide CREATE_STRUCT

236

ne a
trix
if the

e

le

lt

lt

lt
CREATE_VIEW

The CREATE_VIEW procedure sets the various system variables required to defi
coordinate system and a 3D view. This procedure builds the system viewing ma
(!P.T) in such a way that the correct aspect ratio of the data is maintained even
display window is not square. CREATE_VIEW also sets the “Data” to “Normal”
coordinate conversion factors (!X.S, !Y.S, and !Z.S) so that center of the unit cub
will be located at the center of the display window.

CREATE_VIEW sets the following IDL system variables:

!P.T, !P.T3D, !P.Position, !P.Clip, !P.Region !X.S, !X.Style, !X.Range, !X.Margin
!Y.S, !Y.Style, !Y.Range, !Y.Margin, !Z.S, !Z.Style, !Z.Range, !Z.Margin.

This routine is written in the IDL language. Its source code can be found in the fi
create_view.pro in thelib subdirectory of the IDL distribution.

Syntax

CREATE_VIEW [, AX=value] [, AY= value] [, AZ=value] [, PERSP=value]
[, /RADIANS] [, WINX= pixels] [, WINY= pixels] [, XMAX= scalar]
[, XMIN= scalar] [, YMAX= scalar] [, YMIN= scalar] [, ZFAC=value]
[, ZMAX= scalar] [, ZMIN= scalar] [, ZOOM=scalar or 3-element vector]

Arguments

This procedure has no required arguments.

Keywords

AX

A floating-point value specifying the orientation (X rotation) of the view. The defau
is 0.0.

AY

A floating-point value specifying the orientation (Y rotation) of the view. The defau
is 0.0.

AZ

A floating-point value specifying the orientation (Z rotation) of the view. The defau
is 0.0.
CREATE_VIEW IDL Reference Guide

237

0.0

es.

g

g

PERSP

A floating-point value specifying the perspective projection distance. A value of
indicates an isometric projection (NO perspective). The default is 0.0.

RADIANS

Set this keyword if AX, AY, and AZ are specified in radians. The default is degre

WINX

A long integer specifying the X size, in pixels, of the window that the view is bein
set up for. The default is 640.

WINY

A long integer specifying the Y size, in pixels, of the window that the view is bein
set up for. The default is 512.

XMAX

A scalar specifying the maximum data value on the X axis. The default is 1.0.

XMIN

A scalar specifying the minimum data value on the X axis. The default is 0.0.

YMAX

A scalar specifying the maximum data value on the Y axis. The default is 1.0.

YMIN

A scalar specifying the minimum data value on the Y axis. The default is 0.0.

ZFAC

Set this keyword to a floating-point value to expand or contract the view in the Z
dimension. The default is 1.0.

ZMAX

A scalar specifying the maximum data value on the Z axis. The default is 1.0.

ZMIN

A scalar specifying the minimum data value on the Z axis. The default is 0.0.
IDL Reference Guide CREATE_VIEW

238

 If
Y,

 data:

, 0
ZOOM

A floating-point number or 3-element vector specifying the view zoom factor. If
zoom is a single value then the view will be zoomed equally in all 3 dimensions.
zoom is a 3-element vector then the view will be scaled zoom[0] in X, zoom[1] in
and zoom[2] in Z. The default is 1.0.

Example

Set up a view to display an iso-surface from volumetric data. First, create some

vol = FLTARR(40, 50, 30)
vol(3:36, 3:46, 3:26) = RANDOMU(S, 34, 44, 24)
FOR I = 0, 10 DO vol = SMOOTH(vol, 3)

Generate the iso-surface.

SHADE_VOLUME, vol, 0.2, polygon_list, vertex_list, /LOW

Set up the view. Note that the subscripts into the Vol array range from 0 to 39 in X
to 49 in Y, and 0 to 29 in Z. As such, the 3-D coordinates of the iso-surface
(vertex_list) may have the same range. Set XMIN, YMIN, and ZMIN to zero (the
default), and set XMAX=39, YMAX=49, and ZMAX=29.

WINDOW, XSIZE = 600, YSIZE = 400
CREATE_VIEW, XMAX = 39, YMAX = 49, ZMAX = 29, $

AX = (-60.0), AZ = (30.0), WINX = 600, WINY = 400, $
ZOOM = (0.7), PERSP = (1.0)

Display the iso-surface in the specified view.

img = POLYSHADE(polygon_list, vertex_list, /DATA, /T3D)
TVSCL, img

See Also

SCALE3, T3D
CREATE_VIEW IDL Reference Guide

239

)

CROSSP

The CROSSP function returns a floating-point vector that is the vector (or cross
product of two 3-element vectors,V1 andV2.

Syntax

Result = CROSSP(V1, V2)

Arguments

V1, V2

Three-element vectors.

See Also

“Matrix Multiplication” in Chapter 6 ofBuilding IDL Applcations.
IDL Reference Guide CROSSP

240

le

e

etic.
CRVLENGTH

The CRVLENGTH function computes the length of a curve with a tabular
representation,Y[i] = F(X[i]).

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate curve length computation.

This routine is written in the IDL language. Its source code can be found in the fi
crvlength.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CRVLENGTH(X, Y [, /DOUBLE])

Arguments

X

An n-element single- or double-precision floating-point vector.X must contain at
least three elements, and values must be specified in ascending order. DuplicatX
values will result in a warning message.

Y

An n-element single- or double-precision floating-point vector.

Keyword

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

;Define a 21-element vector of X-values:
x = [-2.00, -1.50, -1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, $
2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, $
7.00, 7.50, 8.00]

;Define a 21-element vector of Y-values:
y = [-2.99, -2.37, -1.64, -0.84, 0.00, 0.84, 1.64, 2.37, 2.99, $
3.48, 3.86, 4.14, 4.33, 4.49, 4.65, 4.85, 5.13, 5.51, $
CRVLENGTH IDL Reference Guide

241
6.02, 6.64, 7.37]

;Compute the length of the curve:
result = CRVLENGTH(x, y)

Print, result

IDL prints:

14.8115

See Also

INT_TABULATED, PNT_LINE
IDL Reference Guide CRVLENGTH

242

 as

le

 the

r is

or is
CT_LUMINANCE

The CT_LUMINANCE function calculates the luminance of colors. The function
returns an array containing the luminance values of the specified colors. If theR, G,
andB parameters are not specified, or ifR is of integer, byte or long type, the result is
a longword array with the same number of elements as the input arguments.
Otherwise, the result is a floating-point array with the same number of elements
the input arguments.

This routine is written in the IDL language. Its source code can be found in the fi
ct_luminance.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CT_LUMINANCE([R, G, B] [, BRIGHT=variable] [, DARK=variable]
[, /READ_TABLES])

Arguments

R

An array representing the red color table. If omitted, the color values from either
COLORS common block, or the current color table are used.

G

An array representing the green color table. This parameter is optional.

B

An array representing the blue color table. This parameter is optional.

Keywords

BRIGHT

Set this keyword to a named variable in which the array index of the brightest colo
returned.

DARK

Set this keyword to a named variable in which the array index of the darkest col
returned.
CT_LUMINANCE IDL Reference Guide

243
READ_TABLES

Set this keyword, and don’t specify theR, G, andB arguments, to read colors directly
from the current colortable (using TVLCT, /GET) instead of using the COLORS
common block.

See Also

GAMMA_CT, STRETCH
IDL Reference Guide CT_LUMINANCE

244

ved
using

ector
ing

le

rval
. The

e
itude

 a
CTI_TEST

The CTI_TEST function constructs a “contingency table” from an array of obser
frequencies and tests the hypothesis that the rows and columns are independent
an extension of the chi-square goodness-of-fit test. The result is a two-element v
containing the chi-square test statistic X2 and the one-tailed probability of obtain
a value of X2 or greater.

This routine is written in the IDL language. Its source code can be found in the fi
cti_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CTI_TEST(Obfreq [, COEFF=variable] [, /CORRECTED]
[, CRAMV=variable] [, DF=variable] [, EXFREQ=variable]
[, RESIDUAL=variable])

Arguments

Obfreq

An m x n array containing observed frequencies.Obfreq can contain either integer,
single-, double-precision floating-point values.

Keywords

COEFF

Set this keyword to a named variable that will contain the Coefficient of
Contingency. The Coefficient of Contingency is a non-negative scalar, in the inte
[0.0, 1.0], which measures the degree of dependence within a contingency table
larger the value of COEFF, the greater the degree of dependence.

CORRECTED

Set this keyword to use the “Yate’s Correction for Continuity” when computing th
Chi-squared test statistic, X2. The Yate’s correction always decreases the magn
of X2. In general, this keyword should be set for small sample sizes.

CRAMV

Set this keyword to a named variable that will contain Cramer’s V. Cramer’s V is
non-negative scalar, in the interval [0.0, 1.0], which measures the degree of
dependence within a contingency table.
CTI_TEST IDL Reference Guide

245

ed

ed to
is

data

cy

g the
DF

Set this keyword to a named variable that will contain the number of degrees of
freedom used to compute the probability of obtaining the value of the Chi-squar
test statistic or greater. DF = (n - 1) * (m - 1) wherem andn are the number of
columns and rows of the contingency table, respectively.

EXFREQ

Set this keyword to a named variable that will contain an array ofm-columns andn-
rows containing expected frequencies. The elements of this array are often referr
as the “cells” of the expected frequencies. The expected frequency of each cell
computed as the product of row and column marginal frequencies divided by the
overall total of observed frequencies.

RESIDUAL

Set this keyword to a named variable that will contain an array ofm-columns andn-
rows containing signed differences between corresponding cells of observed
frequencies and expected frequencies.

Example

Define a 5-column and 4-row array of observed frequencies.

obfreq = [[748, 821, 786, 720, 672], $
[74, 60, 51, 66, 50], $
[31, 25, 22, 16, 15], $
[9, 10, 6, 5, 7]]

Test the hypothesis that the rows and columns of “obfreq” contain independent
at the 0.05 significance level.

result = CTI_TEST(obfreq, COEFF = coeff)

The result should be the two-element vector [14.3953, 0.276181].

The computed value of 0.276181 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level. The Coefficient of Contingen
returned in the parameter “coeff” (coeff = 0.0584860) also indicates the lack of
dependence between the rows and columns of the observed frequencies. Settin
CORRECTED keyword returns the two-element vector [12.0032, 0.445420] and
(coeff = 0.0534213) resulting in the same conclusion of independence.

See Also

CORRELATE, M_CORRELATE, XSQ_TEST
IDL Reference Guide CTI_TEST

246

nally

state
s in

ou

that
CURSOR

The CURSOR procedure is used to read the position of the interactive graphics
cursor from the current graphics device. Note that not all graphics devices have
interactive cursors. CURSOR enables the graphic cursor on the device and optio
waits for the operator to position it. On devices that have a mouse, CURSOR
normally waits until a mouse button is pressed (or already down). If no mouse
buttons are present, CURSOR waits for a key on the keyboard to be pressed.

The system variable !MOUSE is set to the button status. Each mouse button is
assigned a bit in !MOUSE, bit 0 is the left most button, bit 1 the next, etc. See
“!MOUSE” on page 2197 for details.

Using CURSOR with Draw Widgets

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button
information from a draw widget, examine the X, Y, PRESS, and RELEASE field
the structures returned by the draw widget in response to cursor events.

Using CURSOR with the TEK Device

Note that for the CURSOR procedure to work properly with Tektronix terminals, y
may need to execute the command,DEVICE, GIN_CHARS=6 .

Syntax

CURSOR,X, Y [, Wait | [, /CHANGE | , /DOWN | , /UP | , /WAIT]] [, /DATA |
, /DEVICE, | , /NORMAL]

Arguments

X

A named variable to receive the cursor’s current column position.

Y

A named variable to receive the cursor’s current row position.

Wait

An integer that specifies the conditions under which CURSOR returns. This
parameter can be used interchangeably with the keyword parameters listed below
CURSOR IDL Reference Guide

247

type
specify the type of wait. The default value is 1. The table below describes each
of wait.

Note that not all modes of waiting work with all display devices.

Keywords

CHANGE

Set this keyword to wait for pointer movement or button transition within the
currently selected window.

DATA

Set this keyword to returnX andY in data coordinates.

DOWN

Set this keyword to wait for a button down transition within the currently selected
window.

DEVICE

Set this keyword to returnX andY in device coordinates.

NORMAL

Set this keyword to returnX andY in normalized coordinates.

Wait
Value

Corresponding
Keyword Action

0 NOWAIT Return immediately.

1 WAIT Return if a button is down.

2 CHANGE Return if a button is pressed, released,
or the pointer is moved.

3 DOWN Return when a button down transition is
detected.

4 UP Return when a button up transition is
detected.

Table 9: Values for CURSOR Wait Parameter
IDL Reference Guide CURSOR

248

d

e

sition
e

NOWAIT

Set this keyword to read the pointer position and button status and return
immediately. If the pointer is not within the currently selected window, the device
coordinates -1, -1 are returned.

UP

Set this keyword to wait for a button up transition within the current window.

WAIT

Set this keyword to wait for a button to be depressed within the currently selecte
window. If a button is already pressed, return immediately.

Example

Activate the graphics cursor, select a point in the graphics window, and return th
position of the cursor in device coordinates. Enter:

CURSOR, X, Y, /DEVICE

Move the cursor over the graphics window and press the mouse button. The po
of the cursor in device coordinates is stored in the variables X and Y. To label th
location, enter:

XYOUTS, X, Y, 'X marks the spot.', /DEVICE

See Also

RDPIX, TVCRS, CURSOR_CROSSHAIR (and other CURSOR_ keywords),
WIDGET_DRAW, “!MOUSE” on page 2197
CURSOR IDL Reference Guide

249

-

he
ntil

ues

le

tion,
ins
CURVEFIT

The CURVEFIT function uses a gradient-expansion algorithm to compute a non
linear least squares fit to a user-supplied function with an arbitrary number of
parameters. The user-supplied function may be any non-linear function where t
partial derivatives are known or can be approximated. Iterations are performed u
the chi square changes by a specified amount, or until a maximum number of
iterations have been performed. The CURVEVIT function returns a vector of val
for the dependent variables, as fitted by the function fit.

This routine is written in the IDL language. Its source code can be found in the fi
curvefit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CURVEFIT(X, Y, Weights, A [, Sigma] [, CHISQ=variable]
[, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX= value]
[, /NODERIVATIVE] [, TOL=value])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length asX.

Weights

For instrumental (Gaussian) weighting, setWeightsi = 1.0/standard_deviation(Yi)
2.

For statistical (Poisson) weighting,Weightsi = 1.0/Yi. For no weighting, set
Weightsi = 1.0.

A

A vector with as many elements as the number of terms in the user-supplied func
containing the initial estimate for each parameter. On return, the vector A conta
the fitted model parameters. IfA is double-precision, calculations are performed in
double-precision arithmetic, otherwise they are performed in single-precision
arithmetic.
IDL Reference Guide CURVEFIT

250

s of

red.

d,

d

s

f

 is

ll
Sigma

A named variable that will contain a vector of standard deviations for the element
the output vectorA.

Keywords

CHISQ

Set this keyword equal to a named variable that will contain the value of chi-squa

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitte
CURVEFIT assumes that the IDL procedureFUNCT is to be used. IfFUNCT is not
already compiled, IDL compiles the function from the filefunct.pro , located in the
lib subdirectory of the IDL distribution.FUNCTevaluates the sum of a Gaussian an
a second-order polynomial.

The function to be fit must be written as an IDL procedure and compiled prior to
calling CURVEFIT. The procedure must accept values ofX (the independent
variable), andA (the fitted function’s initial parameter values). It must return value
for F (the function’s value atX), and optionallyPDER (a 2D array of partial
derivatives).

See theExample section below for an example function.

ITER

Set this keyword equal to a named variable that will contain the actual number o
iterations performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value
20.

NODERIVATIVE

If this keyword is set, the routine specified by the FUNCTION_NAME keyword wi
not be requested to provide partial derivatives. The partial derivatives will be
estimated by CURVEFIT using forward differences. If analytical derivatives are
available they should always be used.
CURVEFIT IDL Reference Guide

251

rns

nt
TOL

Use this keyword to specify the desired convergence tolerance. The routine retu
when the relative decrease in chi-squared is less than TOL in one iteration. The
default value is 1.0× 10-3.

Example

Fit a function of the formF(x) = a * exp(b*x) + c to sample pairs contained
in arraysX andY. The partial derivatives are easily computed symbolically:

df/da = exp(b*x)
df/db = a * x * exp(b*x)
df/dc = 1.0

First, define a procedure to returnF(x) and the partial derivatives, givenX. Note that
A is an array containing the valuesa, b, andc .

PRO gfunct, X, A, F, pder
bx = EXP(A[1] * X)
F = A[0] * bx + A[2]

;If the procedure is called with four parameters, calculate the
;partial derivatives.

IF N_PARAMS() GE 4 THEN $
pder= [[bx], [A[0] * X * bx], [replicate(1.0, N_ELEMENTS(X))]][

END

Compute the fit to the function we have just defined. First, define the independe
and dependent variables:

X = FLOAT(INDGEN(10))
Y = [12.0, 11.0, 10.2, 9.4, 8.7, 8.1, 7.5, 6.9, 6.5, 6.1]

;Define a vector of weights.
weights = 1.0/Y

;Provide an initial guess of the function’s parameters.
A = [10.0,-0.1,2.0]

;Compute the parameters.
yfit = CURVEFIT(X, Y, weights, A, SIGMA, FUNCTION_NAME='gfunct')

;Print the parameters returned in A.
PRINT, 'Function parameters: ', A

IDL prints:

Function parameters: 9.91120 -0.100883 2.07773
IDL Reference Guide CURVEFIT

252
Thus, the function that best fits the data is:

f (x) = 9.91120(e-0.100883x) + 2.07773

See Also

COMFIT, GAUSS2DFIT, GAUSSFIT, LMFIT, POLY_FIT, POLYFITW,
REGRESS, SFIT, SVDFIT
CURVEFIT IDL Reference Guide

253

ular,

are

le

t.
CV_COORD

The CV_COORD function converts 2D and 3D coordinates between the rectang
polar, cylindrical, and spherical coordinate systems.

If the value passed to the “FROM_” keyword is double precision, then all
calculations are performed in double precision and the returned value is double
precision. Otherwise, single precision is used. If none of the “FROM_” keywords
specified, 0 is returned. If none of the “TO_” keywords are specified, the input
coordinates are returned.

This routine is written in the IDL language. Its source code can be found in the fi
cv_coord.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CV_COORD([, /DEGREES] [, FROM_CYLIN=cyl_coords | ,
FROM_POLAR=pol_coords | , FROM_RECT=rect_coords | ,
FROM_SPHERE=sph_coords] [, /TO_CYLIN | , /TO_POLAR | , /TO_RECT | ,
/TO_SPHERE])

Arguments

This function has no required arguments. All data is passed in via keywords.

Keywords

DEGREES

If set, then the input and output coordinates are in degrees (where applicable).
Otherwise, the angles are in radians.

FROM_CYLIN

A vector of the form [angle, radius, z], or a (3,n) array of cylindrical coordinates to
convert.

FROM_POLAR

A vector of the form [angle, radius], or a (2, n) array of polar coordinates to conver

FROM_RECT

A vector of the form [x, y] or [x, y, z], or a (2,n) or (3,n) array containing rectangular
coordinates to convert.
IDL Reference Guide CV_COORD

254
FROM_SPHERE

A vector of the form [longitude, latitude, radius], or a (3,n) array of spherical
coordinates to convert.

TO_CYLIN

If set, cylindrical coordinates are returned in a vector of the form [angle, radius, z], or
a (3,n) array.

TO_POLAR

If set, polar coordinates are returned in a vector of the form [angle, radius], or a (2, n)
array.

TO_RECT

If set, rectangular coordinates are returned in a vector of the form [x, y] or [x, y, z], or
a (2,n) or (3,n) array.

TO_SPHERE

If set, spherical coordinates are returned in a vector of the form [longitude, latitude,
radius], or a (3,n) array.

Examples

Convert from spherical to cylindrical coordinates:

sph_coord = [[45.0, -60.0, 10.0], [0.0, 0.0, 0.0]]
rect_coord = CV_COORD(FROM_SPHERE=sph_coord, /TO_CYLIN, /DEGREES)

Convert from rectangular to polar coordinates:

rect_coord = [10.0, 10.0]
polar_coord = CV_COORD(FROM_RECT=rect_coord, /TO_POLAR)

See Also

CONVERT_COORD, COORD2TO3, CREATE_VIEW, SCALE3, T3D
CV_COORD IDL Reference Guide

255

e
ful

are
n

.)
that
ap

le

.

 value
CVTTOBM

The CVTTOBM function converts a byte array in which each byte represents on
pixel into a “bitmap byte array” in which each bit represents one pixel. This is use
when creating bitmap labels for buttons created with the WIDGET_BUTTON
function.

Bitmap byte arrays are monochrome; by default, CVTTOBM converts pixels that
darker than the median value to black and pixels that are lighter than the media
value to white. You can supply a different threshold value via the THRESHOLD
keyword.

Most of IDL’s image file format reading functions (READ_BMP, READ_PICT, etc
return a byte array which must be converted before use as a button label. Note
there is one exception to this rule; the READ_X11_BITMAP routine returns a bitm
byte array that needs no conversion before use.

This routine is written in the IDL language. Its source code can be found in the fi
cvttobm.pro in thelib subdirectory of the IDL distribution.

Note
IDL supports color bitmaps for button labels. The IDL GUIBuilder has a Bitmap
Editor that allows you to create color bitmaps for button labels. The BITMAP
keyword to WIDGET_BUTTON specifies that the button label is a color bitmap

Syntax

Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])

Arguments

Array

A 2-dimensional pixel array, one byte per pixel.

Keywords

THRESHOLD

A byte value (or an integer value between 0 and 255) to be used as a threshold
when determining if a particular pixel is black or white. If THRESHOLD is not
specified, the threshold is calculated to be the average of the input array.
IDL Reference Guide CVTTOBM

256
Example

The following example creates a bitmap button label from a byte array:

; Create a byte array:
image = BYTSCL(DIST(100))
; Create a widget base:
base = WIDGET_BASE(/COLUMN)

; Use CVTTOBM to create a bitmap byte array for a button label:
button = WIDGET_BUTTON(base, VALUE = CVTTOBM(image))

; Realize the widget:
WIDGET_CONTROL, base, /REALIZE

See Also

WIDGET_BUTTON, “Using the Bitmap Editor” in Chapter 17 ofBuilding IDL
Applcations
CVTTOBM IDL Reference Guide

257

ted

ost

one

on

le

e

o
are
he

the
the
CW_ANIMATE

The CW_ANIMATE function creates a compound widget that displays an anima
sequence of images using off-screen windows knows aspixmaps. The speed and
direction of the display can be adjusted using the widget interface.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in m
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

The returned value of this function is the widget ID of the newly-created animati
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_animate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_ANIMATE(Parent, Sizex, Sizey, Nframes [, /NO_KILL]
[, OPEN_FUNC=string] [, PIXMAPS=vector] [, /TRACK] [, UNAME= string]
[, UVALUE=value])

Using CW_ANIMATE

Unlike XINTERANIMATE, using the CW_ANIMATE widget requires calls to two
separate procedures, CW_ANIMATE_LOAD and CW_ANIMATE_RUN, to load th
images to be animated and to run the animation. Alternatively, you can supply a
vector of pre-existing pixmap window IDs, eliminating the need to use
CW_ANIMATE_LOAD. The vector of pixmaps is commonly obtained from a call t
CW_ANIMATE_GETP applied to a previous animation widget. Once the images
loaded, they are displayed by copying the images from the pixmap or buffer to t
visible draw widget.

See the documentation for CW_ANIMATE_LOAD, CW_ANIMATE_RUN, and
CW_ANIMATE_GETP for more information.

The only event returned by CW_ANIMATE indicates that the user has clicked on
“End Animation” button. The parent application should use this as a signal to kill
animation widget via WIDGET_CONTROL. When the widget is destroyed, the
IDL Reference Guide CW_ANIMATE

258

a call

e

 is

e the
pixmaps used in the animation are destroyed as well, unless they were saved by
to CW_ANIMATE_GETP.

See the animation widget’s help file (available by clicking the “Help” button on th
widget) for more information about the widget’s controls.

Arguments

Parent

The widget ID of the parent widget.

Sizex

The width of the displayed image, in pixels.

Sizey

The height of the displayed image, in pixels

Nframes

The number of frames in the animation sequence.

Keywords

NO_KILL

Set this keyword to omit the “End Animation” button from the animation widget.

OPEN_FUNC

Set this keyword equal to a scalar string specifying the name of a user-written
function that loads animation data. If a function is specified, an “Open ...” button
added to the animation widget.

For an example showing the format and use of an animation-loading function, se
file animate.pro in thegeneral subdirectory of theexamples subdirectory of
the IDL distribution.

PIXMAPS

Use this keyword to provide the animation widget with a vector of pre-existing
pixmap (off screen window) IDs. This vector is usually obtained from a call to
CW_ANIMATE_GETP applied to a previous animation widget.
CW_ANIMATE IDL Reference Guide

259

ntly-

ou
name

et

ONE
get
TRACK

Set this keyword to cause the frame slider to track the frame number of the curre
displayed frame.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets usingWIDGET_CONTROL
andWIDGET_INFO.

Widget Events Returned by the CW_ANIMATE Widget

The only event returned by this widget indicates that the user has pressed the D
button. The parent application should use this as a signal to kill the animation wid
via WIDGET_CONTROL.

Example

Assume the following event handler procedure exists:

PRO EHANDLER, EV
WIDGET_CONTROL, /DESTROY, EV.TOP
end
IDL Reference Guide CW_ANIMATE

260

,

se the

w

Tip
If you wish to create this event handler starting from the IDL command prompt
remember to begin with the.RUN command.

Enter the following commands to open the fileABNORM.DAT (a series of images of a
human heart) and load the images it contains into an array H.

OPENR, 1, FILEPATH('abnorm.dat', SUBDIR = ['examples','data'])
H = BYTARR(64, 64, 16)
READU, 1, H
CLOSE, 1
H = REBIN(H, 128, 128, 16)

Create an instance of the animation widget and load the frames. Note that becau
animation widget is realized before the call to CW_ANIMATE_LOAD, the frames
are displayed as they are loaded. This provides the user with an indication of ho
things are progressing.

base = WIDGET_BASE(TITLE = 'Animation Widget')
animate = CW_ANIMATE(base, 128, 128, 16)
WIDGET_CONTROL, /REALIZE, base
FOR I=0,15 DO CW_ANIMATE_LOAD, animate, FRAME=I, IMAGE=H[*,*,I]

Save the pixmap window IDs for future use:

CW_ANIMATE_GETP, animate, pixmap_vect

Start the animation:

CW_ANIMATE_RUN, animate
XMANAGER, 'CW_ANIMATE Demo', base, EVENT_HANDLER = 'EHANDLER'
CW_ANIMATE IDL Reference Guide

261
Pressing the “End Animation” button kills the application.

See Also

CW_ANIMATE_LOAD, CW_ANIMATE_RUN, CW_ANIMATE_GETP,
XINTERANIMATE

Figure 1: The animation interface created by CW_ANIMATE
IDL Reference Guide CW_ANIMATE

262

w

ng

ost

one

le

s

d.
CW_ANIMATE_GETP

The CW_ANIMATE_GETP procedure gets a copy of the vector of pixmap windo
IDs being used by a CW_ANIMATE animation widget. If this routine is called,
CW_ANIMATE does not destroy the pixmaps when it is destroyed. You can then
provide the pixmaps to a later instance of CW_ANIMATE to re-use them, skippi
the pixmap creation and rendering step (CW_ANIMATE_LOAD).

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in m
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_animate.pro in thelib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_GETP,Widget, Pixmaps [, /KILL_ANYWAY]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that contain
the pixmaps.

Pixmaps

A named variable that will contain a vector of the window IDs of the pixmap
windows.

Keywords

KILL_ANYWAY

Set this keyword to ensure that the pixmaps are destroyed anyway when
CW_ANIMATE exits, despite the fact that CW_ANIMATE_GETP has been calle

Example

See the documentation for CW_ANIMATE for an example using this procedure.
CW_ANIMATE_GETP IDL Reference Guide

263
See Also

CW_ANIMATE, CW_ANIMATE_LOAD, CW_ANIMATE_RUN,
XINTERANIMATE
IDL Reference Guide CW_ANIMATE_GETP

264

ed

ost

one

le

e

d
tion

ot
CW_ANIMATE_LOAD

The CW_ANIMATE_LOAD procedure creates an array of pixmaps which are load
into a CW_ANIMATE compound widget.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in m
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_animate.pro in thelib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_LOAD, Widget [, /CYCLE] [, FRAME=value{0 to NFRAMES}]
[, IMAGE=value] [, /ORDER] [, WINDOW=[window_num [, X0, Y0, Sx, Sy]]]
[, XOFFSET=pixels] [, YOFFSET=pixels]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) into which th
image should be loaded.

Keywords

CYCLE

Set this keyword to cause the animation to cycle. Normally, frames are displaye
going either forward or backward. If CYCLE is set, the animation reverses direc
after the last frame in either direction is displayed.

FRAME

The frame number to be loaded. This is a value between 0 and NFRAMES. If n
supplied, frame 0 is loaded.

IMAGE

The image to be loaded.
CW_ANIMATE_LOAD IDL Reference Guide

265

om

he
er

tire

s
w

ORDER

Set this keyword to display images from the top down instead of the default bott
up. This keyword is only used when loading images with the IMAGE keyword.

WINDOW

When this keyword is specified, an image is copied from an existing window to t
animation pixmap. Under some windowing systems, this technique is much fast
than reading from the display and then loading with the IMAGE keyword.

The value of this parameter is either an IDL window number (in which case the en
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

XOFFSET

The horizontal offset, in pixels from the left of the frame, of the image in the
destination window.

YOFFSET

The vertical offset, in pixels from the bottom of the frame, of the image in the
destination window.

Example

See the documentation for CW_ANIMATE for an example using this procedure.
Note that if the widget is realized before calls to CW_ANIMATE_LOAD, the frame
are displayed as they are loaded. This provides the user with an indication of ho
things are progressing.

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_RUN,
XINTERANIMATE
IDL Reference Guide CW_ANIMATE_LOAD

266

ost

one

le

ntage

ging

less
CW_ANIMATE_RUN

The CW_ANIMATE_RUN procedure displays a series of images that have been
loaded into a CW_ANIMATE compound widget by a call to
CW_ANIMATE_LOAD.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in m
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_animate.pro in thelib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_RUN, Widget [, Rate{0 to 100}] [, NFRAMES=value] [, /STOP]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that will
display the animation.

Rate

A value between 0 and 100 that represents the speed of the animation as a perce
of the maximum display rate. The fastest animation has a value of 100 and the
slowest has a value of 0. The default animation rate is 100.

The animation rate can also be adjusted after the animation has begun by chan
the value of the “Animation Speed” slider.

Keywords

NFRAMES

Set this keyword equal to the number of frames to animate. This number must be
than or equal to theNframes argument to CW_ANIMATE.
CW_ANIMATE_RUN IDL Reference Guide

267
STOP

If this keyword is set, the animation is stopped.

Example

See the documentation for CW_ANIMATE for an example using this procedure.

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_LOAD,
XINTERANIMATE
IDL Reference Guide CW_ANIMATE_RUN

268

g

rary

s

ll
o

L

le
CW_ARCBALL

The CW_ARCBALL function creates a compound widget for intuitively specifyin
three-dimensional orientations.

The user drags a simulated track-ball with the mouse to interactively obtain arbit
rotations. Sequences of rotations may be cascaded. The rotations may be
unconstrained (about any axis), constrained to the view X, Y, or Z axes, or
constrained to the object’s X, Y, or Z axis.

This widget is based on “ARCBALL: A User Interface for Specifying Three-
Dimensional Orientation Using a Mouse,” by Ken Shoemake, Computer Graphic
Laboratory, University of Pennsylvania, Philadelphia, PA 19104.

This widget can generate any rotation about any axis. Note, however, that not a
rotations are compatible with the IDL SURFACE procedure, which is restricted t
rotations that project the object Z axis parallel to the view Y axis.

The returned value of this function is the widget ID of the newly-created ARCBAL
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_arcball.pro in thelib subdirectory of the IDL distribution.

Using CW_ARCBALL

Use the command:

WIDGET_CONTROL, id, GET_VALUE = matrix

to return the current 3x3 rotation matrix in the variablematrix .

You can set the arcball to new rotation matrix using the command:

WIDGET_CONTROL, id, SET_VALUE = matrix

after the widget is initially realized.

Syntax

Result = CW_ARCBALL(Parent [, COLORS=array] [, /FRAME]
[, LABEL=string] [, RETAIN={0 | 1 | 2}] [, SIZE=pixels] [, /UPDATE]
[, UNAME=string] [, UVALUE= value] [, VALUE= array])
CW_ARCBALL IDL Reference Guide

269

dled
hat
L

ult is
Arguments

Parent

The widget ID of the parent widget.

Keywords

COLORS

A 6-element array containing the color indices to be used.

• Colors[0] = view axis color,

• Colors[1] = object axis color,

• Colors[2] = XZ plane +Y side (body top) color,

• Colors[3] = YZ plane (fin) color,

• Colors[4] = XZ plane -Y side (body bottom),

• Colors[5] = background color.

The default value is[1,7,2,3,7,0] , which yields good colors with the
TEK_COLOR table: (white, yellow, red, green, yellow, black).

FRAME

Set this keyword to draw a frame around the widget.

LABEL

Set this keyword to a string containing the widget’s label.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be han
for the draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests t
the server or window system provide backing store. RETAIN=2 specifies that ID
provide backing store directly. See“Backing Store” on page 2128 for details.

SIZE

The size of the square drawable area containing the arcball, in pixels. The defa
192.
IDL Reference Guide CW_ARCBALL

270

on is
ate”

ou
name

et

ix.

f

et.

L

UPDATE

Set this keyword to cause the widget will send an event each time the mouse butt
released after a drag operation. By default, events are only sent when the “Upd
button is pressed.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to a 3 x 3 array that will be the initial value for the rotation matr
VALUE must be a valid rotation matrix (no translation or perspective) where
TRANSPOSE(VALUE) = INVERSE(VALUE). This can be the upper-left corner o
!P.T after executing the command

T3D, /RESET, ROTATE = [x,y,z].

The default is the identity matrix.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the 3 x 3 rotation matrix in the arcball widg

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.
CW_ARCBALL IDL Reference Guide

271
Widget Events Returned by the CW_ARCBALL Widget

Arcball widgets generate event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, VALUE:fltarr(3,3) }

The VALUE field contains the 3 x 3 array representing the new rotation matrix.

Example

See the procedureARCBALL_TEST, contained in thecw_arcball.pro file. To test
CW_ARCBALL, enter the following commands:

.RUN cw_arcball
ARCBALL_TEST

This results in the following:

See Also

CREATE_VIEW, SCALE3, T3D

Figure 2: The CW_ARCBALL widget.
IDL Reference Guide CW_ARCBALL

272

ils of

 a

le
CW_BGROUP

The CW_BGROUP function creates a widget base of buttons. It handles the deta
creating the proper base (standard, exclusive, or non-exclusive) and filling in the
desired buttons. Events for the individual buttons are handled transparently, and
CW_BGROUP event returned. This event can return any one of the following:

• the index of the button within the base,

• the widget ID of the button,

• the name of the button,

• an arbitrary value taken from an array of user values.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

The returned value of this function is the widget ID of the newly-created button
group widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_bgroup.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_BGROUP(Parent, Names [, BUTTON_UVALUE=array]
[, COLUMN=value] [, EVENT_FUNCT=string] [{, /EXCLUSIVE | ,
/NONEXCLUSIVE} | [, SPACE=pixels] [, XPAD=pixels] [, YPAD=pixels]]
[, FONT=font] [, FRAME=width] [, IDS=variable] [, /LABEL_LEFT | ,
/LABEL_TOP] [, /MAP] [, /NO_RELEASE] [, /RETURN_ID | , /RETURN_INDEX
| , /RETURN_NAME] [, ROW=value] [, /SCROLL] [, X_SCROLL_SIZE=width]
[, Y_SCROLL_SIZE=height]] [, SET_VALUE=value] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, XSIZE=width] [, YOFFSET=value]
[, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget.

Names

A string array, one string per button, giving the name of each button.
CW_BGROUP IDL Reference Guide

273

ent
ny of

e

t

one

ice

is
Keywords

BUTTON_UVALUE

An array of user values to be associated with each button and returned in the ev
structure. If this keyword is set, the user values are always returned, even if the a
the RETURN_ID, RETURN_INDEX, or RETURN_NAME keywords are set.

COLUMN

Buttons will be arranged in the number of columns specified by this keyword.

EVENT_FUNCT

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written even
functions.

EXCLUSIVE

Set this keyword to cause buttons to be placed in an exclusive base, in which only
button can be selected at a time.

FONT

The name of the font to be used for the button titles. The font specified is a “dev
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows or Macintosh systems). See“About Device Fonts”on page 2240 for details
on specifying names for device fonts. If this keyword is omitted, the default font
used.

FRAME

Specifies the width of the frame to be drawn around the base.

IDS

A named variable in which the button IDs will be stored, as a longword vector.

LABEL_LEFT

Creates a text label to the left of the buttons.

LABEL_TOP

Creates a text label above the buttons.
IDL Reference Guide CW_BGROUP

274

he

any

d

the

eld

ller

sive
d

ith
e

MAP

Set this keyword to cause the base to be mapped when the widget is realized (t
default).

NONEXCLUSIVE

Set this keyword to cause buttons to be placed in an non-exclusive base, in which
number of buttons can be selected at once.

NO_RELEASE

If set, button release events will not be returned.

RETURN_ID

Set this keyword to return the widget ID of the button in the VALUE field of returne
events. This keyword is ignored if the BUTTON_UVALUE keyword is set.

RETURN_INDEX

Set this keyword to return the zero-based index of the button within the base in
VALUE field of returned events. This keyword is ignored if the BUTTON_UVALUE
keyword is set. THIS IS THE DEFAULT.

RETURN_NAME

Set this keyword to return the name of the button within the base in the VALUE fi
of returned events. This keyword is ignored if the BUTTON_UVALUE keyword is
set.

ROW

Buttons will be arranged in the number of rows specified by this keyword.

SCROLL

If set, the base will include scroll bars to allow viewing a large base through a sma
viewport.

SET_VALUE

Allows changing the current state of toggle buttons (i.e., exclusive and nonexclu
groups of buttons). The behavior of SET_VALUE differs between EXCLUSIVE an
NONEXCLUSIVE CW_BGROUP widgets. With EXCLUSIVE CW_BGROUP
widgets, the argument to SET_VALUE is the id of the widget to be turned on. W
NONEXCLUSIVE CW_BGROUP widgets the argument to SET_VALUE should b
an array of on/off flags for the array of buttons.
CW_BGROUP IDL Reference Guide

275

This

ou
name

et

This

his
SPACE

The space, in pixels, to be left around the edges of a row or column major base.
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset of the widget relative to its parent.

XPAD

The horizontal space, in pixels, between children of a row or column major base.
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

XSIZE

The width of the base.

X_SCROLL_SIZE

The width of the viewport if SCROLL is specified.

YOFFSET

The Y offset of the widget relative to its parent.

YPAD

The vertical space, in pixels, between children of a row or column major base. T
keyword is ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

YSIZE

The height of the base.
IDL Reference Guide CW_BGROUP

276

for

L

Y_SCROLL_SIZE

The height of the viewport if SCROLL is specified.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the button group. The values
different types of CW_BGROUP widgets is shown in the table below:

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_BGROUP Widget

Button Group widgets generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, SELECT:0, VALUE:0 }

The SELECT field is passed through from the button event. VALUE is either the
INDEX, ID, NAME, or BUTTON_UVALUE of the button, depending on how the
widget was created.

See Also

CW_PDMENU, WIDGET_BUTTON

Type Value

normal None

exclusive Index of currently set button

non-exclusive Vector indicating the position
of each button (1-set, 0-unset)

Table 10: Button Group Values
CW_BGROUP IDL Reference Guide

277

r

dex

le

e

t

CW_CLR_INDEX

The CW_CLR_INDEX function creates a compound widget for the selection of a
color index. A horizontal color bar is displayed. Clicking on the bar sets the colo
index.

The returned value of this function is the widget ID of the newly-created color in
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_clr_index.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_CLR_INDEX(Parent [, COLOR_VALUES=vector |
[, NCOLORS=value] [, START_COLOR=value]]
[, EVENT_FUNC=‘function_name’] [, /FRAME] [, LABEL= string]
[, UNAME=string] [, UVALUE= value] [, XSIZE=pixels] [, YSIZE=pixels])

Arguments

Parent

The widget ID of the parent widget.

Keywords

COLOR_VALUES

A vector of color indices containing the colors to be displayed in the color bar. If
omitted, NCOLORS and START_COLOR specify the range of color indices.

EVENT_FUNCT

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written even
functions.

FRAME

If set, a frame will be drawn around the widget.
IDL Reference Guide CW_CLR_INDEX

278

ou
name

et

e

LABEL

A text label that appears to the left of the color bar.

NCOLORS

The number of colors to place in the color bar. The default is !D.N_COLORS.

START_COLOR

The starting color index, placed at the left of the bar.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

The width of the color bar in pixels. The default is 192.

YSIZE

The height of the color bar in pixels. The default is 12.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the color selection widget. Th
value of a CW_CLR_INDEX widget is the index of the color selected.
CW_CLR_INDEX IDL Reference Guide

279

L

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_CLR_INDEX Widget

This widget generates event structures with the following definition:

Event = {CW_COLOR_INDEX, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:c}

The VALUE field is the color index selected.

See Also

CW_COLORSEL, XLOADCT, XPALETTE
IDL Reference Guide CW_CLR_INDEX

280

olor
sses
 of

dex

le

 the
CW_COLORSEL

The CW_COLORSEL function creates a compound widget that displays all the
colors in the current colormap in a 16 x 16 (320 x 320 pixels) grid. To select a c
index, the user moves the mouse pointer over the desired color square and pre
any mouse button. Alternatively, the color index can be selected by moving one
the three sliders provided around the grid.

The returned value of this function is the widget ID of the newly-created color in
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_colorsel.pro in thelib subdirectory of the IDL distribution.

Using CW_COLORSEL

The command:

WIDGET_CONTROL, widgetID, SET_VALUE = -1

informs the widget to initialize itself and redraw. It should be called when any of
following happen:

• the widget is realized,

• the widget needs redrawing,

• the brightest or darkest color has changed.

To set the current color index, use the command:

WIDGET_CONTROL, widgetID, SET_VALUE = index

To retrieve the current color index and store it in the variablevar , use the command:

WIDGET_CONTROL, widgetID, GET_VALUE = var

Syntax

Result = CW_COLORSEL(Parent [, /FRAME] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, YOFFSET=value])

Arguments

Parent

The widget ID of the parent widget.
CW_COLORSEL IDL Reference Guide

281

ou
name

et
Keywords

FRAME

If set, a frame is drawn around the widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset position

YOFFSET

The Y offset position

Widget Events Returned by the CW_COLORSEL Widget

This widget generates event structures with the following definition:

Event = {COLORSEL_EVENT, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:c}

The VALUE field is the color index selected.

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
IDL Reference Guide CW_COLORSEL

282

fine

is

no

le
CW_DEFROI

The CW_DEFROI function creates a compound widget that allows the user to de
a region of interest within a widget draw window.

Warning
This is amodal widget. No other widget applications will be responsive while th
widget is in use. Also, since CW_DEFROI has its own event-handling loop, it
should not be created as a child of a modal base.

The returned value of this function is an array of subscripts defining the region. If
region is defined, the scalar -1 is returned.

This routine is written in the IDL language. Its source code can be found in the fi
cw_defroi.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_DEFROI(Draw [, IMAGE_SIZE=vector] [, OFFSET=vector]
[, /ORDER] [, /RESTORE] [, ZOOM=vector])

Arguments

Draw

The widget ID of draw window in which to draw the region. Note that the draw
window must have both BUTTON and MOTION events enabled (see
WIDGET_DRAW for more information).

Keywords

IMAGE_SIZE

The size of the underlying array, expressed as a two element vector: [columns, rows].
Default is the size of the draw window divided by the value of ZOOM.

OFFSET

The offset of lower left corner of image within the draw window. Default = [0,0].
CW_DEFROI IDL Reference Guide

283

p to

ile
ORDER

Set this keyword to return inverted subscripts, as if the array were output from to
bottom.

RESTORE

Set this keyword to restore the draw window to its previous appearance on exit.
Otherwise, the regions remain on the drawable.

ZOOM

If the image array was expanded (using REBIN, for example) specify this two
element vector containing the expansion factor in X and Y. Default = [1,1]. Both
elements of ZOOM must be integers.

Widget Events Returned by the CW_DEFROI Widget

Region definition widgets do not return an event structure.

Example

The following two procedures create a region-of-interest widget and its event
handler. Create a file containing the program code using a text editor and comp
using the .RUN command, or type .RUN at the IDL prompt and enter the lines
interactively.

First, create the event handler:

PRO test_event, ev

; The common block holds variables that are shared between the
; routine and its event handler:
COMMON T, draw, dbutt, done, image

; Define what happens when you click the "Draw ROI" button:
IF ev.id EQ dbutt THEN BEGIN

; The ROI definition will be stored in the variable Q:
Q = CW_DEFROI(draw)
IF (Q[0] NE -1) then BEGIN

; Show the size of the ROI definition array:
HELP, Q
; Duplicate the original image.
image2 = image

; Set the points in the ROI array Q equal to a single
; color value:
image2(Q)=!P.COLOR-1
IDL Reference Guide CW_DEFROI

284

use
; Get the window ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Load the image plus the ROI into the draw widget:
TV, image2

ENDIF
ENDIF

; Define what happens when you click the "Done" button:
IF ev.id EQ done THEN WIDGET_CONTROL, ev.top, /DESTROY

END

Next, create a draw widget that can call CW_DEFROI. Note that youmust specify
both button events and motion events when creating the draw widget, if it is to be
with CW_DEFROI.

PRO test
COMMON T, draw, dbutt, done, image

; Create a base to hold the draw widget and buttons:
base = WIDGET_BASE(/COLUMN)

; Create a draw widget that will return both button and
; motion events:
draw = WIDGET_DRAW(base, XSIZE=256, YSIZE=256, /BUTTON, /MOTION)
dbutt = WIDGET_BUTTON(base, VALUE='Draw ROI')
done = WIDGET_BUTTON(base, VALUE='Done')
WIDGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Create an original image:
image = BYTSCL(SIN(DIST(256)))

; Display the image in the draw widget:
TV, image

; Start XMANAGER:
XMANAGER, "test", base
CW_DEFROI IDL Reference Guide

285
END

This results in the following:

See Also

DEFROI

Figure 3: The Region of Interest Definition Widget
IDL Reference Guide CW_DEFROI

286

e.
 die

get.

le

 .05

ou
name
CW_DICE

The CW_DICE function creates a compound widget that implements a single di
The widget uses a button with a bitmap label. If the user presses the button, the
tumbles for a moment, then the new value is displayed and an event is issued.

The primary purpose of this compound widget is to serve as a full example of a
realistic compound widget for theBuilding IDL Applcations book.

The returned value of this function is the widget ID of the newly-created die wid

This routine is written in the IDL language. Its source code can be found in the fi
cw_dice.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_DICE(Parent [, TUMBLE_CNT=value]
[, TUMBLE_PERIOD=seconds] [, UNAME=string] [, UVALUE= value])

Arguments

Parent

The widget ID of the parent widget.

Keywords

TUMBLE_CNT

The widget simulates the tumbling of a dice by changing the bitmap on the dice
several times before settling down to a final value. The number of “tumbles” is
specified by the TUMBLE_CNT keyword. The default is 10.

TUMBLE_PERIOD

The amount of time in seconds between each tumble of the dice. The default is
seconds.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.
CW_DICE IDL Reference Guide

287

et

t

ie
ued.

L

user
To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

To get or set the value of a CW_DICE widget, use the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL. The value of a CW_DICE widge
is an integer in the range [1,6].

If a value outside the range [1,6] is specified by the SET_VALUE keyword, the d
tumbles to a new value as if the user had pressed the button, but no event is iss

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_DICE Widget

This widget generates event structures with the following definition:

event = {CW_DICE_EVENT, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:0}

The VALUE field is the value of the die face. Such events are only sent when the
presses the dice button.

Example

See“Using CW_DICE in a Widget Program” in Chapter 18 ofBuilding IDL
Applcations for an example using CW_DICE.
IDL Reference Guide CW_DICE

288

a
ds.

et.

le

ld

the

 or
CW_FIELD

The CW_FIELD function creates a widget data entry field. The field consists of
label and a text widget. CW_FIELD can create string, integer, or floating-point fiel
The default is an editable string field.

The returned value of this function is the widget ID of the newly-created field widg

This routine is written in the IDL language. Its source code can be found in the fi
cw_field.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_FIELD(Parent [, /ALL_EVENTS] [, /COLUMN]
[, FIELDFONT=font] [, /FLOATING | , /INTEGER | , /LONG | , /STRING]
[, FONT=string] [, FRAME=pixels] [, /NOEDIT] [, /RETURN_EVENTS] [, /ROW]
[, TITLE=string] [, UNAME=string] [, UVALUE= value] [, VALUE= value]
[, XSIZE=characters] [, YSIZE=lines])

Arguments

Parent

The widget ID of the parent widget.

Keywords

ALL_EVENTS

Like RETURN_EVENTS but return an event whenever the contents of a text fie
have changed.

COLUMN

Set this keyword to center the label above the text field. The default is to position
label to the left of the text field.

FIELDFONT

A string containing the name of the font to use for the TEXT part of the field.

FLOATING

Set this keyword to have the field accept only floating-point values. Any number
string entered is converted to its floating-point equivalent.
CW_FIELD IDL Reference Guide

289

t

ing

r

eld

 the

lt.

 the
FONT

A string containing the name of the font to use for the TITLE of the field. The fon
specified is a “device font” (an X Windows font on Motif systems; a TrueType or
PostScript font on Windows or Macintosh systems). See“About Device Fonts” on
page 2240 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

FRAME

The width, in pixels, of a frame to be drawn around the entire field cluster. The
default is no frame.

INTEGER

Set this keyword to have the field accept only integer values. Any number or str
entered is converted to its integer equivalent (using FIX). For example, if 12.5 is
entered in this type of field, it is converted to 12.

LONG

Set this keyword to have the field accept only long integer values. Any number o
string entered is converted to its long integer equivalent (using LONG).

NOEDIT

Normally, the value in the text field can be edited. Set this keyword to make the fi
non-editable.

RETURN_EVENTS

Set this keyword to make CW_FIELD return an event when a carriage return is
pressed in a text field. The default is not to return events. Note that the value of
text field is always returned when the following command is used:

WIDGET_CONTROL, field, GET_VALUE = X

ROW

Set this keyword to position the label to the left of the text field. This is the defau

STRING

Set this keyword to have the field accept only string values. Numbers entered in
field are converted to their string equivalents. This is the default.
IDL Reference Guide CW_FIELD

290

put

ou
name

et

pe

 let

s

TITLE

A string containing the text to be used as the label for the field. The default is “In
Field”.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value in the text widget. This value is automatically converted to the ty
set by the STRING, INTEGER, and FLOATING keywords described below.

XSIZE

An explicit horizontal size (in characters) for the text input area. The default is to
the window manager size the widget. Using the XSIZE keyword is not
recommended.

YSIZE

An explicit vertical size (in lines) for the text input area. The default is 1.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the field. If one of the
FLOATING, INTEGER, LONG, or STRING keywords to CW_FIELD is set, value
set with the SET_VALUE keyword to WIDGET_CONTROL will be forced to the
appropriate type. Values returned by the GET_VALUE keyword to
CW_FIELD IDL Reference Guide

291

d.
in

L

ned

ter
WIDGET_CONTROL will be of the type specified when the field widget is create
Note that if the field contains string information, returned values will be contained
a stringarray even if the field contains only a single string.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_FIELD Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER: 0L, VALUE:'', TYPE:0 , UPDATE:0}

The VALUE field is the value of the field. TYPE specifies the type of data contai
in the field and can be any of the following: 0=string, 1=floating-point, 2=integer,
3=long integer (the value of TYPE is determined by setting one of the STRING,
FLOAT, INTETER, or LONG keywords). UPDATE contains a zero if the field has
not been altered or a one if it has.

Example

The code below creates a main base with a field cluster attached to it. The clus
accepts string input, has the title “Name”, and has a frame around it:

base = WIDGET_BASE()
field = CW_FIELD(base, TITLE = "Name", /FRAME)
WIDGET_CONTROL, base, /REALIZE

See Also

WIDGET_LABEL, WIDGET_TEXT
IDL Reference Guide CW_FIELD

292

s
nt

r.
CW_FILESEL

The CW_FILESEL function is a compound widget for file selection.

Syntax

Result = CW_FILESEL (Parent[, /FILENAME] [, FILTER=string array]
[, /FIX_FILTER] [, /FRAME] [, /IMAGE_FILTER] [, /MULTIPLE] [, PATH= string]
[, UNAME=string] [, UVALUE= value])

Arguments

Parent

The widget ID of the parent.

Keywords

FILENAME

Set this keyword to have the initial filename filled in the filename text area.

FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is “All Files”. All files containing the chosen filter string will be displayed a
possible selections. “All Files” is a special filter which returns all files in the curre
directory.

Example:

FILTER=["All Files", ".gif", ".txt"]

Multiple filter types may be used per filter entry, using a comma as the separato

Example:

FILTER=[".jpg, .jpeg", ".txt, .text"]

FIX_FILTER

If set, the user can not change the file filter.

FRAME

If set, a frame is drawn around the widget.
CW_FILESEL IDL Reference Guide

293

nd

e

rent

ou
name

et
IMAGE_FILTER

If set, the filter “Image Files” will be added to the end of the list of filters. If set, a
FILTER is not set, “Image Files” will be the only filter displayed. Valid image files
are determined from QUERY_IMAGE.

MULTIPLE

If set, the file selection list will allow multiple filenames to be selected. The filenam
text area will not be editable in this case.

PATH

Set this keyword to the initial path the widget is to start in. The default is the cur
directory.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget.

See Also

FILEPATH
IDL Reference Guide CW_FILESEL

294

ms
lso

ID

 of

le

rm.

he

-

vel
CW_FORM

The CW_FORM function is a compound widget that simplifies creating small for
which contain text, numeric fields, buttons, lists, and droplists. Event handling is a
simplified.

If the argumentParent is present, the returned value of this function is the widget
of the newly-created form widget. IfParent is omitted, the form realizes itself as a
modal, top-level widget and CW_FORM returns a structure containing the value
each field in the form when the user finishes.

This routine is written in the IDL language. Its source code can be found in the fi
cw_form.pro in thelib subdirectory of the IDL distribution.

Using CW_FORM

The form has a value that is a structure with a tag/value pair for each field in the fo
Use the command

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use t
command

WIDGET_CONTROL, id, SET_VALUE={ Tag: value, ..., Tag: value}

Syntax

Result = CW_FORM([Parent,] Desc [, /COLUMN] [, IDS=variable]
[, /NO_RELEASE] [, TITLE=string] [, UNAME=string] [, UVALUE= value])

Note
Desc is a string array. Each element of string array contains 2 or more comma
delimited fields. Each string has the following format:['Depth, Item, Initial_Value,
Keywords']

Arguments

Parent

The widget ID of the parent widget. Omit this argument to created a modal, top-le
widget.
CW_FORM IDL Reference Guide

295

 or

o

is

er

e

ro-
Desc

A string array describing the form. Each element of the string array contains two
more comma-delimited fields. Each string has the following format:

'Depth, Item, Initial value, Keywords'

Use the backslash character (“\”) to escape commas that appear within fields. T
include the backslash character, escape it with another backslash.

The fields are defined as follows:

Depth

A digit defining the level at which the element will be placed on the form. Nesting
used primarily for layout, with row or column bases.

This field must contain the digit 0, 1, or 2, with the following effects:

• A “0” continues the current nesting level.

• A “1” begins a new level under the current level.

• A “2” denotes the last element at the current level.

Item

A label defining the type of element to be placed in the form.Itemmust be one of the
following: BASE, BUTTON, DROPLIST, FLOAT, INTEGER, LABEL, LIST, or
TEXT.

BASEs and LABELs do not return a value in the widget value structure. The oth
items return the following value types:

Item Description

BUTTON An integer or integer array. For single buttons, the value is 1 if th
button is set, or 0 if it is not set. For exclusive button groups, the
value is the index of the currently set button. For non-exclusive
button groups, the value is an array containing an element for
each button. Array elements are set to 1 if the corresponding
button is set, or 0 if it is not set.

DROPLIST An integer. The value set in the widget value structure is the ze
based index of the item is selected.

Table 11: Values for the Item field
IDL Reference Guide CW_FORM

296

uotes.

l

g a

ro-
Initial value

The initial value of the field. TheInitial value field is left empty for BASEs.

For BUTTON, DROPLIST, and LIST items, the value field contains one or more
item names, separated by the | character. Strings do not need to be enclosed in q
For example, the following line defines an exclusive button group with buttons
labeled “one,” “two,” and “three.”

'0, BUTTON, one|two|three, EXCLUSIVE'

For FLOAT, INTEGER, LABEL, and TEXT items, the value field contains the initia
value of the field.

Keywords

TheKeywords field contains one of the following keywords or keyword=value pairs.
Keywords are used to specify optional attributes or options. Any number ofKeyword
fields may be included in the description string.

Note that preceding keywords with a “/” character has no effect. Simply includin
keyword in theKeywords field enables that option.

FLOAT A floating-point value. The value set in the widget value structure
is the floating-point value of the field.

INTEGER An integer. The value set in the widget value structure is the
integer value of the field.

LIST An integer. The value set in the widget value structure is the ze
based index of the item is selected.

TEXT A string. The value set in the widget value structure is the string
value of the field.

Keyword Description

CENTER Specifies alignment of LABEL items.

Table 12: Values for the Keywords field

Item Description

Table 11: Values for the Item field
CW_FORM IDL Reference Guide

297

.

s

s

COLUMN If present, specifies column layout in BASES or for
BUTTON groups.

EXCLUSIVE If present, makes an exclusive set of BUTTONs. The
default is nonexclusive.

FONT=font name If present, the font for the item is specified. The font
specified is a “device font” (an X Windows font on Motif
systems; a TrueType or PostScript font on Windows or
Macintosh systems). See“About Device Fonts” on
page 2240 for details on specifying names for device
fonts. If this keyword is omitted, the default font is used

EVENT=function Specifies the name of a user-written event function that i
called whenever the element is changed. The event
function is called with the widget event structure as a
parameter. It may return an event structure or zero to
indicate that no further event processing is desired.

FRAME If present, a frame is drawn around the item. Valid only
for BASEs.

LABEL_LEFT=label Place a label to the left of the item. This keyword is valid
with BUTTON, DROPLIST, FLOAT, INTEGER and
TEXT items.

LABEL_TOP=label Place a label above the item. This keyword is valid with
BUTTON, DROPLIST, FLOAT, INTEGER and TEXT
items.

LEFT Specifies alignment of LABEL items.

QUIT If the form widget is created as a top-level, modal
widget, when the user activates an item defined with thi
keyword, the form is destroyed and its widget value
returned in the widget value structure of CW_FORM.
For non-modal form widgets, events generated by
changing this item have their QUIT field set to 1.

RIGHT Specifies alignment of LABEL items.

Keyword Description

Table 12: Values for the Keywords field
IDL Reference Guide CW_FORM

298

t,

get

.

ou
name

,

Keywords

COLUMN

Set this keyword to make the orientation of the form vertical. If COLUMN is not se
the form is laid out in a horizontal row.

IDS

Set this keyword equal to a named variable into which the widget id of each wid
corresponding to an element in theDesc array is stored.

NO_RELEASE

If set, button release events will not be returned.

TITLE

Set this keyword equal to a scalar string containing the title of the top level base
TITLE is not used if the form widget has a parent widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

ROW If present, specifies row layout in BASES or for
BUTTON groups.

SET_VALUE=value Sets the initial value of BUTTON groups or
DROPLISTs. For droplists and exclusive button groups
value should be the zero-based index of the item
selected.

TAG=name The tag name of this element in the widget’s value
structure. If not specified, the tag name is TAGnnn,
wherennnis the zero-based index of the item in theDesc
array.

WIDTH=n Specifies the width, in characters, of a TEXT, INTEGER,
or FLOAT item.

Keyword Description

Table 12: Values for the Keywords field
CW_FORM IDL Reference Guide

299

et

e
nd

he

L

ed.

t

IT
To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

Set this keyword equal to the user value associated with the form widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the form. The form has a valu
that is a structure with a tag/value pair for each field in the form. Use the comma

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use t
command

WIDGET_CONTROL, id, SET_VALUE={ Tag:value , ..., Tag:value }

“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_FORM Widget

This widget generates event structures each time the value of the form is chang
The event structure has the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, TAG:'', VALUE:0, QUIT:0}

The ID field is the widget ID of the CW_FORM widget. The TOP field is the widge
ID of the top-level widget. The TAG field contains the tag name of the field that
changed. The VALUE field contains the new value of the changed field. The QU
field contains a zero if the quit flag is not set, or one if it is set.
IDL Reference Guide CW_FORM

300

the
er
Example

Define a form with a label, two groups of vertical buttons (one non-exclusive and
other exclusive), a text field, an integer field, and “OK” and “Done” buttons. If eith
the “OK” or “Done” buttons are pressed, the form exits.

Begin by defining a string array describing the form:

desc = [$
'0, LABEL, Centered Label, CENTER', $
'1, BASE,, ROW, FRAME', $
'0, BUTTON, B1|B2|B3, LABEL_TOP=Nonexclusive:,' $
+ 'COLUMN, TAG=bg1', $
'2, BUTTON, E1|E2|E2, EXCLUSIVE,LABEL_TOP=Exclusive:,' $
+ 'COLUMN,TAG=bg2', $
'0, TEXT, , LABEL_LEFT=Enter File name:, WIDTH=12,' $
+ 'TAG=fname', $
'0, INTEGER, 0, LABEL_LEFT=File size:, WIDTH=6, TAG=fsize', $
'1, BASE,, ROW', $
'0, BUTTON, OK, QUIT,' $
+ 'TAG=OK', $
'2, BUTTON, Cancel, QUIT']

To use the form as a modal widget:

a = CW_FORM(desc, /COLUMN)

When the form is exited, (when the user presses the OK or Cancel buttons), a
structure is returned as the function’s value. We can examine the structure by
entering:

HELP, /STRUCTURE, a

IDL Output Meaning

BG1 INT Array[3] Set buttons = 1, unset = 0.

BG2 INT 1 Second button of exclusive button
group was set.

FNAME STRING 'test.dat' Value of the text field

FSIZE LONG 120 Value of the integer field

OK LONG 1 This button was pressed

TAG8 LONG 0 This button wasn’t pressed

Table 13: Output from HELP, /STRUCTURE
CW_FORM IDL Reference Guide

301

 the
ny
e

Note that if the “Cancel” button is pressed, the “OK” field is set to 0.

To use CW_FORM inside another widget:

a = WIDGET_BASE(TITLE='Testing')
b = CW_FORM(a, desc, /COLUMN)
WIDGET_CONTROL, a, /REALIZE
XMANAGER, 'Test', a

The event handling procedure (in this example, called TEST_EVENT), may use
TAG field of the event structure to determine which field changed and perform a
data validation or special actions required. It can also get and set the value of th
widget by calling WIDGET_CONTROL.
IDL Reference Guide CW_FORM

302

le

g-
y
int
ion
CW_FSLIDER

The CW_FSLIDER function creates a slider that selects floating-point values.

The returned value of this function is the widget ID of the newly-created slider
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_fslider.pro in thelib subdirectory of the IDL distribution.

Using CW_FSLIDER

To get or set the value of a CW_FSLIDER widget, use the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL.

Note
The CW_FSLIDER widget is based on the WIDGET_SLIDER routine, which
accepts only integer values. Because conversion between integers and floatin
point numbers necessarily involves round-off errors, the slider value returned b
CW_FSLIDER may not exactly match the input value, even when a floating-po
number is entered in the slider’s text field as an ASCII value. For more informat
on floating-point issues, see“Accuracy & Floating-Point Operations”in Chapter 16
of Using IDL.

Syntax

Result = CW_FSLIDER(Parent[, /DRAG] [, /EDIT] [, FORMAT=string]
[, /FRAME] [, MAXIMUM= value] [, MINIMUM= value] [, SCROLL=units]
[, /SUPRESS_VALUE] [, TITLE=string] [, UNAME=string] [, UVALUE= value]
[, VALUE= initial_value] [, XSIZE=length | {, /VERTICAL [, YSIZE=height]}])

Arguments

Parent

The widget ID of the parent widget.
CW_FSLIDER IDL Reference Guide

303

lider
e

t as

E =

n
er

E =
Keywords

DRAG

Set this keyword to zero if events should only be generated when the mouse is
released. If DRAG is non-zero, events will be generated continuously when the s
is adjusted. Note: On slow systems, /DRAG performance can be inadequate. Th
default is DRAG = 0.

EDIT

Set this keyword to make the slider label be editable. The default is EDIT = 0.

FORMAT

Provides the format in which the slider value is displayed. This should be a forma
accepted by the STRING procedure. The default FORMAT is'(G13.6)'

FRAME

Set this keyword to have a frame drawn around the widget. The default is FRAM
0.

MAXIMUM

The maximum value of the slider. The default is MAXIMUM = 100.

MINIMUM

The minimum value of the slider. The default is MINIMUM = 0.

SCROLL

Under the Motif window manager, the value provided for SCROLL specifies how
many units the scroll bar should move when the user clicks the left mouse butto
inside the slider area, but not on the slider itself. This keyword has no effect und
other window systems.

SUPPRESS_VALUE

If true, the current slider value is not displayed. The default is SUPPRESS_VALU
0.

TITLE

The title of slider.
IDL Reference Guide CW_FSLIDER

304

ou
name

et

L

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value of the slider

VERTICAL

If set, the slider will be oriented vertically. The default is horizontal.

XSIZE

For horizontal sliders, sets the length.

YSIZE

For vertical sliders, sets the height.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the slider. Note that the
SET_SLIDER_MAX and SET_SLIDER_MIN keywords to WIDGET_CONTROL
and the SLIDER_MIN_MAX keyword to WIDGET_INFOdo notwork with floating
point sliders created with CW_FSLIDER.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.
CW_FSLIDER IDL Reference Guide

305

ld
d is
Widget Events Returned by the CW_FSLIDER Widget

This widget generates event structures with the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0.0, DRAG:0}

The VALUE field is the floating-point value selected by the slider. The DRAG fie
reports on whether events are generated continuously (when the DRAG keywor
set) or only when the mouse button is released (the default).

See Also

WIDGET_SLIDER
IDL Reference Guide CW_FSLIDER

306

of

et

nt.

the
cross

tton is

r
sed
CW_LIGHT_EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties
existing IDLgrLight objects in a view. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property). The returned value of this function is the widg
ID of a newly-created light editor.

Syntax

Result= CW_LIGHT_EDITOR (Parent [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED]
[, LIGHT=objref(s)] [, /LOCATION_DISABLED] [, /TYPE_DISABLED]
[, UVALUE=value] [, XSIZE=pixels] [, YSIZE=pixels] [, XRANGE=vector]
[, YRANGE=vector] [, ZRANGE=vector])

Arguments

Parent

The widget ID of the parent widget for the new light editor.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in
compound widget is being dragged or when the mouse cursor is being dragged a
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comes to rest at its final position and the mouse bu
released.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.
CW_LIGHT_EDITOR IDL Reference Guide

307

, but

it,

nt.

l
ord.

nt.

nt.

ciate
ry the

et
Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a ‘hint’ to the toolk
and may be ignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This wil
replace the current set of lights being edited with the list of lights from this keyw

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can asso
a name with each widget in a specific hierarchy, and then use that name to que
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.
IDL Reference Guide CW_LIGHT_EDITOR

308

r.

sed

sed

sed

vent
and

is
UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the
widget in any way, but exists entirely for the convenience of the IDL programme
This keyword allows you to set this value when the widget is first created. If
UVALUE is not present, the widget's initial user value is undefined.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is u
to determine the valid range for the light's location and direction properties

XSIZE

The width of the drawable area in pixels. The default width is 180.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is u
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels. The default height is 180.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is u
to determine the valid range for the light's location and direction properties

Light Editor Events

There are variations of the light editor event structure depending on the specific e
being reported. All of these structures contain the standard three fields (ID, TOP,
HANDLER). The different light editor event structures are described below.

Light Selected

This is the type of structure returned when the light selected in the light list box
modified by a user.

{ CW_LIGHT_EDITOR_LS, ID:0L, TOP:0L, HANDLER:0L, LIGHT:OBJ_NEW()}

LIGHT specifies the object ID of the new light selection.
CW_LIGHT_EDITOR IDL Reference Guide

309

This
ee

nd
OL
be

 An
f a

ts an

itor
Light Modified

This is the type of structure returned when the user has modified a light property.
event maybe generated continuously if the DRAG_EVENTS keyword was set. S
DRAG_EVENTS above.

{ CW_LIGHT_EDITOR_LM, ID:0L, TOP:0L, HANDLER:0L}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compou
widget's base widget. This means that many keywords to the WIDGET_CONTR
and WIDGET_INFO routines that affect or return information on base widgets can
used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget.
IDLgrLight object reference of the currently selected light is returned. The value o
widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified light editor compound widget. This widget accep
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light ed
controls are updated to reflect those properties.

See Also

CW_LIGHT_EDITOR_GET, CW_LIGHT_EDITOR_SET, IDLgrLight
IDL Reference Guide CW_LIGHT_EDITOR

310

ot

hile a
ing

r
sed

, but
CW_LIGHT_EDITOR_GET

The CW_LIGHT_EDITOR_GET procedure gets the CW_LIGHT_EDITOR
properties.

Syntax

CW_ LIGHT_EDITOR_GET,WidgetID[, DIRECTION_DISABLED=variable]
[, DRAG_EVENTS=variable] [, HIDE_DISABLED=variable] [, LIGHT=variable]
[, LOCATION_DISABLED=variable] [, TYPE_DISABLED=variable]
[, XSIZE=variable] [, YSIZE=variable] [, XRANGE=variable]
[, YRANGE=variable][, ZRANGE=variable]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will n
generate an event.

DRAG_ EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously w
slider in the compound widget is being dragged or when the mouse cursor is be
dragged across the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.
CW_LIGHT_EDITOR_GET IDL Reference Guide

311

nd

nces

und

ning

rea

ning

rea

ning
HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compou
widget unchangeable by the user.

LIGHT

Set this keyword to a named variable that will contain one or more object refere
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compo
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable a
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the y direction.

YSIZE

Set this keyword to a named variable that will contain the height of the drawable a
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the z direction.
IDL Reference Guide CW_LIGHT_EDITOR_GET

312
See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_SET, IDLgrLight
CW_LIGHT_EDITOR_GET IDL Reference Guide

313

nt.

the
cross

r
sed

, but

nt.
CW_LIGHT_EDITOR_SET

The CW_LIGHT_EDITOR procedure sets the CW_LIGHT_EDITOR properties.

Syntax

CW_ LIGHT_EDITOR_SET,WidgetID[, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=objref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixels]
[, YSIZE=pixels] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in
compound widget is being dragged or when the mouse cursor is being dragged a
the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
IDL Reference Guide CW_LIGHT_EDITOR_SET

314

l
ord.

nt.

nt.

sed

sed

sed
LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This wil
replace the current set of lights being edited with the list of lights from this keyw

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

XRANGE

A two-element vector defining the data range in the x direction. This keyword is u
to determine the valid range for the light's location and direction properties.

XSIZE

The width of the drawable area in pixels.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is u
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is u
to determine the valid range for the light's location and direction properties.

See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_GET, IDLgrLight
CW_LIGHT_EDITOR_SET IDL Reference Guide

315

o
 !P.T

ion-

le
CW_ORIENT

The CW_ORIENT function creates a compound widget that provides a means t
interactively adjust the three-dimensional drawing transformation and resets the
system variable field to reflect the changed orientation.

The returned value of this function is the widget ID of the newly-created orientat
adjustment widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_orient.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_ORIENT(Parent [, AX=degrees] [, AZ=degrees] [, /FRAME]
[, TITLE=string] [, UNAME=string] [, UVALUE= value] [, XSIZE=width]
[, YSIZE=height])

Arguments

Parent

The widget ID of the parent widget.

Keywords

AX

The initial rotation in the X direction. The default is 30 degrees.

AZ

The initial rotation in the Z direction. The default is 30 degrees.

FRAME

Set this keyword to draw a frame around the widget.

TITLE

The title of the widget.
IDL Reference Guide CW_ORIENT

316

ou
name

et

L

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

Determines the width of the widget. The default is 100.

YSIZE

Determines the height of the widget. The default is 100.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_ORIENT Widget

CW_ORIENT only returns events when the three dimensional drawing
transformation has been altered. The !P.T system variable field is automatically
updated to reflect the new orientation.

See Also

CW_ARCBALL, T3D
CW_ORIENT IDL Reference Guide

317

d
isplay
gram.

, and
 in

,Y
area
CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display an
edit color palettes. The palette editor is a base that contains a drawable area to d
the color palette, a set of vectors that represent the palette and an optional histo

Syntax

Result = CW_PALETTE_EDITOR (Parent[, DATA=array] [, FRAME=width]
[, HISTOGRAM=vector] [, /HORIZONTAL] [, SELECTION=[start, end]]
[, UNAME=string] [, UVALUE= value] [, XSIZE=width] [, YSIZE=height])

Return Value

The returned value of this function is the widget ID of the newly created palette
editor.

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing a display of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red
channel is displayed in red, the Green channel in green, the Blue channel in blue
the optional Alpha channel in purple. The optional Histogram vector is displayed
Cyan.

An area with a white background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X
values and channel pixel values at the cursor location are displayed in a status
below the graphics area.
IDL Reference Guide CW_PALETTE_EDITOR

318

lt
ieved
ce.

ode.

tly
tion

w a
at

t
 to
n in

ted

the
of

the

the
 of

t:

ed

thed.
Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HLS color spaces. RGB is the defau
color space. Note that regardless of the color space in use, the color vectors retr
with the GET_VALUE keyword to widget control are always in the RGB color spa

Editing Mode

A droplist allows selection of the editing mode. Freehand is the default editing m

Unless noted below, editing operations apply only to the channel vectors curren
selected for editing. Unless noted below, editing operations apply only to the por
of the vectors within the selection indicators.

In Freehand editing mode the user can click and drag in the graphics area to dra
new curve. Editable channel vectors will be modified to use the new curve for th
part of the X range within the selection that was drawn in Freehand mode.

In Line Segment editing mode a click, drag and release operation defines the star
point and end point of a line segment. Editable channel vectors will be modified
use the new curve for that part of the X range within the selection that was draw
Line Segment mode.

In Barrel Shift editing mode click and drag operations in the horizontal direction
cause the editable curves to be shifted right or left, with the portion which is shif
off the end of selection area wrapping around to appear on the other side of the
selection area. Only the horizontal component of drag movement is used.

In Slide editing mode click and drag operations in the horizontal direction cause
editable curves to be shifted right or left. Unlike the Barrel Shift mode, the portion
the curves shifted off the end of the selection area does not wrap around. Only
horizontal component of drag movement is used.

In Stretchediting mode click and drag operations in the horizontal direction cause
editable curves to be compressed or expanded. Only the horizontal component
drag movement is used.

A number of buttons provide editing operations which do not require cursor inpu

TheRamp operation causes the selected part of the editable curves to be replac
with a linear ramp from 0 to 255.

TheSmooth operation causes the selected part of the editable curves to be smoo
CW_PALETTE_EDITOR IDL Reference Guide

319

laced

ed in

 in

annel

d
of a

lue
es
g

ha

om of
ThePosterize operation causes the selected part of the editable curves to be rep
with a series of steps.

TheReverseoperation causes the selected part of the editable curves to be revers
the horizontal direction.

TheInvert operation causes the selected part of the editable curves to be flipped
the vertical direction.

TheDuplicate operation causes the selected part of the editable curves to be
compressed by 50% and duplicated to produce two contiguous copies of the ch
vectors within the initial selection.

TheLoad PreDefineddroplist choice leads to additional choices of pre-defined
palettes. Loading a pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the selection endpoints an
editable checkboxes. This allows loading only a single channel or only a portion
pre-defined palette.

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, B
and the optional Alpha channel should be displayed. A second row of checkbox
allows the user to indicate which channels should be edited by the current editin
operation. The checkboxes for the Alpha channel will be sensitive only if an Alp
channel is loaded.

Zoom

Four buttons allow the user to zoom the display of the palette.

The “| |” button zooms to show the current selection.

The “+” button zooms in 50%.

The “-” button zooms out 100%.

The “1:1” button returns the display to the full palette.

Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bott
the graphics area can be used to view a different part of the palette.
IDL Reference Guide CW_PALETTE_EDITOR

320

ial

s
e

e.

of
he

e

ciate
ry the
Arguments

Parent

The widget ID of the parent widget for the new palette editor.

Keywords

DATA

A 3x256 byte array containing the initial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the init
color values and the optional Alpha channel. The value supplied can also be an
IDLgrPalette object reference. If an IDLgrPalette object reference is supplied it i
used internally and is not destroyed on exit. If an object reference is supplied th
ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a “hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM

A 256 element byte vector containing the values for the optional histogram curv

HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists
the controls to the right of the display area. The default is a vertical layout with t
controls below the display area.

SELECTION

The selection is a two element vector defining the starting and ending point of th
selection region of color indexes. The default is [0,255].

UNAME

Set this keyword to a string that can be used to identify the widget. You can asso
a name with each widget in a specific hierarchy, and then use that name to que
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
CW_PALETTE_EDITOR IDL Reference Guide

321

et

r.

ific
,

d

e

t of

te.

L,
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the
widget in any way, but exists entirely for the convenience of the IDL programme
This keyword allows you to set this value when the widget is first created. If
UVALUE is not present, the widget's initial user value is undefined.

XSIZE

The width of the drawable area in pixels. The default width is 256.

YSIZE

The height of the drawable area in pixels. The default height is 256.

Palette Editor Events

There are variations of the palette editor event structure depending on the spec
event being reported. All of these structures contain the standard three fields (ID
TOP, and HANDLER). The different palette editor event structures are describe
below.

Selection Moved

This is the type of structure returned when one of the vertical bars that define th
selection region is moved by a user.

{ CW_PALETTE_EDITOR_SM, ID:0L, TOP:0L, HANDLER:0L,
SELECTION:[0,255]}

SELECTION indicates a two element vector defining the starting and ending poin
the selection region of color indexes.

Palette Edited

This is the type of structure returned when the user has modified the color palet

{ CW_PALETTE_EDITOR_PM, ID:0L, TOP:0L, HANDLER:0L}

The value of the palette editor will need to be retrieved (i.e., WIDGET_CONTRO
GET_VALUE) in order to determine the extent of the actual user modification.
IDL Reference Guide CW_PALETTE_EDITOR

322

nd
OL
be

 A
d.

pts a
tte
e. If
oyed
WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compou
widget's base widget. This means that many keywords to the WIDGET_CONTR
and WIDGET_INFO routines that affect or return information on base widgets can
used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget.
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returne

The value of a widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified palette editor compound widget. This widget acce
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array representing the value of the pale
to be set. Another type of argument accepted is an IDLgrPalette object referenc
an IDLgrPalette object reference is supplied it is used internally and is not destr
on exit.

See Also

CW_PALETTE_EDITOR_GET, CW_PALETTE_EDITOR_SET, IDLgrPalette
CW_PALETTE_EDITOR IDL Reference Guide

323

rve.
CW_PALETTE_EDITOR_GET

The CW_PALETTE_EDITOR_GET procedure gets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GET,WidgetID [, ALPHA=variable]
[, HISTOGRAM=variable])

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

Set this keyword to a named variable that will contains the optional alpha curve.

HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram cu

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_SET, IDLgrPalette
IDL Reference Guide CW_PALETTE_EDITOR_GET

324

tte.
rve

n be

 the
CW_PALETTE_EDITOR_SET

The CW_PALETTE_EDITOR_SET procedure sets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SET,WidgetID [, ALPHA=byte_vector]
[, HISTOGRAM=byte_vector])

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

A 256 element byte vector that describes the alpha component of the color pale
The alpha value may also be set to the scalar value zero to remove the alpha cu
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword ca
used to display a distribution of color index values to facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove
histogram curve from the display.

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_GET, IDLgrPalette
CW_PALETTE_EDITOR_SET IDL Reference Guide

325

e
d.

n

le

s
nu

ent-
CW_PDMENU

The CW_PDMENU function simplifies creating widget pulldown menus. It has a
simpler interface than the XPDMENU procedure, which it replaces. Events for th
individual buttons are handled transparently, and a CW_PDMENU event returne
This event can return any one of the following:

• the Index of the button within the base

• the widget ID of the button

• the name of the button.

• the fully qualified name of the button. This allows different sub-menus to
contain buttons with the same name in an unambiguous way.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

The returned value of this function is the widget ID of the newly-created pulldow
menu widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_pdmenu.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = CW_PDMENU(Parent, Desc [, DELIMITER=string] [, FONT=value]
[, /MBAR [, /HELP]] [, IDS=variable] [, /RETURN_ID | , /RETURN_INDEX | ,
/RETURN_NAME | , /RETURN_FULL_NAME] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, YOFFSET=value])

Arguments

Parent

The widget ID of the parent widget.

Desc

An array of strings or structures. IfDescis an array of strings, each element contain
the flag field, followed by a backslash character, followed by the name of the me
item, optionally followed by another backslash character and the name of an ev
processing procedure for that element. A string element of theDescarray would look
like:
IDL Reference Guide CW_PDMENU

326

flag

ildren

te

t

d,
'n\ item_name'

or

'n\ item_name\ event_proc'

wheren is the flag field anditem_name is the name of the menu item. The flag field
is a bitmask that controls how the button is interpreted; appropriate values for the
field are shown in the following table. If theevent_procfield is present, it is the name
of an event-handling procedure for the menu element and all of its children.

If Desc is an array of structures, each structure has the following definition:

{CW_PDMENU_S, flags:0, name:''}

The name tag is a string field with the following components:

' item_name'

or

' item_name\ event_proc'

whereitem_nameis the name of the menu item. If theevent_procfield is present, it is
the name of an event-handling procedure for the menu element and all of its ch

The flags field is a bitmask that controls how the button is interpreted; appropria
values for the flag field are shown in the following table. Note that ifDescis an array
of structures, you cannot specify individual event-handling procedures for each
element.

Value Meaning

0 This button is neither the beginning nor the end of a pulldown level.

1 This button is the root of a sub-pulldown menu. The sub-buttons star
with the next button.

2 This button is the last button at the current pulldown level. The next
button belongs to the same level as the current parent button. If the
name field is not specified (or is an empty string), no button is create
and the next button is created one level up in the hierarchy.

3 This button is the root of a sub-pulldown menu, but it is also the last
entry of the current level.

Table 14: Button Flag Bit Meanings
CW_PDMENU IDL Reference Guide

327

ents.

ice

is

el
ive
otif

ID

ed
Keywords

DELIMITER

The character used to separate the parts of a fully qualified name in returned ev
The default is to use the “.” character.

FONT

The name of the font to be used for the button titles. The font specified is a “dev
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows or Macintosh systems). See“About Device Fonts”on page 2240 for details
on specifying names for device fonts. If this keyword is omitted, the default font
used.

HELP

If the MBAR keyword is set, and one of the buttons on the menubar has the lab
“help” (case insensitive) then that button is created with the /HELP keyword to g
it any special appearance it is supposed to have on a menubar. For example, M
expects help buttons to be on the right.

IDS

A named variable in which the button IDs will be stored as a longword vector.

MBAR

Set this keyword to create a menubar pulldown. If MBAR is set,Parent must be the
menubar of a top-level base. (See theMBAR keyword to WIDGET_BASE for
details.)

RETURN_ID

If this keyword is set, the VALUE field of returned events will contain the widget
of the button.

RETURN_INDEX

If this keyword is set, the VALUE field of returned events will contain the zero-bas
index of the button within the base. THIS IS THE DEFAULT.

RETURN_NAME

If this keyword is set, the VALUE field of returned events will be the name of the
selected button.
IDL Reference Guide CW_PDMENU

328

d
the
 the
as
utton

ou
name

et

L

RETURN_FULL_NAME

Set this keyword and the VALUE field of returned events will be the fully qualifie
name of the selected button. This means that the names of all the buttons from
topmost button of the pulldown menu to the selected one are concatenated with
delimiter specified by the DELIMITER keyword. For example, if the top button w
named COLORS, the second level button was named BLUE, and the selected b
was named LIGHT, the returned value would be

COLORS.BLUE.LIGHT

This allows different submenus to have buttons with the same name (e.g.,
COLORS.RED.LIGHT).

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset of the widget relative to its parent.

YOFFSET

The Y offset of the widget relative to its parent.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.
CW_PDMENU IDL Reference Guide

329

e

Widget Events Returned by the CW_PDMENU Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0 }

VALUE is either the INDEX, ID, NAME, or FULL_NAME of the button, depending
on how the widget was created.

Example

The following is the description of a menu bar with two buttons: “Colors” and
“Quit”. Colors is a pulldown containing the colors “Red”, “Green”, Blue”, “Cyan”,
and “Magenta”. Blue is a sub-pulldown containing “Light”, “Medium”, “Dark”,
“Navy”, and “Royal.”

The following small program can be used with the above description to create th
specified menu:

PRO PD_EXAMPLE
desc = ['1\Colors' , $

'0\Red' , $
'0\Green' , $
'1\Blue' , $
'0\Light' , $
'0\Medium' , $
'0\Dark' , $
'0\Navy' , $
'2\Royal' , $
'0\Cyan' , $
'2\Magenta' , $
'2\Quit']

Create the widget:

base = WIDGET_BASE()
menu = CW_PDMENU(base, desc, /RETURN_FULL_NAME)
WIDGET_CONTROL, /REALIZE, base

Provide a simple event handler:

REPEAT BEGIN
ev = WIDGET_EVENT(base)
PRINT, ev.value

END UNTIL ev.value EQ 'Quit'
WIDGET_CONTROL, /DESTROY, base
END
END
IDL Reference Guide CW_PDMENU

330

. The
n

TheDesc array could also have been defined using a structure for each element
following array of structures creates the same menu as the array of strings show
above. Note, however, that if theDesc array is composed of structures, you cannot
specify individual event-handling routines.

First, make sure CW_PDMENU_S structure is defined:

junk = {CW_PDMENU_S, flags:0, name:'' }

Define the menu:

desc = [{ CW_PDMENU_S, 1, 'Colors' }, $
{ CW_PDMENU_S, 0, 'Red' }, $
{ CW_PDMENU_S, 0, 'Green' }, $
{ CW_PDMENU_S, 1, 'Blue' }, $
{ CW_PDMENU_S, 0, 'Light' }, $
{ CW_PDMENU_S, 0, 'Medium' }, $
{ CW_PDMENU_S, 0, 'Dark' }, $
{ CW_PDMENU_S, 0, 'Navy' }, $
{ CW_PDMENU_S, 2, 'Royal' }, $
{ CW_PDMENU_S, 0, 'Cyan' }, $
{ CW_PDMENU_S, 2, 'Magenta' }, $
{ CW_PDMENU_S, 2, 'Quit' }]

See Also

CW_BGROUP, WIDGET_DROPLIST
CW_PDMENU IDL Reference Guide

331

an

le

r to
s,

he
CW_RGBSLIDER

The CW_RGBSLIDER function creates a compound widget that provides three
sliders for adjusting color values. The RGB, CMY, HSV, and HLS color systems c
all be used. No matter which color system is in use, the resulting color is always
supplied in RGB, which is the base system for IDL.

The returned value of this function is the widget ID of the newly-created color
adjustment widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_rgbslider.pro in thelib subdirectory of the IDL distribution.

Using CW_RGBSLIDER

The CW_RGBSLIDER widget consists of a pulldown menu which allows the use
change between the supported color systems, and three color adjustment slider
allowing the user to select a new color value.

Syntax

Result = CW_RGBSLIDER(Parent[, /CMY | , /HSV | , /HLS | , /RGB]
[, /COLOR_INDEX] [, /DRAG] [, /FRAME] [, LENGTH=value]
[, UNAME=string] [, UVALUE= value] [, /VERTICAL])

Arguments

Parent

The widget ID of the parent widget.

Keywords

CMY

If set, the initial color system used is CMY.

COLOR_INDEX

If set, display a small rectangle with the selected color, using the given index. T
color is updated as the values are changed.
IDL Reference Guide CW_RGBSLIDER

332

sed.

ou
name

et
DRAG

Set this keyword and events will be generated continuously when the sliders are
adjusted. If not set, events will only be generated when the mouse button is relea
Note: On slow systems, /DRAG performance can be inadequate. The default is
DRAG = 0.

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

HSV

If set, the initial color system used is HSV.

HLS

If set, the initial color system used is HLS.

LENGTH

The length of the sliders. The default = 256.

RGB

If set, the initial color system used is RGB. This is the default.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VERTICAL

If set, the sliders will be oriented vertically. The default is VERTICAL = 0.
CW_RGBSLIDER IDL Reference Guide

333

L

lue
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_RGBSLIDER Widget

This widget generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, R:0B, G:0B, B:0B }

The ‘R’, ‘G’, and ‘B’ fields contain the Red, Green and Blue components of the
selected color. Note that CW_RGBSLIDER reports back the Red, Green, and B
values no matter which color system is selected.

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
IDL Reference Guide CW_RGBSLIDER

334

ou
name

et
CW_TMPL

The CW_TMPL procedure is a template for compound widgets that use the
XMANAGER. Use this template instead of writing your compound widgets from
“scratch”. This template can be found in the filecw_tmpl.pro in thelib
subdirectory of the IDL distribution.

Syntax

Result = CW_TMPL(Parent [, UNAME=string] [, UVALUE= value])

Arguments

Parent

The widget ID of the parent widget of the new compound widget.

Keywords

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

A user-specified value for the compound widget.

See Also

XMNG_TMPL
CW_TMPL IDL Reference Guide

335

 an
ser
, and

le

 that
CW_ZOOM

The CW_ZOOM function creates a compound widget that displays two images:
original image in one window and a portion of the original image in another. The u
can select the center of the zoom region, the zoom scale, the interpolation style
the method of indicating the zoom center.

The returned value of this function is the widget ID of the newly-created zoom
widget.

This routine is written in the IDL language. Its source code can be found in the fi
cw_zoom.pro in thelib subdirectory of the IDL distribution.

Using CW_ZOOM

The value of the CW_ZOOM widget is the original, un-zoomed image to be
displayed (a two-dimensional array). To change the contents of the CW_ZOOM
widget, use the command:

WIDGET_CONTROL, id, SET_VALUE = array

whereid is the widget ID of the CW_ZOOM widget andarray is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array , use the command:

WIDGET_CONTROL, id, GET_VALUE = array

Syntax

Result = CW_ZOOM(Parent [, /FRAME] [, MAX= scale] [, MIN= scale]
[, RETAIN={0 | 1 | 2}] [, SAMPLE=value] [, SCALE=value] [, /TRACK]
[, UNAME=string] [, UVALUE= value] [, XSIZE=width]
[, X_SCROLL_SIZE=width] [, X_ZSIZE=zoom_width] [, YSIZE=height]
[, Y_SCROLL_SIZE=height] [, Y_ZSIZE=zoom_height])

Arguments

Parent

The widget ID of the parent widget.
IDL Reference Guide CW_ZOOM

336

lt is

lt is 1.

dled
at
L

e

E =

ed
use
uate.

ou
name
Keywords

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

MAX

The maximum zoom scale, which must be greater than or equal to 1. The defau
20.

MIN

The minimum zoom scale, which must be greater than or equal to 1. The defau

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be han
for both windows. RETAIN=0 specifies no backing store. RETAIN=1 requests th
the server or window system provide backing store. RETAIN=2 specifies that ID
provide backing store directly. See“Backing Store” on page 2128 for details.

SAMPLE

Set to zero for bilinear interpolation, or to a non-zero value for nearest neighbor
interpolation. Bilinear interpolation gives higher quality results, but requires mor
time. The default is 0.

SCALE

The initial integer scale factor to use for the zoomed image. The default is SCAL
4. The scale must be greater than or equal to 1.

TRACK

Set this keyword and events will be generated continuously as the cursor is mov
across the original image. If not set, events will only be generated when the mo
button is released. Note: On slow systems, /TRACK performance can be inadeq
The default is 0.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
CW_ZOOM IDL Reference Guide

337

et

=

ote

r.

he
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

The width of the window (in pixels) for the original image. The default is XSIZE
500. Note that XSIZEmust be set to the width of the original image array for the
image to display properly.

X_SCROLL_SIZE

The width of the visible part of the original image. This may be smaller than the
actual width controlled by the XSIZE keyword. The default is 0, for no scroll bar.

X_ZSIZE

The width of the window for the zoomed image. The default is 250.

YSIZE

The height of the window (in pixels) for the original image. The default is 500. N
that YSIZEmust be set to the height of the original image array for the image to
display properly.

Y_SCROLL_SIZE

The height of the visible part of the original image. This may be smaller than the
actual height controlled by the YSIZE keyword. The default is 0, for no scroll ba

Y_ZSIZE

The height of the window for the zoomed image. The default is 250.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return
information on base widgets can be used with compound widgets.

In addition, you can use theGET_VALUE andSET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the zoom widget. The value of t
CW_ZOOM widget is the original, un-zoomed image to be displayed (a two-
IDL Reference Guide CW_ZOOM

338

 that

L

nt

 X0
e,
dimensional array). To change the contents of the CW_ZOOM widget, use the
command:

WIDGET_CONTROL, id, SET_VALUE = array

whereid is the widget ID of the CW_ZOOM widget andarray is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array , use the command:

WIDGET_CONTROL, id, GET_VALUE = array

See“Compound Widgets” in Chapter 18 ofBuilding IDL Applcations for a more
complete discussion of controlling compound widgets using WIDGET_CONTRO
and WIDGET_INFO.

Widget Events Returned by the CW_ZOOM Widget

When the “Report Zoom to Parent” button is pressed, this widget generates eve
structures with the following definition:

event = {ZOOM_EVENT, ID:0L, TOP:0L, HANDLER:0L, $
XSIZE:0L, YSIZE:0L, X0:0L, Y0:0L, X1:0L, Y1:0L }

The XSIZE and YSIZE fields contain the dimensions of the zoomed image. The
and Y0 fields contain the coordinates of the lower left corner of the original imag
and the X1 and Y1 fields contain the coordinates of the upper right corner of the
original image.

Example

The following code samples illustrate a use of the CW_ZOOM widget.

First, create an event-handler. Note that clicking on the widget’s “Zoom” button
displays IDL’s help output on the console.

PRO widzoom_event, event

WIDGET_CONTROL, event.id, GET_UVALUE=uvalue
CASE uvalue OF

'ZOOM': HELP, /STRUCT, event
'DONE': WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

END
CW_ZOOM IDL Reference Guide

339

mpt
Next, create the widget program:

PRO widzoom

OPENR, lun, FILEPATH('people.dat', SUBDIR = ['examples','data']),
$

/GET_LUN
image=BYTARR(192,192)
READU, lun, image
FREE_LUN, lun
sz = SIZE(image)

base=WIDGET_BASE(/COLUMN)
zoom=CW_ZOOM(base, XSIZE=sz[1], YSIZE=sz[2], UVALUE='ZOOM')
done=WIDGET_BUTTON(base, VALUE='Done', UVALUE='DONE')
WIDGET_CONTROL, base, /REALIZE

WIDGET_CONTROL, zoom, SET_VALUE=image
XMANAGER, 'widzoom', base

END

Once you have entered these programs, type “widzoom” at the IDL command pro
to run the widget application.

See Also

ZOOM, ZOOM_24
IDL Reference Guide CW_ZOOM

340

his

ith
DBLARR

The DBLARR function returns a double-precision, floating-point vector or array.

Syntax

Result = DBLARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DBLARR sets every element of the result to zero. If NOZERO is set, t
zeroing is not performed and DBLARR executes faster.

Example

To create D, an 3-element by 3-element, double-precision, floating-point array w
every element set to 0.0, enter:

D = DBLARR(3, 3)

See Also

COMPLEXARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
DBLARR IDL Reference Guide

341

ay
the

ts are
w

e

DCINDGEN

The DCINDGEN function returns a complex, double-precision, floating-point arr
with the specified dimensions. Each element of the array has its real part set to
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax

Result = DCINDGEN(D1, ...,D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create DC, a 4-element vector of complex values with the real parts set to th
value of their subscripts, enter:

DC = DCINDGEN(4)

See Also

BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN, SINDGEN,
UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide DCINDGEN

342

iven
rt of

 of
ndard
ata

lt.
s can

ar.

tain
uch
DCOMPLEX

The DCOMPLEX function returns double-precision complex scalars or arrays g
one or two scalars or arrays. If only one parameter is supplied, the imaginary pa
the result is zero, otherwise it is set to the value of theImaginary parameter.
Parameters are first converted to double-precision floating-point. If either or both
the parameters are arrays, the result is an array, following the same rules as sta
IDL operators. If three parameters are supplied, DCOMPLEX extracts fields of d
from Expression.

Syntax

Result = DCOMPLEX(Real [, Imaginary])

or

Result = DCOMPLEX(Expression, Offset, Dim1 [, ...,Dim8])

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as complex data. See the
description inChapter 5, “Constants” in Building IDL Applcations for details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid floating-point value and no conversion is possible. The default action in s
DCOMPLEX IDL Reference Guide

343

e can

nds:
cases is to print a warning message and return 0. The ON_IOERROR procedur
be used to establish a statement to be jumped to in case of such errors.

Example

Create a complex array from two integer arrays by entering the following comma

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = DCOMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.0000000, 4.0000000)(2.0000000, 5.0000000)
(3.0000000, 6.0000000)

See Also

BYTE, COMPLEX, CONJ, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide DCOMPLEX

344

nt
DCOMPLEXARR

The DCOMPLEXARR function returns a complex, double-precision, floating-poi
vector or array.

Syntax

Result = DCOMPLEXARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DCOMPLEXARR sets every element of the result to zero. If the
NOZERO keyword is set, this zeroing is not performed, and DCOMPLEXARR
executes faster.

Example

To create an empty, 5-element by 5-element, complex array DC, enter:

DC = DCOMPLEXARR(5, 5)

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
DCOMPLEXARR IDL Reference Guide

345

 send.

ters

d.

nces
acters
 that
te.
DEFINE_KEY

The DEFINE_KEY procedure programs the keyboard functionKey with the string
Value, or with one of the actions specified by the available keywords.

DEFINE_KEY is primarily intended for use with IDL’s command line interface
(available under UNIX and VMS). IDL’s graphical interface (IDLDE), which is
available under all operating systems supported by IDL, uses different system-
specific mechanisms.

Syntax

DEFINE_KEY,Key [, Value] [, /MATCH_PREVIOUS] [, /NOECHO]
[, /TERMINATE]

UNIX Keywords: [, /BACK_CHARACTER] [, /BACK_WORD] [, /CONTROL | ,
/ESCAPE] [, /DELETE_CHARACTER] [, /DELETE_CURRENT]
[, /DELETE_EOL] [, /DELETE_LINE] [, /DELETE_WORD] [, /END_OF_LINE]
[, /END_OF_FILE] [, /ENTER_LINE] [, /FORWARD_CHARACTER]
[, /FORWARD_WORD] [, /INSERT_OVERSTRIKE_TOGGLE] [, /NEXT_LINE]
[, /PREVIOUS_LINE] [, /RECALL] [, /REDRAW] [, /START_OF_LINE]

Arguments

Key

A scalar string containing the name of a function key to be programmed. IDL
maintains an internal list of function key names and the escape sequences they

UNIX — Under UNIX, DEFINE_KEY allows you to set the values of two distinctly
different types of keys:

• Control characters: Any of the 26 control characters (CTRL+A through
CTRL+Z) can be associated with specific actions by specifying the
CONTROL keyword. Control characters are the unprintable ASCII charac
at the beginning of the ASCII character set. They are usually entered by
holding down the Control key while the corresponding letter key is presse

• Function keys: Most terminals (and terminal emulators) send escape seque
when a function key is pressed. An escape sequence is a sequence of char
starting the ASCII Escape character. Escape sequences follow strict rules
allow applications such as IDL to determine when the sequence is comple
For instance, the left arrow key on most machines sends the sequence
IDL Reference Guide DEFINE_KEY

346

nd

ss

board
ng of
ibes
<ESC>[D. The available function keys and the escape sequences they se
vary from keyboard to keyboard; IDL cannot be built to recognize all of the
different keyboards in existence. The ESCAPE keyword allows you to
program IDL with the escape sequences for your keyboard. When you pre
the function key, IDL will recognize the sequence and take the appropriate
action.

UNIX — Under UNIX, if Key is not already on IDL’s internal list, you must use the
ESCAPE keyword to specify the escape sequence, otherwise,Key alone will suffice.
The available function keys and the escape sequences they send vary from key
to keyboard. The SETUP_KEYS procedure should be used once at the beginni
the session to enter the keys for the current keyboard. The following table descr
the standard key definitions.

Editing Key Function

Ctrl+A Move cursor to start of line

Ctrl+B Move cursor left one word

Ctrl+D EOF if current line is empty, EOL otherwise

Ctrl+E Move to end of line

Ctrl+F Move cursor right one word

Ctrl+K Erase from the cursor to the end of the line

Ctrl+N Move back one line in the recall buffer

Ctrl+R Retype current line

Ctrl+U Delete from current position to start of line

Ctrl+W Delete previous word

Ctrl+X Delete current character

Backspace, Delete Delete previous character

ESC-I Overstrike/insert toggle

ESC-Delete Delete previous word

Up Arrow Move back one line in the recall buffer

Down Arrow Move forward one line in the recall buffer

Table 15: Standard Key Definitions for UNIX
DEFINE_KEY IDL Reference Guide

347

ent
VMS — Under VMS, the key names are those defined by the Screen Managem
utility (SMG). The following table describes some of these keys. For a complete
description, refer to theVMS RTL Screen Management (SMG$) Manual.

Left Arrow Move left one character

Right Arrow Move right one character

R13 Move cursor left one word (Sun keyboards)

R15 Move cursor right one word (Sun keyboards)

^text Recall the first line containingtext. If textis blank,
recall the previous line

Other Characters Insert character at the current cursor position

Key Name Description

DELETE Delete previous character.

PF1 Recall most recent command that matches
supplied string.

PF2—PF4 Top row of keypad.

KP0—KP9 Keypad keys 0 through 9

ENTER Keypad ENTER key

MINUS Keypad “-” key

COMMA Keypad “,” key

PERIOD Keypad “.” key

FIND Editing keypad FIND key

INSERT_HERE Editing keypad INSERT HERE key

REMOVE Editing keypad REMOVE key

SELECT Editing keypad SELECT key

Table 16: VMS Line Editing Keys

Editing Key Function

Table 15: Standard Key Definitions for UNIX
IDL Reference Guide DEFINE_KEY

348

ed.

rrent
f

ith

d

hen
Windows —Under Windows, function keys F2, F4, F11, and F12 can be customiz

In IDL for Windows, three special variables can be used to expand the cu
mouse selection, the current line, or the current filename into the output o
defined keys.

For example, to define F2 as a key that executes an IDL PRINT command w
the current mouse selection as its argument, use the command:

DEFINE_KEY, 'F2', 'PRINT, "%S"'

Dragging the mouse over any text in an IDL Editor or Output Log window an
pressing F1 causes the selected text to be printed. The%l and%f variables can
be used in a similar fashion.

Macintosh —DEFINE_KEY does not currently work with IDL for Macintosh.

Value

The scalar string that will be printed (as if it had been typed manually at the
keyboard) whenKey is pressed. IfValue is not present, and no function is specified
for the key with one of the keywords, the key is cleared so that nothing happens w
it is pressed.

PREV_SCREEN Editing keypad PREV_SCREEN key

NEXT_SCREEN Editing keypad NEXT_SCREEN key

Variable Expansion

%f filename of the currently-selected IDL Editor window

%l number of the current line in an IDL Editor window

%s Currently-selected text from an IDL Output Log or
Editor window

Table 17: Variable expansions for defined keys

Key Name Description

Table 16: VMS Line Editing Keys
DEFINE_KEY IDL Reference Guide

349

e
t
nd,
y is
y is

h
o be

rn is

r the
Keywords

MATCH_PREVIOUS

Set this keyword to programKey to prompt the user for a string, and then search th
saved command buffer for the most recently issued command that contains tha
string. If a match is found, the matching command becomes the current comma
otherwise the last command entered is used. Under UNIX, the default match ke
the up caret “^” key when pressed in column 1. Under VMS, the default match ke
PF1.

NOECHO

Set this keyword to enter the Value assigned toKey when pressed, without echoing
the string to the screen. This feature is useful for defining keys that perform suc
actions as erasing the screen. If NOECHO is set, TERMINATE is also assumed t
set.

TERMINATE

If this keyword is set, andValue is present, pressingKey terminates the current input
operation after its assigned value is entered. Essentially, an implicit carriage retu
added to the end ofValue.

UNIX Keywords

BACK_CHARACTER

Set this keyword to programKey to move the current cursor position left one
character.

BACK_WORD

Set this keyword to programKey to move the current cursor position left one word.

CONTROL

Set this keyword to indicate thatKey is the name of a control key. The default is for
Keyto define a function key escape sequence. To view the names used by IDL fo
control keys, type the following at the Command Input Line:

HELP, /ALL_KEYS

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.
IDL Reference Guide DEFINE_KEY

350

e

DELETE_CHARACTER

Set this keyword to programKey to delete the character to the left of the cursor.

DELETE_CURRENT

Set this keyword to programKey to delete the character directly underneath the
cursor.

DELETE_EOL

Set this keyword to programKey to delete from the cursor position to the end of th
line.

DELETE_LINE

Set this keyword to programKey to delete all characters to the left of the cursor.

DELETE_WORD

Set this keyword to programsKey to delete the word to the left of the cursor.

END_OF_LINE

Set this keyword to programKey to move the cursor to the end of the line.

END_OF_FILE

Set this keyword to programKey to exit IDL if the current line is empty, and to end
the current input line if the current line is not empty.

ENTER_LINE

Set this keyword to programKey to enter the current line (i.e., the action normally
performed by the “Return” key).

ESCAPE

A scalar string that specifies the escape sequence that corresponds toKey. See
“Defining New Function Keys” on page 352 for further details.

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.
DEFINE_KEY IDL Reference Guide

351

.

iling
ode

nd

mand.
iated

e
t
y one
FORWARD_CHARACTER

Set this keyword to programKey to move the current cursor position right one
character.

FORWARD_WORD

Set this keyword to programKey to move the current cursor position right one word

INSERT_OVERSTRIKE_TOGGLE

Set this keyword to programKey to toggle between “insert” and “overstrike” mode.
When characters are typed into the middle of a line, insert mode causes the tra
characters to be moved to the right to make room for the new ones. Overstrike m
causes the new characters to overwrite the existing ones.

NEXT_LINE

Set this keyword to programKey to move forward one command in the saved
command buffer and make that command the current one.

PREVIOUS_LINE

Set this keyword to programKey to move back one command in the saved comma
buffer and make that command the current one.

RECALL

Set this keyword to programKey to prompt the user for a command number. The
saved command corresponding to the entered number becomes the current com
In order to view the currently saved commands and the number currently assoc
with each, enter the IDL command:

HELP, /RECALL COMMANDS

Example

The RECALL operation remembers the last command number entered, and if th
user simply presses return, it recalls the command currently associated with tha
saved number. Since the number associated with a given command increases b
each time a new command is saved, this feature can be used to quickly replay a
sequence of commands.

IDL> PRINT, 1
1
IDL> PRINT, 2
2
IDL> HELP, /RECALL_COMMANDS
Recall buffer length: 20
IDL Reference Guide DEFINE_KEY

352

at
e to

a
se
add a
use

only
l do
and
1 PRINT, 2
2 PRINT, 1

User presses key tied to RECALL.

IDL>

Line 2 is requested.

Recall Line #: 2

Saved command 2 is recalled.

IDL> PRINT, 1
1

User presses return.

Recall Line #:

Saved command 2 is recalled again.

IDL> PRINT, 2
2

REDRAW

Set this keyword to programKey to retype the current line.

START_OF_LINE

Set this keyword to programKey to move the cursor to the start of the line.

Defining New Function Keys

Under VMS, IDL uses the SMG screen management package, which ensures th
IDL command editing behaves in the standard VMS way. Hence, it is not possibl
use a key SMG does not understand.

Under UNIX, IDL can handle arbitrary function keys. When adding a definition for
function key that is not built into IDL’s default list of recognized keys, you must u
the ESCAPE keyword to specify the escape sequence it sends. For example, to
function key named “HELP” which sends the escape sequence <Escape>[28~,
the command:

DEFINE_KEY, 'HELP', ESCAPE = '\033[28~'

This command adds the HELP key to the list of keys understood by IDL. Since
the key name and escape sequence were specified, pressing the HELP key wil
nothing. The Value argument, or one of the keywords provided to specify comm
DEFINE_KEY IDL Reference Guide

353

m it

l list
ape

t

 on
e, to

ed
f
ved
line editing functions, could have been included in the above statement to progra
with an action.

Once a key is defined using the ESCAPE keyword, it is contained in the interna
of function keys. It can then be subsequently redefined without specifying the esc
sequence.

It is convenient to include commonly used key definitions in a startup file, so tha
they will always be available. See“Startup File” in Chapter 2 ofUsing IDL.

Usually, the SETUP_KEYS procedure is used to define the function keys found
the keyboard, so it is not necessary to specify the ESCAPE keyword. For exampl
program key “F2” on a Sun keyboard to redraw the current line:

SETUP_KEYS
DEFINE_KEY, 'F2', /REDRAW

The CONTROL keyword alters the action that IDL takes when it sees the specifi
characters defining the control keys. IDL may not be able to alter the behavior o
some control characters. For example, CTRL+S and CTRL+Q are usually reser
by the operating system for flow control. Similarly, CTRL+Z is usually The UNIX
suspend character.

Example

CTRL+D is the UNIX end-of-file character. It is a common UNIX convention
(followed by IDL) for programs to quit upon encountering CTRL+D.However,
CTRL+D is also used by some text editors to delete characters. To disable IDL
default handling of CTRL+D, type the following:

DEFINE_KEY, /CONTROL, '^D'

To print a reminder of how to exit IDL properly, type the following:

DEFINE_KEY, /CONTROL, '^D', "print, 'Enter EXIT to quit IDL'", $
/NOECHO, /TERMINATE

To use CTRL+D to delete characters, type the following:

DEFINE_KEY, /CONTROL, '^D', /DELETE_CURRENT

See Also

GET_KBRD
IDL Reference Guide DEFINE_KEY

354

e
pts of

le

ts
.
ion.
s
s

DEFROI

The DEFROI function defines an irregular region of interest of an image using th
image display system and the cursor and mouse. The result is a vector of subscri
the pixels inside the region. The lowest bit in which the write mask is enabled is
changed.

DEFROI only works for interactive, pixel oriented devices with a cursor and an
exclusive or writing mode. Regions may have at most 1000 vertices.

Warning
DEFROI does not function correctly when used with draw widgets. See
CW_DEFROI.

This routine is written in the IDL language. Its source code can be found in the fi
defroi.pro in thelib subdirectory of the IDL distribution.

Using DEFROI

After calling DEFROI, click in the image with the left mouse button to mark poin
on the boundary of the region of interest. The points are connected in sequence
Alternatively, press and hold the left mouse button and drag to draw a curved reg
Click the middle mouse button to erase points. The most recently-placed point i
erased first. Click the right mouse button to close the region. The function return
after the region has been closed.

Syntax

Result = DEFROI(Sx, Sy [, Xverts, Yverts] [, /NOREGION] [, /NOFILL]
[, /RESTORE] [, X0=device_coord, Y0=device_coord] [, ZOOM=factor])

Arguments

Sx, Sy

Integers specifying the horizontal and vertical size of image, in pixels.

Xverts, Yverts

Named vectors that will contain the vertices of the enclosed region.
DEFROI IDL Reference Guide

355

ayed

ed.
Keywords

NOREGION

Set this keyword to inhibit the return of the pixel subscripts.

NOFILL

Set this keyword to inhibit filling of the defined region on completion.

RESTORE

Set this keyword to restore the display to its original state upon completion.

X0, Y0

Set these keywords equal to the coordinates of the lower left corner of the displ
image (in device coordinates). If omitted, the default value (0,0) is used.

ZOOM

Set this keyword equal to the zoom factor. If not specified, a value of 1 is assum

Example

; Create an image:
TVSCL, DIST(200,200)

; Call DEFROI. The cursor becomes active in the graphics window.
; Define a region and click the right mouse button:
X = DEFROI(200, 200)

; Print subscripts of points included in the defined region:
PRINT, X

See Also

CW_DEFROI
IDL Reference Guide DEFROI

356

tem

d
e !PI
ed.

d by

s:
DEFSYSV

The DEFSYSV procedure creates a new system variable calledNameinitialized to
Value.

Syntax

DEFSYSV,Name, Value [, Read_Only] [, EXISTS=variable]

Arguments

Name

A scalar string containing the name of the system variable to be created. All sys
variable names must begin with the character ‘!’.

Value

An expression from which the type, structure, and initial value of the new system
variable is taken.Value can be a scalar, array, or structure.

Read_Only

If the Read_Only argument is present and nonzero, the value of the newly-create
system variable cannot be changed (i.e., the system variable is read-only, like th
system variable). Otherwise, the value of the new system variable can be modifi

Keywords

EXISTS

Set this keyword to a named variable that returns 1 if the system variable specifie
Name exists. If this keyword is specified,Value can be omitted. For example, the
following commands could be used to check that the system variable XYZ exist

DEFSYSV, '!XYZ', EXISTS = i
IF i EQ 1 THEN PRINT, '!XYZ exists' ELSE PRINT, $

'!XYZ does not exist'

Example

To create a new, floating-point, scalar system variable called !NEWVAR with an
initial value of 2.0, enter:

DEFSYSV, '!NEWVAR', 2.0
DEFSYSV IDL Reference Guide

357
You can both define and use a system variable within a single procedure:

PRO foo
DEFSYSV, '!foo', 'Rocky, watch me pull a squirrel out of my hat!'

; Print !foo after defining it:
PRINT, !foo
END

See Also

Appendix D, “System Variables”.
IDL Reference Guide DEFSYSV

358

)

s to
DELETE_SYMBOL

The DELETE_SYMBOL procedure deletes a DCL (Digital Command Language
interpreter symbol for the current process.

Note
This procedure is available on VMS only.

Syntax

DELETE_SYMBOL,Name [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be deleted.

Keywords

TYPE

Indicates the table from whichName will be deleted. Set TYPE to 1 to specify the
local symbol table. Set TYPE to 2 to specify the global symbol table. The default i
search the local table.

See Also

DELLOG, SET_SYMBOL, SETLOG
DELETE_SYMBOL IDL Reference Guide

359
DELLOG

The DELLOG procedure deletes a VMS logical name.

Note
This procedure is available on VMS only.

Syntax

DELLOG, Lognam [, TABLE=string]

Arguments

Lognam

A scalar string containing the name of the logical to be deleted.

Keywords

TABLE

A scalar string giving the name of the logical table from which to deleteLognam. If
TABLE is not specified, LNM$PROCESS_TABLE is used.

See Also

DELETE_SYMBOL, SET_SYMBOL, SETENV, SETLOG
IDL Reference Guide DELLOG

360

re

d by
DELVAR

The DELVAR procedure deletes variables from the main IDL program level.
DELVAR frees any memory used by the variable and removes it from the main
program’s symbol table. The following restrictions apply:

• DELVAR can only be called from the main program level.

• Each time DELVAR is called, the main program is erased. Variables that a
not deleted remain unchanged.

Syntax

DELVAR, V1, ..., Vn

Arguments

Vi

One or more named variables to be deleted.

Example

Suppose that the variable Q is defined at the main program level. Q can be delete
entering:

DELVAR, Q

See Also

TEMPORARY
DELVAR IDL Reference Guide

361

n

DERIV

The DERIV function performs numerical differentiation using 3-point, Lagrangia
interpolation and returns the derivative.

Syntax

Result = DERIV([X,] Y)

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated.

Example

X = [0.1, 0.3, 0.4, 0.7, 0.9]
Y = [1.2, 2.3, 3.2, 4.4, 6.6]
PRINT, DERIV(Y)
PRINT, DERIV(X,Y)

IDL prints:

1.20000 1.00000 1.05000 1.70000 2.70000
8.00000 6.66667 5.25000 6.80000 10.800

See Also

DERIVSIG
IDL Reference Guide DERIV

362

by
ns

d,
DERIVSIG

The DERIVSIG function computes the standard deviation of a derivative as found
the DERIV function, using the input variables of DERIV and the standard deviatio
of those input variables.

Syntax

Result = DERIVSIG([X, Y, Sigx,] Sigy)

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated. Omit ifX is omitted.

Sigx

The standard deviation ofX (either vector or constant). Use “0.0” if the abscissa is
exact; omit ifX is omitted.

Sigy

The standard deviation ofY. Sigymust be a vector if the other arguments are omitte
but may be either a vector or a constant ifX, Y, andSigx are supplied.

See Also

DERIV
DERIVSIG IDL Reference Guide

363

nant
w
n.

le

etic.

int
r

lt
DETERM

The DETERM function computes the determinant of ann by n array. LU
decomposition is used to represent the input array in triangular form. The determi
is then computed as the product of diagonal elements of the triangular form. Ro
interchanges are tracked during the LU decomposition to ensure the correct sig

This routine is written in the IDL language. Its source code can be found in the fi
determ.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=value])

Arguments

A

An n by n single- or double-precision floating-point array.

Keywords

CHECK

Set this keyword to checkA for singularity. The determinant of a singular array is
returned as zero if this keyword is set. Run-time errors may result ifA is singular and
this keyword is not set.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-po
zero on the main diagonal of a triangular array results in a zero determinant. Fo
single-precision inputs, the default value is 1.0× 10-6. For double-precision inputs,
the default value is 1.0× 10-12. Setting this keyword to a value less than the defau
may improve the precision of the result.

Example

; Define an array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
IDL Reference Guide DETERM

364
[-2.0, 7.0, 2.0]]

; Compute the determinant:
PRINT, DETERM(A)

IDL prints:

-16.0000

See Also

COND, INVERT
DETERM IDL Reference Guide

365

hics

nt

uch
ce.

e E-
DEVICE

The DEVICE procedure provides device-dependent control over the current grap
device (as set by the SET_PLOT routine). The IDL graphics procedures and
functions are device-independent. That is, IDL presents the user with a consiste
interface to all devices. However, most devices have extra abilities that are not
directly available through this interface. DEVICE is used to access and control s
abilities. It is used by specifying various keywords that differ from device to devi

SeeAppendix B, “IDL Graphics Devices”for a description of the keywords available
for each graphics device.

Syntax

Note
Each keyword to DEVICE is followed by the device(s) to which it applies.

DEVICE [, /AVANTGARDE | , /BKMAN | , /COURIER | , /HELVETICA | ,
/ISOLATIN1 | , /PALATINO | , /SCHOOLBOOK | , /SYMBOL | , TIMES | ,
ZAPFCHANCERY | , ZAPFDINGBATS {PS}] [, /AVERAGE_LINES{REGIS}]
[, /BINARY | [, /NCAR | , TEXT {CGM}] [, BITS_PER_PIXEL={1 | 2| 4 | 8}{PS}]
[, /BOLD{PS}] [, /BOOK{PS}] [, /BYPASS_TRANSLATION{MAC, WIN, X}]
[, /CLOSE{Z}] [, /CLOSE_DOCUMENT{PRINTER}] [, /CLOSE_FILE{CGM, HP,
LJ, PCL, PS, REGIS, TEK}] [, /COLOR{PCL, PS}] [, COLORS=value{CGM,
TEK}] [, COPY=[Xsource, Ysource, cols, rows, Xdest, Ydest
[, Window_index]] {MAC, WIN, X}] [, /CURSOR_CROSSHAIR{WIN, X}]
[, CURSOR_IMAGE=value{16-element short int vector}{X}]
[, CURSOR_MASK=value{X}] [, /CURSOR_ORIGINAL{MAC, WIN, X}]
[, CURSOR_STANDARD=value{MAC: crosshair=1}{WIN: arrow=32512,
I-beam=32513, hourglass=32514, black cross=32515, up arrow=32516,
size(NT)=32640, icon(NT)=32641, size NW-SE=32642, size NE-SW=32643, siz
W=32644, size N-S=32645}{X: one of the values in file cursorfonts.h}]
[, CURSOR_XY=[x,y]{(X)] [, /DECOMPOSED{MAC, WIN, X}]
[, DEPTH=value{significant bits per pixel}{LJ}] [, /DIRECT_COLOR{X}]
[, EJECT={0 | 1 | 2}{HP}] [, ENCAPSULATED={0 | 1}{PS}] [, ENCODING={1
(binary) | 2 (text) | 3 (NCAR binary)}{CGM}] [, FILENAME=filename{CGM, HP,
LJ, PCL, PS, REGIS, TEK}] [, /FLOYD{LJ, MAC, PCL, X}]
[, FONT_INDEX=integer{PS}] [, FONT_SIZE=points{PS}]
[, GET_CURRENT_FONT=variable{MAC, PRINTER, WIN, X}]
[, GET_DECOMPOSED=variable{MAC, WIN, X}]
IDL Reference Guide DEVICE

366
[, GET_FONTNAMES=variable{MAC, PRINTER, WIN, X}]
[, GET_FONTNUM=variable{MAC, PRINTER, WIN, X}]
[, GET_GRAPHICS_FUNCTION=variable{MAC, WIN, X, Z}]
[, GET_SCREEN_SIZE=variable{MAC, WIN, X}]
[, GET_VISUAL_DEPTH=variable{MAC, WIN, X}]
[, GET_VISUAL_NAME=variable{MAC, WIN, X}]
[, GET_WINDOW_POSITION=variable{MAC, WIN, X}]
[, GET_WRITE_MASK=variable{X, Z}]
[, GIN_CHARS=number_of_characters{TEK}]
[, GLYPH_CACHE=number_of_glyphs{MAC, PRINTER, PS, WIN, Z}]
[, /INCHES{HP, LJ, PCL, PRINTER, PS}] [, /INDEX_COLOR{PRINTER}]
[, /ITALIC{PS}] [, /LANDSCAPE | , /PORTRAIT{HP, LJ, PCL, PRINTER, PS}]
[, /DEMI | , /LIGHT | , /MEDIUM | , /NARROW | , /OBLIQUE{PS}]
[, OPTIMIZE={0 | 1 | 2}{PCL}] [, /ORDERED{LJ, MAC, PCL, X}]
[, OUTPUT=scalar string{HP, PS}] [, /PIXELS{LJ, PCL}] [, PLOT_TO=logical
unit num{REGIS, TEK}] [, /PLOTTER_ON_OFF{HP}] [, /POLYFILL{HP}]
[, /PREVIEW{PS}] [, PRINT_FILE=filename{WIN}] [, /PSEUDO_COLOR{MAC,
X}] [, RESET_STRING=string{TEK}] [, RESOLUTION=value{LJ, PCL}]
[, RETAIN={0 | 1 | 2}{MAC, WIN, X}] [, SCALE_FACTOR=value{PRINTER,
PS}] [, SET_CHARACTER_SIZE=[font size, line spacing]{CGM, HP, LJ, MAC,
PCL, PS, REGIS, TEK, WIN, X, Z}] [, SET_COLORMAP=value{14739-element
byte vector}{PCL}] [, SET_COLORS=value{2 to 256}{Z}] [, SET_FONT=scalar
string{MAC, PRINTER, PS, WIN, Z}] [, SET_GRAPHICS_FUNCTION=code{0 to
15}{MAC, WIN, X, Z}] [, SET_RESOLUTION=[width, height]{Z}]
[, SET_STRING=string{TEK}] [, SET_TRANSLATION=variable{X}]
[, SET_WRITE_MASK=value{0 to 2n-1 for n-bit system}{X, Z}]
[, STATIC_COLOR=value{bits per pixel}{X}] [, STATIC_GRAY= value{bits per
pixel}{X}] [, /TEK4014{TEK}] [, TEK4100{TEK}] [, THRESHOLD= value{LJ,
MAC, PCL, X}] [, TRANSLATION=variable{MAC, WIN, X}]
[, TRUE_COLOR=value{bits per pixel}{MAC, PRINTER, X}] [, /TTY{REGIS,
TEK}] [, /VT240 | , /VT241 | , /VT340 | , /VT341 {REGIS}]
[, WINDOW_STATE=variable{WIN, X}] [, XOFFSET=value{HP, LJ, PCL,
PRINTER, PS}] [, XON_XOFF={0 | 1 (default)}{HP}] [, XSIZE=width{HP, LJ,
PCL, PRINTER, PS}] [, YOFFSET=value{HP, LJ, PCL, PRINTER, PS}]
[, YSIZE=height{HP, LJ, PCL, PRINTER, PS}] [, Z_BUFFERING={0 | 1
(default)}{Z}]

Keywords

See“Keywords Accepted by the IDL Devices” on page 2089.
DEVICE IDL Reference Guide

367

tting
inal
Example

The following example retains the name of the current graphics device, sets plo
to the PostScript device, makes a PostScript file, then resets plotting to the orig
device:

; The NAME field of the !D system variable contains the name of the
; current plotting device.
mydevice = !D.NAME

; Set plotting to PostScript:
SET_PLOT, 'PS'

; Use DEVICE to set some PostScript device options:
DEVICE, FILENAME='myfile.ps', /LANDSCAPE

; Make a simple plot to the PostScript file:
PLOT, FINDGEN(10)

; Close the PostScript file:
DEVICE, /CLOSE

; Return plotting to the original device:
SET_PLOT, mydevice
IDL Reference Guide DEVICE

368

he
ten

re
ment
DFPMIN

The DFPMIN procedure minimizes a user-written functionFunc of two or more
independent variables using the Broyden-Fletcher-Goldfarb-Shanno variant of t
Davidon-Fletcher-Powell method, using its gradient as calculated by a user-writ
functionDfunc.

DFPMIN is based on the routinedfpmin described in section 10.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

DFPMIN, X, Gtol, Fmin, Func, Dfunc [, /DOUBLE] [, EPS=value]
[, ITER=variable] [, ITMAX= value] [, STEPMAX=value] [, TOLX=value]

Arguments

X

On input,X is ann-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Gtol

An input value specifying the convergence requirement on zeroing the gradient.

Fmin

On output,Fmin contains the value at the minimum-pointX of the user-supplied
function specified byFunc.

Func

A scalar string specifying the name of a user-supplied IDL function of two or mo
independent variables to be minimized. This function must accept a vector argu
X and return a scalar result.

For example, suppose we wish to find the minimum value of the function

y = (x0 – 3)4 + (x1 – 2)2

To evaluate this expression, we define an IDL function named MINIMUM:

FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2
DFPMIN IDL Reference Guide

369

es

ves:

e:

etic.

-

tions

ault

hes.
END

Dfunc

A scalar string specifying the name of a user-supplied IDL function that calculat
the gradient of the function specified byFunc. This function must accept a vector
argumentX and return a vector result.

For example, the gradient of the above function is defined by the partial derivati

We can write a function GRAD to express these relationships in the IDL languag

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

Use this keyword to specify a number close to the machine precision. For single
precision calculations, the default value is 3.0× 10-8. For double-precision
calculations, the default value is 3.0× 10-16.

ITER

Use this keyword to specify a named variable which returns the number of itera
performed.

ITMAX

Use this keyword to specify the maximum number of iterations allowed. The def
value is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searc
The default value is 100.0

∂y
∂x0
-------- 4 x0 3–()3 ∂y

∂x1
--------, 2 x1 2–()= =
IDL Reference Guide DFPMIN

370
TOLX

Use this keyword to specify the convergence criterion onX values. The default value
is 4 x EPS.

Example

To minimize the function MINIMUM:

PRO example_dfpmin

; Make an initial guess (the algorithm’s starting point):
X = [1.0, 1.0]

; Set the convergence requirement on the gradient:
Gtol = 1.0e-7

; Find the minimizing value:
DFPMIN, X, Gtol, Fmin, 'minimum', 'grad'

; Print the minimizing value:
PRINT, X

END

FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2

END

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

IDL Output

3.00175 2.00000

See Also

POWELL
DFPMIN IDL Reference Guide

371

n
ing
e.

E
an
never
t

r

”.
ch

w a
DIALOG_MESSAGE

The DIALOG_MESSAGE function creates a modal (blocking) dialog box that ca
be used to display information for the user. The dialog must be dismissed, by click
on one of its option buttons, before execution of the widget program can continu

This function differs from widgets in a number of ways. The DIALOG_MESSAG
dialog does not exist as part of a widget tree, has no children, does not exist in
unrealized state, and generates no events. Instead, the dialog is displayed whe
this function is called. While the DIALOG_MESSAGE dialog is displayed, widge
activity is limited because the dialog is modal. The function does not return to its
caller until the user selects one of the dialog’s buttons. Once a button has been
selected, the dialog disappears.

DIALOG_MESSAGE returns a string containing the text of the label that the use
selected.

There are four basic dialogs that can be displayed. The default type is “Warning
Other types can be selected by setting one of the keywords described below. Ea
dialog type displays different buttons. Additionally any dialog can be made to sho
“Cancel” button by setting the CANCEL keyword. The four types of dialogs are
described in the table below:

Syntax

Result = DIALOG_MESSAGE(Message_Text [, /CANCEL]
[, /DEFAULT_CANCEL | , /DEFAULT_NO] [, DIALOG_PARENT=widget_id]
[, DISPLAY_NAME=string] [, /ERROR | , /INFORMATION | , /QUESTION]
[, RESOURCE_NAME=string] [, TITLE=string])

Dialog Type Default Buttons

Error OK

Warning OK

Question Yes, No

Information OK

Table 18: Types of DIALOG_MESSAGE Dialogs
IDL Reference Guide DIALOG_MESSAGE

372

d. If

he
t

ould
d

The

 on
Arguments

Message_Text

A scalar string or string array that contains the text of the message to be displaye
this argument is set to an array of strings, each array element is displayed as a
separate line of text.

Keywords

CANCEL

Set this keyword to add a “Cancel” button to the dialog.

DEFAULT_CANCEL

Set this keyword to make the “Cancel” button the default selection for the dialog. T
default selection is the button that is selected when the user presses the defaul
keystroke (usually Space or Return depending on the platform). Setting
DEFAULT_CANCEL implies that the CANCEL keyword is also set.

DEFAULT_NO

Set this keyword to make the “No” button the default selection for “Question”
dialogs. Normally, the default is “Yes”.

DIALOG_PARENT

Set this keyword to the widget ID of a widget over which the message dialog sh
be positioned. When displayed, the DIALOG_MESSAGE dialog will be positione
over the specified widget. Dialogs are often related to a non-dialog widget tree.
ID of the widget in that tree to which the dialog is most closely related should be
specified.

Note
In IDL for Windows, the message dialog is centered on the screen rather than
positioned over the specified widget.

This keyword is ignored on Macintosh platforms.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
DIALOG_MESSAGE IDL Reference Guide

373

”.

g”.

log.
rd.

the
title
keyword is specified. This keyword is also ignored on Microsoft Windows and
Macintosh platforms.

ERROR

Set this keyword to create an “Error” dialog. The default dialog type is “Warning

INFORMATION

Set this keyword to create an “Information” dialog. The default dialog type is
“Warning”.

QUESTION

Set this keyword to create a “Question” dialog. The default dialog type is “Warnin

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the dia
See“RESOURCE_NAME”on page 1409 for a complete discussion of this keywo

TITLE

Set this keyword to a scalar string that contains the text of a title to be displayed in
dialog frame. If this keyword is not specified, the dialog has the dialog type as its
as shown in the table underDIALOG_MESSAGE. This keyword is ignored on
Macintosh platforms.

See Also

XDISPLAYFILE
IDL Reference Guide DIALOG_MESSAGE

374

 the
s

 of

lay

ion.

the
DIALOG_PICKFILE

The DIALOG_PICKFILE function allows the user to interactively pick a file, or
multiple files, using the platform’s own native graphical file-selection dialog. The
user can also enter the name of a file that does not exist (see the description of
WRITE keyword, below). DIALOG_PICKFILE returns a string or an array of string
that contains the full path name of the selected file or files. If no file is selected,
DIALOG_PICKFILE returns a null string.

Syntax

Result= DIALOG_PICKFILE([, /DIRECTORY] [, DIALOG_PARENT=widget_id]
[, DISPLAY_NAME=string] [, FILE=string] [, FILTER=string] [, /FIX_FILTER]
[, GET_PATH=variable] [, GROUP=widget_id] [, /MULTIPLE_FILES]
[, /MUST_EXIST] [, /NOCONFIRM] [, PATH=string] [, /READ | , /WRITE]
[, /RESOURCE_NAME] [, TITLE=string])

Keywords

DIALOG_PARENT

Set this keyword equal to a string that specifies the name of the parent directory
the file.

DIRECTORY

Set this keyword to display only the existing directories in the current directory.
Individual files are not displayed.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows disp
on which the dialog should be displayed. This keyword is ignored on Microsoft
Windows and Macintosh platforms.

FILE

Set this keyword to a scalar string that contains the name of the initial file select
This keyword is useful for specifying a default filename.

FILTER

A string value for filtering the files in the file list. This keyword is used to reduce
number of files to choose from. The user can modify the filter unless the
DIALOG_PICKFILE IDL Reference Guide

375

ver,

er

is
g to

ed.

,

n
fic
f the
n
ted

. If
FIX_FILTER keyword is set. Example filter values could be'*.pro' or '*.dat' .
Only a single filter condition is allowed.

Under Microsoft Windows, the user cannot modify the filter. (The user can, howe
enter a filter string in the filename field to filter the files displayed.)

On the Macintosh, the filter is not displayed if the WRITE keyword is set.

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The us
has no ability to modify the filter and the filter is not shown.

Under Microsoft Windows, the user cannot modify the filter even if FIX_FILTER
notset. Note that the user can enter a filter string in the filename field of the dialo
change the filter condition even if FIX_FILTERis set.

GET_PATH

Set this keyword to a named variable in which the path of the selection is return

GROUP

The widget ID of a widget that calls DIALOG_PICKFILE. When this ID is specified
a death of the caller results in the death of the DIALOG_PICKFILE dialog.

MULTIPLE_FILES

Set this keyword to allow for multiple file selection in the file-selection dialog. Whe
you set this keyword, the user can select multiple files using the platform- speci
selection method. The currently selected files appear in the selection text field o
dialog as a comma-separated list. With this keyword set, DIALOG_PICKFILE ca
return a string or an array of strings that contains the full path name of the selec
file or files.

MUST_EXIST

Set this keyword to allow only files that already exist to be selected.

PATH

Set this keyword to a string that contains the initial path from which to select files
this keyword is not set, the current working directory is used.

READ

Set this keyword to make the title of the dialog “Select File to Read”.
IDL Reference Guide DIALOG_PICKFILE

376

fied,

e

cted
TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not speci
the default title is “Select File”. This keyword is ignored on Macintosh platforms.

WRITE

Set this keyword to make the title of the dialog “Select File to Write”.

Note
On the Macintosh, youmustset the WRITE keyword in order to be able to enter th
name of a file that does not exist. As a result, the FILTER and FIX_FILTER
keywords are ignored when the WRITE keyword is specified on a Macintosh.

Example

Create a DIALOG_PICKFILE dialog that lets users select only files with the
extension ‘pro’. Use the ‘Select File to Read’ title and store the name of the sele
file in the variablefile . Enter:

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

See Also

FILEPATH
DIALOG_PICKFILE IDL Reference Guide

377

 a
e.

f no

log.

 on

e to

ord
IDL Reference Guide DIALOG_PRINTERSETUP

DIALOG_PRINTERSETUP

The DIALOG_PRINTERSETUP function opens a native dialog for setting the
applicable properties for a particular printer. DIALOG_PRINTERSETUP returns
nonzero value if the user pressed the “OK” button in the dialog, or zero otherwis
You can use the result of this function to programmatically begin printing.

Syntax

Result = DIALOG_PRINTERSETUP([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which setup properties are to be set. I
PrintDestination is specified, the printer used by the IDL Direct Graphicsprinter
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dia

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified, and is also ignored on Windows and Macintosh platforms.

RESOURCE_NAME

Set this keyword equal to a string containing an X Window System resource nam
be applied to the dialog.

TITLE

Set this keyword equal to a string to be displayed on the dialog frame. This keyw
is ignored on Windows and Macintosh platforms.

See Also

DIALOG_PRINTJOB, “The Printer Device” on page 2147

378

in

o

log.

 on

e to

ord
DIALOG_PRINTJOB

The DIALOG_PRINTJOB function opens a native dialog that allows you to set
parameters for a printing job (number of copies to print, for example).

DIALOG_PRINTJOB returns a nonzero value if the user pressed the “OK” button
the dialog, or zero otherwise. You can use the result of this function to
programmatically begin printing.

Syntax

Result = DIALOG_PRINTJOB([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which a printing job is to be initiated. If n
PrintDestination is specified, the printer used by the IDL Direct Graphicsprinter
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dia

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified, and is also ignored on Windows and Macintosh platforms.

RESOURCE_NAME

Set this keyword equal to a string containing an X Window System resource nam
be applied to the dialog.

TITLE

Set this keyword equal to a string to be displayed on the dialog frame. This keyw
is ignored on Windows and Macintosh platforms.
DIALOG_PRINTJOB IDL Reference Guide

379
See Also

DIALOG_PRINTERSETUP, “The Printer Device” on page 2147
IDL Reference Guide DIALOG_PRINTJOB

380

ton

d.

f

E

full

uld
DIALOG_READ_IMAGE

The DIALOG_READ_IMAGE function is a graphical interface used for reading
image files.

Syntax

Result= DIALOG_READ_IMAGE ([Filename] [, BLUE=variable]
[, DIALOG_PARENT=widget_id] [, FILE=variable] [, FILTER=string]
[, /FIX_FILTER] [, GREEN=variable] [, IMAGE=variable] [, PATH=string]
[, QUERY=variable] [, RED=variable] [,TITLE=string])

Return Value

This routine returns 1 if the “Open” button was clicked, and 0 if the “Cancel” but
is clicked.

Arguments

Filename

An optional scalar string containing the full pathname of the file to be highlighte

Keywords

BLUE

Set this keyword to a named variable that will contain the blue channel vector (i
any).

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_READ_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_READ_IMAG
dialog.

FILE

Set this keyword to a named variable that will contain the selected filename with
path when the dialog is created.

FILTER

Set this keyword to a scalar string containing the format type the dialog filter sho
begin with. The default is “Image Files”. The user cannot modify the filter if the
DIALOG_READ_IMAGE IDL Reference Guide

381

s”

er

(if

ncel

. If

re
iable

ny).

fied,
FIX_FILTER keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. In addition, there is also the “All File
type. If set to “All Files”, queries will only happen on filename clicks, making the
dialog much more efficient.

Example:

FILTER='.jpg, .gif, .tiff'

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The us
has no ability to modify the filter.

GREEN

Set this keyword to a named variable that will contain the green channel vector
any).

IMAGE

Set this keyword to a named variable that will contain the image array read. If Ca
was clicked, no action is taken.

PATH

Set this keyword to a string that contains the initial path from which to select files
this keyword is not set, the current working directory is used.

QUERY

Set this keyword to a named variable that will return the QUERY_IMAGE structu
associated with the returned image. If the “Cancel” button was pressed, the var
set to this keyword is not changed. If an error occurred during the read, the
FILENAME field of the structure will be a null string.

RED

Set this keyword to a named variable that will contain the red channel vector (if a

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not speci
the default title is “Select Image File”.
IDL Reference Guide DIALOG_READ_IMAGE

382

on

 be

GE

ion.

r has
DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function is a graphical user interface used for
writing image files.

Syntax

Result = DIALOG_WRITE_IMAGE (Image[, R, G, B]
[, DIALOG_PARENT=widget_id] [, FILENAME=string] [, /FIX_TYPE]
[, /NOWRITE] [, OPTIONS=variable] [, PATH=string] [,TITLE=string]
[, TYPE=variable])

Return Value

This routine returns 1 if the “Save” button was clicked, and 0 if the “Cancel” butt
was clicked.

Arguments

Image

The array to be written to the image file.

R, G, B (optional)

These are optional arguments defining the Red, Green, and Blue color tables to
associated with the image array.

Keywords

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_WRITE_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_WRITE_IMA
dialog.

FILENAME

Set this keyword to a scalar string that contains the name of the initial file select
This keyword is useful for specifying a default filename.

FIX_TYPE

When this keyword is set, only files that satisfy the type can be selected. The use
no ability to modify the type.
DIALOG_WRITE_IMAGE IDL Reference Guide

383

d.

s by

. If

fied,

eld
e
ge
e

NOWRITE

Set this keyword to prevent the dialog from writing the file when “Save” is clicke
No data conversions will take place when the save type is chosen.

OPTIONS

Set this keyword to a named variable to contain a structure of the chosen option
the user, including the filename and image type chosen.

PATH

Set this keyword to a string that contains the initial path from which to select files
this keyword is not set, the current working directory is used.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not speci
the default title is “Save Image File”.

TYPE

Set this keyword to a scalar string containing the format type the “Save as type” fi
should begin with. The default is “TIFF”. The user can modify the type unless th
FIX_TYPE keyword is set. Valid values are obtained from the list of supported ima
types returned from QUERY_IMAGE. The “Save as type” field will reflect the typ
of the selected file (if one is selected).
IDL Reference Guide DIALOG_WRITE_IMAGE

384

l
quist
,
ing

le
DIGITAL_FILTER

The DIGITAL_FILTER function returns the coefficients of a non-recursive, digita
filter for evenly spaced data points. Frequencies are expressed in terms of the Ny
frequency, 1/2T, where T is the time between data samples. Highpass, lowpass
bandpass and bandstop filters may be constructed with this function. The result
vector of coefficients has (2× Nterms + 1) elements.

This routine is written in the IDL language. Its source code can be found in the fi
digital_filter.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = DIGITAL_FILTER(Flow, Fhigh, A, Nterms)

Arguments

Flow

The lower frequency of the filter as a fraction of the Nyquist frequency

Fhigh

The upper frequency of the filter as a fraction of the Nyquist frequency. The
following conditions are necessary for various types of filters:

A

The size of Gibbs phenomenon wiggles in -db. 50 is a good choice.

Nterms

The number of terms in the filter formula. The order of filter.

• No Filtering: Flow = 0,Fhigh = 1

• Low Pass: Flow = 0, 0 <Fhigh < 1

• High Pass: 0 <Flow < 1,Fhigh =1

• Band Pass: 0 <Flow < Fhigh < 1

• Band Stop: 0 <Fhigh < Flow < 1
DIGITAL_FILTER IDL Reference Guide

385
Example

; Get coefficients:
Coeff = DIGITAL_FILTER(Flow, Fhigh, A, Nterms)
; Apply the filter:
Yout = CONVOL(Yin, Coeff)

See Also

CONVOL, LEEFILT, MEDIAN, SMOOTH
IDL Reference Guide DIGITAL_FILTER

386

ry

ed.
 of
ge

.
ment

f the

he

n

DILATE

The DILATE function implements the morphologic dilation operator on both bina
and grayscale images. For details on using DILATE, see“Using DILATE” on
page 387.

Syntax

Result = DILATE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /CONSTRAINED
[, BACKGROUND=value]] [, /GRAY [, /PRESERVE_TYPE | , /UINT | , /ULONG]]
[, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the dilation is to be perform
If the parameter is not of byte type, a temporary byte copy is obtained. If neither
the keywords GRAY or VALUES is present, the image is treated as a binary ima
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array that represents the structuring element
Elements are interpreted as binary: values are either zero or nonzero. This argu
must have the same number of dimensions asImage.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate o
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), whereNx, Ny, andNz are the dimensions of the structuring element array. T
origin need not be within the structuring element.

Keywords

BACKGROUND

Set this keyword to the pixel value that is to be considered the background whe
dilation is being performed in constrained mode. The default value is 0.
DILATE IDL Reference Guide

387

rithm
ined

he
nnot

ent
are

lies

the

ly

Each

rn

 of
ed
tical
CONSTRAINED

If this keyword is set and grayscale dilation has been selected, the dilation algo
will operate in constrained mode. In this mode, a pixel is set to the value determ
by normal grayscale dilation rules in the output image only if the current value
destination pixel value matches the BACKGROUND pixel value. Once a pixel in t
output image has been set to a value other than the BACKGROUND value, it ca
change.

GRAY

Set this keyword to perform grayscale, rather than binary, dilation. The nonzero
elements of the Structure parameter determine the shape of the structuring elem
(neighborhood). If VALUES is not present, all elements of the structuring element
0, yielding the neighborhood maximum operator.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only app
if the GRAY keyword is set.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies if
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies if the GRAY keyword is set.

VALUES

An array with the same dimensions asStructure providing the values of the
structuring element. The presence of this parameter implies grayscale dilation.
pixel of the result is the maximum of the sum of the corresponding elements of
VALUE and theImagepixel value. If the resulting sum is greater than 255, the retu
value is 255.

Using DILATE

Mathematical morphology is a method of processing digital images on the basis
shape. A discussion of this topic is beyond the scope of this manual. A suggest
reference is: Haralick, Sternberg, and Zhuang, “Image Analysis Using Mathema
Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
IDL Reference Guide DILATE

388

at

s
ded

TE
d to
 the

ut
 an
PAMI-9, No. 4, July, 1987, pp. 532-550. Much of this discussion is taken from th
article.

Briefly, the DILATE function returns the dilation ofImageby the structuring element
Structure. This operator is commonly known as “fill”, “expand”, or “grow.” It can be
used to fill “holes” of a size equal to or smaller than the structuring element.

Used with binary images, where each pixel is either 1 or 0, dilation is similar to
convolution. Over each pixel of the image, the origin of the structuring element i
overlaid. If the image pixel is nonzero, each pixel of the structuring element is ad
to the result using the “or” operator.

LettingA ⊕ B represent the dilation of an imageA by structuring elementB, dilation
can be defined as:

where(A)b represents the translation ofA by b. Intuitively, for each nonzero element
bi,j of B, A is translated byi,j and summed intoC using the “or” operator. For
example:

In this example, the origin of the structuring element is at (0,0).

Used with grayscale images, which are always converted to byte type, the DILA
function is accomplished by taking the maximum of a set of sums. It can be use
conveniently implement the neighborhood maximum operator with the shape of
neighborhood given by the structuring element.

Openings and Closings

Theopening of imageB by structuring elementK is defined as (B ⊗ K) ⊕ K. The
closing of imageB by K is defined as (B ⊕ K) ⊗ K where the “o times” symbol
represents the erosion operator implemented by the IDL ERODE function.

As stated by Haralicket al, the result of iteratively applied dilations and erosions is
an elimination of specific image detail smaller than the structuring element witho
the global geometric distortion of unsuppressed features. For example, opening

C A B⊕ A()b
b B∈
∪= =

0100

0100

0110

1000

0000

11⊕

0110

0110

0111

1100

0000

=

DILATE IDL Reference Guide

389

ses,

rrow
.”

s.

ng a

s,
image with a disk structuring element smooths the contour, breaks narrow isthmu
and eliminates small islands and sharp peaks or capes.

Closing an image with a disk structuring element smooths the contours, fuses na
breaks and long thin gulfs, eliminates small holes, and fills gaps on the contours

Note
MORPH_OPEN and MORPH_CLOSE can also be used to perform these task

Example

The following example thresholds a gray scale image at the value of 100, produci
binary image. The result is then “opened” with a 3 pixel by 3 pixel square shape
operator, using the DILATE and ERODE operators. The effect is to remove hole
islands, and peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

See Also

ERODE, MORPH_OPEN, MORPH_CLOSE
IDL Reference Guide DILATE

390

s are
w

ent
DINDGEN

The DINDGEN function returns a double-precision, floating-point array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = DINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions may be specified. If the dimension argument
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create D, a 100-element, double-precision, floating-point array with each elem
set to the value of its subscript, enter:

D = DINDGEN(100)

See Also

BINDGEN, CINDGEN, DCINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
DINDGEN IDL Reference Guide

391

n
can

-

DISSOLVE

The DISSOLVE procedure provides a digital “dissolve” effect for images. The
routine copies pixels from the image (arranged into square tiles) to the display i
pseudo-random order. This routine is written in the IDL language. Its source code
be found in the filedissolve.pro in thelib subdirectory of the IDL distribution.

Syntax

DISSOLVE,Image [, WAIT=seconds] [, /ORDER] [, SIZ=pixels] [, X0=pixels,
Y0=pixels]

Arguments

Image

The image to be displayed. It is assumed that the image is already scaled. Byte
valued images display most rapidly.

Keywords

DELAY

The wait between displaying tiles. The default is 0.01 second.

ORDER

The Image display order: 0 = bottom up (the default), 1 = top-down.

SIZ

Size of square tile. The default is 32 x 32 pixels.

X0, Y0

The X and Y offsets of the lower-left corner of the image on screen, in pixels.

Example

Display an image using 16 x 16 pixel tiles:

DISSOLVE, DIST(200), SIZ=16

See Also

ERASE, TV
IDL Reference Guide DISSOLVE

392

nt is

le
DIST

The DIST function creates a rectangular array in which the value of each eleme
proportional to its frequency. This array may be used for a variety of purposes,
including frequency-domain filtering and making pretty pictures.

This routine is written in the IDL language. Its source code can be found in the fi
dist.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = DIST(N [, M])

Arguments

N

The number of columns in the resulting array.

M

The number of rows in the resulting array. IfM is omitted, the resulting array will be
N by N.

Example

; Display the results of DIST as an image:
TVSCL, DIST(100)

See Also

FFT
DIST IDL Reference Guide

393

d.
.

ed
DLM_LOAD

Normally, IDL system routines that reside in Dynamically Loadable Modules
(DLMs) are automatically loaded on demand when a routine from a DLM is calle
The DLM_LOAD procedure can be used to explicitly cause a DLM to be loaded

Syntax

DLM_LOAD, DLMNameStr1 [, DLMNameStr2,...,DLMNameStrn]

Arguments

DLMNameStr n

A string giving the name of the DLM to be loaded. DLM_LOAD causes each nam
DLM to be immediately loaded.

Keywords

None

Example

Force the JPEG DLM to be loaded:

DLM_LOAD, 'jpeg'

IDL Output

% Loaded DLM: JPEG.
IDL Reference Guide DLM_LOAD

394

ipt,

s

ript.

eet.
s
the
DO_APPLE_SCRIPT

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript scr
possibly returning a result. DO_APPLE_SCRIPT is only available in IDL forMacintosh.

Syntax

DO_APPLE_SCRIPT,Script [, /AG_STRING] [, RESULT=variable]

Arguments

Script

A string or array of strings to be compiled and executed by AppleScript.

Keywords

AS_STRING

Set this keyword to cause the result to be returned as a decompiled string.
Decompiled strings have the same format as the “The Result” window of Apple’
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the sc

Example

Suppose you wish to retrieve a range of cell data from a Microsoft Excel spreadsh
The following AppleScript script and command retrieve the first through fifth row
of the first two columns of a spreadsheet titled “Worksheet 1”, storing the result in
IDL variable A:

script = ['tell application "Microsoft Excel"', $
'get Value of Range "R1C1:R5C2" of Worksheet 1', $
'end tell']

DO_APPLE_SCRIPT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:

A = [1, 2, 3, 4, 5]
script = ['tell application "IDL" to copy variable "A"', $

'into aVariable', $
'tell application "Excel" to copy aVariable to', $
DO_APPLE_SCRIPT IDL Reference Guide

395
'value of range "R1C1:R5C1" of worksheet 1']
DO_APPLE_SCRIPT, script

See Also

Chapter 5, “AppleScript Support”, in the IDL External Development Guide
IDL Reference Guide DO_APPLE_SCRIPT

396

re
face
.

L

hose

le
DOC_LIBRARY

The DOC_LIBRARY procedure extracts documentation headers from one or mo
IDL programs (procedures or functions). This command provides a standard inter
to the operating-system specific DL_DOS, DL_UNIX, and DL_VMS procedures

The documentation header of the.pro file in question must have the following
format:

• The first line of the documentation block contains only the characters;+ ,
starting in column 1.

• The last line of the documentation block contains only the characters;- ,
starting in column 1.

• All other lines in the documentation block contain a; in column 1.

The filetemplate.pro in thegeneral subdirectory of theexamples subdirectory
of the IDL distribution contains a template for creating your own documentation
headers.

This routine is supplied for users to view online documentation from their own ID
programs. Though it could be used to view documentation headers from thelib
subdirectory of the IDL distribution, we do not recommend doing so. The
documentation headers on the files in thelib directory are used for historical
purposes—most do not contain the most current or accurate documentation for t
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter? at the IDL prompt).

This routine is written in the IDL language. Its source code can be found in the fi
doc_library.pro in thelib subdirectory of the IDL distribution.

Syntax

DOC_LIBRARY [, Name] [, /PRINT]

UNIX keywords: [, DIRECTORY=string] [, /MULTI]

VMS keywords: [, /FILE] [, PATH=string] [, /OUTPUTS]
DOC_LIBRARY IDL Reference Guide

397

der
ith

ses

INT
Arguments

Name

A string containing the name of the IDL routine in question. Under Windows or
UNIX, Name can be "*" to get information on all routines.

Keywords (All Platforms)

PRINT

Set this keyword to send the output of DOC_LIBRARY to the default printer. Un
UNIX, if PRINT is a string, it is interpreted as a shell command used for output w
the documentation from DOC_LIBRARY providing standard input (i.e.,
PRINT="cat > junk").

UNIX Keywords

DIRECTORY

A string containing the name of the directory to search. If omitted, the current
directory and !PATH are used.

MULTI

Set this keyword to allow printing of more than one file if the requested module
exists in more than one directory.

VMS Keywords

FILE

If this keyword is set, the output is left in the fileuserlib.doc , in the current
directory.

PATH

A string that describes an optional directory/library search path. This keyword u
the same format and semantics as !PATH. If omitted, !PATH is used.

OUTPUTS

If this keyword is set, documentation is sent to the standard output unless the PR
keyword is set.
IDL Reference Guide DOC_LIBRARY

398
Example

To view the documentation header for the library function DIST, enter:

DOC_LIBRARY, 'DIST'

See Also

MK_HTML_HELP
DOC_LIBRARY IDL Reference Guide

399

lt.
s can

ar.

tain
uch
e can
DOUBLE

The DOUBLE function returns a result equal toExpression converted to double-
precision floating-point.

Syntax

Result = DOUBLE(Expression[, Offset [, Dim1, ...,Dimn]])

Arguments

Expression

The expression to be converted to double-precision, floating-point.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as double-precision, floating-
point data. See the description inChapter 5, “Constants” in Using IDL for details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid floating-point value and no conversion is possible. The default action in s
cases is to print a warning message and return 0. The ON_IOERROR procedur
be used to establish a statement to be jumped to in case of such errors.

Example

Suppose that A contains the integer value 45. A double-precision, floating-point
version of A can be stored in B by entering:

B = DOUBLE(A)

See Also

BYTE, COMPLEX, DCOMPLEX, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide DOUBLE

400

rect

nts,

es,
yle,

st.
DRAW_ROI

The DRAW_ROI procedure draws a region or group of regions to the current Di
Graphics device. The primitives used to draw each ROI are based on the TYPE
property of the given IDLanROI object. The TYPE property selects between poi
polylines, and filled polygons.

Syntax

DRAW_ROI,oROI [, /LINE_FILL] [, SPACING=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, THICK=value]

Arguments

oROI

A reference to an IDLanROI object to be drawn.

Keywords

LINE_FILL

Set this keyword to indicate that polygonal regions are to be filled with parallel lin
rather than using the default solid fill. When using a line fill, the thickness, linest
orientation, and spacing of the lines may be specified by keywords.

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

Graphics Keywords Accepted

CLIP, COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NORMAL,
ORIENTATION, PSYM, SYMSIZE, T3D, THICK

Example

The following example displays an image and collects data for a region of intere
The resulting ROI is displayed as a filled polygon.
DRAW_ROI IDL Reference Guide

401
PRO roi_ex
; Load and display an image.
img=READ_DICOM(FILEPATH('mr_knee.dcm',SUBDIR=['examples','data']))
TV, img

; Create a polygon region object.
oROI = OBJ_NEW('IDLanROI', TYPE=2)

; Print instructions.
PRINT,'To create a region:'
PRINT,' Left mouse: select points for the region.'
PRINT,' Right mouse: finish the region.'

; Collect first vertex for the region.
CURSOR, xOrig, yOrig, /UP, /DEVICE
oROI->AppendData, xOrig, yOrig
PLOTS, xOrig, yOrig, PSYM=1, /DEVICE

;Continue to collect vertices for region until right mouse button.
x1 = xOrig
y1 = yOrig
while !MOUSE.BUTTON ne 4 do begin

x0 = x1
y0 = y1
CURSOR, x1, y1, /UP, /DEVICE
PLOTS, [x0,x1], [y0,y1], /DEVICE
oROI->AppendData, x1, y1

endwhile
PLOTS, [x1,xOrig], [y1,yOrig], /DEVICE

; Draw the the region with a line fill.
DRAW_ROI, oROI, /LINE_FILL, SPACING=0.2, ORIENTATION=45, /DEVICE
END
IDL Reference Guide DRAW_ROI

402

ed
e

le

tive

the
EFONT

The EFONT procedure provides a simple widget-based vector font editor and
display. Use this procedure to read and/or modify a local copy of the file
hersh1.chr , located in the main IDL directory, which contains the vector fonts us
by IDL in plotting. This is a very rudimentary editor. Click the “Help” button on th
EFONT main menu for more information.

This routine is written in the IDL language. Its source code can be found in the fi
efont.pro in thelib subdirectory of the IDL distribution.

Syntax

EFONT,Init_Font [, /BLOCK] [, GROUP=widget_id]

Arguments

Init_Font

The initial font index, from 3 to 29. The default is 3.

Keyword

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls EFONT. If GROUP is set, the death of the
caller results in the death of EFONT.

See Also

SHOWFONT, XFONT
EFONT IDL Reference Guide

403

licit

)

If not
llest).

etic.
EIGENQL

The EIGENQL function computes the eigenvalues and eigenvectors of ann-by-n
real, symmetric array using Householder reductions and the QL method with imp
shifts. The result is ann-element vector containing the eigenvalues.

Syntax

Result = EIGENQL(A [, /ABSOLUTE] [, /ASCENDING] [, /DOUBLE]
[, EIGENVECTORS=variable] [, /OVERWRITE | , RESIDUAL=variable])

Arguments

A

An n-by-n symmetric single- or double-precision floating-point array.

Keywords

ABSOLUTE

Set this keyword to sort the eigenvalues by their absolute value (their magnitude
rather than by their signed value.

ASCENDING

Set this keyword to return eigenvalues in ascending order (smallest to largest).
set or set to zero, eigenvalues are returned in descending order (largest to sma
The eigenvectors are correspondingly reordered.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EIGENVECTORS

Set this keyword equal to a named variable that will contain the computed
eigenvectors in ann-by-n array. Theith row of the returned array contains theith

eigenvalue. If no variable is supplied, the array will not be computed.

OVERWRITE

Set this keyword to use the input array for internal storage and to overwrite its
previous contents.
IDL Reference Guide EIGENQL

404

ach
RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for e
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax –
(λ)x = 0 and is an array of the same size as A and the same type asResult. The rows
of this array correspond to the residuals for each eigenvalue/eigenvector pair.

Note
If the OVERWRITE keyword is set, the RESIDUAL keyword has no effect.

Example

; Define an n-by- n real, symmetric array:
A = [[5.0, 4.0, 0.0, -3.0], $

[4.0, 5.0, 0.0, -3.0], $

[0.0, 0.0, 5.0, -3.0], $

[-3.0, -3.0, -3.0, 5.0]]

; Compute the eigenvalues and eigenvectors:
eigenvalues = EIGENQL(A, EIGENVECTORS = evecs, $

RESIDUAL = residual)

;Print the eigenvalues and eigenvectors:
PRINT, 'Eigenvalues: '
PRINT, eigenvalues
PRINT, 'Eigenvectors: '
PRINT, evecs

IDL Output

Eigenvalues:
12.0915 6.18662 1.00000 0.721870

Eigenvectors:
-0.554531 -0.554531 -0.241745 0.571446
-0.342981 -0.342981 0.813186 -0.321646

0.707107 -0.707107 -6.13503e-008-6.46503e-008
0.273605 0.273605 0.529422 0.754979

The accuracy of each eigenvalue/eigenvector (λ/x) pair may be checked by printing
the residual array:

PRINT, residual
EIGENQL IDL Reference Guide

405

type
ll
The RESIDUAL array has the same dimensions as the input array and the same
as the result. The residuals are contained in the rows of the RESIDUAL array. A
residual values should be floating-point zeros.

See Also

EIGENVEC, TRIQL
IDL Reference Guide EIGENQL

406

with

le

etic.

tor.

ach

ws of
EIGENVEC

The EIGENVEC function computes the eigenvectors of ann-by-n real, non-
symmetric array using Inverse Subspace Iteration. The result is a complex array
a column dimension equal ton and a row dimension equal to the number of
eigenvalues. Use ELMHES and HQR to find the eigenvalues of ann-by-n real,
nonsymmetric array.

This routine is written in the IDL language. Its source code can be found in the fi
eigenvec.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = EIGENVEC(A, Eval [, /DOUBLE] [, ITMAX= value]
[, RESIDUAL=variable])

Arguments

A

An n-by-n nonsymmetric, single- or double-precision floating-point array.

EVAL

An n-element complex vector of eigenvalues.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITMAX

The maximum number of iterations allowed in the computation of each eigenvec
The default value is 4.

RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for e
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax – λx = 0
and is an array of the same size and type as that returned by the function. The ro
this array correspond to the residuals for each eigenvalue/eigenvector pair.
EIGENVEC IDL Reference Guide

407
Example

; Define an n-by- n real, nonsymmetric array:
A = [[1.0, -2.0, -4.0, 1.0], $

[0.0, -2.0, 3.0, 4.0], $
[2.0, -6.0, -1.0, 4.0], $
[3.0, -3.0, 1.0, -2.0]]

; Compute the eigenvalues of A using double-precision complex
; arithmetic and print the result:
eval = HQR(ELMHES(A), /DOUBLE)
PRINT, 'Eigenvalues: '
PRINT, eval
evec = EIGENVEC(A, eval, RESIDUAL = residual)

; Print the eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, evec[*,0], evec[*,1], evec[*,2], evec[*,3]

IDL Output

Eigenvalues:
(0.26366255, -6.1925899)(0.26366255, 6.1925899)
(-4.9384492, 0.0000000)(0.41112406, 0.0000000)
Eigenvectors:
(0.0076733129, -0.42912489)(0.40651652, 0.32973069)
(0.54537624, -0.28856257)(0.33149359, -0.22632585)
(-0.42145884, -0.081113711)(0.23867007, 0.46584824)
(-0.39497143, 0.47402647)(-0.28990600, 0.27760747)
(-0.54965842, 0.0000000)(-0.18401243, 0.0000000)
(-0.58124548, 0.0000000)(0.57111192, 0.0000000)
(0.79297048, 0.0000000)(0.50289130, 0.0000000)
(-0.049618509, 0.0000000)(0.34034720, 0.0000000)

You can check the accuracy of each eigenvalue/eigenvector (λ/x) pair by printing the
residual array. All residual values should be floating-point zeros.

See Also

ELMHES, HQR, TRIQL, TRIRED
IDL Reference Guide EIGENVEC

408

t are
ts

etic.

d to
ELMHES

The ELMHES function reduces a real, nonsymmetricn by n arrayA to upper
Hessenberg form. The result is an upper Hessenberg array with eigenvalues tha
identical to those of the original arrayA. The Hessenberg array is stored in elemen
(j, i) with i ≤ j + 1. Elements withi > j + 1 are to be thought of as zero, but are
returned with random values. ELMHES is based on the routineelmhes described in
section 11.5 ofNumerical Recipes in C: The Art of Scientific Computing (Second
Edition), published by Cambridge University Press, and is used by permission.

Syntax

Result = ELMHES(A [, /COLUMN] [, /DOUBLE] [, /NO_BALANCE])

Arguments

A

An n by n real, nonsymmetric array.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

NO_BALANCE

Set this keyword to disable balancing. By default, a balancing algorithm is applie
A. Balancing a nonsymmetric array is recommended to reduce the sensitivity of
eigenvalues to rounding errors.

Example

See the description of HQR for an example using this function.

See Also

EIGENVEC, HQR, TRIQL, TRIRED
ELMHES IDL Reference Guide

409

e to

rtain
low-
d

EMPTY

The EMPTY procedure causes all buffered output for the current graphics devic
be written. IDL uses buffered output on many display devices for reasons of
efficiency. This buffering leads to rare occasions where a program needs to be ce
that data are not waiting in a buffer, but have actually been output. EMPTY is a
level graphics routine. IDL graphics routines generally handle flushing of buffere
data transparently to the user, so the need for EMPTY is very rare.

Syntax

EMPTY

See Also

FLUSH
IDL Reference Guide EMPTY

410

ot

By
NS

abled

plied.

hat
ENABLE_SYSRTN

The ENABLE_SYSRTN procedure enables/disables IDL system routines. This
procedure is intended for use by runtime and callable IDL applications, and is n
generally useful for interactive use.

Syntax

ENABLE_SYSRTN [,Routines] [, /DISABLE] [, /EXCLUSIVE] [, /FUNCTIONS]

Arguments

Routines

A string scalar or array giving the names of routines to be enabled or disabled.
default, these are procedures, but this can be changed by setting the FUNCTIO
keyword.

Keywords

DISABLE

By default, the Routines are enabled. Setting this keyword causes them to be dis
instead.

EXCLUSIVE

By default, ENABLE_SYSRTN does not alter routines not listed in Routines. If
EXCLUSIVE is set, the specified routines are taken to be the only routines that
should be enabled or disabled, and all other routines have the opposite action ap

Therefore, setting EXCLUSIVE and not DISABLE means that the routines in the
Routines argument are enabled and all other system routines of the same type
(function or procedure) are disabled. Setting EXCLUSIVE and DISABLE means t
all listed routines are disabled and all others are enabled.

FUNCTIONS

Normally, Routines specifies the names of procedures. Set the FUNCTIONS
keyword to manipulate functions instead.
ENABLE_SYSRTN IDL Reference Guide

411

r
g an

L is

ns
Special Cases

The following is a list of cases in which ENABLE_SYSRTN is unable to enable o
disable a requested routine. All such attempts are simply ignored without issuin
error, allowing the application to run without error in different IDL environments:

• Attempts to enable/disable non-existent system routines.

• Attempts to enable a system routine disabled due to the mode in which ID
licensed, as opposed to being disabled via ENABLE_SYSRTN, are quietly
ignored (e.g. demo mode).

• The routines CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE,
and EXECUTE cannot be disabled via ENABLE_SYSRTN. However,
anything that can be called from themcan be disabled, so this is not a
significant drawback.

Examples

To disable the PRINT procedure:

ENABLE_SYSRTN, /DISABLE, 'PRINT'

To enable the PRINT procedure and disable all other procedures:

ENABLE_SYSRTN, /EXCLUSIVE, 'PRINT'

To ensure all possible functions are enabled:

ENABLE_SYSRTN, /DISABLE, /EXCLUSIVE, /FUNCTIONS

In the last example, all named functions should be disabled and all other functio
should be enabled. Since noRoutines argument is provided, this means that all
routines become enabled.
IDL Reference Guide ENABLE_SYSRTN

412

le
) is

IO
t

r

use

ing
and
EOF

The EOF function tests the specified file unit for the end-of-file condition. If the fi
pointer is positioned at the end of the file, EOF returns true (1), otherwise false (0
returned.

Note that the EOF function cannot be used with files opened with the NOSTDIO
keyword to the OPEN routines. Many of the devices commonly used with NOSTD
signal their end-of-file by returning a zero transfer count to the I/O operation tha
encounters the end-of-file.

Syntax

Result = EOF(Unit)

Arguments

Unit

The file unit to test for end-of-file.

Using EOF with VMS Files

Under VMS, the EOF function does not work with files accessed via DECNET, o
that do not have sequential organization (i.e., relative or indexed). The EOF
procedure cannot be used with such files as it will always return “false”. Instead,
the ON_IOERROR procedure to detect when the end-of-file occurs.

Examples

If file unit number 1 is open, the end-of-file condition can be checked by examin
the value of the expression EOF(1). For example, the following IDL code reads
prints a text file:

; Open the file test.lis:
OPENR, 1, 'test.lis'

; Define a string variable:
A = ''

; Loop until EOF is found:
WHILE NOT EOF(1) DO BEGIN

; Read a line of text:
READF, 1, A
EOF IDL Reference Guide

413
; Print the line:
PRINT,

ENDWHILE

; Close the file:
CLOSE, 1

See Also

POINT_LUN
IDL Reference Guide EOF

414
EOS_* Routines

See“Alphabetic Listing of EOS Routines” in theScientific Data Formats manual.
EOS_* Routines IDL Reference Guide

415

ce (or
ode

E
em

ing
.

ERASE

The ERASE procedure erases the screen of the currently selected graphics devi
starts a new page if the device is a printer). The device is reset to alphanumeric m
if it has such a mode (e.g., Tektronix terminals).

Syntax

ERASE [,Background_Color] [, CHANNEL=value] [, COLOR=value]

Arguments

Background_Color

The color index for the screen to be erased to. If this argument is omitted, ERAS
resets the screen to the default background color (normally 0) stored in the syst
variable !P.BACKGROUND. Providing a value forBackground_Color overrides the
default.

Warning
Not all devices support this feature.

Keywords

CHANNEL

The channel or channel mask for the erase operation. This parameter has mean
only when used with devices that support true-color or multiple-display channels
The default value is !P.CHANNEL.

COLOR

Specifies the background color. Using this keyword is analogous to using the
Background_Color argument.

Example

; Display a simple image in the current window:
TV, DIST(255)

; Erase the image from the window:
ERASE
IDL Reference Guide ERASE

416
See Also

SET_PLOT, WINDOW, WSET
ERASE IDL Reference Guide

417

ed.
r of
ge

The
ing

f the

he

ents

are
ERODE

The ERODE function implements the erosion operator on binary and grayscale
images and vectors. For details on using ERODE, see“Using ERODE” on page 418.

Syntax

Result = ERODE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /GRAY
[, /PRESERVE_TYPE | , /UINT | , /ULONG]] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the erosion is to be perform
If this parameter is not of byte type, a temporary byte copy is obtained. If neithe
the keywords GRAY or VALUES is present, the image is treated as a binary ima
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values—either zero or nonzero. The structur
element must have the same number of dimensions asImage.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate o
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), whereNx, Ny, andNz are the dimensions of the structuring element array. T
origin need not be within the structuring element.

Keywords

GRAY

Set this keyword to perform grayscale, rather than binary, erosion. Nonzero elem
of theStructure parameter determine the shape of the structuring element
(neighborhood). If VALUES is not present, all elements of the structuring element
0, yielding the neighborhood minimum operator.
IDL Reference Guide ERODE

418

lies

the

ly

 the
e

oes

ed

ach
pixel
PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only app
if the GRAY keyword is set.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies if
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies if the GRAY keyword is set.

VALUES

An array of the same dimensions asStructure providing the values of the structuring
element. The presence of this keyword implies grayscale erosion. Each pixel of
result is the minimum of Image less the corresponding elements of VALUE. If th
resulting difference is less than zero, the return value will be zero.

Using ERODE

See the description of theDILATE function for background on morphological
operators. Erosion is the dual of dilation. It does to the background what dilation d
to the foreground.

Briefly, the ERODE function returns the erosion ofImageby the structuring element
Structure. This operator is commonly known as “shrink” or “reduce”. It can be us
to remove islands smaller than the structuring element.

Over each pixel of the image, the origin of the structuring element is overlaid. If e
nonzero element of the structuring element is contained in the image, the output
is set to one. LettingA ⊗ B represent the erosion of an imageA by structuring
elementB, erosion can be defined as:

where(A)-b represents the translation ofA by b. The structuring elementB can be
visualized as a probe that slides across imageA, testing the spatial nature ofA at each
point. If B translated byi,j can be contained inA (by placing the origin ofB at i,j),
theni,j belongs to the erosion ofA by B. For example:

In this example, the origin of the structuring element is at (0, 0).

C A B⊗ A() b–
b B∈
∩= =
ERODE IDL Reference Guide

419

DE

ape

ng a

s,
Used with grayscale images, which are always converted to byte type, the ERO
function is accomplished by taking the minimum of a set of differences. It can be
used to conveniently implement the neighborhood minimum operator with the sh
of the neighborhood given by the structuring element.

Example

The following example thresholds a gray scale image at the value of 100, produci
binary image. The result is then “opened” with a 3 pixel by 3 pixel square shape
operator, using the ERODE and DILATE operators. The effect is to remove hole
islands, and peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE 100

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

See Also

DILATE, MORPH_OPEN, MORPH_CLOSE

0100

0100

1110

1000

0000

11⊗

0000

0000

1100

0000

0000

=

IDL Reference Guide ERODE

420

nt is
e as
ERRORF

The ERRORF function returns the value of the error function:

The result is double-precision if the argument is double-precision. If the argume
floating-point, the result is floating-point. The result always has the same structur
X. The ERRORF function does not work with complex arguments.

Syntax

Result = ERRORF(X)

Arguments

X

The expression for which the error function is to be evaluated.

Example

To find the error function of 0.4 and print the result, enter:

PRINT, ERRORF(0.4)

IDL prints:

0.428392

See Also

GAMMA , IGAMMA , EXPINT

erf x() 2 π⁄ e
t2–

td

0

x

∫=
ERRORF IDL Reference Guide

421

le

.

ERRPLOT

The ERRPLOT procedure plots error bars over a previously drawn plot.

This routine is written in the IDL language. Its source code can be found in the fi
errplot.pro in thelib subdirectory of the IDL distribution.

Syntax

ERRPLOT, [X,] Low, High [, WIDTH=value]

Arguments

X

A vector containing the abscissa values at which the error bars are to be plottedX
only needs to be provided if the abscissa values are not the same as the index
numbers of the plotted points.

Low

A vector of lower estimates, equal to data - error.

High

A vector of upper estimates, equal to data + error.

Keywords

WIDTH

The width of the error bars. The default is 1% of plot width.

Examples

To plot symmetrical error bars where Y is a vector of data values and ERR is a
symmetrical error estimate, enter:

; Plot data:
PLOT, Y

; Overplot error bars:
ERRPLOT, Y-ERR, Y+ERR

If error estimates are non-symmetrical, provide actual error estimates in theupper
andlower arguments.
IDL Reference Guide ERRPLOT

422
; Plot data:
PLOT,Y

; Provide custom lower and upper bounds:
ERRPLOT, lower, upper

To plot Y versus a vector of abscissas:

; Plot data (X versus Y):
PLOT, X, Y

; Overplot error estimates:
ERRPLOT, X, Y-ERR, Y+ERR

See Also

OPLOTERR, PLOT, PLOTERR
ERRPLOT IDL Reference Guide

423

t.
f

set to

 and
EXECUTE

The EXECUTE function compiles and executes one or more IDL statements
contained in a string at run-time. It also returnstrue (1) if the string was successfully
compiled and executed. If an error occurs during either phase, the result isfalse (0).

Like the CALL_PROCEDURE and CALL_FUNCTION routines, calls to
EXECUTE can be nested. However, compiling the string at run-time is inefficien
CALL_FUNCTION and CALL_PROCEDURE provide much of the functionality o
EXECUTE without imposing this limitation, and should be used instead of
EXECUTE whenever possible.

Syntax

Result = EXECUTE(String [, QuietCompile])

Arguments

String

A string containing the command(s) to be compiled and executed.

QuietCompile

If this argument is set to a non-zero value, EXECUTE will not print the compiler
generated error messages (such as syntax errors). If QuietCompile is omitted or
0, EXECUTE will output such errors.

Example

Create a string that holds a valid IDL command by entering:

com = 'PLOT, [0,1]'

Execute the contents of the string by entering:

R = EXECUTE(com)

A plot should appear. You can confirm that the string was successfully compiled
executed by checking that the value of R is 1.

See Also

CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE
IDL Reference Guide EXECUTE

424

are
d are

For
EXIT

The EXIT procedure quits IDL and exits back to the operating system. All buffers
flushed and open files are closed. The values of all variables that were not save
lost.

Syntax

EXIT [, /NO_CONFIRM] [, STATUS=code]

Keywords

NO_CONFIRM

Set this keyword to suppress any confirmation dialog that would otherwise be
displayed in a GUI version of IDL such as the IDL Development Environment.

STATUS

Set this keyword equal to an exit status code that will be returned when IDL exits.
example, on a UNIX system using the Bourne shell:

Start IDL:

$ idl

Exit IDL specifying exit status 45:

IDL> exit, status=45

Display last exit status code:

$ echo $?

The following displays:

45

See Also

CLOSE, FLUSH, STOP, WAIT
EXIT IDL Reference Guide

425

the
EXP

The EXP function returns the natural exponential function ofExpression.

Syntax

Result = EXP(Expression)

Arguments

Expression

The expression to be evaluated. IfExpression is double-precision floating or
complex, the result is of the same type. All other types are converted to single-
precision floating-point and yield floating-point results. The definition of the
exponential function for complex arguments is:

EXP(x) = COMPLEX(eR cosI, eR sin I)

where:

R = real part ofx, andI = imaginary part ofx. If Expression is an array, the
result has the same structure, with each element containing the result for
corresponding element ofExpression.

Example

Plot a Gaussian with a 1/e width of 10 and a center of 50 by entering:

PLOT, EXP(-(FINDGEN(100)/10. - 5.0)^2)

See Also

ALOG
IDL Reference Guide EXP

426

ear

le

are

alue
EXPAND

The EXPAND procedure shrinks or expands a two-dimensional array, using bilin
interpolation. It is similar to the CONGRID and REBIN routines.

This routine is written in the IDL language. Its source code can be found in the fi
expand.pro in thelib subdirectory of the IDL distribution.

Syntax

EXPAND, A, Nx, Ny, Result [, FILLVAL= value] [, MAXVAL= value]

Arguments

A

A two-dimensional array to be magnified.

Nx

Desired size of the X dimension, in pixels.

Ny

Desired size of the Y dimension, in pixels.

Result

A named variable that will contain the magnified array.

Keywords

FILLVAL

Set this keyword equal to the value to use when elements larger than MAXVAL
encountered. The default is -1.

MAXVAL

Set this keyword equal to the largest desired value. Elements greater than this v
are set equal to the value of the FILLVAL keyword.

See Also

CONGRID, REBIN
EXPAND IDL Reference Guide

427

o a

le
be
ent

 the
by

e
ired

e

L to

me.
rk

u
the
ny
ath
EXPAND_PATH

The EXPAND_PATH function is used to expand a simple path-definition string int
full path name for use with the !PATH system variable.!PATH is a list of locations
where IDL searches for currently undefined procedures and functions.

The Path Definition String

EXPAND_PATH accepts a single argument, a scalar string that contains a simp
path-definition string, that the function expands into a list of directories that can
assigned to !PATH. This string uses the same format as the IDL_PATH environm
variable (UNIX, Windows) or logical name (VMS). This format is also used in the
path preferences dialog (Windows, Macintosh).

The path-definition string is a scalar string containing a list of directories (and in
case of VMS, text library files that are prefixed with the “@” character), separated
a special character (“: ” for UNIX and Macintosh, “, ” for VMS, and “; ” for
Windows). Prepending a “+” character to a directory name causes all of its
subdirectories to be searched.

If a directory specified in the string doesnothave a “+” character prepended to it, it is
copied to the output string verbatim. However, if it does have a leading “+” then
EXPAND_PATH searches the directory and all of its subdirectories for files of th
appropriate type for the path. Any directory containing at least one file of the des
type is added to the search path.

A Note on Order within !PATH

IDL ensures only that all directories containing IDL files are placed in !PATH. Th
order in which they appear is completely unspecified, and does not necessarily
correspond to any specific order (such as top-down alphabetized). This allows ID
construct the path in the fastest possible way and speeds startup. This is only a
problem if two subdirectories in such a hierarchy contain a file with the same na
Such hierarchies usually are a collection of cooperative routines designed to wo
together, so such duplication is rare.

If the order in which “+” expands directories is a problem for your application, yo
should add the directories to the path explicitly and not use “+”. Only the order of
files within a given “+” entry are determined by IDL. It never reorders !PATH in a
other way. You can therefore obtain any search order you desire by writing the p
explicitly.
IDL Reference Guide EXPAND_PATH

428

ids
ded

ing

s
ded

ded
UNIX — The directory name is expanded to remove wildcards (~ and *). This avo
overhead IDL would otherwise incur as it searches for library routines. It is discar
from the search path if any of the following is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any.pro or .sav files.

VMS — The directory name is discarded from the search path if any of the follow
is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any.PRO or .SAV files).

In addition, any text library (.TLB) files are added to the result.

Windows —The directory name is expanded to remove wildcards (*). This avoid
overhead IDL would otherwise incur as it searches for library routines. It is discar
from the search path if any of the following is true:

• It is not a directory.

• The directory it names does not exist or cannot be accessed.

• The directory does not contain any.PRO or .SAV files.

Macintosh —The folder name is expanded to remove wildcards (*). This avoids
overhead IDL would otherwise incur as it searches for library routines. It is discar
from the search path if any of the following is true:

• It is not a folder.

• The folder it names does not exist or cannot be accessed.

• The folder does not contain any.pro or .sav files.

Syntax

Result = EXPAND_PATH(String [, /ARRAY] [, COUNT=variable])
EXPAND_PATH IDL Reference Guide

429

ath

ing
one is

ts

to
lue
on
Arguments

String

A scalar string containing the path-definition string to be expanded. See “The P
Definition String,” above, for details.

Keywords

ARRAY

Set this keyword to return the result as a string array with each element contain
one path segment. In this case, there is no need for a separator character and n
supplied. Normally, the result is a string array with the various path segments
separated with the correct special delimiter character for the current operating
system.

COUNT

Set this keyword to a named variable which returns the number of path segmen
contained in the result.

Example

Under the UNIX operating system, the default value of !PATH is specified as
“+/usr/local/rsi/idl/lib ”, unless this default is changed by setting the
IDL_PATH environment variable. When IDL starts, one of the first things it does is
run this default value through the EXPAND_PATH function to obtain the actual va
for the !PATH system variable. The following statement shows how this expansi
might look (assuming that your IDL is installed in/usr/local/rsi/idl):

PRINT, EXPAND_PATH('+/usr/local/rsi/idl/lib')

IDL prints:

/usr/local/rsi/idl/lib

See Also

“Executing Program Files”in Chapter 2 ofUsing IDLand“IDL Environment System
Variables” on page 2199.
IDL Reference Guide EXPAND_PATH

430

ith

etic.

gle-

ult
EXPINT

The EXPINT function returns the value of the exponential integral En(x).

EXPINT is based on the routineexpint described in section 6.3 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = EXPINT(N, X [, /DOUBLE] [, EPS=value] [, ITMAX= value])

Arguments

N

An integer specifying the order of En(x). N can be either a scalar or an array.

X

The value at which En(x) is evaluated.X can be either a scalar or an array.

Note: If an array is specified for bothN andX, then EXPINT evaluates En(x) for each
Ni andXi. If eitherN or X is a scalar and the other an array, the scalar is paired w
each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

Use this keyword to specify a number close to the desired relative error. For sin
precision calculations, the default value is 1.0× 10-7. For double-precision
calculations, the default value is 1.0× 10-14.

ITMAX

An input integer specifying the maximum allowed number of iterations. The defa
value is 100.

Example

To compute the value of the exponential integral at the following X values:
EXPINT IDL Reference Guide

431
; Define the parametric X values:
X = [1.00, 1.05, 1.27, 1.34, 1.38, 1.50]

; Compute the exponential integral of order 1:
result = EXPINT(1, X)

; Print the result:
PRINT, result

IDL prints:

0.219384 0.201873 0.141911 0.127354 0.119803 0.100020

This is the exact solution vector to six-decimal accuracy.

See Also

ERRORF
IDL Reference Guide EXPINT

432

 of
ript

t,
 are

L,
t

ore
d of

le
EXTRAC

The EXTRAC function returns as its result any rectangular sub-matrix or portion
the parameter array. Note that it is usually more efficient to use the array subsc
ranges (the “:” operator; see“Subscript Ranges” in Chapter 8 ofBuilding IDL
Applcations) to perform such operations. The main advantage to EXTRAC is tha
when parts of the specified subsection lie outside the bounds of the array, zeros
entered into these outlying elements.

EXTRAC was originally a built-in system procedure in the PDP-11 version of ID
and was retained in that form in the original VAX/VMS IDL for compatibility. Mos
applications of the EXTRAC function are more concisely written using subscript
ranges (e.g., X(10:15)). EXTRAC has been rewritten as a library function that
provides the same interface as the previous versions.

Note
If you know that the subarray will never lie beyond the edges of the array, it is m
efficient to use array subscript ranges (the “:” operator) to extract the data instea
EXTRAC.

This routine is written in the IDL language. Its source code can be found in the fi
extrac.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = EXTRAC(Array, C1, C2, ...,Cn, S1, S2, ...,Sn)

Arguments

Array

The array from which the subarray will be copied.

Ci

The starting subscript inArray for the subarray. There should be oneCi for each
dimension ofArray. These arguments must be integers.

Si

The size of each dimension. The result will have dimensions of (S1, S2, ...,Sn). There
should be oneSi for each dimension ofArray. These arguments must be non-
negative.
EXTRAC IDL Reference Guide

433

ion as
Examples

Extracting elements from a vector:

; Create a 1000 element floating-point vector with each element set
; to the value of its subscript:
A = FINDGEN(1000)
; Extract 300 points starting at A[200] and extending to A[499]:
B = EXTRAC(A, 200, 300)

In the next example, the first 49 points extracted —B[0] to B[49] — lie outside the
bounds of the vector and are set to 0.B[50] is gets the value ofA[0] , B[51] gets the
value ofA[1] which is 1. Enter:

; Create a 1000 element vector:
A = FINDGEN(1000)
; Extract 50 elements, 49 of which lie outside the bounds of A:
B = EXTRAC(A, -50, 100)

The following commands illustrate the use of EXTRAC with multi-dimensional
arrays:

; Make a 64 by 64 array:
A = INTARR(64,64)
; Extract a 32 by 32 portion starting at A(20,30):
B = EXTRAC(A, 20, 30, 32, 32)

As suggested in the discussion above, a better way to perform the same operat
the previous line is:

; Use the array subscript operator instead of EXTRAC:
B = A(20:51, 30:61)

Extract the 20th column and 32nd row of A:

; Extract 20th column of A:
B = EXTRAC(A, 19, 0, 1, 64)
; Extract 32nd row of A:
B = EXTRAC(A, 0, 31, 64, 1)

Take a 32 BY 32 matrix from A starting at A(40,50):

; Note that those points beyond the boundaries of A are set to 0:
B = EXTRAC(A, 40, 50, 32, 32)

See Also

“Subscript Ranges” in Chapter 8 ofBuilding IDL Applcations.
IDL Reference Guide EXTRAC

434

d

tion

ng

 In
to

seful

.
ing

le

rmal
EXTRACT_SLICE

This EXTRACT_SLICE function returns a two-dimensional planar slice extracte
from 3D volumetric data. This function allows for a rotation or vector form of the
slice equation. In the vector form, the slice plane is governed by the plane equa
(ax+by+cz+d = 0) and a single vector which defines the x direction. This form is
more common throughout the IDL polygon interface. In the rotation form, the slici
plane can be oriented at any angle and pass through any desired location in the
volume.

This function allows for a vertex grid to be generated without sampling the data.
this form, the return value would be an array of [3,n] vertices which could be used
sample additional dataset or used to form polygonal meshes. It would also be u
to return the planar mesh connectivity in this case.

Support for anisotropic data volumes is included via an ANISOTROPY keyword
This is an important feature in the proper interpolation of common medical imag
data.

This routine is written in the IDL language. Its source code can be found in the fi
extract_slice.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter, Xrot, Yrot,
Zrot [, ANISOTROPY=[xspacing, yspacing, zspacing]] [, OUT_VAL=value]
[, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

or

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter,
PlaneNormal, Xvec [, ANISOTROPY=[xspacing, yspacing, zspacing]]
[, OUT_VAL=value] [, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

Arguments

PlaneNormal

Set this input argument to a 3 element array. The values are interpreted as the no
of the slice plane.
EXTRACT_SLICE IDL Reference Guide

435

the 0

ype
e

pect
e to

spect
e to

ses

ses

sses

ing
d in
Xvec

Set this input argument to a 3 element array. The three values are interpreted as
dimension directional vector. This should be a unit vector.

Vol

The volume of data to slice. This argument is a three-dimensional array of any t
except string or structure. The planar slice returned by EXTRACT_SLICE has th
same data type asVol.

Xsize

The desired X size (dimension 0) of the returned slice. To preserve the correct as
ratio of the data, Xsize should equal Ysize. For optimal results, set Xsize and Ysiz
be greater than or equal to the largest of the three dimensions ofVol.

Ysize

The desired Ysize (dimension 1) of the returned slice. To preserve the correct a
ratio of the data, Ysize should equal Xsize. For optimal results, set Xsize and Ysiz
be greater than or equal to the largest of the three dimensions ofVol.

Xcenter

The X coordinate (index) of the point within the volume that the slicing plane pas
through. The center of the slicing plane passes throughVol at the coordinate (Xcenter,
YCenter, Zcenter).

Ycenter

The Y coordinate (index) of the point within the volume that the slicing plane pas
through. The center of the slicing plane passes throughVol at the coordinate (Xcenter,
YCenter, Zcenter).

Zcenter

The Z coordinate (index) of the point within the volume that the slicing plane pa
through. The center of the slicing plane passes throughVol at the coordinate (Xcenter,
YCenter, Zcenter).

Xrot

The X-axis rotation of the slicing plane, in degrees. Before transformation, the slic
plane is parallel to the X-Y plane. The slicing plane transformations are performe
the following order:

• Rotate Z_rot degrees about the Z axis.
IDL Reference Guide EXTRACT_SLICE

436

een

that

is

rned
me

l in
• Rotate Y_rot degrees about the Y axis.

• Rotate X_rot degrees about the X axis.

• Translate the center of the plane to Xcenter, Ycenter, Zcenter.

Yrot

The Y-axis rotation of the slicing plane, in degrees.

Zrot

The orientation Z-axis rotation of the slicing plane, in degrees.

Keywords

ANISOTROPY

Set this keyword to a three-element array. This array specifies the spacing betw
the planes of the input volume in grid units of the (isotropic) output image.

OUT_VAL

Set this keyword to a value that will be assigned to elements of the returned slice
lie outside of the original volume.

RADIANS

Set this keyword to indicate that Xrot, Yrot, and Zrot are in radians. The default
degrees.

SAMPLE

Set this keyword to perform nearest neighbor sampling when computing the retu
slice. The default is to use bilinear interpolation. A small reduction in execution ti
results when SAMPLE is set and the OUT_VAL keyword isnot used.

VERTICES

Set this output keyword to a named variable in which to return a [3,Xsize,Ysize]
floating point array. This is an array of the x, y, z sample locations for each pixe
the normal output.

Example

Display an oblique slice through volumetric data:

; Create some data:
vol = RANDOMU(s, 40, 40, 40)
EXTRACT_SLICE IDL Reference Guide

437
; Smooth the data:
FOR i=0, 10 DO vol = SMOOTH(vol, 3)

; Scale the smoothed part into the range of bytes:
vol = BYTSCL(vol(3:37, 3:37, 3:37))

; Extract a slice:
slice = EXTRACT_SLICE(vol, 40, 40, 17, 17, 17, 30.0, 30.0, 0.0, $

OUT_VAL=0B)

; Display the 2D slice as a magnified image:
TVSCL, REBIN(slice, 400, 400)

See Also

SLICER3
IDL Reference Guide EXTRACT_SLICE

438

le

.0,

 the

 the

en
nator
 is
F_CVF

The F_CVF function computes the cutoff valueV in an F distribution withDfn and
Dfd degrees of freedom such that the probability that a random variableX is greater
thanV is equal to a user-supplied probabilityP.

This routine is written in the IDL language. Its source code can be found in the fi
f_cvf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = F_CVF(P, Dfn, Dfd)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0
1.0], that specifies the probability of occurrence or success.

Dfn

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the F distribution numerator.

Dfd

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the F distribution denominator.

Example

Use the following command to compute the cutoff value in an F distribution with t
degrees of freedom in the numerator and six degrees of freedom in the denomi
such that the probability that a random variable X is greater than the cutoff value
0.01. The result should be 7.87413:

PRINT, F_CVF(0.01, 10, 6)

See Also

CHISQR_CVF, F_PDF, GAUSS_CVF, T_CVF
F_CVF IDL Reference Guide

439

le

toff

 the

 the

,
ees
e

F_PDF

The F_PDF function computes the probabilityP that, in an F distribution withDfn
and Dfd degrees of freedom, a random variableX is less than or equal to a user-
specified cutoff valueV.

This routine is written in the IDL language. Its source code can be found in the fi
f_pdf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = F_PDF(V, Dfn, Dfd)

Arguments

V

An integer, single-, or double-precision floating-point scalar that specifies the cu
value.

Dfn

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the F distribution numerator.

Dfd

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the F distribution denominator.

Example

Use the following command to compute the probability that a random variable X
from the F distribution with five degrees of freedom in the numerator and 24 degr
of freedom in the denominator, is less than or equal to 3.90. The result should b
0.990059:

PRINT, F_PDF(3.90, 5, 24

See Also

BINOMIAL , CHISQR_PDF, F_CVF, GAUSS_PDF, T_PDF
IDL Reference Guide F_PDF

440

le

f
d for
FACTORIAL

The FACTORIAL function computes the factorialN! as the double-precision
product, (N) ⋅ (N-1) ⋅ (N-2) ⋅ ... ⋅ 3 ⋅ 2 ⋅ 1.

This routine is written in the IDL language. Its source code can be found in the fi
factorial.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = FACTORIAL(N [, /STIRLING])

Arguments

N

A non-negative integer or long integer.

Note
Large values ofN will cause floating-point overflow errors. The maximum size o
N varies with machine architecture. On machines that support the IEEE standar
floating-point arithmetic, the maximum value ofN is 170. SeeMACHAR for a
discussion of machine-specific parameters affecting floating-point arithmetic.

Keywords

STIRLING

Set this keyword to use Stirling’s asymptotic formula to approximateN!:

wheree is the base of the natural logarithm.

Example

Compute 20!:

PRINT, FACTORIAL(20)

IDL prints:

N! 2πN
N
e

N
=

FACTORIAL IDL Reference Guide

441
2.4329020e+18

See Also

BINOMIAL , TOTAL
IDL Reference Guide FACTORIAL

442

of

 the
te

est

f a
ly,

,

FFT

The FFT function returns a result equal to the complex, discrete Fourier transform
Array. The result of this function is a single- or double-precision complex array.

The discrete Fourier transform,F(u), of anN-element, one-dimensional function,
f(x), is defined as:

And the inverse transform, (Direction > 0), is defined as:

If the keyword OVERWRITE is set, the transform is performed in-place, and the
result overwrites the original contents of the array.

The result returned by FFT is a complex array that has the same dimensions as
input array. The output array is ordered in the same manner as almost all discre
Fourier transforms. Element 0 contains the zero frequency component, F0. F1
contains the smallest nonzero positive frequency, which is equal to 1/(Ni Ti), where
Ni and Ti are the number of elements and the sampling interval of the ith dimension,
respectively. F2 corresponds to a frequency of 2/(Ni Ti). Negative frequencies are
stored in the reverse order of positive frequencies, ranging from the highest to low
negative frequencies (see storage scheme below).

Note
The FFT can be performed on functions of up to eight (8) dimensions in size. I
function hasn dimensions, IDL performs a transform in each dimension separate
starting with the first dimension and progressing sequentially to dimensionn. For
example, if the function has two dimensions, IDL first does the FFT row by row
and then column by column.

F u()
1
N
---- f x()exp j2πux N⁄–[]

x 0=

N 1–

∑=

f x() F u()exp j2πux N⁄[]
u 0=

N 1–

∑=
FFT IDL Reference Guide

443

nd

y

ag
For an even number of points in the ith dimension, the storage scheme of returned
complex values is as follows:

For an odd number of points in the ith dimension, the storage scheme of returned
complex values is as follows:

Syntax

Result = FFT(Array [, Direction] [, /DOUBLE] [, /INVERSE] [, /OVERWRITE])

Arguments

Array

The array to which the Fast Fourier Transform should be applied. IfArray is not of
complex type, it is converted to complex type. The dimensions of the result are
identical to those ofArray. The size of each dimension may be any integer value a
does not necessarily have to be an integer power of 2, although powers of 2 are
certainly the most efficient.

Direction

Direction is a scalar indicating the direction of the transform, which is negative b
convention for the forward transform, and positive for the inverse transform. If
Direction is not specified, the forward transform is performed.

A normalization factor of 1/N, whereN is the number of points, is applied during the
forward transform.

F0 1/(NiTi) ... (Ni-2)/2NiTi
1/(2Ti)

(Nyquist) -(Ni-2)/2NiTi ... -1/(NiTi)

Real, Imag Real, Imag Real, Imag Real, Imag Real, Imag Real, Im

Table 19: Even Number of Points

F0 1/(NiTi) ... (Ni-1)/2NiTi -(Ni-1)/2NiTi ... -1/(NiTi)

Real, Imag Real, Imag Real, Imag Real, Imag Real, Imag

Table 20: Odd Number of Points
IDL Reference Guide FFT

444

to

 in
. If

and
 of

lent

ber

ly
The
Note
When transforming from a real vector to complex and back, it is slightly faster
setDirection to 1 in the real to complex FFT.

Note also that the value ofDirection is ignored if the INVERSE keyword is set.

Keywords

DOUBLE

Set this keyword to a value other than zero to force the computation to be done
double-precision arithmetic, and to give a result of double-precision complex type
DOUBLE is set equal to zero, computation is done in single-precision arithmetic
the result is single-precision complex. If DOUBLE is not specified, the data type
the result will match the data type ofArray.

INVERSE

Set this keyword to perform an inverse transform. Setting this keyword is equiva
to setting theDirection argument to a positive value. Note, however, that setting
INVERSE results in an inverse transform even ifDirection is specified as negative.

OVERWRITE

If this keyword is set, and theArray parameter is a variable of complex type, the
transform is done “in-place”. The result overwrites the previous contents of the
variable. For example, to perform a forward, in-place FFT on the variable a:

a = FFT(a, -1, /OVERWRITE)

Running Time

For a one-dimensional FFT, running time is roughly proportional to the total num
of points inArray times the sum of its prime factors. LetN be the total number of
elements inArray, and decomposeN into its prime factors:

Running time is proportional to:

whereT3 ~ 4T2. For example, the running time of a 263 point FFT is approximate
10 times longer than that of a 264 point FFT, even though there are fewer points.

N 2K2 3K3 5K5...⋅ ⋅=

T0 N T1 2K2T2 T3 3K3 5K5 ...+ +()+ +()+
FFT IDL Reference Guide

445

tors

:

tor
t the
sum of the prime factors of 263 is 264 (1 + 263), while the sum of the prime fac
of 264 is 20 (2 + 2 + 2 + 3 + 11).

Example

Display the log of the power spectrum of a 100-element index array by entering

PLOT, /YLOG, ABS(FFT(FINDGEN(100), -1))

As a more complex example, display the power spectrum of a 100-element vec
sampled at a rate of 0.1 seconds per point. Show the 0 frequency component a
center of the plot and label the abscissa with frequency:

; Define the number of points:
N = 100

; Define the interval:
T = 0.1

; Midpoint+1 is the most negative frequency subscript:
N21 = N/2 + 1

; The array of subscripts:
F = INDGEN(N)
; Insert negative frequencies in elements F(N/2 +1), ..., F(N-1):
F[N21] = N21 -N + FINDGEN(N21-2)

; Compute T0 frequency:
F = F/(N*T)

; Shift so that the most negative frequency is plotted first:
PLOT, /YLOG, SHIFT(F, -N21), SHIFT(ABS(FFT(F, -1)), -N21)

See Also

HILBERT
IDL Reference Guide FFT

446

all

be

s
g or
an
FILEPATH

The FILEPATH function returns the fully-qualified path to a file found in the IDL
distribution. Operating system dependencies are taken into consideration. This
routine is used by Research Systems to make the library routines portable. This
routine is written in the IDL language. Its source code can be found in the file
filepath.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = FILEPATH(Filename [, ROOT_DIR=string]
[, SUBDIRECTORY=string/string_array] [, /TERMINAL] [, /TMP])

Arguments

Filename

A string containing the name of the file to be found. The file should be specified in
lowercase characters. No device or directory information should be included.

Keywords

ROOT_DIR

A string containing the name of the directory from which the resulting path should
based. If not present, the value of !DIR is used. This keyword is ignored if
TERMINAL or TMP are specified.

SUBDIRECTORY

The name of the subdirectory in which the file should be found. If this keyword i
omitted, the main IDL directory is used. This variable can be either a scalar strin
a string array with the name of each level of subdirectory depth represented as
element of the array.

For example, to get a path to the filefilepath.pro in IDL’s lib subdirectory,
enter:

path = FILEPATH('filepath.pro',SUBDIR=['lib'])

TERMINAL

Set this keyword to return the filename of the user’s terminal.
FILEPATH IDL Reference Guide

447

h to

t
ds.
TMP

Set this keyword to indicate that the specified file is a scratch file. Returns a pat
the proper place for temporary files under the current operating system.

Note
On the Macintosh, use of this keyword returns the directory nameIDL_DIR:IDL
Temp File .

Under Microsoft Windows, FILEPATH checks to see if the following environmen
variables are set—TMP, TEMP, WINDIR—and uses the value of the first one it fin
If none of these environment variables exists, \TMP is used as the temporary
directory.

Example

Open the IDL distribution filepeople.dat , found in theimages subdirectory:

OPENR, 1, FILEPATH('people.dat', SUBDIRECTORY='images')

See Also

FINDFILE
IDL Reference Guide FILEPATH

448

ent.

ed
ry
FINDFILE

The FINDFILE function returns a string array containing the names of all files
matchingFile_Specification.

All matched filenames are returned in a string array, one file name per array elem
If no files exist with names matching theFile_Specification, a null scalar string is
returned instead of a string array. Except for VMS, described below, FINDFILE
returns the full path only if the path itself is specified inFile_Specification. See the
“Examples” section below for details.

Note
Platform specific differences are described below:

• Under Macintosh, FINDFILE function brackets the returned filename in
colons if the file is a folder (e.g., :lib:)

• Under UNIX, to refer to all of the files in a directory only, use
FINDFILE('/ File_Specification /*.*') . To include all the files in any
subdirectories, useFINDFILE('/ File_Specification /*')

• Under VMS, FINDFILE returns thefull path specification for any file it finds.

• Under Windows, FINDFILE appends a “\” character to the end of the return
file name if the file is a directory. To refer to all the files in a specific directo
only, useFINDFILE('\ File_Specification *') .

Syntax

Result = FINDFILE(File_Specification [, COUNT=variable])

Arguments

File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. IfFile_Specification contains path information, that
path information is included in the returned value. IfFile_Specification is omitted,
the names of all files in the current directory are returned.
FINDFILE IDL Reference Guide

449

on.
Keywords

COUNT

A named variable into which the number of files found is placed. If no files are
found, a value of 0 is returned.

Examples

To print the file names of all the UNIX files with “dat” extensions in the current
directory, use the command:

PRINT, FINDFILE('*.dat')

To print the full path names of all.pro files in the IDLlib directory that begin with
the letter “x”, use the command:

PRINT, FINDFILE('/usr/local/rsi/idl/lib/x*.pro')

To print the path names of all.pro files in theprofiles subdirectory of the current
directory (a relative path), use the command:

PRINT, FINDFILE('profiles/*.pro')

Note that the values returned are (like theFile_Specification) relative path names.
Use caution when comparing values against this type of relative path specificati

See Also

FILEPATH
IDL Reference Guide FINDFILE

450

ts are
w

ach
FINDGEN

The FINDGEN function returns a single-precision, floating-point array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = FINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create F, a 6-element vector of single-precision, floating-point values where e
element is set to the value of its subscript, enter:

F = FINDGEN(6)

The value of F[0] is 0.0, F[1] is 1.0, and so on.

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
FINDGEN IDL Reference Guide

451

e as

are
FINITE

The FINITE function returns 1 (True) if its argument is finite. If the argument is
infinite or not a defined number (NaN), 0 (False) is returned. (See“Special Floating-
Point Values” in Chapter 15 ofBuilding IDL Applcations for more information on
IEEE floating-point values.) The result is a byte expression of the same structur
the argumentX.

Syntax

Result = FINITE(X [, /INFINITY] [, /NAN])

Arguments

X

A floating-point, double-precision, or complex scalar or array expression. Strings
first converted to floating-point. This function is meaningless for byte, integer, or
longword arguments.

Keywords

INFINITY

If INFINITY is set, FINITE returns True if X is positive or negative infinity, and it
returns False otherwise.

NAN

If NAN is set, FINITE returns True if X is “Not A Number” (NaN), otherwise it
returns False.

Example

To find out if the logarithm of 5.0 is finite, enter:

PRINT, FINITE(ALOG(5.0))

IDL prints “1” because the argument is finite.

See Also

CHECK_MATH, MACHAR, !VALUES.
IDL Reference Guide FINITE

452

me

ng

lt.
s can

ar.

ng

tain
s to
ed to
FIX

The FIX function returns a result equal toExpression converted to integer type.
Optionally, the conversion type can be specified at runtime, allowing flexible runti
type-conversion to arbitrary types.

Syntax

Result = FIX(Expression[, Offset[, Dim1, ..., Dim8]] [, /PRINT] [, TYPE=type
code{0 to 15}])

Arguments

Expression

The expression to be converted.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as integer data. See the
description inChapter 5, “Constants” in Building IDL Applcations for details.

TheOffsetandDimi arguments are not allowed when converting to or from the stri
type.

Dim i

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

TheOffsetandDimi arguments are not allowed when converting to or from the stri
type.

When converting from a string argument, it is possible that the string does not con
a valid integer and no conversion is possible. The default action in such cases i
print a warning message and return 0. The ON_IOERROR procedure can be us
establish a statement to be jumped to in case of such errors.
FIX IDL Reference Guide

453

een

ou
tions
, you

rray
Keywords

PRINT

Set this keyword to specify that any special-case processing when converting
between string and byte data, or the reverse, should be suppressed. The PRINT
keyword is ignored unless the TYPE keyword is used to convert to these types.

TYPE

FIX normally convertsExpression to the integer type. If TYPE is specified, it is the
type code to set the type of the conversion. This feature allows dynamic type
conversion, where the desired type is not known until runtime, to be carried out
without the use of large CASE or IF...THEN logic. When TYPE is specified, FIX
behaves as if the appropriate type conversion routine for the desired type had b
called. See the “See Also” list below for the complete list of such routines.

When using the TYPE keyword to convert BYTE data to STRING or the reverse, y
should be aware of the special-case processing that the BYTE and STRING func
do in this case. To prevent this, and get a simple type conversion in these cases
must specify the PRINT keyword.

Example

Convert the floating-point array [2.2, 3.0, 4.5] to integer type and store the new a
in the variable I by entering:

I = FIX([2.2, 3.0, 4.5])

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide FIX

454

t a

le
FLICK

The FLICK procedure causes the display to flicker between two output images a
given rate.

This routine is written in the IDL language. Its source code can be found in the fi
flick.pro in thelib subdirectory of the IDL distribution.

Syntax

FLICK, A, B [, Rate]

Arguments

A

Byte image number 1, scaled from 0 to 255.

B

Byte image number 2, scaled from 0 to 255.

Rate

The flicker rate. The default is 1.0 sec/frame

See Also

CW_ANIMATE, XINTERANIMATE
FLICK IDL Reference Guide

455

l

lt.
s can

ar.

tain
uch
e can

 in
FLOAT

The FLOAT function returns a result equal toExpression converted to single-
precision floating-point. IfExpression is a complex number, FLOAT returns the rea
part.

Syntax

Result = FLOAT(Expression[, Offset[, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to single-precision floating-point.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as single-precision floating
point data.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid floating-point value and no conversion is possible. The default action in s
cases is to print a warning message and return 0. The ON_IOERROR procedur
be used to establish a statement to be jumped to in case of such errors.

Example

If A contains the integer value 6, it can be converted to floating-point and stored
the variable B by entering:

B = FLOAT(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide FLOAT

456

nt.
t

gle-
FLOOR

The FLOOR function returns the closest integer less than or equal to its argume
This value is returned as a longword integer with the same structure as the inpu
argument.

Syntax

Result = FLOOR(X)

Arguments

X

The value for which the FLOOR function is to be evaluated. This value can be sin
or double-precision, real or complex floating-point. FLOOR returns a longword
integer with the same structure asX.

Example

To print the floor function of 5.9, enter:

PRINT, FLOOR(5.9)

IDL prints:

5

See Also

CEIL, COMPLEXROUND, ROUND
FLOOR IDL Reference Guide

457

at
rks

le

 the

of

not
FLOW3

The FLOW3 procedure draws lines representing a 3D flow/velocity field. Note th
the 3D scaling system must be in place before calling FLOW3. This procedure wo
best with Z buffer output device.

This routine is written in the IDL language. Its source code can be found in the fi
flow3.pro in thelib subdirectory of the IDL distribution.

Syntax

FLOW3,Vx, Vy, Vz [, ARROWSIZE=value] [, /BLOB] [, LEN=value]
[, NSTEPS=value] [, NVECS=value] [, SX=vector, SY=vector, SZ=vector]

Arguments

Vx, Vy, Vz

3D arrays containing X, Y, and Z components of the field.

Keywords

ARROWSIZE

Size of arrowheads (default = 0.05).

BLOB

Set this keyword to draw a blob at the beginning of each flow line and suppress
arrows.

LEN

Length of each step used to follow flow lines (default = 2.0). Expressed in units
largest field vector (i.e., the length of the longest step is set to len times the grid
spacing.

NSTEPS

Number of steps used to follow the flow lines (default = largest dimension ofVx / 5).

NVECS

Number of random flow lines to draw (default = 200). Only used if Sx, Sy, Sz are
present.
IDL Reference Guide FLOW3

458
SX, SY, SZ

Optional vectors containing the starting coordinates of the flow lines. If omitted
random starting points are chosen.

Example

; Create a set of random three-dimensional arrays to represent
; the field:
vx = RANDOMU(seed, 5, 5, 5)
vy = RANDOMU(seed, 5, 5, 5)
vz = RANDOMU(seed, 5, 5, 5)

; Set up the 3D scaling system:
SCALE3, xr=[0,4], yr=[0,4], zr = [0,4]

; Plot the vector field:
FLOW3, vx, vy, vz

See Also

VEL, VELOVECT
FLOW3 IDL Reference Guide

459

 0.0
FLTARR

The FLTARR function returns a single-precision, floating-point vector or array.

Syntax

Result = FLTARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, FLTARR sets every element of the result to zero. Set this keyword to
inhibit zeroing of the array elements and cause FLTARR to execute faster.

Example

Create F, a 3-element by 3-element floating-point array with each element set to
by entering:

F = FLTARR(3, 3)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, INTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide FLTARR

460

e
o
ing in
FLUSH

The FLUSH procedure causes all buffered output on the specified file units to b
written. IDL uses buffered output for reasons of efficiency. This buffering leads t
rare occasions where a program needs to be certain that output data are not wait
a buffer, but have actually been output.

Syntax

FLUSH,Unit1, ..., Unitn

Arguments

Unit i

The file units (logical unit numbers) to flush.

See Also

CLOSE, EMPTY, EXIT
FLUSH IDL Reference Guide

461

 or
FOR

The FOR statement executes one or more statements repeatedly, incrementing
decrementing a variable with each repetition, until a condition is met.

Note
FOR is an IDL statement. For information on using statements, seeChapter 10,
“Statements” in Building IDL Applcations.

Syntax

FORvariable = init, limit [, Increment] DO statement

or

FORvariable = init, limit [, Increment] DO BEGIN

statements

ENDFOR
IDL Reference Guide FOR

462

n
s the
t of
FORMAT_AXIS_VALUES

The FORMAT_AXIS_VALUES function accepts a vector of numeric values as a
input argument, and returns a vector of formatted strings values. This routine use
same rules for formatting as do the axis routines that label tick marks given a se
tick values.

Syntax

Result = FORMAT_AXIS_VALUES(Values)

Arguments

Values

Set this argument to a vector of numeric values to be formatted.

Keywords

None.

Example

Suppose we have a vector of axis values:

axis_values = [7.9, 12.1, 15.3, 19.0]

Convert these values into an array of strings:

new_values = FORMAT_AXIS_VALUES(axis_values)
HELP, new_values
PRINT, new_values
PRINT, axis_values

IDL Output

NEW_VALUES STRING = Array[4]
7.9 12.1 15.3 19.0
7.90000 12.1000 15.3000 19.0000
FORMAT_AXIS_VALUES IDL Reference Guide

463

s

FORWARD_FUNCTION

The FORWARD_FUNCTION statement causes argument(s) to be interpreted a
functions rather than variables (versions of IDL prior to 5.0 used parentheses to
declare arrays).

Note
FORWARD_FUNCTION is an IDL statement. For information on using
statements, seeChapter 10, “Statements” in Building IDL Applcations.

Syntax

FORWARD_FUNCTIONName1, Name2, ...,Namen
IDL Reference Guide FORWARD_FUNCTION

464

e is
er
FREE_LUN

The FREE_LUN procedure deallocates previously-allocated file units. This routin
usually used with file units allocated with GET_LUN, but it will also close any oth
specified file unit. If the specified file units are open, they are closed prior to the
deallocation.

Syntax

FREE_LUN,Unit1, ..., Unitn

Arguments

Unit i

The IDL file units (logical unit numbers) to deallocate.

Example

See the example for theGET_LUN procedure.

See Also

CLOSE, GET_LUN
FREE_LUN IDL Reference Guide

465

in

nted

r or
d file

.

).
FSTAT

The FSTAT function returns a structure expression of type FSTAT (or FSTAT64
the case of files that are longer than 2^31-1 bytes in length) containing status
information about a specified file unit. The contents of this structure are docume
in “The FSTAT Function” in Chapter 16 ofBuilding IDL Applcations.

Syntax

Result = FSTAT(Unit)

Arguments

Unit

The file unit about which information is required. This parameter can be an intege
an associated variable, in which case information about the variable’s associate
is returned.

Fields of the FSTAT Structure

The following descriptions are offields in the structure returned by the FSTAT
function. They arenot keywords to FSTAT.

• UNIT — The IDL logical unit number (LUN).

• NAME — The name of the file.

• OPEN — Nonzero if the file unit is open. If OPEN is zero, the remaining
fields in FSTAT will not contain useful information.

• ISATTY — Nonzero if the file is actually a terminal instead of a normal file
For example, if you are using anxterm window on a UNIX system and you
invoke FSTAT on logical unit 0 (standard input), ISATTY will be set to 1.

• ISAGUI — Nonzero if the file is actually a Graphical User Interface (for
example, a logical unit associated with the IDL Development Environment
Thus, if you are using the IDLDE and you invoke FSTAT on logical unit 0
(standard input), ISAGUI will be set to 1.

• INTERACTIVE — Nonzero ifeither ISATTY or ISAGUI is nonzero.

• READ — Nonzero if the file is open for read access.

• WRITE — Nonzero if the file is open for write access.
IDL Reference Guide FSTAT

466

n

ut

e
f

N,
t the
tent
 in
ing
and

a file
s
r.

ZIP
• TRANSFER_COUNT — The number of scalar IDL data items transferred i
the last input/output operation on the unit. This is set by the following IDL
routines: READU, WRITEU, PRINT, PRINTF, READ, and READF.
TRANSFER_COUNT is useful when attempting to recover from input/outp
errors.

• CUR_PTR — The current position of the file pointer, given in bytes from th
start of the file. If the device is a terminal (ISATTY is nonzero), the value o
CUR_PTR will not contain useful information. When reporting on file units
opened with the COMPRESS keyword to OPEN, the position reported by
CUR_PTR is the “logical” position—the position it would be at in the
uncompressed version of the same file.

• SIZE — The current length of the file in bytes. If the device is a terminal
(ISATTY is nonzero), the value of SIZE will not contain useful information.
When reporting on file units opened with the COMPRESS keyword to OPE
the size reported by SIZE is the compressed size of the actual file, and no
logical length of the uncompressed data contained within. This is inconsis
with the position reported by CUR_PTR. The reason for reporting the size
this way is that the logical length of the data cannot be known without read
the entire file from beginning to end and counting the uncompressed bytes,
this would be extremely inefficient.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the SIZE field contains the length of the dat
including the record descriptors, reading a file with VMS variable length record
into a byte array of the size returned by FSTAT will result in an RMS EOF erro

• REC_LEN — If the file is record-oriented (VMS), this field contains the
record length; otherwise, it is zero.

• XDR — Nonzero if the file was opened with the XDR keyword, and is
therefore considered to contain data in the XDR format.

• COMPRESS — Nonzero if the file was opened with the COMPRESS
keyword, and is therefore considered to contain compressed data in the G
format.

Examples

If file unit number 1 is open, the FSTAT information on that unit can be seen by
entering:
FSTAT IDL Reference Guide

467

ure
on
PRINT, FSTAT(1)

Specific information can be obtained by referring to single fields within the struct
returned by FSTAT. The following code prints the name and length of the file open
unit 1:

; Put FSTAT information in variable A:
A = FSTAT(1)

; Print the name and size fields:
PRINT, 'File: ', A.NAME, ' is ', A.SIZE, ' bytes long.'

See Also

ASSOC, OPEN
IDL Reference Guide FSTAT

468

arse
lues
ros.

g

rm.

have
FULSTR

The FULSTR restores a row-indexed sparse array to full storage mode. If the sp
array was created with the SPRSIN function using the THRESH keyword, any va
in the original array that were below the specified threshold are replaced with ze

Syntax

Result = FULSTR(A)

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

Example

Suppose we have converted an array to sparse storage format with the followin
commands:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero:
sparse = SPRSIN(A, THRESH=0.5)

The variable SPARSE now contains a representation of the array A in structure fo
To restore the array from the sparse-format structure:

; Restore the array:
result = FULSTR(sparse)

; Print the result:
PRINT, result

IDL Output

5.00000 0.00000 0.00000
3.00000 -2.00000 0.00000
4.00000 -1.00000 0.00000

Note that the elements with an absolute value less than the specified threshold
been set to zero.
FULSTR IDL Reference Guide

469
See Also

LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR, WRITE_SPR
IDL Reference Guide FULSTR

470

omial
s
ata.

le
FUNCT

The FUNCT procedure evaluates the sum of a Gaussian and a 2nd-order polyn
and optionally returns the value of its partial derivatives. Normally, this function i
used by CURVEFIT to fit the sum of a line and a varying background to actual d

This routine is written in the IDL language. Its source code can be found in the fi
funct.pro in thelib subdirectory of the IDL distribution.

Syntax

FUNCT,X, A, F [, Pder]

Arguments

X

A vector of values for the independent variable.

A

A vector of coefficients for the equations:

F

A named variable that will contain the value of the function at eachXi.

Pder

A named variable that will contain an array of the size (N_ELEMENTS(X),6) that
contains the partial derivatives.Pder(i,j) represents the derivative at theith point with
respect tojth parameter.

See Also

CURVEFIT

F A0e
Z2– 2⁄

A3 A4X A 5X2+ + +=

Z X A 1–() A2⁄=
FUNCT IDL Reference Guide

471
FUNCTION

The FUNTION statement defines a function.

Note
FUNCTION is an IDL statement. For information on using statements, seeChapter
10, “Statements” in Building IDL Applcations.

Syntax

FUNCTION Function_Name, parameter1, ...,parametern
IDL Reference Guide FUNCTION

472

ple

d its
.05
t

le
FV_TEST

The FV_TEST function computes the F-statistic and the probability that two sam
populationsX andY have significantly different variances.X andY may be of
different lengths. The result is a two-element vector containing the F-statistic an
significance. The significance is a value in the interval [0.0, 1.0]; a small value (0
or 0.01) indicates thatX andYhave significantly different variances. This type of tes
is often referred to as the F-variance test.

The F-statistic formula for sample populationsx andy with meansx andy is defined
as:

wherex = (x0, x1, x2, ...,xN-1) andy = (y0, y1, y2 ...,yM-1)

This routine is written in the IDL language. Its source code can be found in the fi
fv_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = FV_TEST(X, Y)

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Y

An m-element integer, single- or double-precision floating-point vector.

Example

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]

F
M 1–
N 1–

xj x–()

2 1
N
---- x j x–()

j 0=

N 1–

∑
2

–
j 0=

N 1–

∑

yj y–()
2 1

M
----- y j y–()

j 0=

M 1–

∑
2

–
j 0=

M 1–

∑
---=
FV_TEST IDL Reference Guide

473
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the F-statistic (of X and Y) and its significance:
PRINT, FV_TEST(X, Y)

IDL Output

2.48578 0.0540116

The result indicates that X and Y have significantly different variances.

See Also

KW_TEST, MOMENT, RS_TEST, S_TEST, TM_TEST
IDL Reference Guide FV_TEST

474

ear

le

 in

the

etic.
FX_ROOT

The FX_ROOT function computes real and complex roots of a univariate nonlin
function using an optimal Müller’s method.

This routine is written in the IDL language. Its source code can be found in the fi
fx_root.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = FX_ROOT(X, Func [, /DOUBLE] [, ITMAX= value] [, /STOP]
[, TOL=value])

Arguments

X

A 3-element real or complex initial guess vector. Real initial guesses may result
real or complex roots. Complex initial guesses will result in complex roots.

Func

A scalar string specifying the name of a user-supplied IDL function that defines
univariate nonlinear function. This function must accept the vector argument X.

For example, suppose we wish to find a root of the following function:

We write a function FUNC to express the function in the IDL language:

FUNCTION func, X

RETURN, EXP(SIN(X)^2 + COS(X)^2 - 1) - 1

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITMAX

The maximum allowed number of iterations. The default is 100.

y e
x2 x2 1–cos+sin()

1–=
FX_ROOT IDL Reference Guide

475

 a
lue

e

STOP

Use this keyword to specify the stopping criterion used to judge the accuracy of
computed root r(k). Setting STOP = 0 (the default) checks whether the absolute va
of the difference between two successively-computed roots, | r(k) - r(k+1) | is less
than the stopping tolerance TOL. Setting STOP = 1 checks whether the absolut
value of the function FUNC at the current root, | FUNC(r(k)) |, is less than TOL.

TOL

Use this keyword to specify the stopping error tolerance. The default is 1.0× 10-4.

Example

This example finds the roots of the function FUNC defined above:

; First define a real 3-element initial guess vector:
x = [0.0, -!pi/2, !pi]

; Compute a root of the function using double-precision
; arithmetic:
root = FX_ROOT(X, 'FUNC', /DOUBLE)

; Check the accuracy of the computed root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

0.0000000

We can also define a complex 3-element initial guess vector:

x = [COMPLEX(-!PI/3, 0), COMPLEX(0, !PI), COMPLEX(0, -!PI/6)]

; Compute the root of the function:
root = FX_ROOT(x, 'FUNC')

; Check the accuracy of the computed complex root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

(0.00000, 0.00000)

See Also

BROYDEN, NEWTON, FZ_ROOTS
IDL Reference Guide FX_ROOT

476

etic.

od.
FZ_ROOTS

The FZ_ROOTS function is used to find the roots of anm-degree complex
polynomial, using Laguerre’s method. The result is anm-element complex vector.

FZ_ROOTS is based on the routinezroots described in section 9.5 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = FZ_ROOTS(C [, /DOUBLE] [, EPS=value] [, /NO_POLISH])

Arguments

C

A vector of lengthm+1 containing the coefficients of the polynomial, in ascending
order (see example). The type can be real or complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

The desired fractional accuracy. The default value is 2.0× 10-6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s meth

Examples

Example 1: Real coefficients yielding real roots.

Find the roots of the polynomial:

P (x) = 6 x3 - 7 x2 - 9 x - 2

The exact roots are -1/2, -1/3, 2.0.

coeffs = [-2.0, -9.0, -7.0, 6.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots
FZ_ROOTS IDL Reference Guide

477
IDL prints:

(-0.500000, 0.00000)(-0.333333, 0.00000)(2.00000, 0.00000)

Example 2: Real coefficients yielding complex roots.

Find the roots of the polynomial:

P (x) = x4 + 3 x2 + 2

The exact roots are:

, , ,
coeffs = [2.0, 0.0, 3.0, 0.0, 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(0.00000, -1.41421)(0.00000, 1.41421)
(0.00000, -1.00000)(0.00000, 1.00000)

Example 3: Real and complex coefficients yielding real and complex roots.

Find the roots of the polynomial:

P (x) = x3 + (–4 –i4)x2 +s (–3 +i4)x + (18 +i24)

The exact roots are –2.0, 3.0, (3.0 +i4.0)

coeffs = [COMPLEX(18,24), COMPLEX(-3,4), COMPLEX(-4,-4), 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(-2.00000, 0.00000) (3.00000, 0.00000) (3.00000, 4.00000)

See Also

FX_ROOT, BROYDEN, NEWTON, POLY

0.0 i 2.0– 0.0 i 2.0+ 0.0 i– 0.0 i+
IDL Reference Guide FZ_ROOTS

478

s

n

GAMMA

The GAMMA function returns the gamma function ofX.

The gamma function is defined as:

If X is double-precision, the result is double-precision, otherwise the argument i
converted to floating-point and the result is floating-point.

Use the LNGAMMA function to obtain the natural logarithm of the gamma functio
when there is a possibility of overflow.

Syntax

Result = GAMMA(X)

Arguments

X

The expression for which the gamma function will be evaluated.

Example

Plot the gamma function over the range 0.01 to 1.0 with a step size of 100 by
entering:

X = FINDGEN(99)/100. + 0.01
PLOT, X, GAMMA(X)

See Also

BETA, IBETA, IGAMMA , LNGAMMA

Γ x() tx 1– e t– td

0

∞

∫≡
GAMMA IDL Reference Guide

479

le

0

s
,

lor
the

le.
GAMMA_CT

The GAMMA_CT procedure applies gamma correction to a color table.

This routine is written in the IDL language. Its source code can be found in the fi
gamma_ct.pro in thelib subdirectory of the IDL distribution.

Syntax

GAMMA_CT, Gamma [, /CURRENT] [, /INTENSITY]

Arguments

Gamma

The value of gamma correction. A value of 1.0 indicates a linear ramp (i.e., no
gamma correction). Higher values ofGammagive more contrast. Values less than 1.
yield lower contrast.

Keywords

CURRENT

Set this keyword to apply correction from the “current” color table (i.e., the value
R_CURR, G_CURR, and B_CURR in the COLORS common block). Otherwise
correction is applied from the “original” color table (i.e., the values R_ORIG,
G_ORIG, and B_ORIG in the COLORS common block). The gamma corrected co
table is always saved in the “current” table (R_CURR, G_CURR, B_CURR) and
new table is loaded.

INTENSITY

Set this keyword to correct the individual intensities of each color in the colortab
Otherwise, the colors are shifted according to the gamma function.

See Also

PSEUDO, STRETCH, XLOADCT
IDL Reference Guide GAMMA_CT

480

le

.0,

on
 is
GAUSS_CVF

The GAUSS_CVF function computes the cutoff valueV in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0 such that the
probability that a random variableX is greater thanV is equal to a user-supplied
probabilityP.

This routine is written in the IDL language. Its source code can be found in the fi
gauss_cvf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_CVF(P)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0
1.0], that specifies the probability of occurrence or success.

Example

Use the following command to compute the cutoff value in a Gaussian distributi
such that the probability that a random variable X is greater than the cutoff value
0.025:

PRINT, GAUSS_CVF(0.025)

IDL prints:

1.95997

See Also

CHISQR_CVF, F_CVF, GAUSS_PDF, T_CVF
GAUSS_CVF IDL Reference Guide

481

le

off

.0:
GAUSS_PDF

The GAUSS_PDF function computes the probabilityP that, in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0, a random variableX is
less than or equal to a user-specified cutoff valueV.

This routine is written in the IDL language. Its source code can be found in the fi
gauss_pdf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_PDF(V)

Arguments

V

An integer, single- or double-precision floating-point scalar that specifies the cut
value.

Examples

Example 1

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 2.44:

result = GAUSS_PDF(2.44)
PRINT, result

IDL Prints:

0.992656

Example 2

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 10.0 and greater than or equal to 2

result = GAUSS_PDF(10.0) - GAUSS_PDF(2.0)
PRINT, result

IDL Prints:

0.0227501
IDL Reference Guide GAUSS_PDF

482

4:
Example 3

Compute the probability that a random variable X, from the Gaussian (Normal)
distribution with a mean of 0.8 and a variance of 4.0, is less than or equal to 2.4

result = GAUSS_PDF((2.44 - 0.80)/SQRT(4.0))
PRINT, result

IDL Prints:

0.793892

See Also

BINOMIAL , CHISQR_PDF, F_PDF, GAUSS_CVF, T_PDF
GAUSS_PDF IDL Reference Guide

483

to

es of

g

to 8
GAUSS2DFIT

The GAUSS2DFIT function fits a two-dimensional, elliptical Gaussian equation
rectilinearly gridded data.

Z = F(x, y)

where:

And the elliptical function is:

The parameters of the ellipseU are:

• Axis lengths are 2a and 2b, in the unrotated X and Y axes, respectively.

• Center is at (h, k).

• Rotation ofT radians from the X axis, in theclockwise direction.

The rotated coordinate system is defined as:

The rotation is optional, and can be forced to 0, making the major and minor ax
the ellipse parallel to the X and Y axes.

Coefficients of the computed fit are returned in argumentA.

Procedure Used and Other Notes

The peak/valley is found by first smoothingZ and then finding the maximum or
minimum, respectively. GAUSSFIT is then applied to the row and column runnin
through the peak/valley to estimate the parameters of the Gaussian in X and Y.
Finally, CURVEFIT is used to fit the 2D Gaussian to the data.

Be sure that the 2D array to be fit contains the entire peak/valley out to at least 5
half-widths, or the curve-fitter may not converge.

F x y,() A0 A1e
U 2⁄–

+=

U x' a⁄()2
y' b⁄()2

+=

x' x h–() T y k–() Tsin–cos=

y' x h–() T y k–() Tcos+sin=
IDL Reference Guide GAUSS2DFIT

484

 by
l to

le

X

This computationally-intensive routine takes approximately 4 seconds for a 128
128-element array on a Sun SPARC LX. The time required is roughly proportiona
the number of elements inZ.

This routine is written in the IDL language. Its source code can be found in the fi
gauss2dfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = GAUSS2DFIT(Z, A [, X, Y] [, /NEGATIVE] [, /TILT])

Arguments

Z

The dependent variable.Z should be a two-dimensional array with dimensions (Nx,
Ny). Gridding in the array must be rectilinear.

A

A named variable in which the coefficients of the fit are returned.A is returned as a
seven element vector the coefficients of the fitted function. The meanings of the
seven elements in relation to the discussion above is:

• A[0] = A0 = constant term

• A[1] = A1 = scale factor

• A[2] = a = width of Gaussian in the X direction

• A[3] = b = width of Gaussian in the Y direction

• A[4] = h = center X location

• A[5] = k = center Y location.

• A[6] = T = Theta, the rotation of the ellipse from the X axis in radians,counter-
clockwise.

X

An optional vector withNx elements that contains the X values ofZ (i.e.,Xi is the X
value forZi,j. If this argument is omitted, a regular grid in X is assumed, and the
location ofZi,j = i.
GAUSS2DFIT IDL Reference Guide

485

Y

to
and
Y

An optional vector withNy elements that contains the Y values of Z (i.e.,Yj is the Y
value forZi,j. If this argument is omitted, a regular grid in Y is assumed, and the
location ofZi,j = j.

Keywords

NEGATIVE

Set this keyword to indicate that the Gaussian to be fitted is a valley (such as an
absorption line). By default, a peak is fit.

TILT

Set this keyword to allow the orientation of the major and minor axes of the ellipse
be unrestricted. The default is that the axes of the ellipse must be parallel to the X
Y axes. Therefore, in the default case,A[6] is always returned as 0.

Example

This example creates a 2D gaussian, adds random noise and then applies
GAUSS2DFIT.

; Define array dimensions:
nx = 128 & ny = 100
; Define input function parameters:
A = [5., 10., nx/6., ny/10., nx/2., .6*ny]
; Create X and Y arrays:
X = FINDGEN(nx) # REPLICATE(1.0, ny)
Y = REPLICATE(1.0, nx) # FINDGEN(ny)
; Create an ellipse:
U = ((X-A[4])/A[2])^2 + ((Y-A[5])/A[3])^2
; Create gaussian Z:
Z = A[0] + A[1] * EXP(-U/2)
; Add random noise, SD = 1:
Z = Z + RANDOMN(seed, nx, ny)
; Fit the function, no rotation:
yfit = GAUSS2DFIT(Z, B)
; Report results:
PRINT, 'Should be: ', STRING(A, FORMAT='(6f10.4)')
PRINT, 'Is: ', STRING(B(0:5), FORMAT='(6f10.4)')

See Also

COMFIT, GAUSSFIT, POLY_FIT, POLYFITW, REGRESS, SFIT, SVDFIT
IDL Reference Guide GAUSS2DFIT

486

le

e
ve

ated
GAUSSFIT

The GAUSSFIT function computes a non-linear least-squares fit to a functionf (x)
with from three to six unknown parameters.f (x) is a linear combination of a
Gaussian and a quadratic; the number of terms is controlled by the keyword
parameter NTERMS.

This routine is written in the IDL language. Its source code can be found in the fi
gaussfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = GAUSSFIT(X, Y [, A] [, ESTIMATES=array] [, NTERMS=integer{3 to
6}])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length asX.

A

A named variable that will contain the coefficientsA of the fit.

Keywords

ESTIMATES

Set this keyword equal to an array of starting estimates for the parameters of th
equation. If the NTERMS keyword is specified, the ESTIMATES array should ha
NTERMS elements. If NTERMS is not specified, the ESTIMATES array should
have six elements. If the ESTIMATES array is not specified, estimates are calcul
by the GAUSSFIT routine.
GAUSSFIT IDL Reference Guide

487

n to
ases:
NTERMS

Set this keyword to an integer value between three and six to specify the functio
be used for the fit. The values correspond to the functions shown below. In all c

NTERMS=6

NTERMS=6 is the default setting. Here, A0 is the height of the Gaussian, A1 is the
center of the Gaussian, A2 is the width of the Gaussian, A3 is the constant term, A4 is
the linear term, and A5 is the quadratic term.

NTERMS=5

NTERMS=4

NTERMS=3

Example

; Define the independent variables:
X = FINDGEN(13)/5 - 1.2

; Define the dependent variables:
Y = [0.0, 0.1, 0.2, 0.5, 0.8, 0.9, $

0.99, 0.9, 0.8, 0.5, 0.2, 0.1, 0.0]

; Fit the data to the default function, storing coefficients in A:

z
x A1–

A2
---------------=

f x() A0e

z2–
2

A3 A4x A5x
2

+ + +=

f x() A0e

z2–
2

A3 A4x+ +=

f x() A0e

z2–
2

A3+=

f x() A0e

z2–
2

=

IDL Reference Guide GAUSSFIT

488
yfit = GAUSSFIT(X, Y, A)

; Print the coefficients:
PRINT, A

IDL prints:

2.25642 -1.62041e-07 0.703372 -1.25634 3.04487e-07
0.513596

We can compare original and fitted data by plotting one on top of the other:

; Load an appropriate color table:
LOADCT, 30

; Plot the original data:
PLOT, X, Y

; Overplot the fitted data in a different color:
OPLOT, X, yfit, COLOR = 100

See Also

COMFIT, CURVEFIT, GAUSS2DFIT, POLY_FIT, POLYFITW, REGRESS, SFIT,
SVDFIT
GAUSSFIT IDL Reference Guide

489

ion

s
e

1by
GAUSSINT

The GAUSSINT function evaluates the integral of the Gaussian probability funct
and returns the result.

The Gaussian integral is defined as:

If X is double-precision, the result is double-precision, otherwise the argument i
converted to floating-point and the result is floating-point. The result has the sam
structure as the input argument,X.

Syntax

Result = GAUSSINT(X)

Arguments

X

The expression for which the Gaussian integral is to be evaluated.

Example

Plot the Gaussian probability function over the range -5 to 5 with a step size of 0.
entering:

X = FINDGEN(101)/10. - 5.
PLOT, X, GAUSSINT(X)

See Also

GAUSS_CVF, GAUSS_PDF

Gaussint x()
1

2π
---------- e t2– 2⁄ td

∞–

x

∫≡
IDL Reference Guide GAUSSINT

490

s /

file
GET_DRIVE_LIST

The GET_DRIVE_LIST function returns a string array of the names of valid drive
volumes for the file system (Windows / Macintosh only).

Syntax

Result= GET_DRIVE_LIST()

Return Value

This function returns a string array of the names of valid drives/volumes for the
system.

Arguments

None.

Keywords

None.
GET_DRIVE_LIST IDL Reference Guide

491

e
e

 enter:

cter’s

n
and
GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit 0) as a one-character string.

Syntax

Result = GET_KBRD(Wait)

Arguments

Wait

If Wait is zero, GET_KBRD returns the null string if there are no characters in th
terminal type-ahead buffer. If it is nonzero, the function waits for a character to b
typed before returning.

Examples

To wait for keyboard input and store one character in the variable R, enter:

R = GET_KBRD(1)

Press any key to return to the IDL prompt. To see the character that was typed,

PRINT, R

The following code fragment reads one character at a time and echoes that chara
numeric code. It quits when a “q” is entered:

REPEAT BEGIN
A = GET_KBRD(1)
PRINT, BYTE(A)

ENDREP UNTIL A EQ 'q'

Note
The GET_KBRD function can be used to return Windows special characters (i
addition to standard keyboard characters), created by holding down the Alt key
entering the character’s ANSI equivalent. For example, to return the paragraph
marker (¶), ANSI number 0182, enter:

C = GET_KBRD(1)

While GET_KBRD is waiting, press and hold the Alt key and type 0182 on the
numeric keypad. When the IDL prompt returns, enter:
IDL Reference Guide GET_KBRD

492

er
board
PRINT, C

IDL prints the paragraph marker,“¶”.

GET_KBRDcannot be used to return control characters, the Return key, or oth
editing keys (e.g., Delete, Backspace, etc.). These characters are used for key
shortcuts and command line editing only.

See Also

READ/READF
GET_KBRD IDL Reference Guide

493

f
res

her

is in

:

t can

sly
e

GET_LUN

The GET_LUN procedure allocates a file unit from a pool of free units. Instead o
writing routines to assume the use of certain file units, IDL functions and procedu
should use GET_LUN to reserve unit numbers in order to avoid conflicts with ot
routines. Use FREE_LUN to free the file units when finished.

Syntax

GET_LUN,Unit

Arguments

Unit

The named variable into which GET_LUN should place the file unit number.Unit is
converted into a longword integer in the process. The file unit number obtained
the range 100 to 128.

Example

Instead of explicitly specifying a file unit number that may already be used, use
GET_LUN to obtain a free one and store the result in the variable U by entering

GET_LUN, U

Now U can be used in opening a file:

OPENR, U, 'file.dat'

Once the data from “file.dat” has been read, the file can be closed and the file uni
be freed with the command:

FREE_LUN, U

Note also that OPENR has a GET_LUN keyword that allows you to simultaneou
obtain a free file unit and open a file. The following command performs the sam
tasks as the first two commands above:

OPENR, U, 'file.dat', /GET_LUN

See Also

FREE_LUN, OPEN
IDL Reference Guide GET_LUN

494

hat
 to

r,

e

GET_SCREEN_SIZE

The GET_SCREEN_SIZE function returns a two-element vector of the form [width,
height] that represents the dimensions, measured in device units, of the screen.

Syntax

Result = GET_SCREEN_SIZE([Display_name] [, RESOLUTION=variable])

X Windows Keywords: [, DISPLAY_NAME=string]

Arguments

Display_name (X Only)

A string indicating the name of the X WIndows display that should be used to
determine the screen size.

Keywords

DISPLAY_NAME (X Only)

Set this keyword equal to a string indicating the name of the X WIndows display t
should be used to determine the screen size. Setting this keyword is equivalent
setting the optionalDisplay_name argument.

RESOLUTION

Set this keyword equal to a named variable that will contain a two-element vecto
[xres, yres], specifying the screen resolution in cm/pixel.

Example

You can find the dimensions and screen resolution of your screen by entering th
following:

dimensions = GET_SCREEN_SIZE(RESOLUTION=resolution)
PRINT, dimensions, resolution

For the screen on which this was tested, IDL prints:

1280.00 1024.00
0.0282031 0.0281250
GET_SCREEN_SIZE IDL Reference Guide

495

null

ol
ocal
GET_SYMBOL

The GET_SYMBOL function returns the value of a VMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the
string is returned.

Note
This procedure is available on VMS only.

Syntax

Result = GET_SYMBOL(Name [, TYPE={1 | 2}])

Arguments

Name

A scalar string containing the name of the symbol to be translated.

Keywords

TYPE

The table from whichName is translated. Set TYPE to 1 to specify the local symb
table. A value of 2 specifies the global symbol table. The default is to search the l
table.

See Also

GETENV
IDL Reference Guide GET_SYMBOL

496

d.

is
ing

is

ide

w

GETENV

The GETENV function returns the equivalence string forName from the
environment of the IDL process. IfName does not exist in the environment, a null
string is returned.

Syntax

Result = GETENV(Name)

Arguments

Name

The scalar string for which an equivalence string from the environment is desire

Environment Variables Under VMS

VMS does not directly support the concept of environment variables. Instead, it
emulated (by using the standard C getenv() function) as described below, enabl
you to use GETENV portably between UNIX and VMS:

• If Nameis one of HOME, TERM, PATH, or USER, an appropriate response
generated. This mimics the most common UNIX environment variables.

• An attempt is made to translateNameas a logical name. All four logical name
tables are searched in the standard order.

• An attempt is made to translateName as a command-language interpreter
symbol.

Special Handling of the IDL_TMPDIR Environment Variable

If you specify 'IDL_TMPDIR' as the value ofName, and an environment variable
with that name exists, GETENV returns its defined value as usual. However, if
TMP_DIR is not defined, GETENV returns the path of the location where IDL's
internals believe temporary files should be written on your system. Using
IDL_TMPDIR in this manner makes it simple for code written in IDL to follow the
same conventions as IDL itself, and provides the user with an easy way to overr
this decision.

The actual location used is system dependent. When possible, IDL tries to follo
operating system and vendor conventions.
GETENV IDL Reference Guide

497

e
ok
 be

’s
h it

are
y, it
r
 that

.

e

Example

To print the name of the current UNIX shell, enter the command:

PRINT, 'The current shell is: ', GETENV('SHELL')

See Also

GET_SYMBOL, SETENV, TRNLOG

The UNIX Environment

Every UNIX process has an “environment.” The environment consists of
“environment variables,” each of which has a string value associated with it. Som
environment variables always exist, such as PATH that tells the shell where to lo
for programs or TERM that specifies the kind of terminal being used. Others can
added by the user, usually from an interactive shell and often from the.login file
that is executed when you log in.

When a process is created, it is given a copy of the environment from its parent
process. IDL is no exception to this; when started, it inherits a copy of its parent
environment. The parent process to IDL is usually the interactive shell from whic
was started. In turn, any child process created by IDL (such as those from the
SPAWN procedure) inherits a copy of IDL’s current environment.

Note
It is important to realize that environment variables are not an IDL feature; they
part of every UNIX process. Although they can serve as a form of global memor
is best to avoid using them in that way. Instead, IDL heap variables (pointers o
object references), IDL system variables, or common blocks should be used in
role. This will make your IDL code portable to non-UNIX-based IDL systems.
Environment variables should be used for communicating with child processes
One example is setting the value of the SHELL environment variable prior to
calling SPAWN to change the shell executed by SPAWN.

IDL provides two routines for manipulating the environment:

GETENV

The GETENV function returns the equivalence string from the environment of th
IDL process. It has the form:

GETENV(Name)
IDL Reference Guide GETENV

498

f an

f the
hell
whereName is the name of the environment variable for which the translation is
desired. IfNamedoes not exist in the environment, a null string is returned. For
example, to determine the type of terminal being used, you can enter the IDL
statement:

PRINT, 'The terminal type is: ', GETENV('TERM')

Executing this statement on a Sun workstation give the following result:

The terminal type is: sun

SETENV

The SETENV function adds a new environment variable or changes the value o
existing environment variable in the IDL process. It has the form:

SETENV, Environment_Expression

whereEnvironment_Expressionis a scalar string containing an environment
expression to be added to the environment.

For example, you can change the shell used by SPAWN by changing the value o
SHELL environment variable. An IDL statement to change to using the Bourne s
/bin/sh would be:

SETENV, 'shell=/bin/sh'
GETENV IDL Reference Guide

499
GOTO

The GOTO statement transfers program control to point specified bylabel.

Note
GOTO is an IDL statement. For information on using statements, seeChapter 10,
“Statements” in Building IDL Applcations.

Syntax

GOTO,label
IDL Reference Guide GOTO

500

er a

y
l

GRID_TPS

The GRID_TPS function uses thin plate splines to interpolate a set of values ov
regular two dimensional grid, from irregularly sampled data values. Thin plate
splines are ideal for modeling functions with complex local distortions, such as
warping functions, which are too complex to be fit with polynomials.

Givenn points, (xi, yi) in the plane, a thin plate spline can be defined as:

with the constraints:

whereri
2 = (x-xi)

2 + (y-yi)
2. A thin plate spline (TPS) is a smooth function, which

implies that it has continuous first partial derivatives. It also grows almost linearl
when far away from the points (xi, yi). The TPS surface passes through the origina
points:f(xi, yi) = zi.

Note
GRID_TPS requires at least 7 noncolinear points.

Syntax

Interp = GRID_TPS (Xp, Yp, Values [, COEFFICIENTS=variable]
[, NGRID = [nx, ny]] [, START = [x0, y0]] [, DELTA = [dx, dy]])

Return Value

The function returns an array of dimension (nx, ny) of interpolated values. If the
values argument is a two-dimensional array, the output array has dimensions (nz, nx,
ny), wherenz is the leading dimension of the values array allowing for the
interpolation of arbitrarily sized vectors in a single call. Keywords can be used to
specify the grid dimensions, size, and location.

f x y,() a0 a+ 1x a2y
1
2
--- bir i

2
r i

2
log

i 0=

n 1–

∑+ +=

bi
i 1=

n 1–

∑ bi xi bi yi 0=
i 0=

n 1–

∑=
i 1=

n 1–

∑=
GRID_TPS IDL Reference Guide

501

ine

n

Arguments

Xp

A vector ofx points.

Yp

A vector ofy points, with the same number of elements as theXp argument.

Values

A vector or two-dimensional array of values to interpolate. If values are a two-
dimensional array, the leading dimension is the number of values for which
interpolation is performed.

Keywords

COEFFICIENTS

A named variable in which to store the resulting coefficients of the thin plate spl
function for the last set of Values. The firstN elements, whereN is the number of
input points, contain the coefficientsbi, in the previous equation. Coefficients with
subscriptsn, n+1, andn+2, contain the values ofa0, a1, anda2, in the above equation.

DELTA

A two-element array of the distance between grid points (dx, dy). If a scalar is passed,
the value is used for bothdx anddy. The default is the range of thexp andyp arrays
divided by (nx – 1,ny – 1).

NGRID

A two-element array of the size of the grid to interpolate (nx, ny). If a scalar is passed,
the value is used for bothnx andny. The default value is [25, 25].

START

A two-element array of the location of grid point (x0, y0). If a scalar is passed, the
value is used for bothx0 andy0. The default is the minimum values in thexp andyp
arrays.

References

I. Barrodale, et al, “Note: Warping digital images using thin plate splines”, Patter
Recognition, Vol 26, No. 2, pp 375-376, 1993.
IDL Reference Guide GRID_TPS

502

a
ate a
 is

 two
M. J. D. Powell, “Tabulation of thin plate splines on a very fine two-dimensional
grid”, Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
(1992).

Example

The following example creates a set of 25 random values defining a surface on
square, 100 units on a side, starting at the origin. Then, we use GRID_TPS to cre
regularly gridded surface, with dimensions of 101 by 101 over the square, which
then displayed. The same data set is then interpolated using TRIGRID, and the
results are displayed for comparison.

;X values
x = RANDOMU(seed, 25) * 100

;Y values
y = RANDOMU(seed, 25) * 100

;Z values
z = RANDOMU(seed, 25) * 10

z1 = GRID_TPS(x, y, z, NGRID=[101, 101], START=[0,0], DELTA=[1,1])

;Show the result
LIVE_SURFACE, z1, TITLE=’TPS’

;Grid using TRIGRID
TRIANGULATE, x, y, tr, bounds

z2 = TRIGRID(x, y, z, tr, [1,1], [0,0,100, 100], $
EXTRAPOLATE=bounds)

;Show triangulated surface
LIVE_SURFACE, z2, TITLE=’TRIGRID - Quintic’
GRID_TPS IDL Reference Guide

503

e

f

-

to be
th
sary.

the
GRID3

The GRID3 function fits a smooth function to a set of 3D scattered nodes (xi, yi, zi)
with associated data values (fi). The function can be sampled over a set of user-
specified points, or over an arbitrary 3D grid which can then be viewed using th
SLICER3 procedure.

GRID3 uses the method described in Renka, R. J., “Multivariate Interpolation of
Large Sets of Scattered Data,”ACM Transactions on Mathematical Software, Vol. 14,
No. 2, June 1988, Pages 139-148, which has been referred to as the Modified
Shepard’s Method. The function described by this method has the advantages o
being equal to the values offi, at each (xi, yi, zi), and being smooth (having
continuous first partial derivatives).

If no optional or keyword parameters are supplied, GRID3 produces a regularly
sampled volume with dimensions of (25, 25, 25), made up of single-precision,
floating-point values, enclosing the original data points.

Syntax

Result = GRID3(X, Y, Z, F, Gx, Gy, Gz [, DELTA=scalar/vector] [, DTOL=value]
[, GRID=value] [, NGRID=value] [, START=[x, y, z]])

Arguments

X, Y, Z and F

Arrays containing the locations of the data points, and the value of the variable
interpolated at that point.X, Y, Z, andF must have the same number of elements (wi
a minimum of 10 elements per array) and are converted to floating-point if neces

Note: For the greatest possible accuracy, the arraysX, Y, andZ should be scaled to fit
in the range [0,1].

Gx, Gy, and G z

Optional arrays containing the locations within the volume to be sampled (if the
GRID keyword is not set), or the locations along each axis of the sampling grid (if
GRID keyword is set). If these parameters are supplied, the keywords DELTA,
NGRID, and START are ignored.

If the keyword GRID isnotset, the result has the same number of elements asGx, Gy,
andGz. Theith element of the result contains the value of the interpolate at (Gxi, Gyi,
Gzi). The result has the same dimensions asGx.
IDL Reference Guide GRID3

504

cing
thin

lue

r
he

is

case
ng the

alue
If the GRID keyword is set, the result of GRID3 is a three-dimensional, single-
precision, floating-point array with dimensions of (Nx, Ny, Nz), whereNx, Ny, andNz
are the number of elements inGx, Gy, andGz, respectively.

Keywords

DELTA

Set this keyword to a three-element vector or a scalar that specifies the grid spa
in the X, Y, and Z dimensions. The default spacing produces NGRID samples wi
the range of each axis.

DTOL

The tolerance for detecting an ill-conditioned system of equations. The default va
is 0.01, which is appropriate for small ranges ofX, Y, andZ. For large ranges ofX, Y,
or Z, it may be necessary to decrease the value of DTOL. If you receive the erro
message “GRID3: Ill-conditioned matrix or all nodes co-planar,” try decreasing t
value of DTOL.

GRID

This keyword specifies the interpretation ofGx, Gy, andGz. The default value for
GRID is zero ifGx, Gy, andGz are supplied, otherwise a regularly-gridded volume
produced.

NGRID

The number of samples along each axis. NGRID can be set to a scalar, in which
each axis has the same number of samples, or to a three-element array containi
number of samples for each axis. The default value for NGRID is 25.

START

A three-element array that specifies the starting value for each grid. The default v
for START is the minimum value in the respective X, Y, and Z array.

Examples

Produce a set random points within the (0,1) unit cube and simulate a function:

; Number of irregular samples:
N = 300

; Generate random values between 0 and 1:
X = RANDOMU(SEED, N)
Y = RANDOMU(SEED, N)
GRID3 IDL Reference Guide

505
Z = RANDOMU(SEED, N)

; The function to simulate:
F = (X-.5)^2 + (Y-.5)^2 + Z

; Return a cube with 25 equal-interval samples along each axis:
Result = GRID3(X, Y, Z, F)

; Return a cube with 11 elements along each dimension, which
; samples each axis at (0, 0.1, ..., 1.0):
Result = GRID3(X, Y, Z, F, START=[0., 0., 0], $

DELTA=0.1, NGRID=10)

The same result is produced by the statements:

; Create sample values:
S = FINDGEN(11) / 10.
Result = GRID3(X, Y, Z, F, S, S, S, /GRID)

See Also

SLICER3
IDL Reference Guide GRID3

506

row
hat

le

the
GS_ITER

The GS_ITER function solves ann by n linear system of equations using Gauss-
Seidel iteration with over- and under-relaxation to enhance convergence.

Note that the equations must be entered indiagonally dominant form to guarantee
convergence. A system is diagonally dominant if the diagonal element in a given
is greater than the sum of the absolute values of the non-diagonal elements in t
row.

This routine is written in the IDL language. Its source code can be found in the fi
gs_iter.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = GS_ITER(A, B [, /CHECK] [, LAMBDA= value{0.0 to 2.0}]
[, MAX_ITER=value] [, TOL=value] [, X_0=vector])

Arguments

A

An n by n integer, single-, or double-precision floating-point array. On output,A is
divided by its diagonal elements. Integer input values are converted to single-
precision floating-point values.

B

A vector containing the right-hand side of the linear systemAx=b. On output,B is
divided by the diagonal elements ofA.

Keywords

CHECK

Set this keyword to check the arrayA for diagonal dominance. IfA is not in
diagonally dominant form, GS_ITER reports the fact but continues processing on
chance that the algorithm may converge.

LAMBDA

A scalar value in the range: [0.0, 2.0]. This value determines the amount of
relaxation. Relaxation is a weighting technique used to enhance convergence.

• If LAMBDA = 1.0, no weighting is used. This is the default.
GS_ITER IDL Reference Guide

507

to

.0,

nally
• If 0.0 ≤ LAMBDA < 1.0, convergence improves in oscillatory and non-
convergent systems.

• If 1.0 < LAMBDA ≤ 2.0, convergence improves in systems already known
converge.

MAX_ITER

The maximum allowed number of iterations. The default value is 30.

TOL

The relative error tolerance between current and past iterates calculated as:
((current-past)/current). The default is 1.0× 10-4.

X_0

An n-element vector that provides the algorithm’s starting point. The default is [1
1.0, ... , 1.0].

Example

; Define an array A:
A = [[1.0, 7.0, -4.0], $

[4.0, -4.0, 9.0], $
[12.0, -1.0, 3.0]]

; Define the right-hand side vector B:
B = [12.0, 2.0, -9.0]

; Compute the solution to the system:
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

Input matrix is not in Diagonally Dominant form.
Algorithm may not converge.
% GS_ITER: Algorithm failed to converge within given parameters.

Since the A represents a system of linear equations, we can reorder it into diago
dominant form by rearranging the rows:

A = [[12.0, -1.0, 3.0], $
[1.0, 7.0, -4.0], $
[4.0, -4.0, 9.0]]

; Make corresponding changes in the ordering of B:
B = [-9.0, 12.0, 2.0]

; Compute the solution to the system:
IDL Reference Guide GS_ITER

508
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

-0.999982 2.99988 1.99994

See Also

CRAMER, LU_COMPLEX, CHOLSOL, LUSOL, SVSOL, TRISOL
GS_ITER IDL Reference Guide

509

a

le

used
 to
H_EQ_CT

The H_EQ_CT procedure histogram-equalizes the color tables for an image or
region of the display. A pixel-distribution histogram is obtained, the cumulative
integral is taken and scaled, and the result is applied to the current color table.

This routine is written in the IDL language. Its source code can be found in the fi
h_eq_ct.pro in thelib subdirectory of the IDL distribution.

Syntax

H_EQ_CT [,Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be
in determining the new color tables. If this value is omitted, the user is prompted
mark the diagonal corners of a region of the display. IfImage is specified, it is
assumed that the image is loaded into the current IDL window.Imagemust be scaled
the same way as the image loaded to the display.

See Also

H_EQ_INT
IDL Reference Guide H_EQ_CT

510

an
ount

d to
and

le

mp

tton

used
 to
H_EQ_INT

The H_EQ_INT procedure interactively histogram-equalizes the color tables of
image or a region of the display. By moving the cursor across the screen, the am
of histogram-equalization can be varied.

Either the image parameter or a region of the display marked by the user is use
obtain a pixel-distribution histogram. The cumulative integral is taken and scaled
the result is applied to the current color tables.

This routine is written in the IDL language. Its source code can be found in the fi
h_eq_int.pro in thelib subdirectory of the IDL distribution.

Using the H_EQ_INT Interface

A window is created and the histogram equalization function is plotted. A linear ra
is overplotted. Move the cursor from left to right to vary the amount of histogram
equalization applied to the color tables from 0 to 100%. Press the right mouse bu
to exit.

Syntax

H_EQ_INT [,Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be
in determining the new color tables. If this value is omitted, the user is prompted
mark the diagonal corners of a region of the display. IfImage is specified, it is
assumed that the image is loaded into the current IDL window.Imagemust be scaled
the same way as the image loaded to the display.

See Also

H_EQ_CT
H_EQ_INT IDL Reference Guide

511

le

w.
n

HANNING

The HANNING function is used to create a “window” for Fourier Transform
filtering. It can be used to create both Hanning and Hamming windows.

This routine is written in the IDL language. Its source code can be found in the fi
hanning.pro in thelib subdirectory of the IDL distribution.

Syntax

Result= HANNING(N1 [, N2] [, ALPHA=value{0.5 to 1.0}])

Arguments

N1

The number of columns in the resulting array.

N2

The number of rows in the resulting array.

Keywords

ALPHA

Set this keyword equal to the width parameter of a generalized Hamming windo
ALPHA must be in the range of 0.5 to 1.0. If ALPHA = 0.5 (the default) the functio
is called a “Hanning” window. If ALPHA = 0.54, the result is called a “Hamming”
window.

See Also

FFT
IDL Reference Guide HANNING

512
HDF_* Routines

See“Alphabetical Listing of HDF Routines” in theScientific Data Formats manual.
TheHDF_BROWSER andHDF_READ functions are described on the following
pages.
HDF_* Routines IDL Reference Guide

513

ows
r
into
F
,

all

was
e with

e

is
The
ll

e

HDF_BROWSER

The HDF_BROWSER function presents a graphical user interface (GUI) that all
the user to view the contents of a Hierarchical Data Format (HDF), HDF-EOS, o
NetCDF file, and prepare a template for the extraction of HDF data and metadata
IDL. The output template is an IDL structure that may be used when reading HD
files with the HDF_READ routine. If you have several HDF files of identical form
the returned template from HDF_BROWSER may be reused to extract data from
these files with HDF_READ. If you do not need a multi-use template, you may c
HDF_READ directly.

Syntax

Template = HDF_BROWSER([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, PREFIX=string])

Return Value

Returns a template structure containing heap variable references, or 0 if no file
selected. The user is required to clean up the heap variable references when don
them.

Arguments

Filename

A string containing the name of an HDF file to browse. IfFilenameis not specified, a
dialog allows you to choose a file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 (one) if th
user clicked the “Cancel” button or the byte value 0 (zero) otherwise.

GROUP

Set this keyword to the widget ID of a widget that calls HDF_BROWSER. When th
ID is specified, a death of the caller results in the death of the HDF_BROWSER.
following example demonstrates how to use the GROUP keyword to properly ca
HDF_BROWSER from within a widget application. To run this example, save th
following code asbrowser_example.pro :
IDL Reference Guide HDF_BROWSER

514

in
sed
PRO BROWSER_EXAMPLE_EVENT,ev

WIDGET_CONTROL,ev.id,GET_VALUE=val
CASE val of

'Browser':BEGIN
a=HDF_BROWSER(GROUP=ev.top)
HELP,a,/st

END
'Exit': WIDGET_CONTROL,ev.top,/DESTROY

ENDCASE

END

PRO BROWSER_EXAMPLE

a=WIDGET_BASE(/ROW)
b=WIDGET_BUTTON(a,VALUE='Browser')
c=WIDGET_BUTTON(a,VALUE='Exit')
WIDGET_CONTROL,a,/REALIZE
XMANAGER,'browser_example',a

END

PREFIX

When HDF_BROWSER reviews the contents of an HDF file, it creates default
output names for the various data elements. By default these default names beg
with a prefix derived from the filename. Set this keyword to a string value to be u
in place of the default prefix.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

Table 21: HDF_BROWSER Pulldown Menu Options
HDF_BROWSER IDL Reference Guide

515

can
he
he

file.

mes
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that
be plotted in two dimensions, click on this button to view a 2D plot of the data (t
default) or click on the “Surface” radio button to display a surface plot, click on t
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default na
are generated for all data items, but may be changed at any time by the user.

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Menu Selection Description

Table 21: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_BROWSER

516
Example

template = HDF_BROWSER('test.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('test.hdf', TEMPLATE=template)

See Also

HDF_READ
HDF_BROWSER IDL Reference Guide

517

e

r its
HDF

t
the

8

e will
is

s of

bit
g

HDF_READ

The HDF_READ function allows extraction of Hierarchical Data Format (HDF),
HDF-EOS, and NetCDF data and metadata into an output structure based upon
information provided through a graphical user interface or through a file templat
generated by HDF_BROWSER. The output structure is a single level structure
corresponding to the data elements and names specified by HDF_BROWSER o
output template. Templates generated by HDF_BROWSER may be re-used for
files of identical format.

Syntax

Result = HDF_READ([Filename] [, DFR8=variable] [, DF24=variable]
[, PREFIX=string] [, TEMPLATE =value])

Arguments

Filename

A string containing the name of a HDF file to extract data from. If Filename is no
specified, a dialog allows you to specify a file. Note that if a template is specified,
template must match the HDF file selected.

Keywords

DFR8

Set this keyword to a named variable that will contain a 2 xn string array of extracted
DFR8 images and their palettes. The first column will contain the extracted DFR
image names, while the second column will contain the extracted name of the
associated palette. If no palette is associated with a DFR8 image the palette nam
be set to the null string. If no DFR8 images were extracted from the HDF file, th
returned string will be the null string array ['', ''].

DF24

Set this keyword to a named variable that will contain a string array of the name
all the extracted DF24 24-bit images. This is useful in determining whether a (3,n,m)
extracted data element is a 24-bit image or another type of data. If no DF24 24-
images were extracted from the HDF file, the returned string will be the null strin
('').
IDL Reference Guide HDF_READ

518

ew
data
. Set

d
 file
PREFIX

When HDF_READ is called without a template, it calls HDF_BROWSER to revi
the contents of an HDF file and create the default output names for the various
elements. By default, these names begin with a prefix derived from the filename
this keyword to a string value to be used in place of the default prefix.

TEMPLATE

Set this keyword to specify the HDF file template (generated by the function
HDF_BROWSER), that defines which data elements to extract from the selecte
HDF file. Templates may be used on any files that have a format identical to the
the template was created from.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Table 22: HDF_BROWSER Pulldown Menu Options
HDF_READ IDL Reference Guide

519

can
he
he

file.

mes
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that
be plotted in two dimensions, click on this button to view a 2D plot of the data (t
default) or click on the “Surface” radio button to display a surface plot, click on t
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default na
are generated for all data items, but may be changed at any time by the user.

Example

template = HDF_BROWSER('my.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('my.hdf')

or,

;Select'my.hdf' with the file locator
output_structure = HDF_READ()

or,

output_structure = HDF_READ('just_like_my.hdf', TEMPLATE=template)

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Menu Selection Description

Table 22: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_READ

520
See Also

HDF_BROWSER
HDF_READ IDL Reference Guide

521

me
 used

ss of

uld

es. If
s, a
If so
HEAP_GC

The HEAP_GC procedure performsgarbage collectionon heap variables. It searches
all current IDL variables (including common blocks, widget user values, etc.) for
pointers and object references and determines which heap variables have beco
inaccessible. Pointer heap variables are freed (via PTR_FREE) and all memory
by the heap variable is released. Object heap variables are destroyed (via
OBJ_DESTROY), also freeing all used memory.

The default action is to perform garbage collection on all heap variables regardle
type. Use the POINTER and OBJECT keywords to remove only specific types.

Note
Garbage collection is an expensive operation. When possible, applications sho
be written to avoid losing pointer and object references and avoid the need for
garbage collection.

Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variabl
HEAP_GC is used to manage certain data structures, such as large linked list
potentially large number of operations may be pushed onto the system stack.
many operations are pushed that the stack runs out of room, IDL will crash.

Syntax

HEAP_GC [, /OBJ | , /PTR] [, /VERBOSE]

Keywords

OBJ

Set this keyword to perform garbage collection on object heap variables only.

PTR

Set this keyword to perform garbage collection on pointer heap variables only.

Note
Settingboth the PTR and OBJ keywords is the same a setting neither.
IDL Reference Guide HEAP_GC

522

ble,
a
le
VERBOSE

If this keyword is set, HEAP_GC writes a one line description of each heap varia
in the format used by the HELP procedure, as the variable is destroyed. This is
debugging aid that can be used by program developers to check for heap variab
leaks that need to be located and eliminated.
HEAP_GC IDL Reference Guide

523

 IDL

o
e
me.

f no

ELP

ents

. If

ction
is

g.
HELP

The HELP procedure gives the user information on many aspects of the current
session. The specific area for which help is desired is selected by specifying the
appropriate keyword. If no arguments or keywords are specified, the default is t
show the current nesting of procedures and functions, all current variables at th
current program level, and open files. Only one keyword can be specified at a ti

Syntax

HELP,Expression1, ...,Expressionn [, /ALL_KEYS] [, /BREAKPOINTS] [, /BRIEF]
[, CALLS=variable] [, /DEVICE] [, /DLM] [, /FILES] [, /FULL] [, /FUNCTIONS]
[, /HEAP_VARIABLES] [, /KEYS] [, /LAST_MESSAGE] [, /MEMORY]
[, /MESSAGES] [, NAMES=string_of_variable_names] [, /OBJECTS]
[, OUTPUT=variable] [, /PROCEDURES] [, /RECALL_COMMANDS]
[, /ROUTINES] [, /SOURCE_FILES] [, /STRUCTURES]
[, /SYSTEM_VARIABLES] [, /TRACEBACK]

Arguments

Expression(s)

The arguments are interpreted differently depending on the keyword selected. I
keyword is selected, HELP displays basic information for its parameters. For
example, to see the type and structure of the variable A, enter:

HELP, A

Keywords

Note that the use of some of the following keywords causes any arguments to H
to be ignored and HELP provides other types of information instead. If the
description of the keyword does not explicitly mention the arguments, the argum
are ignored.

ALL_KEYS

Set this keyword to show current function-key definitions as set by DEFINE_KEY
no arguments are supplied, information on all function keys is displayed. If
arguments are provided, they must be scalar strings containing the names of fun
keys, and information on the specified keys is given. Under UNIX, this keyword
different from KEYS because every key is displayed, no matter what its current
programming. Under VMS and Windows, the two keywords mean the same thin
IDL Reference Guide HELP

524

le

se
ds:

ach
 line

ce.
e of

ate

lied
-1,
unit
On the Macintosh, keys cannot be defined via DEFINE_KEY. ALL_KEYS is
equivalent to "/KEYS, /FULL".

BREAKPOINTS

Set this keyword to display the breakpoint table which shows the program modu
and location for each breakpoint.

BRIEF

If set in conjunction with one of the following keywords, BRIEF produces very ter
summary style output instead of the output normally displayed by those keywor

CALLS

Set this keyword to a named variable in which to store the procedure call stack. E
string element contains the name of the program module, source file name, and
number. Array element zero contains the information about the caller of HELP,
element one contains information about its caller, etc. This keyword is useful for
programs that require traceback information.

DEVICE

Set this keyword to show information about the currently selected graphics devi
This information is dependent on the abilities of the current device, but the nam
the device is always given. Arguments to HELP are ignored when DEVICE is
specified.

DLM

Set this keyword to display all known dynamically loadable modules and their st
(loaded or not loaded).

FILES

Set this keyword to display information about file units. If no arguments are supp
in the call to HELP, information on all open file units (except the special units 0,
and -2) is displayed. If arguments are provided, they are taken to be integer file
numbers, and information on the specified file units is given.

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
HELP IDL Reference Guide

525

 file

o

the

ir
d.

ns

Y,
der

he
via
For example, the command:

HELP, /FILES, -2, -1, 0

gives information below about the default file units:

Unit Attributes Name
-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
 0 Read, Tty, Reserved <stdin>

The attributes column tells about the characteristics of the file. For instance, the
connected to logical file unit 2 is called “stderr” and is the standard error file. It is
opened for write access (Write), is a new file (Truncate), is a terminal (Tty), and
cannot be closed by the CLOSE command (Reserved).

FULL

By default, HELP filters its output in an attempt to only display information likely t
be of use to the IDL end user. Specify FULL to see all available information on a
given topic without any such filtering. The filtering applied by default depends on
type of information being requested:

• Function keys: By default, IDL will not display undefined function keys.

• Structure Definitions And Objects: Structures and objects that have had the
definition hidden using the STRUCT_HIDE procedure are not usually liste

• Functions and Procedures: Functions and procedures compiled with the
COMPILE_OPT HIDDEN directive are not usually included in HELP output.

FUNCTIONS

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If FUNCTIONS is specified, only output on functio
is produced. If FUNCTIONS is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

HEAP_VARIABLES

Set this keyword to display help information for all the current heap variables.

KEYS

Set this keyword to show current function key definitions as set by DEFINE_ KE
for those function keys that are currently programmed to perform a function. Un
UNIX, this keyword is different from ALL_KEYS because that keyword displays
every key, no matter what its current programming. Under VMS and Windows, t
two keywords mean the same thing. On the Macintosh, keys cannot be defined
IDL Reference Guide HELP

526

as
Y is

e into

inted.

ing
d

are
DEFINE_KEY. If no arguments are supplied, information on all function keys is
displayed. If arguments are provided, they must be scalar strings containing the
names of function keys, and information on the specified keys is given.

LAST_MESSAGE

Set this keyword to display the last error message issued by IDL.

MEMORY

Set this keyword to see a report on the amount of dynamic memory (in bytes)
currently in use by the IDL session, and the number of times dynamic memory h
been allocated and deallocated. Arguments to HELP are ignored when MEMOR
specified.

MESSAGES

Set this keyword to display all known message blocks and the error space rang
which they are loaded.

NAMES

A string used to determine the names of the variables, whose values are to be pr
A string match (equivalent to the STRMATCH function with the FOLD_CASE
keyword set) is used to decide if a given variable will be displayed. The match str
can contain any wildcard expression supported by STRMATCH, including “*” an
“?”.

For example, to print only the values of variables beginning with “A”, use the
commandHELP,/NAME='a*' . Similarly,HELP,NAME='?' prints the values of all
variables with a single-character name.

NAMES also works with the output from the following keywords:

OBJECTS

Set this keyword to display information on defined object classes. If no arguments
provided, all currently-defined object classes are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
HELP IDL Reference Guide

527

e

its
own.
f all

ce

ing
es a

ge the

in

y

LL
keyword to prevent HELP from filtering the output. If arguments are provided, th
definition of the object class for the heap variables referred to is displayed.

Information is provided on inherited superclasses and allknown methods. A method is
known to IDL only if it has been compiled in the current IDL session and called by
own class or a subclass. Methods that have not been compiled yet will not be sh
Thus, the list of methods displayed by HELP is not necessarily a complete list o
possible method for the object class.

If called within a class’ method, the OBJECTS keyword also displays the instan
data of the object on which it was called.

OUTPUT

Set this keyword equal to a named variable that will contain a string array contain
the formatted output of the HELP command. Each line of formatted output becom
single element in the string array.

Warning
The OUTPUT keyword is primarily for use in capturing HELP output in order to
display it someplace else, such as in a text widget. This keyword isnot intended to
be used in obtaining programmatic information about the IDL session, and is
formatted to be human readable. Research Systems reserves the right to chan
format and content of this textat any time, without warning. If you find yourself
using OUTPUT for a non-display purpose, you should consider submitting an
enhancement request for a function that will provide the information you require
a safe form.

PROCEDURES

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If PROCEDURES is specified, only output on
procedures is produced. If PROCEDURES is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

RECALL_COMMANDS

Set this keyword to display the saved commands in the command input buffer. B
default, IDL saves the last 20 lines of input in a buffer from which they can be
recalled for command line editing. Arguments to HELP are ignored when RECA
is specified.
IDL Reference Guide HELP

528

 lines

ir
 the
 are
g

e

use

nts

e
t to
The number of lines saved can be changed by assigning the desired number of
to the environment variable !EDIT_INPUT in the IDL startup file. See
“!EDIT_INPUT” on page 2199 for details.

ROUTINES

Set this keyword to show a list of all compiled procedures and functions with the
parameter names. Keyword parameters accepted by each module are shown to
right of the routine name. If no arguments are provided, and the information you
looking for is not displayed, use the FULL keyword to prevent HELP from filterin
the output.

SOURCE_FILES

Set this keyword to display information on procedures and functions written in th
IDL language that have been compiled during the current IDL session. Full path
names (relative to the current directory) of compiled.pro files are displayed. If no
arguments are provided, and the information you are looking for is not displayed,
the FULL keyword to prevent HELP from filtering the output.

STRUCTURES

Set this keyword to display information on structure-type variables. If no argume
are provided, all currently-defined structures are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL
keyword to prevent HELP from filtering the output. If arguments are provided, th
structure definition for those expressions is displayed. It is often more convenien
useHELP, /STRUCTURES instead ofPRINT to look at the contents of a structure
variable because it shows the names of the fields as well as the data.

SYSTEM_VARIABLES

Set this keyword to display information on all system variables. Arguments are
ignored.

TRACEBACK

Set this keyword to display the current nesting of procedures and functions.

Example

To see general information on the current IDL session, enter:

HELP

To see information on the structure definition of the system variable !D, enter:
HELP IDL Reference Guide

529
HELP, !D, /STRUCTURES

See Also

“Online Help” in theGetting Started with IDL manual.
IDL Reference Guide HELP

530

 by
put
a

the

g is

he

t to

le

= -
HILBERT

The HILBERT function returns a series that has all periodic terms phase-shifted
90 degrees. The output is a complex-valued vector with the same size as the in
vector. This transform has the interesting property that the correlation between
series and its own Hilbert transform is mathematically zero.

HILBERT generates the fast Fourier transform using the FFT function, and shifts
first half of the transform products by +90 degrees and the second half by -90
degrees. The constant elements in the transform are not changed. Angle shiftin
accomplished by multiplying or dividing by the complex number,i = (0.0000,
1.0000). The shifted vector is then submitted to FFT for transformation back to t
“time” domain and the output is divided by the number elements in the vector to
correct for multiplication effect peculiar to the FFT algorithm.

Note: Because HILBERT uses FFT, it exhibits the same side effects with respec
input arguments as that function.

This routine is written in the IDL language. Its source code can be found in the fi
hilbert.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = HILBERT(X [, D])

Arguments

X

An n-element floating-point or complex-valued vector.

D

A flag for rotation direction. Set D = +1 for a positive rotation (the default). Set D
1 for a negative rotation.

See Also

FFT
HILBERT IDL Reference Guide

531

 of

le

,

HIST_2D

The HIST_2D function returns the two dimensional density function (histogram)
two variables, a longword array of dimensions (MAX(V1)+1, MAX(V2)+1).
Result(i,j) is equal to the number of simultaneous occurrences ofV1= i andV2= j at
the specified element.

This routine is written in the IDL language. Its source code can be found in the fi
hist_2d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = HIST_2D(V1, V2 [, BIN1=width] [, BIN2=height] [, MAX1= value]
[, MAX2=value] [, MIN1=value] [, MIN2=value])

Arguments

V1, V2

Arrays containing the variables.V1 andV2 must be of byte, integer, or longword
type, and must contain no negative elements.

Keywords

BIN1

The size of each bin in theV1 direction (column width). If this keyword is not
specified, the size is set to 1.

BIN2

The size of each bin in theV2direction (row height). If this keyword is not specified
the size is set to 1.

MAX1

MAX1 is the maximumV1value to consider. If this keyword is not specified, thenV1
is searched for its largest value.

MAX2

MAX2 is the maximumV2value to consider. If this keyword is not specified, thenV2
is searched for its largest value.
IDL Reference Guide HIST_2D

532

s

s

 to
MIN1

MIN1 is the minimumV1value to consider. If this keyword is not specified, then it i
set to 0.

MIN2

MIN2 is the minimumV2value to consider. If this keyword is not specified, then it i
set to 0.

Example

To return the 2D histogram of two byte images:

R = HIST_2D(image1, image2)

To return the 2D histogram made from two floating point images with range of -1
+1, and with 100 bins:

R = HIST_2D(LONG((F1+1) * 50), LONG((F2+1) * 50))

See Also

H_EQ_CT, H_EQ_INT, HIST_EQUAL, HISTOGRAM
HIST_2D IDL Reference Guide

533

y.
nd

the

5)

le

r is

than
HIST_EQUAL

The HIST_EQUAL function returns a histogram-equalized byte array. The
HISTOGRAM function is used to obtain the density distribution of the input arra
The histogram is integrated to obtain the cumulative density-probability function a
finally the lookup function is used to transform to the output image.

The resulting array is always of byte type and is scaled from 0 to the value set by
TOP keyword.

Note
Floating-point arrays should not have small ranges, (e.g., less than around 25
unless a binsize is specified.

This routine is written in the IDL language. Its source code can be found in the fi
hist_equal.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = HIST_EQUAL(A [, BINSIZE=value] [, MINV= value] [, MAXV= value]
[, TOP=value])

Arguments

A

The array to be histogram-equalized.

Keywords

BINSIZE

Size of bin to use. If this keyword is omitted, the value 1 is used. This paramete
ignored for byte type data.

MINV

The minimum value to consider. If this keyword is omitted, zero is used. Input
elements less than or equal to MINV are output as zero. MINV should be greater
or equal to 0.
IDL Reference Guide HIST_EQUAL

534

t is

sed.

imit
MAXV

The maximum value to consider. If this keyword is omitted, the maximum elemen
used. Input elements greater than or equal to MAXV are output as 255.

TOP

The maximum value to scale the output array. If this keyword is omitted, 255 is u

Example

Create a sample image using the DIST function and display it by entering:

image = DIST(100)
TV, image

Create a histogram-equalized version of the byte array,image , and display the new
version. Use a minimum input value of 10, a maximum input value of 200, and l
the top value of the output array to 220. Enter:

new = HIST_EQUAL(image, MINV = 10, MAXV = 200, TOP = 220)
TV, new

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HISTOGRAM
HIST_EQUAL IDL Reference Guide

535

on

e
list

 plot
HISTOGRAM

The HISTOGRAM function returns a longword vector equal to the density functi
of Array. In the simplest case, the density function, at subscripti, is the number of
Array elements in the argument with a value ofi.

Let Fi= the value of elementi, 0 ≤ i < n. LetHv = result of histogram function, a
longword vector. The definition of the histogram function becomes:

Warning
There may not always be enough virtual memory available to find the density
functions of arrays that contain a large number of bins.

For bivariate probability distributions, use the HIST_2D function.

HISTOGRAM can optionally return an array containing a list of the original array
subscripts that contributed to each histogram bin. This list, commonly called the
reverse (or backwards) index list, efficiently determines which array elements ar
accumulated in a set of histogram bins. A typical application of the reverse index
is reverse histogram or scatter plot interrogation—a histogram bin or 2D scatter
location is marked with the cursor and the original data items within that bin are
highlighted.

Syntax

Result = HISTOGRAM(Array [, BINSIZE=value] [, INPUT=variable]
[, MAX= value] [, MIN= value] [, /NAN] [, OMAX= variable] [, OMIN=variable]
[, REVERSE_INDICES=variable])

Hv P Fi v,(),
i 0=

n 1–

∑= v 0 1 2 ... Max Min–
Binsize

---------------------------, , , ,=

P Fi v,()
1, v Fi Min–() Binsize⁄ v 1+<≤

0, Otherwise

=

IDL Reference Guide HISTOGRAM

536

.

utput

tial

fied
ata

ified
ta

ing-
are
Arguments

Array

The vector or array for which the density function is to be computed.

Keywords

BINSIZE

The size of the bin to use. If this keyword is not specified, a bin size of 1 is used

INPUT

Set this keyword to a named variable that contains an array to be added to the o
of HISTOGRAM. The density function ofArray is added to the existing contents of
INPUT and returned as the result. The array is converted to longword type if
necessary and must have at least as many elements as are required to form the
histogram. Multiple histograms can be efficiently accumulated by specifying par
sums via this keyword.

MAX

MAX is the maximum value to consider. Note that the data type of the value speci
for MAX should match the data type of the input array; specifying mismatched d
types may produce undesired results. If this keyword is not specified,Array is
searched for its largest value.

MIN

MIN is the minimum value to consider. Note that the data type of the value spec
for MIN should match the data type of the input array; specifying mismatched da
types may produce undesired results. If this keyword is not specified, andArray is of
type byte, 0 is used. If this keyword is not specified andArray is not of byte type,
Array is searched for its smallest value.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN (not a number) in the input data. Elements with the value NaN
treated as missing data. (See“Special Floating-Point Values” in Chapter 15 of
Building IDL Applcations for more information on IEEE floating-point values.)

OMAX

A named variable that, upon exit, contains the maximum data value used in
constructing the histogram.
HISTOGRAM IDL Reference Guide

537

ed.
f the
d

al

ctor
 of

ver
OMIN

A named variable that, upon exit, contains the minimum data value used in
constructing the histogram.

REVERSE_INDICES

Set this keyword to a named variable in which the list of reverse indices is return
This list is returned as a longword vector whose number of elements is the sum o
number of elements in the histogram,N, and the number of array elements include
in the histogram, plus one.

The subscripts of the original array elements falling in theith bin, 0≤ i < N, are given
by the expression: R(R[i] : R(i+1)-1), where R is the reverse index list. If R[i] is equ
to R[i+1], no elements are present in theith bin.

For example, make the histogram of array A:

H = HISTOGRAM(A, REVERSE_INDICES = R)

;Set all elements of A that are in the ith bin of H to 0.
IF R(i) NE R(i+1) THEN A(R(R(I) : R(i+1)-1)) = 0

The above is usually more efficient than the following:

bini = WHERE(A EQ i, count)
IF count NE 0 THEN A(bini) = 0

Examples

; Create a simple, 2D dataset:
D = DIST(200)
; Plot the histogram of D with a bin size of 1 and the default
; minimum and maximum:
PLOT, HISTOGRAM(D)
; Plot a histogram considering only those values from 10 to 50
; using a bin size of 4:
PLOT, HISTOGRAM(D, MIN = 10, MAX = 50, BINSIZE = 4)

The HISTOGRAM function can also be used to increment the elements of one ve
whose subscripts are contained in another vector. To increment those elements
vector A indicated by vector B, use the command:

A = HISTOGRAM(B, INPUT=A, MIN=0, MAX=N_ELEMENTS(A)-1)

This method works for duplicate subscripts, whereas the following statement ne
adds more than 1 to any element, even if that element is duplicated in vector B:

A[B] = A[B]+1
IDL Reference Guide HISTOGRAM

538
For example, for the following commands:

A = LONARR(5)
B = [2,2,3]
PRINT, HISTOGRAM(B, INPUT=A, MIN=0, MAX=4)

IDL prints:

0 0 2 1 0

The commands:

A = LONARR(5)
A[B] = A[B]+1
PRINT, A

give the result:

0 0 1 1 0

The following example demonstrates how to use HISTOGRAM:

PRO t_histogram
data = [[-5, 4, 2, -8, 1], $

[3, 0, 5, -5, 1], $
[6, -7, 4, -4, -8], $
[-1, -5, -14, 2, 1]]

hist = HISTOGRAM(data)
bins = FINDGEN(N_ELEMENTS(h)) + MIN(data)
PRINT, MIN(hist)
PRINT, bins
PLOT, bins, hist, YRANGE = [MIN(hist)-1, MAX(hist)+1], PSYM = 10, $

XTITLE = 'Bin Number', YTITLE = 'Density per Bin'
END

IDL prints:

0

-14.0000 -13.0000 -12.0000 -11.0000 -10.0000 -
9.00000
-8.00000 -7.00000 -6.00000 -5.00000 -4.00000 -
3.00000
-2.00000 -1.00000 0.00000 1.00000 2.00000
3.00000
 4.00000 5.00000 6.00000

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL
HISTOGRAM IDL Reference Guide

539

ed.
and

le

e an
HLS

The HLS procedure creates a color table based on the HLS (Hue, Lightness,
Saturation) color system.

Using the input parameters, a spiral through the double-ended HLS cone is trac
Points along the cone are converted from HLS to RGB. The current colortable (
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the fi
hls.pro in thelib subdirectory of the IDL distribution.

Syntax

HLS, Litlo, Lithi, Satlo, Sathi, Hue, Loops[, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to b
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
IDL Reference Guide HLS

540

ed.
Colr

An optional (256,3) integer array in which the new R, G, and B values are return
Red =Colr[*,0], green =Colr[*,1], blue =Colr[*,2].

See Also

COLOR_CONVERT, HSV, PSEUDO
HLS IDL Reference Guide

541

the
the

etic.

fine
HQR

The HQR function returns all eigenvalues of an upper Hessenberg array. Using
output produced by the ELMHES function, this function finds all eigenvalues of
original real, nonsymmetric array. The result is ann-element complex vector.

HQR is based on the routinehqr described in section 11.6 ofNumerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = HQR(A [, /COLUMN] [, /DOUBLE])

Arguments

A

An n by n upper Hessenberg array. Typically,A would be an array resulting from an
application of ELMHES.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To compute the eigenvalues of a real, non-symmetric unbalanced array, first de
the arrayA:

A = [[1.0, 2.0, 0.0, 0.0, 0.0], $
[-2.0, 3.0, 0.0, 0.0, 0.0], $
[3.0, 4.0, 50.0, 0.0, 0.0], $
[-4.0, 5.0, -60.0, 7.0, 0.0], $
[-5.0, 6.0, -70.0, 8.0, -9.0]]

; Compute the upper Hessenberg form of the array:
hes = ELMHES(A)
IDL Reference Guide HQR

542
; Compute the eigenvalues:
evals = HQR(hes)

; Sort the eigenvalues into ascending order based on their
; real components:
evals = evals(SORT(FLOAT(evals)))

;Print the result.
PRINT, evals

IDL prints:

(-9.00000, 0.00000)(2.00000, -1.73205)
(2.00000, 1.73205)(7.00000, 0.00000)
(50.0000, 0.00000)

This is the exact solution vector to five-decimal accuracy.

See Also

EIGENVEC, ELMHES, TRIQL, TRIRED
HQR IDL Reference Guide

543

n

d.
and

le

e an
HSV

The HSV procedure creates a color table based on the HSV (Hue and Saturatio
Value) color system.

Using the input parameters, a spiral through the single-ended HSV cone is trace
Points along the cone are converted from HLS to RGB. The current colortable (
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the fi
hsv.pro in thelib subdirectory of the IDL distribution.

Syntax

HSV, Vlo, Vhi, Satlo, Sathi, Hue, Loops[, Colr]

Arguments

Vlo

Starting value, from 0 to 100%.

Vhi

Ending value, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to b
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
IDL Reference Guide HSV

544

ed.
Colr

An optional (256,3) integer array in which the new R, G, and B values are return
Red =Colr[*,0], green =Colr[*,1], blue =Colr[*,2].

See Also

COLOR_CONVERT, HLS, PSEUDO
HSV IDL Reference Guide

545

le

the

the

,

nd
IBETA

The IBETA function computes the incomplete beta function.

This routine is written in the IDL language. Its source code can be found in the fi
ibeta.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = IBETA(A, B, X)

Arguments

A

A positive integer, single-, or double-precision floating-point scalar that specifies
parametric exponent of the integrand.

B

A positive integer, single-, or double-precision floating-point scalar that specifies
parametric exponent of the integrand.

X

An integer, single-, or double-precision floating-point scalar, in the interval [0, 1]
that specifies the upper limit of integration.

Example

Compute the incomplete beta function for the corresponding elements of A, B, a
X.

; Define an array of parametric exponents:
A = [0.5, 0.5, 1.0, 5.0, 10.0, 20.0]
B = [0.5, 0.5, 0.5, 5.0, 5.0, 10.0]

; Define the upper limits of integration:
X = [0.01, 0.1, 0.1, 0.5, 1.0, 0.8]

Ix a b,()
ta 1– 1 t–()b 1– td

0

x

∫
ta 1– 1 t–()b 1– td

0

1

∫
--≡
IDL Reference Guide IBETA

546
; Allocate an array to store the results:
result = FLTARR(N_ELEMENTS(A))

; Compute the incomplete beta functions. Note that the result for
; each element in the input arrays must be computed individually:
FOR K = 0, N_ELEMENTS(A)-1 DO $

result[K] = IBETA(A[K], B[K], X[K])
PRINT, result

IDL Output

[0.0637686, 0.204833, 0.0513167, 0.500000, 1.00000, 0.950736]

See Also

BETA, GAMMA , IGAMMA , LNGAMMA
IBETA IDL Reference Guide

547

le
IDENTITY

The IDENTITY function returns ann by n identity array (an array with ones along
the main diagonal and zeros elsewhere).

This routine is written in the IDL language. Its source code can be found in the fi
identity.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = IDENTITY(N [, /DOUBLE])

Argument

N

The desired column and row dimensions.

Keywords

DOUBLE

Set this keyword to return a double-precision identity array.

Example

; Define an array, A:
A = [[2.0, 1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the inverse of A using the INVERT function:
inverse = INVERT(A)

; Verify the accuracy of the computed inverse using the
; mathematical identity, A x A^-1 - I(4) = 0, where A^-1 is the
; inverse of A, I(4) is the 4 by 4 identity array and 0 i s a 4 by 4
; array of zeros:
PRINT, A ## inverse - IDENTITY(4)

See Also

FINDGEN, FLTARR
IDL Reference Guide IDENTITY

548
IDL_Container Object Class

SeeAppendix A, “IDL Object Class & Method Reference”.
IDL_Container Object Class IDL Reference Guide

549
IDLanROI Object Class

SeeAppendix A, “IDL Object Class & Method Reference”.
IDL Reference Guide IDLanROI Object Class

550
IDLanROIGroup Object Class

SeeAppendix A, “IDL Object Class & Method Reference”
IDLanROIGroup Object Class IDL Reference Guide

551
IDLffDICOM Object Class

SeeAppendix A, “IDL Object Class & Method Reference”
IDL Reference Guide IDLffDICOM Object Class

552
IDLffDXF Object Class

SeeAppendix A, “IDL Object Class & Method Reference”
IDLffDXF Object Class IDL Reference Guide

553
IDLffLanguageCat Object Class

SeeAppendix A, “IDL Object Class & Method Reference”
IDL Reference Guide IDLffLanguageCat Object Class

554
IDLgr* Object Classes

The following IDLgr* object classes are documented inAppendix A, “IDL
Object Class & Method Reference”:

• IDLgrAxis • IDLgrModel • IDLgrROIGroup • IDLgrVRML

• IDLgrBuffer • IDLgrMPEG • IDLgrScene • IDLgrWindow

• IDLgrClipboard • IDLgrPalette • IDLgrSurface

• IDLgrColorbar • IDLgrPattern • IDLgrSymbol

• IDLgrContour • IDLgrPlot • IDLgrTessellator

• IDLgrFont • IDLgrPolygon • IDLgrText

• IDLgrImage • IDLgrPolyline • IDLgrView

• IDLgrLegend • IDLgrPrinter • IDLgrViewgroup

• IDLgrLight • IDLgrROI • IDLgrVolume
IDLgr* Object Classes IDL Reference Guide

555

e

IF...THEN...ELSE

The IF...THEN...ELSE statement conditionally executes a statement or block of
statements.

Note
IF...THEN...ELSE is an IDL statement. For information on using statements, se
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

IF expression THEN statement [ELSEstatement]

or

IF expression THEN BEGIN

statements

ENDIF [ELSE BEGIN

statements

ENDELSE]
IDL Reference Guide IF...THEN...ELSE

556

hod.

le

the

per

ute

was

d X.
IGAMMA

The IGAMMA function computes the incomplete gamma function.

IGAMMA uses either a power series representation or a continued fractions met
If X is less than or equal toA+1, a power series representation is used. IfX is greater
thanA+1, a continued fractions method is used.

This routine is written in the IDL language. Its source code can be found in the fi
igamma.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = IGAMMA(A, X [, METHOD=variable])

Arguments

A

A positive integer, single-, or double-precision floating-point scalar that specifies
parametric exponent of the integrand.

X

An integer, single-, or double-precision floating-point scalar that specifies the up
limit of integration.

Keywords

METHOD

Set this keyword to a named variable that will contain the method used to comp
the incomplete gamma function. A value of 0 indicates that a power series
representation was used. A value of 1 indicates that a continued fractions method
used.

Example

Compute the incomplete gamma function for the corresponding elements of A an

Px a()
e t– ta 1– td

0

x

∫
e t– ta 1– td

0

∞
∫
-----------------------------≡
IGAMMA IDL Reference Guide

557
; Define an array of parametric exponents:
A = [0.10, 0.50, 1.00, 1.10, 6.00, 26.00]

; Define the upper limits of integration:
X = [0.0316228, 0.0707107, 5.00000, 1.04881, 2.44949, 25.4951]

; Allocate an array to store the results:
result = FLTARR(N_ELEMENTS(A))

; Compute the incomplete gamma functions. Note that the result for
; each element in the input arrays must be computed individually:
FOR K = 0, N_ELEMENTS(A)-1 DO $

result[K] = IGAMMA(A[K], X[K])
PRINT, result

IDL prints:

[0.742026, 0.293128, 0.993262, 0.607646, 0.0387318, 0.486387]

See Also

BETA, GAMMA , IBETA, LNGAMMA
IDL Reference Guide IGAMMA

558

le

 If

ge
ices
IMAGE_CONT

The IMAGE_CONT procedure overlays an image with a contour plot.

This routine is written in the IDL language. Its source code can be found in the fi
image_cont.pro in thelib subdirectory of the IDL distribution.

Syntax

IMAGE_CONT,A [, /ASPECT] [, /INTERP] [, /WINDOW_SCALE]

Arguments

A

The two-dimensional array to display and overlay.

Keywords

ASPECT

Set this keyword to retain the image’s aspect ratio. Square pixels are assumed.
WINDOW_SCALE is set, the aspect ratio is automatically retained.

INTERP

If this keyword is set, bilinear interpolation is used if the image is resized.

WINDOW_SCALE

Set this keyword to scale the window size to the image size. Otherwise, the ima
size is scaled to the window size. This keyword is ignored when outputting to dev
with scalable pixels (e.g., PostScript).

Example

; Create an image to display:
A = BYTSCL(DIST(356))

; Display image and overplot contour lines:
IMAGE_CONT, A, /WINDOW

See Also

CONTOUR, TV
IMAGE_CONT IDL Reference Guide

559

y of
bset

ithin

ex.
ent
h a
tistic.
IMAGE_STATISTICS

The IMAGE_STATISTICS procedure computes sample statistics for a given arra
values. An optional mask may be specified to restrict computations to a spatial su
of the input data.

Syntax

IMAGE_STATISTICS,Data
[, /LABELED | [, /WEIGHTED] [, WEIGHT_SUM=variable]] [, /VECTOR]
[, LUT=array] [, MASK=array] [, COUNT=variable] [, MEAN=variable]
[, STDDEV=variable] [, DATA_SUM=variable] [, SUM_OF_SQUARES=variable]
[, MINIMUM= variable] [, MAXIMUM= variable] [, VARIANCE=variable]

Arguments

Data

An N-dimensional input data array.

Keywords

COUNT

Set this keyword to a named variable to contain the number of samples that
correspond to nonzero values within the mask.

DATA_SUM

Set this keyword to a named variable to contain the sum of the samples that lie w
the mask.

LABELED

When set, this keyword indicates values in the mask representing region labels,
where each pixel of the mask is set to the index of the region in which that pixel
belongs (see the LABEL_REGION function in theIDL Reference Guide). If the
LABELED keyword is set, each statistic’s value is computed for each region ind
Thus, a vector containing the results is provided for each statistic with one elem
per region. By default, this keyword is set to zero, indicating that all samples wit
corresponding nonzero mask value are used to form a scalar result for each sta
IDL Reference Guide IMAGE_STATISTICS

560

tical

st
oint

ing
es

les

les

ples

ples
Note
The LABELED keyword cannot be used with either the WEIGHT_SUM or the
WEIGHTED keywords.

LUT

Set this keyword to a one-dimensional array. For non-floating point inputData, the
pixel values are looked up through this table before being used in any of the statis
computations. This allows an integer image array to be calibrated to any user
specified intensity range for the sake of calculations. The length of this array mu
include the range of the input array. This keyword may not be set with floating p
input data. When signed input data types are used, they are first cast to the
corresponding IDL unsigned type before being used to access this array. For
example, the integer value –1 looks up the value 65535 in the LUT array.

MASK

An array ofN, orN–1 (when the VECTOR keyword is used) dimensions represent
the mask array. If the LABELED keyword is set, MASK contains the region indic
of each pixel; otherwise statistics are only computed for data values where the
MASK array is non-zero.

MAXIMUM

Set this keyword to a named variable to contain the maximum value of the samp
that lie within the mask.

MEAN

Set this keyword to a named variable to contain the mean of the samples that lie
within the mask.

MINIMUM

Set this keyword to a named variable to contain the minimum value of the samp
that lie within the mask.

STDDEV

Set this keyword to a named variable to contain the standard deviation of the sam
that lie within the mask.

SUM_OF_SQUARES

Set this keyword to a named variable to contain the sum of the squares of the sam
that lie within the mask.
IMAGE_STATISTICS IDL Reference Guide

561

t lie

 be
this
tion

ght
d,

d.
VARIANCE

Set this keyword to a named variable to contain the variance of the samples tha
within the mask.

VECTOR

Set this keyword to specify that the leading dimension of the input array is not to
considered spatial but consists of multiple data values at each pixel location. In
case, the leading dimension is treated as a vector of samples at the spatial loca
determined by the remainder of the array dimensions.

WEIGHT_SUM

Set the WEIGHT_SUM keyword to a named variable to contain the sum of the
weights in the mask.

Note
The WEIGHT_SUM keyword cannot be used if the LABELED keyword is
specified.

WEIGHTED

If the WEIGHTED keyword is set, the values in the MASK array are used to wei
individual pixels with respect to their count value. If a MASK array is not provide
all pixels are assigned a weight of 1.0.

Note
The WEIGHTED keyword cannot be used if the LABELED keyword is specifie
IDL Reference Guide IMAGE_STATISTICS

562
IMAGINARY

The IMAGINARY function returns the imaginary part of its complex-valued
argument. If the complex-valued argument is double-precision, the result will be
double-precision, otherwise the result will be single-precision floating-point.

Syntax

Result = IMAGINARY(Complex_Expression)

Arguments

Complex_Expression

The complex-valued expression for which the imaginary part is desired.

Example

; Create an array of complex values:
C = COMPLEX([1,2,3],[4,5,6])

; Print just the imaginary parts of each element in C:
PRINT, IMAGINARY(C)

IDL prints:

 4.00000 5.00000 6.00000

See Also

COMPLEX, DCOMPLEX
IMAGINARY IDL Reference Guide

563

ch

ts are
w

INDGEN

The INDGEN function returns an integer array with the specified dimensions. Ea
element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = INDGEN(D1, ...,D8) [, /BYTE | , /COMPLEX | , /DCOMPLEX | ,
/DOUBLE | , /FLOAT | , /L64 | , /LONG | , /STRING | , /UINT | , /UL64 | , /ULONG]
[, TYPE=value]

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.

DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.

DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.

L64

Set this keyword to create a 64-bit integer array.
IDL Reference Guide INDGEN

564

of its
LONG

Set this keyword to create a longword integer array.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of theSIZE function
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.

ULONG

Set this keyword to create an unsigned longword integer array.

Example

Create I, a 5-element vector of integer values with each element set to the value
subscript by entering:

I = INDGEN(5)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
INDGEN IDL Reference Guide

565

le

the
 a

the
INT_2D

The INT_2D function computes the double integral of a bivariate function using
iterated Gaussian quadrature. The algorithm’s transformation data is provided in
tabulated form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the fi
int_2d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = INT_2D(Fxy, AB_Limits, PQ_Limits, Pts [, /DOUBLE] [, /ORDER])

Arguments

Fxy

A scalar string specifying the name of a user-supplied IDL function that defines
bivariate function to be integrated. The function must accept X and Y and return
scalar result.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxy, X, Y
RETURN, EXP(-X^2. -Y^2.)

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variablex.

PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variabley. The
function must acceptx and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect toy:

FUNCTION PQ_limits, X
RETURN, [-SQRT(16.0 - X^2), SQRT(16.0 - X^2)]

f x y,() e x2– y2–=
IDL Reference Guide INT_2D

566

re: 6,

etic.

der
tion.
END

Pts

The number of transformation points used in the computation. Possible values a
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ORDER

A scalar value of either 0 or 1. If set to 0, the integral is computed using a dy-dx or
of integration. If set to 1, the integral is computed using a dx-dy order of integra

Example

Example 1

Compute the double integral of the bivariate function.

; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, x

RETURN, [0.0, x^2]
END

; Define limits of integration for x:
AB_Limits = [0.0, 2.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE)

INT_2D with 48 transformation points yields: 0.055142668

INT_2D with 96 transformation points yields: 0.055142668

Example 2

Compute the double integral of the bivariate function.

I y x
5()cos⋅ yd xd

y 0.0=

y x2=

∫x 0.0=

x 2.0=

∫=
INT_2D IDL Reference Guide

567
; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, y

RETURN, [sqrt(y), 2.0]
END

; Define limits of integration for x:
AB_Limits = [0.0, 4.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE, /ORDER)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE, ORDER)

INT_2D with 48 transformation points yields: 0.055142678

INT_2D with 96 transformation points yields: 0.055142668

The exact solution (7 decimal accuracy) is: 0.055142668

See Also

INT_3D, INT_TABULATED, QROMB, QROMO, QSIMP

I y x
5()cos⋅ xd yd

y 0.0=

y x2=

∫x 0.0=

x 2.0=

∫=
IDL Reference Guide INT_2D

568

le

the
rn a

the
INT_3D

The INT_3D function computes the triple integral of a trivariate function using
iterated Gaussian quadrature. The algorithm’s transformation data is provided in
tabulated form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the fi
int_3d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = INT_3D(Fxyz, AB_Limits, PQ_Limits, UV_Limits, Pts [, /DOUBLE])

Arguments

Fxyz

A scalar string specifying the name of a user-supplied IDL function that defines
trivariate function to be integrated. The function must accept X, Y, and Z, and retu
scalar result.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxyz, X, Y, Z
RETURN, z*(x^2+y^2+z^2)^1.5

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variablex.

PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variabley. The
function must acceptx and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect toy:

FUNCTION PQ_limits, X

f x y z, ,() z x2 y2 z2+ +()3 2/⋅=
INT_3D IDL Reference Guide

569

the

re: 6,

etic.

oint
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 - X^2)]
END

UV_Limits

A scalar string specifying the name of a user-supplied IDL function that defines
lower (U(x,y)) and upper (V(x,y)) limits of integration with respect to the variablez.
The function must acceptx and y and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect toz:

FUNCTION UV_limits, X, Y
RETURN, [0, SQRT(4.0 - X^2 - Y^2)]

END

Pts

The number of transformation points used in the computation. Possible values a
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

Compute the triple integral of the trivariate function

Using the functions and limits defined above, integrate with 10, 20, 48, and 96 p
formulas (using double-precision arithmetic):

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 10,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 20,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 48,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 96,$
/D)

INT_3D with 10 transformation points yields: 57.444248

I z x2 y2 z2+ +()3 2/⋅ zd yd xd
z 0=

z 4 x2– y2–=

∫
y 4 x2––=

y 4 x2–=

∫x 2–=

x 2=

∫=
IDL Reference Guide INT_3D

570
INT_3D with 20 transformation points yields: 57.446201

INT_3D with 48 transformation points yields: 57.446265

INT_3D with 96 transformation points yields: 57.446266

The exact solution (6 decimal accuracy) is: 57.446267

See Also

INT_2D, INT_TABULATED, QROMB, QROMO, QSIMP
INT_3D IDL Reference Guide

571

le

t

INT_TABULATED

The INT_TABULATED function integrates a tabulated set of data {xi , fi } on the
closed interval [MIN(x) , MAX(x)], using a five-point Newton-Cotes integration
formula.

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate integral approximation.

This routine is written in the IDL language. Its source code can be found in the fi
int_tabulated.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = INT_TABULATED(X, F [, /SORT])

Arguments

X

The tabulated single- or double-precision floating-pointx-value data. Data may be
irregularly gridded and in random order. (If the data is randomly ordered, set the
SORT keyword.)

Warning
EachX value must be unique; if duplicateX values are detected, the routine will exi
and display a warning message.

F

The tabulated single- or double-precision floating-pointf-value data. Upon input to
the function,xi andfi must have corresponding indices for all values of i. Ifx is
reordered,f is also reordered.

Keywords

SORT

Set this keyword to sort the tabulatedx-value data into ascending order. If SORT is
set, bothx andf values are sorted.
IDL Reference Guide INT_TABULATED

572

lds
Example

Define 11x-values on the closed interval [0.0 , 0.8]:

X = [0.0, .12, .22, .32, .36, .40, .44, .54, .64, .70, .80]

Define 11f-values corresponding toxi:

F = [0.200000, 1.30973, 1.30524, 1.74339, 2.07490, 2.45600, $
2.84299, 3.50730, 3.18194, 2.36302, 0.231964]

result = INT_TABULATED(X, F)

In this example, the f-values are generated from a known function

f = 0.2 + 25x - 200x2 + 675x3 - 900x4 + 400x5

which allows the determination of an exact solution. A comparison of methods yie
the following results:

• The Multiple Application Trapezoid Method yields: 1.5648

• The Multiple Application Simpson’s Method yields: 1.6036

• INT_TABULATED yields: 1.6271

The exact solution (4 decimal accuracy) is: 1.6405

See Also

INT_2D, INT_3D, QROMB, QROMO, QSIMP
INT_TABULATED IDL Reference Guide

573

ro,
INTARR

The INTARR function returns an integer vector or array.

Syntax

Result = INTARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, INTARR sets every element of the result to zero. If NOZERO is nonze
this zeroing is not performed and INTARR executes faster.

Example

Create I, a 3-element by 3-element integer array with each element set to 0 by
entering:

I = INTARR(3, 3)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide INTARR

574

le

 The

ents
INTERPOL

The INTERPOL function performs linear, quadratic, or spline, interpolation on
vectors with a regular or irregular grid. The result is a single- or double-precision
floating-point vector, or a complex vector if the input vector is complex.

This routine is written in the IDL language. Its source code can be found in the fi
interpol.pro in thelib subdirectory of the IDL distribution.

Syntax

For regular grids: Result= INTERPOL(V, N [, /LSQUADRATIC] [, /QUADRATIC]
[, /SPLINE])

For irregular grids: Result = INTERPOL(V, X, U[, /LSQUADRATIC]
[, /QUADRATIC] [, /SPLINE])

Arguments

V

An input vector of any type except string.

N

The number of points in the result when both input and output grids are regular.
abscissa values for the output grid will contain the same endpoints as the input.

X

The abscissa values forV, in the irregularly-gridded case.X must have the same
number of elements asV, and the valuesmust be monotonically ascending or
descending.

U

The abscissa values for the result. The result will have the same number of elem
asU. U does not need to be monotonic.
INTERPOL IDL Reference Guide

575

 cx
f

Keywords

LSQUADRATIC

If set, interpolate using a least squares quadratic fit to the equation y = a + bx +2,
for each 4 point neighborhood (x[i-1], x[i], x[i+1], x[i+2]) surrounding the interval o
the interpolate, x[i]≤ u < x[i+1].

QUADRATIC

If set, interpolate by fitting a quadratic y = a + bx + cx2, to the three point
neighborhood (x[i-1], x[i], x[i+1]) surrounding the interval x[i]≤ u < x[i+1].

SPLINE

If set, interpolate by fitting a cubic spline to the 4 point neighborhood (x[i-1], x[i],
x[i+1], x[i+2]) surrounding the interval, x[i]≤ u < x[i+1].

Note
If LSQUADRATIC or QUADRATIC or SPLINE is not set, the default is to use
linear interpolation.

Example

Create a floating-point vector of 61 elements in the range [-3, 3].

X = FINDGEN(61)/10 - 3

; Evaluate V[x] at each point:
V = SIN(X)

; Define X-values where interpolates are desired:
U = [-2.50, -2.25, -1.85, -1.55, -1.20, -0.85, -0.50, -0.10, $

0.30, 0.40, 0.75, 0.85, 1.05, 1.45, 1.85, 2.00, 2.25, 2.75]

; Interpolate:
result = INTERPOL(V, X, U)

; Plot the function:
PLOT, X, V

; Plot the interpolated values:
OPLOT, U, result
IDL Reference Guide INTERPOL

576
See Also

BILINEAR, INTERPOLATE, KRIG2D
INTERPOL IDL Reference Guide

577

ame

he

t

d.
INTERPOLATE

The INTERPOLATE function returns an array of linear, bilinear or trilinear
interpolates, depending on the dimensions of the input arrayP. Linear interpolates are
returned in the one-dimensional case, bilinear in the two-dimensional case and
trilinear interpolates in the three-dimensional case. The returned array has the s
type asP and its dimensions depend on those of the location parametersX, Y, andZ,
as explained below.

Interpolates outside the bounds ofP can be set to a user-specified value by using t
MISSING keyword.

Syntax

Result = INTERPOLATE(P, X [, Y [, Z]] [, CUBIC=value{-1 to 0}] [, /GRID]
[, MISSING=value])

Arguments

P

The array of data values.P can be an array of any dimensions. The returned resul
will have the number of dimensions ofP minus the number of interpolation arrays (x,
y, z) specified. Interpolation occurs in theM rightmost indices ofP, whereM is the
number of interpolation arrays.

X, Y, Z

Arrays of numeric type containing the locations for which interpolates are desire
For linear interpolation (P is a vector), the result has the same dimensions asX. Thei-
th element of the result isP interpolated at locationXi. TheY andZ parameters
should be omitted.

For bilinear interpolationZ should not be present.

Note
INTERPOLATE considers location points with values between zero andn, wheren
is the number of values in the input arrayP, to be valid. Location points outside this
range are considered missing data. Location pointsx in the rangen-1 ≤ x < n return
the last data value in the arrayP.
IDL Reference Guide INTERPOLATE

578

f
ow

tting

that a
.

.

or
do

c

If the keyword GRID is not set, all location arrays must have the same number o
elements. See the description of the GRID keyword below for more details on h
interpolates are computed fromP and these arrays.

Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Se
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest
value of -0.5 significantly improves the reconstruction properties of this algorithm

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal,f, is a band-limited signal, with no frequency
component larger thanω0, andf is sampled with spacing less than or equal to 1/(2ω0),
thenf can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

The number of neighboring points used varies according to the dimension:

• 1-dimensional: 4 points

• 2-dimensional: 16 points

• 3-dimensional: not supported

Note
Cubic convolution interpolation is significantly slower than bilinear interpolation

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques f
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redon
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubi
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.
INTERPOLATE IDL Reference Guide

579

are

 as

the
GRID

The GRID keyword controls how the location arrays specify where interpolates
desired. This keyword has no effect in the case of linear interpolation.

If GRID is not set: The location arrays,X, Y, and, if present,Z must have the same
number of elements. The result has the same structure and number of elementsX.

In the case of bilinear interpolation, the result is obtained as follows: Letl = Xi and
k = Yi . Elementi of the result is computed by interpolating betweenP(l, k), P(l+1,
k), P(l, k+1), andP(l+1, k+1). to obtain the estimated value at (Xi, Yi). Trilinear
interpolation is a direct extension of the above.

If GRID is set: Let Nx be the number of elements inX, letNy be the number of
elements inY, andNz be the number of elements inZ. The result has dimensions (Nx,
Ny) for bilinear interpolation, and (Nx, Ny, Nz) for trilinear interpolation. For bilinear
interpolation, element (i,j) of the result contains the value ofP interpolated at
position (Xi, Yi). For trilinear interpolation, element (i, j, k) of the result isP
interpolated at (Xi, Yi, Zi).

MISSING

The value to return for elements outside the bounds ofP. If this keyword is not
specified, interpolated positions that fall outside the bounds of the arrayP—that is,
elements of theX, Y, orZ arguments that are either less than zero or greater than
largest subscript in the corresponding dimension ofP—are set equal to the value of
the nearest element ofP.

Examples

The example below computes bilinear interpolates with the keyword GRID set:

p = FINDGEN(4,4)
PRINT, INTERPOLATE(p, [.5, 1.5, 2.5], [.5, 1.5, 2.5], /GRID)

and prints the 3 by 3 array:

2.50000 3.50000 4.50000
6.50000 7.50000 8.50000
10.5000 11.5000 12.5000

corresponding to the locations:

(.5,.5), (1.5, .5), (2.5, .5),
(.5,1.5), (1.5, 1.5), (2.5, 1.5),
(.5,2.5), (1.5, 2.5), (2.5, 2.5)
IDL Reference Guide INTERPOLATE

580

tside

t the
Another example computes interpolates, with GRID not set and a parameter ou
the bounds ofP:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2])

and prints the result:

2.50000 7.50000 12.5000 11.0000

corresponding to the locations (.5,.5), (1.5, 1.5), (2.5, 2.5) and (3.1, 2.0). Note tha
last location is outside the bounds ofP and is set from the value of the last column.
The following command uses the MISSING keyword to set such values to -1:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2], $
MISSING = -1)

and gives the result:

 2.50000 7.50000 12.5000 -1.00000

See Also

BILINEAR, INTERPOL, KRIG2D
INTERPOLATE IDL Reference Guide

581

erse

re

ther

are: 0
n is

etic.
INVERT

The INVERT function uses the Gaussian elimination method to compute the inv
of a square array. The result is a single- or double-precision floating-point array.
Errors from singular or near-singular arrays are accumulated in the optionalStatus.

Syntax

Result = INVERT(Array [, Status] [, /DOUBLE])

Arguments

Array

The array to be inverted.Array must have two dimensions of equal size (i.e., a squa
array) and can be of any type except string. Note that the resulting array will be
composed of single- or double-precision floating-point values, depending on whe
the DOUBLE keyword is set.

Status

A named variable to receive the status of the operation. Possible status values
for successful completion, 1 for a singular array (which indicates that the inversio
invalid), and 2 which is a warning that a small pivot element was used and that
significant accuracy was probably lost.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Create an array A:
A = [[5.0, -1.0, 3.0], $

[2.0, 0.0, 1.0], $
[3.0, 2.0, 1.0]]

result = INVERT(A)

; We can check the accuracy of the inversion by multiplying the
; inverted array by the original array. The result should be a 3 x
; 3 identity array.
PRINT, result # A
IDL Reference Guide INVERT

582
IDL Output

 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 9.53674e-07 1.00000

See Also

COND, DETERM, INVERT, REVERSE, ROTATE, TRANSPOSE
INVERT IDL Reference Guide

583

ally
,

ly
 not
is

ts
user

d,
IOCTL

The IOCTL function provides a thin wrapper over the UNIXioctl(2) system call.
IOTCL performs special functions on the specified file. The set of functions actu
available depends on your version of UNIX and the type of file (tty, tape, disk file
etc.) referred to.

To use IOCTL, read the C programmer’s documentation describing theioctl(2)
function for the desired device and convert all constants and data to their IDL
equivalents.

The value returned by the systemioctl function is returned as the value of the IDL
IOCTL function.

Syntax

Result = IOCTL(File_Unit [, Request, Arg] [, /BY_VALUE] [, /MT_OFFLINE]
[, /MT_REWIND] [, MT_SKIP_FILE=[-]number_of_files]
[, MT_SKIP_RECORD=[-]number_of_records] [, /MT_WEOF]
[, /SUPRESS_ERROR])

Arguments

File_Unit

The IDL logical unit number (LUN) for the open file on which theioctl request is
made.

Request

A longword integer that specifies the ioctl request code. These codes are usual
contained in C language header files provided by the operating system, and are
generally portable between UNIX versions. If one of the “MT” keywords is used, th
argument can be omitted.

Arg

A named variable through which data if passed to and from ioctl. IOCTL reques
usually request data from the system or supply the system with information. The
must makeArg the correct type and size. Errors in typing or sizingArg can corrupt
the IDL address space and/or make IDL crash. If one of the MT keywords is use
this argument can be omitted.
IDL Reference Guide IOCTL

584

ly

le via

s
ion

ber

ber

e

Keywords

Note that the keywords below that start with “MT” can be used to issue common
used magnetic tape ioctl() calls. When these keywords are used, theRequestandArg
arguments are ignored and an be omitted. Magnetic tape operations not availab
these keywords can still be executed by supplying the appropriateRequest andArg
values. When issuing magnetic tape IOCTL calls, be aware that different device
have different rules for which ioctl calls are allowed, and when. The documentat
for your computer system explains those rules.

BY_VALUE

If this keyword is set,Arg is converted to a scalar longword and this longword is
passed by value. Normally,Arg is passed to ioctl by reference (i.e., by address).

MT_OFFLINE

Set this keyword to rewind and unload a tape.

MT_REWIND

Set this keyword to rewind a tape.

MT_SKIP_FILE

Use this keyword to skip files on a tape. A positive value skips forward that num
of files. A negative value skips backward.

MT_SKIP_RECORD

Use this keyword to skip records on tape. A positive value skips forward that num
of files. A negative value skips backward.

MT_WEOF

Set this keyword to write an end of file (“tape mark”) on the tape at the current
location.

SUPPRESS_ERROR

Set this keyword to log errors quietly and cause a value of -1 to be returned. Th
default is for IDL to notice any failures associated with the use ofioctl and issue
the appropriate IDL error and halt execution.
IOCTL IDL Reference Guide

585

DL
other

lude

der
Example

The following example prints the size of the terminal being used by the current I
session. It is known to work under SunOS 4.1.2. Changes may be necessary for
operating systems or even other versions of SunOS.

; Variable to receive result. This structure is described in
; Section 4 of the SunOS manual pages under termios(4):
winsize = { row:0, col:0, xpixel:0, ypixel:0 }

; The request code for obtaining the tty size, as determined by
; reading the termios(4) documentation, and reading the system
; include files in the /usr/include/sys directory:
TIOCGWINSZ = 1074295912L

; Make the information request. -1 is the IDL logical file unit for
; the standard output:
ret = IOCTL(-1, TIOCGWINSZ, winsize)

; Output the results:
PRINT,winsize.row, winsize.col, $

format='("TTY has ", I0," rows and ", I0," columns.")'

The following points should be noted in this example:

• Even though we only want the number of rows and columns, we must inc
all the fields required by the TIOCGWINSIZioctl in the winsize variable (as
documented in thetermio(4) manual page). Not providing a large enough
result buffer would cause IDL’s memory to be corrupted.

• The value of TIOCGWINSZ was determined by examining the system hea
files provided in the/usr/include/sys directory. Such values are not
always portable between major operating system releases.

See Also

OPEN
IDL Reference Guide IOCTL

586

ift.

tore
ISHFT

The ISHFT function performs the bit shift operation on bytes, integers and
longwords. IfP2 is positive,P1 is left shiftedP2 bit positions with 0 bits filling
vacated positions. IfP2 is negative,P1 is right shifted with 0 bits filling vacated
positions.

Syntax

Result = ISHFT(P1, P2)

Arguments

P1

The scalar or array to be shifted.

P2

The scalar or array containing the number of bit positions and direction of the sh

Example

Bit shift each element of the integer array [1, 2, 3, 4, 5] three bits to the left and s
the result in B by entering:

B = ISHFT([1,2,3,4,5], 3)

The resulting array B is [8, 16, 24, 32, 40].

See Also

SHIFT
ISHFT IDL Reference Guide

587

nd
ow
well.

d.

in
ISOCONTOUR

The ISOCONTOUR procedure interprets the contouring algorithm found in the
IDLgrContour object. The algorithm allows for contouring on arbitrary meshes a
returns line or orientated tessellated polygonal output. The interface will also all
secondary data values to be interpolated and returned at the output vertices as

Syntax

ISOCONTOUR,Values, Outconn, Outverts
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, C_VALUE=vector]
[, GEOMX=vector] [, GEOMY=vector] [, GEOMZ=vector] [, /FILL]
[, LEVEL_VALUES=variable] [, N_LEVELS=levels] [, /OUTCONN_INDICES]
[, POLYGONS=array of polygon descriptions]

Arguments

Values

An input vector or a two-dimensional array specifying the values to be contoure

Outconn

Output variable to contain the connectivity information of the contour geometry
the form: [n0, i(0, 0), i(0, 1)..., i(0, n0–1), n1, i(1, 0), ...].

Outverts

Output variable to contain the contour vertices.

Keywords

AUXDATA_IN

The auxiliary values to be interpolated at contour vertices. Ifp is the dimensionality
of the auxiliary values, set this argument to ap-by-n array (if theValuesargument is a
vector of lengthn), or to ap-by-m-by-n array (if theValues argument is anm-by-n
two-dimensional array).

AUXDATA_OUT

If the AUXDATA_IN keyword was specified, set this keyword to a named output
variable to contain the interpolated auxiliary values at the contour vertices. Ifp is the
IDL Reference Guide ISOCONTOUR

588

d. If
f the

nn is

urs

es
dimensionality of the auxiliary values, the output is ap-by-n array of values, wheren
is the number of vertices inOutverts.

C_VALUE

Set this keyword to a vector of values for which contour levels are to be generate
this keyword is set to 0, contour levels will be evenly sampled across the range o
Values argument, using the value of the N_LEVELS keyword to determine the
number of samples.

FILL

Set this keyword to generate an output connectivity as a set of polygons (Outco
in the form used by the IDLgrPolygon POLYGONS keyword). The resulting
representation is as a set of filled contours. The default is to generate line conto
(Outconn is in the form used by the IDLgrPolyline POLYLINES keyword).

GEOMX

Set this keyword to a vector or two-dimensional array specifying theX coordinates of
the geometry with which the contour values correspond. IfX is a vector, it must
match the number of elements in theValuesargument, or it must match the first of the
two dimensions of theValues argument (in which case theX coordinates will be
repeated for each column of data values).

GEOMY

Set this keyword to a vector or two-dimensional array specifying theYcoordinates of
the geometry with which the contour values correspond. IfY is a vector, it must
match the number of elements in theValuesargument, or it must match the first of the
two dimensions of theValues argument (in which case theY coordinates will be
repeated for each column of data values).

GEOMZ

Set this keyword to a vector or two-dimensional array specifying theZ coordinates of
the geometry with which the contour values correspond.

If GEOMZ is a vector or an array, it must match the number of elements in theValues
argument.

If GEOMZ is not set, the geometry will be derived from theValues argument (if it is
set to a two-dimensional array). In this case connectivity is implied. The X and Y
coordinates match the row and column indices of the array, and the Z coordinat
match the data values.
ISOCONTOUR IDL Reference Guide

589

tor is

red
is
cate

d

tivity

To
LEVEL_VALUES

Set this keyword to a named output variable to receive a vector of values
corresponding to the values used to generate the contours. The length of this vec
equal to the number of contour levels generated.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is igno
if the C_LEVELS keyword is set to a vector, in which case the number of levels
derived from the number of elements in that vector. Set this keyword to 0 to indi
that IDL should compute a default number of levels based on the range of data
values. This is the default.

OUTCONN_INDICES

Set this keyword to a named output variable to receive an array of beginning an
ending indices of connectivity for each contour level.

The output array is of the form: [start0, end0, start1, end1, ..., startnc–1, endnc–1],
wherenc is the number of contour levels.

POLYGONS

Set this keyword to an array of polygonal descriptions that represents the connec
information for the data to be contoured (as specified in theValues argument). A
polygonal description is an integer or long array of the form: [n, i0, i1, ..., in–1], where
n is the number of vertices that define the polygon, and i0...in–1 are indices into the
GEOMX, GEOMY, and GEOMZ keywords that represent the polygonal vertices.
ignore an entry in the POLYGONS array, set the vertex count, n to 0. To end the
drawing list, even if additional array space is available, setn to –1.
IDL Reference Guide ISOCONTOUR

590

E
ral
ry
rray
ta

ions

o

 in
ISOSURFACE

The ISOSURFACE procedure algorithm expands on the existing SHADE_VOLUM
algorithm. It returns topologically consistent triangles by using oriented tetrahed
decomposition internally. This also allows the algorithm to isosurface any arbitra
tetrahedral mesh. If the user provides an optional auxiliary array, the data in this a
is interpolated onto the output vertices and is returned as well. This auxiliary da
array is allowed to have more than one value at each vertex. Any size leading
dimension is allowed as long as the number of values in the subsequent dimens
matches the number of elements in the input Data array.

Syntax

ISOSURFACE,Data, Value, Outverts, Outconn
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, AUXDATA_IN= array, AUXDATA_OUT=variable]

Arguments

Data

Input three-dimensional array of scalars which are to be contoured.

Value

Input scalar contour value. This value specifies the constant-density surface (als
called an iso-surface) to be extracted.

Outverts

Output [3,n] array of floating point vertices making up the triangle surfaces.

Outconn

Output array of polygonal connectivity values (see IDLgrPolygon, POLYGONS
keyword). If no polygons were extracted, this argument returns the array [–1].

Keywords

AUXDATA_IN

Input array of auxiliary data with trailing dimensions being the number of values
Data.
ISOSURFACE IDL Reference Guide

591

y

his
ted,
be on

is

tivity
dron.
Note
If AUXDATA_IN is specified then AUXDATA_OUT must also be specified.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliar
data sampled at the locations in Outverts.

Note
If AUXDATA_OUT is specified then AUXDATA_IN must also be specified.

GEOM_XYZ

A [3,n] input array of vertex coordinates (one for each value in the Data array). T
array is used to define the spatial location of each scalar. If this keyword is omit
Data must be a three-dimensional array and the scalar locations are assumed to
a uniform grid.

Note
If GEOM_XYZ is specified then TETRAHEDRA must also be specified if either
to be specified.

TETRAHEDRA

An input array of tetrahedral connectivity values. If this array is not specified, the
connectivity is assumed to be a rectilinear grid over the input three-dimensional
array. If this keyword is specified, the input data array need not be a three-
dimensional array. Each tetrahedron is represented by four values in the connec
array. Every four values in the array correspond to the vertices of a single tetrahe
IDL Reference Guide ISOSURFACE

592

 in a
to

L is
NAL
ter,

 to
e

ed
JOURNAL

The JOURNAL procedure provides a record of an interactive session by saving,
file, all text entered from the terminal in response to the IDL prompt. The first call
JOURNAL starts the logging process. The read-only system variable !JOURNA
set to the file unit used. To stop saving commands and close the file, call JOUR
with no parameters. If logging is in effect and JOURNAL is called with a parame
the parameter is simply written to the journal file.

Syntax

JOURNAL [,Arg]

Arguments

Arg

A string containing the name of the journal file to be opened or text to be written
an open journal file. IfArg is not supplied, and a journal file is not already open, th
file idlsave.pro is used. Once journaling is enabled, a call to JOURNAL withArg
supplied causesArg to be written into the journal file. Calling JOURNAL without
Arg while journaling is in progress closes the journal file and ends the logging
process.

Example

To begin journaling to the filemyjournal.pro , enter:

JOURNAL, 'myjournal.pro'

Any commands entered at the IDL prompt are recorded in the file until IDL is exit
or the JOURNAL command is entered without an argument.

See Also

RESTORE, SAVE
JOURNAL IDL Reference Guide

593

nd
ay

ected
AT
mple

le
JULDAY

The JULDAY function calculates the Julian Day Number for a given month, day, a
year. This is the inverse of the CALDAT procedure. JULDAY returns the Julian D
Number (which begins at noon) of the specified calendar date.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corr
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALD
procedure reflects the adjustment for dates after October 4, 1582. See the exa
below for an illustration.

This routine is written in the IDL language. Its source code can be found in the fi
julday.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = JULDAY(Month, Day, Year, Hour, Minute, Second)

Arguments

Month

Number of the desired month (1 = January, ..., 12 = December).

Day

Number of the day of the month (1-31).

Year

Number of the desired year (e.g., 1994).

Hour

Number of the hour of the day (0-23).

Minute

Number of the minute of the day (0-1439).

Second

Number of the second of the day (0-86399).
IDL Reference Guide JULDAY

594

racy
 4,
e

re to
Example

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccu
of slightly more than 11 minutes per year. As a result, the day following October
1582 was October 15, 1582. JULDAY follows this convention, as illustrated by th
following commands:

PRINT, JULDAY(10,4,1582), JULDAY(10,5,1582), JULDAY(10,15,1582)

IDL prints:

2299160 2299161 2299161

If you are using JULDAY to calculate an absolute number of days elapsed, be su
account for the Gregorian adjustment.

See Also

BIN_DATE, CALDAT, SYSTIME
JULDAY IDL Reference Guide

595

l in
d as
d, or
KEYWORD_SET

The KEYWORD_SET function returns a nonzero value ifExpression is defined and
nonzero or an array, otherwise zero is returned. This function is especially usefu
user-written procedures and functions that process keywords that are interprete
being either true (keyword is present and nonzero) or false (keyword was not use
was set to zero).

Syntax

Result = KEYWORD_SET(Expression)

Arguments

Expression

The expression to be tested.Expression is usually a named variable.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, KEYW1 = keyw1, KEYW2 = keyw2

The following command could be used to execute a set of commands only if the
keyword KEYW1 is set (i.e., it is present and nonzero):

IF KEYWORD_SET(keyw1) THEN BEGIN

The commands to be executed only if KEYW1 is set would follow.

See Also

N_ELEMENTS, N_PARAMS
IDL Reference Guide KEYWORD_SET

596

s
g

ndent
ined

le
KRIG2D

The KRIG2D function interpolates a regularly- or irregularly-gridded set of point
z = f (x, y) using kriging. It returns a two dimensional floating-point array containin
the interpolated surface, sampled at the grid points.

The parameters of the data model – the range, nugget, and sill – are highly depe
upon the degree and type of spatial variation of your data, and should be determ
statistically. Experimentation, or preferably rigorous analysis, is required.

Forn data points, a system ofn+1 simultaneous equations are solved for the
coefficients of the surface. For any interpolation point, the interpolated value is:

The following formulas are used to model the variogram functions:

d(i,j) = the distance from point i to point j.

V = the variance of the samples.

C(i,j) = the covariance of sample i with sample j.

C(x0,y0,x1,y1) = the covariance of point (x0,y0) with point (x1,y1).

Exponential covariance:

Spherical covariance:

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

This routine is written in the IDL language. Its source code can be found in the fi
krig2d.pro in thelib subdirectory of the IDL distribution.

f x y,() wi C xi yi x y, , ,()⋅∑=

C d() C1 e 3 d A⁄⋅–() if d 0≠⋅

C1 C0 if d = 0+
=

C d()
1.0 1.5 d A⁄⋅()– 0.5 d A⁄()3⋅() if d < a+

C1 C0 if d = 0+

0 if d > a

=

KRIG2D IDL Reference Guide

597

ts

ll

n

Syntax

Result = KRIG2D(Z [, X, Y] [, EXPONENTIAL=vector] [, SPHERICAL=vector]
[, A=value] [, C0=value] [, C1=value] [, /REGULAR] [, XGRID=[xstart, xspacing]]
[, XVALUES=array] [, YGRID=[ystart, yspacing]] [, YVALUES=array]
[, GS=[xspacing, yspacing]] [, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value]
[, NY=value])

Arguments

Z, X, Y

Arrays containing theZ, X, andYcoordinates of the data points on the surface. Poin
need not be regularly gridded. For regularly gridded input data,X andYare not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, andZ must be a two dimensional array. For irregular grids, a
three parameters must be present and have the same number of elements.

Keywords

Model Parameters:

EXPONENTIAL

Set this keyword to a two- or three-element vector of model parameters to use a
exponential semivariogram model. The model parameters (A, CO, and C1) are
explained below.

SPHERICAL

Set this keyword to a two- or three-element vector of model parameters to use a
spherical semivariogram model. The model parameters (A, CO, and C1) are
explained below.

A

Therange. At distances beyondA, the semivariogram or covariance remains
essentially constant.

C0

Thenugget, which provides a discontinuity at the origin.
IDL Reference Guide KRIG2D

598

he
e

e
t,

6.
C1

If specified, C1 is the covariance value for a zero distance, and the variance of t
random samplez variable. If only a two element vector is supplied, C1 is set to th
sample variance. (C0 + C1) = thesill, which is the variogram value for very large
distances.

Input Grid Description:

REGULAR

If set, theZ parameter is a two dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if ther
is only one parameter,Z. If REGULAR is set, and no grid specifications are presen
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in thex direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining thex locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in they direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining they locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:ENVI

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points andys is the vertical spacing. The
default is based on the extents ofx andy. If the grid starts atx valuexminand ends at
xmax, then the default horizontal spacing is (xmax- xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 2
KRIG2D IDL Reference Guide

599
BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits inx and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent ofx andy.

NX

The output grid size in thex direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in they direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Examples

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

; Get a 26 by 26 grid over the rectangle bounding x and y:
; Range is 0.25 and nugget is 0. These numbers are dependent on
; your data model:
E = [0.25, 0.0]

; Get the surface:
R = KRIG2D(Z, X, Y, EXPON = E)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = KRIG2D(Z, X, Y, EXPON=E, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

See Also

BILINEAR, INTERPOLATE
IDL Reference Guide KRIG2D

600

urns

.

ing-
KURTOSIS

The KURTOSIS function computes the statistical kurtosis of ann-element vector. If
the variance of the vector is zero, the kurtosis is not defined, and KURTOSIS ret
!VALUES.F_NAN as the result. KURTOSIS calls the IDL function MOMENT.

Syntax

Result = KURTOSIS(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the kurtosis:
result = KURTOSIS(x)
; Print the result:
PRINT, result

IDL prints

-1.18258

See Also

MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
KURTOSIS IDL Reference Guide

601

ions

ctor
f H

test
of
 mean

le

ple

g

KW_TEST

The KW_TEST function tests the hypothesis that three or more sample populat
have the same mean of distribution against the hypothesis that they differ. The
populations may be of equal or unequal lengths. The result is a two-element ve
containing the test statistic H and the one-tailed probability of obtaining a value o
or greater from a Chi-square distribution.

This test is an extension of the Rank Sum Test implemented in the RS_TEST
function. When each sample population contains at least five observations, the H
statistic is approximated very well by a Chi-square distribution with DF degrees
freedom. The hypothesis that three of more sample populations have the same
of distribution is rejected if two or more populations differ with statistical
significance. This type of test is often referred to as the Kruskal-Wallis H-Test.

The test statistic H is defined as follows:

whereNi is the number of observations in theith sample population,NT is the total
number of observations in all sample populations, andRi is the overall rank sum of
the ith sample population.

This routine is written in the IDL language. Its source code can be found in the fi
kw_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = KW_TEST(X [, DF=variable] [, MISSING=nonzero_value])

Arguments

X

An integer, single-, or double-precision floating-point array ofm-columns (withm ≥
3) andn-rows. The columns of this two dimensional array correspond to the sam
populations.

If the sample populations are of unequal length, any columns ofX that are shorter
than the longest column must be “filled in” by appending a user-specified missin

H
12

NT NT 1+()

Ri
2

Ni

i 0=

M 1–

∑= 3 NT 1+()–
IDL Reference Guide KW_TEST

602

ees
om

some

ution
have

umn,
data value. This method requires the use of the MISSING keyword. See theExample
section below for an example of this case.

Keywords

DF

Use this keyword to specify a named variable that will contain the number of degr
of freedom used to compute the probability of obtaining a value of H or greater fr
the corresponding Chi-square distribution

MISSING

Set this keyword equal to a non-zero numeric value that has been appended to
columns ofX to make them all a common length ofn.

Example

Test the hypothesis that three sample populations have the same mean of distrib
against the hypothesis that they differ at the 0.05 significance level. Assume we
the following sample populations:

sp0 = [24.0, 16.7, 22.8, 19.8, 18.9]

sp1 = [23.2, 19.8, 18.1, 17.6, 20.2, 17.8]

sp2 = [18.2, 19.1, 17.3, 17.3, 19.7, 18.9, 18.8, 19.3]

Since the sample populations are of unequal lengths, a missing value must be
appended to sp0 and sp1. In this example the missing value is -1.0 and the 3-col
8-row input arrayX is defined as:

X = [[24.0, 23.2, 18.2], $
[16.7, 19.8, 19.1], $
[22.8, 18.1, 17.3], $
[19.8, 17.6, 17.3], $
[18.9, 20.2, 19.7], $
[-1.0, 17.8, 18.9], $
[-1.0, -1.0, 18.8], $
[-1.0, -1.0, 19.3]]

PRINT, KW_TEST(X, MISSING = -1)

IDL prints:

[1.65862, 0.436351]
KW_TEST IDL Reference Guide

603

and
, sp1,
The computed probability (0.436351) is greater than the 0.05 significance level
therefore we do not reject the hypothesis that the three sample populations sp0
and sp2 have the same mean of distribution.

See Also

FV_TEST, RS_TEST, S_TEST, TM_TEST
IDL Reference Guide KW_TEST

604

l

and up
r

o the
L64INDGEN

The L64INDGEN function returns a 64-bit integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensiona
subscript.

Syntax

Result = L64INDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. These parameters can be any scalar expression,
to eight dimensions can be specified. If the dimension arguments are not intege
values, IDL converts them to integer values before creating the new array.

Example

To create L, a 10-element by 10-element 64-bit array where each element is set t
value of its one-dimensional subscript, enter:

L = L64INDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
L64INDGEN IDL Reference Guide

605

le

s:
LABEL_DATE

The LABEL_DATE function can be used, in conjunction with the
[XYZ]TICKFORMAT keyword to IDL plotting routines, to easily label axes with
dates.

This routine is written in the IDL language. Its source code can be found in the fi
label_date.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LABEL_DATE(DATE_FORMAT =String [, MONTHS=string_array])

or

PLOT,x, y, XTICKFORMAT = ‘LABEL_DATE’

Arguments

LABEL_DATE has no explicit inputs. When called from the plotting routines, the
input parameters are (Axis, Index, Value)

Keywords

DATE_FORMAT

Set this keyword to a format string that can contain any of the following variable

• %M for month (3 character abbreviations)

• %N for month (2 digit abbreviations)

• %D for day of month

• %Y for 4 digit year

• %Z for last two digits of year

• %H for hours (2 digits)

• %I for minutes (2 digits)

• %S for seconds (2 digits)

• %% to represent the % character

• Any vector font positioning and font change commands
IDL Reference Guide LABEL_DATE

606

ly 12,
• Other characters are passed directly through

For example,'%M %D, %Y'results in labels of the formDEC 11, 1993 . '%M %2Y'
yieldsDEC 93 . '%D-%M' yields11-DEC. '%D/%N/%Y' yields11/12/1993 .
'%M!C%Y' yieldsDECon the top line,1993 on the bottom (!C is the newline graphics
command).

MONTHS

A twelve element string array that contains the names to be used for months. If
omitted, three-letter abbreviations are used (i.e., Jan, Feb, ..., Dec).

Example

This example creates a sample plot that has a date axis from Jan 1, 1993 to Ju
1994:

start_date = JULDAY(1, 1, 1993)
end_date = JULDAY(7, 12, 1994)

; Simple mm/dd:
dummy = LABEL_DATE(DATE_FORMAT = '%N/%D')
; Time axis:
x = FINDGEN(end_date+1 - start_date) + start_date
PLOT, x, sqrt(x), XTICKFORMAT = 'LABEL_DATE', XSTYLE=1
LABEL_DATE IDL Reference Guide

607

f a
b
xel

is an
. A

M

.

e

nit in
e

LABEL_REGION

The LABEL_REGION function consecutively labels all of the regions, or blobs, o
bi-level image with a unique region index. This process is sometimes called “blo
coloring”. A region is a set of non-zero pixels within a neighborhood around the pi
under examination.

The argument for LABEL_REGION is ann-dimensional bi-level integer type
array—only zero and non-zero values are considered. The result of the function
integer array of the same dimensions with each pixel containing its region index
region index of zero indicates that the original pixel was zero and belongs to no
region. Output values range from 0 to the number of regions.

Statistics on each of the regions may be easily calculated using the HISTOGRA
function as shown in the examples below.

Syntax

Result = LABEL_REGION(Data [, /ALL_NEIGHBORS] [, /ULONG])

Arguments

Data

A n-dimensional image to be labeled.Data is converted to integer type if necessary
Pixels at the edges ofData are considered to be zero.

Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should b
searched. (This is sometimes called 8-neighbor searching when the image is 2-
dimensional). The default is to search only the neighbors that are exactly one u
distance from the current pixel (sometimes called 4-neighbor searching when th
image is 2-dimensional).

EIGHT

This keyword is now obsolete. It has been replaced by the ALL_NEIGHBORS
keyword (because this routine now handles N-dimensional data).
IDL Reference Guide LABEL_REGION

608

eger.

n:

n:
ULONG

Set this keyword to specify that the output array should be an unsigned long int

Example

Example 1

This example counts the number of distinct regions within an image, and their
population. Note that region 0 is the set of zero pixels that are not within a regio

; Get blob indices:
b = LABEL_REGION(image)

; Get population of each blob:
h = HISTOGRAM(b)
FOR i=0, N_ELEMENTS(h)-1 DO PRINT 'Region ',i, $

', Population = ', h(i)

Example 2

This example also prints the average value and standard deviation of each regio

; Get blob indices:
b = LABEL_REGION(image)

; Get population and members of each blob:
h = HISTOGRAM(b, REVERSE_INDICES=r)

; Each region
FOR i=0, N_ELEMENTS(h)-1 DO BEGIN

;Find subscripts of members of region i.
p = r(r[i]:r[i+1]-1)

; Pixels of region i
q = image[p]
PRINT 'Region ', i, $
', Population = ', h[i], $
', Standard Deviation = ', STDEV(q, mean), $
', Mean = ', mean

ENDFOR

See Also

ANNOTATE, DEFROI, HISTOGRAM, SEARCH2D
LABEL_REGION IDL Reference Guide

609

ctor

el
t

n

le
LADFIT

The LADFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx,
using a “robust” least absolute deviation method. The result is a two-element ve
containing the model parameters, A and B.

The figure below displays a two-dimensional distribution that is fitted to the mod
y = A + Bx, using a minimized Chi-square error criterion (left) and a “robust” leas
absolute deviation technique (right). The use of the Chi-square error statistic ca
result in a poor fit due to an undesired sensitivity to outlying data.

This routine is written in the IDL language. Its source code can be found in the fi
ladfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LADFIT(X, Y [, ABSDEV=variable] [, /DOUBLE])
IDL Reference Guide LADFIT

610

the

the

ion

etic.
Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Note that
X vector must be sorted into ascending order.

Y

An n-element integer, single-, or double-precision floating-point vector. Note that
elements of theY vector must be paired with the appropriate elements ofX.

Keywords

ABSDEV

Set this keyword to a named variable that will contain the mean absolute deviat
for each data-point in the y-direction.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $

2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $

-0.78, -2.61, 0.31, 1.74]

; Sort the X values into ascending order, and sort the Y values to
; match the new order of the elements in X:
XX = X(SORT(X))
YY = Y(SORT(X))

; Compute the model parameters, A and B:
PRINT, LADFIT(XX, YY)

IDL Output

-3.15301 0.930440

See Also

COMFIT, CURVEFIT, LINFIT, SORT
LADFIT IDL Reference Guide

611

 a

nd

hed

ro)

e

LEEFILT

The LEEFILT function performs the Lee filter algorithm on an image array using
box of size 2N+1. This function can also be used on vectors. The Lee technique
smooths additive image noise by generating statistics in a local neighborhood a
comparing them to the expected values.

This routine is written in the IDL language. It is based upon the algorithm publis
by Lee (Optical Engineering 25(5), 636-646, May 1986). Its source code can be
found in the fileleefilt.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LEEFILT(A [, N [, Sig]] [, /EXACT])

Arguments

A

The input image array or one-dimensional vector.

N

The size of the filter box is 2N+1. The default value is 5.

Sig

Estimate of the standard deviation. The default is 5. IfSig is negative, IDL
interactively prompts for a value ofsigma , and displays the resulting image using
TVSCL (for arrays) or PLOT (for vectors). To end this cycle, enter a value of 0 (ze
for sigma .

Keywords

EXACT

Set this keyword to apply a more accurate (but slower) implementation of the Le
filter.

See Also

DIGITAL_FILTER, MEDIAN, SMOOTH, VOIGT
IDL Reference Guide LEEFILT

612

is

etic.

one
LINBCG

The LINBCG function is used in conjunction with SPRSIN to solve a set ofn linear
equations withn unknowns using the iterative biconjugate gradient method. The
result is ann-element vector.

LINBCG is based on the routinelinbcg described in section 2.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
Numerical Recipes recommends using double-precision arithmetic to perform th
computation.

Syntax

Result = LINBCG(A, B, X [, /DOUBLE] [, ITOL={4 | 5 | 6 | 7}] [, TOL=value]
[, ITER=variable] [, ITMAX= value])

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

B

An n-element vector containing the right-hand side of the linear systemAx=b.

X

An n-element vector containing the initial solution of the linear system.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITOL

Use this keyword to specify which convergence test should be used. Set ITOL to
of the following:
LINBCG IDL Reference Guide

613

.

)

sion
1. Iteration stops whenA ⋅ x - b/b is less than the value specified by TOL

2. Iteration stops whenÃ-1 ⋅ (A ⋅ x - b)/Ã-1 ⋅ b (where Ã is a
“preconditioning” matrix close toA) is less than the value specified by TOL.

3. The routine uses its own estimate of error inx. Iteration stops when the
magnitude of the error divided by the magnitude ofx is less than the value
specified by TOL. This is the default setting.

4. The same as 3, except that the routine uses the largest (in absolute value
component of the error and the largest component ofx rather than the vector
magnitudes.

TOL

Use this keyword to specify the desired convergence tolerance. For single-preci
calculations, the default value is 1.0× 10-7. For double-precision values, the default
is 1.0× 10-14.

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

The maximum allowed number of iterations. The default isn2.

Example

; Begin with an array A:
A = [[5.0, 0.0, 0.0, 1.0, -2.0], $

[3.0, -2.0, 0.0, 1.0, 0.0], $
[4.0, -1.0, 0.0, 2.0, 0.0], $
[0.0, 3.0, 3.0, 1.0, 0.0], $
[-2.0, 0.0, 0.0, -1.0, 2.0]]

; Define a right-hand side vector B:
B = [7.0, 1.0, 3.0, 3.0, -4.0]

; Start with an initial guess at the solution:
X = REPLICATE(1.0, N_ELEMENTS(B))

; Solve the linear system Ax=b:
result = LINBCG(SPRSIN(A), B, X)

; Print the result:
PRINT, result
IDL Reference Guide LINBCG

614
IDL Output

1.00000 1.00000 -5.53459e-08 3.02525e-07 -1.00000

The exact solution is [1, 1, 0, 0, -1].

See Also

FULSTR, READ_SPR, SPRSAB, SPRSAX, SPRSIN, WRITE_SPR
LINBCG IDL Reference Guide

615

l

ts are
w

et to
LINDGEN

The LINDGEN function returns a longword integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensiona
subscript.

Syntax

Result = LINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create L, a 10-element by 10-element longword array where each element is s
the value of its one-dimensional subscript, enter:

L = LINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide LINDGEN

616

le

c as

red

etic.

.1,
f the
LINFIT

The LINFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx, by
minimizing the Chi-square error statistic. The result is a two-element vector
containing the model parameters [A, B].

This routine is written in the IDL language. Its source code can be found in the fi
linfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LINFIT(X, Y [, CHISQ=variable] [, /DOUBLE] [, PROB=variable]
[, SDEV=value] [, SIGMA=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

CHISQ

Set this keyword to a named variable that will contain the Chi-square error statisti
the sum of squared errors betweenyi and A + Bxi. If individual standard deviations
are supplied, then the Chi-square error statistic is computed as the sum of squa
errors divided by the standard deviations.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

PROB

Set this keyword to a named variable that will contain the probability that the
computed fit would have a value of CHISQ or greater. If PROB is greater than 0
the model parameters are “believable”. If PROB is less than 0.1, the accuracy o
model parameters is questionable.
LINFIT IDL Reference Guide

617

fies
SDEV

An n-element integer, single-, or double-precision floating-point vector that speci
the individual standard deviations for {xi, yi} used for weighting, where the weight is
defined as 1/SDEV2. If SDEV is not set, no weighting is used.

SIGMA

Set this keyword to a named variable that will contain a two-element vector of
probable uncertainties for the model parameters.

Example

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $

2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $

-0.78, -2.61, 0.31, 1.74]

; Define an n-element vector of standard deviations with a constant
value of 0.85:
sdev = REPLICATE(0.85, N_ELEMENTS(X))

; Compute the model parameters, A and B:
result = LINFIT(X, Y, SDEV=sdev)

; Print the result:
PRINT, result

IDL Output

[-3.44596, 0.867329]

See Also

COMFIT, CURVEFIT, GAUSSFIT, LADFIT, LMFIT, POLY_FIT, POLYFITW,
REGRESS, SFIT, SVDFIT
IDL Reference Guide LINFIT

618

at
by
ntry
ble,

t
s a

em
heir

ace,

ger

ns
at
L,
LINKIMAGE

The LINKIMAGE procedure merges routines written in other languages with IDL
run-time. Each call to LINKIMAGE defines a new system procedure or function
specifying the routine’s name, the name of the file containing the code, and the e
point name. The name of your routine is added to IDL’s internal system routine ta
making it available in the same manner as any other IDL built-in routine.
LINKIMAGE can also be used to add graphics device drivers.

Warning
Using LINKIMAGE requires intimate knowledge of the internals of IDL, and is no
for use by the novice user. We recommend use of CALL_EXTERNAL, which ha
simpler interface, instead of LINKIMAGE unless your application specifically
requires it. To use LINKIMAGE, you should be familiar with the material in the
IDL External Development Guide.

LINKIMAGE uses the dynamic linking interface supported by the operating syst
to do its work. Programmers should be familiar with the services supported by t
system in order to better understand LINKIMAGE:

• Under VMS, the LIB$FIND_IMAGE_SYMBOL run-time library routine is
used to activate your sharable image and merge it into the IDL address sp
as described in VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL,
below.

• Under UNIX, LINKIMAGE uses thedlopen() interface to the dynamic
linker in all cases except for HP-UX (which usesshl_load()) and AIX
(which usesload()).

• Under Windows, LINKIMAGE usesLoadLibrary() to load a 32-bit, Win32
DLL.

• On the PowerPC Macintosh, LINKIMAGE uses the Code Fragment Mana
routinesGetDiskFragment() andFindSymbol() to load shared libraries.

Note
Modules must be merged via LINKIMAGE before other procedures and functio
that call them are compiled, or the compilation of those routines will fail. Note th
because routines merged via LINKIMAGE are considered built-in routines by ID
LINKIMAGE IDL Reference Guide

619

ich

me

ked.

aries

ne)

ult

of
may

me
declaring the routine with the FORWARD_FUNCTION statement will not
eliminate this restriction.

Syntax

LINKIMAGE, Name, Image [, Type [, Entry]] [, /DEVICE] [, /FUNCT]
[, /KEYWORDS] [, MAX_ARGS=value] [, MIN_ARGS=value]

VMS Keywords: [, DEFAULT=string]

Arguments

Name

A string containing the IDL name of the function, procedure or device routine wh
is to be merged. When loading a device driver,Namecontains the name of the global
(also called “universal” under VMS) DEVICE_DEF structure in the driver. Upon
successful loading of the routine, a new procedure or function with the given na
will exist, or the new device driver will be loaded.

Image

A string that holds the name of the file containing the code to be dynamically lin

Under VMS, the full interpretation of this argument is discussed in“VMS
LINKIMAGE and LIB$FIND_IMAGE_SYMBOL” on page 621. Under other
operating systems, this argument contains the full path specification of the
dynamically loaded object file. See your system documentation on sharable libr
or DLLs for details.

Type

An optional scalar integer parameter that contains 0 (zero) for a procedure, 1 (o
for a function, and 2 for a device driver. The keyword parameters DEVICE and
FUNCT can also be used to indicate the type of routine being merged. The defa
value is 0, for procedure.

Entry

An optional string that contains the name of the symbol which is the entry point
the procedure or function. With some compilers or operating systems, this name
require the addition of leading or trailing characters. For example, some UNIX C
compilers add a leading underscore to the beginning of a function name, and so
UNIX FORTRAN compilers add a trailing underscore.
IDL Reference Guide LINKIMAGE

620

e
 or

l

t

and
iven
the

ing

e

er.
If Entry is not supplied, LINKIMAGE will provide a default name by converting th
value suppled forName to lower case and adding any special characters (leading
trailing underscores) typical of the system.

Warning
Under Microsoft Windows operating systems, onlycdecl functions can by used
with LINKIMAGE. Attempting to use routines with other calling conventions wil
yield undefined results, including memory corruption or even IDL crashing.

The Windows operating system has two distinct system defined standards tha
govern how routines pass arguments:stdcall , which is used by much of the
operating system as well as languages such as Visual Basic, andcdecl , which is
used widely for programming in the C language. These standards differ in how
when arguments are pushed onto the system stack. The standard used by a g
function is determined when the function is compiled, and can be controlled by
programmer. LINKIMAGE can only be used withcdecl functions. Unfortunately,
there is no way for IDL to know which convention a given function uses, mean
that LINKIMAGE will quietly accept an entry point of the wrong type. The
LINKIMAGE user is responsible for ensuring that Entry is acdecl function.

Keywords

DEFAULT

This keyword is ignored on non-VMS platforms. Under VMS, it is a string
containing the default device, directory, file name, and file type information for th
file that contains the sharable image. See“VMS LINKIMAGE and
LIB$FIND_IMAGE_SYMBOL” on page 621 for additional information.

DEVICE

Set this keyword to indicate that the module being loaded contains a device driv

FUNCT

Set this keyword to indicate that the module being loaded contains a function.

KEYWORDS

Set this keyword to indicate that the procedure or function being loaded accepts
keyword parameters.
LINKIMAGE IDL Reference Guide

621

ber

ding

s.

pted

n
a
o
ead
r
ave
s

e
s (

gical
is

the

es,
MAX_ARGS

Set this keyword equal to the maximum number of non-keyword arguments the
procedure or function accepts. If this keyword is not present, the maximum num
of parameters is not checked when the routine is called.

Note
It is a very good idea to specify a value for MAX_ARGS. Passing the wrong
number of arguments to an external routine may cause unexpected results, inclu
causing IDL to crash. By forcing IDL to check the number of arguments before
passing them to the linked routine, you will avoid parameter mismatch problem

MIN_ARGS

Set this keyword equal to the minimum number of non-keyword arguments acce
by the procedure or function.

VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL

Specifying The Library Name

The VMS implementation of LINKIMAGE uses the system runtime library functio
LIB$FIND_IMAGE_SYMBOL to perform the dynamic linking. This function has
complicated interface in which the name of the library to be linked is given in tw
separate arguments. We encourage VMS users wishing to use LINKIMAGE to r
and fully understand the documentation for LIB$FIND_IMAGE_SYMBOL in orde
to understand how it is used by IDL. The following discussion assumes that you h
a copy of the LIB$FIND_IMAGE_SYMBOL documentation available to consult a
you read.

LIB$FIND_IMAGE_SYMBOL uses an argument calledfilename to specify the
name of the sharable library or executable to be loaded. Only the actual file nam
itself is allowed, meaning that none of the file specification punctuation character: ,
[, <, ; , .) are allowed. Filename can also be a logical name, in which case its
translated value is the name of the file to be loaded. The translation of such a lo
name is allowed to contain additional file specification information. VMS uses th
information to find the file to load, using SYS$SHARE as the default location if a
location is not specified via a logical name. Alternatively, the user can also supply
optionalimage-name argument, which is used as a “default filespec” to fill in the
parts of the file specification not contained in filename. IDL uses the following rul
in the order listed, to determine how to call LIB$FIND_IMAGE_SYMBOL:
IDL Reference Guide LINKIMAGE

622

nd
tion

er,
ssed

nd

m.
an
L

 For
L

s
, you
1. If LINKIMAGE is called with both the Image argument and DEFAULT
keyword, Image is passed to LIB$FIND_IMAGE_SYMBOL as filename, a
DEFAULT is passed as image-name. Both are passed directly to the func
without any interpretation.

2. If DEFAULT is not present and Image does not contain a file specification
character (: , [, <, ; , .) then it is passed to LIB$CALL_IMAGE_SYMBOL as
it’s filename argument without any further interpretation.

3. If DEFAULT is not present and Image contains a file specification charact
then IDL examines it and locates the filename part. The filename part is pa
to LIB$FIND_IMAGE_SYMBOL as filename and the entire string from
Image is passed as image-name.

This means that although LIB$CALL_IMAGE_SYMBOL has a complicated
interface, the LINKIMAGE user can supply a simple file specification for Image a
it will be properly loaded by IDL. Full control of LIB$CALL_IMAGE_SYMBOL is
still available for those who require it.

Linking To The IDL Executable

LINKIMAGE routines invariably need to call functions supplied by the IDL
program. In order to do this, you must link your sharable library with IDL. This
requires you to supply the linker with the path (file specification) of the IDL progra
The VMS linker in turn includes the path you specify in the resulting library. This c
be inconvenient because a library linked this way can only run with the exact ID
executable that it was linked with. This means that you cannot move your IDL
installation or keep multiple installations for use with your library. The standard
VMS solution to this problem is to use a logical name instead of an actual path.
example, IDL users frequently use the logical name IDL_EXE to point at their ID
executable. To make this process easier and less trouble prone, IDL defines thi
logical name in the users process logical table when it starts running. Therefore
can always link with the IDL_EXE logical and know that it will refer to the IDL
executable you are actually running when the LINKIMAGE call is made.

Example

To add a procedure called MY_PROC, whose entry symbol is also named
MY_PROC, and whose file is pointed to by the logical name MY_PROC_EXE:

LINKIMAGE, 'MY_PROC', 'MY_PROC_EXE'

Under VMS, to add a device driver contained in the file
DRA0:[SMITH]XXDRIV.EXE :
LINKIMAGE IDL Reference Guide

623
LINKIMAGE, 'XX_DEV', 'XXDRIV', $

/DEVICE, DEFAULT='DRA0:[SMITH].EXE'

The global symbolXX_DEV, which contains the device definition structure, must be
defined as universal within the sharable image.

See Also

CALL_EXTERNAL, SPAWN, and the IDLExternal Development Guide.
IDL Reference Guide LINKIMAGE

624

te,
.

al
me
er
is

ia

the

by

 —

ed

ed

have

w

LIVE_Tools

The LIVE tools are a subset of the IDL Insight application that allow you to crea
modify, and export Insight-like visualizations directly from the IDL command line

In many cases, you can modify your visualizations using the LIVE tools’ graphic
user interface directly without ever needing to return the IDL command line. In so
cases, however, you may wish to alter your visualizations programmatically rath
than using the graphical user interface. Several LIVE routines allow you to do th
easily.

The process of using the LIVE tools begins with the creation of a LIVE window v
one of the four main LIVE routines: LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLOT, and LIVE_SURFACE. When you use one of these four routines at
IDL command line, you specify some data to be visualized and a LIVE window
appears. You can modify many of the properties of the items in your visualization
double-clicking on the item to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visualization as an image file, say
you can use the auxiliary LIVE routines. These routines can be divided into two
groups:

• Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. These routines include LIVE_LINE, LIVE_OPLOT,
LIVE_RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be add
to LIVE windows using the graphical user interface.)

• Information and Control Routines that allow you to get information about an
existing LIVE window, alter its properties, or export visualizations. These
routines include LIVE_CONTROL, LIVE_DESTROY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To use the auxiliary routines, you will need to know theName of the LIVE window
or item you wish to alter. To create an IDL variable containing the names of the
elements of a LIVE window, set the REFERENCE_OUT keyword equal to a nam
variable when you first create your LIVE window. The returned variable will be a
structure that contains the names of all of the elements in the visualization you
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary LIVE tools, or to determine the name of the LIVE windo
you wish to alter.
LIVE_Tools IDL Reference Guide

625

ur
by

m

If you find that the LIVE tools do not provide the level of control you need over yo
visualizations, consider using Insight itself. You can start the Insight application
enteringinsight at the IDL command prompt.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these syste
variables will have no effect on LIVE tool display.
IDL Reference Guide LIVE_Tools

626

e
ces,
nce
R

ne
ow
py,

t
rol

ry
LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizations in an interactiv
environment. Because the interactive environment requires extra system resour
this routine is most suitable for relatively small data sets. If you find that performa
does not meet your expectations, consider using the Direct Graphics CONTOU
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour li
to display a properties dialog. A set of buttons in the upper left corner of the wind
allows you to print, undo the last operation, redo the last “undone” operation, co
draw a line, draw a rectangle, or add text.

LIVE_CONTOUR is actually a subset of the IDL Insight application. If you find tha
the LIVE_CONTOUR graphical user interface does not provide the level of cont
you need, consider using Insight itself. You can start the Insight application by
enteringinsight at the IDL command prompt.

You can control your LIVE window after it is created using any of several auxilia
routines. See“LIVE_Tools” on page 624 for an explanation.

Syntax

LIVE_CONTOUR [,Z1,..., Z25] [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, DRAW_DIMENSIONS=[width, height]{devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id| , TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure |{0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]

Figure 4: LIVE_CONTOUR Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_CONTOUR IDL Reference Guide

627

5 of

tion
 the

t]
ault

ired

ing).
t,

will
[, WINDOW_IN=string] [, {X | Y}INDEPENDENT= value] [, {/X | /Y}LOG] [, {X |
Y}RANGE=[min, max]{data units}] [, {X | Y}_TICKNAME= array]

Arguments

Zn

A two-dimensional array containing the values that make up the contour. Up to 2
these arguments may be specified.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualiza
to an offscreen buffer. The WINDOW field of the reference structure returned by
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, heigh
specifying the dimensions of the visualization in normalized coordinates. The def
is [1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the des
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on the Insight template project.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.
IDL Reference Guide LIVE_CONTOUR

628

s to
R).

.0].

ot

o be
y
be

ave
INDEXED_COLOR

If set, the indexed color mode will be used. The default is true color. (SeeUsing IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) i
use instancing if and only if the “software renderer” is being used (see RENDERE
For more information, see “Instancing” in theObjects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is n
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items t
created for this visualization. See the REPLACE keyword for details on how the
will be used. The fields of the structure are as follows. (Any or all of the tags may
set.)

The default for a field is to use the given variable name. If the variable does not h
a name (i.e., is an expression), a default name is automatically generated. The

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 23: Fields of the NAME keyword
LIVE_CONTOUR IDL Reference Guide

629

ames

and

n of

ng

o

-

dependent data names will be used in a round-robin fashion if more data than n
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creatio
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setti
from the parent base sent to the tool.

Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE s
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.
IDL Reference Guide LIVE_CONTOUR

630

ated

nd

are

ith
 of
on to
e

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the cre
items. The fields of the structure are shown in the following table.

Note
You can also determine the name of an item by opening its properties dialog a
checking the “Name” field (or for Windows, by clicking the title bar).

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardw
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphicsmanual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, w
scalar values corresponding to the replacement options listed below. (Any or all
the tags may be set.) The replacement settings are used to determine what acti
take when an item (such as data) being input would have the same name as on
already existing in the given window or buffer (WINDOW_IN).

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 24: Fields of the LIVE_CONTOUR Reference Structure
LIVE_CONTOUR IDL Reference Guide

631

t to

ht

ot

is
].

t
f
e

c

g.,
Alternatively, this keyword may be set to a single scalar value, which is equivalen
setting each tag of the structure to that choice.

STYLE

Set this keyword to either a string specifying a style name (or a style in the Insig
template project), or to a style reference created from LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must n
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. Th
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer, in which to display the visualization. The WIN tag o
the REFERENCE_OUT structure from the creation of the LIVE tool will provide th
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynami
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.
data input as an expression rather than a named variable, with no
name provided via the NAME keyword). Option 3 will be used for all
named items.

Table 25: REPLACE keyword Settings and Action Taken
IDL Reference Guide LIVE_CONTOUR

632

he

d
 the

 be
uted
[XY]INDEPENDENT

Set these keywords to a vector specifying X and Y values for LIVE_CONTOUR. T
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

[XY]LOG

Set these keywords to make the specified axis a log axis. The default is 0.

[XY]RANGE

Set these keywords equal to a two-element array which defines the minimum an
maximum values of the axis range. The default equals the values computed from
data range.

[XY]_TICKNAME

Set these keywords equal to an array of elements. The values of the strings will
used to label the tick mark for the given axis. The default equals the values comp
from the data range.

Example

; Create a dataset to display:
Z=DIST(10)

; Display the contour. To manipulate contour lines, click on the
; plot to access a graphical user interface.
LIVE_CONTOUR, Z

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y=indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y=indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2
LIVE_CONTOUR IDL Reference Guide

633

ble
t a

e

an be
The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different varia
name must be used each time, or at least one should be an expression (thus no
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default uniqu
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which c
overridden using the NAME and REPLACE keywords.

See Also

CONTOUR, and Using IDL Insight
IDL Reference Guide LIVE_CONTOUR

634

he

m

 on.
L

se
of a

hic
LIVE_CONTROL

The LIVE_CONTROL procedure allows you to set the properties of (or elements
within) a visualization in a LIVE tool from the IDL command line. See
“LIVE_Tools” on page 624 for additional discussion of the routines that control t
LIVE_ tools.

Note
The LIVE tools do not utilize the !X, !Y, and !Z conventions. Setting these syste
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Name] [, /DIALOG] [, ERROR=variable] [, /NO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used,Name is a string (case-
insensitive) containing the name of a window visualization or graphic to operate
WINDOW_IN will default to the window or buffer, if only one is present in the ID
session.

If keyword UPDATE_DATA is used,Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In this ca
there is no default. If UPDATE_DATA is not set, the parameter must be a name
window, visualization or visualization element.

Keywords

DIALOG

Set this keyword to have the editable properties dialog of the visualization or grap
appear.
LIVE_CONTROL IDL Reference Guide

635

ing).
t,

will

if

ed

in

t

 to
ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as return
from a LIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that conta
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

Example

; Create a dataset to display:
X=indgen(10)

; Plot the dataset:
LIVE_PLOT, X

; Modify the dataset:
IDL Reference Guide LIVE_CONTROL

636
X=X+2

; Replace old values of X:
LIVE_CONTROL, X, /UPDATE_DATA

See Also

LIVE_INFO, LIVE_STYLE, Using IDL Insight
LIVE_CONTROL IDL Reference Guide

637

an

a
to
ow

ng

ing).
t,

will
LIVE_DESTROY

The LIVE_DESTROY procedure allows you to destroy a window visualization or
element in a visualization.

Syntax

LIVE_DESTROY, [Name1,...,Name25] [, /ENVIRONMENT] [, ERROR=variable]
[, /NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Argument

Name

A string containing the name of a valid LIVE or Insight visualization or element. If
visualization is supplied, all components in the visualization will be destroyed. Up
25 components may be specified in a single call. If not specified, the entire wind
or buffer (WINDOW_IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of a LIVE tool before usi
LIVE_DESTROY to clean up will leave hanging object references.

Keywords

ENVIRONMENT

Destroys the LIVE_ Tools or Insight environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.
IDL Reference Guide LIVE_DESTROY

638

if

ter
ot

t

 to
NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools or Insight (use this keyword for cleaning up the system af
fatal errors in LIVE_ Tools or Insight). This keyword may cause the loss of data if n
used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

Example

LIVE_DESTROY, 'Line Plot Visualization'

; Destroy window (if only one window present):
LIVE_DESTROY

See Also

Using IDL Insight
LIVE_DESTROY IDL Reference Guide

639

age

 type

e

LIVE_EXPORT

The LIVE_EXPORT procedure allows the user to export a given visualization or
window to an image file.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1 | 2}{TIFF only}]
[, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, FILENAME=string] [, ORDER={0 | 1}{JPEG or TIFF}]
[, /PROGRESSIVE{JPEG only}] [, QUALITY={0 | 1 | 2}{for VRML} | {0 to
100}{for JPEG}] [, RESOLUTION=value] [, TYPE={'BMP' | 'GIF' | 'JPG' | 'PIC' |
'SRF' | 'TIF' | 'XWD' | 'VRML'}] [, UNITS={0 | 1 | 2}]
[, VISUALIZATION_IN= string] [, WINDOW_IN=string]

Arguments

None

Keywords

APPEND

Specifies that the image should be added to the existing file, creating a multi-im
TIFF file.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:

0 - none (default), 1 - LZW, 2 - PackBits.

DIALOG

Set this keyword to have a dialog appear allowing the user to choose the image
and specifications.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify th
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.
IDL Reference Guide LIVE_EXPORT

640

ing).
t,

will

 The

 to

hen
age

r

-

led
ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the image file.
default islive_export.extension , whereextension is one of the following:

bmp, gif, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrml

ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. W
used with a slow communications link, a decoder can generate a low-quality im
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. Fo
VRML, the values are 0=Low, 1=Medium, 2=High. For JPEG the range is 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non
VRML images.

RESOLUTION

Set this keyword to a floating-point value specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).

Note
It is important to match the eventual output device’s resolution so that text is sca
properly.
LIVE_EXPORT IDL Reference Guide

641

s

.

ight

erty

t

e.
TYPE

Set this keyword equal to a string specifying the image type to write. Valid string
are: ‘BMP’, ‘GIF’, ‘JPG’, ‘JPEG’ (default), ‘PIC’, ‘PICT’, ‘SRF’, ‘TIF’, ‘TIFF’,
‘XWD’, and ‘VRML’.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword
Valid values are 0=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool or Ins
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. Visualization
names are also visible in Insight's Visualization Manager and visualization prop
dialogs. If VISUALIZATION_IN is not specified, the whole window or buffer
(WINDOW_IN) will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT
structure from the creation of the LIVE tool will provide the window or buffer nam
Window names are also visible in visualization window titlebars. If only one LIVE
tool or Insight window (or buffer) is present in the IDL session, this keyword will
default to it.

Example

LIVE_EXPORT, WINDOW_IN='Live Plot 2'

See Also

Using IDL Insight
IDL Reference Guide LIVE_EXPORT

642

nt.
per
the

e

ing

ry
LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environme
Double-click on the image to display a properties dialog. A set of buttons in the up
left corner of the image window allows you to print, undo the last operation, redo
last “undone” operation, copy, draw a line, draw a rectangle, or add text.

LIVE_IMAGE is actually a subset of the IDL Insight application. If you find that th
LIVE_IMAGE graphical user interface does not provide the level of control you
need, consider using Insight itself. You can start the Insight application by enter
insight at the IDL command prompt.

You can control your LIVE window after it is created using any of several auxilia
routines. See“LIVE_Tools” on page 624 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte_vector] [, GREEN=byte_vector]
[, BLUE=byte_vector] [, /BUFFER] [, DIMENSIONS=[width, height]{normal
units}] [, DRAW_DIMENSIONS=[width, height]{devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id| , TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure |{0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string]

Figure 5: LIVE_IMAGE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_IMAGE IDL Reference Guide

643

ust

are
into

tion
 the

e

e

ing).
t,
Arguments

Image

A two- or three-dimensional array of image data. The three-dimensional array m
be for the form [3,X,Y] or [X,3,Y] or [X,Y,3].

Keywords

BLUE

Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They
used to form the color table. The 2D array is a set of values that are just indexes
this table.

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualiza
to an offscreen buffer. The WINDOW field of the reference structure returned by
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify th
dimensions of the image in units specified by the UNITS keyword. The default is
[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify th
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.
IDL Reference Guide LIVE_IMAGE

644

will

are
into

s to
R).

.0].

ot
Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

GREEN

Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They
used to form the color table. The 2D array is a set of values that are just indexes
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is true color. (SeeUsing IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) i
use instancing if and only if the “software renderer” is being used (see RENDERE
For more information, see “Instancing” in theObjects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is n
set to a style item.
LIVE_IMAGE IDL Reference Guide

645

eated

t.)

ave

and

n of

ng
NAME

Set this keyword to a structure containing suggested names for the items to be cr
for this visualization. See the REPLACE keyword for details on how they will be
used. The fields of the structure are as follows. (Any or all of the tags may be se

The default for a field is to use the given variable name. If the variable does not h
a name (i.e., is an expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. This is useful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Tools in order to reduce unwanted draws
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creatio
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setti
from the parent base sent to the tool.

Tag Description

DATA Dependent Data Name(s)

CT Color Table Name

Table 26: Fields of the NAME keyword
IDL Reference Guide LIVE_IMAGE

646

o

-

are
into

ated
Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE s
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They
used to form the color table. The 2D array is a set of values that are just indexes
this table.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the cre
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with true color images:

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name

CT Color Table Name

COLORBAR* Colorbar Name

DATA Data Name

Table 27: Fields of the LIVE_IMAGE Reference Structure
LIVE_IMAGE IDL Reference Guide

647

are

ith
 of
on to
e

ht

ot

l

n

ith
RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardw
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphicsmanual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, w
scalar values corresponding to the replacement options listed below. (Any or all
the tags may be set.) The replacement settings are used to determine what acti
take when an item (such as data) being input would have the same name as on
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name (or a style in the Insig
template project), or to a style reference created from LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must n
already be in use. A default will be chosen if no title is specified.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items wil
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a visualizatio
would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names
(e.g., data input as an expression rather than a named variable, w
no name provided via the NAME keyword). Option 3 will be used
for all named items.

Table 28: REPLACE keyword Settings and Action Taken
IDL Reference Guide LIVE_IMAGE

648

is
].

t
f
e

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. Th
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer, in which to display the visualization. The WIN tag o
the REFERENCE_OUT structure from the creation of the LIVE tool will provide th
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Example

LIVE_IMAGE, myImage

See Also

TV, TVSCL, Using IDL Insight
LIVE_IMAGE IDL Reference Guide

649

e

ing).
t,

will

. For

t

 to
LIVE_INFO

The LIVE_INFO procedure allows the user to get the properties of a LIVE tool.

Syntax

LIVE_INFO, [Name] [, ERROR=variable] [, PROPERTIES=variable]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of a visualization or element (case-insensitive). Th
default is to use the window or buffer (WINDOW_IN).

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure
a description of the structures, see Properties Structures below.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.
IDL Reference Guide LIVE_INFO

650
Structure Tables for LIVE_INFO and LIVE CONTROL

The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (via the PROPERTIES keyword) for:

• Color Names

• Line Annotations

• Rectangle Annotations

• Text Annotations

• Axes

• Colorbars

• Images

• Legends

• Surfaces

• Entire Visualizations

• Windows

Color Names

The following color names are the possible values for color properties:

Line Annotations

The fields in the properties structure of Line Annotations are as follows:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White

Tag Description

thick 1 to 10 pixels

Table 29: Line Annotation Properties Structure
LIVE_INFO IDL Reference Guide

651
Rectangle Annotations

The fields in the properties structure of Rectangle Annotations are as follows:

arrow_start 1 = arrow head at line start, 0 = no arrowhead

arrow_end 1 = arrow head at line start, 0 = no arrowhead

arrow_size 0.0 to 0.3 normalized units

arrow_angle 1.0 to 179.0 degrees

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot dot,
5=long dash

hide 1 = hidden, 0 = visible

name scalar string (unique within all graphics)

color see“Color Names” on page 650

location [x, y] normalized units

dimensions [width, height] normalized units

uvalue any value of any type (only returned in structure if defined)

Tag Description

thick 1 to 10 pixels

linestyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot dot,
5=long dash

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

color see“Color Names” on page 650

location [x, y] normalized units

dimensions [width, height] normalized units

Table 30: Rectangle Annotation Properties Structure

Tag Description

Table 29: Line Annotation Properties Structure
IDL Reference Guide LIVE_INFO

652

d

r

w)

)

Text Annotations

The fields in the properties structure of Text Annotations are as follows:

Note
Each vector element of the annotation formula (see “value” tag above) is parse
once, left to right, for vertical bars (|).

• Two vertical bars surrounding a data item name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

• Two adjacent bars will be replaced by a single bar.

• Two bars surrounding text that is not a data item name will be left as is.

uvalue any value of any type (only returned in structure if defined)

Tag Description

fontsize 9 to 72 points

fontname Helvetica, Courier, Times, Symbol, and Other (where Othe
is a valid name of a font on the local system)

textangle 0.0 to 360.0 degrees

alignment 0.0 to 1.0 where 0.0 = right justified and 1.0 = left justified

location [x, y] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

value string (scalar or vector) annotation formula (see note belo

enable_formatting set to allow “!” chars for font commands

color see“Color Names” on page 650

uvalue any value of any type (only returned in structure if defined

Table 31: Text Annotation Properties Structure

Tag Description

Table 30: Rectangle Annotation Properties Structure
LIVE_INFO IDL Reference Guide

653

is

is
Axes

The fields in the properties structure of Axes are as follows:

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
a valid name of a font on the local system)

title_Color see“Color Names” on page 650

tick_FontSize 9 to 72 points

tick_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
a valid name of a font on the local system)

tick_FontColor see“Color Names” on page 650

gridStyle see linestyle

color see“Color Names” on page 650

thick 1 to 10 pixels

location [x, y] data units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickDir 0 = up (or right), 1 = down (or left)

textPos 0 = below (or left), 1 = above (or right)

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

exact set to use exact range specified

log set to display axis as log

Table 32: Axis Properties Structure
IDL Reference Guide LIVE_INFO

654

a

Colorbars

The fields in the properties structure of Colorbars are as follows:

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

compute_range set to compute axis range from data min/max

tickName if defined, vector of strings to use at major tick marks

uvalue any value of any type (only returned in structure if defined)

Tag Description

title_Fontsize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other is
valid name of a font on the local system)

title_Color see“Color Names” on page 650

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see“Color Names” on page 650

color see“Color Names” on page 650

thick 1 to 10 pixels

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire colorbar fits into the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

Table 33: Colorbar Properties Structure

Tag Description

Table 32: Axis Properties Structure
LIVE_INFO IDL Reference Guide

655
Contours

The fields in the properties structure of Contours are as follows:

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

min_value minimum contour value to display

max_value maximum contour value to display

downhill set to display downhill tick marks

fill set to display contour levels as filled

c_thick vector of thickness values (see thick)

c_linestyle vector of linestyle values (see linestyle)

c_color vector of color names (see“Color Names” on page 650)

default_n_levels set to default the number of levels

n_levels* specify a positive number for a specific number of levels

Table 34: Contour Properties Structure

Tag Description

Table 33: Colorbar Properties Structure
IDL Reference Guide LIVE_INFO

656

use
Images

The fields in the properties structure of Images are as follows:

Legends

The fields in the properties structure of Legends are as follows:

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)
*The MIN and MAX value of the data are returned as contour levels when N_LEVELS is set.
Because of this, when setting N_LEVELS, contour plots appear to have N-2 contour levels beca
the first (MIN) and last (MAX) level is not shown. With LIVE_CONTOUR, this results in a legend
that contains unnecessary items in the legend (the MIN and the MAX contour level).

Tag Description

order set to draw from top to bottom

sizing_constraint [0|1|2] 0=Natural, 1=Aspect, 2=Unrestricted

dont_byte_scale set to inhibit byte scaling the image

palette name of managed colortable

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in LIVE_INFO structure
if defined)

Table 35: Image Properties Structure

Tag Description

title_FontSize 9 to 72 points

Table 36: Legend Properties Structure

Tag Description

Table 34: Contour Properties Structure
LIVE_INFO IDL Reference Guide

657

is

is
title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
a valid name of a font on the local system)

title_Color see“Color Names” on page 650

item_fontSize see fontsize

item_fontName Helvetica, Courier, Times, Symbol, and Other (where Other
a valid name of a font on the local system)

text_color color of item text (see“Color Names” on page 650)

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see“Color Names” on page 650

outline_color see“Color Names” on page 650

outline_thick see thick

location [x, y]; where [0, 0] = lower left and [1, 1] = position where the

entire legend fits into the upper right of the visualization

show_fill set to display the fill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

Table 36: Legend Properties Structure
IDL Reference Guide LIVE_INFO

658

t,
Surfaces

The fields in the properties structure of Surfaces are as follows:

Entire Visualizations

The fields in the properties structure of Entire Visualizations are as follows:

Tag Description

min_value minimum plot line value to display

max_value maximum plot line value to display

lineStyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot do
5=long dash

color see“Color Names” on page 650

thick 1 to 10 pixels

bottom see“Color Names” on page 650

style 0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ, 5=lego
(wire), 6=lego (solid)

shading 0=flat, 1=Gouraud

hidden_lines set to not display hidden lines or points

show_skirt set to display the surface skirt

skirt z value at which skirt is drawn (data units)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 37: Surface Properties Structure

Tag Description

location [x, y] normalized units

dimensions [width, height] normalized units

Table 38: Visualization Properties Structure
LIVE_INFO IDL Reference Guide

659
Windows

The fields in the properties structure of Windows are as follows:

Example

LIVE_INFO, 'x axis', PROPERTIES=myProps

See Also

LIVE_CONTROL, LIVE_STYLE, Using IDL Insight

transparent set to avoid erasing to the background color

color background color (see“Color Names” on page 650)

hide 1=hidden, 0=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Tag Description

dimensions 2-element integer vector (pixels)

hide boolean (0=show, 1=hide)

location 2-element integer vector (pixels) from upper
left corner of screen

title string

Table 39: Windows Properties Structure

Tag Description

Table 38: Visualization Properties Structure
IDL Reference Guide LIVE_INFO

660

It is

It is
LIVE_LINE

The LIVE_LINE procedure is an interface for line annotation.

Syntax

LIVE_LINE [, ARROW_ANGLE=value{1.0 to 179.0}] [, /ARROW_END]
[, ARROW_SIZE=value{0.0 to 0.3}] [, /ARROW_START] [, COLOR='color name'
] [, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable] [, /HIDE]
[, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, LOCATION=[x, y]] [, NAME=string]
[, /NO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variable]
[, THICK=pixels{1 to 10}] [, VISUALIZATION_IN= string]
[, WINDOW_IN=string]

Arguments

None

Keywords

ARROW_ANGLE

Set this keyword to a floating-point number between 1.0 and 179.0 degrees to
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of the line.
not drawn by default.

ARROW_SIZE

Set this keyword to a floating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of the line.
not drawn by default.
LIVE_LINE IDL Reference Guide

661

The

l

X
].

ing).
t,

will

n.
COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the line.
color must be specified as an Insight color. The default is ‘Black’. The following
colors are available:

DIALOG

Set this keyword to have an Insight line properties dialog appear. The dialog wil
have all known properties supplied by keywords filled in.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
and Y components of the line in normalized coordinates. The default is [0.2, 0.2

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidde

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = solid line (default)

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
IDL Reference Guide LIVE_LINE

662

.5].

tem.
ot

if

d
ble.
• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with this i
The name must be unique within the given window or buffer (WINDOW_IN). If n
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining names of the modifie
visualization’s properties. The fields of the structure are shown in the following ta

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the line created

Table 40: Fields of the LIVE_LINE Reference Structure
LIVE_LINE IDL Reference Guide

663

ess

ight
on
o
ly

t

 to
THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool or Ins
visualization. The VIS field from the REFERENCE_OUT keyword from the creati
of the LIVE tool will provide the visualization name. Visualization names are als
visible in Insight's Visualization Manager and visualization property dialogs. If on
one visualization is present in the window or buffer (WINDOW_IN), this keyword
will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

Example

LIVE_LINE, WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

; Units are in the visualization units (based on axis ranges).

See Also

LIVE_RECT, LIVE_TEXT, Using IDL Insight
IDL Reference Guide LIVE_LINE

664

ded
ls
LIVE_LOAD

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run all LIVE tools and Insight. By default, portions of the set are loa
when first needed during the IDL session. If you expect to frequently use the too
and/or Insight, you may wish to call LIVE_LOAD from your IDL “startup file”.

Syntax

 LIVE_LOAD

Arguments

None

Keywords

None

See Also

Using IDL Insight
LIVE_LOAD IDL Reference Guide

665

ing).
t,

will

o be
y

LIVE_OPLOT

The LIVE_OPLOT procedure allows the insertion of data into pre-existing plots.

Syntax

LIVE_OPLOT,Yvector1[,... ,Yvector25] [, ERROR=variable]
[, INDEPENDENT=vector] [, NAME=structure] [, /NEW_AXES] [, /NO_DRAW]
[, /NO_SELECTION] [, REFERENCE_OUT=variable] [, REPLACE={structure |
{0 | 1 | 2 | 3 | 4}}] [, SUBTYPE={‘LinePlot’ | ‘ScatterPlot’ | ‘Histogram’ |
‘PolarPlot’}] [, VISUALIZATION_IN= string] [, WINDOW_IN=string] [, {X |
Y}_TICKNAME= array] [, {X | Y}AXIS_IN= string]

Argument

YVector

A vector argument of data. Up to 25 of these arguments may be specified.

Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

NAME

Set this keyword to a structure containing suggested names for the data items t
created for this visualization. See the REPLACE keyword for details on how the
IDL Reference Guide LIVE_OPLOT

666

be

ave

ames

s

if

ified
will be used. The fields of the structure are as follows. (Any or all of the tags may
set.)

The default for a field is to use the given variable name. If the variable does not h
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than n
are input.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

NEW_AXES

Set this keyword to generate a new set of axes for this plot line. If this keyword i
specified, the [XY]AXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the mod
items. The fields of the structure are shown in the following table.

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 41: Fields of the NAME keyword

Tag Description

WIN Window Name

VIS Visualization Name

Table 42: Fields of the LIVE_OPLOT Reference Structure
LIVE_OPLOT IDL Reference Guide

667

ith
 of
on to
e

l

ic

g.,
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, w
scalar values corresponding to the replacement options listed below. (Any or all
the tags may be set.) The replacement settings are used to determine what acti
take when an item (such as data) being input would have the same name as on
already existing in the given window or buffer (WINDOW_IN).

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items wil
be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynam
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.
data input as an expression rather than a named variable, with no
name provided via the NAME keyword). Option 3 will be used for all
named items.

Table 43: REPLACE keyword Settings and Action Taken

Tag Description

Table 42: Fields of the LIVE_OPLOT Reference Structure
IDL Reference Guide LIVE_OPLOT

668

t.
d

not
to a

ight
on
o
ly

t

 to

 be
uted
SUBTYPE

Set this keyword to a string (case-insensitive) containing the desired type of plo
SUBTYPE defaults to whatever is being inserted into, if the [XY]AXIS_IN keywor
is set. If the keywords are not set, then the default is line plot. Valid strings are:

• ‘LinePlot’ (default)

• ‘ScatterPlot’

• ‘Histogram’

• ‘PolarPlot’

Note
If inserting into a group (defined by the set of axes) that is polar, SUBTYPE can
be defined as line, scatter, or histogram. The opposite is also true: if inserting in
line, scatter, or histogram group, then SUBTYPE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool or Ins
visualization. The VIS field from the REFERENCE_OUT keyword from the creati
of the LIVE tool will provide the visualization name. Visualization names are als
visible in Insight's Visualization Manager and visualization property dialogs. If on
one visualization is present in the window or buffer (WINDOW_IN), this keyword
will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

[XY]_TICKNAME

Set these keywords equal to an array of elements. The values of the strings will
used to label the tick mark for the given axis. The default equals the values comp
from the data range.
LIVE_OPLOT IDL Reference Guide

669

 be

 of
[XY]AXIS_IN

Set these keywords equal to the string name of an existing axis. The name can
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default is to use the first set of axes in the plot.

Note
If the keywords are set, they must both be set, and they must be set to a “pair”
axes. The X and Y axes given must be associated with the same plot line.

Example

LIVE_OPLOT, tempData, pressureData

See Also

LIVE_PLOT, PLOT, OPLOT, Using IDL Insight
IDL Reference Guide LIVE_OPLOT

670

e
n,
t.

e
ed,

ry
LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on a section of the plot to display a properties dialog. A set of buttons in th
upper left corner of the image window allows you to print, undo the last operatio
redo the last “undone” operation, copy, draw a line, draw a rectangle, or add tex

LIVE_PLOT is actually a subset of the IDL Insight application. If you find that th
LIVE_PLOT graphical user interface does not provide the level of control you ne
consider using Insight itself. You can start the Insight application by entering
insight at the IDL command prompt.

You can control your LIVE window after it is created using any of several auxilia
routines. See“LIVE_Tools” on page 624 for an explanation.

Syntax

LIVE_PLOT, Yvector1[, Yvector2,...,Yvector25] [, /BUFFER]
[, DIMENSIONS=[width, height]{normal units}] [, DRAW_DIMENSIONS=[width,
height]{devive units}] [, ERROR=variable] [, /HISTOGRAM | , /LINE | , /POLAR |
, /SCATTER] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, INDEPENDENT=vector]
[, /MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION]
[, /NO_STATUS] [, /NO_TOOLBAR] [, PARENT_BASE=widget_id | ,
TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure |{0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, {/X | /Y}LOG] [, {X | Y}RANGE= [min, max]{data
units}] [, {X | Y}_TICKNAME= array]

Figure 6: LIVE_PLOT Properties Dialog

Print Undo Redo Copy Line Rectangle Text
LIVE_PLOT IDL Reference Guide

671

tion
 the

s of

ired

ing).
t,

will
Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualiza
to an offscreen buffer. The WINDOW field of the reference structure returned by
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector specifying the dimension
the visualization in normalized coordinates. The default is [1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the des
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

HISTOGRAM

Set this keyword to represent plot values as a histogram.

INDEPENDENT

Set this keyword to an independent vector specifying X-values for LIVE_PLOT.
IDL Reference Guide LIVE_PLOT

672

s to
R).

ate

.0].

ot

o be
y
be
INDEXED_COLOR

If set, the indexed color mode will be used. The default is true color. (SeeUsing IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) i
use instancing if and only if the “software renderer” is being used (see RENDERE
For more information, see “Instancing” in theObjects and Object Graphics manual.

LINE

Set this keyword to represent plot values as a line plot. This is the default. Altern
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is n
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items t
created for this visualization. See the REPLACE keyword for details on how the
will be used. The fields of the structure are as follows. (Any or all of the tags may
set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 44: Fields of the NAME keyword
LIVE_PLOT IDL Reference Guide

673

ave

ames

if

n of

t
ol.
o
nt.

-

nts to
The default for a field is to use the given variable name. If the variable does not h
a name (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than n
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creatio
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert a tool into your widge
application, you must determine the setting from the parent base sent to the to
LIVE_DESTROY on a window is recommended when using PARENT_BASE s
that proper memory cleanup is done. Destroying the parent base is not sufficie

Note
When specifying a PARENT_BASE, that parent base must be running in a non
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

POLAR

Set this keyword to represent plot values as a polar plot. In this case, the argume
LIVE_PLOT represent values of r (radius), while the INDEPENDENT keyword
represents the values of T (angle theta). If POLAR is set, you must specify
INDEPENDENT.
IDL Reference Guide LIVE_PLOT

674

ified

are

ith
 of
on to
e

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the mod
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardw
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphicsmanual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, w
scalar values corresponding to the replacement options listed below. (Any or all
the tags may be set.) The replacement settings are used to determine what acti
take when an item (such as data) being input would have the same name as on
already existing in the given window or buffer (WINDOW_IN).

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

I Independent Data Name

Table 45: Fields of the LIVE_PLOT Reference Structure

Setting Action Taken

0 New items will be given unique names.

Table 46: REPLACE keyword Settings and Action Taken
LIVE_PLOT IDL Reference Guide

675

ht

ot

is
].

t
f

,

SCATTER

Set this keyword to represent plot values as a scatter plot.

STYLE

Set this keyword to either a string specifying a style name (or a style in the Insig
template project), or to a style reference created from LIVE_STYLE.

Note
If STYLE is not set, the default plot style will be used.

TITLE

Set this keyword to a string specifying the title to give the main window. It must n
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. Th
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer, in which to display the visualization. The WIN tag o

1 Existing items will be replaced by new items (i.e., the old items
will be deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause
dynamic updating to occur for any current uses, e.g., a
visualization would redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names
(e.g., data input as an expression rather than a named variable
with no name provided via the NAME keyword). Option 3 will be
used for all named items.

Setting Action Taken

Table 46: REPLACE keyword Settings and Action Taken
IDL Reference Guide LIVE_PLOT

676

e

r

d
 the

 be
uted

ble
t a
the REFERENCE_OUT structure from the creation of the LIVE tool will provide th
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

[XY]LOG

Set these keywords to make the specified axis a log axis. The default is 0 (linea
axis).

[XY]RANGE

Set these keywords equal to a two-element array which defines the minimum an
maximum values of the axis range. The default equals the values computed from
data range.

[XY]_TICKNAME

Set these keywords equal to an array of elements. The values of the strings will
used to label the tick mark for the given axis. The default equals the values comp
from the data range.

Example

; Plot two data sets simultaneously:
LIVE_PLOT, tempdata, pressureData

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y= indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different varia
name must be used each time, or at least one should be an expression (thus no
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or

LIVE_PLOT, Y,...
LIVE_PLOT IDL Reference Guide

677

e

an be
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default uniqu
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which c
overridden using the NAME and REPLACE keywords.

See Also

LIVE_OPLOT, PLOT, OPLOT, Using IDL Insight
IDL Reference Guide LIVE_PLOT

678

. It
).

ing).
t,

will

his

t

 to
LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer
uses Insight’s preferences for print scaling (stretch, aspect ratio, and no scaling

Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, /SETUP]
[, WINDOW_IN=string]

Arguments

None

Keywords

DIALOG

Set this keyword to have a print dialog appear.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

SETUP

(Macintosh users only) Set this keyword to have a printer setup dialog appear. T
keyword allows the user to setup the page for printing.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.
LIVE_PRINT IDL Reference Guide

679
Example

LIVE_PRINT, WINDOW_IN='Live Plot 2'

See Also

DIALOG_PRINTJOB, DIALOG_PRINTERSETUP, Using IDL Insight
IDL Reference Guide LIVE_PRINT

680

ngle.
ng

n

t]
lt is
LIVE_RECT

The LIVE_RECT procedure is an interface for insertion of rectangles.

Syntax

LIVE_RECT [, COLOR='color name'] [, /DIALOG] [, DIMENSIONS=[width,
height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, THICK=pixels{1 to 10}]
[, VISUALIZATION_IN= string] [, WINDOW_IN=string]

Arguments

None

Keywords

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the recta
The color must be specified as an Insight color. The default is ‘Black’. The followi
colors are available:

DIALOG

Set this keyword to have an Insight rectangle dialog appear. This dialog will fill i
known attributes from set keywords.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, heigh
to specify the dimensions of the rectangle in normalized coordinates. The defau
[0.2, 0.2].

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
LIVE_RECT IDL Reference Guide

681

ing).
t,

will

n.

.5].
ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidde

• 0 = Visible (default)

• 1 = Hidden

LINESTYLE

Set this keyword to a pre-defined line style integer:

• 0 = Solid line (default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0

Note
LOCATION may be adjusted to take into account window decorations.
IDL Reference Guide LIVE_RECT

682

tem.
ot

if

ified

ess

ight
on
o
ly

t

NAME

Set this keyword equal to a string containing the name to be associated with this i
The name must be unique within the given window or buffer (WINDOW_IN). If n
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the mod
items. The fields of the structure are shown in the following table.

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool or Ins
visualization. The VIS field from the REFERENCE_OUT keyword from the creati
of the LIVE tool will provide the visualization name. Visualization names are als
visible in Insight's Visualization Manager and visualization property dialogs. If on
one visualization is present in the window or buffer (WINDOW_IN), this keyword
will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the rectangle created

Table 47: Fields of the LIVE_RECT Reference Structure
LIVE_RECT IDL Reference Guide

683

 to

names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

Example

LIVE_RECT, LOCATION=[0.1,0.1],DIMENSIONS=[0.2,0.2],$
WINDOW_IN='Live Plot 2',VISUALIZATION_IN='line plot'

See Also

LIVE_LINE, LIVE_TEXT, Using IDL Insight
IDL Reference Guide LIVE_RECT

684

ng
 put
LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.

Syntax

Style = LIVE_STYLE ({ 'contour' | 'image' | 'plot' | 'surface'}
[, BASE_STYLE=style_name] [, COLORBAR_PROPERTIES=structure]
[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure] [, GROUP=widget_id]
[, LEGEND_PROPERTIES=structure] [, NAME=string] [, /SAVE]
[, TEMPLATE_FILE=filename] [, VISUALIZATION_PROPERTIES=structure]
[, {X | Y | Z}AXIS_PROPERTIES=structure])

Arguments

Type

A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords

BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style held in the Insight template file. It will be used for defaulti
unspecified properties. If not specified, only those properties you provide will be
into the style. The basic styles that will always exist include:

Visualization Type Style Name

plot ‘Basic Plot’

contour ‘Basic Contour’

image ‘Basic Image’

surface ‘Basic Surface’

Table 48: Base Style Strings
LIVE_STYLE IDL Reference Guide

685

is
COLORBAR_PROPERTIES

The table below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Other
a valid name of a font on the local system)

title_Color see color table

tick_FontSize see fontsize

tick_Fontname see fontname

tick_FontColor see color table

color see color table

thick 1 to 10 pixels

location [x, y] normalized units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units * 100 = percent of visualization dimensions

subticklen normalized units * 100 = percent of ticklen

tickFormat see format

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, 0=visible

Table 49: Colorbar Properties Structure
IDL Reference Guide LIVE_STYLE

686

hics
res

les.

t

GRAPHIC_PROPERTIES

Set this keyword equal to a scalar or vector of structures defining the graphic
properties to use in creating the style. (Use a vector if you want successive grap
to have different properties, e.g., different colored lines in a line plot. The structu
are used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tab

Plots

Images

Tag Data Type/Description

color string (see color table)

hide boolean (1=hidden, 0=visible)

linestyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash do
dot dot, 5=long dash)

nSum integer (1 to number of elements to average over)

symbol_size [x,y] normalized units relative to the visualization

symbol_type integer (1-7)

thick integer (1 to 10 pixels)

Table 50: Plot Graphic Properties Structure

Tag Data Type/Description

hide boolean (1=hidden, 0=visible)

order boolean (set to draw from top to bottom)

sizing_constraint integer (0=natural, 1=aspect, 2=unrestricted)

Table 51: Image Graphic Properties Structure
LIVE_STYLE IDL Reference Guide

687

sh
Contours

Surfaces

Tag Data Type/Description

downhill boolean (set to display downhill tick marks)

fill boolean (set to display contour levels as filled)

hide boolean (1=hidden, 0=visible)

n_levels integer (number of levels)

c_thick vector of thickness values

c_linestyle vector of linestyle values

c_color vector of color names

default_n_levels integer (set to default number of levels)

Table 52: Contour Graphic Properties Structure

Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden_lines boolean (1=show, 0=don’t show)

hide boolean (1=hidden, 0=visible)

lineStyle integer (0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=da
dot dot dot, 5=long dash)

shading boolean (0=flat, 1=Gouraud)

show_skirt boolean (1=show, 0=don’t show)

skirt float (z value at which skirt is drawn [data units])

style integer (0=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledYZ,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 53: Surface Graphic Properties Structure
IDL Reference Guide LIVE_STYLE

688

his
l or

ating
te

r

GROUP

Set this keyword to the widget ID of the group leader for error message display. T
keyword is used only when the ERROR keyword is not set. If only one LIVE too
Insight window is present in the IDL session, it will default to that.

LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend properties to use in cre
the style. Not all properties need be specified (see BASE_STYLE). The comple
structure definitions for different types of styles are listed in the following tables.

Tag Description

title_FontSize 9 to 72 points

title_Fontname Helvetica, Courier, Times, Symbol, and Other (where Othe
is a valid name of a font on the local system)

title_Color see color table

item_fontSize see fontsize

item_fontName see fontname

text_color see color

border_gap normalized units * 100 = percent of item text height

columns number of columns to display the items in (minimum 0)

gap normalized units * 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see color table

outline_color see color table

outline_thick see thick

location [x, y] normalized units

show_fill set to display the fill color

show_outline set to display the legend outline

hide 1=hidden, 0=visible

Table 54: Legend Properties Structure
LIVE_STYLE IDL Reference Guide

689

ified,

 in

s for
are

be
NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique in the Insight template file. If not spec
a name will be automatically generated.

SAVE

Set this keyword to save the style in the Insight style template file. The supplied
Name must not already exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization properties to use
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition is in the following table.

[XYZ]AXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
properties to use in creating the style. (Use a vector to specify property structure
successive axes of the same direction have different properties. The structures
used in a round-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The user need only define the fields of the structure they wish to
different from the BASE style. The complete structure definition is shown in the
following table.

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 55: Visualization Properties Structure

Tag Data Type

color string (see color table)

default_major integer

default_minor integer

Table 56: Axis Properties Structure
IDL Reference Guide LIVE_STYLE

690
Example

Style=LIVE_STYLE('plot',BASE_STYLE='basic plot', $
GRAPHIC_PROPERTIES={color:'red'})

See Also

LIVE_INFO, LIVE_CONTROL, Using IDL Insight

exact boolean

gridstyle integer (0-5) (linestyle)

hide boolean

location 3-element floating vector (normalized units)

major integer (default=-1, computed by IDL)

minor integer (default=-1, computed by IDL)

thick integer (1-10)

tickDir integer

tickLen float (normalized units)

tick_fontname string

tick_fontsize integer

Tag Data Type

Table 56: Axis Properties Structure
LIVE_STYLE IDL Reference Guide

691

hat
ics

 the
f the
”

at
ol

ry
LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, this routine is most suitable for relatively small data sets. If you find t
performance does not meet your expectations, consider using the Direct Graph
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on a section of
surface to display a properties dialog. A set of buttons in the upper left corner o
image window allows you to print, undo the last operation, redo the last “undone
operation, copy, draw a line, draw a rectangle, or add text.

LIVE_SURFACE is actually a subset of the IDL Insight application. If you find th
the LIVE_SURFACE graphical user interface does not provide the level of contr
you need, consider using Insight itself. You can start the Insight application by
enteringinsight at the IDL command prompt.

You can control your LIVE window after it is created using any of several auxilia
routines. See“LIVE_Tools” on page 624 for an explanation.

Syntax

LIVE_SURFACE,Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,
height]{normal units}] [, DRAW_DIMENSIONS=[width, height]{devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1 | 0 | 1}]
[, LOCATION=[x, y]{normal units}] [, /MANAGE_STYLE] [, NAME=structure]
[, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id| , TLB_LOCATION=[Xoffset, Yoffset]{device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0 | 1}] [, REPLACE={structure |{0 | 1 | 2 | 3 | 4}}]
[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]

Figure 7: LIVE_SURFACE Properties Dialog

Print Undo Redo Copy Line Rectangle Text
IDL Reference Guide LIVE_SURFACE

692

.

tion
 the

t]
ault

ired

ing).
t,

will
[, WINDOW_IN=string] [, {X | Y}INDEPENDENT= vector] [, {/X | /Y}LOG] [, {X
| Y}RANGE=[min, max]{data units}] [, {X | Y}_TICKNAME= array]

Arguments

Data

A two-dimensional array of data. Up to 25 of these parameters may be specified

Keywords

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualiza
to an offscreen buffer. The WINDOW field of the reference structure returned by
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, heigh
specifying the dimensions of the visualization in normalized coordinates. The def
is [1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword equal to a vector of the form [width, height] representing the des
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.
LIVE_SURFACE IDL Reference Guide

693

s to
R).

.0].

ot

o be
y
be

ave
INDEXED_COLOR

If set, the indexed color mode will be used. The default is true color. (SeeUsing IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) i
use instancing if and only if the “software renderer” is being used (see RENDERE
For more information, see “Instancing” in theObjects and Object Graphicsmanual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.0, 0

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is n
set to a style item.

NAME

Set this keyword to a structure containing suggested names for the data items t
created for this visualization. See the REPLACE keyword for details on how the
will be used. The fields of the structure are as follows. (Any or all of the tags may
set.)

The default for a field is to use the given variable name. If the variable does not h
a name (i.e., is an expression), a default name is automatically generated. The

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 57: Fields of the NAME keyword
IDL Reference Guide LIVE_SURFACE

694

ames

if

n of

ng

o

-

dependent data names will be used in a round-robin fashion if more data than n
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.

NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creatio
a LIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert a tool into their own widget application will determine the setti
from the parent base sent to the tool.

Note
LIVE_DESTROY on a window is recommended when using PARENT_BASE s
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in a non
blocking mode. Putting a LIVE tool into a realized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.
LIVE_SURFACE IDL Reference Guide

695

ated

are

ith
 of
on to
REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the cre
items. The fields of the structure are shown in the following table.

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) is to use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardw
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphicsmanual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, w
scalar values corresponding to the replacement options listed below. (Any or all
the tags may be set.) The replacement settings are used to determine what acti

Tag Description

WIN Window Name

VIS Visualization Name

XAXIS X-Axis Name

YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)

LEGEND Legend Name

DATA Dependent Data Name(s)

IX Independent X Data Name

IY Independent Y Data Name

Table 58: Fields of the LIVE_SURFACE Reference Structure
IDL Reference Guide LIVE_SURFACE

696

e

ht

ot

is
].

t
f
e

ic

.,
me
take when an item (such as data) being input would have the same name as on
already existing in the given window or buffer (WINDOW_IN).

STYLE

Set this keyword to either a string specifying a style name (or a style in the Insig
template project), or to a style reference created from LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must n
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. Th
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer, in which to display the visualization. The WIN tag o
the REFERENCE_OUT structure from the creation of the LIVE tool will provide th
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Setting Action Taken

0 New items will be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. This will cause dynam
updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g
data input as an expression rather than a named variable, with no na
provided via the NAME keyword). Option 3 will be used for all named
items.

Table 59: REPLACE keyword Settings and Action Taken
LIVE_SURFACE IDL Reference Guide

697

he

d
 the

 be
uted

 the

ble
[XY]INDEPENDENT

Set these keywords to a vector specifying X and Y values for LIVE_SURFACE. T
default is the data’s index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

[XY]LOG

Set these keywords to make the specified axis a log axis. The default is 0.

[XY]RANGE

Set these keywords equal to a two-element array which defines the minimum an
maximum values of the axis range. The default equals the values computed from
data range.

[XY]_TICKNAME

Set these keywords equal to an array of elements. The values of the strings will
used to label the tick mark for the given axis. The default equals the values comp
from the data range.

Example

This example visualizes two surface representations. To manipulate any part of
surface, double click on surface to access a graphical user interface:

LIVE_SURFACE, tempData, pressureData

Note
This is a “Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal data item. For
example, if one does the following:

Y = indgen(10)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc1
Y = indgen(20)
LIVE_PLOT, Y, WINDOW_IN=w, DIMENSIONS=d, LOCATION=loc2

The first plot will update to use the Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks” of the same data, a different varia
IDL Reference Guide LIVE_SURFACE

698

t a

e

an be
name must be used each time, or at least one should be an expression (thus no
named variable). For example:

LIVE_PLOT, Y1,...
LIVE_PLOT, Y2,...

or;

LIVE_PLOT, Y,...
LIVE_PLOT, myFunc(Y),...

In last example, the data of the second visualization will be given a default uniqu
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which c
overridden using the NAME and REPLACE keywords.

See Also

SURFACE, SHADE_SURF, Using IDL Insight
LIVE_SURFACE IDL Reference Guide

699

ry

ray

r the
LIVE_TEXT

The LIVE_TEXT procedure is an interface for text annotation.

You can control your LIVE window after it is created using any of several auxilia
routines. See“LIVE_Tools” on page 624 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT= value{0.0 to 1.0}] [, COLOR='color name']
[, /DIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]
[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HIDE]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, TEXTANGLE=value{0.0 to 360.0}]
[, VERTICAL_ALIGNMENT=value{0.0 to 1.0}] [, VISUALIZATION_IN= string]
[, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is “Text”. If Text is an ar
of strings, each element of the string array will appear on a separate line.

Keywords

ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
requested alignment of the text baseline. The alignment scheme follows:

1.0---- -----0.5----- ---0.0

Left Middle Right

COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used fo
text. The color must be specified as an Insight color. The default is ‘Black’. The
following colors are available:

• Black • Red • Green • Yellow

• Blue • Magenta • Cyan • Dark Gray
IDL Reference Guide LIVE_TEXT

700

fill

d

ing).
t,

will

 is

he

n:

.5].
DIALOG

Set this keyword to have an Insight text annotation dialog appear. This dialog will
in known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font an
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (str
An empty string is returned if no errors occurred during the operation. By defaul
errors are reported via a GUI.

Note
If a named variable is passed in this keyword and an error occurs, the error GUI
not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default
Helvetica.

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. T
default is 12. Available point sizes are 9 through 72.

HIDE

Set this keyword to a boolean value indicating whether this item should be draw

• 0 = Draw (default)

• 1 = Do not draw

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is [0.5, 0

• Light Gray • Brown • Light Red • Light Green

• Light Blue • Light Cyan • Light Magenta • White
LIVE_TEXT IDL Reference Guide

701

tem.
ot

if

ated

t.

ight
on
o
ly
Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with this i
The name must be unique within the given window or buffer (WINDOW_IN). If n
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. This is useful
multiple visualizations and/or annotations are being created via calls to other
LIVE_Tools in order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the cre
items. The fields of the structure are shown in the following table

TEXTANGLE

Set this keyword to a floating-point value defining the angle of rotation of the tex
The valid range is from 0.0 to 360.0. The default is 0.0.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LIVE tool or Ins
visualization. The VIS field from the REFERENCE_OUT keyword from the creati
of the LIVE tool will provide the visualization name. Visualization names are als
visible in Insight's Visualization Manager and visualization property dialogs. If on
one visualization is present in the window or buffer (WINDOW_IN), this keyword
will default to it.

Tag Description

WIN Window Name

VIS Visualization Name

GRAPHIC Graphic Name the text created

Table 60: Fields of the LIVE_TEXT Reference Structure
IDL Reference Guide LIVE_TEXT

702

t

 to
WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool or Insigh
window, or a LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure
from the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LIVE tool or
Insight window (or buffer) is present in the IDL session, this keyword will default
it.

Example

LIVE_TEXT, 'My Annotation', WINDOW_IN='Live Plot 2', $
VISUALIZATION_IN='line plot visualization'

See Also

LIVE_LINE, LIVE_RECT, Using IDL Insight
LIVE_TEXT IDL Reference Guide

703

lor

lors

ine
r of

le
LJLCT

The LJLCT procedure loads standard color tables for LJ-250/252 printer. The co
tables are modified only if the device is currently set to “LJ”.

The default color maps used are for the 90 dpi color palette. There are only 8 co
available at 180 dpi.

If the current device is ‘LJ’, the !D.N_COLORS system variable is used to determ
how many bit planes are in use (1 to 4). The standard color map for that numbe
planes is loaded. These maps are described in Chapter 7 of theLJ250/LJ252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LJLCT scales them from 0 to 255.

This routine is written in the IDL language. Its source code can be found in the fi
ljlct.pro in thelib subdirectory of the IDL distribution.

Syntax

LJLCT

Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

; Load the LJ color tables:
LJLCT

See Also

SET_PLOT
IDL Reference Guide LJLCT

704

le

ues

nits.
371
LL_ARC_DISTANCE

The LL_ARC_DISTANCE function returns a two-element vector containing the
longitude and latitude [lon, lat] of a point a given arc distance (-π ≤ Arc_Dist≤ π),
and azimuth (Az), from a specified locationLon_lat0. Values are in radians unless the
keyword DEGREES is set.

This routine is written in the IDL language. Its source code can be found in the fi
ll_arc_distance.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az [, /DEGREES])

Arguments

Lon_lat0

A 2-element vector containing the longitude and latitude of the starting point. Val
are assumed to be in radians unless the keyword DEGREES is set.

Arc_Dist

The arc distance fromLon_lat0. The value must be between -π and +π. To express
distances in arc units, divide by the radius of the globe expressed in the original u
For example, if the radius of the earth is 6371 km, divide the distance in km by 6
to obtain the arc distance.

Az

The azimuth fromLon_lat0. The value is assumed to be in radians unless the
keyword DEGREES is set.

Keywords

DEGREES

Set this keyword to express all measurements and results in degrees.

Example

; Initial point specified in radians:
Lon_lat0 = [1.0, 2.0]

; Arc distance in radians:
LL_ARC_DISTANCE IDL Reference Guide

705
Arc_Dist = 2.0

; Azimuth in radians:
Az = 1.0

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az)
PRINT, Result

IDL prints:

2.91415 -0.622234

See Also

MAP_SET
IDL Reference Guide LL_ARC_DISTANCE

706

ary

e

 of

s as
d by

iled

le

s in
LMFIT

The LMFIT function does a non-linear least squares fit to a function with an arbitr
number of parameters. LMFIT uses the Levenberg-Marquardt algorithm, which
combines the steepest descent and inverse-Hessian function fitting methods. Th
function may be any non-linear function.

Iterations are performed until three consecutive iterations fail to change the chi
square value by more than the specified tolerance amount, or until a maximum
number of iterations have been performed. The LMFIT function returns a vector
values for the dependent variables, as fitted by the function fit.

The initial guess of the parameter values should be as close to the actual value
possible or the solution may not converge. Test the value of the variable specifie
the CONVERGENCE keyword to determine whether the algorithm converged, fa
to converge, or encountered a singular matrix.

This routine is written in the IDL language. Its source code can be found in the fi
lmfit.pro in thelib subdirectory of the IDL distribution. LMFIT is based on the
routinemrqmin described in section 15.5 ofNumerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = LMFIT(X, Y, A [, ALPHA=variable] [, CHISQ=variable]
[, CONVERGENCE=variable] [, COVAR=variable] [, /DOUBLE] [, FITA=vector]
[, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX= value]
[, ITMIN= value] [, SIGMA=variable] [, TOL=value] [, WEIGHTS=vector])

Arguments

X

A row vector of independent variables. LMFIT does not manipulate or use value
X, it simply passesX to the user-written function.

Y

A row vector containing the dependent variables.

A

A vector that contains the initial estimate for each parameter.
LMFIT IDL Reference Guide

707

red.

d,
s

Keywords

ALPHA

Set this keyword equal to a named variable that will contain the value of the
curvature matrix.

CHISQ

Set this keyword equal to a named variable that will contain the value of chi-squa

CONVERGENCE

Set this keyword equal to a named variable that will indicate whether the LMFIT
algorithm converged. The possible returned values are:

• 1 = the algorithm converged.

• 0 = the algorithm did not converge.

• -1 = the algorithm encountered a singular matrix and did not converge.

COVAR

Set this keyword equal to a named variable that will contain the value of the
covariance matrix.

DOUBLE

Set this keyword to force the computations to be performed in double precision.

FITA

Set this keyword equal to a vector, with as many elements asA, which contains a zero
for each fixed parameter, and a non-zero value for elements ofA to fit. If FITA is not
specified, all parameters are taken to be non-fixed.

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitte
LMFIT assumes that the IDL procedure LMFUNCT is to be used. If LMFUNCT i
not already compiled, IDL compiles the function from the filelmfunct.pro ,
located in thelib subdirectory of the IDL distribution. LMFUNCT is designed to fit
a quadratic equation.

The function to be fit must be written as an IDL procedure and compiled prior to
calling LMFIT. The function must accept a vectorX (the independent variables) and a
vectorA containing the fitted function’s parameter values. It must return anA+1-
IDL Reference Guide LMFIT

708

and
r in

f

hi-

t

element vector in which the first (zeroth) element is the evaluated function value
the remaining elements are the partial derivatives with respect to each parameteA.

Note
The returned value must be of the same data type as the inputX value.

ITER

Set this keyword equal to a named variable that will contain the actual number o
iterations which were performed

ITMAX

Set this keyword equal to the maximum number of iterations. The default is 20.

ITMIN

Set this keyword equal to the minimum number of iterations. The default is 5.

SIGMA

Set this keyword equal to a named variable that will contain a vector of standard
deviations for the returned parameters.

TOL

The convergence tolerance. The routine returns when the relative decrease in c
squared is less than TOL in an iteration. Default = 1.0 x10-6.

WEIGHTS

Set this keyword equal to a vector of fitting weights forYi. This vector must be the
same length as X and Y. For instrumental (Gaussian) weighting (when the
measurement errors or standard deviations (σ) of Y are known), set WEIGHTS to
1/(σ2). For statistical (Poisson) weighting, set WEIGHTS=1/Y. If WEIGHTS is no
specified, WEIGHTSi is assumed to be 1.0.

Example

In this example, we fit a function of the form:

f(x)=a[0] * exp(a[1]*x) + a[2] + a[3] * sin(x)

; First, define a return function for LMFIT:
FUNCTION myfunct, X, A

bx = A[0]*EXP(A[1]*X)
LMFIT IDL Reference Guide

709
RETURN,[[bx+A[2]+A[3]*SIN(X)], [EXP(A[1]*X)], [bx*X], $
[1.0] ,[SIN(X)]]

END

; Compute the fit to the function we have just defined. First,
; define the independent and dependent variables:
X = FINDGEN(40)/20.0
Y = 8.8 * EXP(-9.9 * X) + 11.11 + 4.9 * SIN(X)
sig = 0.05 * Y

; Provide an initial guess for the function’s parameters:
A = [10.0, -0.1, 2.0, 4.0]
fita = [1,1,1,1]

; Plot the initial data, with error bars:
PLOTERR, X, Y, sig
coefs = LMFIT(X, Y, A, WEIGHTS = (1/sig^2.0), FITA = fita, $

FUNCTION_NAME = 'myfunct')

; Overplot the fitted data:
OPLOT, X, coefs

See Also

CURVEFIT, GAUSSFIT, LMFIT, POLY_FIT, POLYFITW, REGRESS, SFIT,
SVDFIT
IDL Reference Guide LMFIT

710

.

id

at

o
in

.
 IDL
LMGR

The LMGR function tests whether a particular licensing mode is in effect. The
function returns True (1) if the mode specified is in effect, or False (0) otherwise
Different licensing modes are specified by keyword; see the “Keywords” section
below for a description of each licensing mode.

The LMGR function can also force IDL into time demo mode or report the LMHost
number for the machine in use.

For more information on IDL’s licensing methods, consult theIDL License
Management Guide, which is included in Adobe Acrobat Portable Document Form
on your IDL CD-ROM.

Syntax

Result= LMGR([, /CLIENTSERVER | , /DEMO | , /EMBEDDED | , /RUNTIME | ,
/STUDENT | , /TRIAL] [, EXPIRE_DATE=variable] [, /FORCE_DEMO]
[, INSTALL_NUM=variable] [, LMHOSTID=variable]
[, SITE_NOTICE=variable])

Arguments

None

Keywords

CLIENTSERVER

Set this keyword to test whether the current IDL session is using Client/Server
licensing (as opposed to Desktop licensing).

DEMO

Set this keyword to test whether the current IDL session is running in timed dem
mode. Unlicensed copies of IDL and copies running directly from a CD-ROM run
timed demo mode.

EMBEDDED

Set this keyword to test whether the current IDL session is running in embedded
mode. Embedded-mode applications contain a built-in version of the IDL license
Examples of applications running in embedded mode are the IDL demo and the
registration program.
LMGR IDL Reference Guide

711

med

 IDL
run
 to

ned

nes
es

de.
e

L

ode.
EXPIRE_DATE

Set this keyword to a named variable that will receive a string containing the
expiration date of the current IDL session if the session is a trial session. This na
variable will be undefined if the IDL session has a permanent license.

FORCE_DEMO

Set this keyword to force the current session into timed demo mode. Forcing an
session into demo mode can be useful if you are testing an application that will be
with an unlicensed copy of IDL. Note that you must exit IDL and restart to return
normal licensed mode after forcing IDL into demo mode.

INSTALL_NUM

Set this keyword to a named variable that will receive a string containing the
installation number of the current IDL session. This named variable will be undefi
if the IDL session is unlicensed.

LMHOSTID

Set this keyword equal to a named variable that will contain a string value
representing the LMHostid for the machine in use. The LMHostid is used when
creating client/server IDL licenses. This keyword returns the string “0” on machi
which do not have a unique LMHostid (Macintoshes and some Windows machin
that use Desktop licensing.)

RUNTIME

Set this keyword to test whether the current IDL session is running in runtime mo
Runtime-mode applications do not provide access to the IDL command line. Se
Building IDL Applcations for additional details on runtime applications.

SITE_NOTICE

Set this keyword to a named variable that will receive a string containing the site
notice of the current IDL session. This named variable will be undefined if the ID
session is unlicensed.

STUDENT

Set this keyword to test whether the current IDL session is running in student m
The IDL Student version, which provides a subset of IDL’s full functionality, is
currently the only product that runs in student mode.
IDL Reference Guide LMGR

712

.
ys)

in

 in
TRIAL

Set this keyword to test whether the current IDL session is running in trial mode
Trial mode licenses allow IDL to operate for a limited time period (generally 30 da
but do not otherwise restrict functionality.

Example

Use the following commands to test whether the current IDL session is running
timed demo mode:

Result = LMGR(/DEMO)

IF (Result GT 0) THEN PRINT, "IDL is in Demo Mode"

Use the following commands to generate the LMHostid number for the machine
use:

Result = LMGR(LMHOSTID = myId)
PRINT, "LMHostid for this machine is: ", myId
LMGR IDL Reference Guide

713

the

.

A,
LNGAMMA

The LNGAMMA function returns the logarithm of the gamma function ofX. This
function is undefined for negative integers. If the argument is double-precision,
result is double-precision. Otherwise, this function yields floating-point results.

Syntax

Result = LNGAMMA(X)

Arguments

X

The expression for which the logarithm of the gamma function will be evaluated

Example

To find the logarithm of the gamma function of 0.5 and store the result in variable
enter:

A = LNGAMMA(0.5)

See Also

BETA, GAMMA , IBETA, IGAMMA
IDL Reference Guide LNGAMMA

714

t a
ise.

sent.

g

g

he
LNP_TEST

The LNP_TEST function computes the Lomb Normalized Periodogram of two
sample populationsX andY and tests the hypothesis that the populations represen
significant periodic signal against the hypothesis that they represent random no
The result is a two-element vector containing the maximum peak in the Lomb
Normalized Periodogram and its significance. The significance is a value in the
interval [0.0, 1.0]; a small value indicates that a significant periodic signal is pre

LNP_TEST is based on the routinefasper described in section 13.8 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LNP_TEST(X, Y [, HIFAC=scale_factor] [, JMAX=variable]
[, OFAC=value] [, WK1=variable] [, WK2=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector containin
equally or unequally spaced time samples.

Y

An n-element integer, single-, or double-precision floating-point vector containin
amplitudes corresponding toXi.

Keywords

HIFAC

Use this keyword to specify the scale factor of the average Nyquist frequency. T
default value is 1.

JMAX

Use this keyword to specify a named variable that will contain the index of the
maximum peak in the Lomb Normalized Periodogram.

OFAC

Use this keyword to specify the oversampling factor. The default value is 4.
LNP_TEST IDL Reference Guide

715

ing

K1.

t

dic

and
WK1

Use this keyword to specify a named variable that will contain a vector of increas
linear frequencies.

WK2

Use this keyword to specify a named variable that will contain a vector of values
from the Lomb Normalized Periodogram corresponding to the frequencies in W

Example

This example tests the hypothesis that two sample,n-element populations X and Y
represent a significant periodic signal against the hypothesis that they represen
random noise:

; Define two n-element sample populations:
X = [1.0, 2.0, 5.0, 7.0, 8.0, 9.0, $

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, $
16.0, 17.0, 18.0, 19.0, 20.0, 22.0, $
23.0, 24.0, 25.0, 26.0, 27.0, 28.0]

Y = [0.69502, -0.70425, 0.20632, 0.77206, -2.08339, 0.97806, $
1.77324, 2.34086, 0.91354, 2.04189, 0.53560, -2.05348, $

-0.76308, -0.84501, -0.06507, -0.12260, 1.83075, 1.41403, $
-0.26438, -0.48142, -0.50929, 0.01942, -1.29268, 0.29697]

; Test the hypothesis that X and Y represent a significant periodic
; signal against the hypothesis that they represent random noise:
result = LNP_TEST(X, Y, WK1 = wk1, WK2 = wk2, JMAX = jmax)
PRINT, result

IDL prints:

4.69296 0.198157

The small value of the significance represents the possibility of a significant perio
signal. A larger number of samples forX andY would produce a more conclusive
result. WK1 and WK2 are both 48-element vectors containing linear frequencies
corresponding Lomb values, respectively. JMAX is the indexed location of the
maximum Lomb value in WK2.

See Also

CTI_TEST, FV_TEST, KW_TEST, MD_TEST, R_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
IDL Reference Guide LNP_TEST

716

or

cover

le

ter a
LOADCT

The LOADCT procedure loads one of 41 predefined IDL color tables. These col
tables are defined in the filecolors1.tbl (located in the main IDL directory)
unless the FILE keyword is specified. The selected colortable is loaded into the
COLORS common block as both the “current” and “original” colortable. If the
current device has fewer than 256 colors, the color table data is interpolated to
the number of colors in the device.

This routine is written in the IDL language. Its source code can be found in the fi
loadct.pro in thelib subdirectory of the IDL distribution.

Syntax

LOADCT [, Table] [, BOTTOM=value] [, FILE=string] [, GET_NAMES=variable]
[, NCOLORS=value] [, /SILENT]

Arguments

Table

The number of the pre-defined color table to load, from 0 to 40. If this value is
omitted, a menu of the available tables is printed and the user is prompted to en
table number.

Keywords

BOTTOM

The first color index to use. LOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl in the IDL directory. SeeMODIFYCT to create and modify colortable
files.

GET_NAMES

Set this keyword to a named variable in which the names of the color tables are
returned as a string array. No changes are made to the color table.
LOADCT IDL Reference Guide

717

red
NCOLORS

The number of colors to use. The default is all available colors (this number is sto
in the system variable !D.TABLE_SIZE).

SILENT

If this keyword is set, the Color Table message is suppressed.

See Also

MODIFYCT, XLOADCT, TVLCT
IDL Reference Guide LOADCT

718
LOCALE_GET

The LOCALE_GET function returns the current locale (string) of the operating
platform.

Syntax

Result = LOCALE_GET()

Arguments

None

Keywords

None
LOCALE_GET IDL Reference Guide

719

t,
LON64ARR

The LON64ARR function returns a 64-bit integer vector or array.

Syntax

Result = LON64ARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, LON64ARR sets every element of the result to zero. If NOZERO is se
this zeroing is not performed and LON64ARR executes faster.

Example

To create L, a 100-element, 64-bit vector with each element set to 0, enter:

L = LON64ARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide LON64ARR

720

his
LONARR

The LONARR function returns a longword integer vector or array.

Syntax

Result = LONARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, LONARR sets every element of the result to zero. If NOZERO is set, t
zeroing is not performed and LONARR executes faster.

Example

To create L, a 100-element, longword vector with each element set to 0, enter:

L = LONARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
LONARR IDL Reference Guide

721

lt.
s can

ar.

tain
h
e can

ger
LONG

The LONG function returns a result equal toExpression converted to longword
integer type.

Syntax

Result = LONG(Expression[, Offset[, Dim1, ..., Dim8]])

Arguments

Expression

The expression to be converted to longword integer.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as longword integer data.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid longword integer and no conversion is possible. The default action in suc
cases is to print a warning message and return 0. The ON_IOERROR procedur
be used to establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to a longword inte
and stored in the variable B by entering:

B = LONG(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, STRING, UINT,
ULONG, ULONG64
IDL Reference Guide LONG

722

lt.
s can

ar.

tain
s to
ed to

nd
LONG64

The LONG64 function returns a result equal toExpressionconverted to 64-bit integer
type.

Syntax

Result = LONG64(Expression[, Offset[, D1, ..., D8]])

Arguments

Expression

The expression to be converted to 64-bit integer.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as 64-bit integer data.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid integer and no conversion is possible. The default action in such cases i
print a warning message and return 0. The ON_IOERROR procedure can be us
establish a statement to be executed in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to a 64-bit integer a
stored in the variable B by entering:

B = LONG64(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, STRING,
UINT, ULONG, ULONG64
LONG64 IDL Reference Guide

723

 a

es
LSODE

The LSODE function uses adaptive numerical methods to advance a solution to
system of ordinary differential equations one time-step H, given values for the
variablesY andX.

Syntax

Result = LSODE(Y, X, H, Derivs[, Status] [, ATOL=value] [, RTOL=value])

Arguments

Y

A vector of values for Y at X

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculat
the values of the derivativesDydx at X. This function must accept two arguments: A
scalar floating valueX, and one n-element vectorY. It must return ann-element vector
result.

For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function calleddifferential to express these relationships in the
IDL language:

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END
IDL Reference Guide LSODE

724

he

ct

nd.
Status

An index used for input and output to specify the state of the calculation. This
argument contains a positive value if the function was successfully completed.
Negative values indicate different errors.

Note
A preliminary call withtout = t is not counted as a first call here, as no
initialization or checking of input is done. (Such a call is sometimes useful for t
purpose of outputting the initial conditions.) Thus, the first call for which tout≠ t
requiresSTATUS = 1 on input.

Input Value Description

1 This is the first call for the problem; initializations will occur.
This is the default value.

2 This is not the first call. The calculation is to continue normally.

3 This is not the first call. The calculation is to continue normally,
but with a change in input parameters.

Table 61: Input Values for Status

Output
Value Description

1 Nothing occurred. (However, an internal counter was set to dete
and prevent repeated calls of this type.)

2 The integration was performed successfully, and no roots were
found.

3 The integration was successful, and one or more roots were fou

-1 An excessive amount of work was done on this call, but the
integration was otherwise successful. To continue, reset STATUS
to a value greater than1 and begin again (the excess work step
counter will be reset to 0).

Table 62: Output Values for Status
LSODE IDL Reference Guide

725

1.0e-

)

ps.

y

d
as
, if

e
ed.
Note
Since the normal output value of STATUS is 2, it does not need to be reset for
normal continuation. Also, since a negative input value of STATUS will be
regarded as illegal, a negative output value requires the user to change it, and
possibly other inputs, before calling the solver again.

Keywords

ATOL

A scalar or array value that specifies the absolute tolerance. The default value is
7. Use ATOL = 0.0 (or ATOL[i] = 0.0) for pure relative error control, and use

-2 The precision of the machine being used is insufficient for the
requested amount of accuracy. Integration was successful. To
continue, the tolerance parameters must be reset, and STATUS
must be set to 3. (If this condition is detected before taking any
steps, then an illegal input return (STATUS = -3) occurs instead.

-3 Illegal input was detected, before processing any integration ste
If the solver detects an infinite loop of calls to the solver with
illegal input, it will cause the run to stop.

-4 There were repeated error test failures on one attempted step,
before completing the requested task, but the integration was
successful. The problem may have a singularity, or the input ma
be inappropriate.

-5 There were repeated convergence test failures on one attempte
step, before completing the requested task, but the integration w
successful. This may be caused by an inaccurate jacobian matrix
one is being used.

-6 ewt(i) became zero for some i during the integration. Pure relativ
error control was requested on a variable which has now vanish
Integration was successful.

Output
Value Description

Table 62: Output Values for Status
IDL Reference Guide LSODE

726

OL

se

s less

s for
RTOL = 0.0 for pure absolute error control. For an explanation of how to use AT
and RTOL together, see RTOL below.

RTOL

A scalar value that specified the relative tolerance. The default value is 1.0e-7. U
RTOL = 0.0 for pure absolute error control, and use ATOL = 0.0 (or ATOL[i] = 0.0)
for pure relative error control.

The estimated local error in the Y[i] argument will be controlled to be less than

ewt[i] = RTOL*abs(Y[i]) + ATOL ; If ATOL is a scalar.
ewt[i] = RTOL*abs(Y[i]) + ATOL[i] ; If ATOL is an array.

Thus, the local error test passes if, in each component, either the absolute error i
than ATOL (or ATOL[i]), or if the relative error is less than RTOL.

Warning
Actual, or global, errors might exceed these local tolerances, so choose value
ATOL and RTOL conservatively.

Example

To integrate the example system of differential equations for one time step, H:

PRO LSODETEST

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Integrate over the interval (0, 0.5):
result = LSODE(Y, X, H, 'differential')

; Print the result:
PRINT, result

END

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END
LSODE IDL Reference Guide

727

rs,

80.
IDL Output

3.11523 6.85767

This is the exact solution vector to 5-decimal precision.

See Also

DERIV, DERIVSIG, RK4

References

1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solve
in Scientific Computing, R. S. Stepleman et al. (eds.), North-Holland,
Amsterdam, 1983,
pp. 55-64.

2. Linda R. Petzold, Automatic Selection of Methods for Solving Stiff and
Nonstiff Systems of Ordinary Differential Equations, SIAM J. SCI. STAT.
COMPUT. 4 (1983), pp. 136-148.

3. Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined Output
Points for Solutions of ODE’s, Sandia Report SAND80-0180, February, 19
IDL Reference Guide LSODE

728

le

etic.

t.

no
LU_COMPLEX

The LU_COMPLEX function solves ann by n complex linear systemAz = b using
LU decomposition. The result is ann-element complex vectorz. Alternatively,
LU_COMPLEX computes the generalized inverse of ann by n complex array. The
result is ann by n complex array.

This routine is written in the IDL language. Its source code can be found in the fi
lu_complex.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = LU_COMPLEX(A, B [, /DOUBLE] [, /INVERSE] [, /SPARSE])

Arguments

A

An n by n complex array.

B

An n-element right-hand side vector (real or complex).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

INVERSE

Set this keyword to compute the generalized inverse ofA. If INVERSE is specified,
the input argumentB is ignored.

SPARSE

Set this keyword to convert the input array to row-indexed sparse storage forma
Computations are done using the iterative biconjugate gradient method. This
keyword is effective only when solving complex linear systems. This keyword has
effect when calculating the generalized inverse.

Example

; Define a complex array A and right-side vector B:
LU_COMPLEX IDL Reference Guide

729
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $
[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

B = [COMPLEX(1, 1), COMPLEX(3,-2), COMPLEX(1,-2)]

; Solve the complex linear system Az = b:
Z = LU_COMPLEX(A, B)
PRINT, 'Z:'
PRINT, Z

; Compute the inverse of the complex array A by supplying a scalar
; for B (in this example -1):
inv = LU_COMPLEX(A, B, /INVERSE)
PRINT, 'Inverse:'
PRINT, inv

IDL Output

Z:
(0.552267, 1.22818)(-0.290371, -0.600974)
(-0.629824, -0.340952)

Inverse:
(0.261521, -0.0303485)(0.0138629, 0.329337)
(-0.102660, -0.168602)
(0.102660, 0.168602)(0.0340952, -0.162982)
(0.125890, -0.0633196)
(-0.0689397, 0.0108655)(-0.0666916, -0.0438366)
(0.0614462, -0.161858)

See Also

CRAMER, CHOLSOL, GS_ITER, LUSOL, SVSOL, TRISOL, and“Sparse Arrays”
in Chapter 16 ofUsing IDL.
IDL Reference Guide LU_COMPLEX

730

f

etic.
LUDC

The LUDC procedure replaces ann by n array,A, with the LU decomposition of a
row-wise permutation of itself.

LUDC is based on the routineludcmp described in section 2.3 ofNumerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

LUDC, A, Index [, /COLUMN] [, /DOUBLE] [, INTERCHANGES=variable]

Arguments

A

An n by n array of any type except string. Upon output,A is replaced with its LU
decomposition.

Index

An output vector that records the row permutations which occurred as a result o
partial pivoting.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

INTERCHANGES

An output variable that is set to positive 1 if the number of row interchanges was
even, or to negative 1 if the number of interchanges was odd.

Example

See the description ofLUSOL for an example using this procedure.
LUDC IDL Reference Guide

731
See Also

LUSOL
IDL Reference Guide LUDC

732
LUMPROVE

The LUMPROVE function uses LU decomposition to iteratively improve an
approximate solutionX of a set ofn linear equations inn unknowns Ax = b. The
result is a vector, whose type and length are identical toX, containing the improved
solution.

LUMPROVE is based on the routinemprove described in section 2.5 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LUMPROVE(A, Alud, Index, B, X [, /COLUMN] [, /DOUBLE])

Arguments

A

Then by n coefficient array of the linear system Ax = b.

Alud

Then by n LU decomposition ofA created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.

X

An n-element vector containing the approximate solution of the linear system
Ax = b.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).
LUMPROVE IDL Reference Guide

733

etic.

ear
DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

This example uses LUMPROVE to improve an approximate solution X to the lin
system Ax = B:

; Create coefficient array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Create a duplicate of A:
alud = A
; Define the right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Begin with an estimated solution X:
X = [.89, 1.78, -0.88]

; Decompose the duplicate of A:
LUDC, alud, INDEX

; Compute an improved solution:
result = LUMPROVE(A, alud, INDEX, B, X)

; Print the result:
PRINT, result

IDL Output

 1.00000 2.00000 -1.00000

This is the exact solution vector.

See Also

GS_ITER, LUDC
IDL Reference Guide LUMPROVE

734

 set

ult

etic.
LUSOL

The LUSOL function is used in conjunction with the LUDC procedure to solve a
of n linear equations inn unknownsAx = b. The parameterA is input not as the
original array, but as its LU decomposition, created by the routine LUDC. The res
is ann-element vector whose type is identical toA.

LUSOL is based on the routinelubksb described in section 2.3 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LUSOL(A, Index, B [, /COLUMN] [, /DOUBLE])

Arguments

A

Then by n LU decomposition of an array created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm
LUSOL IDL Reference Guide

735
Example

This example solves the linear system Ax = b using LU decomposition and back
substitution:

; Define array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Define right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Decompose A:
LUDC, A, INDEX

; Compute the solution using back substitution:
result = LUSOL(A, INDEX, B)

; Print the result:
PRINT, result

IDL Output

1.00000 2.00000 -1.00000

This is the exact solution vector.

See Also

CHOLSOL, CRAMER, GS_ITER, LU_COMPLEX, LUDC, SVSOL, TRISOL
IDL Reference Guide LUSOL

736

le

al

fies
M_CORRELATE

The M_CORRELATE function computes the multiple correlation coefficient of a
dependent variable and two or more independent variables.

This routine is written in the IDL language. Its source code can be found in the fi
m_correlate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = M_CORRELATE(X, Y)

Arguments

X

An integer, single-, or double-precision floating-point array ofm-columns andn-rows
that specifies the independent variable data. The columns of this two dimension
array correspond to then-element vectors of independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that speci
the dependent variable data.

Example

PRO MCORRELATE_TEST

; Define the independent (X) and dependent (Y) data:
X = [[0.477121, 2.0, 13.0], $

[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
M_CORRELATE IDL Reference Guide

737
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

; Compute the multiple correlation of Y on the first column of
; X. The result should be 0.798816.
PRINT, 'Multiple correlation of Y on 1st column of X:'
PRINT, M_CORRELATE(X[0,*], Y)

; Compute the multiple correlation of Y on the first two columns
; of X. The result should be 0.875872.
PRINT, 'Multiple correlation of Y on 1st two columns of X:'
PRINT, M_CORRELATE(X[0:1,*], Y)

; Compute the multiple correlation of Y on all columns of X. The
; result should be 0.877197.
PRINT, 'Multiple correlation of Y on all columns of X:'
PRINT, M_CORRELATE(X, Y)

END

IDL Output

Multiple correlation of Y on 1st column of X:
 0.798816
Multiple correlation of Y on 1st two columns of X:
 0.875872
Multiple correlation of Y on all columns of X:
 0.877196

See Also

A_CORRELATE, CORRELATE, C_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide M_CORRELATE

738

re

re

.

MACHAR

The MACHAR function determines and returns machine-specific parameters
affecting floating-point arithmetic. Information is returned in the form of a structu
with the fields listed below under“MACHAR Fields”.

MACHAR is based on the routinemachar described in section 20.1 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. See that section for mo
details on and sample values of the various parameters returned.

Syntax

Result = MACHAR([, /DOUBLE])

Arguments

None

Keywords

DOUBLE

The information returned is normally for single-precision floating-point arithmetic
Specify DOUBLE to see double-precision information.

MACHAR Fields

The following table lists the fields in the structure returned from the MACHAR
function:

Field Name Description

IBETA The radix in which numbers are represented. A longword
integer.

IT The number of base-IBETA digits in the floating-point mantissa
M. A longword integer.

Table 63: MACHAR Fields
MACHAR IDL Reference Guide

739

t

,

See Also

CHECK_MATH, “!VALUES” on page 2193, and“Special Floating-Point Values”in
Chapter 15 ofBuilding IDL Applcations.

IRND A code in the range 0 – 5 giving information on what type of
rounding is done and how underflow is handled. A longword
integer.

NGRD The number of “guard digits” used when truncating the produc
of two mantissas. A longword integer.

MACHEP The exponent of the smallest power of IBETA that, added to 1.0
gives something different from 1.0. A longword integer.

NEGEP The exponent of the smallest power of IBETA that, subtracted
from 1.0, gives something different from 1.0. A longword
integer.

IEXP The number of bits in the exponent. A longword integer.

MINEXP The smallest value of IBETA consistent with there being no
leading zeros in the mantissa. A longword integer.

MAXEXP The smallest positive value of IBETA that causes overflow. A
longword integer.

EPS The floating-point number IBETAMACHEP, loosely referred to
as the “floating-point precision.”

EPSNEG The floating-point number IBETANEGEP, which is another way
of determining floating-point precision.

XMIN The floating-point number IBETAMINEXP, generally the
smallest usable floating-point value.

XMAX The largest usable floating-point value, defined as the number
(1-EPSNEG)xIBETAMAXEXP

Field Name Description

Table 63: MACHAR Fields
IDL Reference Guide MACHAR

740

nd
MAKE_ARRAY

The MAKE_ARRAY function returns an array of the specified type, dimensions, a
initialization. This function enables you to dynamically create an array whose
characteristics are not known until run time.

Syntax

Result= MAKE_ARRAY ([D1, ...,D8] [, /BYTE | , /COMPLEX | , /DCOMPLEX | ,
/DOUBLE | , /FLOAT | , /INT | , /L64 | , /LONG | , /OBJ, | , /PTR | , /STRING | ,
/UINT | , /UL64 | , /ULONG] [, DIMENSION=vector] [, /INDEX] [, /NOZERO]
[, SIZE=vector] [, TYPE=type_code] [, VALUE= value])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.

DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.

DIMENSION

A vector of 1 to 8 elements specifying the dimensions of the result.

DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.
MAKE_ARRAY IDL Reference Guide

741

ne-

t of

ize

tion
L64

Set this keyword to create a 64-bit integer array.

INDEX

Set this keyword to initialize the array with each element set to the value of its o
dimensional subscript.

INT

Set this keyword to create an integer array.

LONG

Set this keyword to create a longword integer array.

NOZERO

Set this keyword to prevent the initialization of the array. Normally, each elemen
the resulting array is set to zero.

OBJ

Set this keyword to create an object reference array.

PTR

Set this keyword to create a pointer array.

SIZE

A size vector specifying the type and dimensions of the result. The format of a s
vector is given in the description of the SIZE function.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of the SIZE func
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.
IDL Reference Guide MAKE_ARRAY

742

r of
one
rted

lue 5,
ULONG

Set this keyword to create an unsigned longword integer array.

VALUE

The value to initialize each element of the resulting array. VALUE can be a scala
any type including structure types. The result type is taken from VALUE unless
of the other keywords that specify a type is also set. In that case, VALUE is conve
to the type specified by the other keyword prior to initializing the resulting array.

Example

To create a 3-element by 4-element integer array with each element set to the va
enter:

M = MAKE_ARRAY(3, 4, /INTEGER, VALUE = 5)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, STRARR, UINTARR, ULON64ARR, ULONARR
MAKE_ARRAY IDL Reference Guide

743

nts,

n

inent
S
are

et
ne
MAP_CONTINENTS

The MAP_CONTINENTS procedure draws continental boundaries, filled contine
political boundaries, coastlines, and/or rivers, over an existing map projection
established by MAP_SET. Outlines can be drawn in low or high-resolution (if the
optional high-resolution CIA World Map database is installed). If
MAP_CONTINENTS is called without any keywords, it draws low-resolution,
unfilled continent outlines.

MAP_SET must be called before MAP_CONTINENTS to establish the projectio
type, the center of the projection, polar rotation and geographic limits.

Syntax

MAP_CONTINENTS [, /COASTS] [, COLOR=index] [, /COUNTRIES]
[,FILL_CONTINENTS={1 | 2}[, ORIENTATION=value]] [, /HIRES]
[, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, MLINETHICK=value] [, /RIVERS]
[, SPACING=centimeters] [, /USA]

Keywords

COASTS

Set this keyword to draw coastlines, islands, and lakes instead of the default cont
outlines. Note that if you are using the low-resolution map database (if the HIRE
keyword isnotset), many islands are drawn even when COASTS is not set. If you
using the high-resolution map database (if the HIRES keywordis set), no islands are
drawn unless COASTS is set.

COLOR

The color index of the lines being drawn.

COUNTRIES

Set this keyword to draw political boundaries as of 1993.

FILL_CONTINENTS

Set this keyword to 1 to fill continent boundaries with a solid color. The color is s
by the COLOR keyword. Set this keyword to 2 to fill continent boundaries with a li
fill. For line filling, the COLOR, MLINESTYLE, MLINETHICK, ORIENTATION,
and SPACING keywords can be used to control the type of line fill.
IDL Reference Guide MAP_CONTINENTS

744

tion
on

the

he
HIRES

Set this keyword to use high-resolution map data instead of the default low-resolu
data. This option is only available if you have installed the optional high-resoluti
map datasets. If the high-resolution data is not available, a warning is printed and
low-resolution data is used instead.

This keyword can be used in conjunction with the COASTS, COUNTRIES,
FILL_CONTINENTS, and RIVERS keywords.

MLINESTYLE

The line style of the boundaries being drawn. The default is solid lines. Valid
linestyles are shown in the table below:

MLINETHICK

The thickness of the boundary or fill lines. The default thickness is 1.

ORIENTATION

Set this keyword to the counterclockwise angle in degrees from horizontal that t
line fill should be drawn. The default is 0. This keyword only has effect if the
FILL_CONTINENTS keyword is set to 2.

RIVERS

Set this keyword to draw rivers.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot Dot

5 Long Dashes

Table 64: IDL Linestyles
MAP_CONTINENTS IDL Reference Guide

745

has
rs.

to

p

SPACING

Set this keyword to the spacing, in centimeters, for a line fill. This keyword only
effect if the FILL_CONTINENTS keyword is set to 2. The default is 0.5 centimete

USA

Set this keyword to draw borders for each state in the United States in addition
continental boundaries.

Example

The following example demonstrates the use of map outlines to embellish a ma
projection:

; Load discrete color table:
tek_color

; Match color indices to colors we want to use:
black=0 & white=1 & red=2
green=3 & dk_blue=4 & lt_blue=5

; Set up an orthographic projection centered over the north
; Atlantic.Fill the hemisphere with dark blue. Specify black
; gridlines:
MAP_SET, /ORTHO, 40, -30, 23, /ISOTROPIC, $

/HORIZON, E_HORIZON={FILL:1, COLOR:dk_blue}, $
/GRID, COLOR=black

; Fill the continent boundaries with solid white:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=white

; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Add rivers, in light blue:
MAP_CONTINENTS, /RIVERS, COLOR=lt_blue

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=red, MLINETHICK=2

See Also

MAP_GRID, MAP_IMAGE, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_CONTINENTS

746

ing

sect

t

1,
MAP_GRID

The MAP_GRID procedure draws the graticule of parallels and meridians, accord
to the specifications established by MAP_SET. MAP_SET must be called before
MAP_GRID to establish the projection type, the center of the projection, polar
rotation and geographical limits.

Syntax

MAP_GRID [, /BOX_AXES] [, CHARSIZE=value] [, CLIP_TEXT=0]
[, COLOR=index] [, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, GLINETHICK=value]
[, LABEL=n{label_every_nth_gridline}] [, LATALIGN= value{0.0 to 1.0}]
[, LATDEL=degrees] [, LATLAB= longitude] [, LATNAMES=array, LATS=vector]
[, LONALIGN=value{0.0 to 1.0}] [, LONDEL=degrees] [, LONLAB= latitude]
[, LONNAMES=array, LONS=vector]
[, ORIENTATION=clockwise_degrees_from_horiz]

Keywords

BOX_AXES

Set this keyword to create box-style axes for map plots where the parallels inter
the sides, and the meridians intersect the bottom and top edges of the box.

CHARSIZE

The size of the characters used for the labels. The default is 1.

CLIP_TEXT

Set this keyword to a zero value to turn off clipping of text labels. By default, tex
labels are clipped.

COLOR

The color index for the grid lines.

GLINESTYLE

If set, the line style used to draw the grid of parallels and meridians. See
“LINESTYLE” on page 2181 for a list of available linestyles. The default index is
drawing a dotted line.
MAP_GRID IDL Reference Guide

747

EL
).

lue

the
ap

on

de

ld

nts in
If
 in

tude;

S in
GLINETHICK

The thickness of the grid lines. Default is 1.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LAB
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180), unless the LATS or LONS keyword is set to a
single value. In this case, the starting point is the value of LATS or LONS.

LATALIGN

This keyword controls the alignment of the text baseline for latitude labels. A va
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude in
grid. If this keyword is not set, a suitable value is determined from the current m
projection.

LATLAB

The longitude at which to place latitude labels. The default is the center longitude
the map.

LATNAMES

Set this keyword equal to an array specifying the names to be used for the latitu
labels. By default, this array is automatically generated in units of degrees. The
LATNAMES array can be either type string or any single numeric type, but shou
not be of mixed type.

When LATNAMES is specified, the LATS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more eleme
the LATNAMES array than in the LATS array, the extra LATNAMES are ignored.
there are more elements in the LATS array than in the LATNAMES array, labels
degrees will be automatically provided for the missing latitude labels.

The LATNAMES keyword can be also used when the LATS keyword is set to a
single value. It this case, the first label supplied will be used at the specified lati
subsequent names will be placed at the next latitude line to the north, wrapping
around the globe if appropriate. Caution should be used when using LATNAME
IDL Reference Guide MAP_GRID

748

is

es
ill
t to
l be
s:

e

lue

e in
t

 on

itude

ld

nts in
d.
els
conjunction with a single LATS value, since the number of visible latitude gridlines
dependent on many factors.

LATS

Set this keyword equal to a one or more element vector of latitudes for which lin
will be drawn (and optionally labeled). If LATS is omitted, appropriate latitudes w
be generated based on the value of the (optional) LATDEL keyword. If LATS is se
a single value, that latitude and a series of automatically generated latitudes wil
drawn (and optionally labeled). Automatically generated latitudes have the value

[...,LATS-LATDEL,LATS,LATS+LATDEL,...]

over the extent of the map. If LATS is a single value, that value is taken to be th
starting point for labelling (See the LABEL keyword).

LONALIGN

This keyword controls the alignment of the text baseline for longitude labels. A va
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitud
the grid. If this keyword is not set, a suitable value is determined from the curren
map projection.

LONLAB

The latitude at which to place longitude labels. The default is the center latitude
the map.

LONNAMES

Set this keyword equal to an array specifying the names to be used for the long
labels. By default, this array is automatically generated in units of degrees. The
LONNAMES array can be either type string or any single numeric type, but shou
not be of mixed type.

When LONNAMES is specified, the LONS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more eleme
the LONNAMES array than in the LONS array, the extra LONNAMES are ignore
If there are more elements in the LONS array than in the LONNAMES array, lab
in degrees will be automatically provided for the missing longitude labels.

The LONNAMES keyword can be also used when the LONS keyword is set to a
single value. It this case, the first label supplied will be used at the specified
MAP_GRID IDL Reference Guide

749

t,

le

nes
s
is

e

s to
longitude; subsequent names will be placed at the next longitude line to the eas
wrapping around the globe if appropriate. Caution should be used when using
LONNAMES in conjunction with a single LONS value, since the number of visib
longitude gridlines is dependent on many factors.

LONS

Set this keyword equal to a one or more element vector of longitudes for which li
will be drawn (and optionally labeled). If LONS is omitted, appropriate longitude
will be generated based on the value of the (optional) LONDEL keyword. If LONS
set to a single value, that longitudes and a series of automatically generated
longitudes will be drawn (and optionally labeled). Automatically generated
longitudes have the values:

[...,LONS-LONDEL,LONS,LONS+LONDEL,...]

over the extent of the map. If LONS is a single value, that value is taken to be th
starting point for labelling (See the LABEL keyword).

ORIENTATION

Set this keyword equal to an angle in degrees from horizontal (in the clockwise
direction) to rotate the labels.

Example

The following example creates an orthographic projection, defines which latitude
label, and provides text labels. Note that the text labels are rotated to match the
orientation of the map projection.

; Set up an orthographic projection:
MAP_SET, /ORTHO, 10, 20, 30, /ISOTROPIC, /CONTINENTS, /HORIZON
; Define latitudes of interest:
lats = [-80, -45, -30, -20, 0, 15, 27, 35, 45, 55, 75]
; Create string equivalents of latitudes:
latnames = strtrim(lats, 2)
; Label the equator:
latnames(where(lats eq 0)) = 'Equator'
; Draw the grid:
MAP_GRID, LABEL=2, LATS=lats, LATNAMES=latnames, LATLAB=7, $

LONLAB=-2.5, LONDEL=20, LONS=-15, ORIENTATION=-30

See Also

MAP_CONTINENTS, MAP_IMAGE, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_GRID

750

called

y
o

ber

e

left

left
MAP_IMAGE

The MAP_IMAGE function returns an image (or other dataset) warped to fit the
current map projection. This function provides an easy method for displaying
geographical data as an image on a map. The MAP_SET procedure should be
prior to calling MAP_IMAGE.

MAP_IMAGE works in image (graphic) space. For each destination pixel (when
COMPRESS is set to one) MAP_IMAGE calculates the latitude and longitude b
applying the inverse map projection. This latitude and longitude are then used t
index and interpolate theImage argument, obtaining an interpolated value for the
destination pixel. The time required by MAP_IMAGE depends mainly on the num
of pixels in the destination and the setting of the COMPRESS parameter.

MAP_IMAGE is more efficient than MAP_PATCH when the input data set is larg
compared to the destination area. If the converse is true, MAP_PATCH is more
efficient.

For more information, see“Image Display” in Chapter 14 ofUsing IDL.

Syntax

Result = MAP_IMAGE(Image [, Startx, Starty [, Xsize, Ysize]]
[, LATMIN= degrees{-90 to 90}] [, LATMAX= degrees{-90 to 90}]
[, LONMIN=degrees{-180 to 180}] [, LONMAX=degrees{-180 to 180}]
[, /BILINEAR] [, COMPRESS=value] [, SCALE=value] [, MAX_VALUE= value]
[, MIN_VALUE= value] [, MISSING=value])

Arguments

Image

A two-dimensional array containing the image to be overlaid on the map.

Startx

A named variable that, upon return, contains the X coordinate position where the
edge of the image should be placed on the screen.

Starty

A named variable that, upon return, contains the Y coordinate position where the
edge of the image should be placed on the screen.
MAP_IMAGE IDL Reference Guide

751

in

 in

.

ults
Xsize

A named variable that, upon return, contains the width of the image expressed
graphic coordinate units. If the current graphics device uses scalable pixels, the
values ofXsize andYsize should be passed to the TV procedure.

Ysize

A named variable that, upon return, contains the height of the image expressed
graphic coordinate units. If the current graphics device uses scalable pixels, the
values ofXsize andYsize should be passed to the TV procedure.

Keywords

LATMIN

The latitude corresponding to the first row ofImage. The default is -90 degrees. Note
also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LATMAX

The latitude corresponding to the last row ofImage. The default value is 90 degrees
Note also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LONMIN

The longitude corresponding to the first (leftmost) column of theImage argument.
Select LONMIN so that -180° ≤ LONMIN ≤ 180°. The default value is -180.

LONMAX

The longitude corresponding to the last (rightmost) column of theImage argument.
Select LONMAX so that it is larger than LONMIN. If the longitude of the last
column is equal to (LONMIN - (360. /Nx)) MODULO 360, it is assumed that the
image covers all longitudes (Nx being the total number of columns in theImage
argument).

BILINEAR

Set this flag to use bilinear interpolation to soften edges in the returned image,
otherwise, nearest neighbor sampling is used.

COMPRESS

This keyword, the interpolation compression flag, controls the accuracy of the res
from MAP_IMAGE. The default is 4 for output devices with fixed pixel sizes. The
inverse projection transformation is applied to eachith row and column. Setting this
IDL Reference Guide MAP_IMAGE

752

urate
y

ls
s an

, and

sing

ata,

ice is

ple
keyword to a higher number saves time while lower numbers produce more acc
results. Setting this keyword to 1 solves the inverse map transformation for ever
pixel of the output image.

SCALE

Set this keyword to the pixel/graphics scale factor for devices with scalable pixe
(e.g., PostScript). The default is 0.02 pixels/graphic coordinate. This setting yield
approximate output image size of 350 x 250. Make this number larger for more
resolution (and larger PostScript files and images), or smaller for faster, smaller
less accurate images.

MAX_VALUE

Data points with values equal to or greater than this value will be treated as mis
data, and will be set to the value specified by the MISSING keyword.

MIN_VALUE

Data points with values equal to or less than this value will be treated as missing d
and will be set to the value specified by the MISSING keyword.

MISSING

The pixel value to set areas outside the valid map coordinates. If this keyword is
omitted, areas outside the map are set to 255 (white) if the current graphics dev
PostScript, otherwise they are set to 0.

Example

The following lines of code set up an orthographic map projection and warp a sim
image to it.

; Create a simple image to be warped:
image = BYTSCL(SIN(DIST(400)/10))

; Display the image so we can see what it looks like before
; warping:
TV, image
latmin = -65
latmax = 65

; Left edge is 160 East:
lonmin = 160

; Right edge is 70 West = +360:
lonmax = -70 + 360
MAP_SET, 0, -140, /ORTHOGRAPHIC, /ISOTROPIC, $
MAP_IMAGE IDL Reference Guide

753
LIMIT=[latmin, lonmin, latmax, lonmax]
result = MAP_IMAGE(image,Startx,Starty, COMPRESS=1, $

LATMIN=latmin, LONMIN=lonmin, $
LATMAX=latmax, LONMAX=lonmax)

; Display the warped image on the map at the proper position:
TV, result, Startx, Starty

; Draw continent outlines:
MAP_GRID, latdel=10, londel=10, /LABEL, /HORIZON

; Draw gridlines over the map and image:
MAP_CONTINENTS, /coasts

See Also

MAP_CONTINENTS, MAP_GRID, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_IMAGE

754

ET

TE
 image

ge

le

p. If

rder.
of a
MAP_PATCH

The MAP_PATCH function returns an image (or other dataset) warped to fit the
current map projection. Mapping coordinates should be setup via a call to MAP_S
before using MAP_PATCH.

MAP_PATCH works in object (data) space. It divides the input data set,Image_Orig,
into triangular patches, either directly from the implicit rectangular grid, or by
triangulating the data points on the surface of the sphere using the TRIANGULA
procedure. These triangular patches are then projected to the map plane in the
space of the destination array and then interpolated. The time required by
MAP_PATCH depends mainly on the number of elements in the input array.

MAP_PATCH is more efficient than MAP_IMAGE when the destination area is lar
compared to the input data set. If the converse is true, MAP_IMAGE is more
efficient.

This routine is written in the IDL language. Its source code can be found in the fi
map_patch.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = MAP_PATCH(Image_Orig [, Lons, Lats] [, LAT0=value] [, LAT1=value]
[, LON0=value] [, LON1=value] [, MAX_VALUE= value] [, MISSING=value]
[, /TRIANGULATE] [, XSIZE=variable] [, XSTART=variable] [, YSIZE=variable]
[, YSTART=variable])

Arguments

Image_Orig

A one- or two-dimensional array that contains the data to be overlaid on the ma
the TRIANGULATE keyword is not set,Image_Orig must be a two-dimensional
array. Rows and columns must be arranged in increasing longitude and latitude o
Also, the corner points of each cell must be contiguous. This means that the seam
map must lie on a cell boundary, not in its interior, splitting the cell.

Lons

An optional vector that contains the longitude value for each column inImage_Orig.
If Lonsis a one-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i]; if Lonsis
a two-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i,j].
MAP_PATCH IDL Reference Guide

755

ning

ing

ws)

tes
ult

 This
and
This argument can be omitted if the longitudes are equally-spaced and the begin
and ending longitudes are specified with the LON0 and LON1 keywords.

Lats

An optional vector that contains the latitude value for each row inImage_Orig. If
Lats is a one-dimensional vector, latitude (Image_Orig[i,j]) = Lats[i]; if Lats is a two-
dimensional vector, latitude (Image_Orig[i,j]) = Lats[i,j].

This argument can be omitted if the latitudes are equally-spaced and the beginn
and ending latitudes are specified with the LAT0 and LAT1 keywords.

Keywords

LAT0

The latitude of the first row of data. The default is -90.

LAT1

The latitude of the last row of data. The default is +90.

LON0

The longitude of the first column of data. The default is -180.

LON1

The longitude of the last column of data. The default is 180 - (360/Number-of-Ro

MAX_VALUE

The largest data value to be warped. Values inImage_Origgreater than this value are
considered missing. Pixels in the output image that correspond to these missing
values are set to the value specified by the MISSING keyword.

MISSING

Set this keyword to a value to be used for areas outside the valid map coordina
(i.e., the “background color”). If the current plotting device is PostScript, the defa
is 255 (white). Otherwise, the default is 0 (usually black).

TRIANGULATE

Set this keyword to convert the input data to device space and triangulate them.
keyword must be specified if the connectivity of the data points is not rectangular
monotonic in device space.
IDL Reference Guide MAP_PATCH

756

ssed

e of

ssed

m

XSIZE

Set this keyword to a named variable in which the width of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be pa
to the TV procedure.

XSTART

Set this keyword to a named variable in which the X coordinate where the left edg
the image should be placed on the screen is returned.

YSIZE

Set this keyword to a named variable in which the height of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be pa
to the TV procedure.

YSTART

Set this keyword to a named variable in which the Y coordinate where the botto
edge of the image should be placed on the screen is returned.

Example

; Form a 24 x 24 dataset on a sphere:
n = 24

; Specify equally gridded latitudes:
lat = replicate(180./(n-1),n) # findgen(n) - 90

; Specify equally gridded longitudes:
lon = findgen(n) # replicate(360./(n-1), n)

; Convert to Cartesian coordinates:
x = cos(lon * !dtor) * cos(lat * !dtor)
y = sin(lon * !dtor) * cos(lat * !dtor)
z = sin(lat * !dtor)

; Set interpolation function to scaled distance squared
; from (1,1,0):
f = BYTSCL((x-1)^2 + (y-1)^2 + z^2)

; Set up projection:
MAP_SET, 90, 0, /STEREO, /ISOTROPIC, /HORIZ

; Grid and display the data:
MAP_PATCH IDL Reference Guide

757
TV, MAP_PATCH(f, XSTART=x0, YSTART=y0), x0, y0

; Draw gridlines over the map and image:
MAP_GRID

; Draw continent outlines:
MAP_CONTINENTS

; Draw a horizon line:
MAP_HORIZON

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE, MAP_SET
IDL Reference Guide MAP_PATCH

758

d/or

ent

le of
not
MAP_PROJ_INFO

The MAP_PROJ_INFO procedure returns information about the current map an
the available projections. To establish a current projection, mapping parameters
should be setup via a call to MAP_SET.

Syntax

MAP_PROJ_INFO [,iproj] [, AZIMUTHAL= variable] [, CIRCLE=variable]
[, CYLINDRICAL= variable] [, /CURRENT] [, LL_LIMITS=variable]
[, NAME=variable] [, PROJ_NAMES=variable] [, UV_LIMITS= variable]
[, UV_RANGE=variable]

Arguments

Iproj

The projection index. If the CURRENT keyword is set, then the index of the curr
map projection is returned in Iproj.

Keywords

AZIMUTHAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is azimuthal and 0 otherwise.

CIRCLE

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is circular or elliptical and 0 otherwise.

CURRENT

Set this keyword to use the current projection index and return that index inIproj.

CYLINDRICAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is cylindrical and 0 otherwise.

LL_LIMITS

Set this keyword to a named variable that will contain the geocoordinate rectang
the current map in degrees, [Latmin, Lonmin, Latmax, Lonmax]. This range may
MAP_PROJ_INFO IDL Reference Guide

759

l to
e

.

he
ame

e

he
to

re
always be available, especially if the LIMIT keyword was not specified in the cal
MAP_SET. If either or both the longitude and latitude range are not available, th
minimum and maximum values will be set to zero.

NAME

Set this keyword to a named variable that will contain the name of the projection

PROJ_NAMES

Set this keyword to a named variable that will contain a string array containing t
names of the available projections, ordered by their indices. The first projection n
is stored in element one.

UV_LIMITS

Set this keyword to a named variable that will contain the UV bounding box of th
current map, [Umin, Vmin, Umax, Vmax].

UV_RANGE

Set this keyword to a named variable that will contain the UV coordinate limits of t
selected map projection, [Umin, Vmin, Umax, Vmax]. UV coordinates are mapped
normalized coordinates using the system variables !X.S and !Y.S. These limits a
dependent upon the selected projection, but independent of the current map.

Example

; Establish a projection
MAP_SET, /MERCATOR

;Obtain projection characteristics
MAP_PROJ_INFO, /CURRENT, NAME=name, AZIMUTHAL=az, $
CYLINDRICAL=cyl, CIRCLE=cir

On return, the variables will be set as follows:

AZIM INT = 0
CIRC INT = 0
CYL INT = 1
NAME STRING ‘Mercator’

See Also

MAP_SET
IDL Reference Guide MAP_PROJ_INFO

760

tions.

its
d to
e to
s of

t be
MAP_SET

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of several possible map projec

The type of map projection, the map center, polar rotation and geographical lim
can all be customized. The system variable !MAP1 retains the information neede
effect coordinate conversions to the plane and, inversely, from the projection plan
points on the earth in latitude and longitude. Users should not change the value
the fields in !MAP directly.

MAP_SET can also be made to plot the grid of latitude and longitude lines and
continental boundaries by setting the keywords GRID and CONTINENTS. Many
other types of boundaries can be overplotted on maps using the
MAP_CONTINENTS procedure.

Note
If the graphics device is changed, MAP_SET (and all other mapping calls) mus
re-called for the projection to be set up properly for the new device.

Syntax

MAP_SET [,P0lat, P0lon, Rot]

Keywords—Projection Types: [, /AITOFF | , /ALBERS | , /AZIMUTHAL | ,
/CONIC | , /CYLINDRICAL | , /GNOMIC | , /GOODESHOMOLOSINE | ,
/HAMMER | , /LAMBERT | , /MERCATOR | , /MILLER | , /MOLLEWIDE | ,
/ORTHOGRAPHIC | , /ROBINSON | , /SATELLITE | , /SINUSOIDAL | ,
/STEREOGRAPHIC | , /TRANSVERSE_MERCATOR]

Keywords—Map Characteristics: [, /ADVANCE] [, CHARSIZE=value] [, /CLIP]
[, COLOR=index] [, /CONTINENTS [, CON_COLOR=index] [, /HIRES]]
[, E_CONTINENTS=structure] [, E_GRID=structure] [, E_HORIZON=structure]
[, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, GLINETHICK=value] [, /GRID]
[, /HORIZON] [, LABEL=n{label everynth gridline}] [, LATALIGN= value{0.0 to
1.0}] [, LATDEL= degrees] [, LATLAB= longitude] [, LONDEL=degrees]
[, LONLAB= latitude] [, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, MLINETHICK= value] [, /NOBORDER] [, /NOERASE] [, TITLE=string]
[, /USA] [, XMARGIN=value] [, YMARGIN= value]
MAP_SET IDL Reference Guide

761

he
ian

e

Keywords—Projection Parameters:
[, CENTRAL_AZIMUTH=degrees_east_of_north] [, ELLIPSOID=array]
[, /ISOTROPIC] [, LIMIT=vector] [, SAT_P=vector] [, SCALE=value]
[, STANDARD_PARALLELS=array]

Graphics Keywords: [, POSITION=[X0, Y0, X1, Y1]] [, /T3D] [, ZVALUE= value{0
to 1}]

Arguments

P0lat

The latitude of the point on the earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees North of the equator andP0lat must
be in the range: -90° ≤ P0lat ≤ 90°.

If P0lat is not set, the default value is 0.

P0lon

The longitude of the point on the earth’s surface to be mapped to the center of t
map projection. Longitude is measured in degrees east of the Greenwich merid
and P0lon must be in the range: -180° ≤ P0lon ≤ 180°.

If P0lon is not set, the default value is zero.

Rot

Rotis the angle through which the North direction should be rotated around the linL
between the earth’s center and the point (P0lat, P0lon). Rot is measured in degrees
with the positive direction being clockwise rotation around lineL. Rot can have
values from -180° to 180°.

If the center of the map is at the North pole, North is in the directionP0lon + 180°. If
the origin is at the South pole, North is in the directionP0lon.

The default value ofRot is 0 degrees.

Keywords—Projection Types

AITOFF

Set this keyword to select the Aitoff projection.
IDL Reference Guide MAP_SET

762

de

al

this

ot
ALBERS

Set this keyword to select the Albers equal-area conic projection. To specify the
latitude of the standard parallels, see“STANDARD_PARALLELS” on page 769.

AZIMUTHAL

Set this keyword to select the azimuthal equidistant projection.

CONIC

Set this keyword to select Lambert’s conformal conic projection with one or two
standard parallels. To specify the latitude of the standard parallels, see
“STANDARD_PARALLELS” on page 769. This keyword can be used with the
ELLIPSOID keyword.

CYLINDRICAL

Set this keyword to select the cylindrical equidistant projection. Cylindrical is the
default map projection.

GOODESHOMOLOSINE

Set this keyword to select the Goode’s Homolosine Projection. The central latitu
for this projection is fixed on the equator, 0 degrees latitude. This projection is
interrupted, as the inventor originally intended, and is best viewed with the centr
longitude set to 0.

GNOMIC

Set this keyword to select the gnomonic projection. If default clipping is enabled,
projection will display a maximum of± 60° from the center of the projection area
when the center is at either the equator or one of the poles.

HAMMER

Set this keyword to select the Hammer-Aitoff equal area projection.

LAMBERT

Set this keyword to select Lambert’s azimuthal equal area projection.

MERCATOR

Set this keyword to select the Mercator projection. Note that this projection will n
display regions within± 10° of the poles of projection.
MAP_SET IDL Reference Guide

763

ill

de

ust
 the

g is

or
e

MILLER

Set this keyword to select the Miller Cylindrical projection.

MOLLWEIDE

Set this keyword to select the Mollweide projection.

ORTHOGRAPHIC

Set this keyword to select the orthographic projection. Note that this projection w
display a maximum of± 90° from the center of the projection area.

ROBINSON

Set this keyword to select the Robinson pseudo-cylindrical projection.

SATELLITE

Set this keyword to select the satellite projection.

For the satellite projection, P0LAT and P0LON represent the latitude and longitu
of the sub-satellite point. Three additional parameters,P, Omega, andGamma
(supplied as a three-element vector argument to the SAT_P keyword), are also
required.

Note
Since all meridians and parallels are oblique lines or arcs, the LIMIT keyword m
be supplied as an eight-element vector representing four points that delineate
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.

SINUSOIDAL

Set this keyword to select the sinusoidal projection.

STEREOGRAPHIC

Set this keyword to select the stereographic projection. Note that if default clippin
enabled, this projection will display a maximum of± 90° from the center of the
projection area.

TRANSVERSE_MERCATOR

Set this keyword to select the Transverse Mercator projection, also called the UTM
Gauss-Krueger projection. This projection works well with the ellipsoid form. Th
IDL Reference Guide MAP_SET

764

the

e

t. If

TS
default ellipsoid is the Clarke 1866 ellipsoid. To change the default ellipsoid
characteristics, see“ELLIPSOID” on page 768.

Keywords—Map Characteristics

ADVANCE

Set this keyword to advance to the next frame when the screen is set to display
multiple plots. Otherwise the entire screen is erased.

CHARSIZE

The size of the characters used for the labels. The default is 1.

CLIP

Set this keyword to clip the map using the map-specific graphics technique. The
default is to perform map-specific clipping. Set CLIP=0 to disable clipping.

Note
Clipping controlled by the CLIP keyword to MAP_SET applies only to the map
itself. In order to disable general clipping within the plot window, you must set
system variable !P.NOCLIP=1. For more information, see“NOCLIP” on
page 2182.

COLOR

The color index of the map border in the plotting window.

CONTINENTS

Set this keyword to plot the continental boundaries. Note that if you are using th
low-resolution map database (if the HIRES keyword isnot set), outlines for
continents, islands, and lakes are drawn when the CONTINENTS keyword is se
you are using the high-resolution map database (if the HIRES keywordis set), only
continental outlines are drawn when the CONTINENTS keyword is set. To draw
islands and lakes when using the high-resolution map database, use the COAS
keyword to the MAP_CONTINENTS procedure.

CON_COLOR

The color index for continent outlines if CONTINENTS is set.
MAP_SET IDL Reference Guide

765

the

ns.
id

et.

t.
E_CONTINENTS

Set this keyword to a structure containing extra keywords to be passed to
MAP_CONTINENTS. For example, to fill continents, the FILL keyword of
MAP_CONTINENTS is set to 1. To fill the continents with MAP_SET, specify
E_CONTINENTS={FILL:1}.

E_GRID

Set this keyword to a structure containing extra keywords to be passed to
MAP_GRID. For example, to label every other gridline on a grid of parallels and
meridians, the LABEL keyword of MAP_GRID is set to 2. To do the same with
MAP_SET, specify E_GRID={LABEL:2}.

E_HORIZON

Set this keyword to a structure containing extra keywords to be set as modifiers to
HORIZON keyword.

Example

To draw a Stereographic map, with the sphere filled in color index 3, enter:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, $
E_HORIZON={FILL:1, COLOR:3}

GLINESTYLE

Set this keyword to a line style index used to draw the grid of parallels and meridia
SeeMLINESTYLE for a list of available linestyles. The default is 1, drawing a gr
of dotted lines.

GLINETHICK

Set this keyword to the thickness of the gridlines drawn if the GRID keyword is s
The default is 1.

GRID

Set this keyword to draw the grid of parallels and meridians.

HIRES

Set this keyword to use the high-resolution continent outlines when drawing
continents. This keyword only has effect if the CONTINENTS keyword is also se
IDL Reference Guide MAP_SET

766

EL
).

the

e of

rawn

the

de
is

the
HORIZON

Set this keyword to draw a horizon line, when the projection in use permits. The
horizon delineates the boundary of the sphere. SeeE_HORIZON for more options.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LAB
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180).

LATALIGN

The alignment of the text baseline for latitude labels. A value of 0.0 left justifies
label, 1.0 right justifies it, and 0.5 centers it.

LATLAB

The longitude at which to place latitude labels. The default is the center longitud
the map.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude d
by the MAP_GRID procedure. If this keyword is not set, a suitable value is
determined from the current map projection.

LONALIGN

The alignment of the text baseline for longitude labels. A value of 0.0 left justifies
label, 1.0 right justifies it, and 0.5 centers it.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitu
drawn by the MAP_GRID procedure. If this keyword is not set, a suitable value
determined from the current map projection.

LONLAB

The latitude at which to place longitude labels. The default is the center latitude of
map.
MAP_SET IDL Reference Guide

767

 the

t of

lt is

the
MLINESTYLE

The line style index used for continental boundaries. Linestyles are described in
table below. The default is 0 for solid.

MLINETHICK

The line thickness used for continental boundaries. The default is 2.

NOBORDER

Set this keyword to not draw a border around the map. The map will fill the exten
the plotting region. If NOBORDER isnot specified, a margin equalling 1% of the
plotting region will be placed between the map and the border.

NOERASE

Set this keyword to have MAP_SET not erase the current plot window. The defau
to erase before drawing the map.

TITLE

A string containing the main title for the map. The title appears centered above
map window.

USA

Set this keyword to draw borders for each state in the United States.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot Dot

5 Long Dashes

Table 65: IDL Linestyles
IDL Reference Guide MAP_SET

768

and
used

he
n will

his
,

uth

:

tions.
XMARGIN

A scalar or two-element vector that specifies the vertical margin between the map
screen border in character units. If a scalar is specified, the same margin will be
on both sides of the map.

YMARGIN

A scalar or two-element vector that specifies in the horizontal margin between t
map and screen border in character units. If a scalar is specified, the same margi
be used on the top and bottom of the map.

Keywords—Projection Parameters

CENTRAL_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. T
keyword can be used with the following projections: Cylindrical, Mercator, Miller
Mollweide, and Sinusoidal. The default is 0 degrees. The pole is placed at an azim
of CENTRAL_AZIMUTH degrees CCW of North, as specified by theRotargument.

ELLIPSOID

Set this keyword to a 3-element array, [a, e2, k0], defining the ellipsoid for the
Transverse Mercator or Lambert Conic projections.

• a: equatorial radius, in meters.

• e2: eccentricity squared. e2 = 2 * f - f 2, where f = 1 - b/a (a: equatorial radius, b
polar radius; in meters).

• k0: scale on the central meridian.

The default is the Clarke 1866 ellipsoid, [6378206.4, 0.00676866, 0.9996].

This keyword can be used with the CONIC keyword.

ISOTROPIC

Set this keyword to produce a map that has the same scale in the X and Y direc

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2183 for more information.
MAP_SET IDL Reference Guide

769

on

 on

e

al.

tion

o of
or

o

LIMIT

A four- or eight-element vector that specifies the limits of the map.

As a four-element vector, LIMIT has the form [Latmin, Lonmin, Latmax, Lonmax] that
specifies the boundaries of the region to be mapped. (Latmin, Lonmin) and (Latmax,
Lonmax) are the latitudes and longitudes of two points diagonal from each other
the region’s boundary.

As an eight-element vector, LIMIT has the form: [Lat0, Lon0, Lat1, Lon1, Lat2, Lon2,
Lat3, Lon3]. These four latitude/longitude pairs describe, respectively, four points
the left, top, right, and bottom edges of the map extent.

ROBINSON

Set this keyword to select the Robinson pseudo-cylindrical projection.

SAT_P

A three-element vector containing three parameters,P, Omega, andGamma, that
must be supplied when using the SATELLITE projection where:

• P is the distance of the point of perspective (camera) from the center of th
globe, expressed in units of the radius of the globe.

• Omegais the downward tilt of the camera, in degrees from the new horizont
If both Gamma andOmega are 0, a Vertical Perspective projection results.

• Gammais the angle, expressed in degrees clockwise from north, of the rota
of the projection plane.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the rati
1:scale. If SCALE is not specified, the map is fit to the window. The typical scale f
global maps is in the ratio of between 1:100 million and 1:200 million. For
continents, the typical scale is in the ratio of approximately 1:50 million. For
example,SCALE=100E6 sets the scale at the center of the map to 1:100 million,
which is in the same ratio as 1 inch to 1578 miles (1 cm to 1000 km).

STANDARD_PARALLELS

Set this keyword to a one- or two-element array defining, respectively, one or tw
standard parallels for conic projections.
IDL Reference Guide MAP_SET

770
Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above.POSITION, T3D, ZVALUE.

Examples

To draw a Stereographic map, with the sphere filled in color index 3:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, E_HORIZON={FILL:1,
COLOR:3}

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE
MAP_SET IDL Reference Guide

771

one-
!C is

d to

ing-

lue:
MAX

The MAX function returns the value of the largest element ofArray. The type of the
result is the same as the type ofArray.

Syntax

Result = MAX(Array [, Max_Subscript] [, MIN= variable] [, /NAN])

Arguments

Array

The array to be searched.

Max_Subscript

A named variable that, if supplied, is converted to a long integer containing the
dimensional subscript of the maximum element. Otherwise, the system variable
set to the one-dimensional subscript of the maximum element.

Keywords

MIN

A named variable to receive the value of the minimum array element. If you nee
find both the minimum and maximum array values, use this keyword to avoid
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

Example 1

This example prints the maximum value in an array, and the subscript of that va

; Create a simple two-dimensional array:
D = DIST(100)
IDL Reference Guide MAX

772
; Print the maximum value in array D and its linear subscript:
PRINT, 'Maximum value in array D is:', MAX(D, I)
PRINT, 'The subscript of the maximum value is', I

IDL Output

Maximum value in array D is: 70.7107
The subscript of the maximum value is 5050

Example 2

To convert I to a two-dimensional subscript, use the commands:

IX = I MOD 100
IY = I/100
PRINT, 'The maximum value of D is at location ('+ STRTRIM(IX, 1) $

+ ', ' + STRTRIM(IY, 1) + ')'

IDL Output

The maximum value of D is at location (50, 50)

See Also

MIN
MAX IDL Reference Guide

773

le

ple

ple

ian

e
ce
MD_TEST

The MD_TEST function tests the hypothesis that a sample population is random
against the hypothesis that it is not random. The result is a two-element vector
containing the nearly-normal test statisticZ and its associated probability. This two-
tailed function is an extension of the “Runs Test for Randomness” and is often
referred to as the Median Delta Test.

This routine is written in the IDL language. Its source code can be found in the fi
md_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = MD_TEST(X [, ABOVE=variable] [, BELOW=variable]
[, MDC=variable])

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Keywords

ABOVE

Use this keyword to specify a named variable that will contain the number of sam
population values greater than the median ofX.

BELOW

Use this keyword to specify a named variable that will contain the number of sam
population values less than the median ofX.

MDC

Use this keyword to specify a named variable that will contain the number of Med
Delta Clusters (sequential values ofX above and below the median).

Example

This example tests the hypothesis thatX represents a random population against th
hypothesis that it does not represent a random population at the 0.05 significan
level:
IDL Reference Guide MD_TEST

774

and
; Define a sample population:
X = [2.00, 0.90, -1.44, -0.88, -0.24, 0.83, -0.84, -0.74, $

0.99, -0.82, -0.59, -1.88, -1.96, 0.77, -1.89, -0.56, $
-0.62, -0.36, -1.01, -1.36]

; Test the hypothesis that X represents a random population against
; the hypothesis that it does not represent a random population at
; the 0.05 significance level:
result = MD_TEST(X, MDC = mdc)
PRINT, result

IDL Output

0.459468 0.322949

The computed probability (0.322949) is greater than the 0.05 significance level
therefore we do not reject the hypothesis thatX represents a random population.

See Also

CTI_TEST, FV_TEST, KW_TEST, R_TEST, RS_TEST, S_TEST, TM_TEST,
XSQ_TEST
MD_TEST IDL Reference Guide

775

L

ing-
MEAN

The MEAN function computes the mean of a numeric vector. MEAN calls the ID
function MOMENT.

Syntax

Result = MEAN(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, integer, double-precision or floating-point vector.

Keywords

DOUBLE

If this keyword is set, computations are done in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the standard deviation:
result = MEAN(x)

; Print the result:
PRINT, result

IDL Output

66.7333

See Also

KURTOSIS, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide MEAN

776

and
nd

IAN

ing-
MEANABSDEV

The MEANABSDEV function computes the mean absolute deviation (average
deviation) of ann-element vector.

Syntax

Result = MEANABSDEV(X [, /DOUBLE] [, /MEDIAN] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

Set this keyword to force computations to be done in double precision arithmetic
to return a double precision result. If this keyword is not set, the computations a
result depend upon the type of the input data (integer and float data return float
results, while double data returns double results). This has no effect if the MED
keyword is set.

MEDIAN

Set this keyword to return the average deviation from the median. By default, if
MEDIAN is not set, MEANABSDEV will return the average deviation from the
mean.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define an n-element vector:
x = [1, 1, 1, 2, 5]

; Compute average deviation from the mean:
result = MEANABSDEV(x)
MEANABSDEV IDL Reference Guide

777
; Print the result:
PRINT, result

IDL Output

1.20000

See Also

KURTOSIS, MEAN, MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide MEANABSDEV

778

ian
g
d of
ot

h
10,4]

int,

s
 a

lter.

e
he
MEDIAN

The MEDIAN function returns the median value (elementn/2) of Array if one
parameter is present, or applies a one- or two-dimensional median filter of the
specified width toArray and returns the result. In an ordered set of values, the med
is a value with an equal number of values above and below it. Median smoothin
replaces each point with the median of the one- or two-dimensional neighborhoo
a given width. It is similar to smoothing with a boxcar or average filter but does n
blur edges larger than the neighborhood.

In addition, median filtering is effective in removing “salt and pepper” noise,
(isolated high or low values). The scalar median is simply the middle value, whic
should not be confused with the average value (e.g., the median of the array [1,
is 4, while the average is 5.)

Syntax

Result = MEDIAN(Array [, Width] [, /EVEN])

Arguments

Array

The array to be processed. IfWidth is also supplied, andArray is of byte type, the
result is of byte type. All other types are converted to single-precision floating-po
and the result is floating-point.Array can have only one or two dimensions.

If Width is not given,Array can have any valid number of dimensions. The array i
converted to single-precision floating-point, and the median value is returned as
floating-point value.

Width

The size of the one or two-dimensional neighborhood to be used for the median fi
The neighborhood has the same number of dimensions asArray.

Keywords

EVEN

If the EVEN keyword is set whenArray contains an even number of points (i.e. ther
is no middle number), MEDIAN returns the average of the two middle numbers. T
returned value may not be an element ofArray. If Array contains an odd number of
points, MEDIAN returns the median value. The returned value will always be an
MEDIAN IDL Reference Guide

779

ts
element ofArray—even if the EVEN keyword is set—since an odd number of poin
will always have a single middle value.

Example

; Create a simple image and display it:
D = SIN(DIST(200)^0.8) & TVSCL, D

; Display D median-filtered with a width of 9:
TVSCL, MEDIAN(D, 9)

; Print the median of a six-element array, with and without
; the EVEN keyword:
PRINT, MEDIAN([1, 2, 3, 4], /EVEN)
PRINT, MEDIAN([1, 2, 3, 4])

IDL Output

2.50000
3.00000

See Also

DIGITAL_FILTER, LEEFILT, MOMENT, SMOOTH
IDL Reference Guide MEDIAN

780

and
y
.

he

ed
f

MESH_CLIP

The MESH_CLIP function clips a polygonal mesh to an arbitrary plane in space
returns a polygonal mesh of the remaining portion. An auxiliary array of data ma
also be passed and clipped. This array can have multiple values for each vertex

Syntax

Result= MESH_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of triangles in the returned mesh.

Arguments

Plane

Input four element array describing the equation of the plane to be clipped to. T
elements are the coefficients (a,b,c,d) of the equationax+by+cz+d=0.

Vertsin

Input array of polygonal vertices [3,n].

Connin

Input polygonal mesh connectivity array.

Vertsout

Output array of polygonal vertices.

Connout

Output polygonal mesh connectivity array.

Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and return
through AUXDATA_OUT. The trailing array dimension must match the number o
vertices in the Vertsin array.
MESH_CLIP IDL Reference Guide

781

ted

d

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of interpola
auxiliary data.

CUT_VERTS

Set this keyword to a named variable that will contain an output array of vertex
indices (into Vertsout) of the vertices which are considered to be “on” the clippe
surface.
IDL Reference Guide MESH_CLIP

782

ing
nal

erve

arge
As a
s 20-

t if

he
n

 to
ts of
MESH_DECIMATE

The MESH_DECIMATE function reduces the density of geometry while preserv
as much of the original data as possible. The classic case is to thin out a polygo
mesh to use fewer polygons while preserving the mesh form. The decimation
algorithm removes triangles from the mesh. This is done in such a way as to pres
the mesh edges and to remove roughly planar polygons.

Decimation is a memory and CPU intensive process. Expect the decimation of l
models to require large amounts of memory and dozens of seconds to complete.
reference, a model with approximately 36,000 vertices and 70,000 faces require
30 seconds to decimate to 10% of its original size on a typical NT PC with 64Mb
RAM and 333MHz Pentium processor.

If the input polygons are not all triangles, IDL converts the polygons to triangles
before decimating. For best results, the polygons should all be convex. Note tha
the input polygons are not all triangles, then IDL may return more polygons (as
triangles) than were submitted as input, even after decimating a percentage of t
polygons. IDL applies the PERCENT_POLYGONS keyword value to the polygo
list after converting the list to triangles to approximate the same visual effect of
decimating the requested percentage of polygons.

IDL takes steps to deal with input data with a wide variation in magnitude. For
example, a troublesome input polygon list may have X and Y values in the 10^1
10^2 range, while the Z values may have magnitudes of about 10^20. If the resul
the decimation are unacceptable, consider scaling the input data so that the
magnitudes of the data are closer together.

Syntax

Result = MESH_DECIMATE (Verts, Conn, Connout [, /VERTICES]
[, PERCENT_VERTICES=percent| , PERCENT_POLYGONS=percent])

Return Value

The return value is the number of triangles in the output connectivity array.

Arguments

Verts

Input array of polygonal vertices [3,n].
MESH_DECIMATE IDL Reference Guide

783

 array.

nout

out

ces.
Conn

Input polygonal mesh connectivity array.

Connout

Output polygonal mesh connectivity array.

Note
Some of the vertices in the Verts array may not be referenced by the Connout

Keywords

PERCENT_VERTICES

Set this keyword to the percent of the original vertices to be returned in the Con
array. It specifies the amount of decimation to perform.

PERCENT_POLYGONS

Set this keyword to the percent of the original polygons to be returned in the Conn
array. It specifies the amount of decimation to perform.

Note
PERCENT_VERTICES and PERCENT_POLYGONS are mutually exclusive
keywords.

VERTICES

If this keyword is set, the decimation is allowed to add or remove vertices. By
default, the output connectivity array is restricted to the set of original input verti
IDL Reference Guide MESH_DECIMATE

784

L to
solid,

dge

.

ions.
MESH_ISSOLID

The MESH_ISSOLID function computes various mesh properties and enables ID
determine if a mesh encloses space (is a solid). If the mesh can be considered a
routines can compute the volume of the mesh.

Syntax

Result= MESH_ISSOLID (Conn)

Return Value

Returns 1 if the input mesh fully encloses space (assuming no polygonal
interpenetration) or 0 otherwise. A mesh is defined to fully enclose space if each e
in the input mesh appears an even number of times in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Conn

This is an integer or longword array that represents a series of polygon descript
Each polygon description takes the form [n, i0, i1, ..., in-1], wheren is the number of
vertices that define the polygon, andi0...in-1 are indices into the vertex array.

Keywords

None.
MESH_ISSOLID IDL Reference Guide

785

esh

ned

e

MESH_MERGE

The MESH_MERGE function merges two polygonal meshes.

Syntax

Result = MESH_MERGE (Verts, Conn, Verts1, Conn1 [, /COMBINE_VERTICES]
[, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal m
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3,n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and retur
to the user.

Verts1

Additional input polygonal vertex array [3,n].

Conn1

Additional input polygonal mesh connectivity array.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at th
same location in space into single vertices. If the expression

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
IDL Reference Guide MESH_MERGE

786
is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of theVerts argument.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTICES keyword. The default value is 0.0.
MESH_MERGE IDL Reference Guide

787

).
MESH_NUMTRIANGLES

The MESH_NUMTRIANGLES function computes the number of triangles in a
polygonal mesh.

Syntax

Result= MESH_NUMTRIANGLES (Conn)

Return Value

Returns the number of triangles in the mesh (a quad is considered two triangles

Arguments

Conn

Polygonal mesh connectivity array.

Keywords

None.
IDL Reference Guide MESH_NUMTRIANGLES

788

list)

rical

le

s are
MESH_OBJ

The MESH_OBJ procedure generates a polygon mesh (vertex list and polygon
that represent the desired primitive object. The available primitive objects are:
triangulated surface, rectangular surface, polar surface, cylindrical surface, sphe
surface, surface of extrusion, surface of revolution, and ruled surface.

This routine is written in the IDL language. Its source code can be found in the fi
mesh_obj.pro in thelib subdirectory of the IDL distribution.

Syntax

MESH_OBJ,Type, Vertex_List, Polygon_List, Array1 [, Array2] [, /DEGREES]
[, P1=value] [, P2=value] [, P3=value] [, P4=value] [, P5=value]

Arguments

Type

An integer that specifies what type of object to create. The various surface type
described in the table below.

Type Surface Type

0 Triangulated

1 Rectangular

2 Polar

3 Cylindrical

4 Spherical

5 Extrusion

6 Revolution

7 Ruled

Other values None

Table 66: Surface Types
MESH_OBJ IDL Reference Guide

789

able

ray

is
Vertex_List

A named variable that will contain the mesh vertices.Vertex_Listhas the same format
as the lists returned by the SHADE_VOLUME procedure.

Polygon_List

A named variable that will contain the mesh indexes.Polygon_Listhas the same
format as the lists returned by the SHADE_VOLUME procedure.

Array1

An array whose use depends on the type of object being created. The following t
describes the differences.

Surface
Type Array1 Type

Triangulated A (3,n) array containing random [x, y, z] points to build a
triangulated surface from. The resulting polygon mesh will haven
vertices. When shading a triangulated mesh, the shading array
should have (n) elements.

Rectangular A two dimensional (n, m) array containingz values. The resulting
polygon mesh will haven x m vertices. When shading a
rectangular mesh, the shading array should have (n, m) elements.

Polar A two dimensional (n, m) array containingz values. The resulting
polygon mesh will haven x m vertices. Then dimension of the
array is mapped to the polar angle, and themdimension is mapped
to the polar radius. When shading a polar mesh, the shading ar
should have (n, m) elements.

Cylindrical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will haven x m vertices. Then dimension
of the array is mapped to the polar angle, and the m dimension
mapped to the Z axis. When shading a cylindrical mesh, the
shading array should have (n, m) elements.

Table 67: Array 1 Type
IDL Reference Guide MESH_OBJ

790

nd
).
(

e

ill

d

Array2

If the object type is 7 (Ruled Surface) thenArray2 is a (3,m) array containing the 3D
points which define the second ruled vector. IfArray2 has fewer elements than
Array1 thenArray2 is processed with CONGRID to give it the same number of
elements asArray1. If Array1 has fewer elements thanArray2 thenArray1 is
processed with CONGRID to give it the same number of elements asArray2. Array2
must be supplied if the object type is 7. Otherwise,Array2 is ignored.

Spherical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will haven x m vertices. Then dimension
of the array is mapped to the longitude (0.0 to 360.0 degrees), a
themdimension is mapped to the latitude (-90.0 to +90.0 degrees
When shading a spherical mesh, the shading array should haven,
m) elements.

Extrusion A (3,n) array of connected 3D points which define the shape to
extrude. The resulting polygon mesh will haven x (steps+1)
vertices (where steps is the number of “segments” in the
extrusion). (See the P1 keyword). If the order of the elements in
Array1 is reversed, then the polygon facing is reversed. When
shading an extrusion mesh, the shading array should have (n,
steps+1) elements.

Revolution A (3,n) array of connected 3D points which define the shape to
revolve. The resulting polygon mesh will haven x ((steps>3)+1)
vertices (where steps is the number of “steps” in the revolution).
(See the P1 keyword). If the order of the elements inArray1 is
reversed, then the polygon facing is reversed. When shading a
revolution mesh, the shading array should have (n, (steps>3)+1)
elements.

Ruled A (3,n) array of connected 3D points which define the shape of th
first ruled vector. The optional (3,m) Array2parameter defines the
shape of the second ruled vector. The resulting polygon mesh w
have (n > m)*(steps+1) vertices (where steps is the number of
intermediate “steps”). (See the P1 keyword). When shading a rule
mesh, the shading array should have (n > m, steps+1) elements.

Surface
Type Array1 Type

Table 67: Array 1 Type
MESH_OBJ IDL Reference Guide

791

he

pe.

f

5

of
t

Keywords

DEGREES

If set, then the input parameters are in degrees (where applicable). Otherwise, t
angles are in radians.

P1 - P5

The meaning of the keywords P1 through P5 vary depending upon the object ty
The table below describes the differences.

Surface
Type Keywords

Triangulated P1 through P5 are ignored.

Rectangular IfArray1 is an (n, m) array, and if P1 has n elements, then the
values contained in P1 are the X coordinates for each column o
vertices. Otherwise, FINDGEN(n) is used for the X coordinates. If
P2 hasm elements, then the values contained in P2 are the Y
coordinates for each row of vertices. Otherwise, FINDGEN(m) is
used for the Y coordinates. The polygon facing is reversed if the
order of either P1 or P2 (but not both) is reversed. P3, P4, and P
are ignored.

Polar P1 specifies the polar angle of the first column ofArray1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the radius of the first row ofArray1
(the default is 0). P4 specifies the radius of the last row ofArray1
(the default ism-1). If P4 is less than P3 then the polygon facing is
reversed. P5 is ignored.

Cylindrical P1 specifies the polar angle of the first column ofArray1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the Z coordinate of the first row
Array1 (the default is 0). P4 specifies the Z coordinate of the las
row of Array1 (the default ism-1). If P4 is less than P3 then the
polygon facing is reversed. P5 is ignored.

Table 68: P1-P5 Keywords
IDL Reference Guide MESH_OBJ

792

 1).
)

is
tor

5
.

).
Examples

; Create a 48x64 cylinder with a constant radius of 0.25:
MESH_OBJ, 3, Vertex_List, Polygon_List, $

Replicate(0.25, 48, 64), P4=0.5

; Transform the vertices:
T3D, /RESET
T3D, ROTATE=[0.0, 30.0, 0.0]
T3D, ROTATE=[0.0, 0.0, 40.0]
T3D, TRANSLATE=[0.25, 0.25, 0.25]
VERTEX_LIST = VERT_T3D(Vertex_List)

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512

Spherical P1 specifies the longitude of the first column ofArray1 (the
default is 0). P2 specifies the longitude of the last column of
Array1 (the default is 2*PI). IF P2 is less than P1 then the polygon
facing is reversed. P3 specifies the latitude of the first row of
Array1 (the default is -PI/2). P4 specifies the latitude of the last
row of Array1 (the default is +PI/2). If P4 is less than P3 then the
polygon facing is reversed. P5 is ignored.

Extrusion P1 specifies the number of steps in the extrusion (the default is
P2 is a three element vector specifying the direction (and length
of the extrusion (the default is [0, 0, 1]). P3, P4, and P5 are
ignored.

Revolution P1 specifies the number of “facets” in the revolution (the default
3). If P1 is less than 3 then 3 is used. P2 is a three element vec
specifying a point that the rotation vector passes through (the
default is [0, 0, 0]). P3 is a three element vector specifying the
direction of the rotation vector (the default is [0, 0, 1]). P4
specifies the starting angle for the revolution (the default is 0). P
specifies the ending angle for the revolution (the default is 2*PI)
If P5 is less than P4 then the polygon facing is reversed.

Ruled P1 specifies the number of “steps” in the ruling (the default is 1
P2, P3, P4, and P5 are ignored.

Surface
Type Keywords

Table 68: P1-P5 Keywords
MESH_OBJ IDL Reference Guide

793
CREATE_VIEW, WINX=512, WINY=512

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /NORMAL)

; Create a cone (surface of revolution):
MESH_OBJ, 6, Vertex_List, Polygon_List, $

[[0.75, 0.0, 0.25], [0.5, 0.0, 0.75]], $
P1=16, P2=[0.5, 0.0, 0.0]

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512
CREATE_VIEW, WINX=512, WINY=512, AX=30.0, AY=(140.0), ZOOM=0.5

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /DATA, /T3D)

See Also

CREATE_VIEW, POLYSHADE, SET_SHADING, VERT_T3D
IDL Reference Guide MESH_OBJ

794

his
MESH_SMOOTH

The MESH_SMOOTH function performs spatial smoothing on a polygon mesh. T
function smoothes a mesh by applying Laplacian smoothing to each vertex, as
described by the following formula:

where:

Syntax

Result = MESH_SMOOTH (Verts, Conn [, ITERATIONS=value]
[, FIXED_VERTICES=array] [, /FIXED_EDGE_VERTICES] [, LAMBDA=value])

Return Value

The output of this function is resulting [3,n] array of modified vertices.

Arguments

Verts

Input array of polygonal vertices [3,n].

Conn

Input polygonal mesh connectivity array.

Keywords

ITERATIONS

Number of iterations to smooth. The default value is 50.

is vertexi for iterationn

λ is the smoothing factor

M is the number of vertices that share a common edge withxin.

xi n 1+()
xi n

λ
M
----- x j n

xi n
–()

j 0=

M

∑+=

xin
MESH_SMOOTH IDL Reference Guide

795

e

 by
FIXED_VERTICES

Set this keyword to an array of vertex indices which are not to be modified by th
smoothing.

FIXED_EDGE_VERTICES

Set this keyword to specify that mesh outer edge vertices are not to be modified
the smoothing.

LAMBDA

Smoothing factor. The default value is 0.05.
IDL Reference Guide MESH_SMOOTH

796

.

used
egral
lt
MESH_SURFACEAREA

The MESH_SURFACEAREA function computes various mesh properties to
determine the mesh surface area, including integration of other properties
interpolated on the surface of the mesh.

Syntax

Result= MESH_SURFACEAREA (Verts, Conn [, AUXDATA= array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) surface area of the polygons in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Verts

Array of polygonal vertices [3,n].

Conn

Polygonal mesh connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are
to weight a vertex for the purpose of the area computation. The surface area int
will linearly interpolate these values over the surface of each triangle. The defau
weight is 1.0 which results in the basic polygon area.
MESH_SURFACEAREA IDL Reference Guide

797

xis.
MOMENT

If this keyword is present, it will return a three element float vector which
corresponds to the first order moments computed with respect to the X, Y and Z a
The computation is:

wherea is the (weighted) area of the triangle andc is the centroid of the triangle, thus

yields the (weighted) centroid of the polygon mesh.

m aici
ntris
∑=

m sarea⁄
IDL Reference Guide MESH_SURFACEAREA

798

ed

esh

ned

e

MESH_VALIDATE

The MESH_VALIDATE function checks for NaN values in vertices, removes unus
vertices, and combines close vertices.

Syntax

Result = MESH_VALIDATE (Verts, Conn[, /REMOVE_NAN]
[, /PACK_VERTICES] [, /COMBINE_VERTICES] [, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal m
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and retur
to the user.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at th
same location in space into single vertices. If the expression

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of theVerts argument.

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
MESH_VALIDATE IDL Reference Guide

799
PACK_VERTICES

If this keyword is set, the Verts input array will be packed to exclude any non-
referenced vertices. The result is returned in the Verts argument.

REMOVE_NAN

If this keyword is set, the function will remove any polygons from CONN which
reference vertices containing NaN values.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTS keyword. The default value is 0.0.
IDL Reference Guide MESH_VALIDATE

800

e (i.e.

.

esh
MESH_VOLUME

The MESH_VOLUME function computes the volume that the mesh encloses.

Syntax

Result= MESH_VOLUME (Verts, Conn [, /SIGNED])

Return Value

Returns the volume that the mesh encloses. If the mesh does not enclose spac
MESH_ISSOLID() would return 0), this function returns 0.0.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Verts

Array of polygonal vertices [3,n].

Conn

Polygonal mesh connectivity array.

Keywords

SIGNED

Set this keyword to compute the signed volume. The sign will be negative for a m
consisting of inward facing polygons.
MESH_VOLUME IDL Reference Guide

801

ame
 as

e

ified

R,
 the

ion
MESSAGE

The MESSAGE procedure issues error and informational messages using the s
mechanism employed by built-in IDL routines. By default, the message is issued
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure. As a side-effect of issuing the error, the system variabl
!ERROR_STATE is set and the text of the error message is placed in
!ERROR_STATE.MSG or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message.

If the call to the MESSAGE procedure causes execution to halt, traceback
information is displayed automatically.

Syntax

MESSAGE, [Text] [, /CONTINUE] [, /INFORMATIONAL] [, /IOERROR]
[, /NONAME] [, /NOPREFIX] [, /NOPRINT] [, /RESET]

Arguments

Text

The text of the message to be issued. IfText is not supplied, MESSAGE returns
quietly.

Keywords

CONTINUE

Set this keyword to return after issuing the error instead of taking the action spec
by ON_ERROR. Use this option when it is desirable to report an error and then
continue processing.

INFORMATIONAL

Set this keyword to issue informational text instead of an error. In this case, !ER
!ERROR, and !ERR_STRING are not set. The !QUIET system variable controls
printing of informational messages.

IOERROR

Set this keyword to indicate that the error occurred while performing I/O. The act
specified by the ON_IOERROR procedure is executed instead of ON_ERROR.
IDL Reference Guide MESSAGE

802

ing

et

the
al.

o
 use

y.

ge
NONAME

Set this keyword to suppress printing of the issuing routine’s name at the beginn
of the error message.

NOPREFIX

Usually, the message includes the message prefix string (as specified by the
MSG_PREFIX field of the !ERROR_STATE system variable) at the beginning. S
this keyword to omit the prefix.

NOPRINT

Set this keyword to prevent the message from printing to the screen and cause
other actions to proceed quietly. The error system variables are updated as usu

RESET

Set this keyword to set the“!ERROR_STATE”on page 2195 system variable back t
the “success” state and clear any internal traceback information being saved for
by the LAST_ERROR keyword to theHELP procedure.

TRACEBACK

This keyword is obsolete and is included for compatibility with existing code onl
Traceback information is provided by default.

Example

As an example, assume the statement:

message, 'Unexpected value encountered.'

is executed in a procedure named CALC. If an error occurs, the following messa
would be printed:

% CALC: Unexpected value encountered.

and execution would halt.

See Also

CATCH, ON_ERROR, ON_IOERROR, STRMESSAGE
MESSAGE IDL Reference Guide

803

one-
C is

u
void

ing-
IDL Reference Guide MIN

MIN

The MIN function returns the value of the smallest element ofArray. The type of the
result is the same as that ofArray.

Syntax

Result = MIN(Array [, Min_Subscript] [, MAX= variable] [, /NAN])

Arguments

Array

The array to be searched.

Min_Subscript

A named variable that, if supplied, is converted to a long integer containing the
dimensional subscript of the minimum element. Otherwise, the system variable !
set to the one-dimensional subscript of the minimum element.

Keywords

MAX

The name of a variable to receive the value of the maximum array element. If yo
need to find both the minimum and maximum array values, use this keyword to a
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Create a simple two-dimensional array:
D = DIST(100)
; Find the minimum value in array D and print the result:
PRINT, MIN(D)

See Also

MAX

804

et
 It
e,

le

ts
MIN_CURVE_SURF

The MIN_CURVE_SURF function interpolates a regularly- or irregularly-gridded s
of points with either a minimum curvature surface or a thin-plate-spline surface.
returns a two-dimensional floating-point array containing the interpolated surfac
sampled at the grid points.

A minimum curvature spline surface is fitted to the data points described byx, y, and
z. The basis function is:

C (x0, x1, y0, y1) = d2 log(dk)

whered is the distance between (x0, y0), (x1, y1) andk = 1 for minimum curvature
surface ork = 2 for Thin Plate Splines. Forn data points, a system ofn+3
simultaneous equations are solved for the coefficients of the surface. For any
interpolation point, the interpolated value is:

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

This routine is written in the IDL language. Its source code can be found in the fi
min_curve_surf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = MIN_CURVE_SURF(Z [, X, Y] [, /DOUBLE] [, /TPS] [, /REGULAR]
[, XGRID=[xstart, xspacing] | , XVALUES=array] [, YGRID=[ystart, yspacing] | ,
YVALUES=array] [, GS=[xspace,yspace]] [, BOUNDS=[xmin, ymin, xmax, ymax]]
[, NX=value] [, NY=value] [, XOUT=vector] [, YOUT=vector] [, XPOUT=array,
YPOUT=array])

Arguments

Z, X, Y

Arrays containing theZ, X, andYcoordinates of the data points on the surface. Poin
need not be regularly gridded. For regularly gridded input data,X andYare not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and

f x y,() b0 b1 x b2 y ai C xi x yi y, , ,()⋅∑+⋅+⋅+=
MIN_CURVE_SURF IDL Reference Guide

805

f Z is
ble-

etic.

e
t,
YVALUES) keywords, andZ must be a two-dimensional array. For irregular grids,
all three parameters must be present and have the same number of elements. I
specified as a double-precision value, the computation will be performed in dou
precision arithmetic

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

TPS

Set this keyword to use the thin-plate-spline method. The default is to use the
minimum curvature surface method.

Input Grid Description:

REGULAR

If set, theZ parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if ther
is only one parameter,Z. If REGULAR is set, and no grid specifications are presen
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in thex direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining thex locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in they direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining they locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:
IDL Reference Guide MIN_CURVE_SURF

806

6.

t be
ust

 the
GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points andys is the vertical spacing. The
default is based on the extents ofx andy. If the grid starts atx valuexminand ends at
xmax, then the default horizontal spacing is (xmax- xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 2

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits inx and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent ofx andy.

NX

The output grid size in thex direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in they direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

XOUT

Use the XOUT keyword to specify a vector containing the output gridx values. If this
parameter is supplied, GS, BOUNDS, and NX are ignored for thex output grid.
XOUT allows you to specify irregularly-spaced output grids.

YOUT

Use the YOUT keyword to specify a vector containing the output gridy values. If this
parameter is supplied, GS, BOUNDS, and NY are ignored for they output grid.
YOUT allows you to specify irregularly-spaced output grids.

XPOUT/YPOUT

Use the XPOUT and YPOUT keywords to specify arrays that contain thex andy
values for the output points. If these keywords are used, the output grid need no
regular, and all other output grid parameters are ignored. XPOUT and YPOUT m
have the same number of points, which is also the number of points returned in
result.

Example

; Make a random set of points that lie on a Gaussian:
MIN_CURVE_SURF IDL Reference Guide

807
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

Use a 26 by 26 grid over the rectangle bounding x and y:

;Get the surface.
R = MIN_CURVE_SURF(Z, X, Y)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = MIN_CURVE_SURF(Z, X, Y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

Alternatively, get a 10 by 10 surface over the rectangle bounding x and y:

R = MIN_CURVE_SURF(Z, X, Y, NX=10, NY=10)

See Also

CONTOUR, TRI_SURF
IDL Reference Guide MIN_CURVE_SURF

808

tion
r

links

e

sed

IDL
the

hose
MK_HTML_HELP

The MK_HTML_HELP procedure, given a list of IDL procedure filenames (.pro
files), VMS text library filenames (.TLB files), or the names of directories containing
such files, generates a file in HTML (HyperText Markup Language) format that
contains documentation for those routines that contain standard IDL documenta
headers. The resulting file can then be viewed with a “World Wide Web” browse
such as Mosaic or Netscape.

MK_HTML_HELP procedure makes single HTML file that starts with a list of the
routines documented in the file. The names of routines in that list are hypertext
to the documentation for those routines. The documentation for each routine is
simply the text of the documentation header copied from the corresponding.pro
file—no reformatting is performed.

The documentation headers of the.pro files in question must have the following
format:

• The first line of the documentation block contains only the characters;+ ,
starting in column 1.

• The last line of the documentation block contains only the characters;- ,
starting in column 1.

• All other lines in the documentation block contain a; in column 1.

• If a line containing the string “NAME:” exists in the documentation block, th
contents of the following line are used as the name of the routine being
described. If the NAME: field is not present, the name of the source file is u
as the routine name.

The filetemplate.pro in thegeneral subdirectory of theexamples subdirectory
of the IDL distribution contains a template for creating your own documentation
headers.

This routine is supplied for users to make online documentation from their own
programs. Although it could be used to create an HTML documentation file from
lib subdirectory of the IDL distribution, we do not recommend doing so. The
documentation headers on the files in thelib directory are used for historical
purposes—most do not contain the most current or accurate documentation for t
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter? at the IDL prompt).
MK_HTML_HELP IDL Reference Guide

809

le

ave

e

ified

t
cing
This routine is written in the IDL language. Its source code can be found in the fi
mk_html_help.pro in thelib subdirectory of the IDL distribution.

Syntax

MK_HTML_HELP, Sources, Filename [, /STRICT] [, TITLE=string]
[, /VERBOSE]

Arguments

Sources

A string array containing the names of IDL procedure files (.pro files), VMS text
libraries (.TLB files), or directories containing such files. TheSources array may
contain both individual file and directory names. Each IDL procedure file must h
the file extension.pro , and each VMS text library must include the file extension
.TLB . Elements of theSources array that do not have either of these extensions ar
assumed to be directories.

All .pro files found inSources are searched for documentation headers. The
documentation headers are extracted and saved in HTML format in the file spec
by Filename.

Note
More than one documentation block may exist in a single input file.

Filename

A string containing the name of the output file to be generated. HTML files are
usually saved in files named with a.html or .htm extension.

Keywords

STRICT

Set this keyword to force MK_HTML_HELP to adhere strictly to the HTML forma
by scanning the documentation blocks for HTML reserved characters and repla
them in the output file with the appropriate HTML syntax. HTML reserved
characters include< , > , & , and" . By default, this keyword is set to zero to allow for
faster processing of the input files.
IDL Reference Guide MK_HTML_HELP

810

he

tes

es
TITLE

A string that supples the name to be used as the title of the HTML document. T
default is “Extended IDL Help”.

VERBOSE

Set this keyword to display informational messages as MK_HTML_HELP genera
the HTML file. Normally, MK_HTML_HELP works silently.

Example

To generate an HTML help file namedmyhelp.html from the.pro files in the
directory/usr/home/dave/myroutines , use the command:

MK_HTML_HELP, '/usr/home/dave/myroutines', 'myhelp.html'

To generate an HTML help file for all routines in a given directory whose file nam
contain the word “plot”, use the following commands:

plotfiles=FINDFILE('/usr/home/dave/myroutines/*plot*.pro')
MK_HTML_HELP, plotfiles, 'myplot.html'

See Also

DOC_LIBRARY
MK_HTML_HELP IDL Reference Guide

811

le

ry is
e

ble

e.
MODIFYCT

The MODIFYCT procedure updates the distribution color table filecolors1.tbl ,
located in thecolors subdirectory of theresource subdirectory of the main IDL
directory, or a user-designated file with a new, or modified, colortable.

This routine is written in the IDL language. Its source code can be found in the fi
modifyct.pro in thelib subdirectory of the IDL distribution.

Syntax

MODIFYCT, Itab, Name, R, G, B [, FILE=filename]

Arguments

Itab

The index of the table to be updated, numbered from 0 to 255. If the specified ent
greater than the next available location in the table, the entry will be added to th
table in the available location rather than the index specified byItab. On return,Itab
contains the index for the location that was modified or extended. The modified ta
can be then be loaded with the IDL command: LOADCT,Itab.

Name

A string, up to 32 characters long, that contains the name for the new color tabl

R

A 256-element vector that contains the values for the red colortable.

G

A 256-element vector that contains the values for the green colortable.

B

A 256-element vector that contains the values for the blue colortable.

Keywords

FILE

Set this keyword to the name of a colortable file to be modified instead of the file
colors1.tbl in the IDL directory.
IDL Reference Guide MODIFYCT

812
See Also

LOADCT, XLOADCT
MODIFYCT IDL Reference Guide

813

f a

le
MOMENT

The MOMENT function computes the mean, variance, skewness, and kurtosis o
sample population contained in ann-element vectorX. If the vector containsn
identical elements, MOMENT computes the mean and variance, and returns the
IEEE value NaN for the skewness and kurtosis, which are not defined. (See“Special
Floating-Point Values” in Chapter 15 ofBuilding IDL Applcations.)

Whenx = (x0, x1, x2, ...,xn-1), the various moments are defined as follows:

This routine is written in the IDL language. Its source code can be found in the fi
moment.pro in thelib subdirectory of the IDL distribution.

Mean x
1
N
---- x j

j 0=

N 1–

∑= =

Variance
1

N 1–
------------- x j x–()

2

j 0=

N 1–

∑=

Skewness
1
N

x j x–

Variance

3

j 0=

N 1–

∑=

Kurtosis
1
N

x j x–

Variance

4

3–
j 0=

N 1–

∑=

Mean Absolute Deviation
1
N
---- x j x–

j 0=

N 1–

∑=

Standard Deviation Variance=
IDL Reference Guide MOMENT

814

etic.

n of

ing-
Syntax

Result = MOMENT(X [, /DOUBLE] [, MDEV=variable] [, /NAN]
[, SDEV=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

MDEV

Set this keyword to a named variable that will contain the mean absolute deviatio
X.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

SDEV

Set this keyword to a named variable that will contain the standard deviation ofX.

Example

; Define an n-element sample population:
X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the mean, variance, skewness and kurtosis:
result = MOMENT(X)
PRINT, 'Mean: ', result[0] & PRINT, 'Variance: ', result[1] & $

PRINT, 'Skewness: ', result[2] & PRINT, 'Kurtosis: ', result[3]

IDL Output

Mean: 66.7333
Variance: 7.06667
Skewness: -0.0942851
Kurtosis: -1.18258
MOMENT IDL Reference Guide

815
See Also

KURTOSIS, HISTOGRAM, MAX , MEAN, MEANABSDEV, MEDIAN, MIN,
MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide MOMENT

816

ale

he

an

ge,
xels.

e

The
ing

t. If
 0.

be of
MORPH_CLOSE

The MORPH_CLOSE function applies the closing operator to a binary or graysc
image. MORPH_CLOSE is simply a dilation operation followed by an erosion
operation. The result of a closing operation is that small holes and gaps within t
image are filled, yet the original sizes of the primary foreground features are
maintained. The closing operation is an idempotent operator, applying it more th
once produces no further effect.

Both the opening and the closing operators have the effect of smoothing the ima
with the opening operation removing pixels, and the closing operation adding pi

Syntax

Result = MORPH_CLOSE (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the closing operation is to b
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values - either zero or nonzero. The structur
element must have the same number of dimensions as theImage argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of theStructureparameter determine the shape of the structuring elemen
the VALUES keyword is not present, all elements of the structuring element are

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of UINT and ULONG.
MORPH_CLOSE IDL Reference Guide

817

for

ly

 a
.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies for grayscale operations, and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions asStructure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and
morphological closing operator with a 3 by 3 square kernel to the original image
Notice that most of the holes in the pollen grains have been filled by the closing
operator.

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Apply the threshold creating a binary image
b = a ge 140b

;Load a simple color table
TEK_COLOR
TV, b, 0

;Apply closing operator
c = MORPH_CLOSE(b, REPLICATE(1,3,3))

;Show the result
TV, c, 1

;Show added pixels in white
TV, b + c, 2
IDL Reference Guide MORPH_CLOSE

818

sing
own

tead
MORPH_DISTANCE

The MORPH_DISTANCE function estimatesN-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel, u
a given norm. Available norms include: Euclidean, which is exact and is also kn
as the Euclidean Distance Map (EDM), and two more efficient approximations,
chessboard and city block.

The distance map is useful for a variety of morphological operations: thinning,
erosion and dilation by discs of radius “r”, and granulometry.

Syntax

Result = MORPH_DISTANCE (Data [, /BACKGROUND]
[, NEIGHBOR_SAMPLING={1| 2 | 3 }] [, /NO_COPY])

Return Value

The returned variable is an array of the same dimension as the input array.

Arguments

Data

An input binary array. Zero-valued pixels are considered to be part of the
background.

Keywords

BACKGROUND

By default, the EDM is computed for the foreground (non-zero) features in theData
argument. Set this keyword to compute the EDM of the background features ins
of the foreground features.
MORPH_DISTANCE IDL Reference Guide

819

el is

he
NEIGHBOR_SAMPLING

Set this keyword to indicate how the distance of each neighbor from a given pix
determined. The following table describes the valid values:

Default Two Dimensional Example

1
1 X 1

1

Chessboard Two-Dimensional Example

1 1 1
1 X 1
1 1 1

City Block Two-Dimensional Example:

2 1 2
1 X 1
2 1 2

Actual Distance Two-Dimensional Example

sqrt(2) 1 sqrt(2)
1 X 1

sqrt(2) 1 sqrt(2)

Setting Action Taken

0 - default No diagonal neighbors. Each neighbor is assigned a
distance of 1.

1 - chessboard Each neighbor is assigned a distance of 1.

2 - city block Each neighbor is assigned a distance corresponding to t
number of pixels to be visited when travelling from the
current pixel to the neighbor. (The path can only take 90
degree turns; no diagonal paths are allowed.)

3 - actual distance Each neighbor is assigned its actual distance from the
current pixel (within the limitations of floating point
representations).

Table 69: NEIGHBOR_SAMPLING Settings
IDL Reference Guide MORPH_DISTANCE

820

ord

 the
 a
c of
NO_COPY

Set this keyword to request that the input array be reused, if possible. If this keyw
is set, the input argument is undefined upon return.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and
morphological distance operator. Thresholding the result distance operator with
value of “n”, produces the equivalent of eroding the thresholded image with a dis
radius “n”.

;Read the image
READ_JPEG, ’/usr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Apply the threshold
b = a ge 140b

;Show thresholded image
TVSCL, b, 0

;Create Euclidean distance function
c = MORPH_DISTANCE(b, NEIGHBOR_SAMPLING = 3)

;Show distance function
TVSCL, c, 1

;Show image after erosion with a disc of radius 5
TVSCL, c GT 5, 2
MORPH_DISTANCE IDL Reference Guide

821

o a
the
f a

ted.

The
ing

be of
MORPH_GRADIENT

The MORPH_GRADIENT function applies the morphological gradient operator t
grayscale image. MORPH_GRADIENT is the subtraction of an eroded version of
original image from a dilated version of the original image. The practical result o
morphological gradient operation is that the boundaries of features are highligh

Syntax

Result= MORPH_GRADIENT (Image, Structure[, PRESERVE_TYPE=bytearray|
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological gradient
operation is to be performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values - either zero or nonzero. The structur
element must have the same number of dimensions as theImage argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
IDL Reference Guide MORPH_GRADIENT

822

e

in a
disc
VALUES

An array of the same dimensions as theStructure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of th
structuring element are 0.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then creates disc of radius 2,
5 by 5 array, with all elements within a radius of 2 from the center set to 1. This
is used as the structuring element for the morphological gradient which is then
displayed as both a gray scale image, and as a thresholded image.

;Radius of disc
r = 2

;Read the image
READ_JPEG, ’/usr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Show original image
TVSCL, a, 0

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

b = MORPH_GRADIENT(a, disc)

;Show edges
TVSCL, b, 1

;Show thresholded edges
TVSCL, b ge 100, 2
MORPH_GRADIENT IDL Reference Guide

823

ator

ent
The

n is

The
ring

ent.

nt.
MORPH_HITORMISS

The MORPH_HITORMISS function applies the hit-or-miss operator to a binary
image. The hit-or-miss operator is implemented by first applying an erosion oper
with ahit structuring element to the original image. Then an erosion operator is
applied to the complement of the original image with a secondarymiss structuring
element. The result is the intersection of the two results.

The resulting image corresponds to the positions where the hit structuring elem
lies within the image, and the miss structure lies completely outside the image.
two structures must not overlap.

Syntax

Result = MORPH_HITORMISS (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological operatio
to be performed. The image is treated as a binary image with all nonzero pixels
considered as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element.
elements are interpreted as binary values — either zero or nonzero. This structu
element must have the same number of dimensions as theImage argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring elem
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoi

Keywords

None.
IDL Reference Guide MORPH_HITORMISS

824

n 4
in the
e 9
the
Example

The following code snippet identifies blobs with a radius of at least 2, but less tha
in the pollen image. These regions totally enclose a disc of radius 2, contained
5 x 5 kernel named “hit”, and in turn, fit within a hole of radius 4, contained in th
x 9 array named “miss”. Executing this specific example identifies four blobs in
image with these attributes.

;Radius of hit disc
rh = 2

;Radius of miss disc
rm = 4

;Create a binary disc of given radius.
hit = SHIFT(DIST(2*rh+1), rh, rh) LE rh

;Complement of disc for miss
miss = SHIFT(DIST(2*rm+1), rm, rm) GT rm

;Load discrete color table
TEK_COLOR

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Apply the threshold
b = a GE 140b

;Show thresholded image
TV, b, 0

;Compute matches
c = MORPH_HITORMISS(b, hit, miss)

;Expand matches to size of hit disc
c = DILATE(c, hit)

;Show matches.
TV, c, 1

;Superimpose, showing hit regions in blue.
;(Blue = color index 4 for tek_color.)
TV, b + 3*c, 2
MORPH_HITORMISS IDL Reference Guide

825

ale

ithin
 are

than

g

 be

The
ring

t. If
 0.
MORPH_OPEN

The MORPH_OPEN function applies the opening operator to a binary or graysc
image. MORPH_OPEN is simply an erosion operation followed by a dilation
operation. The result of an opening operation is that small features (e.g., noise) w
the image are removed, yet the original sizes of the primary foreground features
maintained. The opening operation is an idempotent operator, applying it more
once produces no further effect.

An alternative definition of the opening, is that it is the union of all sets containin
the structuring element in the original image. Both the opening and the closing
operators have the effect of smoothing the image, with the opening operation
removing pixels, and the closing operation adding pixels.

Syntax

Result = MORPH_OPEN (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the opening operation is to
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values — either zero or nonzero. The structu
element must have the same number of dimensions as theImage argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of theStructureparameter determine the shape of the structuring elemen
the VALUES keyword is not present, all elements of the structuring element are
IDL Reference Guide MORPH_OPEN

826

be of

for

ly

d a
e.
the
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies for grayscale operations and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions asStructure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing an magnified image of grains of pollen. It then applies a threshold an
morphological opening operator with a 3 by 3 square kernel to the original imag
Notice that much of the irregular borders of the grains have been smoothed by
opening operator.

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a
;Apply the threshold
b = a ge 140b
;Load a simple color table
TEK_COLOR
TV, b, 0
;Apply opening operator
c = MORPH_OPEN(b, REPLICATE(1,3,3))
;Show the result
TV, c, 1
;Show pixels that have been removed in white
TV, c + b, 2
MORPH_OPEN IDL Reference Guide

827

e

lt

g

 be
ered

The
ring

ent.
MORPH_THIN

The MORPH_THIN function performs a thinning operation on binary images. Th
thinning operator is implemented by first applying a hit or miss operator to the
original image with a pair of structuring elements, and then subtracting the resu
from the original image.

In typical applications, this operator is repeatedly applied with the two structurin
elements, while rotating them after each application, until the result remains
unchanged.

Syntax

Result = MORPH_THIN (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the thinning operation is to
performed. The image is treated as a binary image with all nonzero pixels consid
as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element.
elements are interpreted as binary values — either zero or nonzero. This structu
element must have the same number of dimensions as theImage argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring elem
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

Note
It is assumed that theHitStructure and theMissStructure arguments are disjoint.

Keywords

None.
IDL Reference Guide MORPH_THIN

828

ge.
e
top-

e

The
ring

be of
MORPH_TOPHAT

The MORPH_TOPHAT function applies the top-hat operator to a grayscale ima
The top-hat operator is implemented by first applying the opening operator to th
original image, then subtracting the result from the original image. Applying the
hat operator provides a result that shows the bright peaks within the image.

Syntax

Result = MORPH_TOPHAT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the top-hat operation is to b
performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values — either zero or nonzero. The structu
element must have the same number of dimensions as theImage argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
MORPH_TOPHAT IDL Reference Guide

829

e

age
VALUES

An array of the same dimensions as theStructure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of th
structuring element are 0.

Example

The following example illustrates an application of the top-hat operator to an im
in theexamples/demo/demodata directory:

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Show original
TVSCL, a, 0

;Radius of disc
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Apply top-hat operator
b = MORPH_TOPHAT(a, disc)

;Display stretched result.
tvscl, b < 50, 1
IDL Reference Guide MORPH_TOPHAT

830

le

ifiers
MPEG_CLOSE

The MPEG_CLOSE procedure closes an MPEG sequence opened with the
MPEG_OPEN routine. Note that MPEG_CLOSE does not save the MPEG file
associated with the MPEG sequence; use MPEG_SAVE to save the file. The
specified MPEG sequence identifier will no longer be valid after calling
MPEG_CLOSE.

This routine is written in the IDL language. Its source code can be found in the fi
mpeg_close.pro in thelib subdirectory of the IDL distribution.

Syntax

MPEG_CLOSE,mpegID

Arguments

mpegID

The unique identifier of the MPEG sequence to be freed. (MPEG sequence ident
are returned by the MPEG_OPEN routine.)

Example

SeeMPEG_OPEN for an example using this routine.

See Also

MPEG_OPEN, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
MPEG_CLOSE IDL Reference Guide

831

g
 the

le

le

 an
e

MPEG_OPEN

The MPEG_OPEN function initializes an IDLgrMPEG object for MPEG encodin
and returns the object reference. The MPEG routines provide a wrapper around
IDL Object Graphics IDLgrMPEG object, eliminating the need to use the Object
Graphics interface to create MPEG files.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

This routine is written in the IDL language. Its source code can be found in the fi
mpeg_open.pro in thelib subdirectory of the IDL distribution.

Syntax

mpegID = MPEG_OPEN(Dimensions [, FILENAME=string])

Arguments

Dimensions

A two-element vector of the form [xsize, ysize] indicating the dimensions of the
images to be used as frames in the MPEG movie file. All images in the MPEG fi
must have the same dimensions.

Keywords

FILENAME

Set this keyword equal to a string representing the name of the file in which the
encoded MPEG sequence is to be saved. The default file name isidl.mpg .

Example

The following sequence of IDL commands illustrates the steps needed to create
MPEG movie file from a series of image arrays named image0, image1, .., imagn,
wheren is the zero-based index of the last image in the movie:

; Open an MPEG sequence:
mpegID = MPEG_OPEN()

; Add the first frame:
IDL Reference Guide MPEG_OPEN

832
MPEG_PUT, mpegID, IMAGE=image0, FRAME=0
MPEG_PUT, mpegID, IMAGE=image1, FRAME=1

; Subsequent frames:
...

; Last frame:
MPEG_PUT, mpegID, IMAGE=imagen, FRAME=n

; Save the MPEG sequence in the file myMovie.mpg:
MPEG_SAVE, mpegID, FILENAME='myMovie.mpg'

; Close the MPEG sequence:
MPEG_CLOSE, mpegID

See Also

MPEG_CLOSE, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
MPEG_OPEN IDL Reference Guide

833

me

le

d.

e

to be
e is

ed if

p to
MPEG_PUT

The MPEG_PUT procedure stores the specified image array at the specified fra
index in an MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the fi
mpeg_put.pro in thelib subdirectory of the IDL distribution.

Syntax

MPEG_PUT,mpegID [, /COLOR] [, FRAME=frame_number] [, IMAGE=array | ,
WINDOW=index] [, /ORDER]

Arguments

mpegID

The unique identifier of the MPEG sequence into which the image will be inserte
(MPEG sequence identifiers are returned by the MPEG_OPEN routine.)

Keywords

COLOR

Set this keyword to read off an 8-bit display and pass the information through th
current color table to create a 24-bit image.

FRAME

Set this keyword equal to an integer specifying the frame at which the image is
loaded. If the frame number matches a previously loaded frame, the previous fram
overwritten. The default is 0.

IMAGE

Set this keyword equal to anmx n image array or a 3 xmx n True Color image array
representing the image to be loaded at the specified frame. This keyword is ignor
the WINDOW keyword is specified.

ORDER

Set this keyword to indicate that the rows of the image should be drawn from to
bottom. By default, the rows are drawn from bottom to top.
IDL Reference Guide MPEG_PUT

834

nce
is
es
WINDOW

Set this keyword to the index of a Direct Graphics Window (or to an object refere
to an IDLgrWindow or IDLgrBuffer object) to indicate that the image to be loaded
to be read from the given window or buffer. If this keyword is specified, it overrid
the value of the IMAGE keyword.

Example

SeeMPEG_OPEN for an example using this routine.

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_SAVE, XINTERANIMATE
MPEG_PUT IDL Reference Guide

835

le

ence

ed
MPEG_SAVE

The MPEG_SAVE procedure encodes and saves an open MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the fi
mpeg_save.pro in thelib subdirectory of the IDL distribution.

Syntax

MPEG_SAVE,mpegID [, FILENAME=string]

Arguments

mpegID

The unique identifier of the MPEG sequence to be saved to a file. (MPEG sequ
identifiers are returned by the MPEG_OPEN routine.)

Keywords

FILENAME

Set this keyword to a string representing the name of the file to which the encod
MPEG sequence is to be saved. The default isidl.mpg .

Example

SeeMPEG_OPEN for an example using this routine.

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_PUT, XINTERANIMATE
IDL Reference Guide MPEG_SAVE

836
MSG_CAT_CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.

Syntax

MSG_CAT_CLOSE,object

Arguments

object

The object reference returned from MSG_CAT_OPEN.

Keywords

None

See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat
MSG_CAT_CLOSE IDL Reference Guide

837

es

f the
g

MSG_CAT_COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation tak
place.

Syntax

MSG_CAT_COMPILE,input[, output] [, LOCALE_ALIAS=string] [, /MBCS]

Arguments

input

The input file with which to create the catalog. The file is a text representation o
key/MBCS association. Each line in the file must have a key. The language strin
must then be surrounded by double quotes, then an optional comment.

For example:

VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file.

APPLICATION (required)

SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:

idl_ + "Application name" + _ + "Locale" + .cat

For example:

idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat
IDL Reference Guide MSG_CAT_COMPILE

838

ult is
Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE,'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The defa
8-bit ASCII.

See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat
MSG_CAT_COMPILE IDL Reference Guide

839

s if

log

log

, 0

ale

talog
MSG_CAT_OPEN

The MSG_CAT_OPEN function returns a catalog object for the given parameter
found. If a match is not found, an unset catalog object is returned. If unset, the
IDLffLanguageCat::Query method will always return the empty string unless a
default catalog is provided.

Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Arguments

application

A scalar string representing the name of the desired application's catalog file.

Keywords

DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open. If this keyword is set,application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found
otherwise.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current loc
is used.

PATH

Set this keyword to a scalar string containing the path to search for language ca
files. The default is the current directory.
IDL Reference Guide MSG_CAT_OPEN

840

If a
SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against.
match is found, it is used to further sub-set the possible return catalog choices.

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat
MSG_CAT_OPEN IDL Reference Guide

841

le

e an
MULTI

The MULTI procedure expands the current color table to “wrap around” some
number of times.

This routine is written in the IDL language. Its source code can be found in the fi
multi.pro in thelib subdirectory of the IDL distribution.

Syntax

MULTI, N

Arguments

N

The number of times the color table will wrap. This parameter does not have to b
integer.

Example

Display an image, load color table 1, and make that color table “wrap around” 3
times. Enter:

;Display a simple image.
TVSCL, DIST(256)

;Load color table 1.
LOADCT, 1

;See how the new color table affects the image.
MULTI, 3

See Also

STRETCH, XLOADCT
IDL Reference Guide MULTI

842

N_E

ual to

t,

ue
u

s

LEMENTS IDL Reference Guide

N_ELEMENTS

The N_ELEMENTS function returns the number of elements contained in an
expression or variable.

Syntax

Result = N_ELEMENTS(Expression)

Arguments

Expression

The expression for which the number of elements is to be returned. Scalar
expressions always have one element. The number of elements in an array is eq
the product of its dimensions. IfExpressionis an undefined variable, N_ELEMENTS
returns zero.

Examples

Example 1

This example finds the number of elements in an array:

; Create an integer array:
I = INTARR(4, 5, 3, 6)
; Find the number of elements in I and print the result:
PRINT, N_ELEMENTS(I)

Example 2

A typical use of N_ELEMENTS is to check if an optional input is defined, and if no
set it to a default value:

IF (N_ELEMENTS(roo) EQ 0) THEN roo=rooDefault

The original value ofroo may be altered by a called routine, passing a different val
back to the caller. Unless you intend for the routine to behave in this manner, yo
should prevent it by differentiating N_ELEMENTS’ parameter from your routine’
variable:

IF (N_ELEMENTS(roo) EQ 0) THEN rooUse=rooDefault $
ELSE rooUse=roo

See Also

N_TAGS

843

in

MS

not
N_PARAMS

The N_PARAMS function returns the number of non-keyword parameters used
calling an IDL procedure or function. This function is only useful within IDL
procedures or functions. User-written procedures and functions can use N_PARA
to determine if they were called with optional parameters.

Note
In the case of object method procedures and functions, the SELF argument is
counted by N_PARAMS.

Syntax

Result = N_PARAMS()

Arguments

None. This function always returns the number of parameters that were used in
calling the procedure or function from which N_PARAMS is called.

See Also

KEYWORD_SET
IDL Reference Guide N_PARAMS

844

ure

sions
earch
ly

will
nner

g:
N_TAGS

The N_TAGS function returns the number of structure tags contained in a struct
expression. It optionally returns the size, in bytes, of the structure.

Syntax

Result = N_TAGS(Expression[, /LENGTH])

Arguments

Expression

The expression for which the number of structure tags is to be returned. Expres
that are not of structure type are considered to have no tags. N_TAGS does not s
for tags recursively, so ifExpression is a structure containing nested structures, on
the number of tags in the outermost structure are counted.

Keywords

LENGTH

Set this keyword to return the length of the structure, in bytes.

Note
The length of a structure is machine dependent. The length of a given structure
vary depending upon the host machine. IDL pads and aligns structures in a ma
consistent with the host machine’s C compiler.

Example

Find the number of tags in the system variable !P and print the result by enterin

PRINT, N_TAGS(!P)

Find the length of !P, in bytes:

PRINT, N_TAGS(!P, /LENGTH)

See Also

CREATE_STRUCT, N_ELEMENTS, TAG_NAMES, Building IDL Applcations
Chapter 7, “Structures”
N_TAGS IDL Reference Guide

845
NCDF_* Routines

SeeAlphabetical Listing of NCDF Routines in theScientific Data Formats manual.
IDL Reference Guide NCDF_* Routines

846

the

ns:

ge:

h

NEWTON

The NEWTON function solves a system ofn non-linear equations inn dimensions
using a globally-convergent Newton’s method. The result is ann-element vector
containing the solution.

NEWTON is based on the routinenewt described in section 9.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = NEWTON(X, Vecfunc [, CHECK=variable] [, /DOUBLE]
[, ITMAX= value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN= value]
[, TOLX=value])

Arguments

X

An n-element vector containing an initial guess at the solution of the system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines
system of non-linear equations. This function must accept ann-element vector
argumentX and return ann-element vector result.

For example, suppose the non-linear system is defined by the following equatio

y0 = x0 + x1 - 3, y1 = x0
2 + x1

2 - 9

We write a function NEWTFUNC to express these relationships in the IDL langua

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] -3.0, X[0]^2 + X[1]^2 - 9.0]

END

Keywords

CHECK

NEWTON calls an internal function namedfmin() to determine whether the routine
has converged to a local minimum rather than to a global minimum (seeNumerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable whic
NEWTON IDL Reference Guide

847

. If
al

etic.

0.0.
will be set to 1 if the routine has converged to a local minimum or to 0 if it has not
the routine does converge to a local minimum, try restarting from a different initi
guess to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITMAX

The maximum allowed number of iterations. The default value is 200.

STEPMAX

The scaled maximum step length allowed in line search. The default value is 10

TOLF

Set the convergence criterion on the function values. The default value is 1.0× 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0× 10-6.

TOLX

Set the convergence criterion onX. The default value is 1.0× 10-7.

Example

Use NEWTON to solve ann-dimensional system ofn non-linear equations. Systems
of non-linear equations may have multiple solutions; starting the algorithms with
different initial guesses enables detection of different solutions.

PRO TEST_NEWTON

; Provide an initial guess as the algorithm’s starting point:
X = [1.0, 5.0]

; Compute the solution:
result = NEWTON(X, 'newtfunc')

; Print the result:
PRINT, 'For X=[1.0, 5.0], result = ', result

;Try a different starting point.
X = [1.0, -1.0]
IDL Reference Guide NEWTON

848
; Compute the solution:
result = NEWTON(X,'newtfunc')

;Print the result.
PRINT, 'For X=[1.0, -1.0], result = ', result

END

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] -3.0, X[0]^2 + X[1]^2 - 9.0]

END

IDL Output

For X=[1.0, 5.0], result = 0.000398281 3.00000
For X=[1.0, -1.0], result = 3.00000 -6.45883e-005

See Also

BROYDEN, FX_ROOT, FZ_ROOTS
NEWTON IDL Reference Guide

849

M

le

he

etic.
NORM

The NORM function computes the Euclidean norm of a vector. Alternatively, NOR
computes the Infinity norm of an array.

This routine is written in the IDL language. Its source code can be found in the fi
norm.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = NORM(A [, /DOUBLE])

Arguments

A

A can be either of the following:

• An n-element real or complex vector, if NORM is being used to compute t
Euclidean norm of a vector.

• An m by n real or complex array, if NORM is being used to compute the
Infinity norm of an array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Examples

; Define an n-element complex vector A:
A = [COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)]

; Compute the Euclidean norm of A and print:
PRINT, 'Euclidian Norm of A =', NORM(A)

; Define an m by n complex array B:
B = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)]]

;Compute the Infinity norm of B and print.
PRINT, 'Infinity Norm of B =', NORM(B, /DOUBLE)
IDL Reference Guide NORM

850
IDL Output

Euclidian Norm of A = 4.35890
Infinity Norm of B = 6.9907048

See Also

COND
NORM IDL Reference Guide

851

e

ired.

ing

s
class

re
here
OBJ_CLASS

The OBJ_CLASS function returns the name of the class or superclass of its
argument, as a string. If the supplied argument is not an object, a null string is
returned. If no argument is supplied, OBJ_CLASS returns an array containing th
names of all known object classes in the current IDL session.

Syntax

Result = OBJ_CLASS([Arg] [, COUNT=variable] [, /SUPERCLASS{must specify
Arg}])

Arguments

Arg

A scalar object reference or string variable for which the object class name is des
If Arg is an object reference, it’s object class definition is used. IfArg is a string, it is
taken to be the name of the class for which information is desired. Passing a str
argument is primarily useful in conjunction with the SUPERCLASS keyword.

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of name
returned by OBJ_CLASS. It can be used to determine how many superclasses a
has when the SUPERCLASS keyword is specified.

SUPERCLASS

Set this keyword to cause OBJ_CLASS to return the names of the object’sdirect
superclasses as a string array, one element per superclass. The superclasses a
ordered in the order they appear in the class structure declaration. In the case w
the class has no superclasses, a scalar null string is returned, and the COUNT
keyword (if specified) returns the value 0. If SUPERCLASS is specified, the Arg
argument must also be supplied.
IDL Reference Guide OBJ_CLASS

852

f its
alled
od
UP

e

ce.

e is

ed

can
OBJ_DESTROY

The OBJ_DESTROY procedure is used to destroy an object. If the class (or one o
superclasses) supplies a procedure method named CLEANUP, the method is c
and all arguments and keywords passed by the user are passed to it. This meth
should perform any required cleanup on the object and return. Whether a CLEAN
method actually exists or not, IDL will destroy the heap variable representing th
object and return.

Note that OBJ_DESTROY does not recurse. That is, ifobject1 contains a reference
to object2 , destroyingobject1 will not destroyobject2 . Take care not to lose
the only reference to an object by destroying an object that contains that referen
Recursive cleanup of object hierarchies is a good job for a CLEANUP method.

Syntax

OBJ_DESTROY,ObjRef [, Arg1, …, Argn]

Arguments

ObjRef

The object reference for the object to be destroyed.ObjRef can be an array, in which
case all of the specified objects are destroyed in turn. If the NULL object referenc
passed, OBJ_DESTROY ignores it quietly.

Arg1…Argn

Any arguments accepted by the CLEANUP method for the object being destroy
can be specified as additional arguments to OBJ_DESTROY.

Keywords

Any keywords accepted by the CLEANUP method for the object being destroyed
be specified as keywords to OBJ_DESTROY.
OBJ_DESTROY IDL Reference Guide

853

s A”
ject

h, or
OBJ_ISA

When one object class is subclassed (inherits) from another class, there is an “I
relationship between them. The OBJ_ISA function is used to determine if an ob
instance is subclassed from the specified class. OBJ_ISA returns True (1) if the
specified variable is an object and has the specified class in its inheritance grap
False (0) otherwise.

Syntax

Result = OBJ_ISA(ObjectInstance, ClassName)

Arguments

ObjectInstance

A scalar or array variable for which the OBJ_ISA test should be performed. The
result is of type byte, and has the same size and organization asObjectInstance.

ClassName

A string giving the name of the class for whichObjectInstance is being tested.
IDL Reference Guide OBJ_ISA

854

ion
g

ll a
g

r

ass
OBJ_NEW

Given the name of a structure that defines an object class, the OBJ_NEW funct
returns an object reference to a new instance of the specified object type by carryin
out the following operations in order:

1. If the class structure has not been defined, IDL will attempt to find and ca
procedure to define it automatically. (SeeChapter 12, “Object Basics” in Buildin
IDL Applications for details.) If thestructure isstill not defined, OBJ_NEW fails
and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::INIT (whereClass is the actual name of the
class). If an INIT method exists, it is called with the new object as its implicit
SELF argument, aswell asany argumentsand keywordsspecified in thecall to
OBJ_NEW. If theclasshasno INIT method, theusual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines” in Chapter 12 of Building
IDL Applications.

The INIT method isexpected to initialize theobject instancedataasnecessary
to meet the needs of the class implementation. INIT should return a scala
TRUE value (such as 1) if the initialization is successful, and FALSE (such as
0) if the initialization fails.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a cl
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method isnot called. See “Destruction” in Chapter 12 of Building IDL
Applications for more on CLEANUP methods.

If called without arguments, OBJ_NEW returns a NULL object reference. The
NULL object reference is a special value that never refers to a value object. It is
OBJ_NEW IDL Reference Guide

855

r
ul as

ch a

le,
 to
use

oids

can

can
primarily used as a placeholder in structure definitions, and as the initial value fo
elements of object arrays created via OBJARR. The null object reference is usef
an indicator that an object reference is currently not usable.

Syntax

Result = OBJ_NEW([ObjectClassName[, Arg1…...Argn]])

Arguments

ObjectClassName

String giving the name of the structure type that defines the object class for whi
new object should be created.

If ObjectClassNameis not provided, OBJ_NEW does not create a new heap variab
and returns theNull Object, which is a special object reference that is guaranteed
never point at a valid object heap variable. The null object is a convenient value to
when defining structure definitions for fields that are object references, since it av
the need to have a pre-existing valid object reference.

Arg1…Argn

Any arguments accepted by the INIT method for the class of object being created
be specified when the object is created.

Keywords

Any keywords accepted by the INIT method for the class of object being created
be specified when the object is created.
IDL Reference Guide OBJ_NEW

856

r

 the
ct

d is
t is a
ex

is is
but
ine

n

ing

w
n the

and
e

OBJ_VALID

The OBJ_VALID function verifies the validity of its argument object references, o
alternatively returns a vector of references to all the existing valid objects.

If called with an argument, OBJ_VALID returns a byte array of the same size as
argument. Each element of the result is set to True (1) if the corresponding obje
reference in the argument refers to an existing object, and False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keywor
set, OBJ_VALID returns an array of object references. Each element of the resul
reference to the heap variable indexed by the integer value. Integers used to ind
heap variables are shown in the output of the HELP and PRINT commands. Th
useful primarily in programming/debugging when the you have lost a reference
see it with HELP and need to get a reference to it interactively in order to determ
what it is and take steps to fix the code. See the “Examples” section below for a
example.

If no argument is specified, OBJ_VALID returns a vector of references to all exist
valid objects. If no valid objects exist, a scalar null object reference is returned.

Syntax

Result = OBJ_VALID([Arg] [, CAST=integer] [, COUNT=variable])

Arguments

Arg

Scalar or array argument of object reference type.

Keywords

CAST

Set this keyword equal to an integer that indexes a heap variable to create a ne
pointer to that heap variable. Integers used to index heap variables are shown i
output of the HELP and PRINT commands. This is useful primarily in
programming/debugging when the you have lost a reference but see it with HELP
need to get a reference to it interactively in order to determine what it is and tak
steps to fix the code. See the “Examples” section below for an example.
OBJ_VALID IDL Reference Guide

857

ntly

:

COUNT

Set this keyword equal to a named variable that will contain the number of curre
valid objects. This value is returned as a longword integer.

Examples

To determine if a given object reference refers to a valid heap variable, use:

IF (OBJ_VALID(obj)) THEN …

To destroy all existing pointer heap variables:

OBJ_DESTROY, OBJ_VALID()

You can use the CAST keyword to “reclaim” lost object references. For example

; Create a class structure:
junk = {junk, data1:0, data2:0.0}

; Create an object:
A = OBJ_NEW('junk')

; Find the integer index:
PRINT, A

; In this case, the integer index to the heap variable is 3. If we
; reassign the variable A, we will "lose" the object reference, but
; the heap variable will still exist.
; Lose the object reference:
A = 0
PRINT, A, OBJ_VALID()

; We can reclaim the lost heap variable using the CAST keyword:
A = OBJ_VALID(3, /CAST)
PRINT, A

IDL Output

<ObjHeapVar3(JUNK)>
0 <ObjHeapVar3(JUNK)>
<ObjHeapVar3(JUNK)>
IDL Reference Guide OBJ_VALID

858

l

O is

to
ld be

ining
OBJARR

The OBJARR function returns an object reference vector or array. The individua
elements of the array are set to the NULL object reference.

Syntax

Result = OBJARR(D1, …, D8 [, /NOZERO])

Argument

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

OBJARR sets every element of the result to the null object reference. If NOZER
nonzero, this initialization is not performed and OBJARR executes faster.

Warning
If you specify NOZERO, the resulting array will have whatever value happens
exist at the system memory location that the array is allocated from. You shou
careful to initialize such an array to valid object reference values.

Example

Create a 3 element by 3 element object reference array with each element conta
the null object reference:

A = OBJARR(3, 3)
OBJARR IDL Reference Guide

859

ted
the
tine,

lt

R

ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detec
inside an IDL user procedure or function by setting state information applying to
current routine and all nested routines. If an override exists within the nested rou
it takes precedence over the ON_ERROR call.

Syntax

ON_ERROR,N

Arguments

N

An integer that specifies the action to take. Valid values forN are:

• 0: Stop at the statement in the procedure that caused the error, the defau
action.

• 1: Return all the way back to the main program level.

• 2: Return to the caller of the program unit that established the ON_ERRO
condition.

• 3: Return to the program unit that established the ON_ERROR condition.

See Also

CATCH, MESSAGE, ON_IOERROR, andBuilding IDL ApplcationsChapter 15,
“Controlling Errors”.
IDL Reference Guide ON_ERROR

860

rror

and

all.

ber
ON_IOERROR

The ON_IOERROR procedure specifies a statement to be jumped to if an I/O e
occurs in the current procedure. Normally, when an I/O error occurs, an error
message is printed and program execution is stopped. If ON_IOERROR is called
an I/O related error later occurs in the same procedure activation, control is
transferred to the designated statement with the error code stored in the system
variable !ERROR_STATE. The text of the error message is contained in
!ERROR_STATE.MSG.

The effect of ON_IOERROR can be canceled by using the label “NULL” in the c

Syntax

ON_IOERROR,Label
⋅ ⋅ ⋅
Label: Statement to perform upon I/O error

Example

The following code segment reads an integer from the keyboard. If an invalid num
is entered, the program re-prompts.

i = 0 ; Number to read:

valid = 0 ; Valid flag

WHILE valid EQ 0 DO BEGIN
ON_IOERROR, bad_num
READ, 'Enter Number: ', i
;If we get here, i is good.
VALID = 1

bad_num: IF NOT valid THEN $
PRINT, 'You entered an invalid number.'

ENDWHILE
END

See Also

CATCH, MESSAGE, ON_ERROR, andBuilding IDL ApplcationsChapter 15,
“Controlling Errors”.
ON_IOERROR IDL Reference Guide

861

no
d.
e
o

ord

le

or

ts
use
ONLINE_HELP

The ONLINE_HELP procedure invokes the hypertext help viewer. If called with
arguments, it simply starts the help viewer with the default IDL help file displaye
Optionally, a different book, a keyword search string, or a context number can b
specified. Note that this procedure is intended for use in user-written routines. T
invoke IDL’s online help from the command line, it is much simpler to use the?
command.

Syntax

ONLINE_HELP [,Topic] [, BOOK=‘filename’] [, /CONTEXT] [, /FULL_PATH]
[, /QUIT]

Arguments

Topic

An optional string that contains text to be searched for using the viewer’s “keyw
search” (not full-text search) facility. If this argument is omitted, the specified or
default book is displayed at its beginning.

If the CONTEXT keyword is set, this argument should be an integer value (not a
string) that represents the context number of the help topic to be displayed.

Keywords

BOOK

Set this keyword to a string containing the name of the online help “book” to be
displayed. If this keyword is omitted, the default IDL help file is displayed. Any fi
specified by this keyword must be in the appropriate format for the viewer being
invoked (e.g., on Windows, the file must be a Windows.hlp help file; on UNIX, it
must be a HyperHelp.hlp file).

By default, this string should be the name of a file found in the default location f
IDL’s online help files (i.e., wherever the fileidl.hlp is installed),without a path or
file extension. However, if the FULL_PATH keyword is set, this string should be a
complete path and filename to the online help file you wish to display.

CONTEXT

Set this keyword to indicate that theTopicargument is an integer value that represen
the context number of the help topic to be displayed. This keyword is intended for
IDL Reference Guide ONLINE_HELP

862

ific

e

.
 and

full
d

a

c

with user-compiled help files that contain topics that have been mapped to spec
context numbers when they were compiled (using the [MAP] section of the help
project file). Specifying a non-existent context number causes the first topic of th
requested help file to be displayed.

The help files shipped with IDL do not contain explicit context number mappings
Therefore, the context numbers of specific topics are undocumented, unknown,
subject to change between releases of the help system.

FULL_PATH

Set this keyword to indicate that the string specified by the BOOK keyword is the
path to the file, rather than the default “shorthand” file specification, as describe
above.

QUIT

Set this keyword to close the online help viewer.

Examples

• Use the following command to launch the online help viewer and perform
keyword search on the subject “handle”:

ONLINE_HELP, 'handle'

• To open a help file namedadg.hlp , located in the default help file directory,
use the command:

ONLINE_HELP, BOOK='adg.hlp'

• To open a help file namedmyhelp.hlp , located in a directory named
/usr/home/keith , use the command:

ONLINE_HELP, BOOK='/usr/home/keith/myfile.hlp', /FULL_PATH

• To open themyhelp.hlp file from the previous example and display the topi
corresponding to context number 100, use the command:

ONLINE_HELP, 100, /CONTEXT, $
BOOK='/usr/home/keith/myfile.hlp', /FULL_PATH

See Also

MK_HTML_HELP
ONLINE_HELP IDL Reference Guide

863

g a

y
aris,
ther
e

OPEN

The three OPEN procedures open a specified file for input and/or output.

• OPENR (OPEN Read) opens an existing file for input only.

• OPENW (OPEN Write) opens a new file for input and output. When creatin
new file under VMS, a new file with the same name and a higher version
number is created. Under other operating systems, if the file exists, it is
truncated and its old contents are destroyed.

• OPENU (OPEN Update) opens an existing file for input and output.

Note that under Microsoft Windows, these procedures open files in text mode b
default. Opening files in text mode preserves carriage-return, line-feed (CR/LF) p
which are expected by DOS and Windows text editors. Also by default, certain o
routines in IDL for Windows (PRINTF, for example) will change the mode of a fil
from binary to text. The Windows-only keywords BINARY and NOAUTOMODE
help control these behaviors.

Syntax

There are three forms of the OPEN procedure:

OPENR,Unit, File [, Record_Length]
OPENW,Unit, File [, Record_Length]
OPENU,Unit, File [, Record_Length]

Keywords (all platforms): [, /APPEND | , /COMPRESS] [, BUFSIZE={0 | 1 |
value>512}] [, /DELETE] [, ERROR=variable] [, /F77_UNFORMATTED]
[, /GET_LUN] [, /MORE] [, /SWAP_ENDIAN] [, SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAX_FLOAT] [, WIDTH=value] [, /XDR]

Macintosh Keywords: [, MACCREATOR=string] [, MACTYPE= string]

Windows Keywords: [, /BINARY] [, /NOAUTOMODE]

UNIX Keywords: [, /NOSTDIO]

VMS Keywords: [, /BLOCK | , /SHARED | , /UDF_BLOCK]
[, DEFAULT=‘.extension’] [, /EXTENDSIZE] [, /FIXED] [, /FORTRAN]
[, INITIALSIZE= blocks] [, /KEYED] [, /LIST] [, /NONE] [, /PRINT]
[, /SEGMENTED] [, /STREAM] [, /SUBMIT] [, /SUPERSEDE]
[, /TRUNCATE_ON_CLOSE] [, /VARIABLE]
IDL Reference Guide OPEN

864

-

 by
r
es

ave
.

files,
ting

f
fore

 for
ning
g
nd
Arguments

Unit

The unit number to be associated with the opened file.

File

A string containing the name of the file to be opened. Note the following platform
specific behaviors:

• Under UNIX, the filename can contain any wildcard characters recognized
the shell specified by the SHELL environment variable. However, it is faste
not to use wildcards because IDL doesn’t use the shell to expand file nam
unless it has to. No wildcard characters are allowed under VMS.

• Under VMS, filenames that do not have a file extension are assumed to h
the .DAT extension. No such processing of file names occurs under UNIX

Record_Length

TheRecord_Length argument has meaning only under VMS. It specifies the file
record size in bytes. This argument is required when creating new, fixed-length
and is optional when opening existing files. If this argument is present when crea
variable-length record files, it specifies the maximum allowed record size. If this
argument is present and no file organization keyword is specified, fixed-length
records are implied.

Due to limitations in RMS (the VMS Record Management System), the length o
records must always be an even number of bytes. Odd record lengths are there
automatically rounded up to the nearest even boundary.

Keywords

Note
Platform-specific keywords are listed at the end of this section.

APPEND

Set this keyword to open the file with the file pointer at the end of the file, ready
data to be appended. Normally, the file is opened with the file pointer at the begin
of the file. Under UNIX, use of APPEND prevents OPENW from truncating existin
file contents. The APPEND and COMPRESS keywords are mutually exclusive a
cannot be specified together.
OPEN IDL Reference Guide

865

 (in
lue

es.
dio

IP

not

no

pen
/or
g an
error
BUFSIZE

Set this keyword to a value greater than 512 to specify the size of the I/O buffer
bytes) used when reading and writing files. Setting BUFSIZE=1 (or any other va
less than 512) sets the buffer to the default size, which is platform-specific. Set
BUFSIZE=0 to disable I/O buffering.

Note that the buffer size is only changeable when reading and writing stream fil
Under UNIX, the NOSTDIO keyword must not be set. Also not that the system st
may choose to ignore the buffer size setting.

COMPRESS

If COMPRESS is set, IDL reads and writes all data to the file in the standard GZ
format. IDL's GZIP support is based on the freely available ZLIB library by Mark
Adler and Jean-loup Gailly. This means that IDL's compressed files are 100%
compatible with the widely available gzip and gunzip programs. COMPRESS can
be used with the APPEND keyword.

Under VMS, the COMPRESS keyword can only be used with stream files.

DELETE

Set this keyword to delete the file when it is closed.

Warning
Setting the DELETE keywordcauses the file to be deletedeven if it was opened for
read-only access. In addition, once a file is opened with this keyword, there is
way to cancel its operation.

ERROR

A named variable to place the error status in. If an error occurs in the attempt to o
File, IDL normally takes the error handling action defined by the ON_ERROR and
ON_IOERROR procedures. OPEN always returns to the caller without generatin
error message when ERROR is present. A nonzero error status indicates that an
occurred. The error message can then be found in the system variable
!ERR_STRING.

For example, statements similar to the following can be used to detect errors:

; Try to open the file demo.dat:
OPENR, 1, 'demo.dat', ERROR = err

; If err is nonzero, something happened. Print the error message to
; the standard error file (logical unit -2):
IDL Reference Guide OPEN

866

s
rly

 on
e
his
h

oint

the
IF (err NE 0) then PRINTF, -2, !ERR_STRING

F77_UNFORMATTED

Unformatted variable-length record files produced by UNIX FORTRAN program
contain extra information along with the data in order to allow the data to be prope
recovered. This method is necessary because FORTRAN input/output is based
record-oriented files, while UNIX files are simple byte streams that do not impos
any record structure. Set the F77_UNFORMATTED keyword to read and write t
extra information in the same manner asf77(1) , so that data to be processed by bot
IDL and FORTRAN. See“UNIX-Specific Information” in Chapter 16 ofBuilding
IDL Applcations for further details.

Warning
Do not confused this keyword with the VMS-only keyword FORTRAN.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value ofUnit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET LUN

MORE

If MORE is set, and the specifiedFile is a terminal, then all output to this unit is
formatted in a manner similar to the UNIXmore(1) command and sent to the
standard output stream. Output pauses at the bottom of each screen, at which p
the user can press one of the following keys:

• Space: Display the next page of text.

• Return: Display the next line of text.

• ‘q’ or ‘Q’: Suppress all remaining output.

• ‘h’ or ‘H’: Display this list of options.

For example, the following statements show how to output a file named text.dat to
terminal:

; Open the text file:
OPENR, inunit, 'text.dat', /GET_LUN
OPEN IDL Reference Guide

867

ry
r

 if
 the

 if
o the

tting

is
; Open the terminal as a file:
OPENW, outunit, '/dev/tty', /GET_LUN, /MORE

; Read the first line:
line = '' & READF, inunit, line

; While there is text left, output it:
WHILE NOT EOF(inunit) DO BEGIN

PRINTF, outunit, line
READF, inunit, line

ENDWHILE

; Close the files and deallocate the units:
FREE_LUN, inunit & FREE_LUN, outunit

Under VMS, the MORE keyword is only allowed for stream mode files.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing bina
I/O on the specified file. This is useful when accessing files also used by anothe
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect
the current system has big endian byte ordering. This keyword does not refer to
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect
the current system has little endian byte ordering. This keyword does not refer t
byte ordering of the input data, but to the computer hardware.

VAX_FLOAT

The opened file contains VAX format floating point values. This keyword implies
little endian byte ordering for all data contained in the file, and supersedes any se
of the SWAP_ENDIAN, SWAP_IF_BIG_ENDIAN, or
SWAP_IF_LITTLE_ENDIAN keywords.

The default setting for this keyword is FALSE. Under VMS, starting the
VAX_FLOAT option to the IDL command at startup has the effect of changing th
default and making it TRUE. See“Command Line Options” in Chapter 4 ofUsing
IDL for details on this qualifier. You can change this setting at runtime using the
VAX_FLOAT function.
IDL Reference Guide OPEN

868

the

e
h is

e
iting
ata

sh

sh
Warning
Please read“Note On IEEE to VAX Format Conversion” on page 873 before using
this feature.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses
following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used. Under VMS, if th
file has fixed-length records or a maximum record length, the record lengt
used.

• Otherwise, a default of 80 columns is used.

The WIDTH keyword allows the user to override this default.

XDR

Set this keyword to open the file for unformatted XDR (eXternal Data
Representation) I/O via the READU and WRITEU procedures. Use XDR to mak
binary data portable between different machine architectures by reading and wr
all data in a standard format. When a file is open for XDR access, the only I/O d
transfer procedures that can be used with it are READU and WRITEU. XDR is
described in“Portable Unformatted Input/Output” in Chapter 16 ofBuilding IDL
Applcations.

Under VMS, the XDR keyword can only be used with stream files.

Macintosh-Only Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string identifying the Macinto
file creator code of the file being created. For example, set

MACCREATOR = 'MSWD'

to create a file with the creator codeMSWD. The default creator code isMIDL.

MACTYPE

Use this keyword to specify a four-character scalar string identifying the Macinto
file type of the file being created. For example, set

MACTYPE = 'PICT'
OPEN IDL Reference Guide

869

ry

e to

of
tape

.

U

the
ppen
r
rds

ith

)
 for
any

be
12
to create a file of typePICT. The default file type isTEXT.

Windows-Only Keywords

BINARY

Set this keyword to treat opened files as binary files. When writing text to a bina
file, CR/LF pairs are written as LF only. Note that setting the BINARY keyword
alone does not ensure that a routine that writes to the file will not change the mod
text.

NOAUTOMODE

Set this keyword to prevent IDL routines such as PRINTF from automatically
changing the mode from binary to text, or vice versa.

UNIX-Only Keywords

NOSTDIO

Set this keyword to disable all use of the standard UNIX I/O for the file, in favor
direct calls to the operating system. This allows direct access to devices, such as
drives, that are difficult or impossible to use effectively through the standard I/O
Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READ
and WRITEU are allowed.

• Normally, attempting to read more data than is available from a file causes
unfilled space to be set to zero and an error to be issued. This does not ha
with files opened with NOSTDIO. When using NOSTDIO, the programme
must check the transfer count, either via the TRANSFER_COUNT keywo
to READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened w
NOSTDIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2
system calls. The programmer must read the UNIX system documentation
these calls and documentation on the target device to determine if there are
special rules for I/O to that device. For example, the size of data that can
transferred to many cartridge tape drives is often forced to be a multiple of 5
bytes.
IDL Reference Guide OPEN

870

MS
uch

 files.

ord

d

 of
sion

ould
ault
r
ifies
VMS-Only Keywords

BLOCK

Set this keyword to process the file using RMS block mode. In this mode, most R
processing is bypassed and IDL reads and writes to the file in disk block units. S
files can only be accessed via unformatted I/O commands. Block mode files are
treated as an uninterpreted stream of bytes in a manner similar to UNIX stream

For best performance, by default IDL uses RMS block mode for fixed length rec
files. However, when the SHARED keyword is present, IDL uses standard RMS
mode. Do not specify both BLOCK and SHARED.

This keyword is ignored when used with stream files.

Note
With some controller/disk combinations, RMS does not allow transfer of an od
number of bytes.

DEFAULT

A scalar string that provides a default file specification from which missing parts
the File argument are taken. For example, to make .LOG be the default file exten
when opening a new file, use the command:

OPENW, 'DATA', DEFAULT='.LOG'

This statement will open the file DATA.LOG.

EXTENDSIZE

File extension is a relatively slow operation, and it is desirable to minimize the
number of times it is done. In order to avoid the unacceptable performance that w
result from extending a file a single block at a time, VMS extends its size by a def
number of blocks in an attempt to trade a small amount of wasted disk space fo
better performance. The EXTENDSIZE keyword overrides the default, and spec
the number of disk blocks by which the file should be extended. This keyword is
often used in conjunction with the INITIALSIZE and TRUNCATE_ON_CLOSE
keywords.

FIXED

Set this keyword to indicate that the file has fixed-length records. TheRecord_Length
argument is required when opening new, fixed-length files.
OPEN IDL Reference Guide

871

le.

are

file.

en
to

eing

it is

ords
es

rallel
FORTRAN

Set this keyword to use FORTRAN-style carriage control when creating a new fi
The first byte of each record controls the formatting.

INITIALSIZE

The initial size of the file allocation in blocks. This keyword is often used in
conjunction with the EXTENDSIZE and TRUNCATE_ON_CLOSE keywords.

KEYED

Set this keyword to indicate that the file has indexed organization. Indexed files
discussed in ““VMS-Specific Information” in Chapter 16 ofBuilding IDL
Applcations.

LIST

Set this keyword to specify carriage-return carriage control when creating a new
If no carriage-control keyword is specified, LIST is the default.

NONE

Set this keyword to specify explicit carriage control when creating a new file. Wh
using explicit carriage control, VMS does not add any carriage control information
the file, and the user must explicitly add any desired carriage control to the data b
written to the file.

PRINT

Set this keyword to send the file to SYS$PRINT, the default system printer, when
closed.

SEGMENTED

Set this keyword to indicate that the file has VMS FORTRAN-style segmented
records. Segmented records are a method by which FORTRAN allows logical rec
to exist with record sizes that exceed the maximum possible physical record siz
supported by VMS. Segmented record files are useful primarily for passing data
between FORTRAN and IDL programs.

SHARED

Set this keyword to allow other processes read and write access to the file in pa
with IDL. If SHARED is not set, read-only files are opened for read sharing and
read/write files are not shared. The SHARED keyword cannot be used with
STREAM files.
IDL Reference Guide OPEN

872

ode.

le.
sed

dio).

ue,

ame

 is

e

rd
ed in
 by

ise,
Warning
It is not a good idea to allow shared write access to files open in RMS block m
In block mode, VMS cannot perform the usual record locking that prevents file
corruption. It is therefore possible for multiple writers to corrupt a block mode fi
This warning also applies to fixed-length record disk files, which are also proces
in block mode. When using SHARED, do not specify either BLOCK or
UDF_BLOCK.

STREAM

Set this keyword to open the file in stream mode using the Standard C Library (st

SUBMIT

Set this keyword to submit the file to SYS$BATCH, the default system batch que
when it is closed.

SUPERSEDE

Set this keyword to allow an existing file to be superseded by a new file of the s
name, type, and version.

TRUNCATE_ON_CLOSE

Set this keyword to free any unused disk space allocated to the file when the file
closed. This keyword can be used to get rid of excess allocations caused by the
EXTENDSIZE and INITIALSIZE keywords. If the SHARED keyword is set, or th
file is open for read-only access, TRUNCATE_ON_CLOSE has no effect.

UDF_BLOCK

Set this keyword to create a file similar to those created with the BLOCK keywo
except that new files are created with the RMS undefined record type. Files creat
this way can only be accessed by IDL in block mode, and cannot be processed
many VMS utilities. Do not specify both UDF_BLOCK and SHARED.

VARIABLE

Set this keyword to indicate that the file has variable-length records. If the
Record_Lengthargument is present, it specifies the maximum record size. Otherw
the only limit is that imposed by RMS (32767 bytes). If no file organization is
specified, variable-length records are the default.
OPEN IDL Reference Guide

873

data

OF

X
nd
alues

ed

oth

ting
he
Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the FSTAT function returns the length of the
file including the record descriptors, reading a file with VMS variable length
records into a byte array of the size returned by FSTAT will result in an RMS E
error.

Note On IEEE to VAX Format Conversion

Translation of floating-point values from the IDL’s native (IEEE) format to the VA
format and back (IEEE to VAX to IEEE) is not a completely reversible operation, a
should be avoided when possible. There are many cases where the recovered v
will differ from the original, including:

• The VAX floating point format lacks support for the IEEE special values
(NaN, Infinity). Hence, their special meaning is lost when they are convert
to VAX format and cannot be recovered.

• Differences in precision and range can also cause information to be lost in b
directions.

Research Systems recommends using IEEE/VAX conversions only to read exis
VAX format data, and strongly recommends that all new files be created using t
IEEE format.

For more information, seeBuilding IDL ApplcationsAppendix A, “VMS Floating-
Point Arithmetic in IDL”.

Example

The following example opens the IDL distribution filepeople.dat and reads an
image from that file:

; Open 'people.dat' on file unit number 1. The FILEPATH
; function is used to return the full path name to this
; distribution file.
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Define a variable into which the image will be read:
image=BYTARR(192, 192, /NOZERO)

; Read the data:
READU, 1, image
IDL Reference Guide OPEN

874
; Display the image:
TV, image

See Also

CLOSE, GET_LUN, POINT_LUN, PRINT/PRINTF, READ/READF, READU,
VAX_FLOAT, WRITEU
OPEN IDL Reference Guide

875

om

a on

ts

than
the
OPLOT

The OPLOT procedure plots vector data over a previously-drawn plot. It differs fr
PLOT only in that it does not generate a new axis. Instead, it uses the scaling
established by the most recent call to PLOT and simply overlays a plot of the dat
the existing axis.

Syntax

OPLOT, [X,] Y [, MAX_VALUE= value] [, MIN_VALUE= value] [, NSUM=value]
[, /POLAR] [, THICK=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value]
[, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, ZVALUE= value{0 to 1}]

Arguments

X

A vector argument. If X is not specified,Y is plotted as a function of point number
(starting at zero). If both arguments are provided,Y is plotted as a function ofX.

This argument is converted to single-precision floating-point before plotting. Plo
created with OPLOT are limited to the range and precision of single-precision
floating-point values.

Y

The ordinate data to be plotted. This argument is converted to single-precision
floating-point before plotting.

Keywords

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing and are not plotted. Note that
IEEE floating-point value NaN is also treated as missing data. (See“Special Floating-
Point Values” in Chapter 15 ofBuilding IDL Applcations for more information on
IEEE floating-point values.)
IDL Reference Guide OPLOT

876

the
EE

en

ints
.

The
MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing and are not plotted. Note that the IE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

NSUM

The presence of this keyword indicates the number of data points to average wh
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there arem data points, thenm/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data po
to plot because it plots fewer points, the graph is less cluttered, and it is quicker

POLAR

Set this keyword to produce polar plots. TheX andY vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates.
first parameter is the radius, and the second is expressed in radians.

For example, to make a polar plot, use the command:

OPLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is
normal, 2.0 is double wide, etc.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.CLIP, COLOR, LINESTYLE, NOCLIP, PSYM,
SYMSIZE, T3D, ZVALUE.

Example

; Create a simple dataset:
D = SIN(FINDGEN(100)/EXP(FINDGEN(100)/50))

; Create an X-Y plot of vector D:
PLOT, D
OPLOT IDL Reference Guide

877
; Overplot the sine of D as a thick, dashed line:
OPLOT, SIN(D), LINESTYLE = 5, THICK = 2

See Also

OPLOTERR, PLOT
IDL Reference Guide OPLOT

878

f

le
OPLOTERR

The OPLOTERR procedure plots error bars over a previously drawn plot. A plot oX
versusYwith error bars drawn fromY - Err to Y+ Err is written to the output device
over any plot already there.

This routine is written in the IDL language. Its source code can be found in the fi
oploterr.pro in thelib subdirectory of the IDL distribution.

Syntax

OPLOTERR, [X ,] Y , Err [, Psym]

Arguments

X

An optional array of X values. The procedure checks whether or not the third
parameter passed is a vector to decide ifX was passed. IfX is not passed, then
INDGEN(Y) is assumed for the X values.

Y

The array of Y values.Y cannot be of type string.

Err

The array of error bar values.

Psym

The plotting symbol to use (default = +7).

Keywords

None

See Also

ERRPLOT, OPLOT, PLOTERR
OPLOTERR IDL Reference Guide

879

 all

le

fies

fies

s two-
.

P_CORRELATE

The P_CORRELATE function computes the partial correlation coefficient of a
dependent variable and one particular independent variable when the effects of
other variables involved are removed.

This routine is written in the IDL language. Its source code can be found in the fi
p_correlate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = P_CORRELATE(X, Y, C)

Arguments

X

An n-element integer, single-, or double-precision floating-point vector that speci
the independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that speci
the dependent variable data.

C

An integer, single-, or double-precision floating-point array that specifies the
independent variable data whose effects are to be removed. The columns of thi
dimensional array correspond to then-element vectors of independent variable data

Example

; Define three sample populations:
X0 = [64, 71, 53, 67, 55, 58, 77, 57, 56, 51, 76, 68]
X1 = [57, 59, 49, 62, 51, 50, 55, 48, 52, 42, 61, 57]
X2 = [8, 10, 6, 11, 8, 7, 10, 9, 10, 6, 12, 9]

; Compute the partial correlation of X0 and X1 with the effects
; of X2 removed.
result = P_CORRELATE(X0, X1, REFORM(X2, 1, N_ELEMENTS(X2)))
PRINT, result

IDL Output

0.533469
IDL Reference Guide P_CORRELATE

880
See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
R_CORRELATE
P_CORRELATE IDL Reference Guide

881

 a

The
ach
teps
ingle

tation.
 is

ser as
ject

.

PARTICLE_TRACE

The PARTICLE_TRACE function traces the path of a massless particle through
vector field. The function allows the user to specify a set of starting points and a
vector field. The input seed points can come from any vertex-producing process.
points are tracked by treating the vector field as a velocity field and integrating. E
path is tracked until the path leaves the input volume or a maximum number of s
is reached. The vertices generated along the paths are returned packed into a s
array along with a polyline connectivity array. The polyline connectivity array
organizes the vertices into separate paths (one per seed). Each path has an orien
The initial orientation may be set using the SEED_NORMAL keyword. As a path
tracked, the change in the normal is also computed and may be returned to the u
an optional argument. Path output can be passed directly to an IDLgrPolyline ob
or passed to the STREAMLINE procedure for generation of orientated ribbons.
Control over aspects of the integration (e.g. method or stepsize) is also provided

Syntax

PARTICLE_TRACE,Data, Seeds, Verts, Conn [, Normals]
[, MAX_ITERATIONS=value] [, ANISOTROPY=array]
[, INTEGRATION={0 | 1}] [, SEED_NORMAL=vector] [, TOLERANCE=value]
[, MAX_STEPSIZE=value] [, /UNIFORM]

Arguments

Data

Input data array. This array can be of dimensions [2,dx, dy] for two-dimensional
vector fields or [3,dx, dy, dz] for three-dimensional vector fields.

Seeds

Input array of seed points ([3,n] or [2, n].

Verts

Array of output path vertices ([3,n] or [2, n] array of floats).

Conn

Output path connectivity array in IDLgrPolyline POLYLINES keyword format.
There is one set of line segments in this array for each input seed point.
IDL Reference Guide PARTICLE_TRACE

882

ree-

e

ta
r

Normals

Output normal estimate at each output vertex ([3,n] array of floats).

Keywords

ANISOTROPY

Set this input keyword to a two- or three- element array describing the distance
between grid points in each dimension. The default value is [1.0, 1.0, 1.0] for th
dimensional data and [1.0, 1.0] for two-dimensional data.

INTEGRATION

Set this keyword to one of the following values to select the integration method:

• 0 = 2nd order Runge-Kutta

• 1 = 4th order Runge-Kutta

The default is zero.

SEED_NORMAL

Set this keyword to a three-element vector which selects the initial normal for th
paths. The default value is [0.0, 0.0, 1.0]. This keyword is ignored for two-
dimensional data.

TOLERANCE

This keyword is used with adaptive step-size control in the 4th order Runge-Kut
integration scheme. It is ignored if the UNIFORM keyword is set or the 2nd orde
Runge-Kutta scheme is selected.

MAX_ITERATIONS

This keyword specifies the maximum number of line segments to return for each
path. The default value is 200.

MAX_STEPSIZE

This keyword specifies the maximum path step size. The default value is 1.0.

UNIFORM

If this keyword is set, the step size will be set to a fixed value, set via the
MAX_STEPSIZE keyword. If this keyword is not specified, and TOLERANCE is
either unspecified or inapplicable, then the step size is computed based on the
velocity at the current point on the path according to the formula:
PARTICLE_TRACE IDL Reference Guide

883

))
stepsize = MIN(MaxStepSize, MaxStepSize/MAX(ABS(U), ABS(V), ABS(W)

where (U,V,W) is the local velocity vector.
IDL Reference Guide PARTICLE_TRACE

884

state
ty of

re the

e
alue
lue

 the
the

etic.
PCOMP

The PCOMP function computes the principal components of anm-column,n-row
array, wherem is the number of variables andn is the number of observations or
samples. The principal components of a multivariate data set may be used to re
the data in terms of derived variables or may be used to reduce the dimensionali
the data by reducing the number of variables (columns). The result is annvariables-
column (nvariables≤ m), n-row array of derived variables.

Syntax

Result = PCOMP(A [, COEFFICIENTS=variable] [, /COVARIANCE]
[, /DOUBLE] [, EIGENVALUES=variable] [, NVARIABLES=value]
[, /STANDARDIZE] [, VARIANCES=variable])

Arguments

A

An m-column,n-row, single- or double-precision floating-point array.

Keywords

COEFFICIENTS

Use this keyword to specify a named variable that will contain the principal
components used to compute the derived variables. The principal components a
coefficients of the derived variables and are returned in anm-column,m-row array.
The rows of this array correspond to the coefficients of the derived variables. Th
coefficients are scaled so that the sums of their squares are equal to the eigenv
from which they are computed. This keyword must be initialized to a nonzero va
before calling PCOMP if the principal components are desired.

COVARIANCE

Set this keyword to compute the principal components using the covariances of
original data. The default is to use the correlations of the original data to compute
principal components.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm
PCOMP IDL Reference Guide

885

s are
fore

ult in

ance
EIGENVALUES

Use this keyword to specify a named variable that will contain a one-column,m-row
array of eigenvalues that correspond to the principal components. The eigenvalue
listed in descending order. This keyword must be initialized to a nonzero value be
calling PCOMP if the eigenvalues are desired.

NVARIABLES

Use this keyword to specify the number of derived variables. A value of zero,
negative values, and values in excess of the input array’s column dimension res
a complete set (m-columns andn-rows) of derived variables.

STANDARDIZE

Set this keyword to convert the variables (the columns) of the input array to
standardized variables (variables with a mean of zero and variance of one).

VARIANCES

Use this keyword to specify a named variable that will contain a one-column,m-row
array of variances. The variances correspond to the percentage of the total vari
for each derived variable.

Example

; Define an array with 4 variables and 20 observations:
array = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]
IDL Reference Guide PCOMP

886
; Compute the derived variables based upon the principal
; components. The COEFFICENTS, EIGENVALUES, and VARIANCES keywords
; must be initialized as nonzero values prior to calling PCOMP:
coefficients = 1 & eigenvalues = 1 & variances = 1
result = PCOMP(array, COEFFICIENTS = coefficients, $

EIGENVALUES = eigenvalues, VARIANCES = variances)

PRINT, 'Result: '
PRINT, result, FORMAT = '(4(f5.1, 2x))'
PRINT, 'Coefficients: '
PRINT, coefficients
PRINT, 'Eigenvalues: '
PRINT, eigenvalues
PRINT, 'Variances: '
PRINT, variances

IDL Output

Result:
81.4 15.5 -5.5 0.5

102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6

81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6

97.0 6.4 -4.4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6

81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6

113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6

91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6

Coefficients:
0.983668 0.947119 0.358085 0.925647
0.118704 -0.265644 0.932897 -0.215227
-0.134015 -0.179266 0.0378060 0.311214
-0.0185792 0.0161747 0.00707525 0.000456858

Eigenvalues:
2.84969
1.00128
PCOMP IDL Reference Guide

887

nal
0.148380
0.000657078

Variances:
0.712422
0.250319
0.0370950
0.000164269

The first two derived variables account for 96.3% of the total variance of the origi
data.

See Also

CORRELATE, EIGENQL
IDL Reference Guide PCOMP

888

d, the
issa.
 be
PLOT

The PLOT procedure draws graphs of vector arguments. If one parameter is use
vector parameter is plotted on the ordinate versus the point number on the absc
To plot one vector as a function of another, use two parameters. PLOT can also
used to create polar plots by setting the POLAR keyword.

Syntax

PLOT, [X,] Y [, MAX_VALUE= value] [, MIN_VALUE= value] [, NSUM=value]
[, /POLAR] [, THICK=value] [, /XLOG] [, /YLOG] [, /YNOZERO]

Graphics Keywords: [, BACKGROUND=color_index] [, CHARSIZE=value]
[, CHARTHICK=integer] [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /NOCLIP] [, /NODATA] [, /NOERASE] [, POSITION=[X0, Y0, X1, Y1]]
[, PSYM=integer{0 to 10}] [, SUBTITLE=string] [, SYMSIZE=value] [, /T3D]
[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN= [left, right]]
[, {X | Y | Z}MINOR= integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK= value]
[, {X | Y | Z}TICKFORMAT= string]
[, {X | Y | Z}TICKLEN= value]
[, {X | Y | Z}TICKNAME= string_array]
[, {X | Y | Z}TICKS= integer]
[, {X | Y | Z}TICKV= array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE= string]
[, ZVALUE=value{0 to 1}]

Arguments

X

A vector argument. If X is not specified,Y is plotted as a function of point number
(starting at zero). If both arguments are provided,Y is plotted as a function ofX.
PLOT IDL Reference Guide

889

ts
ing-

than
the

the
EE

en

ints
.

This argument is converted to single-precision floating-point before plotting. Plo
created with PLOT are limited to the range and precision of single-precision float
point values.

Y

The ordinate data to be plotted. This argument is converted to single-precision
floating-point before plotting.

Keywords

ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 2183 for more information.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing and are not plotted. Note that
IEEE floating-point value NaN is also treated as missing data. (See“Special Floating-
Point Values” in Chapter 15 ofBuilding IDL Applcations for more information on
IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing and are not plotted. Note that the IE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

NSUM

The presence of this keyword indicates the number of data points to average wh
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there arem data points, thenm/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data po
to plot because it plots fewer points, the graph is less cluttered, and it is quicker
IDL Reference Guide PLOT

890

The
. For

oth

oth
POLAR

Set this keyword to produce polar plots. TheX andY vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates.
first parameter is the radius, and the second is the angle (expressed in radians)
example, to make a polar plot, you would use a command such as:

PLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is
normal, 2 is double wide, etc.

XLOG

Set this keyword to specify a logarithmic X axis, producing a log-linear plot. Set b
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.

YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when theYdata
are all positive and nonzero, and no explicit minimum Y value is specified (using
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value ofY, in the case of positive Y data. Set bit 4 in !Y.STYLE to make
this option the default.

YLOG

Set this keyword to specify a logarithmic Y axis, producing a linear-log plot. Set b
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE, T3D, THICK, TICKLEN,
TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN , [XYZ]MINOR ,
[XYZ]RANGE, [XYZ]STYLE , [XYZ]THICK , [XYZ]TICKFORMAT ,
[XYZ]TICKLEN , [XYZ]TICKNAME , [XYZ]TICKS , [XYZ]TICKV ,
[XYZ]TICK_GET, [XYZ]TITLE , ZVALUE.
PLOT IDL Reference Guide

891

 of
Example

The PLOT procedure has many keywords that allow you to create a vast variety
plots. Here are a few simple examples using the PLOT command.

; Create a simple dataset:
D = FINDGEN(100)

; Create a simple plot with the title "Simple Plot":
PLOT, D, TITLE = 'Simple Plot'

; Plot one argument versus another:
PLOT, SIN(D/3), COS(D/6)

; Create a polar plot:
PLOT, D, D, /POLAR, TITLE = 'Polar Plot'

; Use plotting symbols instead of connecting lines by including the
; PSYM keyword. Label the X and Y axes with XTITLE and YTITLE:
PLOT, SIN(D/10), PSYM=4, XTITLE='X Axis', YTITLE='Y Axis'

See Also

OPLOT, PLOTS
IDL Reference Guide PLOT

892

ing

le

r:
PLOT_3DBOX

The PLOT_3DBOX procedure plots a function of two variables (e.g.,Z=f(X, Y))
inside a 3D box. Optionally, the data can be projected onto the “walls” surround
the plot area.

This routine is written in the IDL language. Its source code can be found in the fi
plot_3dbox.pro in thelib subdirectory of the IDL distribution.

Syntax

PLOT_3DBOX,X, Y, Z [, GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, PSYM=integer{1 to
10}] [, /SOLID_WALLS] [, /XY_PLANE] [, XYSTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /XZ_PLANE] [, XZSTYLE={0 | 1 | 2| 3 | 4 | 5}] [, /YZ_PLANE] [, YZSTYLE={0
| 1 | 2 | 3 | 4 | 5}] [, AX=degrees] [, AZ=degrees] [, ZAXIS={1 | 2 | 3 | 4}]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except fo
FONT, PSYM, SYMSIZE, {XYZ}TICK_GET, and ZVALUE.

Arguments

X

A vector (i.e., a one-dimensional array) of X coordinates.

Y

A vector of Y coordinates.

Z

A vector of Z coordinates.Z[i] is a function ofX[i] andY[i] .
PLOT_3DBOX IDL Reference Guide

893

ing

ore

lor

bove
Keywords

GRIDSTYLE

Set this keyword to the linestyle index for the type of line to be used when draw
the gridlines. Linestyles are described in the following table:

PSYM

Set this keyword to a plotting symbol index to be used in plotting the data. For m
information, see“PSYM” on page 2184.

SOLID_WALLS

Set this keyword to cause the boundary “walls” of the plot to be filled with the co
index specified by the COLOR keyword.

XY_PLANE

Set this keyword to plot theX andY values on the Z=0 axis plane.

XYSTYLE

Set this keyword to the linestyle used to draw the XY plane plot. See the table a
for a list of linestyles.

XZ_PLANE

Set this keyword to plot theY andZ values on the Y=MAX(Y) axis plane.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot Dot

5 Long Dashes

Table 70: IDL Linestyles
IDL Reference Guide PLOT_3DBOX

894

bove

bove

to
XZSTYLE

Set this keyword to the linestyle used to draw the XZ plane plot. See the table a
for a list of linestyles.

YZ_PLANE

Set this keyword to plot theY andZ values on the X=MAX(X) axis plane.

YZSTYLE

Set this keyword to the linestyle used to draw the YZ plane plot. See the table a
for a list of linestyles.

SURFACE Keywords

In addition to the keywords described above, the AX, AZ, and ZAXIS keywords
the SURFACE procedure are accepted by PLOT_3DBOX. See“SURFACE” on
page 1244.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NOERASE, NORMAL,
POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN , [XYZ]MINOR , [XYZ]RANGE,
[XYZ]STYLE , [XYZ]THICK , [XYZ]TICKFORMAT , [XYZ]TICKLEN ,
[XYZ]TICKNAME , [XYZ]TICKS , [XYZ]TICKV , [XYZ]TITLE .

Example

; Create some data to be plotted:
X = REPLICATE(5., 10.)
X1 = COS(FINDGEN(36)*10.*!DTOR)*2.+5.
X = [X, X1, X]
Y = FINDGEN(56)
Z = REPLICATE(5., 10)
Z1 = SIN(FINDGEN(36)*10.*!DTOR)*2.+5.
Z = [Z, Z1, Z]

; Create the box plot with data projected on all of the walls. The
; PSYM value of -4 plots the data as diamonds connected by lines:
PLOT_3DBOX, X, Y, Z, /XY_PLANE, /YZ_PLANE, /XZ_PLANE, $

/SOLID_WALLS, GRIDSTYLE=1, XYSTYLE=3, XZSTYLE=4, $
YZSTYLE=5, AZ=40, TITLE='Example Plot Box', $
XTITLE='X Coordinate', YTITLE='Y Coodinate', $
PLOT_3DBOX IDL Reference Guide

895
ZTITLE='Z Coordinate', SUBTITLE='Sub Title', $
/YSTYLE, ZRANGE=[0,10], XRANGE=[0,10], $
PSYM=-4, CHARSIZE=1.6

See Also

PLOTS, SURFACE
IDL Reference Guide PLOT_3DBOX

896

the

le

ize).

f the
PLOT_FIELD

The PLOT_FIELD procedure plots a 2D field.N random points are picked, and from
each point a path is traced along the field. The length of the path is proportional to
field vector magnitude.

This routine is written in the IDL language. Its source code can be found in the fi
plot_field.pro in thelib subdirectory of the IDL distribution.

Syntax

PLOT_FIELD,U, V [, ASPECT=ratio] [, LENGTH=value] [, N=num_arrows]
[, TITLE=string]

Arguments

U

A 2D array giving the field vector at each point in the U(X) direction.

V

A 2D array giving the field vector at each point in the V(Y) direction.

Keywords

ASPECT

Set this keyword to the aspect ratio of the plot (i.e., the ratio of the X size to Y s
The default is 1.0.

LENGTH

Set this keyword to the length of the longest field vector expressed as a fraction o
plotting area. The default is 0.1.

N

Set this keyword to the number of arrows to draw. The default is 200.

TITLE

Set this keyword to the title of plot. The default is “Velocity Field”.
PLOT_FIELD IDL Reference Guide

897
Example

; Create array X:
X = FINDGEN(20, 20)

; Create array Y:
Y = FINDGEN(20, 20)*3

; Plot X vs. Y:
PLOT_FIELD, X, Y

IDL Output

The above commands produce the following plot:

See Also

FLOW3, VEL, VELOVECT
IDL Reference Guide PLOT_FIELD

898

le

ssed
es.
PLOTERR

The PLOTERR procedure plots individual data points with error bars.

This routine is written in the IDL language. Its source code can be found in the fi
ploterr.pro in thelib subdirectory of the IDL distribution.

Syntax

PLOTERR, [X ,] Y , Err [, TYPE={1 | 2 | 3 | 4}] [, PSYM=integer{1 to 10}]

Arguments

X

An optional array of X values. The procedure checks the number of arguments pa
to decide if X was passed. If X is not passed, INDGEN(Y) is assumed for X valu

Y

The array of Y values.Y cannot be of type string.

Err

The array of error-bar values.

Keywords

TYPE

The type of plot to be produced. The possible types are:

• 1 = X Linear - Y Linear (default)

• 2 = X Linear - Y Log

• 3 = X Log - Y Linear

• 4 = X Log - Y Log

PSYM

The plotting symbol to use. The default is +7.

See Also

ERRPLOT, OPLOTERR, PLOT
PLOTERR IDL Reference Guide

899

ither
lized

r

d.

If

D=
PLOTS

The PLOTS procedure plots vectors or points on the current graphics device in e
two or three dimensions. The coordinates can be given in data, device, or norma
form using the DATA (the default), DEVICE, or NORMAL keywords.

The COLOR keyword can be set to a scalar or vector value. If it is set to a vecto
value, the line segment connecting (Xi, Yi) to (Xi+1, Yi+1) is drawn with a color index
of COLORi+1. In this case, COLOR must have the same number of elements asX
andY.

Syntax

PLOTS,X [, Y [, Z]] [, /CONTINUE]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, PSYM=integer{0 to 10}] [, SYMSIZE=value] [, /T3D] [, THICK=value]
[, Z=value]

Arguments

X

A vector or scalar argument providing the X components of the points to be
connected. If only one argument is specified,X must be an array of either two or three
vectors (i.e.,(2,*) or (3,*)). In this special case,X[0,*] are taken as the X
values,X[1,*] are taken as the Y values, andX[2,*] are taken as the Z values.

Y

An optional argument providing the Y coordinate(s) of the points to be connecte

Z

An optional argument providing the Z coordinates of the points to be connected.Z
is not provided, X and Y are used to draw lines in two dimensions.

Z has no effect if the keyword T3D is not specified and the system variable !P.T3
0.
IDL Reference Guide PLOTS

900

call
Keywords

CONTINUE

Set this keyword to continue drawing a line from the last point of the most recent
to PLOTS.

For example:

; Position at (0,0):
PLOTS, 0, 0

; Draws vector from (0,0) to (1,1):
PLOTS, 1, 1, /CONTINUE

; Draws two vectors from (1,1) to (2,2) to (3,3):
PLOTS, [2,3], [2,3], /CONTINUE

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, PSYM, SYMSIZE, T3D, THICK, Z.

Examples

; Draw a line from (100, 200) to (600, 700), in device coordinates,
; using color index 12:
PLOTS, [100,600], [200,700], COLOR=12, /DEVICE

; Draw a polyline where the line color is proportional to the
; ordinate that ends each line segment.
; First create datasets X and Y:
X = SIN(FINDGEN(100)) & Y = COS(FINDGEN(100))

; Now plot X and Y in normalized coordinates with colors as
; described above:
PLOTS, X, Y, COLOR = BYTSCL(Y, TOP=!D.N COLORS-1), /NORMAL

; Load a good colortable to better show the result:
LOADCT, 13

; Draw 3D vectors over an established SURFACE plot.
; The SAVE keyword tells IDL to save the 3D transformation
; established by SURFACE.
SURFACE, DIST(5), /SAVE

; Draw a line between (0,0,0) and (3,3,3). The T3D keyword makes
PLOTS IDL Reference Guide

901
; PLOTS use the previously established 3D transformation:
PLOTS, [0,3], [0,3], [0,3], /T3D

; Draw a line between (3,0,0) and (3,3,3):
PLOTS, [3,3], [0,3], [0,3], /T3D

; Draw a line between (0,3,0) and (3,3,3):
PLOTS, [0,3], [3,3], [0,3], /T3D

See Also

ANNOTATE, XYOUTS
IDL Reference Guide PLOTS

902

le

nd
PNT_LINE

The PNT_LINE function returns the perpendicular distance between a pointP0and a
line between pointsL0 andL1. This function is limited by the machine accuracy of
single precision floating point.

This routine is written in the IDL language. Its source code can be found in the fi
pnt_line.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = PNT_LINE(P0, L0, L1 [, Pl] [, /INTERVAL])

Arguments

P0

The location of the point.P0 may have 2 ton elements, forn dimensions.

L0

One end-point of the line.L0 must have same number of elements asP0.

L1

The other end-point of the line.L1 must have the same number of elements asL0.

Pl

A named variable that will contain the location of the point on the line betweenL0
andL1 that is closest toP0. Pl is not necessarily in the interval (L0, L1).

Keywords

INTERVAL

If set, and if the point on the line betweenL0 andL1 that is closest toP0 is not within
the interval (L0, L1), PNT_LINE will return the distance fromP0 to the closer of the
two endpointsL0 andL1.

Example

To print the distance between the point (2,3) and the line from (-3,3) to (5,12), a
also the location of the point on the line closest to (2,3), enter the following
command:
PNT_LINE IDL Reference Guide

903
PRINT, PNT_LINE([2,3], [-3,3], [5,12], Pl), Pl

IDL Output

3.73705 -0.793104 5.48276

See Also

CIR_3PNT, SPH_4PNT
IDL Reference Guide PNT_LINE

904

for

the
ght

r

UN
the

ed

es all
POINT_LUN

The POINT_LUN procedure sets or obtains the current position of the file pointer
the specified file.

Note
POINT_LUN cannot be used with files opened with the NOSTDIO keyword to
OPEN routines. Depending upon the device in question, the IOCTL function mi
be used instead for files of this type.

Syntax

POINT_LUN,Unit, Position

Arguments

Unit

The file unit for the file in question. IfUnit is positive, POINT_LUN sets the file
position to the position given byPosition. If negative, POINT_LUN gets the current
file position and assigns it to the variable given byPosition. Note that POINT_LUN
cannot be used with the 3 standard file units (0, -1, and -2).

Position

If Unit is positive,Position gives the byte offset into the file at which the file pointe
should be set. For example, to rewind the file to the beginning, specify 0.

If Unit is negative,Position must be a named variable into which the current file
position will be stored. The returned type will be a longword signed integer if the
position is small enough to fit, and an unsigned 64-bit integer otherwise.

Under VMS, be careful to move the file pointer only to record boundaries. It is
always safe to move to a file position that was previously obtained via POINT_L
or the FSTAT function. Files with indexed organization can only be positioned to
beginning of the file.

Use Of POINT_LUN On Compressed Files

In general, it is not possible to arbitrarily move the file pointer within a compress
file (files opened with the COMPRESS keyword to OPEN) because the file
compression code needs to maintain a compression state for the file that includ
POINT_LUN IDL Reference Guide

905

e

s
ew

 for
ing
nter

under

1,
the data that has already been passed in the stream. This limitation results in th
following constraints on the use of POINT_LUN with compressed files:

• POINT_LUN is not allowed on compressed files open for output, except to
positions beyond the current file position. The compression code emulate
such motion by outputting enough zero bytes to move the pointer to the n
position.

• POINT_LUN is allowed to arbitrary positions on compressed files opened
input. However, this feature is emulated by positioning the file to the beginn
of the file and then reading and discarding enough data to move the file poi
to the desired position. This can be extremely slow.

For these reasons, use of POINT_LUN on compressed files, although possible
some circumstances, is best avoided.

Example

To move the file pointer 2048 bytes into the file associated with file unit number
enter:

POINT_LUN, 1, 2048

To return the file pointer for file unit number 2, enter:

POINT_LUN, -2, pos

See Also

GET_LUN, OPEN
IDL Reference Guide POINT_LUN

906

ns

le

.

POLAR_CONTOUR

The POLAR_CONTOUR procedure draws a contour plot from data in polar
coordinates. Data can be regularly- or irregularly-gridded. All of the keyword optio
supported by CONTOUR are available to POLAR_CONTOUR.

This routine is written in the IDL language. Its source code can be found in the fi
polar_contour.pro in thelib subdirectory of the IDL distribution.

Syntax

POLAR_CONTOUR,Z, Theta, R [, C_ANNOTATION=vector_of_strings]
[, C_CHARSIZE=value] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LINESTYLE=vector] [, /FILL | , CELL_FILL [, C_ORIENTATION=degrees]
[, C_SPACING=value]] [, C_THICK=vector] [, /CLOSED] [, /IRREGULAR]
[, LEVELS=vector |NLEVELS=integer{1 to 29}] [, MAX_VALUE= value]
[, MIN_VALUE= value] [, /OVERPLOT] [, /PATH_DATA_COORDS |
,TRIANGULATION=variable] [, /XLOG] [, /YLOG] [, /ZAXIS]
[, SHOW_TRIANGULATION=color_index]

Arguments

Z

The data values to be contoured. If the data is regularly gridded,Z must have the
dimensions (N_ELEMENTS(Theta), N_ELEMENTS(R). Note that the ordering of
the elements in the arrayZ is opposite that used by the POLAR_SURFACE routine

Theta

A vector of angles in radians. For regularly-gridded data,Theta must have the same
number of elements as the first dimension ofZ. For a scattered grid,Thetamust have
the same number of elements asZ.

R

A vector of radius values. For regularly-gridded data,R must have the same number
of elements as the second dimension ofZ. For a scattered grid,Rmust have the same
number of elements asZ.

Keywords

POLAR_CONTOUR accepts all of the keywords accepted by the CONTOUR
routine except C_LABELS, DOWNHILL, FOLLOW, PATH_FILENAME,
POLAR_CONTOUR IDL Reference Guide

907

een
PATH_INFO, and PATH_XY. See“CONTOUR” on page 208. In addition, there is
one unique keyword:

SHOW_TRIANGULATION

Set this keyword to a color index to be used in overplotting the triangulation betw
datapoints.

Example

This example uses POLAR_CONTOUR with regularly-gridded data:

; The number of radii:
nr = 12

; The number of Thetas:
nt = 18

; Create a vector of radii:
r = FINDGEN(nr)/(nr-1)

; Create a vector of Thetas:
theta = 2*!PI * FINDGEN(nt)/(nt-1)

; Create some data values to be contoured:
z = COS(theta*3) # (r-0.5)^2

; Create the polar contour plot:
POLAR_CONTOUR, z, theta, r, /FILL, c_color=[2, 3, 4, 5]

See Also

CONTOUR
IDL Reference Guide POLAR_CONTOUR

908

R,

le

ded
POLAR_SURFACE

The POLAR_SURFACE function interpolates a surface from polar coordinates (
Theta, Z) to rectangular coordinates (X, Y, Z). The function returns a two-
dimensional array of the same type as Z.

This routine is written in the IDL language. Its source code can be found in the fi
polar_surface.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = POLAR_SURFACE(Z, R, Theta [, /GRID] [, SPACING=[xspacing,
yspacing]] [, BOUNDS=[x0, y0, x1, y1]] [, /QUINTIC] [, MISSING=value])

Arguments

Z

An array containing the surface value at each point. If the data are regularly grid
in R andTheta, Z is a two dimensional array, whereZi,j has a radius ofRi and an
azimuth ofThetaj. If the data are irregularly-gridded,Ri andThetaicontain the radius
and azimuth of eachZi. Note that the ordering of the elements in the arrayZ is
opposite that used by the POLAR_CONTOUR routine.

R

The radius. If the data are regularly gridded inR andTheta, Zi,j has a radius ofRi. If
the data are irregularly-gridded,R must have the same number of elements asZ, and
contains the radius of each point.

Theta

The azimuth, in radians. If the data are regularly gridded inR andTheta, Zi,j has an
azimuth ofThetaj. If the data are irregularly-gridded,Thetamust have the same
number of elements asZ, and contains the azimuth of each point.

Keywords

GRID

Set this keyword to indicate thatZ is regularly gridded inR andTheta.
POLAR_SURFACE IDL Reference Guide

909

n

the

the
SPACING

A two element vector containing the desired grid spacing of the resulting array ix
andy. If omitted, the grid will be approximately 51 by 51.

BOUNDS

A four element vector, [x0, y0, x1, y1], containing the limits of thexy grid of the
resulting array. If omitted, the extent of input data sets the limits of the grid.

QUINTIC

Set this keyword to use quintic interpolation, which is slower but smoother than
default linear interpolation.

MISSING

Use this keyword to specify a value to use for areas within the grid but not within
convex hull of the data points. The default is 0.0.

Example

; The radius:
R = FINDGEN(50) / 50.0

; Theta:
THETA = FINDGEN(50) * (2 * !PI / 50.0)

; Make a function (tilted circle):
Z = R # SIN(THETA)

; Show it:
SURFACE, POLAR_SURFACE(Z, R, THETA, /GRID)

See Also

POLAR keyword to PLOT
IDL Reference Guide POLAR_SURFACE

910

ual

le
POLY

The POLY function evaluates a polynomial function of a variable. The result is eq
to:

C0 + C1x + C2x
2 + ...

This routine is written in the IDL language. Its source code can be found in the fi
poly.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = POLY(X, C)

Arguments

X

The variable. This value can be a scalar, vector or array.

C

The vector of polynomial coefficients. The degree of the polynomial is
N_ELEMENTS(C) - 1.

See Also

FZ_ROOTS
POLY IDL Reference Guide

911

:

type

ain
r

POLY_2D

The POLY_2D function performs polynomial warping of images. This function
performs a geometrical transformation in which the resulting array is defined by

g [x, y] = f [x', y'] = f [a [x, y], b [x, y]]

whereg[x, y] represents the pixel in the output image at coordinate (x, y), andf [x', y']
is the pixel at (x', y') in the input image that is used to deriveg[x, y]. The functions
a (x, y) andb (x, y) are polynomials inx andy of degreeN, whose coefficients are
given byP andQ, and specify the spatial transformation:

Either the nearest neighbor or bilinear interpolation methods can be selected.

Syntax

Result = POLY_2D(Array, P, Q [, Interp [, Dimx, Dimy]] [, CUBIC={-1 to 0}]
[, MISSING=value])

Arguments

Array

A two-dimensional array of any basic type except string. The result has the same
asArray.

P and Q

P andQ are arrays containing the polynomial coefficients. Each array must cont
(N+1)2 elements (whereN is the degree of the polynomial). For example, for a linea
transformation,P andQ contain four elements and can be a 2 x 2array or a 4-element
vector.Pi,j contains the coefficient used to determinex’, and is the weight of the term
xjyi. The POLYWARP procedure can be used to fit(x’, y’) as a function of(x, y) and
determines the coefficient arraysP andQ.

x′ a x y,() Pi j, x
j
yi

j 0=

N

∑
i 0=

N

∑= =

y′ b x y,() Qi j, x jyi

j 0=

N

∑
i 0=

N

∑= =
IDL Reference Guide POLY_2D

912

to
,

arest

ut

as

tting

that a
.
al

s

Interp

Set this argument to a 1to perform bilinear interpolation. Set this argument to 2
perform cubic convolution interpolation (as described under the CUBIC keyword
below). Otherwise, the nearest neighbor method is used. For the linear case, (N=1),
bilinear interpolation requires approximately twice as much time as does the ne
neighbor method.

Dim x

If present,Dimx specifies the number of columns in the output. If omitted, the outp
has the same number of columns asArray.

Dim y

If present,Dimy specifies the number of rows in the output. If omitted, the output h
the same number of rows asArray.

Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Se
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest
value of -0.5 significantly improves the reconstruction properties of this algorithm
Note that cubic convolution interpolation works only with one- and two-dimension
arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal,f, is a band-limited signal, with no frequency
component larger thanω0, andf is sampled with spacing less than or equal to 1/2ω0,
thenf can be reconstructed by convolving with a sinc function: sinc (x) = sin (πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation i
significantly slower than bilinear interpolation.

For further details see:
POLY_2D IDL Reference Guide

913

or
do

c

rest
Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques f
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redon
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubi
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Specifies the output value for points whosex’, y’ is outside the bounds ofArray. If
MISSING is not specified, the resulting output value is extrapolated from the nea
pixel of Array.

Example

Some simple linear (degree one) transformations are:

POLY_2D is often used in conjunction with the POLYWARP procedure to warp
images.

; Create and display a simple image:
A = BYTSCL(SIN(DIST(250)), TOP=!D.TABLE_SIZE) & TV, A

; Set up the arrays of original points to be warped:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Set up the arrays of points to be fit:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Use POLYWARP to generate the P and Q inputs to POLY_2D:
POLYWARP, XI, YI, XO, YO, 1, P, Q

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

0 0 1 0 0 1 0 0 Identity

0 0 0.5 0 0 1 0 0 Stretch X by a factor of 2

0 0 1 0 0 2.0 0 0 Shrink Y by a factor of 2

z 0 1 0 0 1 0 0 Shift left by z pixels

0 1 0 0 0 0 1 0 Transpose

Table 71: Simple Transformations for Use with POLY_2D
IDL Reference Guide POLY_2D

914
; Perform an image warping based on P and Q:
B = POLY_2D(A, P, Q)

; Display the new image:
TV, B, 250, 250

Images can also be warped over irregularly gridded control points using the
WARP_TRI procedure.

See Also

POLYWARP
POLY_2D IDL Reference Guide

915

f its

le

order
 area.
POLY_AREA

The POLY_AREA function returns the area of a polygon given the coordinates o
vertices. This value is always positive.

It is assumed that the polygon hasn vertices withn sides and the edges connect the
vertices in the order:

[(x1,y1), (x2,y2), ... , (xn,yn), (x1,y1)]

such that the last vertex is connected to the first vertex.

This routine is written in the IDL language. Its source code can be found in the fi
poly_area.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = POLY_AREA(X, Y)

Arguments

X

An n-element vector of X coordinate locations for the vertices.

Y

An n-element vector of Y coordinate locations for the vertices.

Keywords

SIGNED

If set, returns a signed area. Polygons with edges traversed in counterclockwise
have a positive area; polygons traversed in the clockwise order have a negative

See Also

DEFROI, POLYFILLV
IDL Reference Guide POLY_AREA

916

r

le,
st

le
POLY_FIT

The POLY_FIT function performs a least-square polynomial fit with optional erro
estimates and returns a vector of coefficients with a length ofNDegree+1.

The POLY_FIT routine uses matrix inversion. A newer version of this routine,
SVDFIT, uses Singular Value Decomposition. The SVD technique is more flexib
but slower. Another version of this routine, POLYFITW, performs a weighted lea
square fit.

This routine is written in the IDL language. Its source code can be found in the fi
poly_fit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = POLY_FIT(X, Y, NDegree [, Yfit, Yband, Sigma, Corrm] [, /DOUBLE])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length asX.

NDegree

The degree of the polynomial to fit.

Yfit

A named variable that will contain the vector of calculatedY values. These values
have an error of plus or minusYband.

Yband

A named variable that will contain the error estimate for each point.

Sigma

A named variable that will contain the standard deviation inY units.

Corrm

A named variable that will contain the correlation matrix of the coefficients.
POLY_FIT IDL Reference Guide

917

c.
Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmeti

Example

In this example, we use X and Y data corresponding to the known polynomial
f (x) = 0.25 -x + x2. Using POLY_FIT to compute a second degree polynomial fit
returns the exact coefficients (to within machine accuracy).

; Define an 11-element vector of independent variable data:
X = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

; Define an 11-element vector of dependent variable data:
Y = [0.25, 0.16, 0.09, 0.04, 0.01, 0.00, 0.01, 0.04, 0.09, $

0.16, 0.25]

; Compute the second degree polynomial fit to the data:
result = POLY_FIT(X, Y, 2)

; Print the coefficients:
PRINT, result

IDL Output

0.24999996
-0.99999974

0.99999975

See Also

COMFIT, CURVEFIT, GAUSSFIT, POLYFITW, REGRESS, SFIT, SVDFIT
IDL Reference Guide POLY_FIT

918

an
lid
rray.

all
tiple
 of
he

g.

s is

ted,
POLYFILL

The POLYFILL procedure fills the interior of a region of the display enclosed by
arbitrary two or three-dimensional polygon. The available filling methods are: so
fill, hardware-dependent fill pattern, parallel lines, or a pattern contained in an a
Not all methods are available on every hardware output device. See“Fill Methods”
below.

The polygon is defined by a list of connected vertices stored in X, Y, and Z. The
coordinates can be given in data, device, or normalized form using the DATA,
DEVICE, or NORMAL keywords.

Syntax

POLYFILL, X [, Y [, Z]] [, FILL_PATTERN=index] [, IMAGE_COORD=array]
[, /IMAGE_INTERP] [, /LINE_FILL] [, PATTERN=array]
[, SPACING=centimeters] [, TRANSPARENT=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, /T3D] [, THICK=value] [, Z=value]

Fill Methods

Line-fill method: Filling using parallel lines is device-independent and works on
devices that can draw lines. Crosshatching can be simulated by performing mul
fills with different orientations. The spacing, linestyle, orientation, and thickness
the filling lines can be specified using the corresponding keyword parameters. T
LINE_FILL keyword selects this filling style, but is not required if either the
ORIENTATION or SPACING parameters are present.

Solid fill method: Most, but not all, devices can fill with a solid color. Solid fill is
performed using the line-fill method for devices that don’t have this hardware
capability. Method specifying keyword parameters are not required for solid fillin

Patterned fill: The method of patterned filling and the usage of various fill pattern
hardware dependent. The fill pattern array can be explicitly specified with the
PATTERN keyword parameter for some output devices. If this parameter is omit
the polygon is filled with the hardware-dependent pattern index specified by the
FILL_PATTERN keyword.
POLYFILL IDL Reference Guide

919

e

. Z

or

N

en

P

er
d of
Arguments

X

A vector argument providing the X coordinates of the points to be connected. Th
vector must contain at least three elements. If only one argument is specified,X must
be an array of either two or three vectors (i.e.,(2,*) or (3,*)). In this special case,
the vectorX[0,*] specifies the X values,X[1,*] specifies Y, andX[2,*] contain
the Z values.

Y

A vector argument providing the Y coordinates of the points to be connected.Ymust
contain at least three elements.

Z

An optional vector argument providing the Z coordinates of the points to be
connected. If Z is not provided, X and Y are used to draw lines in two dimensions
must contain at least three elements. Z has no effect if the keyword T3D is not
specified and the system variable !P.T3D= 0.

Keywords

FILL_PATTERN

The hardware dependent fill pattern index for the POLYFILL procedure. If omitted
set to 0, a solid fill results.

IMAGE_COORD

(Z-Buffer output only) A 2 xn array containing the fill pattern array subscripts of
each of then polygon vertices. Use this keyword in conjunction with the PATTER
keyword to warp images over 2D and 3D polygons.

IMAGE_INTERP

(Z-Buffer output only) Specifies the method of sampling the PATTERN array wh
the IMAGE_COORD keyword is present. The default method is to use nearest-
neighbor sampling. Bilinear interpolation sampling is performed if IMAGE_INTER
is set.

LINE_FILL

Set this keyword to indicate that polygons are to be filled with parallel lines, rath
than using solid or patterned filling methods.When using the line-drawing metho
IDL Reference Guide POLYFILL

920

ified

ny

ith

g

filling, the thickness, linestyle, orientation, and spacing of the lines may be spec
with keywords.

PATTERN

A rectangular array of pixels giving the fill pattern. If this keyword parameter is
omitted, POLYFILL fills the area with a solid color. The pattern array may be of a
size; if it is smaller than the filled area the pattern array is cyclically repeated.

Note
When the display device selected is PostScript (PS), POLYFILL can only fill w
solid colors.

For example, to fill the current plot window with a grid of dots, enter the followin
commands:

; Define pattern array as 10 by 10:
PAT = BYTARR(10,10)

; Set center pixel to bright:
PAT(5,5) = 255

; Fill the rectangle defined by the four corners of the window with
; the pattern:
POLYFILL, !X.WINDOW([0,1,1,0]), $

!Y.WINDOW([0,0,1,1]), /NORM, PAT = PAT

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

TRANSPARENT (Z-Buffer output only)

Specifies the minimum pixel value to draw in conjunction with the PATTERN and
IMAGE_COORD keywords. Pixels less than this value are not drawn and the Z-
buffer is not updated.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, ORIENTATION, T3D, THICK, Z.
POLYFILL IDL Reference Guide

921

ons,

e
s. If
just

N
ond

(30,
Z-Buffer-Specific Keywords

Certain keyword parameters are only active when the Z-buffer is the currently
selected graphics device: IMAGE_COORD, IMAGE_INTERP, TRANSPARENT
and COLOR. These parameters allow images to be warped over 2D or 3D polyg
and the output of shaded polygons. For examples, see “The Z-Buffer Device” on
page 62.

For shaded polygons, the COLOR keyword can specify an array that contains th
color index at each vertex. Color indices are linearly interpolated between vertice
COLOR contains a scalar, the entire polygon is drawn with the given color index,
as with the other graphics output devices.

Images can be warped over polygons by passing in the image with the PATTER
parameter, and a (2,n) array containing the image space coordinates that corresp
to each of the N vertices with the IMAGE_COORD keyword.

The IMAGE_INTERP keyword indicates that bilinear interpolation is to be used,
rather than the default nearest-neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency.

Example

Fill a rectangular polygon that has the vertices (30,30), (100, 30), (100, 100), and
100) in device coordinates:

; Create the vectors of X and Y values:
X = [30, 100, 100, 30] & Y = [30, 30, 100, 100]

; Fill the polygon with color index 175:
POLYFILL, X, Y, COLOR = 175, /DEVICE

See Also

POLYFILLV
IDL Reference Guide POLYFILL

922

pts

al
 of
onal
n
oints

int
ng,

n

and
POLYFILLV

The POLYFILLV function returns a vector containing the one-dimensional subscri
of the array elements contained inside a polygon defined by vectorsX andY.

If no points are contained within the polygon, a -1 is returned and an information
message is printed. TheX andY parameters are vectors that contain the subscripts
the vertices that define the polygon in the coordinate system of the two-dimensi
Sx by Sy array. TheSx andSy parameters define the number of columns and rows i
the array enclosing the polygon. At least three points must be specified, and all p
should lie within the limits: 0≤ Xi < Sx and 0≤ Yi < Sy ∀i.

As with the POLYFILL procedure, the polygon is defined by connecting each po
with its successor and the last point with the first. This function is useful for defini
analyzing, and displaying regions of interest within a two-dimensional array.

The scan line coordinate system defined by Rogers inProcedural Elements for
Computer Graphics, McGraw-Hill, 1985, page 71, is used. In this system, the sca
lines are considered to pass through the center of each row of pixels. Pixels are
activated if the center of the pixel is to the right of the intersection of the scan line
the polygon edge within the interval.

Syntax

Result = POLYFILLV(X, Y, Sx, Sy [, Run_Length])

Arguments

X

A vector containing the X subscripts of the vertices that define the polygon.

Y

A vector containing the Y subscripts of the vertices that define the polygon.

Sx

The number of columns in the array surrounding the polygon.

Sy

The number of rows in the array surrounding the polygon.
POLYFILLV IDL Reference Guide

923

tor
s in

result
dex

ar
00,
Run_Length

Set this optional parameter to a nonzero value to make POLYFILLV return a vec
of run lengths, rather than subscripts. For large polygons, a considerable saving
space results. When run-length encoded, each element with an even subscript
contains the length of the run, and the following element contains the starting in
of the run.

Example

To determine the mean and standard deviation of the elements within a triangul
region defined by the vertices at pixel coordinates (100, 100), (200, 300), and (3
100), inside a 512 x 512 array called DATA, enter the commands:

; Get the subscripts of the elements inside the triangle:
P = DATA(POLYFILLV([100,200,300], [100,300,100], 512, 512))

; Use the STDEV function to obtain the mean and standard deviation
; of the selected elements:
STD = STDEV(P,MEAN)

See Also

POLYFILL
IDL Reference Guide POLYFILLV

924

le,
t

le
POLYFITW

The POLYFITW function performs a weighted least-square polynomial fit with
optional error estimates and returns a vector of coefficients with a length of
NDegree+1.

The POLYFITW routine uses matrix inversion. A newer version of this routine,
SVDFIT, uses Singular Value Decomposition. The SVD technique is more flexib
but slower. Another version of this routine, POLY_FIT, performs a least square fi
without weighting.

This routine is written in the IDL language. Its source code can be found in the fi
polyfitw.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree[, Yfit, Yband, Sigma, Corrm])

Arguments

X

An n-element vector of independent variables.

Y

A vector of independent variables, the same length asX.

Weights

A vector of weights, the same length asX andY.

NDegree

The degree of the polynomial to fit.

Yfit

A named variable that will contain the vector of calculatedY values. These values
have an error of plus or minusYband.

Yband

A named variable that will contain the error estimate for each point.
POLYFITW IDL Reference Guide

925

nts.
Sigma

A named variable that will contain the standard deviation of the returned coefficie

Corrm

A named variable that will contain the correlation matrix of the coefficients.

See Also

CURVEFIT, GAUSSFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
IDL Reference Guide POLYFITW

926

ore
ray of
each
less
the
ult

, a

ading

on is
uted

ers.

can
POLYSHADE

The POLYSHADE function returns a shaded-surface representation of one or m
solids described by a set of polygons. This function accepts, as arguments, an ar
three-dimensional vertices and a list of the indices of the vertices that describe
polygon. Output is a two-dimensional byte array containing the shaded image un
the current graphics output device is the Z-buffer. If the current output device is
Z-buffer, the results are merged with the Z-buffer’s contents and the function res
contains a dummy value.

Shading values are determined from one of three sources: a light source model
user-specified array containing vertex shade values, or a user-specified array
containing polygon shade values.

The shaded surface is constructed using the scan line algorithm. The default sh
model is a combination of diffuse reflection and depth cueing. With this shading
model, polygons are shaded using either constant shading, in which each polyg
given a constant intensity, or with Gouraud shading where the intensity is comp
at each vertex and then interpolated over the polygon. Use the SET_SHADING
procedure to control the direction of the light source and other shading paramet

User-specified shading arrays allow “4-dimensional” displays that consist of a
surface defined by a set of polygons, shaded with values from another variable.

Syntax

Result = POLYSHADE(Vertices, Polygons)

or

Result = POLYSHADE(X, Y, Z, Polygons)

Keywords: [, DATA] [, /NORMAL] [, POLY_SHADES=array] [, SHADES=array]
[, /T3D] [, TOP=value] [, XSIZE=columns] [, YSIZE=rows]

Arguments

Vertices

A (3, n) array containing the X, Y, and Z coordinates of each vertex. Coordinates
be in either data or normalized coordinates, depending on which keywords are
present.
POLYSHADE IDL Reference Guide

927

ree

on.

ctor

fault

ree

fined

de
s.

 into
X, Y, Z

The X, Y, and Z coordinates of each vertex can, alternatively, be specified as th
array expressions of the same dimensions.

Polygons

An integer or longword array containing the indices of the vertices for each polyg
The vertices of each polygon should be listed in counterclockwise order when
observed from outside the surface. The vertex description of each polygon is a ve
of the form: [n, i0, i1, ..., in-1] and the arrayPolygons is the concatenation of the lists
of each polygon. For example, to render a pyramid consisting of four triangles,
Polygons would contain 16 elements, made by concatenating four, four-element
vectors of the form [3,V0, V1, V2]. V0, V1, andV2 are the indices of the vertices
describing each triangle.

Keywords

DATA

Set this keyword to indicate that the vertex coordinates are in data units, the de
coordinate system.

NORMAL

Set this keyword to indicate that coordinates are in normalized units, within the th
dimensional (0,1) cube.

POLY_SHADES

An array expression, with the same number of elements as there are polygons de
in thePolygons array, containing the color index used to render each polygon. No
interpolation is performed if all pixels within a given polygon have the same sha
value. For most displays, this parameter should be scaled into the range of byte

SHADES

An array expression, with the same number of elements asVertices, containing the
color index at each vertex. The shading of each pixel is interpolated from the
surrounding SHADE values. For most displays, this parameter should be scaled
the range of bytes.
IDL Reference Guide POLYSHADE

928

n
ust

alue
s

he
e.

tput

ice.

ders
Warning
When using the SHADES keyword on TrueColor devices, we recommend that
decomposed color support be turned off by setting DECOMPOSED=0 for
DEVICE.

T3D

Set this keyword to use the three-dimensional to two-dimensional transformatio
contained in the homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T m
contain a valid transformation matrix. The SURFACE, SCALE3, and T3D
procedures (and others) can all be used to set up transformations.

TOP

The maximum shading value when light source shading is in effect. The default v
is one less than the number of colors available in the currently selected graphic
device.

XSIZE

The number of columns in the output image array. If this parameter is omitted, t
number of columns is equal to the X size of the currently selected display devic

Warning: The size parameters should be explicitly specified when the current
graphics device is PostScript or any other high-resolution device. Making the ou
image the default full device size is likely to cause an insufficient memory error.

YSIZE

The number of rows in the output image array. If this parameter is omitted, the
number of rows is equal to the Y resolution of the currently selected display dev

Example

POLYSHADE is often used in conjunction with SHADE_VOLUME for volume
visualization. The following example creates a spherical volume dataset and ren
an isosurface from that dataset:

; Create an empty, 3D array:
SPHERE = FLTARR(20, 20, 20)

; Create the spherical dataset:
FOR X=0,19 DO FOR Y=0,19 DO FOR Z=0,19 DO $

SPHERE(X, Y, Z) = SQRT((X-10)^2 + (Y-10)^2 + (Z-10)^2)

; Find the vertices and polygons for a density level of 8:
POLYSHADE IDL Reference Guide

929
SHADE_VOLUME, SPHERE, 8, V, P

; Set up an appropriate 3D transformation so we can see the
; sphere. This step is very important :
SCALE3, XRANGE=[0,20], YRANGE=[0,20], ZRANGE=[0,20]

; Render the image. Note that the T3D keyword has been set so that
; the previously-established 3D transformation is used:
image = POLYSHADE(V, P, /T3D)

; Display the image:
TV, image

See Also

PROJECT_VOL, RECON3, SET_SHADING, SHADE_SURF, SHADE_VOLUME,
VOXEL_PROJ
IDL Reference Guide POLYSHADE

930

le

e

al to
POLYWARP

The POLYWARP procedure performs polynomial spatial warping.

Using least squares estimation, POLYWARP determines the coefficientsKx(i,j) and
Ky(i,j) of the polynomial functions:

Kx andKy can be used as inputs P and Q to the built-in function POLY_2D. This
coordinate transformation may be then used to map fromXo, Yo coordinates intoXi,
Yi coordinates.

This routine is written in the IDL language. Its source code can be found in the fi
polywarp.pro in thelib subdirectory of the IDL distribution.

Syntax

POLYWARP,Xi, Yi, Xo, Yo, Degree, Kx, Ky

Arguments

Xi, Yi

Vectors of X and Y coordinates to be fit as a function of Xo and Yo.

Xo, Yo

Vectors of X and Y independent coordinates. These vectors must have the sam
number of elements asXi andYi.

Degree

The degree of the fit. The number of coordinate pairs must be greater than or equ
(Degree+1)2.

Kx

A named variable that will contain the array of coefficients forXi as a function of
(Xo, Yo). This parameter is returned as a (Degree+1) by (Degree+1) element array.

Xi Kxi j, Xo
j

Yo
i⋅⋅

i j,
∑=

Yi Kyi j, Xo
j

Yo
i⋅⋅

i j,
∑=
POLYWARP IDL Reference Guide

931
Ky

A named variable that will contain the array of coefficients forYi. This parameter is
returned as a (Degree+1) by (Degree+1) element array.

Example

The following example shows how to display an image and warp it using the
POLYWARP and POLY_2D routines.

; Create and display the original image:
A = BYTSCL(SIN(DIST(250)))
TVSCL, A

; Now set up the Xi’s and Yi’s:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Enter the Xo’s and Yo’s:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Run POLYWARP to obtain a Kx and Ky:
POLYWARP, XI, YI, XO, YO, 1, KX, KY

; Create a warped image based on Kx and Ky with POLY_2D:
B = POLY_2D(A, KX, KY)

; Display the new image:
TV, B

See Also

POLY_2D, WARP_TRI
IDL Reference Guide POLYWARP

932

d on
This

ge to

le
POPD

The POPD procedure changes the current working directory to the directory save
the top of the directory stack maintained by the PUSHD and POPD procedures.
top entry is then removed from the stack.

Attempting to pop a directory when the stack is empty causes a warning messa
be printed. The current directory is not changed in this case. The common block
DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the fi
popd.pro in thelib subdirectory of the IDL distribution.

Syntax

POPD

See Also

CD, PRINTD, PUSHD
POPD IDL Reference Guide

933

er-

of
nt

re
ment
POWELL

The POWELL procedure minimizes a user-written functionFunc of two or more
independent variables using the Powell method. POWELL does not require a us
supplied analytic gradient.

POWELL is based on the routinepowell described in section 10.5 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

POWELL,P, Xi, Ftol, Fmin, Func [, /DOUBLE] [, ITER=variable]
[, ITMAX= value]

Arguments

P

On input,P is ann-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Xi

On input,Xi is an initialn by n element array whose columns contain the initial set
directions (usually then unit vectors). On output, it is replaced with the then-curre
directions.

Ftol

An input value specifying the fractional tolerance in the function value. Failure to
decrease by more thanFtol in one iteration signals completeness. For single-
precision computations, a value of 1.0× 10-4 is recommended; for double-precision
computations, a value of 1.0× 10-8 is recommended.

Fmin

On output,Fmin contains the value at the minimum-pointP of the user-supplied
function specified byFunc.

Func

A scalar string specifying the name of a user-supplied IDL function of two or mo
independent variables to be minimized. This function must accept a vector argu
X and return a scalar result.
IDL Reference Guide POWELL

934

etic.

ault
For example, suppose we wish to minimize the function

To evaluate this expression, we define an IDL function named POWFUNC:

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The def
is 200.

Warning
POWELL halts once the value specified with ITMAX has been reached.

Example

We can use POWELL to minimize the function POWFUNC given above.

PRO TEST_POWELL

; Define the fractional tolerance:
ftol = 1.0e-4

; Define the starting point:
P = [.5d, -.25d]

; Define the starting directional vectors in column format:
xi = TRANSPOSE([[1.0, 0.0],[0.0, 1.0]])

; Minimize the function:
POWELL, P, xi, ftol, fmin, 'powfunc'

f x y,() x 2y+()e x2– y2–
=

POWELL IDL Reference Guide

935
; Print the solution point:
PRINT, 'Solution point: ', P

; Print the value at the solution point:
PRINT, 'Value at solution point: ', fmin

END

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

IDL Output

Solution point: -0.31622777 -0.63245552
Value at solution point: -0.95900918

The exact solution point is [-0.31622777, -0.63245553].

The exact minimum function value is -0.95900918.

See Also

AMOEBA, DFPMIN
IDL Reference Guide POWELL

936

le

uted.
PRIMES

The PRIMES function computes the firstK prime numbers. The result is aK-element
long integer vector.

This routine is written in the IDL language. Its source code can be found in the fi
primes.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = PRIMES(K)

Arguments

K

An integer or long integer scalar that specifies the number of primes to be comp

Example

To computes the first 25 prime numbers:

PRINT, PRIMES(25)

IDL Output

2 3 5 7 11 13
17 19 23 29 31 37
41 43 47 53 59 61
67 71 73 79 83 89
97
PRIMES IDL Reference Guide

937

the

tring
es)

eek

a

PRINT/PRINTF

The two PRINT procedures perform formatted output. PRINT performs output to
standard output stream (IDL file unit -1), while PRINTF requires a file unit to be
explicitly specified.

Syntax

PRINT [,Expr1, ...,Exprn]

PRINTF [,Unit, Expr1, ...,Exprn]

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, /STDIO_NON_FINITE]

VMS Keywords: [, /REWRITE]

Arguments

Unit

For PRINTF,Unit specifies the file unit to which the output is sent.

Expr i

The expressions to be output.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the output.
FORMAT allows the format of the output to be specified in precise detail, using
IDL Reference Guide PRINT/PRINTF

938

en
ith

int

ard
use

d.

to
rd

(”,
FORTRAN-style specification. See“Using Explicitly Formatted Input/Output” in
Chapter 16 ofBuilding IDL Applcations.

MONTHS

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

STDIO_NON_FINITE

Set this keyword to allow the writing of data files readable by C or FORTRAN
programs on a given platform; it is otherwise unnecessary.The various systems
supported by IDL differ widely in the representation used for non-finite floating po
values (i.e., NaN and Infinity). Consider that the following are all possible
representations for NaN on at least one IDL platform:

NaN, NanQ, ?.0000, nan0x2, nan0x7, 1.#QNAN, -1.#IND0.

And the following are considered to be Infinity:

Inf, Infinity, ++.0000, ----.0000, 1.#INF

On input, IDL can recognize any of these, but on output, it uses the same stand
representation on all platforms. This promotes cross-platform consistency. To ca
IDL to use the system C librarysprintf() function to format such values, yielding
the native representation for that platform, set the STDIO_NON_FINITE keywor

VMS Keywords

REWRITE

When writing data to a file with indexed organization, set the REWRITE keyword
specify that the data should update the contents of the most recently input reco
instead of creating a new record.

Format Compatibility

If the FORMAT keyword is not present and PRINT is called with more than one
argument, and the first argument is a scalar string starting with the characters “$
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.
PRINT/PRINTF IDL Reference Guide

939

e the
Example

To print the string “IDL is fun.” enter the command:

PRINT, 'IDL is fun.'

To print the same message to the open file associated with file unit number 2, us
command:

PRINTF, 2, 'IDL is fun.'

See Also

ANNOTATE, MESSAGE, WRITEU, XYOUTS
IDL Reference Guide PRINT/PRINTF

940

 the
 the

ory

le
PRINTD

The PRINTD procedure prints the contents of the directory stack maintained by
PUSHD and POPD procedures. The contents of the directory stack are listed on
default output device. The common block DIR_STACK is used to store the direct
stack.

This routine is written in the IDL language. Its source code can be found in the fi
printd.pro in thelib subdirectory of the IDL distribution.

Syntax

PRINTD

See Also

CD, POPD, PUSHD
PRINTD IDL Reference Guide

941

:

PRO

The PRO statement defines an IDL procedure.

Note
PRO is an IDL statement. For information on using statements, seeChapter 10,
“Statements” in Building IDL Applcations.

Syntax

PROProcedure_Name, argument1, ..., argumentn
⋅ ⋅ ⋅

END

Arguments

argument n

A parameter that is passed to the procedure.

Example

The following example demonstrates the use of arguments in a PRO statement

PRO MYPROCEDURE
X = 5
; Call the ADD procedure:
ADD, 3, X

END

PRO ADD, A, B
PRINT, 'A = ', A
PRINT, 'B = ', B
A = A + B
PRINT, 'A = ', A

END

After runningmyprocedure.pro , IDL returns:

A = 3
B = 5
A = 8
IDL Reference Guide PRO

942

int
er.

le

se
cted

plex.

ted

ted
PROFILE

The PROFILE function extracts a profile from an image and returns a floating-po
vector containing the values of the image along the profile line marked by the us

This routine is written in the IDL language. Its source code can be found in the fi
profile.pro in thelib subdirectory of the IDL distribution.

Using PROFILE

To mark a profile line after calling PROFILE, click in the image with the left mou
button to mark the beginning and ending points. The pixel coordinates of the sele
points are displayed in the IDL command log.

Syntax

Result = PROFILE(Image [, XX, YY] [, /NOMARK] [, XSTART=value]
[, YSTART=value])

Arguments

Image

The data array representing the image. This array can be of any type except com

XX

A named variable that will contain the X coordinates of the points along the selec
profile.

YY

A named variable that will contain the Y coordinates of the points along the selec
profile.

Keywords

NOMARK

Set this keyword to inhibit marking the image with the profile line.

XSTART

The starting X location of the lower-left corner ofImage. If this keyword is not
specified, 0 is assumed.
PROFILE IDL Reference Guide

943
YSTART

The starting Y location of the lower-left corner ofImage. If this keyword is not
specified, 0 is assumed.

Example

This example displays an image, selects a profile, and plots that profile in a new
window:

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Extract a profile from the image:
R = PROFILE(A)

Mark two points on the image with the mouse.

; Create a new plotting window:
WINDOW, /FREE

; Plot the profile:
PLOT, R

Note
The PROFILES procedure is an interactive version of this routine.

See Also

PROFILES
IDL Reference Guide PROFILE

944

asily

RT

d
ILER
PROFILER

The PROFILER procedure allows you to access the IDL Code Profiler. The IDL
Code Profiler helps you analyze the performance of your applications. You can e
monitor the calling frequency and execution time for procedures and functions.

Syntax

PROFILER [,Module] [, /CLEAR] [, DATA= variable] [, OUTPUT=variable]
[, /REPORT] [, /RESET] [, /SYSTEM]

Arguments

Module

The program to which changes in profiling will be applied. IfModuleis not specified,
profiling changes will be applied to all currently-compiled programs.

Note
The Module is often named with respect to the file in which it is stored. For
example, the filebuild_it.pro may contain the module,build_it . If you
specify the file name, you will incur a syntax error.

Keywords

CLEAR

Set this keyword to disable profiling ofModuleor of all compiled modules ifModule
is not specified.

OUTPUT

Set this keyword to a specified variable in which to store the results of the REPO
keyword.

REPORT

Set this keyword to report the results of profiling. If you enter a program at the
command line, the PROFILER procedure will report the status of all the specifie
modules used either since the beginning of the IDL session, or since the PROF
was reset.
PROFILER IDL Reference Guide

945

ly
RESET

Set this keyword to clear the results of profiling.

SYSTEM

Set this keyword to profile IDL system procedures and functions. By default, on
user-written or library files, which have been compiled, are profiled.

Example

; Include IDL system procedures and functions when profiling:
PROFILER, /SYSTEM

; Create a dataset using the library function DIST. Note that DIST
; is immediately compiled:
A= DIST(500)

; Display the image:
TV, A

; Retrieve the profiling results:
PROFILER, /REPORT

IDL Output

Module Type Count Only(s) Avg.(s) Time(s) Avg.(s)
FINDGEN (S) 1 0.000239 0.000239 0.000239 0.000239
FLTARR (S) 1 0.010171 0.010171 0.010171 0.010171
N_ELEMENTS (S) 1 0.000104 0.000104 0.000104 0.000104
ON_ERROR (S) 1 0.000178 0.000178 0.000178 0.000178
SQRT (S) 251 0.099001 0.000394 0.099001 0.000394
TV (S) 1 2.030000 2.030000 2.030000 2.030000

See Also

Chapter 19, “Debugging an IDL Program” in theBuilding IDL Applcations manual.
IDL Reference Guide PROFILER

946

in
inal

le

the
ow

ta
f it is

the
PROFILES

The PROFILES procedure interactively draws row or column profiles of an image
a separate window. A new window is created and the mouse location in the orig
window is used to plot profiles in the new window.

This routine is written in the IDL language. Its source code can be found in the fi
profiles.pro in thelib subdirectory of the IDL distribution.

Using PROFILES

Moving the mouse within the original image interactively creates profile plots in
newly-created profile window. Pressing the left mouse button toggles between r
and column profiles. The right mouse button exits.

Syntax

PROFILES,Image [, /ORDER] [, SX=value] [, SY=value] [, WSIZE=value]

Arguments

Image

The variable that represents the image displayed in the current window. This da
need not be scaled into bytes. The profile graphs are made from this array, even i
not currently displayed.

Keywords

ORDER

Set this keyword to 1 for images written top down or 0 for bottom up. Default is
current value of !ORDER.

SX

Starting X position of the image in the window. If this keyword is omitted, 0 is
assumed.

SY

Starting Y position of the image in the window. If this keyword is omitted, 0 is
assumed.
PROFILES IDL Reference Guide

947

on to
WSIZE

The size of the PROFILES window as a fraction or multiple of 640 by 512.

Example

Create and display an image and use the PROFILES routine on it.

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Run the PROFILES routine:
PROFILES, A, WSIZE = .5

A 320 x 256 pixel PROFILES window should appear. Move the cursor over the
original image to see the profile at the cursor position. Press the left mouse butt
toggle between row and column profiles. Press the right mouse button (with the
cursor over the original image) to exit the routine.

See Also

PROFILE
IDL Reference Guide PROFILES

948

tion
 a
how
y be
e of

rix

his

le

al

the

the

l

PROJECT_VOL

The PROJECT_VOL function returns a two-dimensional image that is the projec
of a 3D volume of data onto a plane (similar to an X-ray). The returned image is
translucent rendering of the volume (the highest data values within the volume s
up as the brightest regions in the returned image). Depth queuing and opacity ma
used to affect the image. The volume is projected using a 4x4 matrix, so any typ
projection may be used including perspective. Typically the system viewing mat
(!P.T) is used as the 4x4 matrix.

Note that theVOXEL_PROJ procedure performs many of the same functions as t
routine, and is faster.

This routine is written in the IDL language. Its source code can be found in the fi
project_vol.pro in thelib subdirectory of the IDL distribution.

Syntax

Return = PROJECT_VOL(Vol, X_Sample, Y_Sample, Z_Sample
[, DEPTH_Q=value] [, OPAQUE=3D_array] [, TRANS=array])

Arguments

Vol

A 3D array of any type except string or structure containing the three dimension
volume of data to project.

X_Sample

A long integer specifying the number of rays to project along the X dimension of
image. The returned image will have the dimensionsX_sample by Y_sample.

Y_Sample

A long integer specifying the number of rays to project along the Y dimension of
image. To preserve the correct aspect ratio of the data,Y_sample should equal
X_sample.

Z_Sample

A long integer specifying the number of samples to take along each ray. Higher
values forX_sample, Y_sample, andZ_sample increase the image resolution as wel
as execution time.
PROJECT_VOL IDL Reference Guide

949

ing.
 This
e
e to
ow

g).

ions
of

f a
s (each
ely

e

sing
Keywords

DEPTH_Q

Set this keyword to indicate that the image should be created using depth queu
The depth queuing should be a single floating-point value between 0.0 and 1.0.
value specifies the brightness of the farthest regions of the volume relative to th
closest regions of the volume. A value of 0.0 will cause the back side of the volum
be completely blacked out, while a value of 1.0 indicates that the back side will sh
up just as bright as the front side. The default is 1.0 (indicating no depth queuin

OPAQUE

A 3D array of any type except string or structure, with the same size and dimens
asVol. This array specifies the opacity of each cell in the volume. OPAQUE values
0 allow all light to pass through. OPAQUE values are cumulative. For example, i
ray emanates from a data value of 50, and then passes through 10 opaque cell
with a data value of 0 and an opacity value of 5) then that ray would be complet
blocked out (the cell with the data value of 50 would be invisible on the returned
image). The default is no opacity.

TRANS

A 4x4 floating-point array to use as the transformation matrix when projecting th
volume. The default is to use the system viewing matrix (!P.T).

Example

Use the T3D routine to set up a viewing projection and render a volume of data u
PROJECT_VOL.

; First, create some data:
vol = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO vol = SMOOTH(vol, 3)
vol = BYTSCL(vol(3:37, 3:37, 3:37))
opaque = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO opaque = SMOOTH(opaque, 3)
opaque = BYTSCL(opaque(3:37, 3:37, 3:37), TOP=25B)

; Set up the view:
xmin = 0 & ymin = 0 & zmin = 0
xmax = 34 & ymax = 34 & zmax = 34
!X.S = [-xmin, 1.0] / (xmax - xmin)
!Y.S = [-ymin, 1.0] / (ymax - ymin)
!Z.S = [-zmin, 1.0] / (zmax - zmin)
T3D, /RESET
T3D, TRANSLATE=[-0.5, -0.5, -0.5]
IDL Reference Guide PROJECT_VOL

950
T3D, SCALE=[0.7, 0.7, 0.7]
T3D, ROTATE=[30, -30, 60]
T3D, TRANSLATE=[0.5, 0.5, 0.5]
WINDOW, 0, XSIZE=512, YSIZE=512

; Generate and display the image:
img = PROJECT_VOL(vol, 64, 64, 64, DEPTH_Q=0.7, $

OPAQUE=opaque, TRANS=(!P.T))
TVSCL, img

See Also

POLYSHADE, VOXEL_PROJ
PROJECT_VOL IDL Reference Guide

951

ows
es a
x.

ut

le
PS_SHOW_FONTS

The PS_SHOW_FONTS procedure displays all the PostScript fonts that IDL kn
about, with both the StandardAdobe and ISOLatin1 encodings. Each display tak
separate page, and each character in each font is shown with its character inde

A PostScript file is produced, one page per font/mapping combination. The outp
file contains almost 70 pages of output. A PostScript previewer is recommended
rather than sending it to a printer.

This routine is written in the IDL language. Its source code can be found in the fi
ps_show_fonts.pro in thelib subdirectory of the IDL distribution.

Syntax

PS_SHOW_FONTS [, /NOLATIN]

Keywords

NOLATIN

Set this keyword to prevent output of ISOLatin1 encodings.

See Also

PSAFM
IDL Reference Guide PS_SHOW_FONTS

952

new

le
PSAFM

The PSAFM procedure takes an Adobe Font Metrics file as input and generates a
AFM file in the format that IDL likes. This new file differs from the original in the
following ways:

• Information not used by IDL is removed.

• AFM files with the AdobeStandardEncoding are supplemented with an
ISOLatin1Encoding.

This routine is written in the IDL language. Its source code can be found in the fi
psafm.pro in thelib subdirectory of the IDL distribution.

Syntax

PSAFM,Input_Filename, Output_Filename

Arguments

Input_Filename

A string that contains the name of existing AFM file from Adobe.

Output_Filename

A string that specifies the name of new IDL-format AFM file to be created.

See Also

PS_SHOW_FONTS
PSAFM IDL Reference Guide

953

ness,

r the
e)

le

0 to
PSEUDO

The PSEUDO procedure creates a pseudo-color table based on the LHB (Light
Hue, and Brightness) system and loads it.

The pseudo-color mapping used is generated by first translating from the LHB
coordinate system to the LAB coordinate system, findingN colors spread out along a
helix that spans this LAB space (supposedly a near maximal entropy mapping fo
eye, given a particularN) and remapping back into the RGB (Red, Green, and Blu
colorspace. The result is loaded as the current colortable.

This routine is written in the IDL language. Its source code can be found in the fi
pseudo.pro in thelib subdirectory of the IDL distribution.

Syntax

PSEUDO,Litlo, Lithi, Satlo, Sathi, Hue, Loops[, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting hue, in degrees, from 0 to 360.

Loops

The number of loops of hue to make in the color helix. This value can range from
around 3 to 5 and need not be an integer.
IDL Reference Guide PSEUDO

954

ed.
Colr

An optional (256,3) integer array in which the new R, G, and B values are return
Red =Colr[*,0], green =Colr[*,1], blue =Colr[*,2].

See Also

COLOR_CONVERT, COLOR_QUAN
PSEUDO IDL Reference Guide

955

to the

yed.

y

EE
PTR_FREE

The PTR_FREE procedure destroys the heap variables pointed at by its pointer
arguments. Any memory used by the heap variable is released, and the variable
ceases to exist. No change is made to the arguments themselves and all pointers
destroyed variables continue to exist. Such pointers are known asdangling
references.PTR_FREE is the only way that pointer heap variables can be destro
If PTR_FREE is not called on a heap variable, it continues to exist until the IDL
session ends, even if no pointers remain that can be used to reference it.

Note that PTR_FREE does not recurse. That is, if the heap variable pointed at b
pointer1 containspointer2 , destroyingpointer1 will not destroy the heap
variable pointed at bypointer2 . Take care not to lose the only pointer to a heap
variable by destroying a pointer to a heap variable that contains that pointer.

Syntax

PTR_FREE,P1, ... …,Pn

Arguments

Pi

Scalar or array arguments of pointer type. If the NULL pointer is passed, PTR_FR
ignores it quietly.
IDL Reference Guide PTR_FREE

956

ta

her

n

t of
is
PTR_NEW

The PTR_NEW function provides the primary mechanism for creating heap
variables. It returns a pointer to the created variable.

Syntax

Result = PTR_NEW([InitExpr] [, /ALLOCATE_HEAP] [, /NO_COPY])

Argument

InitExpr

If InitExpr is provided, PTR_NEW uses it to initialize the newly created heap
variable. Note that the new heap variable does not point at theInitExpr variable in
any sense—the new heap variable simply contains a copy of its value.

If InitExpr is not provided, PTR_NEW does not create a new heap variable, and
returns theNull Pointer,a special pointer with a fixed known value that can never
point at a heap variable. The null pointer is useful as a terminator in dynamic da
structures, or as a placeholder in structure definitions.

Keywords

ALLOCATE_HEAP

Set this keyword to cause PTR_NEW to allocate an undefined heap variable rat
than return a null pointer whenInitExpr is not specified.

NO_COPY

Usually, when theInitExpr argument is provided, PTR_NEW allocates additional
memory to make a copy. If the NO_COPY keyword is set, the value data is take
away from theInitExpr variable and attached directly to the heap variable. This
feature can be used to move data very efficiently. However, it has the side effec
causing theInitExpr variable to become undefined. Using the NO_COPY keyword
completely equivalent to the statement:

Result = PTR_NEW(TEMPORARY(InitExpr))

and is provided as a syntactic convenience.
PTR_NEW IDL Reference Guide

957

 a
 True

d is
inter

eful
ith

t is
e.

g

er is

ap
f the
PTR_VALID

The PTR_VALID function verifies the validity of its pointer arguments, or
alternatively returns a vector of pointers to all the existing valid pointer heap
variables.

If called with an pointer or array of pointers as its argument, PTR_VALID returns
byte array of the same size as the argument. Each element of the result is set to
(1) if the corresponding pointer in the argument refers to an existing valid heap
variable, or to False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keywor
set, PTR_VALID returns an array of pointers. Each element of the result is a po
to the heap variable indexed by the integer value. Integers used to index heap
variables are shown in the output of the HELP and PRINT commands. This is us
primarily in programming/debugging when you have lost a reference but see it w
HELP and need to get a reference to it interactively in order to determine what i
and take steps to fix the code. See the “Examples” section below for an exampl

If no argument is specified, PTR_VALID returns a vector of pointers to all existin
valid pointer heap variables—even if there are currently no pointers to the heap
variable. This usage allows you to “reclaim” pointer heap variables to which all
pointers have been lost. If no valid pointer heap variables exist, a scalar null point
returned.

Syntax

Result = PTR_VALID([Arg] [, /CAST] [, COUNT=variable])

Argument

Arg

Arg can be one of the following:

1. A scalar or array argument of pointer type.

2. If the CAST keyword is set, an integer index or array of integer indices to he
variables. Integers used to index heap variables are shown in the output o
HELP and PRINT commands.
IDL Reference Guide PTR_VALID

958

ntly

le A,
Keywords

CAST

Set this keyword to create a new pointer to each heap variable index specified inArg.

COUNT

Set this keyword equal to a named variable that will contain the number of curre
valid heap variables. This value is returned as a longword integer.

Examples

To determine if a given pointer refers to a valid heap variable:

IF (PTR_VALID(p)) THEN …

To destroy all existing pointer heap variables:

PTR_FREE, PTR_VALID()

You can use the CAST keyword to “reclaim” lost heap variables. For example:

A = PTR_NEW(10)
PRINT, A

IDL prints:

<PtrHeapVar2>

In this case, the integer index to the heap variable is 2. If we reassign the variab
we will “lose” the pointer, but the heap variable will still exist:

A=0
PRINT, A, PTR_VALID()

IDL prints:

0 <PtrHeapVar2>

We can reclaim the lost heap variable using the CAST keyword:

A = PTR_VALID(2, /CAST)
PRINT, A

IDL prints:

<PtrHeapVar2>
PTR_VALID IDL Reference Guide

959

 of

h

 to

.

to
ld be

the
PTRARR

The PTRARR function returns a pointer vector or array. The individual elements
the array are set to the Null Pointer.

Syntax

Result = PTRARR(D1, ... …,D8 [, /ALLOCATE_HEAP | , /NOZERO])

Argument

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

ALLOCATE_HEAP

Normally, PTRARR sets every element of the result to the null pointer. It you wis
IDL to allocate heap variables for every element of the array instead, set the
ALLOCATE_HEAP keyword. In this case, every element of the array will be
initialized to point at an undefined heap variable.

NOZERO

If ALLOCATE_HEAP is not specified, PTRARR sets every element of the result
the null pointer. If NOZERO is nonzero, this initialization is not performed and
PTRARR executes faster. NOZERO is ignored if ALLOCATE_HEAP is specified

Warning
If you specify NOZERO, the resulting array will have whatever value happens
exist at the system memory location that the array is allocated from. You shou
careful to initialize such an array to valid pointer values.

Example

Create P, a 3 element by 3 element pointer array with each element containing
Null Pointer by entering:

P = PTRARR(3, 3)
IDL Reference Guide PTRARR

960

tory
d by

le

 is
PUSHD

The PUSHD procedure pushes a directory onto the top of the directory stack
maintained by the PUSHD and POPD procedures. The name of the current direc
is pushed onto the directory stack. This directory becomes the next directory use
POPD. IDL changes directories to the one specified by theDir argument. The
common block DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the fi
pushd.pro in thelib subdirectory of the IDL distribution.

Syntax

PUSHD,Dir

Arguments

Dir

A string containing the name of the directory to change to. The current directory
pushed onto the top of the directory stack.

See Also

CD, POPD, PRINTD
PUSHD IDL Reference Guide

961

[
aller

ted.
QROMB

The QROMB function evaluates the integral of a function over the closed intervalA,
B] using Romberg integration. The result will have the same structure as the sm
of A andB, and the resulting type will be single- or double-precision floating,
depending on the input types.

QROMB is based on the routineqromb described in section 4.3 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
QROMB is not intended to be used for double integration. To perform double
integration, use theINT_2D function.

Syntax

Result = QROMB(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integra
This function must accept a single scalar argumentX and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the cubic polynomial

y = x3 + (x - 1)2 + 3

we define a function CUBIC to express this relationship in the IDL language:

FUNCTION cubic, X
RETURN, X^3 + (X - 1.0)^2 + 3.0

END

A

The lower limit of the integration.A can be either a scalar or an array.

B

The upper limit of the integration.B can be either a scalar or an array.
IDL Reference Guide QROMB

962

etic.

e is

d,

he
Note
If arrays are specified forA andB, then QROMB integrates the user-supplied
function over the interval [Ai, Bi] for eachi. If eitherA or B is a scalar and the other
an array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

The desired fractional accuracy. For single-precision calculations, the default valu
1.0× 10-6. For double-precision calculations, the default value is 1.0× 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If this keyword is not specifie
a default of 20 is used.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5. (K=2 is Simpson’s rule).

Example

To integrate the CUBIC function (listed above) over the interval [0, 3] and print t
result:

PRINT, QROMB('cubic', 0.0, 3.0)

IDL prints:

32.2500

This is the exact solution.

See Also

INT_2D, INT_3D, INT_TABULATED, QROMO, QSIMP
QROMB IDL Reference Guide

963

 (

ted.

e

QROMO

The QROMO function evaluates the integral of a function over the open intervalA,
B) using a modified Romberg’s method.

QROMO is based on the routineqromo described in section 4.4 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
QROMO is not intended to be used for double integration. To perform double
integration, use theINT_2D function.

Syntax

Result = QROMO(Func, A [, B] [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value] [, /MIDEXP | , /MIDINF | , /MIDPNT | , /MIDSQL | , /MIDSQU])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integra
This function must accept a single scalar argumentX and return a scalar result. It
must be defined over the open interval (A, B).

For example, if we wish to integrate the fourth-order polynomial

y = 1 /x4

we define a function HYPER to express this relationship in the IDL language:

FUNCTION hyper, X
RETURN, 1.0 / X^4

END

A

The lower limit of the integration.A can be either a scalar or an array.

 B

The upper limit of the integration.B can be either a scalar or an array. If the MIDEXP
keyword is specified,B is assumed to be infinite, and should not be supplied by th
user.
IDL Reference Guide QROMO

964

etic.

te.

te,
Note: If arrays are specified forA andB, then QROMO integrates the user-supplied
function over the interval [Ai, Bi] for eachi. If eitherA or B is a scalar and the other
an array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

The fractional accuracy desired, as determined by the extrapolation error estima
For single-precision calculations, the default value is 1.0× 10-6. For double-precision
calculations, the default value is 1.0× 10-12.

JMAX

Set to specify the maximum allowed number of mid quadrature points to be 3(JMAX -

1). The default value is 14.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5.

MIDEXP

Use themidexp() function (seeNumerical Recipes, section 4.4) as the integrating
function. If the MIDEXP keyword is specified, argument B is assumed to be infini
and should not be supplied by the user.

MIDINF

Use themidinf() function (seeNumerical Recipes, section 4.4) as the integrating
function.

MIDPNT

Use themidpnt() function (seeNumerical Recipes, section 4.4) as the integrating
function. This is the default if no other integrating function keyword is specified.

MIDSQL

Use themidsql() function (seeNumerical Recipes, section 4.4) as the integrating
function.
QROMO IDL Reference Guide

965
MIDSQU

Use themidsqu() function (seeNumerical Recipes, section 4.4) as the integrating
function.

Example

To integrate the HYPER function (listed above) over the open interval (2,∞) and
print the result:

PRINT, QROMO('hyper', 2.0, /MIDEXP)

IDL prints:

0.0412050

Warning
When using the MIDEXP keyword, the upper integration limit is assumed to be
infinity and is not supplied.

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QSIMP
IDL Reference Guide QROMO

966

d
e
g,

ted.
QSIMP

The QSIMP function performs numerical integration of a function over the close
interval [A, B] using Simpson’s rule. The result will have the same structure as th
smaller ofA andB, and the resulting type will be single- or double-precision floatin
depending on the input types.

QSIMP is based on the routineqsimp described in section 4.2 ofNumerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = QSIMP(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value])

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integra
This function must accept a single scalar argumentX and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the fourth-order polynomial

y = (x4 - 2x2) sin(x)

we define a function SIMPSON to express this relationship in the IDL language:

FUNCTION simpson, X
RETURN, (X^4 - 2.0 * X^2) * SIN(X)

END

A

The lower limit of the integration.A can be either a scalar or an array.

B

The upper limit of the integration.B can be either a scalar or an array.

Note: If arrays are specified forA andB, then QSIMP integrates the user-supplied
function over the interval [Ai, Bi] for eachi. If eitherA or B is a scalar and the other
an array, the scalar is paired with each array element in turn.
QSIMP IDL Reference Guide

967

etic.

e is

20
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

EPS

The desired fractional accuracy. For single-precision calculations, the default valu
1.0× 10-6. For double-precision calculations, the default value is 1.0× 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If not specified, a default of
is used.

Example

To integrate the SIMPSON function (listed above) over the interval [0,π/2] and print
the result:

; Define lower limit of integration:
A = 0.0

; Define upper limit of integration:
B = !PI/2.0

PRINT, QSIMP('simpson', A, B)

IDL prints:

-0.479158

The exact solution can be found using the integration-by-parts formula:

FB = 4.*B*(B^2-7.)*SIN(B) - (B^4-14.*B^2+28.)*COS(B)
FA = 4.*A*(A^2-7.)*SIN(A) - (A^4-14.*A^2+28.)*COS(A)
exact = FB - FA
PRINT, exact

IDL prints:

-0.479156

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QROMO
IDL Reference Guide QSIMP

968

ing

e
was
f the

*
ead
are
e of
ep

ll
QUERY_* Routines

Query routines allow users to obtain information about an image file without hav
to read the file. The following QUERY_* routines are available in IDL:

All of the QUERY_* routines return a result, which is a long with the value of 1 if th
query was successful (and the file type was correct) or 0 on failure. If the query
successful, the return argument will be an anonymous structure containing all o
available information for that image format.

The status is intended to be used to determine if it is appropriate to use the
corresponding READ_ routine for a given file. The return status of the QUERY_
will indicate success if the corresponding READ_ routine is likely to be able to r
the file. The return status will indicate failure for cases that contain formats that
not supported by the READ_ routines, even though the files may be valid outsid
the IDL environment. For example, IDL’s READ_BMP does not support 1-bit-de
images and so the QUERY_BMP function would return failure in the case of a
monochrome BMP file.

The returned anonymous structure will have (minimally) the following fields for a
file formats. If the file does not support multiple images in a single file, the
NUM_IMAGES field will always be 1 and the IMAGE_INDEX field will always be
0. Individual routines will document additional fields which are returned for a
specific format.

• QUERY_BMP • QUERY_PNG

• QUERY_DICOM • QUERY_PPM

• QUERY_GIF • QUERY_SRF

• QUERY_IMAGE • QUERY_TIFF

• QUERY_JPEG • QUERY_WAV

• QUERY_PICT

Field IDL data type Description

CHANNELS Long Number of samples per pixel

DIMENSIONS 2-D long array Size of the image in pixels

Table 72: Query Routines Info Structure
QUERY_* Routines IDL Reference Guide

969

ot
All the routines accept the IMAGE_INDEX keyword although formats which do n
support multiple images in a single file will ignore this keyword.

HAS_PALETTE Integer True if a palette is present

NUM_IMAGES Long Number of images in the file

IMAGE_INDEX Long Image number for which this structure
is valid

PIXEL_TYPE Integer IDL basic type code for a pixel sample

TYPE String String identifying the file format

Field IDL data type Description

Table 72: Query Routines Info Structure
IDL Reference Guide QUERY_* Routines

970

ut

file

file.
QUERY_BMP

QUERY_BMP is a method of obtaining information about a BMP image file witho
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_BMP (Filename[, Info])

Arguments

Filename

A scalar string containing the pathname of the BMP file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘BMP’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

There are no keywords for this routine.

See Also

QUERY_* Routines, READ_BMP, WRITE_BMP
QUERY_BMP IDL Reference Guide

971

OM
at

le

file.

This

ic
QUERY_DICOM

The QUERY_DICOM function tests a file for compatibility with READ_DICOM
and returns an optional structure containing information about images in the DIC
file. The result is 0 on failure, and 1 on success. A result of 1 means it is likely th
the file can be read by READ_DICOM.

This routine is written in the IDL language. Its source code can be found in the fi
query_dicom.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = QUERY_DICOM(Filename[, Info] [, IMAGE_INDEX= index])

Arguments

Filename

A scalar string containing the full pathname of the file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘DICOM’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

IMAGE_INDEX

Set this keyword to the index (zero based) of the image being queried in the file.
keyword has no effect on files containing a single image.

Example

DICOM palette vectors are 16 bit quantities and may not cover the entire dynam
range of the image. To view a paletted DICOM image use the following:

IF (QUERY_DICOM('file.dcm',info)) THEN BEGIN
IF (info.has_palette) THEN BEGIN

TV, READ_IMAGE('file.dcm',r, g, b), /ORDER
IDL Reference Guide QUERY_DICOM

972
TVLCT,r/256, g/256, b/256
ENDIF

ENDIF

See Also

READ_DICOM
QUERY_DICOM IDL Reference Guide

973

t

file

file.
QUERY_GIF

QUERY_GIF is a method of obtaining information about a GIF image file withou
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_GIF (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the GIF file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘GIF’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_GIF, WRITE_GIF
IDL Reference Guide QUERY_GIF

974

g

for

re
QUERY_IMAGE

The QUERY IMAGE function reads the header of a file and determines if it is
recognized as an image file. If it is an image file, an optional structure containin
information about the image is returned.

Syntax

Result = QUERY_IMAGE (Filename[, Info] [, CHANNELS=variable]
[, DIMENSIONS=variable] [, HAS_PALETTE=variable]
[, IMAGE_INDEX=index] [, NUM_IMAGES=variable] [, PIXEL_TYPE=variable]
[, SUPPORTED_READ=variable] [, SUPPORTED_WRITE=variable]
[, TYPE=variable])

Return Value

Result is a long with the value of 1 if the query was successful (the file was
recognized as an image file) or 0 on failure. The return status will indicate failure
files that contain formats that are not supported by the corresponding READ_
routine, even though the file may be valid outside the IDL environment.

Arguments

Filename

A scalar string containing the name of the file to query.

Info

An optional anonymous structure containing information about the image. This
structure is valid only when the return value of the function is 1. The Info structu
for all image types has the following fields:

Tag Type

CHANNELS Long

DIMENSIONS Two-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

Table 73: The Info Structure for All Image Types
QUERY_IMAGE IDL Reference Guide

975

age.

-

the

.

L

Keywords

CHANNELS

Set this keyword to a named variable to retrieve the number of channels in the im

DIMENSIONS

Set this keyword to a named variable to retrieve the image dimensions as a two
dimensional array.

HAS_PALETTE

Set this keyword to a named variable to equal to 1 if a palette is present, else 0.

IMAGE_INDEX

Set this keyword to the index of the image to query from the file. The default is 0,
first image.

NUM_IMAGES

Set this keyword to a named variable to retrieve the number of images in the file

PIXEL_TYPE

Set this keyword to a named variable to retrieve the IDL Type Code of the image
pixel format. See the documentation for the SIZE routine for a complete list of ID
Type Codes.

The valid types for PIXEL_TYPE are:

• 1 = Byte

• 2 = Integer

• 3 = Longword Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Tag Type

Table 73: The Info Structure for All Image Types
IDL Reference Guide QUERY_IMAGE

976

e

g.
• 4 = Floating Point

• 5 = Double-precision Floating Point

• 12 = Unsigned Integer

• 13 - Unsigned Longword Integer

• 14 - 64-bit Integer

• 15 - Unsigned 64-bit Integer

SUPPORTED_READ

Set this keyword to a named variable to retrieve a string array of image types
recognized by READ_IMAGE. If the SUPPORTED_READ keyword is used the
filename and info arguments are optional.

SUPPORTED_WRITE

Set this keyword to a named variable to retrieve a string array of image types
recognized by WRITE_IMAGE. If the SUPPORTED_WRITE keyword is used th
filename and info arguments are optional.

TYPE

Set this keyword to a named variable to retrieve the image type as a scalar strin
Valid return values are:

• BMP

• GIF

• JPEG

• PNG

• PPM

• SRF

• TIFF

• DICOM
QUERY_IMAGE IDL Reference Guide

977

out

file

file.
QUERY_JPEG

QUERY_JPG is a method of obtaining information about a JPEG image file with
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_JPEG (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the JPEG file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘JPEG’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_JPEG, WRITE_JPEG
IDL Reference Guide QUERY_JPEG

978

ut

file

file.
QUERY_PICT

QUERY_PICT is a method of obtaining information about a PICT image file witho
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_PICT (Filename [, Info])

Arguments

Filename

A scalar string containing the pathname of the PICT file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘PICT’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_PICT, WRITE_PICT
QUERY_PICT IDL Reference Guide

979

out

file

file.
QUERY_PNG

QUERY_PNG is a method of obtaining information about a PNG image file with
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_PNG (Filename[, Info])

Arguments

Filename

A scalar string containing the pathname of the PNG file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘PNG’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

None

Example

Query included in creating RGBA (16-bit/channel) and Color Indexed (8-
bits/channel) image.

rgbdata = INTARR(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue

; Query and Read the data:
IDL Reference Guide QUERY_PNG

980
names = ['rgb_image.png','ci_image.png','unknown.png']

FOR i=0,N_ELEMENTS(names)-1 DO BEGIN
ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN
HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

See Also

QUERY_* Routines, READ_PNG, WRITE_PNG
QUERY_PNG IDL Reference Guide

981

out

file

.

QUERY_PPM

QUERY_PPM is a method of obtaining information about a PPM image file with
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_PPM (Filename[, Info] [, MAXVAL= variable])

Arguments

Filename

A scalar string containing the pathname of the PPM file to query.

Info

Returns an anonymous structure containing information about the image. The
Info.TYPE field will return the value ‘PPM’.

Additional field in the Info structure: MAXVAL - maximum pixel value in the image

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

MAXVAL

Set this keyword to a named variable to retrieve the maximum pixel value in the
image.

See Also

QUERY_* Routines, READ_PPM, WRITE_PPM
IDL Reference Guide QUERY_PPM

982

out

file

file.
QUERY_SRF

QUERY_SRF is a method of obtaining information about an SRF image file with
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_SRF (Filename[, Info])

Arguments

Filename

A scalar string containing the pathname of the SRF file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘SRF’.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

None

See Also

QUERY_* Routines, READ_SRF, WRITE_SRF
QUERY_SRF IDL Reference Guide

983

ut

file

file.

, the

le.
ond
QUERY_TIFF

QUERY_TIFF is a method of obtaining information about a TIFF image file witho
having to read the file. See“QUERY_* Routines”on page 968 for more information.

This routine returns a long with the value of 1 if the query was successful (and the
type was correct) or 0 on failure.

Syntax

Result = QUERY_TIFF (Filename[, Info] [, IMAGE_INDEX= index])

Arguments

Filename

A scalar string containing the pathname of the TIFF file to query.

Info

Returns an anonymous structure containing information about the image in the
The Info.TYPE field will return the value ‘TIFF’.

Additional field in the Info structure: PLANAR_CONFIG.

Note
See“QUERY_* Routines” on page 968 for detailed structure info.

Keywords

IMAGE_INDEX

Image number index. If this value is larger than the number of images in the file
function returns 0 (failure).

Example

This is an example of using QUERY_TIFF to write and read a multi-image TIFF fi
The first image is a 16-bit, single channel image stored using compression. The sec
image is an RGB image stored using 32-bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
IDL Reference Guide QUERY_TIFF

984
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF

See Also

QUERY_* Routines, READ_TIFF, WRITE_TIFF
QUERY_TIFF IDL Reference Guide

985

e
al

ery

elds

d.
QUERY_WAV

The QUERY_WAV function checks that the file is actually a .WAV file and that th
READ_WAV function can read the data in the file. Optionally, it can return addition
information about the data in the file. This function returns the value of 1 if the qu
was successful (and the file type was correct) or 0 on failure.

Syntax

Result = QUERY_WAV (Filename[, Info])

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Info

An anonymous structure containing information about the data in the file. The fi
are defined as:

Keywords

None.

Tag Type Definition

CHANNELS INT Number of data channels in the file.

SAMPLES_PER_SEC LONG Data sampling rate in samples per secon

BITS_PER_SAMPLE INT Number of valid bits in the data.

Table 74: The Info Structure for Info Fields
IDL Reference Guide QUERY_WAV

986

nk

he

le

e of
R_CORRELATE

The R_CORRELATE function computes Spearman’s (rho) or Kendalls’s (tau) ra
correlation of two sample populationsX andY. The result is a two-element vector
containing the rank correlation coefficient and the two-sided significance of its
deviation from zero. The significance is a value in the interval [0.0, 1.0]; a small
value indicates a significant correlation.

whereRxi andRyi are the magnitude-based ranks amongX andY, respectively.
Elements of identical magnitude are ranked using a rank equal to the mean of t
ranks that would otherwise be assigned.

This routine is written in the IDL language. Its source code can be found in the fi
r_correlate.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = R_CORRELATE(X, Y [, D=variable] [, /KENDALL] [, PROBD=variable]
[, ZD=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

D

Set this keyword to a named variable that will contain the sum-squared differenc
ranks. If the KENDALL keyword is set, this parameter is returned as zero.

rho

Rxi Rx–() Ryi Ry–()
i 0=

N 1–

∑

Rxi Rx–()
2

i 0=

N 1–

∑ Ryi Ry–()
2

i 0=

N 1–

∑
---=
R_CORRELATE IDL Reference Guide

987

vel
KENDALL

Set this keyword to compute Kendalls’s (tau) rank correlation. By default,
Spearman’s (rho) rank correlation is computed.

PROBD

Set this keyword to a named variable that will contain the two-sided significance le
of ZD. If the KENDALL keyword is set, this parameter is returned as zero.

ZD

Set this keyword to a named variable that will contain the number of standard
deviations by which D deviates from its null-hypothesis expected value. If the
KENDALL keyword is set, this parameter is returned as zero.

Example

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute Spearman’s (rho) rank correlation of X and Y.
result = R_CORRELATE(X, Y)
PRINT, 'Spearman’s (rho) rank correlation: ', result

; Compute Kendalls’s (tau) rank correlation of X and Y:
result = R_CORRELATE(X, Y, /KENDALL)
PRINT, 'Kendalls’s (tau) rank correlation: ', result

IDL Output

Spearman’s (rho) rank correlation: 0.835967 4.42899e-006
Kendalls’s (tau) rank correlation: 0.624347 0.000118729

See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
P_CORRELATE
IDL Reference Guide R_CORRELATE

988

of 1s

wo-
Test

le

not

s of
R_TEST

The R_TEST function tests the hypothesis that a binary population (a sequence
and 0s) represents a “random sampling”. The result is a two-element vector
containing the nearly-normal test statistic Z and its associated probability. This t
tailed test is based on the “theory of runs” and is often referred to as the “Runs
for Randomness.”

This routine is written in the IDL language. Its source code can be found in the fi
r_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = R_TEST(X [, N0=variable] [, N1=variable] [, R=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Elements
equal to 0 or 1 are removed and the length ofX is correspondingly reduced.

Keywords

N0

Set this keyword to a named variable that will contain the number of 0s inX.

N1

Set this keyword to a named variable that will contain the number of 1s inX.

R

Set this keyword to a named variable that will contain the number of runs (cluster
0s and 1s) inX.

Example

; Define a binary population:
X = [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, $

1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]

; Test the hypothesis that X represents a random sampling against
; the hypothesis that it does not represent a random sampling at
R_TEST IDL Reference Guide

989

d
s

; the 0.05 significance level:
result = R_TEST(X, R = r, N0 = n0, N1 = n1)
PRINT, result

IDL prints:

[2.26487, 0.0117604]

Print the values of the keyword parameters:

PRINT, 'Runs: ', r & PRINT, 'Zeros: ', n0 & PRINT, 'Ones: ', n1
Runs: 22
Zeros: 16
Ones: 14

The computed probability (0.0117604) is less than the 0.05 significance level an
therefore we reject the hypothesis thatX represents a random sampling. The result
show that there are too many runs, indicating a non-random cyclical pattern.

See Also

CTI_TEST, FV_TEST, KW_TEST, LNP_TEST, MD_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
IDL Reference Guide R_TEST

990

t,

hich

 This

e
.
able.
stored

ed

e re-

ic

 is

 new
RANDOMN

The RANDOMN function returns one or more normally-distributed, floating-poin
pseudo-random numbers with a mean of zero and a standard deviation of one.
RANDOMN uses the Box-Muller method for generating normally-distributed
(Gaussian) random numbers.

Syntax

Result = RANDOMN(Seed [, D1, ...,D8] [, BINOMIAL= [trials , probability]]
[, GAMMA= integer{>0}] [, /NORMAL] [, POISSON=value] [, /UNIFORM])

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in w
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector.
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing th
saved state as the Seed argument in the next call to RANDOMN or RANDOMU
Each independent random number sequence should maintain its own state vari
To maintain a state over repeated calls to a procedure, the seed variable may be
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a nam
variable is not supplied as the Seed argument or the named variable supplied is
undefined. The generic state is initialized once using the time-of-day, and may b
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting gener
state array is stored in the variable.

• a named variable that contains a longword array of the proper length — it
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a
sequence and the resulting state array is stored back in the variable.
RANDOMN IDL Reference Guide

991

ate.

s use
. An

ified,

7.3

a

e as

he
ith
• a constant or expression — the value is used to re-initialize the generic st

Note
RANDOMN and RANDOMU use the same sequence. Starting or restarting the
sequence for one starts or restarts the sequence for the other. Some IDL routine
the random number generator, so using them will initialize the seed sequence
example of such a routine is CLUST_WTS.

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If no dimensions are spec
RANDOMN returns a scalar result

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from section
of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probabilityp, with n trials, then the
number of times it occurs has a binomial distribution.

GAMMA

Set this keyword to an integer orderi > 0 to generate random deviates from a gamm
distribution. The gamma distribution is the waiting time to theith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the sam
the exponential distribution.

NORMAL

Set this keyword to generate random deviates from a normal distribution.

POISSON

Set this keyword to the mean number of events occurring during a unit of time. T
POISSON keyword returns a random deviate drawn from a Poisson distribution w
that mean.

UNIFORM

Set this keyword to generate random deviates from a uniform distribution.
IDL Reference Guide RANDOMN

992

er
Examples

If you start the sequence with anundefined variable—if RANDOMN has already
been called,Seed is no longer undefined—IDL initializes the sequence with the
system time:

; Generate one random variable and initialize the sequence with an
; undefined variable:
randomValue = RANDOMN(seed)

The new state is saved in seed. To generate repeatable experiments, begin the
sequence with a particular seed:

seed_value = 5L

; Generate one random variable and initialize the sequence with 5:
randomValue = RANDOMN(seed_value)

PRINT, randomValue

IDL prints:

0.521414

To restart the sequence with a particular seed, re-initialize the variable:

seed = 5L

;Get a normal random number, and restart the sequence with a seed
;of 5.
randomValue = RANDOMN(seed)

PRINT, randomValue

IDL prints:

0.521414

To continue the same sequence:

PRINT, RANDOMN(seed)

IDL prints:

-0.945489

To create a 10 by 10 array of normally-distributed, random numbers, type:

R = RANDOMN(seed, 10, 10)

Since seed is undefined, the generic state is used to initialize the random numb
generator. Print the resulting values by entering:
RANDOMN IDL Reference Guide

993

ned

s,

ing

e:
PRINT, R

A more interesting example plots the probability function of 2000 numbers retur
by RANDOMN. Type:

PLOT, HISTOGRAM(RANDOMN(SEED, 2000), BINSIZE=0.1)

To obtain a sequence of 1000 exponential (gamma distribution, order 1) deviate
type:

Result = RANDOMN(seed, 1000, GAMMA=1)

Intuitively, the result contains a random series of waiting times for events occurr
an average of one per time period.

To obtain a series of 1000 random elapsed times required for the arrival of two
events, type:

;Returns a series of 1000 random elapsed times required for the
;arrival of two events.
Result = RANDOMN(seed, 1000, GAMMA=2)

To obtain a 128 x 128 array filled with Poisson deviates, with a mean of 1.5, typ

Result = RANDOMN(seed, 128, 128, POISSON=1.5)

To simulate the count of “heads” obtained when flipping a coin 10 times, type:

Result = RANDOMN(seed, BINOMIAL=[10,.5])

See Also

RANDOMU
IDL Reference Guide RANDOMN

994

t,

od

uffle
1 of

hich

 This

e
.
able.
stored

ed

e re-

ic
RANDOMU

The RANDOMU function returns one or more uniformly-distributed, floating-poin
pseudo-random numbers in the range 0 <Y <1.0.

The random number generator is taken from: “Random Number Generators: Go
Ones are Hard to Find”, Park and Miller,Communications of the ACM, Oct 1988, Vol
31, No. 10, p. 1192. To remove low-order serial correlations, a Bays-Durham sh
is added, resulting in a random number generator similar to ran1() in Section 7.
Numerical Recipes in C: The Art of Scientific Computing(Second Edition), published
by Cambridge University Press.

Syntax

Result = RANDOMU(Seed [, D1, ...,D8] [, BINOMIAL= [trials , probability]]
[, GAMMA= integer{>0}] [, /NORMAL] [, POISSON=value] [, /UNIFORM])

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in w
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector.
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing th
saved state as the Seed argument in the next call to RANDOMN or RANDOMU
Each independent random number sequence should maintain its own state vari
To maintain a state over repeated calls to a procedure, the seed variable may be
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a nam
variable is not supplied as the Seed argument or the named variable supplied is
undefined. The generic state is initialized once using the time-of-day, and may b
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting gener
state array is stored in the variable.
RANDOMU IDL Reference Guide

995

 is

 new

ate.

 the
s use

. An

ified,

on

a

e as
• a named variable that contains a longword array of the proper length — it
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a
sequence and the resulting state array is stored back in the variable.

• a constant or expression — the value is used to re-initialize the generic st

Note
RANDOMN and RANDOMU use the same sequence, so starting or restarting
sequence for one starts or restarts the sequence for the other. Some IDL routine
the random number generator, so using them will initialize the seed sequence
example of such a routine is CLUST_WTS.

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If no dimensions are spec
RANDOMU returns a scalar result.

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from Secti
7.3 ofNumerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probabilityp, with n trials, then the
number of times it occurs has a binomial distribution.

GAMMA

Set this keyword to an integer orderi > 0 to generate random deviates from a gamm
distribution. The gamma distribution is the waiting time to theith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the sam
the exponential distribution.

NORMAL

Set this keyword to generate random deviates from a normal distribution.
IDL Reference Guide RANDOMU

996

he
ith

the

ent,
 1.

to
for
POISSON

Set this keyword to the mean number of events occurring during a unit of time. T
POISSON keyword returns a random deviate drawn from a Poisson distribution w
that mean.

UNIFORM

Set this keyword to generate random deviates from a uniform distribution.

Example

This example simulates rolling two dice 10,000 times and plots the distribution of
total using RANDOMU. Enter:

PLOT, HISTOGRAM(FIX(6 * RANDOMU(S, 10000)) + $
FIX(6 * RANDOMU(S, 10000)) + 2)

In the above statement, the expression RANDOMU(S, 10000) is a 10,000-elem
floating-point array of random numbers greater than or equal to 0 and less than
Multiplying this array by 6 converts the range to 0≤ Y < 6.

Applying the FIX function yields a 10,000-point integer vector with values from 0
5, one less than the numbers on one die. This computation is done twice, once
each die, then 2 is added to obtain a vector from 2 to 12, the total of two dice.

The HISTOGRAM function makes a vector in which each element contains the
number of occurrences of dice rolls whose total is equal to the subscript of the
element. Finally, this vector is plotted by the PLOT procedure.

An example of reusing a state vector to generate a repeatable sequence:

; Init seed for a repeatable sequence:
seed = 1001L

; Print 1st 5 numbers of sequence:
print,randomu(seed,5)

IDL prints:

 0.705884 0.285924 0.231151 0.715447 0.532836

Reuse a state vector:

; Re-init seed to same sequence:
seed = 1001L

; Get 5 number of sequence with 5 calls:
for i=0,4 do print, randomu(seed)
RANDOMU IDL Reference Guide

997
IDL prints:

 0.705884
 0.285924
 0.231151
 0.715447
 0.532836

See Also

RANDOMN
IDL Reference Guide RANDOMU

998

tion
e
ngth

le

nts
RANKS

The RANKS function computes the magnitude-based ranks of a sample popula
X. Elements of identical magnitude “ties” are ranked according to the mean of th
ranks that would otherwise be assigned. The result is a vector of ranks equal in le
to X.

This routine is written in the IDL language. Its source code can be found in the fi
ranks.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = RANKS(X)

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. The eleme
of this vector must be in ascending order based on their magnitude.

Example

; Define an n-element sample population:
X = [-0.8, 0.1, -2.3, -0.6, 0.2, 1.1, -0.3, 0.6, -0.2, 1.1, $

-0.7, -0.2, 0.6, 0.4, -0.1, 1.1, -0.3, 0.3, -1.3, 1.1]

; Allocate a two-column, n-row array to store the results:
array = FLTARR(2, N_ELEMENTS(X))

; Sort the sample population and store in the 0th column of ARRAY:
array[0, *] = X[SORT(X)]
; Compute the ranks of the sorted sample population and store in
; the 1st column of ARRAY:
array[1, *] = RANKS(X[SORT(X)])

; Display the sorted sample population and corresponding ranks
; with a two-decimal format:
PRINT, array, FORMAT = '(2(5x, f5.2))'

IDL Output

-2.30 1.00
-1.30 2.00
-0.80 3.00
-0.70 4.00
RANKS IDL Reference Guide

999
-0.60 5.00
-0.30 6.50
-0.30 6.50
-0.20 8.50
-0.20 8.50
-0.10 10.00

0.10 11.00
0.20 12.00
0.30 13.00
0.40 14.00
0.60 15.50
0.60 15.50
1.10 18.50
1.10 18.50
1.10 18.50
1.10 18.50

See Also

R_CORRELATE
IDL Reference Guide RANKS

1000

l

le

ved
ine of

e.

ters
RDPIX

The RDPIX procedure interactively displays the X position, Y position, and pixe
value at the cursor.

This routine is written in the IDL language. Its source code can be found in the fi
rdpix.pro in thelib subdirectory of the IDL distribution.

Using RDPIX

RDPIX displays a stream of X, Y, and pixel values when the mouse cursor is mo
over a graphics window. Press the left or center mouse button to create a new l
output. Press the right mouse button to exit the procedure.

Syntax

RDPIX, Image[, X0, Y0]

Arguments

Image

The array that contains the image being displayed. This array may be of any typ
Rather than reading pixel values from the display, values are taken from this
parameter, avoiding scaling difficulties.

X0, Y0

The location of the lower-left corner of the image area on screen. If these parame
are not supplied, they are assumed to be zero.

See Also

CURSOR, TVRD
RDPIX IDL Reference Guide

1001

F

This
is
 as

s of
READ/READF

The READ procedures perform formatted input into variables.

READ performs input from the standard input stream (IDL file unit 0), while READ
requires a file unit to be explicitly specified.

Syntax

READ, [Prompt,] Var1, ...,Varn

READF, [Prompt,] Unit, Var1, ...,Varn

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, PROMPT=string]

VMS Keywords: [, KEY_ID=value] [, KEY_MATCH=relation]
[, KEY_VALUE=value]

Arguments

Prompt

Note that the PROMPT keyword should be used instead of thePrompt argument for
compatibility with window-based versions of IDL.

A string or explicit expression (i.e, not a named variable) to be used as a prompt.
argument should not be included if the FORMAT keyword is specified. Also, if th
argument begins with the characters “$(”, it is taken to be a format specification
described below under “Format Compatibility”.

Using thePrompt argument does not work well with IDL for Windows and IDL for
Macintosh. The desired prompt string is written to the log window instead of the
command input window. To create custom prompts compatible with these version
IDL, use the PROMPT keyword, described below.

Unit

For READF, Unit specifies the file unit from which the input is taken.

Vari

The named variables to receive the input.
IDL Reference Guide READ/READF

1002

M
at

eek

en
ith

EAD

the

sing
ey
Keywords

AM_PM

Supplies a string array of two names to be used for the names of the AM and P
string when processing explicitly formatted dates (CAPA, CApA, and CapA form
codes) with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See“Using Explicitly Formatted Input/Output” in
Chapter 16 ofBuilding IDL Applcations.

MONTHS

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

PROMPT

Set this keyword to a scalar string to be used as a customized prompt for the R
command. If the PROMPT keyword orPrompt argument is not supplied, IDL uses a
colon followed by a space (“: ”) as the input prompt.

VMS Keywords

Note also that the obsolete VMS-only routine READ_KEY has been replaced by
keywords below.

KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when acces
data from a file with indexed organization. If this keyword is omitted, the primary k
is used.
READ/READF IDL Reference Guide

1003

Q =
his

the

(”,

nit
KEY_MATCH

The relation to be used when matching the supplied key with key field values (E
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If t
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the next sequential record is used.

Format Compatibility

If the FORMAT keyword is not present and READ is called with more than one
argument, and the first argument is a scalar string starting with the characters “$
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.

Example

To read a string value into the variable B from the keyboard, enter:

; Define B as a string before reading:
B = ''

; Read input from the terminal:
READ, B, PROMPT='Enter Name: '

To read formatted data from the previously-opened file associated with logical u
number 7 into variable C, use the command:

READF, 7, C

See Also

READS, READU, WRITEU
IDL Reference Guide READ/READF

1004

r of

ent

e

late

le

an
READ_ASCII

The READ_ASCII function reads data from an ASCII file into an IDL structure
variable. READ_ASCII may be used with templates created by the
ASCII_TEMPLATE function.

This routine handles ASCII files consisting of an optional header of a fixed numbe
lines, followed by columnar data. One or more rows of data constitute arecord. Each
data element within a record is considered to be in a different column, orfield. The
data in one field must be of, or promotable to, a single type (e.g., FLOAT). Adjac
fields may be collected into multi-column fields, calledgroups. Files may also
contain comments, which exist between a user-specified comment string and th
corresponding end-of-line.

READ_ASCII is designed to be used with templates created by the ASCII temp
function.

This routine is written in the IDL language. Its source code can be found in the fi
read_ascii.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = READ_ASCII([Filename] [, COMMENT_SYMBOL=string]
[, COUNT=variable] [, DATA_START=lines_to_skip] [, DELIMITER=string]
[, HEADER=variable] [, MISSING_VALUE=value] [, NUM_RECORDS=value]
[, RECORD_START=index] [, TEMPLATE=value] [, /VERBOSE])

Arguments

Filename

A string containing the name of an ASCII file to read into an IDL variable. If
filename is not specified, a dialog allows the user to choose a file.

Keywords

You can define the attributes of a field in two ways. If you use a template, you c
either use a previously generated template, or create a template with
ASCII_TEMPLATE. You can use COMMENT_SYMBOL, DATA_START,
DELIMITER, or MISSING_VALUE to either override template attributes or to
provide one-time attributes for the file to be read, without a template.
READ_ASCII IDL Reference Guide

1005

nts in
r, it

ng
ying

ds

ult

field.

g

he

p to

first
COMMENT_SYMBOL

Set this keyword to a string that identifies the character used to delineate comme
the ASCII file to be read. When READ_ASCII encounters the comment characte
discards data from that point until it reaches the end of the current line, identifyi
the rest of the line as a comment. The default character the null string, ‘’, specif
that no comments will be recognized.

COUNT

Set this keyword equal to a named variable that will contain the number of recor
read.

DATA_START

Set this keyword equal to the number of header lines you want to skip. The defa
value is 0 if no template is specified.

DELIMITER

Set this keyword to a string that identifies the end of a field. If no delimiter is
specified, READ_ASCII uses information provided by the template in use. The
default is a space, ‘ ’, specifying that an empty element constitutes the end of a

HEADER

Set this keyword equal to a named variable that will contain the header in a strin
array of length DATA_START. If no header exists, an empty string is returned.

MISSING_VALUE

Set this keyword equal to a value used to replace any missing or invalid data. T
default value, if no template is supplied, is !VALUES.F_NAN. See“!VALUES” on
page 2193 for details.

NUM_RECORDS

Set this keyword equal to the number of records to read. The default is to read u
and including the last record.

RECORD_START

Set this keyword equal to the index of the first record to read. The default is the
record of the file (record 0).
IDL Reference Guide READ_ASCII

1006

tes

der

pe:
TEMPLATE

Use this keyword to specify the ASCII file template (generated by the function
ASCII_TEMPLATE), that defines attributes of the file to be read. Specific attribu
of the template may be overridden by the following keywords:
COMMENT_SYMBOL, DATA_START, DELIMITER, MISSING_VALUE.

VERBOSE

Set this keyword to print runtime messages.

Examples

To read ASCII data using default file attributes, except for setting the number of
skipped header lines to 10, type:

data = READ_ASCII(file, DATA_START=10)

To use a template to define file attributes, overriding the number of skipped hea
lines defined in the template, type:

data = READ_ASCII(file, TEMPLATE=template, DATA_START=10)

To use the ASCII_TEMPLATE GUI to generate a template within the function, ty

data = READ_ASCII(myfile, TEMPLATE=ASCII_TEMPLATE(myfile))

See Also

ASCII_TEMPLATE
READ_ASCII IDL Reference Guide

1007

ven
o

s

f the
t a
es
TE
to
READ_BINARY

The READ_BINARY function reads the contents of a binary file using a passed
template or basic command line keywords. The result is an array or anonymous
structure containing all of the entities read from the file. Data is read from the gi
filename or from the current file position in the open file pointed to by FileUnit. If n
template is provided, keywords can be used to read a single IDL array of data.

Note
The READ_BINARY function does not work on VMS platforms due to limitation
in the POINT_LUN procedure. For more information, seePOINT_LUN.

Syntax

Result = READ_BINARY ([Filename] | FileUnit [, TEMPLATE=template] |
[[, DATA_START=value] [, DATA_TYPE=typecodes] [, DATA_DIMS=array]
[, ENDIAN=string]])

Arguments

Filename

A scalar string containing the name of the binary file to read. Iffilenameand file unit
are not specified, a dialog allows the user to choose a file.

FileUnit

A scalar containing an open IDL file unit number to read from.

Keywords

DATA_DIMS

Set this keyword to a scalar or array of up to eight elements specifying the size o
data to be read and returned. For example, DATA_DIMS=[512,512] specifies tha
two-dimensional, 512 by 512 array be read and returned. DATA_DIMS=0 specifi
that a single, scalar value be read and returned. Default is -1, which, if a TEMPLA
is not supplied that specifies otherwise, indicates that READ_BINARY will read
end-of-file and store the result in a 1D array.
IDL Reference Guide READ_BINARY

1008

set,

r the
.

he

can
d

DATA_START

Set this keyword to specify where to begin reading in a file. This value is as an off
in bytes, that will be applied to the initial position in the file. Default is 0.

DATA_TYPE

Set this keyword to an IDL typecode of the data to be read. See documentation fo
IDL SIZE function for a listing of typecodes. Default is 1 (IDL's BYTE typecode)

ENDIAN

Set this keyword to one of three string values: ‘big”, “little” or “native” which
specifies the byte ordering of the file to be read. If the computer running
READ_BINARY uses byte ordering that is different than that of the file,
READ_BINARY will swap the order of bytes in multi-byte data types read from t
file. (Default: “native” = perform no byte swapping.)

TEMPLATE

Set this keyword to a template structure describing the file to be read. A template
be created using BINARY_TEMPLATE. The TEMPLATE keyword cannot be use
simultaneously with keywords DATA_START, DATA_TYPE, DATA_DIMS, or
ENDIAN.

When a template is used with READ_BINARY, the result of a successful call to
READ_BINARY is a structure containing fields specified by the template.

If a template is not used with READ_BINARY, the result of a successful call to
READ_BINARY is an array.
READ_BINARY IDL Reference Guide

1009

ent
re

not
ytes

le

the

ts
fined

R
nce
READ_BMP

The READ_BMP function reads a Microsoft Windows Version 3 device independ
bitmap file (.BMP) and returns a byte array containing the image. Dimensions a
taken from the BITMAPINFOHEADER of the file. In the case of 4-bit or 8-bit
images, the dimensions of the resulting array are (biWidth , biHeight).

For 24-bit images, the dimensions are (3, biWidth , biHeight). Color interleaving
is blue, green, red; i.e., Result[0,i,j] = blue, Result[1,i,j] = green, etc.

READ_BMP does not handle 1-bit-deep images or compressed images, and is
fast for 4-bit images. The algorithm works best on images where the number of b
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the fi
read_bmp.pro in thelib subdirectory of the IDL distribution.

Note
To find information about a potential BMP file before trying to read its data, use
QUERY_BMP function.

Syntax

Result = READ_BMP(Filename, [, R, G, B [, Ihdr] [, /RGB])

Arguments

Filename

A scalar string specifying the full path name of the bitmap file to read.

R, G, B

Named variables that will contain the color tables from the file. There 16 elemen
each for 4 bit images, 256 elements each for 8 bit images. Color tables are not de
or used for 24 bit images.

Ihdr

A named variable that will contain a structure holding the BITMAPINFOHEADE
from the file. Tag names are as defined in the MS Windows Programmer’s Refere
Manual, Chapter 7.
IDL Reference Guide READ_BMP

1010

e.,
Keywords

RGB

If this keyword is set, color interleaving of 16- and 24-bit images will be R, G, B, i.
Result[0,i,j] = red, Result[1,i,j] = green, Result[2,i,j] = blue.

Example

To open, read, and display the BMP file namedfoo.bmp in the current directory and
store the color vectors in the variables R, G, and B, enter:

; Read and display an image:
TV, READ_BMP('foo.bmp', R, G, B)

; Load its colors:
TVLCT, R, G, B

Many applications that use 24-bit BMP files outside IDL expect BMP files to be
stored as BGR. For example, enter the following commands.

; Make a red square image:
a = BYTARR(3, 200, 200)
a(0, *, *) = 255

;View the image:
TV, a, /TRUE
WRITE_BMP, 'foo.bmp', a

If you open the.bmp file in certain bitmap editors, you may find that the square is
blue.

READ_BMP, 'foo.bmp', image

; IDL reads the image back in and interprets it as red:
TV, image, /TRUE

; Flip the order of the indices by adding the RGB keyword:
READ_BMP, 'foo.bmp', image, /RGB

; Displays the image in blue:
TV, image, /TRUE

See Also

WRITE_BMP, QUERY_BMP
READ_BMP IDL Reference Guide

1011

array

le

d.

for
READ_DICOM

The READ_DICOM function reads an image from a DICOM file along with any
associated color table. The return value can be a 2D array for grayscale or a 3D
for true color images. True color images are always returned in pixel interleave
format. The return array type depends on the DICOM image pixel type.

This routine is written in the IDL language. Its source code can be found in the fi
read_dicom.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = READ_DICOM (Filename [, Red, Green, Blue] [, IMAGE_INDEX= index])

Arguments

Filename

This argument is a scalar string that contains the full pathname of the file to rea

Red, Green, Blue

Named variables that will contain the red, green, and blue color vectors from the
DICOM file if they exist.

Note
DICOM color vectors contain 16- bit color values that may need to be converted
use with IDL graphics routines.

Keywords

IMAGE_INDEX

Set this keyword to the index of the image to read from the file.

Example

TVSCL,READ_DICOM(FILEPATH('mr_knee.dcm',$
SUBDIR=['examples','data']))

See Also

QUERY_DICOM
IDL Reference Guide READ_DICOM

1012

urns
bit

le

 the

 file
te
READ_GIF

The READ_GIF procedure reads the contents of a GIF format image file and ret
the image and color table vectors (if present) in the form of IDL variables. Only 8-
images are supported, and local colormaps are not supported.

Note
The Graphics Interchange Format© is the Copyright property of CompuServ
Incorporated. GIF(SM) is a Service Mark property of CompuServ Incorporated.

This routine is written in the IDL language. Its source code can be found in the fi
read_gif.pro in thelib subdirectory of the IDL distribution.

Note
To find information about a potential GIF file before trying to read its data, use
QUERY_GIF function.

Syntax

READ_GIF,Filename, Image [, R, G, B] [, /CLOSE] [, /MULTIPLE]

Arguments

Filename

A scalar string specifying the full path name of the image file to read.

Image

A named variable that will contain the image data read from the file.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
rasterfile contains colormaps.

Keywords

CLOSE

Set this keyword to close any open files. The CLOSE keyword is only useful if a
containing multiple images (as specified by the MULTIPLE keyword) is in use. No
READ_GIF IDL Reference Guide

1013

IF

t

first
that you do not need to specify the normal arguments to READ_GIF (Filename,
Image, etc.) when using this keyword.

MULTIPLE

Set this keyword to read files that contain multiple images. Each call to READ_G
returns the next image, with the file remaining open between calls. TheFilename
argument is ignored and may be omitted after the first call. Reading past the las
image returns a scalar value of -1 in the variable specified in theImageargument, and
closes the file. R, G, and B color vectors are returned only once, along with the
image.

Example

To open and read the GIF image file namedfoo.gif in the current directory, store
the image in the variableimage1.

; Store the color vectors in the variables R, G, and B:
READ_GIF, 'foo.gif', image1, R, G, B

; Load the new color table and display the image:
TVLCT, R, G, B
TV, image1

See Also

WRITE_GIF, QUERY_GIF
IDL Reference Guide READ_GIF

1014

age
ree
l

t be

r

olor

lor
READ_IMAGE

The READ_IMAGE function reads the image contents of a file and returns the im
in an IDL variable. If the image contains a palette it can be returned as well in th
IDL variables. READ_IMAGE returns the image in the form of a two-dimensiona
array (for grayscale images) or a (3, n, m) array (for TrueColor images).
READ_IMAGE can read most types of image files supported by IDL. See
QUERY_IMAGE for a list of supported formats.

Syntax

Result = READ_IMAGE (Filename [, Red, Green, Blue]
[, ALLOWED_FORMATS=string] [, FORMAT=string] [, IMAGE_INDEX= index])

Return Value

Result is the image array read from the file or scalar value of -1 if the file could no
read.

Arguments

Filename

A scalar string containing the name of the file to read.

Red

An optional named variable to receive the red channel of the color table if a colo
table exists.

Green

An optional named variable to receive the green channel of the color table if a c
table exists.

Blue

An optional named variable to receive the blue channel of the color table if a co
table exists.
READ_IMAGE IDL Reference Guide

1015

d

 the
Keywords

ALLOWED_FORMATS

Set this keyword to a scalar or array of format types READ_IMAGE will be allowe
to read. The default is all known image types.

FORMAT

Set this keyword to a scalar string of the image type to read. This will force
READ_IMAGE to attempt to read the file as the given format type.

IMAGE_INDEX

Set this keyword to the index of the image to read from the file. The default is 0,
first image.
IDL Reference Guide READ_IMAGE

1016

at

e

 (or
a call

le

s a
d the

med
READ_INTERFILE

The READ_INTERFILE procedure reads image data stored in Interfile (v3.3) form
and returns a 3D array.

READ_INTERFILE can only read a series of images if all images have the sam
height and width. It does not get additional keyword information beyond what is
needed to read the image data. If any problems occur when reading the file,
READ_INTERFILE prints a message and stops.

If the data is stored on a bigendian machine and read on a littleendian machine
vice versa) the order of bytes in each pixel element may be reversed, requiring
to BYTEORDER

This routine is written in the IDL language. Its source code can be found in the fi
read_interfile.pro in thelib subdirectory of the IDL distribution.

Syntax

READ_INTERFILE,File, Data

Arguments

File

A scalar string containing the name of the Interfile to read. Note: if the Interfile ha
header file and a data file, this should be the name of the header file (also calle
administrative file).

Data

A named variable that will contain a 3D array of data as read from the file. Assu
to be a series of 2D images.

Example

READ_INTERFILE, '0_11.hdr', X
READ_INTERFILE IDL Reference Guide

1017

rmat

les

or a

g

the

ad.
e

READ_JPEG

The READ_JPEG procedure reads JPEG (Joint Photographic Experts Group) fo
compressed images from files or memory. JPEG is a standardized compression
method for full-color and gray-scale images. This procedure reads JFIF format fi
(often called “JPEG” files), including those produced by WRITE_JPEG.

READ_JPEG can optionally quantize true-color images contained in files to a
pseudo-color palette with a specified number of colors, and with optional color
dithering.

This procedure is based in part on the work of the “Independent JPEG Group”. F
brief explanation of JPEG, see“WRITE_JPEG” on page 1533.

Note
All JPEG files consist of byte data. Input data is converted to bytes before bein
written to a JPEG file.

Note
To find information about a potential JPEG file before trying to read its data, use
QUERY_JPEG function.

Syntax

READ_JPEG [,Filename| , UNIT=lun] , Image[, Colortable] [, BUFFER=variable]
[, COLORS=value{8 to 256}] [, DITHER={0 | 1 | 2}] [, /GRAYSCALE] [, /ORDER]
[, TRUE={1 | 2 | 3}] [, /TWO_PASS_QUANTIZE]

Arguments

Filename

A scalar string specifying the full pathname of the JFIF format (JPEG) file to be re
If this parameter is not present, the UNIT and/or the BUFFER keywords must b
specified.

Image

A named variable to contain the image data read from the file.
IDL Reference Guide READ_JPEG

1018

is to
s
r to

eed
ble

d

e

Colortable

A named variable to contain the colormap, when reading a true-color image that
be quantized. On completion, this variable contains a byte array with dimension
(NCOLORS, 3). This argument is filled only if the image is color quantized (refe
the COLORS keyword).

Keywords

BUFFER

Set this keyword to a named variable that is used for a buffer. A buffer variable n
only be supplied when reading multiple images per file. Initialize the buffer varia
to empty by setting it to 0.

Example

; Initialize buffer:

buff = 0

OPENR, 1, 'images.jpg', /STREAM

; Process each image:

FOR i=1, nimages DO BEGIN

; Read next image:

READ_JPEG, UNIT=1, BUFFER=buff, a

; Display the image:

TV, a

ENDFOR

; Done:

CLOSE, 1

COLORS

If the image file contains a true-color image that is to be displayed on an indexe
color destination, set COLORS to the desired number of colors to be quantized.
COLORS can be set to a value from 8 to 256. The DITHER and
TWO_PASS_QUANTIZE keywords affect the method, speed, and quality of the
color quantization. These keywords have no effect if the file contains a grayscal
image.
READ_JPEG IDL Reference Guide

1019

rror
d to

the

g,

ther

 be

 set

n

is in
and
.

en
IF
DITHER

Set this keyword to use dithering with color quantization (i.e., if the COLORS
keyword is in use). Dithering is a method that distributes the color quantization e
to surrounding pixels, to achieve higher-quality results. Set the DITHER keywor
one of the following values:

• 0 = No dithering. Images are read quickly, but quality is low.

• 1 = Floyd-Steinberg dithering. This method is relatively slow, but produces
highest quality results. This is the default behavior.

• 2 = Ordered dithering. This method is faster than Floyd-Steinberg ditherin
but produces lower quality results.

GRAYSCALE

Set this keyword to return a monochrome (grayscale) image, regardless of whe
the file contains an RGB or grayscale image.

ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image is to
stored into theImage array in the standard IDL order (from bottom-to-top) set
ORDER to 0. This is the default. If the image array is to be top-to-bottom order,
ORDER to 1.

TRUE

Use this keyword to specify the index of the dimension for color interleaving whe
reading a true-color image. The default is 1, for pixel interleaving, (3,m, n). A value
of 2 indicates line interleaving (m, 3,n), and 3 indicates band interleaving, (m, n, 3).

TWO_PASS_QUANTIZE

Set this keyword to use a two-pass color quantization method when quantization
effect (i.e., the COLORS keyword is in use). This method requires more memory
time, but produces superior results to the default one-pass quantization method

UNIT

This keyword can be used to designate the logical unit number of an already op
JFIF file, allowing the reading of multiple images per file or the embedding of JF
images in other data files. When using this keyword,Filename should not be
specified.

READ_JPEG buffers its input data. To read multiple images per file, use the
BUFFER keyword. When using VMS, open the file with the /STREAM keyword.
IDL Reference Guide READ_JPEG

1020

ds
Examples

; Read a JPEG grayscale image:
READ_JPEG, 'test.jpg', a

; Display the image:
TV, a

; Read and display a JPEG true-color image on a true-color display:
READ_JPEG, 'test.jpg', a, TRUE=1

; Display the image returned with pixel interleaving
; (i.e., with dimensions 3, m, n):
TV, a, TRUE=1

Read the image, setting the number of colors to be quantized to the maximum
number of available colors.

; Read a JPEG true-color image on an 8-bit pseudo-color display:
READ_JPEG, 'test.jpg', a, ctable, COLORS=!D.N_COLORS-1

; Display the image:
TV, a

; Load the quantized color table:
TVLCT, ctable

Note
We could have also included the TWO_PASS_QUANTIZE and DITHER keywor
to improve the image’s appearance.

See Also

WRITE_JPEG, QUERY_JPEG
READ_JPEG IDL Reference Guide

1021

ge

le

the

rom

,

READ_PICT

The READ_PICT procedure reads the contents of a PICT (version 2) format ima
file and returns the image and color table vectors (if present) in the form of IDL
variables. The PICT format is used by Apple Macintosh computers.

This routine is written in the IDL language. Its source code can be found in the fi
read_pict.pro in thelib subdirectory of the IDL distribution.

Note
To find information about a potential PICT file before trying to read its data, use
QUERY_PICT function.

Syntax

READ_PICT,Filename, Image[, R, G, B]

Arguments

Filename

A scalar string specifying the full pathname of the PICT file to read.

Image

A named variable that will contain the 2D image read fromFilename.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors read f
the PICT file.

Example

To open and read the PICT image file namedfoo.pict in the current directory, store
the image in the variableimage1 , and store the color vectors in the variables R, G
and B, enter:

READ_PICT, 'foo.pict', image1, R, G, B

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1
IDL Reference Guide READ_PICT

1022
See Also

WRITE_PICT, QUERY_PICT
READ_PICT IDL Reference Guide

1023

hics
tte

l.

the

lor

r the
READ_PNG

The READ_PNG function reads the image contents of a Portable Network Grap
(PNG) file and returns the image in an IDL variable. If the image contains a pale
(seeQUERY_PNG), it can be returned as well in three IDL variables. READ_PNG
supports 1, 2, 3 and 4 channel images with channel depths of 8, 16, or 32 bits.

Note
Only single channel 8-bit images may have palettes. If an 8bit, single channel
image has index values marked as ‘transparent’ these can be retrieved as wel

Note
To find information about a potential PNG file before trying to read its data, use
QUERY_PNG function.

Syntax

Result = READ_PNG (Filename[, R, G, B] [, /VERBOSE] [, /TRANSPARENT])

Arguments

Filename

A scalar string containing the full pathname of the PNG file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors if a co
table exists.

Keywords

VERBOSE

Produces additional diagnostic output during the read.

TRANSPARENT

Returns an array of pixel index values which are to be treated as “transparent” fo
purposes of image display.
IDL Reference Guide READ_PNG

1024

th a
Example

Create an RGBA (16-bits/channel) and a Color Indexed (8-bit/channel) image wi
palette:

rgbdata = INTARR(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue
;Query and read the data
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN

ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

See Also

WRITE_PNG, QUERY_PNG
READ_PNG IDL Reference Guide

1025

f a

are

le

the
READ_PPM

The READ_PPM procedure reads the contents of a PGM (gray scale) or PPM
(portable pixmap for color) format image file and returns the image in the form o
2D byte array (for grayscale images) or a (3,n, m) byte array (for true-color images).

Files to be read should adhere to the PGM/PPM standard. The following file types
supported: P2 (graymap ASCII), P5 (graymap RAWBITS), P3 (true-color ASCII
pixmaps), and P6 (true-color RAWBITS pixmaps). Maximum pixel values are
limited to 255. Images are always stored with the top row first.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

This routine is written in the IDL language. Its source code can be found in the fi
read_ppm.pro in thelib subdirectory of the IDL distribution.

Note
To find information about a potential PPM file before trying to read its data, use
QUERY_PPM function.

Syntax

READ_PPM,Filename, Image [, MAXVAL= variable]

Arguments

Filename

A scalar string specifying the full path name of the PGM or PPM file to read.

Image

A named variable that will contain the image. For grayscale images,Image is a 2D
byte array. For true-color images,Image is a (3,n, m) byte array.

Keywords

MAXVAL

A named variable that will contain the maximum pixel value.
IDL Reference Guide READ_PPM

1026

and
Example

To open and read the PGM image file named “foo.pgm” in the current directory
store the image in the variable IMAGE1:

READ_PPM, 'foo.pgm', IMAGE1

See Also

WRITE_PPM, QUERY_PPM
READ_PPM IDL Reference Guide

1027

 and

le

rray.

rse
READ_SPR

The READ_SPR function reads a row-indexed sparse array from a specified file
returns the array as the result. Row-indexed sparse arrays are created using the
SPRSIN function and written to a file using the WRITE_SPR function.

This routine is written in the IDL language. Its source code can be found in the fi
read_spr.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = READ_SPR(Filename)

Arguments

Filename

A scalar string specifying the name of the file containing a row-indexed sparse a

Example

Suppose we have already saved a row-indexed sparse array to a file namedsprs.as ,
as described in the documentation for the WRITE_SPR routine. To read the spa
array from the file and store it in a variablespr s, use the following command:

sprs = READ_SPR('sprs.as')

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, WRITE_SPR
IDL Reference Guide READ_SPR

1028

e

le

the
READ_SRF

The READ_SRF procedure reads the contents of a Sun rasterfile and returns th
image and color table vectors (if present) in the form of IDL variables.

READ_SRF only handles 1-, 8-, 24-, and 32-bit rasterfiles of typeRT_OLD and
RT_STANDARD. See the file/usr/include/rasterfile.h for the structure of
Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the fi
read_srf.pro in thelib subdirectory of the IDL distribution.

Note
To find information about a potential SRF file before trying to read its data, use
QUERY_SRF function.

Syntax

READ_SRF,Filename, Image[, R, G, B]

Arguments

Filename

A scalar string containing the name of the rasterfile to read.

Image

A named variable that will contain the 2D byte array (image).

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
rasterfile contains colormaps.

Example

To open and read the Sun rasterfile namedsun.srf in the current directory, store the
image in the variableimage1 , and store the color vectors in the variablesR, G, andB,
enter:

READ_SRF, 'sun.srf', image1, R, G, B

To load the new color table and display the image, enter:
READ_SRF IDL Reference Guide

1029
TVLCT, R, G, B
TV, image1

See Also

WRITE_SRF, QUERY_SRF
IDL Reference Guide READ_SRF

1030

t
, in an

he

e,
ange

le

t all
ly
READ_SYLK

The READ_SYLK function reads the contents of a SYLK (Symbolic Link) forma
spreadsheet data file and returns the contents of the file, or of a cell data range
IDL variable. READ_SYLK returns either a vector of structures or a 2D array
containing the spreadsheet cell data.

By default, READ_SYLK returns a vector of structures, each of which contains t
data from onerow of the table being read. In this case, the individual fields in the
structures have the tag names “Col0”, “Col1”, ..., “Coln”. If the COLMAJOR
keyword is specified, each of the structures returned contains data from onecolumn
of the table, and the tag names are “Row0”, “Row1”, ..., “Rown”.

Note: This routine reads only numeric and string SYLK data. It ignores all
spreadsheet and cell formatting information (cell width, text justification, font typ
date, time, and monetary notations, etc). Note also that the data in a given cell r
must be of the same data type (all integers, for example) in order for the read
operation to succeed. See the example below for further information.

This routine is written in the IDL language. Its source code can be found in the fi
read_sylk.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = READ_SYLK(File [, /ARRAY] [, /COLMAJOR] [, NCOLS=columns]
[, NROWS=rows] [, STARTCOL=column] [, STARTROW=row] [, /USEDOUBLES]
[, /USELONGS])

Arguments

File

A scalar string specifying the full path name of the SYLK file to read.

Keywords

ARRAY

Set this keyword to return an IDL array rather than a vector of structures. Note tha
the data in the cell range specified must be of the same data type to successful
return an array.
READ_SYLK IDL Reference Guide

1031

gle
of
t as

ll of

f the

, the

read

han

e

) at
COLMAJOR

Set this keyword to create a vector of structures each containing data from a sin
column of the table being read. If you are creating an array rather than a vector
structures (the ARRAY keyword is set), setting COLMAJOR has the same effec
transposing the resulting array.

This keyword should be set when importing spreadsheet data which has column
major organization (data stored in columns rather than rows).

NCOLS

Set this keyword to the number of spreadsheet columns to read. If not specified, a
the cell columns found in the file are read.

NROWS

Set this keyword to the number of spreadsheet rows to read. If not specified, all o
cell rows found in the file are read.

STARTCOL

Set this keyword to the first column of spreadsheet cells to read. If not specified
read operation begins with the first column found in the file (column 0).

STARTROW

Set this keyword to the first row of spreadsheet cells to read. If not specified, the
operation begins with the first row of cells found in the file (row 0).

USEDOUBLES

Set this keyword to read any floating-point cell data as double-precision rather t
the default single-precision.

USELONGS

Set this keyword to read any integer cell data as long integer type rather than th
default integer type.

Examples

Suppose the following spreadsheet table, with the upper left cell (value = “Index”
location (0, 0), has been saved as the SYLK file “file.slk”:

Index Name Gender Platform
1 Beth F UNIX
2 Lubos M VMS
3 Louis M Windows
IDL Reference Guide READ_SYLK

1032
4 Thierry M Macintosh

Note that the data format of the title row (string, string, string, string) is inconsistent
with the following four rows (int, string, string, string) in the table. Because of this, it
is impossible to read all of the table into a single IDL variable. The following two
commands, however, will read all of the data:

title = READ_SYLK("file.slk", NROWS = 1)
table = READ_SYLK("file.slk", STARTROW = 1)

;Display the top row of the table.
PRINT, title

IDL prints:

{ Index Name Gender Platform}

Print the table:

PRINT, table

IDL prints:

{1 Beth F UNIX}{2 Lubos M VMS}{3 Louis M Windows}{4 Thierry M
Macintosh}

To retrieve only the “Name” column:

names = READ_SYLK("file.slk", /ARRAY, STARTROW = 1, $

STARTCOL = 1, NCOLS = 1)

PRINT, names

IDL prints:

Beth Lubos Louis Thierry

To retrieve the “Name” column in column format:

namescol = READ_SYLK("file.slk", /ARRAY, /COLMAJOR, $
STARTROW = 1, STARTCOL = 1, NCOLS = 1)

PRINT, namescol

IDL prints:

Beth
Lubos
Louis
Thierry

See Also

WRITE_SYLK
READ_SYLK IDL Reference Guide

1033

t

data
are

nnels.
els.

o 2,

ents
gle-
n is

the
READ_TIFF

The READ_TIFF function reads single or multi-channel images from TIFF forma
files and returns the image and color table vectors in the form of IDL variables.
READ_TIFF returns a byte, unsigned integer, long, or float array (based on the
format in the TIFF file) containing the image data. The dimensions of the result
the same as defined in the TIFF file: (Columns, Rows) for single channel images, or
(Channels, Columns, Rows) for multi-channel images.

RGB images are a special case of multi-channel images, and contain three cha
Most TIFF readers and writers can handle only images with one or three chann

As a special case, for three-channel TIFF image files that are stored in planar
interleave format, and if four parameters are provided, READ_TIFF returns the
integer value zero, sets the variable defined by the PLANARCONFIG keyword t
and returns three separate images in the variables defined by the R, G, and B
arguments.

If the file to be read is stored in planar interleave format or the R, G, and B argum
are not specified, the image will be returned in the result as an [x,y] array for a sin
channel image, or in the case of a multi-channel image, in an [n,x,y] array, where
the number of channels.

Note
To find information about a potential TIFF file before trying to read its data, use
QUERY_TIFF function. The obsolete routine TIFF_DUMP may also be used to
examine the structure and tags of a TIFF file.

Syntax

Result = READ_TIFF(Filename [, R, G, B] [, GEOTIFF=variable]
[, IMAGE_INDEX=value] [, ORDER=variable] [, PLANARCONFIG=variable]
[, SUB_RECT=[x, y, width, height]] [, /UNSIGNED] [, /VERBOSE])

Arguments

Filename

A scalar string specifying the full pathname of the TIFF file to read.
IDL Reference Guide READ_TIFF

1034

olor
e,
nnels

ags
R, G, B

Named variables that will contain the Red, Green, and Blue color vectors of the c
table from the file if one exists. If the TIFF file is written as a three-channel imag
interleaved by plane, and the R, G, and B parameters are present, the three cha
of the image are returned in the R, G, and B variables.

Keywords

GEOTIFF

Returns an anonymous structure containing one field for each of the GeoTIFF t
and keys found in the file. If no GeoTIFF information is present in the file, the
returned variable is undefined.

The GeoTIFF structure is formed using fields named from the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

"GEOGGEODETICDATUMGEOKEY" INT

"GEOGPRIMEMERIDIANGEOKEY" INT

"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

Table 75: GEOTIFF Structures
READ_TIFF IDL Reference Guide

1035
"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

"PROJFALSEORIGINLATGEOKEY" DOUBLE

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 75: GEOTIFF Structures
IDL Reference Guide READ_TIFF

1036

IFF
s
f 1
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

IMAGE_INDEX

Selects the image number within the file to be read (seeQUERY_TIFF to determine
the number of images in the file).

ORDER

Set this keyword to a named variable that will contain the order value from the T
file. This value is returned as 0 for images written bottom to top, and 1 for image
written top to bottom. If an order value does not appear in the TIFF file, an order o
is returned.

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Anonymous Structure Field Name IDLDatatype

Table 75: GEOTIFF Structures
READ_TIFF IDL Reference Guide

1037

ng

the
e, or

thin
ord
ner
The ORDER keyword can return any of the following additional values (dependi
on the source of the TIFF file):

Reference: Aldus TIFF 6.0 spec (TIFF version 42).

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter for
TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale, Palett
interleaved by pixel. This parameter is returned as 2 for multi-channel TIFF files
interleaved by image.

SUB_RECT [x, y, width, height]

Set this keyword to a four-element array which specifies a rectangular region wi
the file to extract. Only the rectangular portion of the image selected by this keyw
is read and returned. The rectangle is measured in pixels from the lower left cor
(right hand coordinate system).

UNSIGNED

This keyword is now obsolete because older versions of IDL did not support the
unsigned 16-bit integer data type. Set this keyword to return TIFF files containing
unsigned 16-bit integers as signed 32-bit longword arrays. If not set, return an
unsigned 16-bit integer for these files. This keyword has no effect if the input file
does not contain 16-bit integers.

Rows Columns

1 top to bottom, left to right

2 top to bottom, right to left

3 bottom to top, right to left

4 bottom to top, left to right

5 top to bottom, left to right

6 top to bottom, right to left

7 bottom to top, right to left

8 bottom to top, left to right

Table 76: Values for the ORDER keyword
IDL Reference Guide READ_TIFF

1038
VERBOSE

Produce additional diagnostic output during the read.

Examples

Read the filemy.tif in the current directory into the variableimage , and save the
color tables in the variables,R, G, andB by entering:

image = READ_TIFF('my.tif', R, G, B)

To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image

Write and read a multi-image TIFF file. The first image is a 16-bit single channel image
stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN
FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img
ENDFOR
ENDIF

See Also

WRITE_TIFF, QUERY_TIFF
READ_TIFF IDL Reference Guide

1039

of a
READ_WAV

The READ_WAV function reads the audio stream from the named .WAV file.
Optionally, it can return the sampling rate of the audio stream.

Syntax

Result = READ_WAV (Filename[, Rate])

Return Value

In the case of a single channel stream, the returned variable is a BYTE or INT
(depending on the number of bits per sample) one-dimensional array. In the case
file with multiple channels, a similar two-dimensional array is returned, with the
leading dimension being the channel number.

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Rate

Returns an IDL long containing the sampling rate of the stream in samples per
second.

Keywords

None.
IDL Reference Guide READ_WAV

1040

le

ont
nce,
into
ne

the
READ_WAVE

The READ_WAVE procedure reads a.wave or .bwave file created by the
Wavefront Advanced Data Visualizer into an series of IDL variables.

Note
READ_WAVE only preserves the structure of the variables if they are regularly
gridded.

This routine is written in the IDL language. Its source code can be found in the fi
read_wave.pro in thelib subdirectory of the IDL distribution.

Syntax

READ_WAVE, File, Variables, Names, Dimensions [, MESHNAMES=variable]

Arguments

File

A scalar string containing the name of the Wavefront file to read.

Variables

A named variable that will contain a block of the variables contained in the wavefr
file. Since each variable in a wavefront file can have more than one field (for insta
a vector variable has 3 fields), the fields of each variable make up the major index
the variable block. For instance, if a Wavefront file had one scalar variable and o
vector variable, the scalar would be extracted as follows:

scalar_variable = variables[0,*,*,*]

and the vector variable would be extracted as follows:

vector_variable = variables[1:3,*,*,*]

To find the dimensions of the returned variable, see the description of theDimensions
argument.

Names

A named variable that will contain the string names of each variable contained in
file.
READ_WAVE IDL Reference Guide

1041

ne

ar

d in
Dimensions

A named variable that will contain a long array describing how many fields in the
large returned variable block each variable occupies. In the above example of o
scalar variable followed by a vector variable, the dimension variable would be
[1,3] .

This indicates that the first field of the returned variable block would be the scal
variable and the following 3 fields would comprise the vector variable.

Keywords

MESHNAMES

Set this keyword to a named variable that will contain the name of the mesh use
the Wavefront file for each variable.

See Also

WRITE_WAVE
IDL Reference Guide READ_WAVE

1042

1

and
aps

le
READ_X11_BITMAP

The READ_X11_BITMAP procedure reads bitmaps stored in the X Windows X1
format. The X Windowsbitmap program produces a C header file containing the
definition of a bitmap produced by that program. This procedure reads such a file
creates an IDL byte array containing the bitmap. It is used primarily to read bitm
to be used as IDL widget button labels.

This routine is written in the IDL language. Its source code can be found in the fi
read_x11_bitmap.pro in thelib subdirectory of the IDL distribution.

Syntax

READ_X11_BITMAP,File, Bitmap [, X, Y] [, /EXPAND_TO_BYTES]

Arguments

File

A scalar string containing the name of the file containing the bitmap.

Bitmap

A named variable that will contain the bitmap. This variable is returned as a byte
array.

X

A named variable that will contain the width of the bitmap.

Y

A named variable that will contain the height of the bitmap.

Keywords

EXPAND_TO_BYTES

Set this keyword to instruct READ_X11_BITMAP to return a 2D array which has
one bit per byte (0 for a 0 bit, 255 for a 1 bit) instead.
READ_X11_BITMAP IDL Reference Guide

1043
Example

To open and read the X11 bitmap file namedmy.x11 in the current directory, store
the bitmap in the variablebitmap1 , and the width and height in the variablesX andY,
enter:

READ_X11_BITMAP, 'my.x11', bitmap1, X, Y

To display the new bitmap, enter:

READ_X11_BITMAP, 'my.x11', image, /EXPAND_TO_BYTES
TV, image, /ORDER

See Also

READ_XWD
IDL Reference Guide READ_X11_BITMAP

1044

orm
e

le
READ_XWD

The READ_XWD function reads the contents of a file created by thexwd (X
Windows Dump) command and returns the image and color table vectors in the f
of IDL variables. READ_XWD returns a 2D byte array containing the image. If th
file cannot be open or read, the return value is zero.

Note: this function is intended to be used only on files containing 8-bit pixmaps
created withxwd version 6 or later.

This routine is written in the IDL language. Its source code can be found in the fi
read_xwd.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = READ_XWD(Filename[, R, G, B])

Arguments

Filename

A scalar string specifying the full pathname of the XWD file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
XWD file contains color tables.

Example

To open and read the X Windows Dump file namedmy.xwd in the current directory,
store the image in the variableimage1 , and store the color vectors in the variables,R,
G, andB, enter:

image1 = READ_XWD('my.xwd', R, G, B)

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1

See Also

READ_X11_BITMAP
READ_XWD IDL Reference Guide

1045

s
AD

ing
DS.

 a

tring
es)

eek
READS

The READS procedure performs formatted input from a string variable and write
the results into one or more output variables. This procedure differs from the RE
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string us
READF. Then the components of that line can be read into variables using REA

Syntax

READS,Input, Var1, ...,Varn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}]

Arguments

Input

The string variable from which the input is taken. If the supplied argument is not
string, it is automatically converted. The argument can be scalar or array. IfInput is
an array, the individual string elements are treated as successive lines of input.

Vari

The named variables to receive the input.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.
IDL Reference Guide READS

1046

en
ith
FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See“Using Explicitly Formatted Input/Output” in
Chapter 16 ofBuilding IDL Applcations.

MONTHS

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

See Also

READ/READF, READU
READS IDL Reference Guide

1047

es.
ata.

tes
L

 to

ame
d is
unt

N
ses
 with

rack
READU

The READU procedure reads unformatted binary data from a file into IDL variabl
READU transfers data directly with no processing of any kind performed on the d

Syntax

READU, Unit, Var1, ...,Varn

UNIX Keywords: [, TRANSFER_COUNT=variable]

VMS Keywords: [, KEY_ID=index] [, KEY_MATCH=relation]
[, KEY_VALUE=value]

Arguments

Unit

The IDL file unit from which input is taken.

Vari

Named variables to receive the data. For non-string variables, the number of by
required for Var are read. When READU is used with a variable of type string, ID
reads exactly the number of bytes contained in the existing string. For example,
read a 5-character string, enter:

temp = '12345'
READU, unit, temp

UNIX Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the input operation. Note that the number of elements is not the s
as the number of bytes (except in the case where the data type being transferre
bytes). For example, transferring 256 floating-point numbers yields a transfer co
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the NOSTDIO keyword to the OPE
routines. Normally, attempting to read more data than is available from a file cau
the unfilled space to be zeroed and an error to be issued. This does not happen
files opened with the NOSTDIO keyword. Instead, the programmer must keep t
of the transfer count.
IDL Reference Guide READU

1048

ced

sing
ey

Q =
his

the

and
VMS Keywords

Note that the obsolete VMS routines FORRD, and FORRD_KEY have been repla
by the READU command used with the following keywords.

KEY_ID

The index key to be used (primary = 0, first alternate key = 1, etc...) when acces
data from a file with indexed organization. If this keyword is omitted, the primary k
is used.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (E
0, GE = 1, GT = 2) when accessing data from a file with indexed organization. If t
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of a key to be found when accessing data from a file with indexed
organization. This value must match the key definition that is determined when
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the previous key value is used.

Example

The following commands can be used to open the IDL distribution file people.dat
read an image from that file:

; Open the file for reading as file unit 1:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; The image is a 192 by 192 byte array, so make B that size:
B = BYTARR(192, 192)

; Read the data into B:
READU, 1, B

; Close the file:
CLOSE, 1

; Display the image:
TV, B

See Also

READ/READF, READS, WRITEU
READU IDL Reference Guide

1049

ters

 the
alue.

.

teger

er
REBIN

The REBIN function resizes a vector or array to dimensions given by the parame
Di. The supplied dimensions must be integral multiples or factors of the original
dimension. The expansion or compression of each dimension is independent of
others, so that each dimension can be expanded or compressed by a different v

If the dimensions of the desired result are not integer multiples of the original
dimensions, use the CONGRID function.

Syntax

Result = REBIN(Array, D1 [, ..., D8] [, /SAMPLE])

Arguments

Array

The array to be resampled.Array can be of any basic type except complex or string

Di

The dimensions of the resulting resampled array. These dimensions must be in
multiples or factors of the corresponding original dimensions.

Keywords

SAMPLE

Normally, REBIN uses bilinear interpolation when magnifying and neighborhood
averaging when minifying. Set the SAMPLE keyword to use nearest neighbor
sampling for both magnification and minification. Bilinear interpolation gives high
quality results but requires more time.

Rules Used by REBIN

Assume the original vectorX hasn elements and the result is to havem elements.

Let f = n/m, the ratio of the size of the original vector,X to the size of the result. 1/f
must be an integer ifn < m (expansion).f must be an integer if compressing, (n > m).
The various resizing options can be described as:

• Expansion,n < m, SAMPLE = 0:Yi = F(X, f ⋅ i) i = 0, 1, ... ,m-1
IDL Reference Guide REBIN

1050
The linear interpolation function,F(X, p) that interpolatesX at locationp, is
defined as:

• Expansion,n < m, SAMPLE = 1:

• Compression,n > m, SAMPLE = 0:

• Compression,n > m, SAMPLE = 1:

• No change,n = m: Yi = Xi

Endpoint Effects When Expanding

When expanding an array, REBINinterpolates, it neverextrapolates. Each of then-1
intervals in then-element input array producesm/n interpolates in them-element
output array. The lastm/npoints of the result are obtained by duplicating elementn-1
of the input array because their interpolates would lie outside the input array.

For example

; A four point vector:
A = [0, 10, 20, 30]

; Expand by a factor of 3:
B = REBIN(A, 12)

PRINT, B

IDL prints:

0 3 6 10 13 16 20 23 26 30 30 30

F X p,()
X p p p–() X p 1+ X p–()⋅+ if p n 1–<

X p if p n 1–≥

=

Yi X fi=

Yi 1 f⁄() X j
j fi=

f i 1+() 1–

∑=

Yi X fi=
REBIN IDL Reference Guide

1051

e the
s

g:
Note that the last element is repeated three times. If this effect is undesirable, us
INTERPOLATE function. For example, to produce 12 equally spaced interpolate
from the interval 0 to 30:

B = INTERPOLATE(A, 3./11. * FINDGEN(12))
PRINT, B

IDL prints:

0 2 5 8 10 13 16 19 21 24 27 30

Here, the sampling ratio is (n - 1)/(m - 1).

Example

Create and display a simple image by entering:

D = SIN(DIST(50)/4) & TVSCL, D

Resize the image to be 5 times its original size and display the result by enterin

D = REBIN(D, 250, 250) & TVSCL, D

See Also

CONGRID
IDL Reference Guide REBIN

1052

in
fer,
l
ee
RECALL_COMMANDS

The RECALL_COMMANDS function returns a string array containing the entries
IDL’s command recall buffer. The size of the returned array is the size of recall buf
even if fewer than commands have been entered (any “empty” buffer entries wil
contain null strings). The default size of the command recall buffer is 20 lines. (S
“!EDIT_INPUT” on page 2199 for more information about the command recall
buffer.)

Element zero of the returned array contains the most recent command.

Syntax

Result = RECALL_COMMANDS()
RECALL_COMMANDS IDL Reference Guide

1053

 or
ct in
ting
N3 to
ith

le

he
bject
 set

e
be

 low

e.
e,

el
e, at
RECON3

The RECON3 function can reconstruct a three-dimensional data array from two
more images (or projections) of an object. For example, if you placed a dark obje
front of a white background and then photographed it three times (each time rota
the object a known amount) then these three images could be used with RECO
approximate a 3D volumetric representation of the object. RECON3 also works w
translucent projections of an object. RECON3 returns a 3D byte array.

This routine is written in the IDL language. Its source code can be found in the fi
recon3.pro in thelib subdirectory of the IDL distribution.

Using RECON3

Images used in reconstruction should show strong light/dark contrast between t
object and the background. If the images contain low (dark) values where the o
is and high (bright) values where the object isn’t, the MODE keyword should be
to +1 and the returned volume will have low values where the object is, and high
values where the object isn’t. If the images contain high (bright) values where th
object is and low (dark) values where the object isn’t, the MODE keyword should
set to -1 and the returned volume will have high values where the object is, and
values where the object isn’t.

In general, the object must be CONVEX for a good reconstruction to be possibl
Concave regions are not easily reconstructed. An empty coffee cup, for exampl
would be reconstructed as if it were full.

The more images the better. Images from many different angles will improve the
quality of the reconstruction. It is also important to supply images that are parall
and perpendicular to any axes of symmetry. Using the coffee cup as an exampl
least one image should be looking through the opening in the handle. Telephoto
images are also better for reconstruction purposes than wide angle images.

Syntax

Result = RECON3(Images, Obj_Rot, Obj_Pos, Focal, Dist,Vol_Pos, Img_Ref,
Img_Mag, Vol_Size [, MISSING=value] [, MODE=value])
IDL Reference Guide RECON3

1054

me

t
bout

and

ocal

the

m

Arguments

Images

A 3D array containing the images to use to reconstruct the volume. Execution ti
increases linearly with more images.Images must be an 8-bit (byte) array with
dimensions (x, y, n) wherex is the horizontal image dimension,y is the vertical image
dimension, andn is the number of images. Note thatn must be at least 2.

Obj_Rot

A 3 x n floating-point array specifying the amount the object is rotated to make i
appear as it does in each image. The object is first rotated about the X axis, then a
the Y axis, and finally about the Z axis (with the object’s reference point at the
origin). Obj_Rot[0, *] is the X rotation for each image,Obj_Rot[1, *] is the Y
rotation, andObj_Rot[2, *] is the Z rotation.

Obj_Pos

A 3 x n floating-point array specifying the position of the object’s reference point
relative to the camera lens. The camera lens is located at the coordinate origin
points in the negative Z direction (the view up vector points in the positive Y
direction).Obj_Pos should be expressed in this coordinate system.Obj_Pos[0, *] is
the X position for each image,Obj_Pos[1, *] is the Y position, andObj_Pos[2, *] is
the Z position. All the values inObj_Pos[2, *] should be less than zero. Note that the
values forObj_Pos, Focal, Dist, andVol_Pos should all be expressed in the same
units (mm, cm, m, in, ft, etc.).

Focal

An n-element floating-point array specifying the focal length of the lens for each
image. Focal may be set to zero to indicate a parallel image projection (infinite f
length).

Dist

An n-element floating-point array specifying the distance from the camera lens to
image plane (film) for each image.Dist should be greater thanFocal.

Vol_Pos

A 3 x 2 floating-point array specifying the two opposite corners of a cube that
surrounds the object.Vol_Pos should be expressed in the object’s coordinate syste
relative to the object’s reference point.Vol_Pos[*, 0] specifies one corner and
Vol_Pos[*, 1] specifies the opposite corner.
RECON3 IDL Reference Guide

1055

e

ch
r in

rray
lues

p to
TE

s the
r

e is

t of
light
me
Img_Ref

A 2 x n integer or floating-point array that specifies the pixel location at which th
object’s reference point appears in each of the images.Img_Ref[0, *] is the X
coordinate for each image andImg_Ref[1, *] is the Y coordinate.

Img_Mag

A 2 x n integer or floating-point array that specifies the magnification factor for ea
image. This number is actually the length (in pixels) that a test object would appea
an image if it weren units long andn units distant from the camera lens.Img_Mag[0,
*] is the X dimension (in pixels) of a test object for each image, andImg_Mag[1, *] is
the Y dimension. All elements inImg_Mag should be greater than or equal to 1.

Vol_Size

A 3-element integer or floating-point array that specifies the size of the 3D byte a
to return. Execution time (and resolution) increases exponentially with larger va
for Vol_Size. Vol_Size[0] specifies the X dimension of the volume,Vol_Size[1]
specifies the Y dimension, andVol_Size[2] specifies the Z dimension.

Keywords

MISSING

Set this keyword equal to a byte value for cells in the 3D volume that do not ma
any of the supplied images. The value of MISSING is passed to the INTERPOLA
function. The default value is zero.

MODE

Set this keyword to a value less than zero to define each cell in the 3D volume a
minimum of the corresponding pixels in the images. Set MODE to a value greate
than zero to define each cell in the 3D volume as themaximum of the corresponding
pixels in the images. If MODE is set equal to zero then each cell in the 3D volum
defined as theaverage of the corresponding pixels in the images.

MODE should usually be set to -1 when the images contain a bright object in fron
a dark background or to +1 when the images contain a dark object in front of a
background. Setting MODE=0 (the default) requires more memory since the volu
array must temporarily be kept as an integer array instead of a byte array.

Example

Assumptions for this example:
IDL Reference Guide RECON3

1056

o the

m

rs in

e

• The object’s major axis is parallel to the Z axis.

• The object’s reference point is at its center.

• The camera lens is pointed directly at this reference point.

• The reference point is 5000 mm in front of the camera lens.

• The focal length of the camera lens is 200 mm.

If the camera is focused on the reference point, then the distance from the lens t
camera’s image plane must be

dist = (d * f) / (d - f) = (5000 * 200) / (5000 - 200) = (1000000 / 4800) = 208.333 m

The object is roughly 600 mm wide and 600 mm high. The reference point appea
the exact center of each image.

If the object is 600 mm high and 5000 mm distant from the camera lens, then th
object image height must be

hi = (h * f) / (d - f) = (600 * 200) / (5000 - 200) = (120000 / 4800) = 25.0 mm

The object image appears 200 pixels high so the final magnification factor is

img_mag = (200 / 25) = 8.0

From these assumptions, we can set up the following reconstruction:

; First, define the variables:
imgx = 256
imgy = 256
frames = 3
images = BYTARR(imgx, imgy, frames)
obj_rot = Fltarr(3, frames)
obj_pos = Fltarr(3, frames)
focal = Fltarr(frames)
dist = Fltarr(frames)
vol_pos = Fltarr(3, 2)
img_ref = Fltarr(2, frames)
img_mag = Fltarr(2, frames)
vol_size = [40, 40, 40]

; The object is 5000 mm directly in front of the camera:
obj_pos[0, *] = 0.0
obj_pos[1, *] = 0.0
obj_pos[2, *] = -5000.0

; The focal length of the lens is constant for all the images:
focal[*] = 200.0
RECON3 IDL Reference Guide

1057
; The distance from the lens to the image plane is also constant:
dist[*] = 208.333

; The cube surrounding the object is 600 mm x 600 mm:
vol_pos[*, 0] = [-300.0, -300.0, -300.0]
vol_pos[*, 1] = [300.0, 300.0, 300.0]

; The image reference point appears at the center of all the
; images:
img_ref[0, *] = imgx / 2
img_ref[1, *] = imgy / 2

; The image magnification factor is constant for all images.
; (The images haven’t been cropped or resized):
img_mag[*,*] = 8.0

; Only the object rotation changes from one image to the next.
; Note that the object is rotated about the X axis first, then Y,
; and then Z. Create some fake images for this example:
images[30:160, 20:230, 0] = 255
images[110:180, 160:180, 0] = 180
obj_rot[*, 0] = [-90.0, 0.0, 0.0]
images[70:140, 100:130, 1] = 255
obj_rot[*, 1] = [-70.0, 75.0, 0.0]
images[10:140, 70:170, 2] = 255
images[80:90, 170:240, 2] = 150
obj_rot[*, 2] = [-130.0, 215.0, 0.0]

; Reconstruct the volume:
vol = RECON3(images, obj_rot, obj_pos, focal, dist, $

vol_pos, img_ref, img_mag, vol_size, Missing=255B, Mode=(-1))

; Display the volume:
shade_volume, vol, 8, v, p
scale3, xrange=[0,40], yrange=[0,40], zrange=[0,40]
image = polyshade(v, p, /t3d, xs=400, ys=400)
tvscl, image

See Also

POLYSHADE, SHADE_VOLUME, VOXEL_PROJ
IDL Reference Guide RECON3

1058

age

nd
lue]

le

le

s R,
REDUCE_COLORS

The REDUCE_COLORS procedure reduces the number of colors used in an im
by eliminating pixel values without members.

The pixel distribution histogram is obtained and the WHERE function is used to fi
bins with non-zero values. Next, a lookup table is made where table[old_pixel_va
contains new_pixel_value, and is then applied to the image.

This routine is written in the IDL language. Its source code can be found in the fi
reduce_colors.pro in thelib subdirectory of the IDL distribution.

Syntax

REDUCE_COLORS,Image, Values

Arguments

Image

On input, a variable that contains the original image array. On output, this variab
contains the color-reduced image array, writing over the original.

Values

A named variable that, on output, contains a vector of non-zero pixel values. IfImage
contains pixel values from 0 to M,Values will be an M+1 element vector containing
the mapping from the old values to the new.Values[i] contains the new color index of
old pixel indexi.

Example

To reduce the number of colors and display an image with the original color table
G, B enter the commands:

REDUCE_COLORS, image, v
TVLCT, R[V], G[V], B[V]

See Also

COLOR_QUAN
REDUCE_COLORS IDL Reference Guide

1059

e
y of
the

s.

he

Such
REFORM

The REFORM function changes the dimensions of an array without changing th
total number of elements. If no dimensions are specified, REFORM returns a cop
Array with all leading dimensions of size 1 removed. If dimensions are specified,
result is given those dimensions. Only the dimensions ofArray are changed—the
actual data remains unmodified.

Syntax

Result = REFORM(Array, D1, ...,D8 [, /OVERWRITE])

Arguments

Array

The array to have its dimensions modified.

Di

The dimensions of the result. TheDi arguments can be either a single array
containing the new dimensions or a sequence of scalar dimensions.Array must have
the same number of elements as specified by the product of the new dimension

Keywords

OVERWRITE

Set this keyword to cause the specified dimensions to overwrite the present
dimensions of theArray parameter. No data are copied, only the internal array
descriptor is changed. The result of the function, in this case, is theArray parameter
with its newly-modified dimensions. For example, to change the dimensions of t
variable a, without moving data, enter:

a = REFORM(a, n1, n2, /OVERWRITE)

Example

REFORM can be used to remove “degenerate” leading dimensions of size one.
dimensions can appear when a subarray is extracted from an array with more
dimensions. For example

; a is a 3-dimensional array:
a = INTARR(10,10,10)
IDL Reference Guide REFORM

1060

m a.
; Extract a “slice” from a:
b = a[5,*,*]

; Use HELP to show what REFORM does:
HELP, b, REFORM(b)

Executing the above statements produces the output:

B INT = Array[1, 10, 10]
<Expression> INT = Array[10, 10]

The statements:

b = REFORM(a,200,5)
b = REFORM(a,[200,5])

have identical effect. They create a new array, b, with dimensions of (200, 5), fro

See Also

REVERSE, ROT, ROTATE, TRANSPOSE
REFORM IDL Reference Guide

1061

le

ian)

f

REGRESS

The REGRESS function performs a multiple linear regression fit and returns an
Nterm -element column vector of coefficients.

REGRESS fits the function:

yi = const + a0x0, i + a1x1, i + ... +aNterms-1xNterms-1, i

This routine is written in the IDL language. Its source code can be found in the fi
regress.pro in thelib subdirectory of the IDL distribution.

Syntax

Result= REGRESS(X, Y, Weights[, Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, Status]
[, /RELATIVE_WEIGHT])

Arguments

X

An Nterms by Npoints array of independent variable data, whereNterms is the
number of coefficients (independent variables) andNpointsis the number of samples.

Y

An Npoints-element vector of dependent variable points.

Weights

An Npoints-element vector of weights for each equation. For instrumental (Gauss
weighting, setWeightsi = 1.0/standard_deviation(Yi)

2. For statistical (Poisson)
weighting,Weightsi = 1.0/Yi. For no weighting, setWeightsi = 1.0, and set the
RELATIVE_WEIGHT keyword.

Yfit

A named variable that will contain anNpoints-elements vector of calculated values o
Y.

Const

A named variable that will contain the constant term.
IDL Reference Guide REGRESS

1062

ned

it is
lt
rate
Sigma

A named variable that will contain the vector of standard deviations for the retur
coefficients.

Ftest

A named variable that will contain the value of F for test of fit.

R

A named variable that will contain the vector of linear correlation coefficients.

Rmul

A named variable that will contain the multiple linear correlation coefficient.

Chisq

A named variable that will contain a reduced, weighted chi-squared.

Status

A named variable that will contain the status of the internal array inversion
computation.Statuswill contain 0 (zero) if the array was successfully inverted.Status
will contain the integer 1 (one) if the array was not successfully inverted because
singular.Status will contain the integer 2 (two) if there is a possibility that the resu
of the inversion—and the resulting coefficients returned by REGRESS—is inaccu
due to the use of a small pivot element.

Keywords

RELATIVE_WEIGHT

If this keyword is set, the input weights (theW vector) are assumed to be relative
values, and not based on known uncertainties in theY vector. Set this keyword in the
case of no weighting.

Example

; Create a two by six array of independent variable data:
X = [[0.0, 0.0], $

[2.0, 1.0], $
[2.5, 2.0], $
[1.0, 3.0], $
[4.0, 6.0], $
[7.0, 2.0]]
REGRESS IDL Reference Guide

1063
; Create an Npoints-element vector of dependent variable data:
Y = [5.0, 10.0, 9.0, 0.0, 3.0, 27.0]

; Create an Npoints-element vector of uniform weights:
weights = REPLICATE(1.0, N_ELEMENTS(Y))

; Compute the fit using multiple linear regression:
result = REGRESS(X, Y, weights, yfit, const, /RELATIVE_WEIGHT)

; Print the coefficients of the regression model:
PRINT, const, result[0], result[1]

IDL prints:

5.00000 4.00000 -3.00000

See Also

CURVEFIT, GAUSSFIT, LMFIT, POLY_FIT, POLYFITW, SFIT, SVDFIT
IDL Reference Guide REGRESS

1064

sion
ted.

e

ted
REPEAT...UNTIL

The REPEAT...UNTIL statement repeats its subject statement(s) until an expres
evaluates to true. The condition is checked after the subject statement is execu
Therefore, the subject statement is always executed at least once, even if the
expression evaluates to true the first time.

Note
REPEAT...UNTIL is an IDL statement. For information on using statements, se
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

REPEATstatement UNTIL expression

or

REPEAT BEGIN

statements

ENDREP UNTILexpression

Example

This example shows that because the subject of a REPEAT statement is evalua
before the expression, it is always executed at least once:

i = 1

REPEAT BEGIN

PRINT, i

ENDREP UNTIL (i EQ 1)
REPEAT...UNTIL IDL Reference Guide

1065

he

r or

DL”

field
REPLICATE

The REPLICATE function returns an array with the given dimensions, filled with t
scalar value specified as the first parameter.

Syntax

Result = REPLICATE(Value, D1 [, ..., D8])

Arguments

Value

The scalar value with which to fill the resulting array. The type of the result is the
same as that ofValue. Value can be any single element expression such as a scala
1 element array. This includes structures.

Di

The dimensions of the result.

Example

Create D, a 5-element by 5-element array with every element set to the string “I
by entering:

D = REPLICATE('IDL', 5, 5)

REPLICATE can also be used to create arrays of structures. For example, the
following command creates a structure named “emp” that contains a string name
and a long integer employee ID field:

employee = {emp, NAME:' ', ID:0L}

To create a 10-element array of this structure, enter:

emps = REPLICATE(employee, 10)

See Also

MAKE_ARRAY
IDL Reference Guide REPLICATE

1066

ll or
and
r

s,

s

r

REPLICATE_INPLACE

The REPLICATE_INPLACE procedure updates an existing array by replacing a
selected parts of it with a specified value. REPLICATE_INPLACE can be faster
use less memory than the IDL function REPLICATE or the IDL array notation fo
large arrays that already exist.

Note
REPLICATE_INPLACE is much faster when operating on entire arrays and row
than when used on columns or higher dimensions.

Syntax

REPLICATE_INPLACE,X, Value[, D1, Loc1[, D2, Range]]

Arguments

X

The array to be updated.X can be of any numeric type. REPLICATE_INPLACE doe
not change the size and type ofX.

Value

The value which will fill all or part ofX. Value may be any scalar or one-element
array that IDL can convert to the type ofX. REPLICATE_INPLACE does not change
Value.

D1

An optional parameter indicating which dimension ofX is to be updated.

Loc1

An array with the same number of elements as the number of dimensions ofX. The
Loc1andD1 arguments together determine which one-dimensional subvector (o
subvectors, ifD1 andRange are provided) ofX is to be updated.

D2

An optional parameter, indicating in which dimension ofX a group of one-
dimensional subvectors are to be updated.D2 should be different fromD1.
REPLICATE_INPLACE IDL Reference Guide

1067
Range

An array of indices of dimensionD2 of X, indicating where to put one-dimensional
updates ofX.

Example

; Create a multidimensional zero array:
A = FLTARR(40, 90, 10)

; Populate it with the value 4.5. (i.e., A[*]= 4.5):
REPLICATE_INPLACE, A, 4.5
;Update a single subvector.(i.e., A[*,4,0]= 20.):
REPLICATE_INPLACE, A, 20, 1, [0,4,0]

; Update a group of subvectors.(i.e., A[0, [0, 5,89], *] = -8):
REPLICATE_INPLACE, A, -8, 3, [0,0,0], 2, [0,5,89]

; Update a 2-dimensional slice of A (i.e., A[9,*, *] = 0.):
REPLICATE_INPLACE, A, 0., 3, [9,0,0] , 2, LINDGEN(90)

See Also

REPLICATE, BLAS_AXPY
IDL Reference Guide REPLICATE_INPLACE

1068

d

d

iled.

e

ot

sed
o
n

uch
ent
se

,

le
RESOLVE_ALL

The RESOLVE_ALL procedure iteratively resolves (by compiling) any uncompile
user-written or library procedures or functions that are called in any already-
compiled procedure or function. The process ends when there are no unresolve
routines left to compile. If an unresolved procedure or function is not in the IDL
search path, this routine exits with an error, and no additional routines are comp

RESOLVE_ALL is useful when preparing SAVE/RESTORE files containing all th
IDL routines required for an application.

Note
RESOLVE_ALL does not resolve procedures or functions that are called via
CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE. Class methods are n
resolved either.

Similarly, RESOLVE_ALL does not resolve widget event handler procedures ba
on a call to the widget routine that uses the event handler. In general, it is best t
include the event handling routine in the same program file as the widget creatio
routine—building widget programs in this way ensures that RESOLVE_ALL will
“catch” the event handler for a widget application.

Note
RESOLVE_ALL is of special interest when constructing an IDL SAVE file
containing the compiled code for a package of routines. If you are constructing s
a .sav file, that contains calls to built-in IDL system functions that are not pres
under all operating systems (e.g., IOCTL, TRNLOG), you must make sure to u
FORWARD_FUNCTION to tell IDL that these names are functions. Otherwise
IDL may interpret them as arrays and generate unintended results.

This routine is written in the IDL language. Its source code can be found in the fi
resolve_all.pro in thelib subdirectory of the IDL distribution.

Syntax

RESOLVE_ALL [, /CONTINUE_ON_ERROR] [, /QUIET]
RESOLVE_ALL IDL Reference Guide

1069
Keywords

CONTINUE_ON_ERROR

Set this keyword to allow continuation upon error.

QUIET

Set this keyword to suppress informational messages.

See Also

.COMPILE, RESOLVE_ROUTINE, ROUTINE_INFO
IDL Reference Guide RESOLVE_ALL

1070

or
ned.
ked

o
N

s are

re
RESOLVE_ROUTINE

The RESOLVE_ROUTINE procedure compiles user-written or library procedures
functions, given their names. Routines are compiled even if they are already defi
This procedure is similar to the .COMPILE executive command, but can be invo
within procedures and functions.

Syntax

RESOLVE_ROUTINE,Name [, /EITHER | , /IS_FUNCTION]
[, /NO_RECOMPLIE]

Arguments

Name

A scalar string or string array containing the name or names of the procedures t
compile. IfName contains functions rather than procedures, set the IS_FUNCTIO
keyword.

Keywords

EITHER

If set, indicates that the caller does not know whether the supplied routine name
functions or procedures, and will accept either. This keyword overrides the
IS_FUNCTION keyword.

IS_FUNCTION

Set this keyword to compile functions rather than procedures.

NO_RECOMPILE

Normally, RESOLVE_ROUTINE compiles all specified routines even if they have
already been compiled. Setting NO_RECOMPILE indicates that such routines a
not recompiled.

See Also

.COMPILE, RESOLVE_ALL, ROUTINE_INFO
RESOLVE_ROUTINE IDL Reference Guide

1071

 by

er
nly
n.
chive

ed.

in
nly

uld
RESTORE

The RESTORE procedure restores the IDL variables and routines saved in a file
the SAVE procedure.

Warning
While files containing IDL variables can be restored by any version of IDL that
supports the data types of the variables (in particular, by any version of IDL lat
than the version that created the SAVE file), files containing IDL routines can o
be restored by versions of IDL that share the same internal code representatio
Since the internal code representation changes regularly, you should always ar
the IDL language source files (.pro files) for routines you are placing in IDL
SAVE files so you can recompile the code when a new version of IDL is releas

Note to VMS Users

When reading older VMS format files, IDL knows that all floating-point values are
VAX format. These floating values are automatically converted to IEEE format. O
VMS/IDL is able to restore the native VMS format.

Note
If you are restoring a file created with VAX IDL version 1, youmust restore on a
machine running VMS.

Syntax

RESTORE [,Filename] [, FILENAME=name]
[, /RELAXED_STRUCTURE_ASSIGNMENT]
[, RESTORED_OBJECTS=variable] [, /VERBOSE]

Arguments

Filename

A scalar string that contains the name of the file from which the IDL objects sho
be restored. If not present, the fileidlsave.dat is used.
IDL Reference Guide RESTORE

1072

nt,
 the

its
curs
ey are
s the

E
h all

, the

ject.

 the
Keywords

FILENAME

The name of the file from which the IDL objects should be restored. If not prese
the fileidlsave.dat is used. This keyword serves exactly the same purpose as
Filename argument—only one of them needs to be provided.

RELAXED_STRUCTURE_ASSIGNMENT

Normally, RESTORE is unable to restore a structure variable if the definition of
type has changed since the SAVE file was written. A common case where this oc
is when objects are saved and the class structure of the objects change before th
restored in another IDL session. In such cases, RESTORE issues an error, skip
structure, and continues restoring the remainder of the SAVE file.

Setting the RELAXED_STRUCTURE_ASSIGNMENT keyword causes RESTOR
to restore such incompatible values using “relaxed structure assignment,” in whic
possible data are restored using a field-by-field copy. (See the description of the
STRUCT_ASSIGN procedure for additional details.)

RESTORED_OBJECTS

Set this keyword equal to a named variable that will contain an array of object
references for any objects restored. The resulting list of objects is useful for
programmatically calling the objects’ restore methods. If no objects are restored
variable will contain a null object reference.

VERBOSE

Set this keyword to have IDL print an informative message for each restored ob

Example

Suppose that you have saved all the variables from a previous IDL session with
command:

SAVE, /VARIABLES, FILENAME = 'session1.sav'

The variables in the filesession1.sav can be restored by entering:

RESTORE, 'session1.sav'

See Also

JOURNAL, SAVE, STRUCT_ASSIGN
RESTORE IDL Reference Guide

1073

he
ntil
RETALL

The RETALL command returns control to the main program level. The effect is t
same as entering the RETURN command at the interactive command prompt u
the main level is reached.

Syntax

RETALL

Arguments

None

See Also

RETURN
IDL Reference Guide RETALL

1074

r

n

ne,
rns

n

 at

e

RETURN

The RETURN command causes the program context to revert to the next-highe
program level. RETURN can be called at the interactive command prompt (see
“.RETURN” on page 60), inside a procedure definition, or inside a function
definition.

Calling RETURN from the main program level has no effect other than to print a
informational message in the command log.

Calling RETURN inside a procedure definition returns control to the calling routi
or to the main level. Since the END statement in a procedure definition also retu
control to the calling routine, it is only necessary to use RETURN in a procedure
definition if you wish control to revert to the calling routine before the procedure
reaches its END statement.

In a function definition, RETURN serves to define the value passed out of the
function. Only a single value can be returned from a function.

Note
The value can be an array or structure containing multiple data items.

Syntax

RETURN [,Return_value]

Arguments

Return_value

In a function definition, theReturn_valueis the value passed out of the function whe
it completes its processing.

Return values are not allowed in procedure definitions, or when calling RETURN
the interactive command prompt.

Examples

You can use RETURN within a procedure definition to exit the procedure at som
point other than the end. For example, note the following procedure:

PRO RET_EXAMPLE, value
IF value THEN BEGIN
RETURN IDL Reference Guide

1075

he
ntil

 at
PRINT, value, ' is nonzero'
RETURN
END

PRINT, 'Input argument was zero.'
END

If the input argument is non-zero, the routine prints the value and exits back to t
calling procedure or main level. If the input argument is zero, control proceeds u
the END statement is reached.

When defining functions, use RETURN to specify the value returned from the
function. For example, the following function:

FUNCTION RET_EXAMPLE2, value
RETURN, value * 2

END

multiplies the input value by two and returns the result. If this function is defined
the main level, calling it from the IDL command prompt produces the following:

PRINT, RET_EXAMPLE2(4)

IDL prints:

8

See Also

RETALL
IDL Reference Guide RETURN

1076

r

le

erse

cript:
REVERSE

The REVERSE function reverses the order of rows or columns in a one-, two-, o
three-dimensional array.

This routine is written in the IDL language. Its source code can be found in the fi
reverse.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = REVERSE(Array [, Subscript_Index])

Arguments

Array

The array containing the original data.

Subscript_Index

If this parameter is omitted or 1, the first subscript is reversed (i.e., columns are
reversed). Set this parameter to 2 to reverse rows. Set this parameter to 3 to rev
around the third dimension of the array. This argumentmust be present ifArray is
three dimensional.

Example

Reverse the order of an array where each element is set to the value of its subs

; Create an array:
A = [[0,1,2],[3,4,5],[6,7,8]]

; Print the array:
PRINT, 'Original Array:'
PRINT, A

; Reverse the columns of A.
PRINT, 'Reversed Columns:'
PRINT, REVERSE(A)

; Reverse the rows of A:
PRINT, 'Reversed Rows:'
PRINT, REVERSE(A, 2)
REVERSE IDL Reference Guide

1077
IDL Output

Original Array:
 0 1 2
 3 4 5
 6 7 8
Reversed Columns:
 2 1 0
 5 4 3
 8 7 6
Reversed Rows:
 6 7 8
 3 4 5
 0 1 2

See Also

INVERT, REFORM, ROT, ROTATE, SHIFT, TRANSPOSE
IDL Reference Guide REVERSE

1078

ND
in
REWIND

The REWIND procedure rewinds the tape on the designated IDL tape unit. REWI
is available only under VMS. See the description of the magnetic tape routines
“VMS-Specific Information” in Chapter 16 ofBuilding IDL Applcations.

Syntax

REWIND, Unit

Arguments

Unit

The magnetic tape unit to rewind.Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNs).

See Also

SKIPF, TAPRD
REWIND IDL Reference Guide

1079

lps
an
que
RI
er
luates
the

n

rom
RIEMANN

The RIEMANN procedure computes the “Riemann sum” (or its inverse) which he
implement the backprojection operator used to reconstruct the cross-section of
object, given projections through the object from multiple directions. This techni
is widely used in medical imaging in the fields of computed x-ray tomography, M
imaging, Positron Emission Tomography (PET), and also has applications in oth
areas such as seismology and astronomy. The inverse Riemann sum, which eva
the projections given a slice through an object, is also a discrete approximation to
Radon transform.

Given a matrixA(m,n), which will contain the reconstructed slice; a vectorP,
containing the ray sums for a given view; and an angleTheta measured in radians
from the vertical: the Riemann sum “backprojects” the vectorP into A. For each
element ofA, the value of the closest element ofP is summed, leaving the result inA.
Bilinear interpolation is an option. All operations are performed in single-precisio
floating point.

In the reverse operation, the ray sums contained in the view vector,P, are computed
given the original slice,A, andTheta. This is sometimes called “front projection”.

The Riemann sum can be written:

which is the sum of the data along lines through an image with an angle of theta f
the vertical.

Syntax

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1 to 0}] [, D=spacing] [, ROW=value]

Arguments

P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set),P
contains the ray sums for a single view. For the inverse operation,P should contain
zeros on input and will contain the ray sums for the view on output.

A r i ∆ θ–⋅()cos⋅ i ∆⋅,()
i 0=

M 1–

∑

IDL Reference Guide RIEMANN

1080

ted

hbor
ed.

f

r of

in of

tting
A

An m by n floating-point image matrix. For backprojection,A contains the
accumulated results. For the inverse operation,A contains the original image.
Typically, k should be larger than

which is the diagonal size ofA.

Theta

The angle of the ray sums from the vertical.

Keywords

BACKPROJECT

Set this keyword to perform backprojection in whichP is summed intoA. If this
keyword is not set, the inverse operation occurs and the ray sums are accumula
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neig
sampling. Results are more accurate but slower when bilinear interpolation is us

CENTER

Set this keyword equal to a floating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements oP.

COR

Set this keyword equal to a two-element floating-point vector specifying the cente
rotation in the arrayA. The default value is [m/2.,n/2.], whereA is anm by n array.

For symmetric results, given symmetric operands, COR should be set to the orig
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., wheren is the
number of elements in the projection vector,P.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Se
this keyword equal to a value greater than zero specifies a value of -1 for the

m2 n2+
RIEMANN IDL Reference Guide

1081

that a
.

s

or
do

c

. In

 PP.
ice.
interpolation parameter. Park and Schowengerdt (see reference below) suggest
value of -0.5 significantly improves the reconstruction properties of this algorithm

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal,f, is a band-limited signal, with no frequency
component larger thanω0, andf is sampled with spacing less than or equal to 1/2ω0,
thenf can be reconstructed by convolving with a sinc function: sinc (x) = sin (πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation i
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques f
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redon
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubi
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Use this keyword to specify the spacing between elements ofP, expressed in the same
units as the spacing between elements ofA. The default is 1.0.

ROW

Set this keyword to specify theP vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row
this case,P must be an array with a first dimension equal tok, and the value of ROW
must be in the range of 0 to the number of vectors of lengthk in P, minus one.

Example

This example forms a synthetic image inA, computesNviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram”) in a matrix
It then backprojects the projections into the matrix B, forming the reconstructed sl
In practical use, the projections are convolved with a filter before being
backprojected.

; Define number of columns in A:
N = 100L
IDL Reference Guide RIEMANN

1082
; Define number of rows in A:
M = 100L
; Number of views:
nviews = 100

; The length of the longest projection. If filtered backprojection
; is used, 1/2 the length of the convolution kernel must also be
; added.

K = CEIL(SQRT(N^2 + M^2))

; Form original slice:
A = FLTARR(N, M)

; Simulate a square object:
A(N/2:N/2+5, M/2:M/2+5) = 1.0

; Make array for sinogram:
pp = FLTARR(K, nviews)

; Compute each view:
FOR I=0, NVIEWS-1 DO RIEMANN, pp, A, I * !PI/nviews, ROW=i

; Show sinogram:
TVSCL, pp

; Initial reconstructed image:
B = FLTARR(N,M)

; Do the backprojection for each view:
FOR I=0, nviews-1 DO $

RIEMANN, pp, B, I * !PI/nviews, /BACKPROJECT, ROW=i

; Show reconstructed array:
TVSCL, B

See Also

VOXEL_PROJ
RIEMANN IDL Reference Guide

1083

n to

es

L

RK4

The RK4 function uses the fourth-order Runge-Kutta method to advance a solutio
a system of ordinary differential equations one time-stepH, given values for the
variablesY and their derivativesDydx known atX.

RK4 is based on the routinerk4 described in section 16.1 ofNumerical Recipes in C:
The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = RK4(Y, Dydx, X, H, Derivs [, /DOUBLE])

Arguments

Y

A vector of values forY atX

Dydx

A vector of derivatives forY atX.

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculat
the values of the derivativesDydx atX. This function must accept two arguments: A
scalar floating valueX, and onen-element vectorY. It must return ann-element vector
result.

For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function DIFFERENTIAL to express these relationships in the ID
language:
IDL Reference Guide RK4

1084

etic.
FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To integrate the example system of differential equations for one time step, H:

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Calculate the initial derivative values:
dydx = DIFFERENTIAL(X,Y)

; Integrate over the interval (0, 0.5):
result = RK4(Y, dydx, X, H, 'differential')

; Print the result:
PRINT, result

IDL Output

3.11523 6.85767

This is the exact solution vector to five-decimal precision.

See Also

BROYDEN, NEWTON
RK4 IDL Reference Guide

1085

ment

d
ith
ROBERTS

The ROBERTS function returns an approximation to the Roberts edge enhance
operator for images:Ga(j,k) = Fj, k – Fj + 1, k + 1 + Fj, k + 1 – Fj + 1, k

which is a simple, two-dimensional differencing method for edge-sharpening an
isolation. The result of this function is a two-dimensional array of integer type, w
the same dimensions asImage.

Syntax

Result = ROBERTS(Image)

Arguments

Image

The two-dimensional array containing the image to which edge enhancement is
applied.

Example

If the variable IM contains a two-dimensional image array, a Roberts sharpened
version of IM can be displayed with the command:

TVSCL, ROBERTS(IM)

See Also

SOBEL
IDL Reference Guide ROBERTS

1086

 can
n
r

le

put

ter
ation.
ROT

The ROT function rotates an image by an arbitrary amount. At the same time, it
magnify, demagnify, and/or translate an image. Note that if you want to rotate a
array by a multiple of 90 degrees, you should use the ROTATE function for faste
results.

This routine is written in the IDL language. Its source code can be found in the fi
rot.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = ROT(A, Angle, [Mag, X0, Y0] [, /INTERP] [, CUBIC=value{-1 to 0}]
[, MISSING=value] [, /PIVOT])

Arguments

A

The image array to be rotated. This array can be of any type, but must have two
dimensions. The output image has the same dimensions and data type of the in
image.

ANGLE

Angle of rotation in degreesclockwise.

MAG

An optional magnification factor. A value of 1.0 results in no change. A value grea
than one performs magnification and a value less than one performs demagnific

X0

X subscript for the center of rotation. If omitted,X0 equals the number of columns in
the image divided by 2.

Y0

Y subscript for the center of rotation. If omitted,Y0 equals the number of rows in the
image divided by 2.
ROT IDL Reference Guide

1087

hbor

tting

that a
.

s

or
do

c

ap
Keywords

INTERP

Set this keyword to use bilinear interpolation. The default is to use nearest neig
sampling.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Se
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest
value of -0.5 significantly improves the reconstruction properties of this algorithm

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal,f, is a band-limited signal, with no frequency
component larger thanω0, andf is sampled with spacing less than or equal to 1/(2ω0),
thenf can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation i
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques f
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redon
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubi
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Set this keyword to a value to be substituted for pixels in the output image that m
outside the input image.

PIVOT

Set this keyword to cause the image to pivot around the point(X0, Y0) so that this
point maps into the same point in the output image. By default, the point(X0, Y0) in
the input image is mapped into the center of the output image.
IDL Reference Guide ROT

1088
Example

; Create a byte image:
A = BYTSCL(DIST(256))

; Display it:
TV, A

; Rotate the image 33 degrees, magnify it 15 times, and use
; bilinear interpolation to make the output look nice:
B = ROT(A, 33, 1.5, /INTERP)

; Display the rotated image:
TV, B

See Also

ROTATE
ROT IDL Reference Guide

1089

an
ore

le, to

at

s

r

ROTATE

The ROTATE function returns a rotated and/or transposed copy ofArray. ROTATE
can only rotate arrays in multiples of 90 degrees. To rotate by amounts other th
multiples of 90 degrees, use the ROT function. Note, however, that ROTATE is m
efficient.

ROTATE can also be used to reverse the order of elements in vectors. For examp
reverse the order of elements in the vector X, use the expressionROTATE(X,2) . If X
= [0,1,2,3] thenROTATE(X,2) yields the resulting array, [3,2,1,0].

Transposition is performed before rotation. Rotations are viewed with the first row
the top.

Syntax

Result = ROTATE(Array, Direction)

Arguments

Array

The array to be rotated.Array can have only one or two dimensions. The result ha
the same type asArray. The dimensions of the result are the same as those ofArray if
Direction is equal to 0 or 2. The dimensions are transposed if the direction is 4 o
greater.

Direction

Direction specifies the operation to be performed as follows:

Direction Transpose? Rotation Counterclockwise X 1 Y1

0 No None X0 Y0

1 No 90° -Y0 X0

2 No 180° -X0 -Y0

3 No 270° Y0 -X0

4 Yes None Y0 X0

Table 77: Rotation Directions
IDL Reference Guide ROTATE

1090

is

.
, for
he
ng
t
ears

tate
In the table above, (X0, Y0) are the original subscripts, and (X1, Y1) are the
subscripts of the resulting array. The notation -Y0 indicates a reversal of the Y axis,
Y1 = Ny - Y0 - 1. Direction is taken modulo 8, so a rotation of -1 is the same as 7, 9
the same as 1, etc.

Note
The assertion thatArray is rotating counterclockwise may cause some confusion
Remember that when arrays are displayed on the screen (using TV or TVSCL
example), the image is drawn with the origin (0,0) at the bottom left corner of t
window. When arrays are printed on the console or command log window (usi
the PRINT command, for example), the (0,0) element is drawn in the upper lef
corner of the array. This means that while an image displayed in a window app
to rotate counterclockwise, an array printed in the command log appears to ro
clockwise.

Example

Create and display a wedge image by entering:

F = REPLICATE(1, 256) # FINDGEN(256) & TVSCL, F

To display the image rotated 90 degrees counterclockwise, enter:

TVSCL, ROTATE(F, 1)

See Also

ROT, TRANSPOSE

5 Yes 90° -X0 Y0

6 Yes 180° -Y0 -X0

7 Yes 270° X0 -Y0

Direction Transpose? Rotation Counterclockwise X 1 Y1

Table 77: Rotation Directions
ROTATE IDL Reference Guide

1091
ROUND

The ROUND function returns the integer closest to its argument. This value is
returned as a longword integer with the same structure as the input argument.

Syntax

Result = ROUND(X)

Arguments

X

The value for which the ROUND function is to be evaluated. This value can be
single- or double-precision, real or complex floating-point. ROUND returns a
longword integer with the same structure asX. Note that only the real part of a
complex argument is rounded and returned.

Example

To print the rounded values of a 2-element vector, enter:

PRINT, ROUND([5.1, 5.9])

IDL prints:

5 6

See Also

CEIL, COMPLEXROUND, FLOOR
IDL Reference Guide ROUND

1092

fined
re or

d.

By
ROUTINE_INFO

The ROUTINE_INFO function provides information about currently-compiled
procedures and functions. It returns a string array consisting of the names of de
procedures or functions, or of parameters or variables used by a single procedu
function.

Syntax

Result = ROUTINE_INFO([Routine[[, /PARAMETERS{must specifyRoutine}]
[, /SOURCE] [, /UNRESOLVED] [, /VARIABLES] | , /SYSTEM]] [, /DISABLED]
[, /ENABLED] [, /FUNCTIONS])

Arguments

Routine

A scalar string containing the name of routine for which information will be returne
Routine can be either a procedure or a function. IfRoutine is not supplied,
ROUTINE_INFO returns a list of all currently-compiled procedures.

Keywords

DISABLED

Set this keyword to get the names of currently disabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of DISABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

ENABLED

Set this keyword to get the names of currently enabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of ENABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

FUNCTIONS

Set this keyword to return a string array containing currently-compiled functions.
default, ROUTINE_INFO returns a list of compiled procedures. If the SYSTEM
keyword is also set, ROUTINE_INFO returns a list of all IDL built-in internal
functions.
ROUTINE_INFO IDL Reference Guide

1093

s

 If

lds:

s

ed

ath

r.

s.

 a
PARAMETERS

Set this keyword to return an anonymous structure with the following fields:

• NUM_ARGS — An integer containing the number of positional parameter
used inRoutine.

• NUM_KW_ARGS — An integer containing the number of keyword
parameters used inRoutine.

• ARGS — A string array containing the names of the positional parameters
used inRoutine.

• KW_ARGS — A string array containing the names of the keyword
parameters used inRoutine.

You must supply theRoutine argument when using this keyword. Note that
specifying the SYSTEM keyword along with this keyword will generate an error.
Routine does not take any arguments, the ARGS field is not included in the
anonymous structure. Similarly, ifRoutine does not take any keywords, the
KW_ARGS field is not included.

SOURCE

Set this keyword to return an array of anonymous structures with the following fie

• NAME — A string containing the name of the procedure or function.

• PATH — A string containing the full path specification of the file that contain
the definition of the procedure or function.

If Routine is specified, information for that one routine is returned. IfRoutine is not
specified, information for all compiled routines is returned. If a routine is unresolv
or its path information is unavailable, the PATH field will contain a null string. If a
routine has been SAVEd and then RESTOREd, the PATH field will contain the p
to the SAVE file.

Note
Specifying the SYSTEM keyword along with this keyword will generate an erro

SYSTEM

Set this keyword to return a string array listing all IDL built-in internal procedure
Built-in internal procedures are part of the IDL executable, and arenotwritten in the
IDL language. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns
list of all IDL built-in internal functions.
IDL Reference Guide ROUTINE_INFO

1094

 any

of

an

e or
UNRESOLVED

Set this keyword to return a string array listing procedures that are referenced in
currently-compiled procedure or function, but which are themselves not yet
compiled. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns a list
functions that are referenced but not yet compiled.

Note that specifying the SYSTEM keyword along with this keyword will generate
error.

VARIABLES

Set this keyword to return a string array listing variables defined in the procedur
function.

You must supply theRoutine argument when using this keyword. Note that
specifying the SYSTEM keyword along with this keyword will generate an error.

See Also

RESOLVE_ALL, RESOLVE_ROUTINE
ROUTINE_INFO IDL Reference Guide

1095

arly-

the

s
ws:

le
RS_TEST

The RS_TEST function tests the hypothesis that two sample populationsX andY
have the same mean of distribution against the hypothesis that they differ.X andY
may be of different lengths. The result is a two-element vector containing the ne
normal test statistic Z and the one-tailed probability of obtaining a value of Z or
greater. This type of test is often referred to as the “Wilcoxon Rank-Sum Test” or
“Mann-Whitney U-Test.”

The Mann-Whitney statistics forX andY are defined as follows:

whereNxandNyare the number of elements inX andY, respectively, andWxandWy
are the rank sums forX andY, respectively. The test statistic Z, which closely follow
a normal distribution for sample sizes exceeding 10 elements, is defined as follo

This routine is written in the IDL language. Its source code can be found in the fi
rs_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = RS_TEST(X, Y [, UX=variable] [, UY=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An m-element integer, single-, or double-precision floating-point vector.

Ux NxNy

Nx Nx 1+()
2

---------------------------- Wx–+=

Uy NxNy

Ny Ny 1+()
2

---------------------------- Wy–+=

Z
Ux NxNy() 2⁄–

NxNy Nx Ny 1+ +()() 12⁄
---=
IDL Reference Guide RS_TEST

1096

for

for

and
Keywords

UX

Set this keyword to a named variable that will contain the Mann-Whitney statistic
X.

UY

Set this keyword to a named variable that will contain the Mann-Whitney statistic
Y.

Example

; Define two sample populations:
X = [-14, 3, 1, -16, -21, 7, -7, -13, -22, -17, -14, -8, $

7, -18, -13, -9, -22, -25, -24, -18, -13, -13, -18, -5]
Y = [-18, -9, -16, -14, -3, -9, -16, 10, -11, -3, -13, $

-21, -2, -11, -16, -12, -13, -6, -9, -7, -11, -9]

; Test the hypothesis that two sample populations, {xi, yi}, have
; the same mean of distribution against the hypothesis in that they
; differ at the 0.05 significance level:
PRINT, RS_TEST(X, Y, UX = ux, UY = uy)

; Print the Mann-Whitney statistics:
PRINT, 'Mann-Whitney Statistics: Ux = ', ux, ', Uy = ', uy

IDL Output

[1.45134, 0.0733429]
Mann-Whitney Statistics: Ux = 330.000, Uy = 198.000

The computed probability (0.0733429) is greater than the 0.05 significance level
therefore we do not reject the hypothesis that X and Y have the same mean of
distribution.

See Also

FV_TEST, KW_TEST, S_TEST, TM_TEST
RS_TEST IDL Reference Guide

1097

is a
een

le
S_TEST

The S_TEST function tests the hypothesis that two sample populationsX andYhave
the same mean of distribution against the hypothesis that they differ. The result
two-element vector containing the maximum number of signed differences betw
corresponding pairs ofxi andyi and its one-tailed significance. This type of test is
often referred to as the “Sign Test.”

This routine is written in the IDL language. Its source code can be found in the fi
s_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = S_TEST(X, Y [, ZDIFF=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

ZDIFF

Set this keyword to a named variable that will contain the number of differences
between corresponding pairs ofxi andyi resulting in zero. Paired data resulting in a
difference of zero are excluded from the ranking and the sample size is
correspondingly reduced.

Example

; Define two n-element sample populations:
X = [47, 56, 54, 49, 36, 48, 51, 38, 61, 49, 56, 52]
Y = [71, 63, 45, 64, 50, 55, 42, 46, 53, 57, 75, 60]

; Test the hypothesis that the two sample populations have the same
; mean of distribution against the hypothesis that they differ at
; the 0.05 significance level:
PRINT, S_TEST(X, Y, ZDIFF = zdiff)
IDL Reference Guide S_TEST

1098

and
IDL Output

[9.00000, 0.0729981]

The computed probability (0.0729981) is greater than the 0.05 significance level
therefore we do not reject the hypothesis thatX andY have the same mean of
distribution.

See Also

FV_TEST, KW_TEST, MD_TEST, RS_TEST, TM_TEST
S_TEST IDL Reference Guide

1099

le

ote

.

es

ord

ng
s the

sed
SAVE

The SAVE procedure saves variables, system variables, and IDL routines in a fi
using the XDR (eXternal Data Representation) format for later recovery by
RESTORE. Note that variables and routines cannot be saved in the same file. N
also that save files containing routines may not be compatible between different
versions of IDL, but that files containing data are always backwards-compatible

Syntax

SAVE [, Var1, ...,Varn] [, /ALL] [, /COMM, /VARIABLES] [, /COMPRESS]
[, FILENAME=string] [, ROUTINES] [, /SYSTEM_VARIABLES] [, /VERBOSE]

Arguments

Varn

Optional named variables that are to be saved.

Keywords

ALL

Set this keyword to save all common blocks, system variables, and local variabl
from the current IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyw
does not save routines.

COMM

Set this keyword to save all main level common block definitions. Note that setti
this keyword does not cause the contents of the common block to be saved unles
VARIABLES keyword is also set.

COMPRESS

If COMPRESS is set, IDL writes all data to the SAVE file using the ZLIB
compression library to reduce its size. IDL's save file compression support is ba
on the freely available ZLIB library by Mark Adler and Jean-loup Gailly.
IDL Reference Guide SAVE

1100

the
will

. If

ining

ord

s are
 not

de
ble.

tween

the
Compressed save files can be restored by the RESTORE procedure in exactly
same manner as any other save file. The only visible differences are that the files
be smaller, and writing and reading them will be somewhat slower under typical
conditions.

FILENAME

A string containing the name of the file into which the IDL objects should be saved
this keyword is not specified, the fileidlsave.dat is used.

ROUTINES

Set this keyword to save user defined procedures and functions in a machine
independent, binary form. If parameters are present, they must be strings conta
the names of the procedures and/or functions to be saved. If no parameters are
present, all compiled routines are saved. If you are using VMS, see the XDR keyw
below. Routines and variables cannot be saved in the same file.

Warning
Because SAVE stores routines in a binary format, save files containing routine
not guaranteed to be compatible between successive versions of IDL. You will
be able to RESTORE save files containing routines if they are made with
incompatible versions of IDL. In this case, you should recompile your original co
with the newer version of IDL. Save files containing data will always be restora

SYSTEM_VARIABLES

Set this keyword to save the current state of all system variables.

Warning
Saving system variables is not recommended, as the structure may change be
versions of IDL.

VARIABLES

Set this keyword to save all variables in the current program unit. This option is
default.

VERBOSE

Set this keyword to print an informative message for each saved object.
SAVE IDL Reference Guide

1101

ring:
Example

Save the status of all currently-defined variables in the file variables1.dat by ente

SAVE, /VARIABLES, FILENAME = 'variables1.dat'

The variables can be restored with the RESTORE procedure. Save the user
procedures MYPROC and MYFUN:

SAVE, /ROUTINES, 'MYPROC', 'MYFUN'

See Also

JOURNAL, RESOLVE_ALL, RESTORE
IDL Reference Guide SAVE

1102

c 3D
a
e

le

d,

d,

d,

and
he Z
SCALE3

The SCALE3 procedure sets up transformation and scaling parameters for basi
viewing. This procedure is similar to SURFR and SCALE3D, except that the dat
ranges must be specified and the scaling does not vary with rotation. Results ar
stored in the system variables !P.T, !X.S, !Y.S, and !Z.S.

This routine is written in the IDL language. Its source code can be found in the fi
scale3.pro in thelib subdirectory of the IDL distribution.

Syntax

SCALE3 [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]
[, AX=degrees] [, AZ=degrees]

Keywords

XRANGE

A two-element vector containing the minimum and maximum X values. If omitte
the X-axis scaling remains unchanged.

YRANGE

A two-element vector containing the minimum and maximum Y values. If omitte
the Y-axis scaling remains unchanged.

ZRANGE

A two-element vector containing the minimum and maximum Z values. If omitte
the Z-axis scaling remains unchanged.

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.

Example

Set up a 3D transformation where the data range is 0 to 20 for each of the 3 axes
the viewing area is rotated 20 degrees about the X axis and 55 degrees about t
axis:
SCALE3 IDL Reference Guide

1103
SCALE3, XRANGE=[0, 20], YRANGE=[0, 20], ZRANGE=[0, 20], AX=20,
AZ=55

See Also

SCALE3D, SURFR, T3D
IDL Reference Guide SCALE3

1104

side
 the
able

tem

le
SCALE3D

The SCALE3D procedure scales the 3D unit cube (a cube with the length of each
equal to 1) into the viewing area. Eight data points are created at the vertices of
3D unit cube. The vertices are then transformed by the value of the system vari
!P.T. The system is translated to bring the minimum (x,y,z) point to the origin, and
then scaled to make each coordinate’s maximum value equal to 1. The !P.T sys
variable is modified as a result.

This routine is written in the IDL language. Its source code can be found in the fi
scale3D.pro in thelib subdirectory of the IDL distribution.

Syntax

SCALE3D

See Also

SCALE3, SURFR, T3D
SCALE3D IDL Reference Guide

1105

 a
 for,
nd

ition

ified

 that

le
SEARCH2D

The SEARCH2D function finds “objects” or regions of similar data values within
two-dimensional array. Given a starting location and a range of values to search
SEARCH2D finds all the cells within the array that are within the specified range a
have some path of connectivity through these cells to the starting location. In add
to searching for cells within a global range of data values, SEARCH2D can also
search for adjacent cells whose values deviate from their neighbors within spec
tolerances.

SEARCH2D returns a longword array that contains a list of the array subscripts
define the located object or region. The original X and Y indices of the array
subscripts returned by SEARCH2D can be found with the following IDL code:

index_y = Result / (SIZE(Array))(1)
index_x = Result - (index_y * (SIZE(Array))(1))

whereResult is the array returned by SEARCH2D andArray is the original input
array. The object withinArray can be subscripted asArray(Region) or
Array(index_x, index_y) .

This routine is written in the IDL language. Its source code can be found in the fi
search2d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SEARCH2D(Array, Xpos, Ypos, Min_Val, Max_Val [, /DECREASE,
/INCREASE [, LPF_BAND=integer{ ≥3}]] [, /DIAGONAL])

Arguments

Array

A two-dimensional array, of any data type, to be searched.

Xpos

The X coordinate (dimension 0 ofArray) of the starting location.

Ypos

The Y coordinate (dimension 1 ofArray) of the starting location.
IDL Reference Guide SEARCH2D

1106

are

g

s in
E. In
ween
.

ing

s in
E. In
ween

 on

ose
acent
tion
Min_Val

The minimum data value for which to search. All array subscripts of all cells that
connected to the starting cell, and have a value betweenMin_Val andMax_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changin
intensities of data values within an object. An edge-enhanced copy ofArray is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data value
the edge enhanced array are greater than DECREASE and less than INCREAS
any case, the adjacent cells will never be selected if their data values are not bet
Min_ValandMax_Val. The default for this keyword is 0.0 if INCREASE is specified

INCREASE

This keyword and the DECREASE keyword allow you to compensate for chang
intensities of data values within an object. An edge-enhanced copy ofArray is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data value
the edge enhanced array are greater than DECREASE and less than INCREAS
any case, the adjacent cells will never be selected if their data values are not bet
Min_Val andMax_Val. The default for this keyword is 0.0 if DECREASE is
specified.

LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.

DIAGONAL

Set this keyword to cause SEARCH2D to find cells meeting the search criteria wh
surrounding squares share a common corner. Normally, cells are considered adj
only when squares surrounding the cells share a common edge. Setting this op
requires more memory and execution time.
SEARCH2D IDL Reference Guide

1107
Example

Find all the indices corresponding to an object in an image:

; Create an image with different valued regions:
img = FLTARR(512, 512)
img[3:503, 9:488] = 0.7
img[37:455, 18:438] = 0.5
img[144:388, 90:400] = 0.7
img[200:301, 1:255] = 1.0
img[155:193, 333:387] = 0.3
TVSCL, img;Display the image.

; Search for an object starting at (175, 300) whose data values are
; between (0.6) and (0.8):
region = SEARCH2D(img, 175, 300, 0.6, 0.8, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
img = BYTSCL(img, TOP=127B)

; Highlight the object region by setting it to 255:
img[region] = 255B

; Display the array with the highlighted object in it:
TVSCL, img

See Also

SEARCH3D
IDL Reference Guide SEARCH2D

1108

 a

ge

 that

le
SEARCH3D

The SEARCH3D function finds “objects” or regions of similar data values within
3D array of data. Given a starting location and a range of values to search for,
SEARCH3D finds all the cells within the volume that are within the specified ran
of values and have some path of connectivity through these cells to the starting
location. In addition to searching for cells within a global range of data values,
SEARCH3D can also search for adjacent cells whose values deviate from their
neighbors within specified tolerances.

SEARCH3D returns a longword array that contains a list of the array subscripts
define the selected object or region. The original X and Y indices of the array
subscripts returned by SEARCH3D can be found with the following IDL code:

S = SIZE(Array)
index_z = Result / (S[1] * S[2])
index_y = (Result - (index_z * S[1] * S[2])) / S[1]
index_x = (Result - (index_z * S[1] * S[2])) - (index_y * S[1])

whereResult is the array returned by SEARCH3D andArray is the original input
volume. The object withinArray can be subscripted asArray[Region] or
Array[index_x, index_y, index_z] .

This routine is written in the IDL language. Its source code can be found in the fi
search3d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SEARCH3D(Array, Xpos, Ypos, Zpos, Min_Val, Max_Val [, /DECREASE,
/INCREASE [, LPF_BAND=integer{ ≥3}]] [, /DIAGONAL])

Arguments

Array

The three-dimensional array, of any data type except string, to be searched.

Xpos

The X coordinate (dimension 0 orArray) of the starting location.

Ypos

The Y coordinate (dimension 1 ofArray) of the starting location.
SEARCH3D IDL Reference Guide

1109

hat

g

s in
E. In
ween
.

ing

s in
E. In
ween

 on
Zpos

The Z coordinate (dimension 2 ofArray) of the starting location.

Min_Val

The minimum data value for which to search. All array subscripts of all the cells t
are connected to the starting cell, and have a value betweenMin_Val andMax_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changin
intensities of data values within an object. An edge-enhanced copy ofArray is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data value
the edge enhanced array are greater than DECREASE and less than INCREAS
any case, the adjacent cells will never be selected if their data values are not bet
Min_ValandMax_Val. The default for this keyword is 0.0 if INCREASE is specified

INCREASE

This keyword and the DECREASE keyword allow you to compensate for chang
intensities of data values within an object. An edge-enhanced copy ofArray is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data value
the edge enhanced array are greater than DECREASE and less than INCREAS
any case, the adjacent cells will never be selected if their data values are not bet
Min_Val andMax_Val. The default for this keyword is 0.0 if DECREASE is
specified.

LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.
IDL Reference Guide SEARCH3D

1110

ose
red
 this
DIAGONAL

Set this keyword to cause SEARCH3D to find cells meeting the search criteria wh
surrounding cubes share a common corner or edge. Normally, cells are conside
adjacent only when cubes surrounding the cells share a common edge. Setting
option requires more memory and execution time.

Example

Find all the indices corresponding to an object contained in a 3D array:

; Create some data.
vol = RANDOMU(s, 40, 40, 40)
vol[3:13, 1:15, 17:33] = 1.3
vol[15:25, 5:25, 15:25] = 0.2
vol[5:30,17:38,7:28] = 1.3
vol[9:23, 16:27, 7:33] = 1.5

; Search for an object starting at (6, 22, 16) whose data values
; are between (1.2) and (1.4):
region = SEARCH3D(vol, 6, 22, 16, 1.2, 1.4, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
vol = BYTSCL(vol, TOP=127B)

; Highlight the object region by setting it to 255:
vol[Region] = 255B
WINDOW, 0, XSIZE=640, YSIZE=512, RETAIN=2

; Set up a 3-D view:
CREATE_VIEW, XMAX=39, YMAX=39, ZMAX=39, AX=(-30), AZ=30, ZOOM=0.8

; Display the volume with the highlighted object in it:
TVSCL, PROJECT_VOL(vol, 64, 64, 40, DEPTH_Q=0.4)

See Also

SEARCH2D
SEARCH3D IDL Reference Guide

1111

 the

ew

 or,
ack).

tely

ed

the
es
. Be
s
citly.
SET_PLOT

The SET_PLOT procedure sets the output device used by the IDL graphics
procedures. Keyword parameters control how the color tables are transferred to
newly selected graphics device. SET_PLOT performs the following actions:

• It sets the read-only system variable !D to reflect the configuration of the n
device.

• It sets the default color !P.COLOR to the maximum color index minus one
in the case of devices with white backgrounds, such as PostScript, to 0 (bl

• If the COPY keyword is set, the device color tables are copied directly from
IDL’s internal color tables. If the new device’s color tables contain more
indices than those of the old device, the new device’s tables are not comple
filled.

• If the INTERPOLATE keyword is set, the internal color tables are interpolat
to fill the range of the new device.

• It sets the clipping rectangle to the entire device surface.

Warning
After calling SET_PLOT to change graphics devices, the scaling contained in
axis structures !X, !Y, and !Z is invalid. Any routines that rely on data coordinat
should not be called until a new data coordinate system has been established
careful when switching devices as the number of color indices frequently differ
between devices. When in doubt, reload the color table of the new device expli

Syntax

SET_PLOT,Device [, /COPY] [, /INTERPOLATE]

Arguments

Device

A scalar string containing the name of the device to use. The case ofDevice is
ignored by IDL. SeeAppendix B, “IDL Graphics Devices”for a list of device names.
IDL Reference Guide SET_PLOT

1112

pon

T

ould

e

Keywords

COPY

Set this keyword to copy the device’s color table from the internal color table,
preserving the current color mapping. The default is not to load the color table u
selection.

Warning
Unless this keyword is set, IDL’s internal color tables will incorrectly reflect the
state of the device’s color tables until they are reloaded by TVLCT or the LOADC
procedure. Assuming that the previously-selected device’s color table containsM
elements, and the new device’s color table containsN elements, then the minimum
of M andN elements are loaded.

INTERPOLATE

Set this keyword to indicate that the current contents of the internal color table sh
be interpolated to cover the range of the newly-selected device. Otherwise, the
internal color tables are not changed.

Example

Change the IDL graphics device to PostScript by entering:

SET_PLOT, 'PS'

After changing the plotting device, all graphics commands are sent to that devic
until changed again by another use of the SET_PLOT routine.
SET_PLOT IDL Reference Guide

1113

at
ged

lues.
reset
ters.

ud
ing.

en,
 line

lt

 are
ays

 in
SET_SHADING

The SET_SHADING procedure modifies the light source shading parameters th
affect the output of SHADE_SURF and POLYSHADE. Parameters can be chan
to control the light-source direction, shading method, and the rejection of hidden
surfaces. SET_SHADING first resets the shading parameters to their default va
The parameter values specified in the call then overwrite the default values. To
all parameters to their default values, simply call this procedure with no parame

Syntax

SET_SHADING [, /GOURAUD] [, LIGHT=[x, y, z]] [, /REJECT]
[, VALUES=[darkest, brightest]]

Arguments

None.

Keywords

GOURAUD

This keyword controls the method of shading the surface polygons by the
POLYSHADE procedure. The SHADE_SURF procedure always uses the Goura
method. Set this keyword to a nonzero value (the default), to use Gouraud shad
Set this keyword to zero to shade each polygon with a constant intensity.

Gouraud shading interpolates intensities from each vertex along each edge. Th
when scan converting the polygons, the shading is interpolated along each scan
from the edge intensities. Gouraud shading is slower than constant shading but
usually results in a more realistic appearance.

LIGHT

A three-element vector that specifies the direction of the light source. The defau
light source vector is [0,0,1], with the light rays parallel to the Z axis.

REJECT

Set this keyword (the default) to reject polygons as being hidden if their vertices
ordered in a clockwise direction as seen by the viewer. This keyword should alw
be set when rendering enclosed solids whose original vertex lists are in
counterclockwise order. When rendering surfaces that are not closed or are not
IDL Reference Guide SET_SHADING

1114

alies

e.
the
 the
counterclockwise order this keyword can be set to zero although shading anom
at boundaries between visible and hidden surfaces may occur.

VALUES

A two-element array that specifies the range of pixel values (color indices) to us
The first element is the color index for the darkest pixel. The second element is
color index for the brightest pixel. For example, to render a shaded surface with
darkest shade set to pixel value 100 and the brightest value set to 150, use the
commands:

SET_SHADING, VALUES=[100, 150]
SHADE_SURF, dataset

Example

Change the light source so that the light rays are parallel to the X axis:

SET_SHADING, LIGHT = [1, 0, 0]

See Also

POLYSHADE, SHADE_SURF
SET_SHADING IDL Reference Guide

1115

r

lt is
SET_SYMBOL

The SET_SYMBOL procedure defines a DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only unde
VMS.

Syntax

SET_SYMBOL,Name, Value [, TYPE={1 | 2}]

Arguments

Name

A scalar string containing the name of the symbol to be defined.

Value

A scalar string containing the value with whichName is defined.

Keywords

TYPE

Indicates the table into whichName will be defined. Setting TYPE to 1 specifies the
local symbol table, while a value of 2 specifies the global symbol table. The defau
the local table.

See Also

DELLOG, DELETE_SYMBOL, SETLOG
IDL Reference Guide SET_SYMBOL

1116

ent.
SETENV

The SETENV procedure adds or changes an environment string in the process
environment.

Note
This procedure is only available for UNIX and Windows platforms.

Syntax

SETENV,Environment_Expression

Arguments

Environment_Expression

A scalar string containing an environment expression to be added to the environm

Example

Change the current shell variable by entering:

SETENV,'SHELL=/bin/sh'

Make sure to eliminate any whitespace around the equal sign:

; This is an incorrect usage--there are spaces around the equal
; sign:
SETENV, 'VAR = H:\rsi'

;This is correct--VAR is set to H:\rsi:
SETENV, 'VAR=H:\rsi'

See Also

DELLOG, GETENV, SETLOG
SETENV IDL Reference Guide

1117

ble
ists at
SETLOG

The SETLOG procedure defines a logical name.

Note
This procedure is only available for the VMS platform.

Syntax

SETLOG,Lognam, Value [, /CONCEALED] [, /CONFINE] [, /NO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam

A scalar string containing the name of the logical to be defined.

Value

A string containing the value to which the logical will be set. IfValueis a string array,
Lognamis defined as a multi-valued logical where each element ofValuedefines one
of the equivalence strings.

Keywords

CONCEALED

If this keyword is set, RMS (VMS Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If this keyword is set, the logical name is not copied from the IDL process to its
spawned subprocesses.

NO_ALIAS

If this keyword is set, the logical name cannot be duplicated in the same logical ta
at an outer access mode. If another logical name with the same name already ex
an outer access mode, it is deleted. See theVMS System Services Manual for
additional information on logical names and access modes.
IDL Reference Guide SETLOG

1118

cal
TABLE

A scalar string containing the name of the logical table into whichLognam will be
entered. If TABLE is not specified, LNM$PROCESS_TABLE is used.

TERMINAL

If this keyword is set, when attempting to translate the logical, further iterative logi
name translation on the equivalence name is not to be performed.

See Also

DELETE_SYMBOL, DELLOG, SETENV, SET_SYMBOL
SETLOG IDL Reference Guide

1119

L

ces
L

and

ut
e of
re
n

nted
DE

ied
annot

le
SETUP_KEYS

The SETUP_KEYS procedure sets function keys for use with UNIX versions of ID
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequen
they send to the host computer vary enough between various keyboards that ID
cannot be written to understand all keyboards. Therefore, IDL provides a very
general routine named DEFINE_KEY that allows the user to specify the names
escape sequences of function keys.

SETUP_KEYS provides a convenient interface to DEFINE_KEY, using user inp
(via the keywords described below), the TERM environment variable and the typ
machine the current IDL is running on to determine what kind of keyboard you a
using, and then uses DEFINE_KEY to enter the proper definitions for the functio
keys.

The new mappings for the keys can be viewed using the command

HELP, /KEYS.

The need for SETUP_KEYS has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represe
by VT100 terminals and their many derivatives, as well as xterm and the newer C
based dtterm.

The current version of IDL already knows the function keys of such terminals, so
SETUP_KEYS is not required. However, SETUP_KEYS is still needed to define
keys on non-ANSI terminals such as the Sun shelltool, SGI Iris-ansi terminal
emulator, or IBM’s aixterm.

IDL does not support the function keys from the hpterm terminal emulator suppl
on HP systems. Hpterm uses non ANSI-standard escape sequences which IDL c
parse. Research Systems recommends the use of the xterm or dtterm terminal
emulators instead.

This routine is written in the IDL language. Its source code can be found in the fi
setup_keys.pro in thelib subdirectory of the IDL distribution.

Syntax

SETUP_KEYS [, /EIGHTBIT] [, /SUN | , /VT200 | , /HP9000 | , /MIPS | , /PSTERM
| , /SGI] [, /APP_KEYPAD] [, /NUM_KEYPAD]
IDL Reference Guide SETUP_KEYS

1120

pe
type

efault

.

pt to

ard.
Keywords

Note
If no keyword is specified, SETUP_KEYS uses !VERSION to determine the ty
of machine running IDL. It assumes that the keyboard involved is of the same
(this assumption is correct).

ANSI

Set this keyword to establish function key definitions for ANSI keyboards.

EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the d
7-bit) when establishing VT200 function key definitions.

SUN

Set this keyword to establish function key definitions for a Sun3 keyboard.

VT200

Set this keyword to establish function key definitions for a DEC VT200 keyboard

HP9000

Set this keyword to establish function key definitions for an HP 9000 series 300
keyboard. Although the HP 9000 series 300 supports both xterm and hpterm
windows, IDL supports only user-definable key definitions in xterm windows—
hpterm windows use non-standard escape sequences which IDL does not attem
handle.

IBM

Set this keyword to establish function key definitions for IBM keyboards.

MIPS

Set this keyword to establish function key definitions for a Mips RS series keybo

SGI

Set this keyword to establish function key definitions for SGI keyboards.
SETUP_KEYS IDL Reference Guide

1121

ric
APP_KEYPAD

Set this keyword to define escape sequences for the group of keys in the nume
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD

Set this keyword to disable programmability of the numeric keypad.

See Also

DEFINE_KEY
IDL Reference Guide SETUP_KEYS

1122

rray.

le

qual.

r a
SFIT

The SFIT function determines a polynomial fit to a surface and returns a fitted a
The function fitted is:

This routine is written in the IDL language. Its source code can be found in the fi
sfit.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SFIT(Data, Degree [, KX=variable])

Arguments

Data

The two-dimensional array of data to fit. The sizes of the dimensions may be une

Degree

The maximum degree of fit (in one dimension).

Keywords

KX

Set this keyword to a named variable that will contain the array of coefficients fo
polynomial function ofx andy to fit data. This parameter is returned as aDegree+1
by Degree+1 array.

Example

; Create a grid from zero to six radians in the X and Y directions:
X = (FINDGEN(61)/10) # REPLICATE(1,61)
Y = TRANSPOSE(X)

; Evaluate a function at each point:
F = -SIN(2*X) + COS(Y/2)

; Compute a sixth-degree polynomial fit to the function data:
result = SFIT(F, 6)

; Display the original function on the left and the fitted function

f x y,() kxj i, xi y j⋅ ⋅∑=
SFIT IDL Reference Guide

1123
; on the right, using identical axis scaling:
WINDOW, XSIZE = 800, YSIZE = 400

; Set up side-by-side plots:
!P.MULTI = [0, 2, 1]

; Set background color to white:
!P.BACKGROUND = 255

; Set plot color to black:
!P.COLOR = 0

SURFACE, F, X, Y, ZRANGE = [-3, 3], ZSTYLE = 1
SURFACE, result, X, Y

IDL Output

The following figure shows the result of this example:

See Also

CURVEFIT, GAUSSFIT, POLY_FIT, POLYFITW, REGRESS, SVDFIT

Figure 8: The Original Function (Left) and the Fitted Function (Right)
IDL Reference Guide SFIT

1124

lar or
om
lar to
ed-

ge is
LS
ugh

n
ur.
o not
d to a
SHADE_SURF

The SHADE_SURF procedure creates a shaded-surface representation of a regu
nearly-regular gridded surface with shading from either a light source model or fr
a user-specified array of intensities. This procedure and its parameters are simi
SURFACE. Given a regular or near-regular grid of elevations it produces a shad
surface representation of the data with hidden surfaces removed.

The SET_SHADING procedure can be used to control the direction of the light
source and other shading parameters.

If the graphics output device has scalable pixels (e.g., PostScript), the output ima
scaled so that its largest dimension is less than or equal to 512 (unless the PIXE
keyword is set to some other value). This default resolution may not be high eno
for some datasets. If your output looks jagged or “stair-stepped”, try specifying a
larger value with the PIXELS keyword.

When outputting to a device that prints black on a white background, (e.g.,
PostScript), pixels that contain the background color index of 0 are set to white.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal will
occur. If the T3D keyword is set, the 3D to 2D transformation matrix contained i
!P.T must project the Z axis to a line parallel to the device Y axis, or errors will occ
The SHADE_SURF_IRR procedure can be used to render many datasets that d
meet these requirements. Irregularly-gridded data can also be made interpolate
regular grid using the TRIGRID and TRIANGULATE routines.

Syntax

SHADE_SURF,Z [, X, Y] [, AX= degrees] [, AZ=degrees] [, IMAGE=variable]
[, MAX_VALUE= value] [, MIN_VALUE= value] [, PIXELS=pixels] [, /SAVE]
[, SHADES=array] [, /XLOG] [, /YLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer] [, CLIP=[X0,
Y0, X1, Y1]] [, COLOR=value][, /DATA | , /DEVICE | , /NORMAL]
[, FONT=integer] [, /NOCLIP] [, /NODATA] [, POSITION=[X0, Y0, X1, Y1]]
[, SUBTITLE=string] [, /T3D] [, THICK=value] [, TICKLEN=value]
[, TITLE=string] [, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE= integer{0 to 5}] [, {X | Y | Z}MARGIN= [left, right]]
[, {X | Y | Z}MINOR= integer] [, {X | Y | Z}RANGE= [min, max]]
[, {X | Y | Z}STYLE= value] [, {X | Y | Z}THICK= value]
SHADE_SURF IDL Reference Guide

1125

ts

he

ach

the
. If

low)
e

d

[, {X | Y | Z}TICKFORMAT= string] [, {X | Y | Z}TICKLEN= value]
[, {X | Y | Z}TICKNAME= string_array] [, {X | Y | Z}TICKS= integer]
[, {X | Y | Z}TICKV= array] [, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE= string] [, ZVALUE= value{0 to 1}]

Arguments

Z

A two-dimensional array that contains the values that make up the surface. For
details, see“SURFACE” on page 1244.

This argument is converted to single-precision floating-point before plotting. Plo
created with SHADE_SURF are limited to the range and precision of single-
precision floating-point values.

X

An optional vector or two-dimensional array that specifies the X coordinates of t
grid. For details, see“SURFACE” on page 1244.

Y

An optional vector or two-dimensional array that specifies the Y coordinates of e
elevation.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards
viewer. This keyword is effective only if !P.T3D and the T3D keyword are not set
!P.T3D is set, the three-dimensional to two-dimensional transformation used by
SURFACE is contained in the 4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see be
degrees about the Z axis, then by AX degrees about the X axis, tilting the surfac
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted.

The three-dimensional to two-dimensional transformation represented by AX an
AZ, can be saved in !P.T by including the SAVE keyword.
IDL Reference Guide SHADE_SURF

1126

This
n

this

than
the

the
EE

le
f the

ing

DE
ays,
AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis.
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, the
AX.

IMAGE

A named variable into which an image containing the shaded surface is stored. If
keyword is omitted, the image is displayed but not saved.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing and are not plotted. Note that
IEEE floating-point value NaN is also treated as missing data. (See“Special Floating-
Point Values” in Chapter 15 ofBuilding IDL Applcations for more information on
IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing and are not plotted. Note that the IE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

PIXELS

Set this keyword to a scalar value that specifies the maximum size of the image
dimensions, in pixels. PIXELS only applies when the output device uses scalab
pixels (e.g., the PostScript device). Use this keyword to increase the resolution o
output image if the default looks jagged or “stair-stepped”.

SAVE

Set this keyword to save the 3D to 2D transformation matrix established by
SHADE_SURF in the system variable field !P.T. Use this keyword when combin
the output of SHADE_SURF with the output of other routines in the same plot.

SHADES

An array expression, of the same dimensions asZ, that contains the color index at
each point. The shading of each pixel is interpolated from the surrounding SHA
values. If this parameter is omitted, light-source shading is used. For most displ
this parameter should be scaled into the range of bytes.
SHADE_SURF IDL Reference Guide

1127

t

et can
Warning
When using the SHADES keyword on True Color devices, we recommend tha
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.CHARSIZE, CHARTHICK, CLIP, COLOR, DATA,
DEVICE, FONT, NOCLIP, NODATA, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN , [XYZ]MINOR , [XYZ]RANGE, [XYZ]STYLE , [XYZ]THICK ,
[XYZ]TICKFORMAT , [XYZ]TICKLEN , [XYZ]TICKNAME , [XYZ]TICKS ,
[XYZ]TICKV , [XYZ]TICK_GET, [XYZ]TITLE , ZVALUE.

Example

; Create a simple dataset:
D = DIST(40)
; Display the dataset as a light-source shaded surface:
SHADE_SURF, D, TITLE = 'Shaded Surface'

Instead of light-source shading, an array of the same size as the elevation datas
be used to color the surface. This technique creates four-dimensional displays.

; Create an array of shades to use:
S = SIN(D)

; Now create a new shaded surface that uses the array of shading
; values instead of the light source:
SHADE_SURF, D, SHADES = BYTSCL(S)

Note that the BYTSCL function is used to scale S into the range of bytes.

See Also

POLYSHADE, SET_SHADING, SHADE_VOLUME, SURFACE
IDL Reference Guide SHADE_SURF

1128

 an

ld be
t

le

r,
SHADE_SURF_IRR

The SHADE_SURF_IRR procedure creates a shaded surface representation of
irregularly gridded elevation dataset.

The data must be representable as an array of quadrilaterals. This routine shou
used when the (X, Y, Z) arrays are too irregular to be drawn by SHADE_SURF, bu
are still semi-regular.

This routine is written in the IDL language. Its source code can be found in the fi
shade_surf_irr.pro in thelib subdirectory of the IDL distribution.

Syntax

SHADE_SURF_IRR,Z, X, Y [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, PLIST=variable] [, /T3D]

Arguments

Z

An n x m array of elevations.

X

An n x m array containing theX location of eachZ value.

Y

An n x m array containing theY location of eachZ value.

Note
The grid described byX andYmust consist of quadrilaterals, must be semi-regula
and must be in “clockwise” order. Clockwise ordering means that:

;for all j
x[i,j] <= x[i+1, j]

and

;for all i
y[i,j] <= y[i, j+1]
SHADE_SURF_IRR IDL Reference Guide

1129

ce

his
t of

be

lays
Keywords

AX

The angle of rotation about the X axis. The default is 30 degrees.

AZ

The angle of rotation about the Z axis. The default is 30 degrees.

IMAGE

Set this keyword to a named variable that will contain the resulting shaded surfa
image. The variable is returned as a byte array of the same size as the currently
selected graphics device.

PLIST

Set this keyword to a named variable that will contain the polygon list on return. T
feature is useful when you want to make a number of images from the same se
vertices and polygons.

T3D

Set this keyword to indicate that the generalized transformation matrix in !P.T is to
used (in which case the keyword values for AX and AZ are ignored)

Example

The following example creates a semi-regular data set in the proper format at disp
the resulting irregular surface.

; Create some elevation data:
z = DIST(10,10)*100.0
; Create arrays to hold X and Y data:
x = FLTARR(10,10) & y = FLTARR(10,10)
; Ensure that X and Y arrays are in "clockwise" order:
FOR i = 0,9 do x[0:9,i] = FINDGEN(10)
FOR j = 0,9 DO y[j,0:9] = FINDGEN(10)
; Make X and Y arrays irregular:
x = x + RANDOMU(seed,10,10)*0.49
y = y + RANDOMU(seed,10,10)*0.49
; Display the irregular surface:
SHADE_SURF_IRR, z, x, y

See Also

SHADE_SURF, TRIGRID
IDL Reference Guide SHADE_SURF_IRR

1130

ined

tour
he

D

f

SHADE_VOLUME

Given a 3D volume and a contour value, SHADE_VOLUME produces a list of
vertices and polygons describing the contour surface. This surface can then be
displayed as a shaded surface by the POLYSHADE procedure. Shading is obta
from either a single light-source model or from user-specified values.

SHADE_VOLUME computes the polygons that describe a three dimensional con
surface. Each volume element (voxel) is visited to find the polygons formed by t
intersections of the contour surface and the voxel edges. The method used by
SHADE VOLUME is that of Klemp, McIrvin and Boyd, 1990: “PolyPaint—A
Three-Dimensional Rendering Package,”American Meteorology Society
Proceedings, Sixth International Conference on Interactive Information and
Processing Systems. This method is similar to the marching cubes algorithm
described by Lorenson and Cline, 1987: “Marching Cubes: A High Resolution 3
Surface Construction Algorithm,”Computer Graphics 21, 163-169.

This routine is limited to processing datasets that will fit in memory.

Syntax

SHADE_VOLUME,Volume, Value, Vertex, Poly [, /LOW] [, SHADES=array]
[, /VERBOSE] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

Volume

A three-dimensional array that contains the dataset to be contoured. If theVolume
array is dimensioned(D0, D1, D2), the resulting vertex coordinates are as follows:

0 < X < D0 - 1; 0 < Y <D1 - 1; 0 < Z <D2 - 1.

If floating-point NaN values are present inVolume, then SHADE_VOLUME may
generate inconsistent surfaces and may return NaN values in theVertex argument.
The surfaces generated by SHADE_VOLUME may also vary across platforms i
NaN data is present in theVolume parameter.

Value

The scalar contour value. This value specifies the constant-density surface (also
called an isosurface) to be rendered.
SHADE_VOLUME IDL Reference Guide

1131

t to a

The
m
: [
or

e of
s

cified
as
g

t

ices
Vertex

The name of a variable to receive the vertex array. On output, this variable is se
(3, n) floating-point array, suitable for input to POLYSHADE.

Poly

A named variable to receive the polygon list, anm-element, longword array. This list
describes the vertices of each polygon and is suitable for input to POLYSHADE.
vertices of each polygon are listed in counterclockwise order when observed fro
outside the surface. The vertex description of each polygon is a vector of the formn,
i0, i1, ..., in-1] and thePolyarray is the concatenation of the lists of each polygon. F
example, when rendering a pyramid consisting of four triangles,Poly would contain
16 elements, made by concatenating four, four-element vectors of the form [3,V0, V1,
V2]. V0, V1, andV2 are the indices of the vertices describing each triangle.

Keywords

LOW

Set this keyword to display the low side of the contour surface (i.e., the contour
surfaces enclose high data values). If this keyword is omitted or is 0, the high sid
the contour surface is displayed and the contour encloses low data values. If thi
parameter is incorrectly specified, errors in shading will result.

SHADES

An optional array, converted to byte type before use, that contains the user-spe
shading color index for each voxel. This array must have the same dimensions
Volume. On exit, this array is replaced by another array, that contains the shadin
value for each vertex, contained inVertex.

Warning
When using the SHADES keyword on True Color devices, we recommend tha
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

VERBOSE

Set this keyword to print a message indicating the number of polygons and vert
that are produced.
IDL Reference Guide SHADE_VOLUME

1132

 of

ion,

he

ALE3
E

XRANGE

An optional two-element vector that contains the limits, over the first dimension,
the sub-volume to be considered.

YRANGE

An optional two-element vector that contains the limits, over the second dimens
of the sub-volume to be considered.

ZRANGE

An optional two-element vector containing the limits, over the third dimension, of t
sub-volume to be considered.

Example

The following procedure shades a volume passed as a parameter. It uses the SC
procedure to establish the viewing transformation. It then calls SHADE_VOLUM
to produce the vertex and polygon lists, and POLYSHADE to draw the contour
surface.

; Display the contour surface of a volume:
Pro SHOWVOLUME, vol, thresh, LOW = low
; Get the dimensions of the volume:
s = SIZE(vol)
; Error, must be a 3D array:
IF s[0] NE 3 THEN
; Use SCALE3 to establish the 3D transformation and coordinate
; ranges:
SCALE3, XRANGE=[0, S[1]], YRANGE=[0, S[2]], ZRANGE=[0, S[3]]
; Default = view high side of contour surface:
IF N_ELEMENTS(low) EQ 0 THEN low = 0
; Produce vertices and polygons:
SHADE_VOLUME, vol, thresh, v, p, LOW = low
; Produce image of surface and display:
TV, POLYSHADE(v,p,/T3D)
END

See Also

POLYSHADE, SHADE_SURF
SHADE_VOLUME IDL Reference Guide

1133

any
pe as

 the

s an

ion.
SHIFT

The SHIFT function shifts elements of vectors or arrays along any dimension by
number of elements. The result is a vector or array of the same structure and ty
Array. Positive shifts are to the right while left shifts are expressed as a negative
number. All shifts are circular.

Elements shifted off one end wrap around and are shifted onto the other end. In
case of vectors the action of SHIFT can be expressed:

Result(i + s) modulation = Arrayi for (0 ≤ 1 <n)

wheres is the amount of the shift, andn is the number of elements in the array.

Syntax

Result = SHIFT(Array, S1, ...,Sn)

Arguments

Array

The array to be shifted.

Si

The shift parameters. For arrays of more than one dimension, the parameterSn
specifies the shift applied to thenth dimension.S1 specifies the shift along the first
dimension and so on. If only one shift parameter is present and the parameter i
array, the array is treated as a vector (i.e., the array is treated as having one-
dimensional subscripts).

A shift specification of 0 means that no shift is to be performed along that dimens

Example

The following example demonstrates using SHIFT with a vector. by entering:

A = INDGEN(5)

; Print the original vector, the vector shifted one position to the
; right, and the vector shifted one position to the left:
PRINT, A, SHIFT(A, 1), SHIFT(A, -1)
IDL Reference Guide SHIFT

1134

nd.
IDL Output

0 1 2 3 4
4 0 1 2 3
1 2 3 4 0

Notice how elements of the vector that shift off the end wrap around to the other e
This “wrap around” occurs when shifting arrays of any dimension.

See Also

ISHFT
SHIFT IDL Reference Guide

1135

nd a

le

 is

d
cture
ith
SHOW3

The SHOW3 procedure combines an image, a surface plot of the image data, a
contour plot of the images data in a single tri-level display.

This routine is written in the IDL language. Its source code can be found in the fi
show3.pro in thelib subdirectory of the IDL distribution.

Syntax

SHOW3,Image [, X, Y] [, /INTERP] [, E_CONTOUR=structure]
[, E_SURFACE=structure] [, SSCALE=scale]

Arguments

Image

The two-dimensional array to display.

X

A vector containing the X values of each column ofImage. If theX argument is
omitted, columns have values 0, 1, ...,ncolumns-1.

Y

A vector containing the Y values of each row ofImage. If the Yargument is omitted,
rows have values 0, 1, ...,nrows-1.

Keywords

INTERP

Set this keyword to use bilinear interpolation on the pixel display. This technique
slightly slower, but for small images, it makes a better display.

E_CONTOUR

Set this keyword equal to an anonymous structure containing additional keywor
parameters that are passed to the CONTOUR procedure. Tag names in the stru
should be valid keyword arguments to CONTOUR, and the values associated w
each tag should be valid keyword values.
IDL Reference Guide SHOW3

1136

d
cture
th

er
e

next
E_SURFACE

Set this keyword equal to an anonymous structure containing additional keywor
parameters that are passed to the SURFACE procedure. Tag names in the stru
should be valid keyword arguments to SURFACE, and the values associated wi
each tag should be valid keyword values.

SSCALE

Reduction scale for surface. The default is 1. If this keyword is set to a value oth
than 1, the array size is reduced by this factor for the surface display. That is, th
number of points used to draw the wire-mesh surface is reduced. If the array
dimensions are not an integral multiple of SSCALE, the image is reduced to the
smaller multiple.

Example

; Create a dataset:
A = BESELJ(SHIFT(DIST(30,20), 15, 10)/2.,0)

; Show it with default display:
SHOW3, A

; Specify X axis proportional to square root of values:
SHOW3, A, SQRT(FINDGEN(30))

; Label CONTOUR lines with double size characters, and include
;downhill tick marks:
SHOW3, A, E_CONTOUR={C_CHARSIZE:2, DOWN:1}

; Draw a surface with a skirt and scale Z axis from -2 to 2:
SHOW3, A, E_SURFACE={SKIRT:-1, ZRANGE:[-2,2]}

See Also

CONTOUR, SURFACE
SHOW3 IDL Reference Guide

1137

file

le

rd
SHOWFONT

The SHOWFONT procedure displays a TrueType or vector-drawn font (from the
hersh1.chr , located in the main IDL directory) on the current graphics device.

This routine is written in the IDL language. Its source code can be found in the fi
showfont.pro in thelib subdirectory of the IDL distribution.

Syntax

SHOWFONT,Font, Name [, /ENCAPSULATED] [, /TT_FONT]

Arguments

Font

The index number of the font (may range from 3 to 29) or, if the TT_FONT keywo
is set, a string that contains the name of the TrueType font to display.

Name

A string that contains the text of a title to appear at the top of the font display.

Keywords

ENCAPSULATED

Set this keyword, if the current graphics device is “PS”, to make encapsulated
PostScript output.

TT_FONT

If this keyword is set, the specified font will be interpreted as a TrueType font.

Example

To create a display of the Helvetica italic TrueType font on the screen:

SHOWFONT, 'Helvetica Italic', 'Helvetica Italic', /TT_FONT

To create a display of Font 3 for PostScript:

; Set output to PostScript:
SET_PLOT, 'PS'

; Specify the output filename. If we didn’t specify this, the file
; would be saved as idl.ps by default:
IDL Reference Guide SHOWFONT

1138
DEVICE, FILENAME='font3.ps'

;Display font 3:
SHOWFONT, 3, 'Simplex Roman'

; Close the new PS file:
DEVICE, /CLOSE

See Also

EFONT, PS_SHOW_FONTS
SHOWFONT IDL Reference Guide

1139

 to

ent
SIN

The periodic function SIN returns the trigonometric sine of X.

Syntax

Result = SIN(X)

Arguments

X

The angle for which the sine is desired, specified in radians. IfX is double-precision
floating or complex, the result is of the same type. All other types are converted
single-precision floating-point and yield floating-point results. When applied to
complex numbers:

sin x = COMPLEX(sinR coshI, cosR sinhI)

whereR andI are the real and imaginary parts ofx.

If input argumentX is an array, the result has the same structure, with each elem
containing the sine of the corresponding element ofX.

Examples

To find the sine of 0.5 radians and print the result, enter:

PRINT, SIN(0.5)

The following example plots the SIN function between 0 and 2π with 100 intervals:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SIN(X)

Note
!PI is a read-only system variable that contains the single-precision value forπ.

See Also

ASIN, SINH
IDL Reference Guide SIN

1140

ch

ts are
w

of its
SINDGEN

The SINDGEN function returns a string array with the specified dimensions. Ea
element of the array is set to the string representation of the value of its one-
dimensional subscript, using IDL’s default formatting rules.

Syntax

Result = SINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create S, a six-element string vector with each element set to the string value
subscript, enter:

S = SINDGEN(6)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
SINDGEN IDL Reference Guide

1141

es
nd

 the

ult,
SINH

The SINH function returns the hyperbolic sine of X.

Syntax

Result = SINH(X)

Arguments

X

The angle for which the hyperbolic sine is desired, specified in radians. IfX is
double-precision floating-point, the result is also double-precision. Complex valu
are not allowed. All other types are converted to single-precision floating-point a
yield floating-point results. SINH is defined as:

sinh x = (eu - e-u) / 2

If X is an array, the result has the same structure, with each element containing
hyperbolic sine of the corresponding element ofX.

Examples

To find the hyperbolic sine of each element in the array [.5, .2, .4] and print the res
enter:

PRINT, SINH([.5, .2, .4])

To plot the SINH function between 0 and 2π with 100 intervals, enter:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SINH(X)

Note
!PI is a read-only system variable that contains the single-precision value ofπ.

See Also

ASIN, SIN
IDL Reference Guide SINH

1142

per
he
SIZE

The SIZE function returns a vector that contains size and type information for its
argument if no keywords are set. If a keyword is set, SIZE returns the specified
quantity.

The returned vector is always of longword type. The first element is equal to the
number of dimensions ofExpression. This value is zero ifExpression is scalar or
undefined. The next elements contain the size of each dimension, one element
dimension (none ifExpression is scalar or undefined). After the dimension sizes, t
last two elements contain the type code (zero if undefined) and the number of
elements inExpression, respectively. The type codes are listed below under“IDL
Type Codes”.

Syntax

Result= SIZE(Expression[, /DIMENSIONS | , /FILE_LUN | , /N_DIMENSIONS | ,
/N_ELEMENTS | , /STRUCTURE | , /TNAME | , /TYPE])

IDL Type Codes

The following table lists the IDL type codes returned by the SIZE function:

Type Code Data Type

0 Undefined

1 Byte

2 Integer

3 Longword integer

4 Floating point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

9 Double-precision complex

Table 78: IDL Type Codes
SIZE IDL Reference Guide

1143

ray
Arguments

Expression

The expression for which size information is requested.

Keywords

The following keywords determine the return value of the SIZE function. The
keywords are mutually exclusive — specify at most one of the following.

DIMENSIONS

Set this keyword to return the dimensions ofExpression. If Expression is scalar, the
result is a longword scalar containing a 1. For arrays, the result is a longword ar
containing the array dimensions.

FILE_LUN

Set this keyword to return the file unit to whichExpression is associated, if it is an
IDL file variable, as created with the ASSOC function. IfExpression is not a file
variable, 0 is returned (0 is not a valid file unit for ASSOC).

N_DIMENSIONS

Set this keyword to return the number of dimension inExpression, if it is an array. If
Expression is scalar, 0 is returned.

N_ELEMENTS

Set this keyword to return the number of data elements inExpression. Setting this
keyword is equivalent to using the N_ELEMENTS function.

10 Pointer

11 Object reference

12 Unsigned Integer

13 Unsigned Longword Integer

14 64-bit Integer

15 Unsigned 64-bit Integer

Type Code Data Type

Table 78: IDL Type Codes
IDL Reference Guide SIZE

1144

 is

, and
STRUCTURE

Set this keyword to return all available information aboutExpressionas an IDL_SIZE
structure. Note that since the structure is a named structure, the size of its fields
fixed. The following are descriptions of the fields in the returned structure:

TNAME

Set this keyword to return the IDL type ofExpression as a string.

TYPE

Set this keyword to return the IDL type code forExpression. See“IDL Type Codes”
on page 1142 for details.

Example

Print the size information for a 10 by 20 floating-point array by entering:

PRINT, SIZE(FINDGEN(10, 20))

IDL prints:

2 10 20 4 200

IDL shows that the array has 2 dimensions, equal to 10 and 20, a type code of 4
200 elements total.

Field Description

TYPE_NAME Name of IDL type ofExpression.

TYPEIDL Type code ofExpression.

FILE_LUN If Expressionis an IDL file variable, as created with
the ASSOC function, the file unit to which it is
associated. Otherwise, 0.

N_ELEMENTS Number of data elements inExpression.

N_DIMENSIONS IfExpressionis an array, the number of dimensions.
Otherwise, 0.

DIMENSIONS An 8-element array containing the dimensions of
Expression.

Table 79: Structure Fields
SIZE IDL Reference Guide

1145
Similarly, to print only the number of dimensions of the same array:

PRINT, SIZE(FINDGEN(10, 20), /N_DIMENSIONS)

IDL prints:

2

IDL Reference Guide SIZE

1146

SS

ing-
SKEWNESS

The SKEWNESS function computes the statistical skewness of ann-element vector.
If the variance of the vector is zero, the skewness is not defined, and SKEWNE
returns !VALUES.F_NAN as the result. SKEWNESS calls the IDL function
MOMENT.

Syntax

Result = SKEWNESS(X [, /DOUBLE] [, /NAN])

Arguments

X

A numeric vector.

Keywords

DOUBLE

If this keyword is set, computations are done in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the skewness:
result = SKEWNESS(x)
PRINT, 'Skewness = ', result

IDL Output

Skewness = -0.0942851

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, VARIANCE
SKEWNESS IDL Reference Guide

1147

it.
ed.

RR.
end

nd

value
be
SKIPF

The SKIPF procedure skips records or files on the designated magnetic tape un
SKIPF is available only under VMS. If two parameters are supplied, files are skipp
If three parameters are present, individual records are skipped.

The number of files or records actually skipped is stored in the system variable !E
Note that when skipping records, the operation terminates immediately when the
of a file is encountered. See the description of the magnetic tape routines in“VMS-
Specific Information” in Chapter 16 ofBuilding IDL Applcations.

Syntax

SKIPF,Unit, Files

or

SKIPF,Unit, Records, R

Arguments

Unit

The magnetic tape unit to rewind.Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNs).

Files

The number of files to be skipped. Skipping is in the forward direction if the seco
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping is in the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If this argument is present, records are skipped, otherwise files are skipped. The
of R is never examined. Its presence serves only to indicate that records are to
skipped.
IDL Reference Guide SKIPF

1148

le

ree-
, Y,

ia

r

ar on
S

e
ot
SLICER3

The IDL SLICER3 is a widget-based application to visualize three-dimensional
datasets. This program supersedes the SLICER program.

This routine is written in the IDL language. Its source code can be found in the fi
slicer3.pro in thelib subdirectory of the IDL distribution.

Syntax

SLICER3 [,hData3D] [, DATA_NAMES=string/string_array] [, /DETACH]
[, GROUP=widget_id] [, /MODAL]

Arguments

hData3D

A pointer to a three-dimensional data array, or an array of pointers to multiple th
dimensional arrays. If multiple arrays are specified, they all must have the same X
and Z dimensions. IfhData3Dis not specified, SLICER3 creates a 2x 2 x 2array of
byte data using the IDL BYTARR function. You can also load data interactively v
the File menu of the SLICER3 application (see“Examples” on page 1164 for
details).

Note
If data are loaded in this fashion, any data passed to SLICER3 via a pointer (o
pointers) is deleted, and the pointers become invalid.

Keywords

DATA_NAMES

Set this keyword equal to a string array of names for the data. The names appe
the droplist widget for the current data. If the number of elements of DATA_NAME
is less than the number of elements inhData3Dthen default names will be generated
for the unnamed data.

DETACH

Set this keyword to place the drawing area in a window that is detached from th
SLICER3 control panel. The drawing area can only be detached if SLICER3 is n
run as a modal application.
SLICER3 IDL Reference Guide

1149

s
m a

ER3
GROUP

Set this keyword equal to the Widget ID of an existing widget that serves as the
“group leader” for the SLICER3 graphical user interface. When a group leader i
destroyed, all widgets in the group are also destroyed. If SLICER3 is started fro
widget application, then GROUP shouldalways be specified.

MODAL

Set this keyword to block user interaction with all other widgets (and block the
command line) until the SLICER3 exits. If SLICER3 is started from some other
widget-based application, then it is usually advisable to run SLICER3 with the
MODAL keyword set.

Note
SLICER3 modifies the current color table, as well as various elements of the
plotting system (i.e., the “!X”, “!Y”, “!Z”, and “!P” system variables). If the
MODAL keyword is set (recommended), then SLICER3 will, upon exit, restore
these system variables (and the color tables) to the values they had when SLIC
was started.

The SLICER3 Graphical User Interface

The following options are available via SLICER3’s graphical user interface.

Figure 9: SLICER3 Graphical User Interface
IDL Reference Guide SLICER3

1150

into
g
that

just

.

the
File Menu

Load

Select this menu option to choose a file containing a 3D array (or arrays) to load
SLICER3. The file must have been written in the format specified in the followin
table. For each data array in the file, the following values must be included. Note
the first six values are returned by the IDL SIZE function; see“Examples” on
page 1164 for an example of how to create a data file suitable for SLICER3 with
a few IDL commands.

If multiple arrays are present in the file, they must all have the same dimensions

Note
Files saved by the “Save Subset” operation (see below) are suitable for input via
“Load” operation.

Data item Data Type Numberof
Bytes

Number of dimension in array. (Note: This is
always 3 for valid SLICER3 data.)

long 4

Size of first dimension. long 4

Size of second dimension. long 4

Size of third dimension. long 4

Data type (Must be type 1 through 5. See
“SIZE” on page 1142 for a list of data types
types.)

long 4

Total number of elements (dimX, dimY,
dimZ).

long 4

Number of characters in data name. (See
“STRLEN” on page 1220 for the easiest way
to determine this number.)

long 4

Data name byte strlen()

3D data array. varies varies

Table 80: SLICER3 Data File Structure
SLICER3 IDL Reference Guide

1151

, due

 block

ed,

dow
ette
F

 the

enu
en is

 the
Data files that are moved from one platform to another may not load as expected
to byte ordering differences. See theBYTEORDERandSWAP_ENDIANfor details.

Save/Save Subset

SLICER3 must be in BLOCK mode to for this option to be available.

Select this menu option to save a subset of the 3D data enclosed in the current
to the specified file. Subsets saved in this fashion are suitable for loading via the
“Load” menu option. If multiple 3D arrays are available when this option is select
multiple subsets are saved to the file.

Save/Save Tiff Image

Select this menu option to save the contents of the current SLICER3 image win
as a TIFF image in the specified file. When running in 8-bit mode, a “Class P” pal
color TIFF file is created. In 24-bit mode, a “Class R” (interleaved by image) TIF
file is created.

Quit

Select this menu option to exit SLICER3.

Tools Menu

Erase

Select this menu option to erase the display window and delete all the objects in
display list.

Delete/...

As graphical objects are created, they are added to the display list. Select this m
option to delete a specific object from the list. When an object is deleted, the scre
redrawn with the remaining objects.

Colors/Reset Colors

Select this menu option to restore the original color scheme.

Colors/Differential Shading

Use this menu option to change the percentage of differential shading applied to
X, Y, and Z slices.
IDL Reference Guide SLICER3

1152

ed

ed

ed

 exit

cted
 the
e
tever
, the

-

Colors/Slice/Block

Use this menu option to launch the XLOADCT application to modify the colors us
for slices and blocks

Colors/Surface

Use this menu option to launch the XLOADCT application to modify the colors us
for isosurfaces.

Colors/Projection

Use this menu option to launch the XLOADCT application to modify the colors us
for projections.

Note
On some platforms, the selected colors may not become visible until after you
the “XLOADCT” application.

Options

Select this menu option to display a panel that allows you to set:

• The axis visibility.

• The wire-frame cube visibility.

• The display window size.

Main Draw Window

Operations available in the Main Draw Window are dependent on the mode sele
in the Mode Pulldown menu. In general, when coordinate input is required from
user, it is performed by clicking a mouse button on the “surface” of the wire-fram
cube that surrounds the data. This 3D location is then used as the basis for wha
input is needed. In most cases, the “front” side of the cube is used. In a few cases
coordinate input is on the “back” side of the cube.

Data Pulldown Menu

If multiple datasets are currently available in SLICER3, this menu allows you to
select which data will be displayed in the Main Draw Window. Slices, blocks, iso
surfaces, etc. are created from the currently selected data. If only one dataset is
loaded, this menu is inactive.
SLICER3 IDL Reference Guide

1153

hen

ts.

to
the
g

the
Mode Pulldown Menu

This menu is used to select the current mode of operation.

Slice Mode

To display a slice, click and drag the left mouse button on the wire-frame cube. W
the button is released, a slice through the data will be drawn at that location.

Draw Radio Button

When in Draw mode, new slices will be merged into the current Z-buffer conten

Expose Radio Button

When in Expose mode, new slices will be drawn in front of everything else.

Orthogonal Radio Button

When in Orthogonal mode, use the left mouse button in the main draw window
position and draw an orthogonal slicing plane. Clicking the right mouse button in
main draw window (or any mouse button in the small window) will toggle the slicin
plane orientation.

X/Y/Z Radio Buttons

• X: This sets the orthogonal slicing plane orientation to be perpendicular to
X axis.

Figure 10: Mode Pulldown Menu
IDL Reference Guide SLICER3

1154

 the

 the

to

t the

t the
• Y: This sets the orthogonal slicing plane orientation to be perpendicular to
Y axis.

• Z: This sets the orthogonal slicing plane orientation to be perpendicular to
Z axis.

Oblique Radio Button

Clicking any mouse button in the small window will reset the oblique slicing plane
its default orientation.

Normal Radio Button

When in this mode, click and drag the left mouse button in the big window to se
surface normal for the oblique slicing plane.

Center Radio Button

When in this mode, click and drag the left mouse button in the big window to se
center point for the surface normal.

Display Button

Clicking this button will cause an oblique slicing plane to be drawn.
SLICER3 IDL Reference Guide

1155

the
the

ts.
he
Block Mode

When in Block mode, use the left mouse button in the main draw window to set
location for the “purple” corner of the block. Use the right mouse button to locate
opposite “blue” corner of the block. When in Block mode, the “Save Subset”
operation under the main “File” menu is available.

Add

When in this mode, the block will be “added” to the current Z-buffer contents.

Subtract

When in this mode, the block will be “subtracted” from the current Z-buffer conten
Subtract mode is only effective when the block intersects some other object in t
display (such as an iso-surface).

Display Button

Clicking this button will cause the block to be drawn.

Figure 11: Block Mode
IDL Reference Guide SLICER3

1156

he

that
higher
re

he
face

e,

e
ed to
Surface Mode

An iso-surface is like a contour line on a contour map. On one side of the line, t
elevation is higher than the contour level, and on the other side of the line, the
elevation is lower than the contour level. An iso-surface, however, is a 3D surface
passes through the data such that the data values on one side of the surface are
than the threshold value, and on the other side of the surface, the data values a
lower than the threshold value.

When in Surface mode, a logarithmic histogram plot of the data is displayed in t
small draw window. Click and drag a mouse button on this plot to set the iso-sur
threshold value. This value is also shown in the text widget below the plot. The
threshold value may also be set by typing a new value in this text widget. The
histogram plot is affected by the current threshold settings. (See Threshold mod
below).

Low

Selecting this mode will cause the iso-surface polygon facing to face towards th
lower data values. Usually, this is the mode to use when the iso-surface is desir
surround high data values.

Figure 12: Surface Mode
SLICER3 IDL Reference Guide

1157

e
ed to

are
he
, then

ces
rable

ct.
High

Selecting this mode will cause the iso-surface polygon facing to face towards th
higher data values. Usually, this is the mode to use when the iso-surface is desir
surround low data values.

Shading pulldown menu

Iso-surfaces are normally rendered with light-source shading. If multiple datasets
currently loaded, then this menu allows the selection of a different 3D array for t
source of the iso-surface shading values. If only one dataset is currently loaded
this menu is inactive.

Display Button

Clicking this button will cause the iso-surface to be created and drawn. Iso-surfa
often consist of tens of thousands of polygons, and can sometimes take conside
time to create and render.

Projection Mode

A “voxel” projection of a 3D array is the projection of the data values within that
array onto a viewing plane. This is similar to taking an X-ray image of a 3D obje

Max

Select this mode for a Maximum intensity projection.

Figure 13: Projection Mode
IDL Reference Guide SLICER3

1158

tes
f the

ons
take
Avg

Select this mode for an Average intensity projection.

Low

Select this mode for a Low resolution projection.

Med

Select this mode for a Medium resolution projection.

High

Select this mode for a High resolution projection.

Depth Queue % Slider

Use the slider to set the depth queue percent. A value of 50, for example, indica
that the farthest part of the projection will be 50% as bright as the closest part o
projection.

Display Button

Clicking this button will cause the projection to be calculated and drawn. Projecti
can sometimes take considerable time to display. Higher resolution projections
more computation time.
SLICER3 IDL Reference Guide

1159

the

lues
ces,

the

ncy

t

Threshold Mode

When in Threshold mode, a logarithmic histogram plot of the data is displayed in
small draw window. Click and drag the left mouse button on this plot to set the
minimum and maximum threshold values. To expand a narrow range of data va
into the full range of available colors, set the threshold range before displaying sli
blocks, or projections. The threshold settings also affect the histogram plot in
“Surface” mode. The minimum and maximum threshold values are also shown in
text widgets below the histogram plot.

Click and drag the right mouse button on the histogram plot to set the transpare
threshold. Portions of any slice, block, or projection that are less than the
transparency value are not drawn (clear). Iso-surfaces are not affected by the
transparency threshold. The transparency threshold value is also shown in a tex
widget below the histogram plot.

Min

In this text widget, a minimum threshold value can be entered.

Max

In this text widget, a maximum threshold value can be entered.

Figure 14: Threshold Mode
IDL Reference Guide SLICER3

1160

e is
the
s to

int
to

e

on
ton
-

.

Transp.

In this text widget, a transparency threshold value can be entered.

Profile Mode

In Profile mode, a plot is displayed showing the data values along a line. This lin
also shown superimposed on the data in the main draw window. The bottom of
plot corresponds to the “purple” end of the line, and the top of the plot correspond
the “blue” end of the line.

Orthogonal

Click and drag the left mouse button to position the profile line, based upon a po
on the “front” faces of the wire-frame cube. Click and drag the right mouse button
position the profile line, based upon a point on the “back” faces of the wire-fram
cube. As the profile line is moved, The profile plot is dynamically updated.

Oblique

Click and drag the left mouse button to position the “purple” end of the profile line
one of the “front” faces of the wire-frame cube. Click and drag the right mouse but
to position the “blue” end of the profile line on one of the “back” faces of the wire
frame cube. As the profile line is moved, The profile plot is dynamically updated

Figure 15: Profile Mode
SLICER3 IDL Reference Guide

1161

e

but
text
Probe Mode

In Probe mode, click and drag a mouse button over an object in the main draw
window. The actual X-Y-Z location within the data volume is displayed in the thre
text widgets. Also, the data value at that 3D location is displayed in the status
window, above the main draw window. If the cursor is inside the wire-frame cube,
not on any object, then the status window displays “No data value”, and the three
widgets are empty. If the cursor is outside the wire-frame cube, then the status
window and text widgets are empty.

X

Use this text widget to enter the X coordinate for the probe.

Y

Use this text widget to enter the Y coordinate for the probe.

Z

Use this text widget to enter the Z coordinate for the probe.

Figure 16: Probe Mode
IDL Reference Guide SLICER3

1162

ent
e
ew

in
main
xits

t

plist
View Mode

In view mode, a small window shows the orientation of the data cube in the curr
view. As view parameters are changed, this window is dynamically updated. Th
main draw window is then updated when the user clicks on “Display”, or exits Vi
mode.

Display

Clicking on this button will cause the objects in the main view window to be drawn
the new view. If any view parameters have been changed since the last time the
view was updated, the main view will be automatically redrawn when the user e
View mode.

1st Rotation

Use this slider to set the angle of the first view rotation (in degrees). The droplis
widget adjacent to the slider indicates which axis this rotation is about.

2nd Rotation

Use this slider to set the angle of the second view rotation (in degrees). The dro
widget adjacent to the slider indicates which axis this rotation is about.

Figure 17: View Mode
SLICER3 IDL Reference Guide

1163

s,
be

pect

by

ode

f

Zoom % Slider

Use this slider to set the zoom factor percent. Depending upon the view rotation
SLICER3 may override this setting to ensure that all eight corners of the data cu
are within the window.

Z % Slider

Use this slider to set a scale factor for the Z axis (to compensate for the data’s as
ratio).

Operational Details

The SLICER3 procedure has the following side effects:

• SLICER3 sets the position for the light source and enables back-facing
polygons to be drawn (see the IDL “SET_SHADING” command).

• SLICER3 overwrites the existing contents of the Z-buffer. Upon exiting
SLICER3, the Z-buffer contents are the same as what was last displayed
SLICER3.

• On 24-bit displays, SLICER3 sets the device to non-decomposed color m
(DEVICE, DECOMPOSED=0).

• SLICER3 breaks the color table into 6 “bands”, based upon the number o
available colors (wheremax_color=!D.N_COLORS on 8-bit displays, and
max_color=256 on 24-bit displays andnColor = (max_color - 9) /
5):

Band Start
index

Band End
index Used For

0 nColor-1 X Slices.

nColor (2*nColor)-1 Y Slices.

2*nColor (3*nColor)-1 Z Slices.

3*nColor (4*nColor)-1 Iso-surfaces

4*nColor (5*nColor)-1 Projections

Table 81: SLICER3 Band Start/End
IDL Reference Guide SLICER3

1164

:

-bit

 it
Annotation colors are the last “band”, and they are set up as shown in the table

On 24-bit displays, you can often improve performance by running SLICER3 in 8
mode. This can be accomplished (on some platforms) by entering the following
command at the start of the IDL session (before any windows are created):

Device, Pseudo_Color=8

Examples

The following IDL commands open a data file from the IDL distribution and load
into SLICER3:

; Choose a data file:
file=FILEPATH('head.dat', SUBDIR=['examples', 'data'])

; Open the data file:
OPENR, UNIT, file, /GET_LUN

; Create an array to hold the data:
data = BYTARR(80, 100, 57, /NOZERO)

; Read the data into the array:
READU, UNIT, data

; Close the data file:
CLOSE, UNIT

; Create a pointer to the data array:

Color index Color

max_color - 1 White

max_color - 2 Yellow

max_color - 3 Cyan

max_color - 4 Purple

max_color - 5 Red

max_color - 6 Green

max_color - 7 Blue

max_color - 8 Black

Table 82: SLICER3 Color Bands
SLICER3 IDL Reference Guide

1165

of

ic
ou
set
hData = PTR_NEW(data, /NO_COPY)

; Load the data into SLICER3:
SLICER3, hdata, DATA_NAMES='Dave'

Note
If data are loaded via the File menu after SLICER3 is launched with a pointer
argument (as shown above), the pointer becomes invalid. You can use an IDL
statement like the following to “clean up” after calling SLICER3 in this fashion:

if PTR_VALID(hdata) then PTR_FREE, hdata

Because we did not launch SLICER3 with the MODAL keyword, the last contents
the main draw window still reside in IDL’s Z-buffer. To retrieve this image after
exiting SLICER3, use the following IDL statements:

; Save the current graphics device:
current_device = !D.Name

; Change to the Z-buffer device:
SET_PLOT, 'Z'

; Read the image from the Z-buffer:
image_buffer = TVRD()

; Return to the original graphics device:
SET_PLOT, current_device

; Display the image:
TV, image_buffer

The following IDL commands manually create a data save file suitable for dynam
loading into SLICER3. Note that if you load data into SLICER3 as shown above, y
can also create save files by switching to BLOCK mode and using the Save Sub
menu option.

; Store some 3D data in a variable called data_1:
data_1 = INDGEN(20,30,40)

; Store some 3D data in a variable called data_2:
data_2 = FINDGEN(20,30,40)

; Define the names for the datasets. Their names will appear in the
; "Data" pulldown menu in SLICER3:
data_1_name ='Test Data 1'
data_2_name ='Data 2'
IDL Reference Guide SLICER3

1166
; Select a data file name:
dataFile = PICKFILE()

; Write the file:
GET_LUN, lun
OPENW, lun, dataFile
WRITEU, lun, SIZE(data_1)
WRITEU, lun, STRLEN(data_1_name)
WRITEU, lun, BYTE(data_1_name)
WRITEU, lun, data_1
WRITEU, lun, SIZE(data_2)
WRITEU, lun, STRLEN(data_2_name)
WRITEU, lun, BYTE(data_2_name)
WRITEU, lun, data_2
CLOSE, lun
FREE_LUN, lun

See Also

GRID3, EXTRACT_SLICE, SHADE_VOLUME
SLICER3 IDL Reference Guide

1167

g
ows
lays

le

to
t a

tive

the

ten
e

SLIDE_IMAGE

The SLIDE_IMAGE procedure creates a scrolling graphics window for examinin
large images. By default, 2 draw widgets are used. The draw widget on the left sh
a reduced version of the complete image, while the draw widget on the right disp
the actual image with scrollbars that allow sliding the visible window.

This routine is written in the IDL language. Its source code can be found in the fi
slide_image.pro in thelib subdirectory of the IDL distribution.

Syntax

SLIDE_IMAGE [, Image] [, /BLOCK] [, CONGRID=0]
[, FULL_WINDOW=variable] [, GROUP=widget_id] [, /ORDER] [, /REGISTER]
[, RETAIN={0 | 1 | 2}] [, SLIDE_WINDOW=variable] [, SHOW_FULL=0]
[, TITLE=string] [, TOP_ID=variable] [, XSIZE=width] [, XVISIBLE= width]
[, YSIZE=height] [, YVISIBLE= height]

Arguments

Image

A 2D image array to be displayed. If this argument is not specified, no image is
displayed. The FULL_WINDOW and SCROLL_WINDOW keywords can be used
obtain the window numbers of the two draw widgets so they can be drawn into a
later time.

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

CONGRID

Normally, the image is processed with the CONGRID procedure before it is writ
to the fully visible window on the left. Specifying CONGIRD=0 will force the imag
to be drawn as is.
IDL Reference Guide SLIDE_IMAGE

1168

he
to

e

the
rd to

 not
reate
 be

.
ow
re

he
aw

ng
FULL_WINDOW

Set this keyword to a named variable that will contain the IDL window number of t
fully visible window. This window number can be used with the WSET procedure
draw to the scrolling window at a later point.

GROUP

Set this keyword to the widget ID of the widget that calls SLIDE_IMAGE. If set, th
death of the caller results in the death of SLIDE_IMAGE.

ORDER

This keyword is passed directly to the TV procedure to control the order in which
images are drawn. Usually, images are drawn from the bottom up. Set this keywo
a non-zero value to draw images from the top down.

REGISTER

Set this keyword to create a “Done” button for SLIDE_IMAGE and register the
widgets with the XMANAGER procedure.

The basic widgets used in this procedure do not generate widget events, so it is
necessary to process events in an event loop. The default is therefore to simply c
the widgets and return. Hence, when REGISTER is not set, SLIDE_IMAGE can
displayed and the user can still type commands at the IDL command prompt.

RETAIN

This keyword is passed directly to the WIDGET_DRAW function. Set RETAIN to
zero, one, or two to specify how backing store should be handled for the window
RETAIN=0 specifies no backing store. RETAIN=1 requests that the server or wind
system provide backing store. RETAIN=2 specifies that IDL provide backing sto
directly. See“Backing Store” on page 2128 for details.

SLIDE_WINDOW

Set this keyword to a named variable that will contain the IDL window number of t
sliding window. This window number can be used with the WSET procedure to dr
to the scrolling window at a later time.

SHOW_FULL

Set this keyword to zero to show the entire image at full resolution in one scrolli
graphics window. By default, SHOW_FULL is set, displaying two draw widgets.
SLIDE_IMAGE IDL Reference Guide

1169

ed
per

low:

e
e
f

he
e
f

Note
On Windows platforms only, using TVRD to return the array size of the display
image will cause the returned array to be off by the size of the frame (one pixel
side). To return the dimensions of the original image, you must modify the
slide_image.pro library routine so that the FRAME keyword is not used with
SHOW_FULL.

TITLE

Set this keyword to the title to be used for the SLIDE_IMAGE widget. If this
keyword is not specified, “Slide Image” is used.

TOP_ID

Set this keyword to a named variable that will contain the top widget ID of the
SLIDE_IMAGE hierarchy. This ID can be used to kill the hierarchy as shown be

SLIDE_IMAGE, TOP_ID=base, ...
WIDGET_CONTROL, /DESTROY, base

XSIZE

Set this keyword to the maximum width of the image that can be displayed by th
scrolling window. This keyword should not be confused with the visible size of th
image, controlled by the XVISIBLE keyword. If XSIZE is not specified, the width o
Image is used. IfImage is not specified, 256 is used.

XVISIBLE

Set this keyword to the width of the viewport on the scrolling window. If this
keyword is not specified, 256 is used.

YSIZE

Set this keyword to the maximum height of the image that can be displayed by t
scrolling window. This keyword should not be confused with the visible size of th
image, controlled by the YVISIBLE keyword. If YSIZE is not present the height o
Image is used. IfImage is not specified, 256 is used.

YVISIBLE

Set this keyword to the height of the viewport on the scrolling window. If this
keyword is not present, 256 is used.
IDL Reference Guide SLIDE_IMAGE

1170
Example

Open an image from the IDL distribution and load it into SLIDE_IMAGE:

; Create a variable to hold the image:
image = BYTARR(768,512)

OPENR, unit, FILEPATH('nyny.dat', SUBDIR=['examples','data']),
/GET_LUN
READU, unit, image
CLOSE, unit

; Scale the image into byte range of the display:
image = BYTSCL(image)

; Display the image:
SLIDE_IMAGE, image

See Also

TV, TVSCL, WIDGET_DRAW, WINDOW
SLIDE_IMAGE IDL Reference Guide

1171

nts

d
 to

re
SMOOTH

The SMOOTH function returns a copy ofArray smoothed with a boxcar average of
the specified width. The result has the same type and dimensions asArray. The
algorithm used by SMOOTH is:

whereN is the number of elements in A.

Syntax

Result = SMOOTH(Array, Width [, /EDGE_TRUNCATE] [, /NAN])

Arguments

Array

The array to be smoothed.Array can have any number of dimensions.

Width

The width of the smoothing window, in each dimension.Width should be an odd
number, smaller than the smallest dimension ofArray. If Width is an even number,
one plus the given value ofWidth is used. For example, if you use aWidth of 3 to
smooth a two-dimensional array, the smoothing window will contain nine eleme
(including the element being smoothed). The value ofWidth does not affect the
running time of SMOOTH to a great extent.

Keywords

EDGE_TRUNCATE

Set this keyword to apply the smoothing function to all points. If the neighborhoo
around a point includes a point outside the array, the nearest edge point is used
compute the smoothed result. If EDGE_TRUNCATE is not set, the end points a
copied from the original array to the result with no smoothing.

Ri

1
w
---- Ai j w 2⁄–+ i,

j 0=

w 1–

∑ w 2⁄ ... N w–, ,=

Ai otherwise,

=

IDL Reference Guide SMOOTH

1172

g

d.

ing-
For example, when smoothing ann-element vector with a three point wide smoothin
window, the first point of the result R0 is equal to A0 if EDGE_TRUNCATE is not
set, but is equal to (A0+A0+A1)/3 if the keyword is set. In the same manner, point Rn-

1 is set to An-1 if EDGE_TRUNCATE is not set, or to (An-2+An-1+An-1)/3 if it is.

Points not within a distance ofWidth/2 from an edge are not affected by this keywor

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

Create and display a simple image by entering:

D = SIN(DIST(256)/3) & TVSCL, D

Now display the same dataset smoothed with a width of 9 by entering:

TVSCL, SMOOTH(D, 9), 256, 256

See Also

DIGITAL_FILTER, LEEFILT, MEDIAN, TS_DIFF, TS_FCAST, TS_SMOOTH
SMOOTH IDL Reference Guide

1173

-

te

obel

ll be
SOBEL

The SOBEL function implements an approximation of the 3 by 3, nonlinear edge
enhancement operator:

Where the pixels surrounding the neighborhood of the pixelF(j, k) are numbered as
follows:

The result of this function is a two-dimensional array ofshort integer type, with the
same dimensions asImage. Large original data values cause overflow if the absolu
value of the result is larger than 32768.

It should be noted that the previous description is not the true definition of the S
function, but a fast approximation, defined as:

Syntax

Result = SOBEL(Image)

Arguments

Image

The two-dimensional array containing the image to which edge enhancement wi
applied.

G j k,() X Y+=

X A 2 2A3 A4+ +() A0 2A7 A6+ +()–=

Y A 0 2A1 A2+ +() A6 2A5 A4+ +()–=

A0 A1 A2

A7 F j k,() A3

A6 A5 A4

G j k,() X2 Y2+=
IDL Reference Guide SOBEL

1174

layed
Example

If the variable IM contains an image, a Sobel edge-enhanced version can be disp
with the command:

TVSCL, SOBEL(IM)

See Also

ROBERTS
SOBEL IDL Reference Guide

1175

ts of

s
eir
SORT

The SORT function returns a vector of subscripts that allow access to the elemen
Array in ascending order. The result is always a vector of longword type with the
same number of elements asArray.

Syntax

Result = SORT(Array)

Arguments

Array

The array to be sorted.Array can be any basic type of vector or array. String array
are sorted using the ASCII collating sequence. Complex arrays are sorted by th
magnitude.

Example

A = [4, 3, 7, 1, 2]
PRINT, 'SORT(A) = ', SORT(A)

; Display the elements of A in sorted order:
PRINT, 'Elements of A in sorted order: ', A(SORT(A))

; Display the elements of A in descending order:
PRINT, 'Elements of A in descending order: ', A(REVERSE(SORT(A)))

IDL Output

SORT(A) = 3 4 1 0 2
Elements of A in sorted order: 1 2 3 4 7
Elements of A in descending order: 7 4 3 2 1

SORT(A) returns “3 4 1 0 2 ” because:

A[3] < A[4] < A[1] < A[0] < A[2]

See Also

REVERSE, UINT, WHERE
IDL Reference Guide SORT

1176

 of

sed.
and
.

new
.g.,

OS
 by

er

d to
SPAWN

The SPAWN procedure spawns a child process to execute a command or series
commands. Under UNIX, the shell used (if any) is obtained from the SHELL
environment variable. Under VMS, the DCL command language interpreter is u
Under Windows 95/98, a DOS window is opened. Under Windows NT, a Comm
Shell is opened. On the Macintosh, SPAWN opens specified files or applications

Syntax

SPAWN [,Command(s) [, Result]]

Keywords (all platforms): [, COUNT=variable] [, PID=variable]

Macintosh Keywords: [, MACCREATOR=string]

UNIX Keywords: [, /NOSHELL] [, /NOTTYRESET] [, /SH] [, /UNIT{Command
required,Result not allowed}]

VMS Keywords: [, /NOCLISYM] [, /NOLOGNAM] [[, /NOTIFY] , /NOWAIT]

Arguments

Command

A string containing the command(s) to be executed.

If Command is not present, SPAWN starts an interactive command interpreter
process. Under UNIX, the default shell is used. IDL execution suspends until the
shell process terminates. Under UNIX, shells that handle process suspension (e
/bin/csh) offer a more efficient way to get the same effect.

If Command is not present under Windows, SPAWN creates an interactive MS-D
window or NT command shell window as a child process. Quit the shell session
entering “EXIT” at the prompt.

Commandmust be of type string. Under VMS, it is restricted to being a scalar. Und
UNIX, it can be a string array (each element is passed to the child process as a
separate argument) if used in conjunction with the NOSHELL keyword. If a new
UNIX shell process is started (that is, if the NOSHELL keyword isnot specified),
Command must be a scalar string.

On the Macintosh,Command must consist of the names of files to be opened.
Multiple filenames can be entered. If the first filename is an application, it is use
SPAWN IDL Reference Guide

1177

wns

 of

d

ess

sh
les

s

the
mers
sses
are

m

open the remaining files. Otherwise, each file is opened by the application that o
it. IDL execution resumes when the files have been opened.

Result

A named variable in which to place the output from the child process. Each line
output becomes a single array element. IfResult is not present, the output from the
child shell process goes to the standard output.

Under Windows and the Macintosh OS,Result has no effect.

Keywords

COUNT

If Result is present and this keyword is also specified, COUNT specifies a name
variable into which the number of lines of output is placed. This value gives the
number of elements placed intoResult.

PID

A named variable into which the Process IDentification number of the child proc
is stored.

Macintosh Keywords

MACCREATOR

Use this keyword to specify a four-character scalar string containing the Macinto
file creator code of the application to be used to open the specified files. In no fi
were specified, the application is launched without any files.

UNIX Keywords

NOSHELL

Set this keyword to specify thatCommand should execute directly as a child proces
without an intervening shell process. In this case,Command should be specified as a
string array in which the first element is the name of the command to execute and
following arguments are the arguments to be passed to the command (C program
will recognize this as these are the elements of the argv argument that UNIX pa
to the child process main function). Since no shell is present, wildcard characters
not expanded, and other tasks normally performed by the shell do not occur.
NOSHELL is useful when performing many SPAWNed operations from a progra
and speed is a primary concern.
IDL Reference Guide SPAWN

1178

rmal
put

his
ld
utput
mal

al
end
the

s.

d of
een
file
d

 the

ugh
SE
s

NOTTYRESET

Some UNIX systems drop characters when the tty mode is switched between no
and raw modes. IDL switches between these modes when reading command in
and when using the GET_KBRD function. On such systems, IDL avoids losing
characters by delaying the switch back to normal mode until it is truly needed. T
method has the benefit of avoiding the large number of mode changes that wou
otherwise be necessary. Routines that cause output to be sent to the standard o
(e.g., I/O operations, user interaction and SPAWN) ensure that the tty is in its nor
mode before performing their operations.

If the NOTTYRESET keyword is set, SPAWN does not switch the tty back to norm
mode before launching the child process assuming instead that the child will not s
output to the tty. Use this keyword to avoid characters being dropped in a loop of
form:

WHILE (GET_KBRD(0) NE 'q') SPAWN, command

This keyword has no effect on systems that don’t suffer from dropped character

SH

Set this keyword to force the use of the/bin/sh shell. Usually, the shell used is
determined by the SHELL environment variable.

UNIT

If UNIT is present, SPAWN creates a child process in the usual manner, but instea
waiting for the specified command to finish, it attaches a bidirectional pipe betw
the child process and IDL. From the IDL session, the pipe appears as a logical
unit. The other end of the pipe is attached to the child process standard input an
output. The UNIT keyword specifies a named variable into which the number of
file unit is stored.

Once the child process is started, the IDL session can communicate with it thro
the usual input/output facilities. After the child process has done its task, the CLO
procedure can be used to kill the process and close the pipe. Since SPAWN use
GET_LUN to allocate the file unit, FREE_LUN should be used to free the unit.

If UNIT is present,Command must be present, andResult is not allowed.
SPAWN IDL Reference Guide

1179

age
vent
ands,

ames
fined
d

IT

es.
VMS Keywords

NOCLISYM

If this keyword is set, the spawned subprocess does not inherit command langu
interpreter symbols from its parent process. You can specify this keyword to pre
commands redefined by symbol assignments from affecting the spawned comm
or to speed process startup.

NOLOGNAM

If this keyword is set, the spawned subprocess does not inherit process logical n
from its parent process. You can specify this keyword to prevent commands rede
by logical name assignments from affecting the spawned commands, or to spee
process startup.

NOTIFY

If this keyword is set, a message is broadcast to SYS$OUTPUT when the child
process completes or aborts. NOTIFY should be set in conjunction with the NOWA
keyword.

NOWAIT

If this keyword is set, the IDL process continues executing in parallel with the
subprocess. Normally, the IDL process hibernates until the subprocess complet

Example

To simply spawn a process from within IDL enter the command:

SPAWN

To execute the UNIXls command and return to the IDL prompt, enter:

SPAWN, 'ls'

To execute the UNIXls command and store the result in the IDL string variable
listing , enter:

SPAWN, 'ls', listing

See Also

“Dollar Sign ($)” on page 2221.
IDL Reference Guide SPAWN

1180

nd

le

1, 0),
SPH_4PNT

Given four 3-dimensional points, the SPH_4PNT procedure returns the center a
radius necessary to define the unique sphere passing through those points.

This routine is written in the IDL language. Its source code can be found in the fi
sph_4pnt.pro in thelib subdirectory of the IDL distribution.

Syntax

SPH_4PNT,X, Y, Z, Xc, Yc, Zc, R

Arguments

X, Y, Z

4-element floating-point or double-precision vectors containing the X, Y, and Z
coordinates of the points.

Xc, Yc, Zc

Named variables that will contain the sphere’s center X, Y, and Z coordinates.

R

A named variable that will contain the sphere’s radius.

Example

Find the center and radius of the unique sphere passing through the points: (1,
(2, 1, 2), (1, 0, 3), (1, 0, 1):

; Define the floating-point vectors containing the x, y and z
; coordinates of the points:
X = [1, 2, 1, 1] + 0.0
Y = [1, 1, 0, 0] + 0.0
Z = [0, 2, 3, 1] + 0.0

; Compute sphere’s center and radius:
SPH_4PNT, X, Y, Z, Xc, Yc, Zc, R

; Print the results:
PRINT, Xc, Yc, Zc, R

IDL Output

-0.500000 2.00000 2.00000 2.69258
SPH_4PNT IDL Reference Guide

1181
See Also

CIR_3PNT, PNT_LINE
IDL Reference Guide SPH_4PNT

1182

nt

.
le

nd

ctor
SPH_SCAT

The SPH_SCAT function performs spherical gridding. Scattered samples on the
surface of a sphere are interpolated to a regular grid. This routine is a convenie
interface to the spherical gridding and interpolation provided by TRIANGULATE
and TRIGRID. The returned value of the function is a regularly-interpolated grid
This routine is written in the IDL language. Its source code can be found in the fi
sph_scat.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SPH_SCAT(Lon, Lat, F [, BOUNDS=[lonmin, latmin, lonmax, latmax]]
[, BOUT=variable] [, GOUT=variable] [, GS=[lonspacing, latspacing]]
[, NLON=value] [, NLAT= value])

Arguments

Lon

A vector of sample longitudes, in degrees. Note thatLon, Lat,andF must all have the
same number of points.

Lat

A vector of sample latitudes, in degrees.

F

A vector of data values which are functions of Lon and Lat.Fi represents a value at
(Loni, Lati).

Keywords

BOUNDS

Set this keyword to a four-element vector containing the grid limits in longitude a
latitude of the output grid. The four elements are: [Lonmin, Latmin, Lonmax, Latmax]. If
this keyword is not set, the grid limits are set to the extent ofLon andLat. Note that,
to cover all longitudes, you must explicitly specify the values for the BOUNDS
keyword.

BOUT

Set this keyword to a named variable that, on return, contains a four-element ve
(similar to BOUNDS) that describes the actual extent of the regular grid.
SPH_SCAT IDL Reference Guide

1183

ctor

d

6

AT
GOUT

Set this keyword to a named variable that, on return, contains a two-element ve
(similar to GS) that describes the actual grid spacing.

GS

Set this keyword to a two-element vector that specifies the spacing between gri
points in longitude (the first element) and latitude (the second element).

If this keyword is not set, the default value is based on the extents ofLonandLat. The
default longitude spacing is (Lonmax- Lonmin)/(NX-1). The default latitude spacing is
(Latmax - Latmin)/(NY-1). If NX and NY are not set, the default grid size of 26 by 2
is used for NX and NY.

NLON

The output grid size in the longitude direction. The default value is 26. Note that
NLON need not be specified if the size can be inferred from GS and BOUNDS.

NLAT

The output grid size in the latitude direction. The default value is 26. Note that NL
need not be specified if the size can be inferred from GS and BOUNDS.

Example

; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. -180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. -90.

; Make a function to fit:
z = SIN(lat*!DTOR)
c = COS(lat*!DTOR)
x = COS(lon*!DTOR) * c
y = SIN(lon*!DTOR) * c

; The finished dependent variable:
f = SIN(x+y) * SIN(x*z)
; Interpolate the data and return the result in variable r:
r = SPH_SCAT(lon, lat, f, BOUNDS=[0, -90, 350, 85], GS=[10,5])

See Also

TRIANGULATE, TRIGRID
IDL Reference Guide SPH_SCAT

1184

d)

etic.
SPL_INIT

The SPL_INIT function is called to establish the type of interpolating spline for a
tabulated set of functional valuesXi, Yi = F(Xi). SPL_INIT returns the values of the
2nd derivative of the interpolating function at the pointsXi.

It is important to realize that SPL_INIT should be called onlyonce to process an
entire tabulated function in arraysX andY. Once this has been done, values of the
interpolated function for any value ofX can be obtained by calls (as many as desire
to the separate function SPL_INTERP.

SPL_INIT is based on the routine spline described in section 3.3 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INIT(X, Y [, /DOUBLE] [, YP0=value] [, YPN_1=value])

Arguments

X

An n-element input vector that specifies the tabulate points in ascending order.

Y

An n-element input vector that specifies the values of the tabulated functionF(Xi)
corresponding toXi.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

YP0

The first derivative of the interpolating function at the pointX0. If YP0 is omitted, the
second derivative at the boundary is set to zero, resulting in a “natural spline.”
SPL_INIT IDL Reference Guide

1185

ral
YPN_1

The first derivative of the interpolating function at the pointXn-1. If YPN_1 is
omitted, the second derivative at the boundary is set to zero, resulting in a “natu
spline.”

Example

Example 1

X = (FINDGEN(21)/20.) * 2.0*!PI
Y = SIN(X)
PRINT, SPL_INIT(X, Y, YP0 = -1.1, YPN_1 = 0.0)

IDL Prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817987 -0.592022 -0.311726 2.31192e-05 0.311634

0.592347 0.816783 0.954825 1.02348 0.902068 1.02781
-0.198994 3.26597 -11.0260

Example 2

PRINT, SPL_INIT(X, Y, YP0 = -1.1)

IDL prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817988 -0.592020 -0.311732 4.41521e-05 0.311555

0.592640 0.815690 0.958905 1.00825 0.958905 0.815692
0.592635 0.311567 0.00000

See Also

SPL_INTERP, SPLINE, SPLINE_P
IDL Reference Guide SPL_INIT

1186

e

etic.
SPL_INTERP

Given the arraysX andY, which tabulate a function (with theXi in ascending order),
and given the arrayY2, which is the output from SPL_INIT, and given an input valu
of X2, the SPL_INTERP function returns a cubic-spline interpolated value for the
given value ofXI. The result has the same structure asX2, and is either single- or
double-precision floating, based on the input type.

SPL_INTERP is based on the routinesplint described in section 3.3 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INTERP(X, Y, Y2, X2 [, /DOUBLE])

Arguments

X

An input array that specifies the tabulated points in ascending order.

Y

An input array that specifies the values of the tabulate function corresponding toXi.

Y2

The output from SPL_INIT for the specifiedX andY.

X2

The input value for which an interpolated value is desired.X can be scalar or an array
of values. The result of SPL_INIT will have the same structure.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm
SPL_INTERP IDL Reference Guide

1187
Example

To create a spline interpolation over a tabulated set of data, [Xi, Yi], first create the
tabulated data. In this example,Xi will be in the range [0.0, 2π] andYi in the range
[sin(0.0), sin(2π)].

X = (FINDGEN(21)/20.0) * 2.0 * !PI
Y = SIN(X)

; Calculate interpolating cubic spline:
Y2 = SPL_INIT(X, Y)

; Define the X values P at which we desire interpolated Y values:
X2= FINDGEN(11)/11.0 * !PI

; Calculate the interpolated Y values corresponding to X2[i]:
result = SPL_INTERP(X, Y, Y2, X2)

PRINT, result

IDL Output

0.00000 0.281733 0.540638 0.755739 0.909613 0.989796
0.989796 0.909613 0.755739 0.540638 0.281733

The exact solution vector is sin(X2).

To interpolate a line in the XY plane, see SPLINE_P.

See Also

SPL_INIT, SPLINE, SPLINE_P
IDL Reference Guide SPL_INTERP

1188

le

ma
e,
SPLINE

The SPLINE function performs cubic spline interpolation.

This routine is written in the IDL language. Its source code can be found in the fi
spline.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SPLINE(X, Y, T [, Sigma])

Arguments

X

The abscissa vector. Valuesmust be monotonically increasing.

Y

The vector of ordinate values corresponding toX.

T

The vector of abscissa values for which the ordinate is desired. The values ofT must
be monotonically increasing.

Sigma

The amount of “tension” that is applied to the curve. The default value is 1.0. If sig
is close to 0, (e.g., .01), then effectively there is a cubic spline fit. If sigma is larg
(e.g., greater than 10), then the fit will be like a polynomial interpolation.

Example

The commands below show a typical use of SPLINE:

; X values of original function:
X = [2.,3.,4.]

; Make a quadratic
Y = (X-3)^2
;Values for interpolated points:
T = FINDGEN(20)/10.+2

; Do the interpolation:
Z = SPLINE(X,Y,T)
SPLINE IDL Reference Guide

1189
See Also

SPL_INIT, SPLINE_P
IDL Reference Guide SPLINE

1190

 to
ted
e

le

n.

n.

. If
SPLINE_P

The SPLINE_P procedure performs parametric cubic spline interpolation with
relaxed or clamped end conditions.

This routine is both more general and faster than the SPLINE function. One call
SPLINE_P is equivalent to two calls to SPLINE, as both the X and Y are interpola
with splines. It is suited for interpolating between randomly placed points, and th
abscissa values need not be monotonic. In addition, the end conditions may be
optionally specified via tangents.

This routine is written in the IDL language. Its source code can be found in the fi
spline_p.pro in thelib subdirectory of the IDL distribution.

Syntax

SPLINE_P,X, Y, Xr, Yr [, INTERVAL=value] [, TAN0=[X0, Y0]]
[, TAN1=[Xn-1, Yn-1]]

Arguments

X

The abscissa vector.X should be floating-point or double-precision.

Y

The vector of ordinate values corresponding to X.Y should be floating-point or
double-precision.

Neither X or Y need be monotonic.

Xr

A named variable that will contain the abscissa values of the interpolated functio

Yr

A named variable that will contain the ordinate values of the interpolated functio

Keywords

INTERVAL

Set this keyword equal to the desired interval in XY space between interpolants
omitted, approximately 8 interpolants per XY segment will result.
SPLINE_P IDL Reference Guide

1191

 to
ctor,

r,
TAN0

The tangent to the spline curve at X[0], Y[0]. If omitted, the tangent is calculated
make the curvature of the result zero at the beginning. TAN0 is a two element ve
containing the X and Y components of the tangent.

TAN1

The tangent to the spline curve at X[n-1], Y[n-1]. If omitted, the tangent is calculated
to make the curvature of the result zero at the end. TAN1 is a two element vecto
containing the X and Y components of the tangent.

Example

The commands below show a typical use of SPLINE_P:

; Abscissas for square with a vertical diagonal:
X = [0.,1,0,-1,0]

; Ordinates:
Y = [0.,1,2,1,0]

; Interpolate with relaxed end conditions:
SPLINE_P, X, Y, XR, YR

; Show it:
PLOT, XR, YR

As above, but with setting both the beginning and end tangents:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0]

This yields approximately 32 interpolants.

As above, but with setting the interval to 0.05, making more interpolants, closer
together:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0], INTERVAL=0.05

This yields 116 interpolants and looks close to a circle.

See Also

SPL_INIT, SPLINE
IDL Reference Guide SPLINE_P

1192

n the

etic.

s, the
SPRSAB

The SPRSAB function performs matrix multiplication on two row-indexed sparse
arrays created by SPRSIN. The routine computes all components of the matrix
products, but only stores those values whose absolute magnitude exceeds the
threshold value. The result is a row-indexed sparse array.

SPRSAB is based on the routinesprstm described in section 2.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. The difference betwee
two routines is that SPRSAB performs the matrix multiplication A.B rather than
A.BT.

Syntax

Result = SPRSAB(A, B [, /DOUBLE] [, THRESH=value])

Arguments

A, B

Row-indexed sparse arrays created by the SPRSIN function.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

THRESH

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculation
default value is 1.0× 10-7. For double-precision calculations, the default is 1.0× 10-

14.

Example

; Begin by creating two arrays:
A = [[5.0, 0.0, 0.0, 1.0], $

[3.0, -2.0, 0.0, 1.0], $
[4.0, -1.0, 0.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

B = [[1.0, 2.0, 3.0, 1.0], $
[3.0, -3.0, 0.0, 1.0], $
SPRSAB IDL Reference Guide

1193
[-1.0, 3.0, 1.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

; Convert the arrays to sparse array format before multiplying. The
; variable SPARSE holds the result in sparse array form:
sparse = SPRSAB(SPRSIN(A), SPRSIN(B))

; Restore the sparse array structure to full storage mode:
result = FULSTR(sparse)

; Print the result:
PRINT, 'result:'
PRINT, result

; Check this result by multiplying the original arrays:
exact = B # A
PRINT, 'exact:'
PRINT, exact

IDL Output

result:
5.00000 13.0000 18.0000 6.00000

-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000

exact:
5.00000 13.0000 18.0000 6.00000

-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000

See Also

FULSTR, LINBCG, SPRSAX, SPRSIN, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAB

1194

etic.
SPRSAX

The SPRSAX function takes a row-indexed sparse array created by the SPRSIN
function and multiplies it by ann-element vector to its right. The result is an-element
vector.

SPRSAX is based on the routinesprsax described in section 2.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSAX(A, X [, /DOUBLE])

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

X

An n-element right hand vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Begin by creating an array A:
A = [[5.0, 0.0, 0.0], $

[3.0, -2.0, 0.0], $
[4.0, -1.0, 0.0]]

; Define the right-hand vector:
X = [1.0, 2.0, -1.0]

; Convert to sparse format, then multiply by X:
result = SPRSAX(SPRSIN(A),X)

; Print the result:
PRINT, result
SPRSAX IDL Reference Guide

1195
IDL Output

5.00000 -1.00000 2.00000

See Also

FULSTR, LINBCG, SPRSAB, SPRSIN, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAX

1196

ow-

ient

ure
IJA, a

ents
al
than

st be

n-
SPRSIN

The SPRSIN function converts an array, or list of subscripts and values, into a r
index sparse storage mode, retaining only elements with an absolute magnitude
greater than or equal to the specified threshold. The list form is much more effic
than the array form if the density of the matrix is low.

The result is a row-indexed sparse array contained in structure form. The struct
consists of two linear sparse storage vectors: SA, a vector of array values, and
vector of subscripts to the SA vector. The length of these vectors is equal to the
number of diagonal elements of the array, plus the number of off-diagonal elem
with an absolute magnitude greater that or equal to the threshold value. Diagon
elements of the array are always retained even if their absolute magnitude is less
the specified threshold.

SPRSIN is based on the routinesprsin described in section 2.7 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSIN(A [, /COLUMN] [, /DOUBLE] [, THRESH=value])

or

Result = SPRSIN(Columns, Rows, Values, N [, /DOUBLE] [, THRESH=value])

Arguments

A

An n by n array of any type except string or complex.

Columns

A vector containing the column subscripts of the non-zero elements. Values mu
in the range of 0 to (N-1).

Rows

A vector, of the same length as Column, containing the row subscripts of the no
zero elements. Values must be in the range of 0 to (N-1).
SPRSIN IDL Reference Guide

1197

d is

s, the

 the
ge
Values

A vector, of the same length as Column, containing the values of the non-zero
elements.

N

The size of the resulting sparse matrix.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors). This keywor
not allowed in the list form of the call.

DOUBLE

Set this keyword to convert the sparse array to double-precision.

THRESH

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculation
default value is 1.0× 10-7. For double-precision values, the default is 1.0× 10-14.

Examples

Example1

Suppose we wish to convert the following array to sparse storage format:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero.
sparse = SPRSIN(A, THRESH = 0.5)

The variable SPARSE now contains a representation of A in structure form. See
description of FULSTR for an example that restores such a structure to full stora
mode.
IDL Reference Guide SPRSIN

1198

y

Example2

This example demonstrates how to use the list form of the call to SPRSIN. The
following line of code creates a sparse matrix, equivalent to a 100 by 100 identit
matrix, i.e. all diagonal elements are set to 1, all other elements are zero:

I100 = SPRSIN(LINDGEN(100), LINDGEN(100), REPLICATE(1.0,100), 100)

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, READ_SPR, WRITE_SPR
SPRSIN IDL Reference Guide

1199

e-
SQRT

The SQRT function returns the square root ofX.

Syntax

Result = SQRT(X)

Arguments

X

The value for which the square root is desired. IfX is double-precision floating-point
or complex, the result is of the same type. All other types are converted to singl
precision floating-point and yield floating-point results. When applied to complex
numbers,z = x+iy:

The ambiguous sign is taken to be the same as the sign ofy. The result has the same
structure asX.

Example

To find the square root of 145 and store the result in variable S, enter:

S = SQRT(145)

See Also

“Exponentiation” in Chapter 6 ofBuilding IDL Applcations.

z1 2/ 1
2
--- r x+()

1 2/
i

1
2
--- r x–()

1 2/
±=

r x2 y2+=
IDL Reference Guide SQRT

1200

le

etic.
STANDARDIZE

The STANDARDIZE function computes standardized variables from an array ofm
variables (columns) andn observations (rows). The result is anm-column,n-row
array where all columns have a mean of zero and a variance of one.

This routine is written in the IDL language. Its source code can be found in the fi
standardize.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = STANDARDIZE(A [, /DOUBLE])

Arguments

A

An m-column,n-row single- or double-precision floating-point array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define an array with 4 variables and 20 observations:
array = $
 [[19.5, 43.1, 29.1, 11.9], $
 [24.7, 49.8, 28.2, 22.8], $
 [30.7, 51.9, 37.0, 18.7], $
 [29.8, 54.3, 31.1, 20.1], $
 [19.1, 42.2, 30.9, 12.9], $
 [25.6, 53.9, 23.7, 21.7], $
 [31.4, 58.5, 27.6, 27.1], $
 [27.9, 52.1, 30.6, 25.4], $
 [22.1, 49.9, 23.2, 21.3], $
 [25.5, 53.5, 24.8, 19.3], $
 [31.1, 56.6, 30.0, 25.4], $
 [30.4, 56.7, 28.3, 27.2], $
 [18.7, 46.5, 23.0, 11.7], $
 [19.7, 44.2, 28.6, 17.8], $
 [14.6, 42.7, 21.3, 12.8], $
 [29.5, 54.4, 30.1, 23.9], $
 [27.7, 55.3, 25.7, 22.6], $
STANDARDIZE IDL Reference Guide

1201
 [30.2, 58.6, 24.6, 25.4], $
 [22.7, 48.2, 27.1, 14.8], $
 [25.2, 51.0, 27.5, 21.1]]

; Compute the mean and variance of each variable using the MOMENT
; function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(array[K,*])

; Compute the standardized variables:
result = STANDARDIZE(array)

; Compute the mean and variance of each standardized variable using
; the MOMENT function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(result[K,*])

IDL Output

25.3050 25.2331 -0.454763 -1.10028
51.1700 27.4012 -0.356958 -1.19516
27.6200 13.3017 0.420289 0.104912
20.1950 26.0731 -0.363277 -1.24886

-7.67130e-07 1.00000 -0.454761 -1.10028
-3.65451e-07 1.00000 -0.356958 -1.19516
-1.66707e-07 1.00000 0.420290 0.104913

4.21703e-07 1.00000 -0.363278 -1.24886

See Also

MOMENT
IDL Reference Guide STANDARDIZE

1202

.

ing-
STDDEV

The STDDEV function computes the standard deviation of ann-element vector.

Syntax

Result = STDDEV(X [, /DOUBLE] [, /NAN])

Arguments

X

A numeric vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the standard deviation:
result = STDDEV(x)

PRINT, result

IDL Output

2.65832

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, SKEWNESS, VARIANCE
STDDEV IDL Reference Guide

1203

ntrol

brief

f the
e

STOP

The STOP procedure stops the execution of a running program or batch file. Co
reverts to the interactive mode.

Syntax

STOP [,Expr1, ..., Exprn]

Arguments

Expr i

One or more expressions whose value is printed. If no parameters are present, a
message describing where the STOP was encountered is printed.

Example

Suppose that you want to stop the execution of a procedure and print the values o
variables A, B, C and NUM. At the appropriate location in your procedure includ
the command:

STOP, A, B, C, NUM

To continue execution of the procedure (if possible) enter the IDL executive
command:

.CONT

See Also

BREAKPOINT, EXIT, WAIT
IDL Reference Guide STOP

1204
STRARR

The STRARR function returns a string array containing zero-length strings.

Syntax

Result = STRARR(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Example

To create S, a 20-element string vector, enter:

S = STRARR(20)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, UINTARR, ULON64ARR, ULONARR
STRARR IDL Reference Guide

1205

not.

d to
a

an
is an
ult
ame,
STRCMP

The STRCMP function performs string comparisons between its two String
arguments, returning True (1) for those that match and False (0) for those that do
Normally, the IDL equality operator (EQ) is used for such comparisons, but
STRCMP can optionally perform case-insensitive comparisons and can be limite
compare only the first N characters of the two strings, both of which require extr
steps using the EQ operator.

Syntax

Result = STRCMP(String1, String2 [, N] [, /FOLD_CASE])

Return Value

If all of the arguments are scalar, the result is scalar. If one of the arguments is
array, the result is an integer with the same structure. If more than one argument
array, the result has the structure of the smallest array. Each element of the res
contains True (1) if the corresponding elements of String1 and String2 are the s
and False (0) otherwise.

Arguments

String1, String2

The strings to be compared.

N

Normally String1 and String2 are compared in their entirety. If N is specified, the
comparison is made on at most the first N characters of each string.

Keywords

FOLD_CASE

String comparison is normally a case sensitive operation. Set FOLD_CASE to
perform case insensitive comparisons instead.

Example

Compare two strings in a case-insensitive manner, considering only the first 3
characters:
IDL Reference Guide STRCMP

1206
Result = STRCMP('Moose', 'moo', 3, /FOLD_CASE)
PRINT, Result

IDL Output

 1

See Also

STREGEX, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
STRCMP IDL Reference Guide

1207

ault
—

to
STRCOMPRESS

The STRCOMPRESS function returns a copy ofString with all whitespace (blanks
and tabs) compressed to a single space or completely removed.

Syntax

Result = STRCOMPRESS(String [, /REMOVE_ALL])

Arguments

String

The string to be compressed. If not of type string, it is converted using IDL’s def
formatting rules. IfString is an array, the result is an array with the same structure
each element contains a compressed copy of the corresponding element ofString.

Keywords

REMOVE_ALL

Set this keyword to removeall whitespace. Normally, all whitespace is compressed
asingle space.

Example

; Create a string variable S:
S = 'This is a string with spaces in it.'

; Print S with all of the whitespace removed:
PRINT, STRCOMPRESS(S, /REMOVE_ALL)

IDL Output

Thisisastringwithspacesinit.

See Also

STRTRIM
IDL Reference Guide STRCOMPRESS

1208

The
he
 each

re

 grid
STREAMLINE

The STREAMLINE procedure generates the visualization graphics from a path.
output is a polygonal ribbon which is tangent to a vector field along its length. T
ribbon is generated by placing a line at each vertex in the direction specified by
normal value multiplied by the anisotropy factor. The input normal array is not
normalized before use, making it possible to vary the ribbon width as well.

Syntax

STREAMLINE, Verts, Conn, Normals, Outverts, Outconn [, ANISOTROPY=array]
[, SIZE=vector] [, PROFILE=array]

Arguments

Verts

Input array of path vertices ([3,n] array).

Conn

Input path connectivity array in IDLgrPolyline POLYLINES keyword format. The
is one set of line segments in this array for each streamline.

Normals

Normal estimate at each input vertex ([3,n] array).

Outverts

Output vertices ([3xM] float array). Useful if the routine is to be used with Direct
Graphics or the user wants to manipulate the data directly.

Outconn

Output polygonal connectivity array to match the output vertices.

Keywords

ANISOTROPY

Set this input keyword to a three-element array describing the distance between
points in each dimension. The default value is [1.0, 1.0, 1.0]
STREAMLINE IDL Reference Guide

1209

used
h.

oss
rray
tex in
rmal
r

SIZE

Set this keyword to a vector of values (one for each path point). These values are
to specify the width of the ribbon or the size of profile at each point along its pat
This keyword is generally used to convey additional data parameters along the
streamline.

PROFILE

Set this keyword an array of two-dimensional points which are treated as the cr
section of the ribbon instead of a line segment. If the first and last points in the a
are the same, a closed profile is generated. The profile is placed at each path ver
the plane perpendicular to the line connecting each path vertex with the vertex no
defining the up direction. This allows for the generation of streamtubes and othe
geometries.
IDL Reference Guide STREAMLINE

1210

gs

 and
is
 to

RSI
at

in
, it
STREGEX

The STREGEX function performs regular expression matching against the strin
contained in StringExpression. STREGEX can perform either a simple boolean
True/False evaluation of whether a match occurred, or it can return the position
offset within the strings for each match. The regular expressions accepted by th
routine, which correspond to “Posix Extended Regular Expressions”, are similar
those used by such UNIX tools as egrep, lex, awk, and Perl.

For more information about regular expressions, see“Learning About Regular
Expressions” in Chapter 9 ofBuilding IDL Applcations.

STREGEX is based on the regex package written by Henry Spencer, modified by
only to the extent required to integrate it into IDL. This package is freely available
ftp://zoo.toronto.edu/pub/regex.shar .

Syntax

Result = STREGEX(StringExpression, RegularExpression [, /BOOLEAN |
, /EXTRACT | , LENGTH=variable[, /SUBEXPR]] [, /FOLD_CASE])

Return Value

By default, STREGEX returns the position and length of the matched string with
StringExpression. If no match is found, -1 is returned for both of these. Optionally
can return a boolean True/False result of the match, or the matched strings.

Arguments

StringExpression

String to be matched.

RegularExpression

A scalar string containing the regular expression to match. See“Learning About
Regular Expressions” in Chapter 9 ofBuilding IDL Applcations for a description of
the meta characters that can be used in a regular expression.
STREGEX IDL Reference Guide

1211

on

on
ply

her

ith

e
AN

it to
n is
gular
nt

g is

three
ted
Keywords

BOOLEAN

Normally, STREGEX returns the position of the first character in StringExpressi
that matches RegularExpression. Setting BOOLEAN modifies this behavior to
simply return a True/False value indicating if a match occurred or not.

EXTRACT

Normally, STREGEX returns the position of the first character in StringExpressi
that matches RegularExpression. Setting EXTRACT modifies this behavior to sim
return the matched substrings. The EXTRACT keyword cannot be used with eit
BOOLEAN or LENGTH.

FOLD_CASE

Regular expression matching is normally a case-sensitive operation. Set
FOLD_CASE to perform case-insensitive matching instead.

LENGTH

If present, specifies a variable to receive the lengths of the matches. Together w
this result of this function, which contains the starting points of the matches in
StringExpression, LENGTH can be used with the STRMID function to extract th
matched substrings. The LENGTH keyword cannot be used with either BOOLE
or EXTRACT.

SUBEXPR

By default, STREGEX only reports the overall match. Setting SUBEXPR causes
report the overall match as well as any subexpression matches. A subexpressio
any part of a regular expression written within parentheses. For example, the re
expression ‘(a)(b)(c+)’ has 3 subexpressions, whereas the functionally equivale
'abc+' has none. The SUBEXPR keyword cannot be used with BOOLEAN.

If a subexpression participated in the match several times, the reported substrin
the last one it matched. Note, as an example in particular, that when the regular
expression ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches the
'b's and then an infinite number of empty strings following the last ‘b’, so the repor
substring is one of the empties. This occurs because the ‘*’ matcheszero or more
instances of the character that precedes it.

In order to return multiple positions and lengths for each input, the result from
SUBEXPR has a new first dimension added compared to StringExpression.
IDL Reference Guide STREGEX

1212

”:

and

is

t

Examples

Example 1

To match a string starting with an “a”, followed by a “b”, followed by 1 or more “c

pos = STREGEX('aaabccc', 'abc+', length=len)
PRINT, STRMID('aaabccc', pos, len)

IDL Prints:

abccc

To perform the same match, and also find the locations of the three parts:

pos = STREGEX('aaabccc', '(a)(b)(c+)', length=len, /SUBEXPR)
print, STRMID('aaabccc', pos, len)

IDL Prints:

abccc a b ccc

Or more simply:

print,STREGEX('aaabccc','(a)(b)(c+)',/SUBEXPR,/EXTRACT)

IDL Prints:

abccc a b ccc

Example 2

This example searches a string array for words of any length beginning with “f”
ending with “t” without the letter “o” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'affluent']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statemen
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
STREGEX IDL Reference Guide

1213

EX
t

• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the ^ anchor in the above example, STREG
would also return “ffluent” (a substring of “affluent”). Similarly, if we left ou
the $ anchor, STREGEX would also return “fat” (a substring of “fate”).

See Also

STRCMP, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STREGEX

1214

nge

 by

le

iate

1 is

.

STRETCH

The STRETCH procedure stretches the image display color tables so the full ra
runs from one color index to another. The modified colortable is loaded, but the
COLORS common block is not changed. The original colortable can be restored
calling STRETCH with no arguments. A colortable must be loaded before
STRETCH can be called.

This routine is written in the IDL language. Its source code can be found in the fi
stretch.pro in thelib subdirectory of the IDL distribution.

Syntax

STRETCH [,Low, High [, Gamma]] [, /CHOP]

Arguments

Low

The lowest pixel value to use. If this parameter is omitted, 0 is assumed. Appropr
values range from 0 to the number of available colors-1. If no parameters are
supplied, the original color tables are restored.

High

The highest pixel value to use. If this parameter is omitted, the number of colors-
assumed. Appropriate values range from 0 to the number of available colors-1.

Gamma

An optional Gamma correction factor. If this value is omitted, 1.0 is assumed.
Gamma correction works by raising the color indices to theGammapower, assuming
they are scaled into the range 0 to 1.

Keywords

CHOP

Set this keyword to set color indices above the upper threshold to color index 0.
Normally, values above the upper threshold are set to the maximum color index

Example

Load the STD GAMMA-II color table by entering:
STRETCH IDL Reference Guide

1215

lor
LOADCT, 5

Create and display and image by entering:

TVSCL, DIST(300)

Now adjust the color table with STRETCH. Make the entire color table fit in the
range 0 to 70 by entering:

STRETCH, 0, 70

Notice that pixel values above 70 are now colored white. Restore the original co
table by entering:

STRETCH

See Also

GAMMA_CT, H_EQ_CT, MULTI , XLOADCT
IDL Reference Guide STRETCH

1216

 to
g

ified

ll

tring
es)

eek
STRING

The STRING function returns its arguments converted to string type. It is similar
the PRINT procedure, except that its output is placed in a string rather than bein
output to the terminal. The case in which a single expression of type byte is spec
without the FORMAT keyword is special—see the discussion below for details.

Note
Applying the STRING function to a byte array containing a null (zero) value wi
result in the resulting string being truncated at that position.

Syntax

Result = STRING(Expression1, ...,Expressionn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}] [, /PRINT])

Arguments

Expression n

The expressions to be converted to string type.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

A format string to be used in formatting the expressions. See“Using Explicitly
Formatted Input/Output” in Chapter 16 ofBuilding IDL Applcations. Note that
formatted output from STRING is limited to a maximum of 1024 lines.
STRING IDL Reference Guide

1217

en
ith

and

e

ot
the

ent.
yte
ring
MONTHS

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

PRINT

Set this keyword to specify that any special case processing should be ignored
that STRING should behave exactly as the PRINT procedure would.

Differences Between STRING and PRINT

The behavior of STRING differs from the behavior of the PRINT procedure in th
following ways (unless the PRINT keyword is set):

• When called with a single non-byte argument and no format specification,
STRING returns a result that has the same dimensions as the original
argument. For example, the statement:

HELP, STRING(INDGEN(5))

gives the result:

<Expression> STRING = Array[5]

while:

HELP, STRING(INDGEN(5), /PRINT)

results in:

<Expression> STRING =' 0 1 2 3 4'

• If called with a single argument of byte type and the FORMAT keyword is n
used, STRING simply stores the unmodified values of each byte element in
result. This result is a string containing the byte values from the original
argument. Thus, the result has one less dimension than the original argum
For example, a 2-dimensional byte array becomes a vector of strings, a b
vector becomes a scalar string. However, a byte scalar also becomes a st
scalar. For example, the statement:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output:

Hello
IDL Reference Guide STRING

1218

2B
,

ing
e
rd.

ble
because the argument to STRING, is a byte vector. Its first element is a 7
which is the ASCII code for “H”, the second is 101B which is an ASCII “e”
and so forth.

• If both the FORMAT and PRINT keywords are not present and STRING is
called with more than one argument, and the last argument is a scalar str
starting with the characters “$(” or “(”, this final argument is taken to be th
format specification, just as if it had been specified via the FORMAT keywo
This feature is maintained for compatibility with version 1 of VMS IDL.

Example

To convert the contents of variable A to string type and store the result in the varia
B, enter:

B = STRING(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
UINT, ULONG, ULONG64
STRING IDL Reference Guide

1219

is

, an
STRJOIN

The STRJOIN function collapses a string scalar or array into merged strings. Th
function reduces the rank of its input array by one dimension. The strings in the
removed first dimension are concatenated into a single string using the string in
Delimiter to separate them.

Syntax

Result = STRJOIN(String [, Delimiter] [, /SINGLE])

Arguments

String

A string scalar or array to be collapsed into merged strings.

Delimiter

The separator string to use between the joined strings. If Delimiter is not specified
empty string is used.

Keywords

SINGLE

If SINGLE is set, the entire String is joined into a single scalar string result.

Example

Replace all the blanks in a sentence with colons:

str = 'Out, damned spot! Out I say!'
print, (STRJOIN(STRSPLIT(str, /EXTRACT), ':'))

IDL Output

Out,:damned:spot!:Out:I:say!

See Also

STRCMP, STREGEX, STRMATCH, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STRJOIN

1220

ent

ing,
th.
y
nding
STRLEN

The STRLEN function returns the length of its string-type argument. If the argum
is not a string, it is first converted to string type.

Syntax

Result = STRLEN(Expression)

Arguments

Expression

The expression for which the string length is desired. If this parameter is not a str
it is converted using IDL’s default formatting rules in order to determine the leng
The result is a long integer. IfExpressionis an array, the result is a long integer arra
with the same structure, where each element contains the length of the correspo
Expression element.

Example

To find the length of the string “IDL is fun” and print the result, enter:

PRINT, STRLEN('IDL is fun')

IDL prints:

 10
STRLEN IDL Reference Guide

1221

betic

L’s

ent of
STRLOWCASE

The STRLOWCASE function returns a copy ofString converted to lowercase
characters. Only uppercase characters are modified—lowercase and non-alpha
characters are copied without change.

Syntax

Result = STRLOWCASE(String)

Arguments

String

The string to be converted. If this argument is not a string, it is converted using ID
default formatting rules. IfString is an array, the result is an array with the same
structure—each element contains a lower case copy of the corresponding elem
String.

Example

To convert the string “IDL is fun” to all lowercase characters and print the result,
enter:

PRINT, STRLOWCASE('IDL is fun')

IDL prints:

idl is fun

See Also

STRUPCASE
IDL Reference Guide STRLOWCASE

1222

d
me

nding

ard

.

STRMATCH

The STRMATCH function compares its search string, which can contain wildcar
characters, against the input string expression. The result is an array with the sa
structure as the input string expression. Those elements that match the correspo
input string are set to True (1), and those that do not match are set to False (0).

The wildcards understood by STRMATCH are similar to those used by the stand
UNIX shell:

Syntax

Result = STRMATCH(String, SearchString[, /FOLD_CASE])

Arguments

String

The String to be matched.

SearchString

The search string, which can contain wildcard characters as discussed above.

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 83: Wilcard Characters used by STRMATCH
STRMATCH IDL Reference Guide

1223

ses a

f

ot
Keywords

FOLD_CASE

The comparison is usually case sensitive. Setting the FOLD_CASE keyword cau
case insensitive match to be done instead.

Examples

Example 1

Find all 4-letter words in a string array that begin with “f” or “F” and end with “t” or
“T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2

Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3

Find 4-letter words beginning with “f” and ending with “t”, with any combination o
“o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4

Find all words beginning with “f” and ending with “t” whose second character is n
the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
IDL Reference Guide STRMATCH

1224
This results in:

Feet FAST ferret

See Also

STRCMP, STRJOIN, STREGEX, STRMID, STRPOS, STRSPLIT
STRMATCH IDL Reference Guide

1225

ast
the

error
ce
STRMESSAGE

The STRMESSAGE function returns the text of the error message specified byErr.
This function is especially useful in conjunction with the CODE field of the
!ERROR_STATEsystem variable which always contains the error number of the l
error. The MSG field of the !ERROR_STATE system variable contains the text of
last error message.

Syntax

Result = STRMESSAGE(Err [, /BLOCK | , /CODE | , /NAME])

Arguments

Err

The error number or text. Programs must not make the assumption that certain
numbers are always related to certain error messages the actual corresponden
changes over time as IDL is modified.

Keywords

BLOCK

Set this keyword to return the name of the message block that definesErr. If this
keyword is specified,Err must be an error code.

CODE

Set this keyword to return the error code for the error message specified inErr. If this
keyword is specified,Err must be an error name.

NAME

Set this keyword to return a string containing the error message that goes withErr. If
this keyword is specified,Err must be an error code.

Example

Print the error message associated with error number 4 by entering:

PRINT, STRMESSAGE(4)
IDL Reference Guide STRMESSAGE

1226
STRMESSAGE IDL Reference Guide

See Also

MESSAGE

1227

ach
 a

d

e the

not a

tring
STRMID

The STRMID function extracts one or more substring from a string expression. E
extracted string is the result of removing characters. The result of the function is
string ofLength characters taken fromExpression, starting at character position
First_Character.

The form ofFirst_CharacterandLengthcontrol how they are applied toExpression.
Either argument can be a scalar or an array:

• If a scalar value is supplied forFirst_Character andLength, then those values
are applied to all elements ofExpression. The result has the same structure an
number of elements asExpression.

• If First_Character or Length is an array, the size of their first dimension
determines how many substrings are extracted from each element of
Expression. We call this the “stride”. If both are arrays, they must have the
same stride. IfFirst_Character or Length do not contain enough elements to
processExpression, STRMID automatically loops back to the beginning as
necessary. Excess values are ignored. If the stride is 1, the result will hav
same structure and number of elements asExpression. If it is greater than 1,
the result will have an additional dimension, with the new first dimension
having the same size as the stride.

Syntax

Result = STRMID(Expression, First_Character[, Length] [, /REVERSE_OFFSET])

Arguments

Expression

The expression from which the substrings are to be extracted. If this argument is
string, it is converted using IDL's default formatting rules.

First_Character

The starting position withinExpression at which the substring starts. The first
character position is 0.

Length

The length of the substring. If there are not enough characters left in the main s
to obtainLength characters, the substring is truncated. IfLength is not supplied,
IDL Reference Guide STRMID

1228

e

ed
STRMID extracts all characters from the specified start position to the end of th
string.

Keywords

REVERSE_OFFSET

Specifies thatFirst_Character should be counted from the end of the string
backwards. This allows simple extraction of strings from the end.

Example

If the variable B contains the string “IDL is fun”, the substring “is” can be extract
and stored in the variable C with the command:

C = STRMID(B, 4, 2)

See Also

STRPOS, STRPUT, STRTRIM
STRMID IDL Reference Guide

1229

ing.
e

g, it

f the

r
last
.

n
acter
ion
STRPOS

The STRPOS function finds the first occurrence of a substring within an object str
If Search_String occurs inExpression, STRPOS returns the character position of th
match, otherwise it returns -1.

Syntax

Result = STRPOS(Expression, Search String[, Pos] [, /REVERSE_OFFSET]
[, /REVERSE_SEARCH])

Arguments

Expression

The expression in which to search for the substring. If this argument is not a strin
is converted using IDL’s default formatting rules. IfExpressionis an array, the result
is an array with the same structure, where each element contains the position o
substring within the corresponding elementExpression. If Expression is the null
string, STRPOS returns the value -1.

Search_String

The substring to be searched for withinExpression. If this argument is not a string, it
is converted using IDL’s default formatting rules. IfSearch_String is the null string,
STRPOS returns the smaller ofPos or one less than the length ofExpression.

Pos

The character position at which the search is begun. IfPos is omitted and the
REVERSE_SEARCH keyword is not set, the search begins at the first characte
(character position 0). If REVERSE_SEARCH is set, the default is to start at the
character in the string. IfPos is less than zero, zero is used for the starting position

Keywords

REVERSE_OFFSET

Normally, the value ofPos is used as an offset from the beginning of the expressio
towards the end. Set REVERSE_OFFSET to use it as an offset from the last char
of the string moving towards the beginning. This keyword makes it easy to posit
the starting point of the search at a fixed offset from the end of the string.
IDL Reference Guide STRPOS

1230

t

d
rch

 the
ring
REVERSE_SEARCH

STRPOS usually starts atPos and moves toward the end of the string looking for a
match. If REVERSE_SEARCH is set, the search instead moves towards the
beginning of the string.

Examples

Example 1

Find the position of the string “fun” within the string “IDL is fun” and print the resul
by entering:

PRINT, STRPOS('IDL is fun', 'fun')

IDL prints:

 7

Example 2

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to fin
the last occurrence of a substring within a string. In the following example, we sea
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from
end of the string, the STRPOS function still returns the position of the search st
from the beginning of the string (where 0 is the position of the first character).

See Also

STRMID, STRPUT, STRTRIM
STRPOS IDL Reference Guide

1231

rce

e

STRPUT

The STRPUT procedure inserts the contents of one string into another. The sou
string,Source, is inserted into the destination string,Destination, starting at the given
position,Position. Characters inDestinationbefore the starting position and after the
starting position plus the length ofSource remain unchanged. The length of the
destination string is not changed. If the insertion extends past the end of the
destination, it is clipped at the end.

Syntax

STRPUT,Destination, Source[, Position]

Arguments

Destination

The named string variable into whichSource is inserted.Destination must be a
named variable of type string. If it is an array,Sourceis inserted into every element of
the array.

Source

A scalar string to be inserted intoDestination. If this argument is not a string, it is
converted using IDL’s default formatting rules.

Position

The character position at which the insertion is begun. IfPosition is omitted, the
insertion begins at the first character (character position 0). IfPosition is less than
zero, zero is used for the initial position.

Examples

If the variable A contains the string “IBM is fun”, the substring “IBM” can be
overwritten with the string “IDL” by entering:

STRPUT, A, 'IDL', 0

The following commands demonstrate the clipping of output that extends past th
end of the destination string:

STRPUT, A, 'FUNNY', 7
PRINT, A
IDL Reference Guide STRPUT

1232
IDL prints:

IDL is FUN

See Also

STRMID, STRPOS, STRTRIM
STRPUT IDL Reference Guide

1233

n of
PLIT

rs. In

ing

cify
 any
rator

e

STRSPLIT

The STRSPLIT function splits its inputString argument into separate substrings,
according to the specified delimiter or regular expression. By default, the positio
the substrings is returned. The EXTRACT keyword can be used to cause STRS
to return an array containing the substrings.

Syntax

Result = STRSPLIT(String [, Pattern] [, ESCAPE=string | , /REGEX
[, /FOLD_CASE]] [, /EXTRACT | , LENGTH=variable] [, /PRESERVE_NULL])

Arguments

String

A scalar string to be split into substrings.

Pattern

Pattern can contain one of two types of information:

• A string containing the character codes that are considered to be separato
this case, IDL performs a simple string search for those characters. This
method is simple and fast.

• A regular expression, as implemented by the STREGEX function, which is
used by IDL to match the separators. This method is slower and more
complex, but can handle extremely complicated input strings.

Pattern is an optional argument. If it is not specified, STRSPLIT defaults to splitt
on spans of whitespace (space or tab characters) inString.

Keywords

ESCAPE

When doing simple pattern matching, the ESCAPE keyword can be used to spe
any characters that should be considered to be “escape” characters. Preceding
character with an escape character prevents STRSPLIT from treating it as a sepa
character even if it is found inPattern.

Note that if the EXTRACT keyword is set, STRSPLIT will automatically remove th
escape characters from the resulting substrings. If EXTRACT is not specified,
IDL Reference Guide STRSPLIT

1234

l

from
 Set

itive

ed

n-
t

STRSPLIT cannot perform this editing, and the returned position and offsets wil
include the escape characters.

For example:

print, STRSPLIT('a\,b', ',', ESCAPE='\', /EXTRACT)

IDL prints:

a,b

ESCAPE cannot be specified with the FOLD_CASE or REGEX keywords.

EXTRACT

By default, STRTRIM returns an array of character offsets intoString that indicate
where the substrings are located. These offsets, along with the lengths available
the LENGTH keyword can be used later with STRMID to extract the substrings.
EXTRACT to bypass this step, and cause STRSPLIT to return the substrings.
EXTRACT cannot be specified with the LENGTH keyword.

FOLD_CASE

Indicates that the regular expression matching should be done in a case-insens
fashion. FOLD_CASE can only be specified if the REGEX keyword is set, and
cannot be used with the ESCAPE keyword.

LENGTH

Set this keyword to a named variable to receive the lengths of the substrings.
Together with this result of this function, LENGTH can be used with the STRMID
function to extract the matched substrings. The LENGTH keyword cannot be us
with the EXTRACT keyword.

PRESERVE_NULL

Normally, STRSPLIT will not return null length substrings unless there are no no
null values to report, in which case STRSPLIT will return a single null string. Se
PRESERVE_NULL to cause all null substrings to be returned.

REGEX

For complex splitting tasks, the REGEX keyword can be specified. In this case,
Pattern is taken to be a regular expression to be matched againstString to locate the
separators. If REGEX is specified andPatternis not, the defaultPatternis the regular
expression:
STRSPLIT IDL Reference Guide

1235

alue

ple
t
 to
mas

d by
'[' + STRING(9B) + ']+'

which means “any series of one or more space or tab characters” (9B is the byte v
of the ASCII TAB character).

Note that the defaultPattern contains a space after the [character.

The REGEX keyword cannot be used with the ESCAPE keyword.

Examples

Example 1

To split a string on spans of whitespace and replace them with hyphens:

Str = 'STRSPLIT chops up strings.'
print, STRJOIN(STRSPLIT(Str, /EXTRACT), '-')

IDL Output

STRSPLIT-chops-up-strings.

Example 2

As an example of a more complex splitting task that can be handled with the sim
character-matching mode of STRSPLIT, consider a sentence describing differen
colored ampersand characters. For unknown reasons, the author used commas
separate all the words, and used ampersands or backslashes to escape the com
that actually appear in the sentence (which therefore should not be treated as
separators). The unprocessed string looks like:

Str = 'There,was,a,red,&&&,,a,yellow,&&\,,and,a,blue,\&.'

We use STRSPLIT to break this line apart, and STRJOIN to reassemble it as a
standard blank-separated sentence:

S = STRSPLIT(Str, ',', ESCAPE='&\', /EXTRACT)
PRINT, STRJOIN(S, ' ')

IDL Output

There was a red &, a yellow &, and a blue &.

Example 3

Finally, suppose you had a complicated string, in which every token was precede
the count of characters in that token, with the count enclosed in angle brackets:

str = '<4>What<1>a<7>tangled<3>web<2>we<6>weave.'
IDL Reference Guide STRSPLIT

1236

gular

This is too complex to handle with simple character matching, but can be easily
handled using the regular expression '<[0-9]+>' to match the separators. This re
expression can be read as “an opening angle bracket, followed by one or more
numeric characters between 0 and 9, followed by a closing angle bracket.” The
STRJOIN function is used to glue the resulting substrings back together:

S = STRSPLIT(str,'<[0-9]+>',/EXTRACT,/REGEX)
PRINT, STRJOIN(S, ' ')

IDL Output

What a tangled web we weave.

See Also

STRCMP, STRJOIN, STRMATCH, STREGEX, STRMID, STRPOS
STRSPLIT IDL Reference Guide

1237

t a
ult
y of

ved

or
STRTRIM

The STRTRIM function returns a copy ofString with leading and/or trailing blanks
removed.

Syntax

Result = STRTRIM(String[, Flag])

Arguments

String

The string to have leading and/or trailing blanks removed. If this argument is no
string, it is converted using IDL’s default formatting rules. If it is an array, the res
is an array with the same structure where each element contains a trimmed cop
the corresponding element ofString.

Flag

A value that controls the action of STRTRIM. IfFlag is zero or not present, trailing
blanks are removed. Leading blanks are removed if it is equal to 1. Both are remo
if it is equal to 2.

Example

Converting variables to string type often results in undesirable leading blanks. F
example, the following command converts the integer 56 to string type:

C = STRING(56)

Entering the command:

HELP, C

IDL prints:

C STRING = ' 56'

which shows that there are six leading spaces before the characters 5 and 6. To
remove these leading blanks, enter the command:

C = STRTRIM(C, 1)

To confirm that the blanks were removed, enter:

HELP, C
IDL Reference Guide STRTRIM

1238
IDL prints:

C STRING = '56'

See Also

STRMID, STRPOS, STRPUT, STRSPLIT
STRTRIM IDL Reference Guide

1239

ent
t,”
d

ce
ject

ture

ypes

in
ture
, the

disk

hich
STRUCT_ASSIGN

The IDL “=” operator is unable to assign a structure value to a structure of a differ
type. The STRUCT_ASSIGN procedure performs “relaxed structure assignmen
which is a field-by-field copy of a structure to another structure. Fields are copie
according to the following rules:

1. Any fields found in the destination structure that are not found in the sour
structure are “zeroed” (set to zero, the empty string, or a null pointer or ob
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination struc
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their t
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements
the field in the destination structure are zeroed. If a field in the source struc
has more elements than the corresponding field in the destination structure
extra elements are quietly ignored.

Relaxed structure assignment is especially useful when restoring structures from
files into an environment where the structure definition has changed. See the
description o f the RELAXED_STRUCTURE_ASSIGNMENT keyword to the
RESTORE procedure for additional details.“Relaxed Structure Assignment” in
Chapter 7 ofBuilding IDL Applcations provides a more in-depth discussion of the
structure-definition process.

Syntax

STRUCT_ASSIGN,Source, Destination [, /NOZERO] [, /VERBOSE]

Arguments

Source

A named variable or element of an array containing a structure, the contents of w
will be assigned to the structure specified by theDestinationargument.Sourcecan be
an object reference if STRUCT_ASSIGN is called inside an object method.
IDL Reference Guide STRUCT_ASSIGN

1240

rce

bout

d

Destination

A named variable containing a structure into which the contents of the structure
specified by theSource argument will be inserted.Destination can be an object
reference if STRUCT_ASSIGN is called inside an object method.

Keywords

NOZERO

Normally, any fields found in the destination structure that are not found in the sou
structure are zeroed. Set NOZERO to prevent this action and leave the original
contents of such fields unchanged.

VERBOSE

Set this keyword to cause STRUCT_ASSIGN to issue informational messages a
any incompatibilities that prevent data from being copied.

Examples

The following example creates two anonymous structures, then uses
STRUCT_ASSIGN to insert the contents of the first into the second:

source = { a:FINDGEN(4), b:12 }
dest = { a:INDGEN(2), c:20 }
STRUCT_ASSIGN, /VERBOSE, source, dest

IDL Output

% STRUCT_ASSIGN: <Anonymous> tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks <Anonymous> tag B. Not copied.

After assignment,dest contains a two-element integer array [0, 1] in its field A an
the integer 0 in its field C. Sincedest does not have a field B, field B fromsource is
not copied.
STRUCT_ASSIGN IDL Reference Guide

1241

is is
ines
t
nal
 or
sets

nefit

ade
STRUCT_HIDE

The IDL HELP procedure displays information on all known structures or object
classes when used with the STRUCTURES or OBJECTS keywords. Although th
usually the desired behavior, authors of large vertical applications or library rout
may wish to prevent IDL from displaying information on structures or objects tha
are not part of their public interface, but which exist solely in support of the inter
implementation. The STRUCT_HIDE procedure is used to mark such structures
objects as “hidden”. Items so marked are not displayed by HELP unless the user
the FULL keyword, but are otherwise unaltered.

Note
STRUCT_HIDE is primarily intended for use with named structures or objects.
Although it can be safely used with anonymous structures, there is no visible be
to doing so as anonymous structures are hidden by default.

Tip
Authors of objects will often place a call to STRUCT_HIDE in the _ _DEFINE
procedure that defines the structure.

Syntax

STRUCT_HIDE,Arg1 [, Arg2, ...,Argn]

Arguments

Arg 1, ..., Arg n

If an argument is a variable of one of the following types, its underlying structure
and/or object definition is marked as being hidden from the HELP procedure’s
default output:

• Structure

• Pointer that refers to a heap variable of structure type

• Object Reference

Any arguments that are not one of these types are quietly ignored. No change is m
to the value of any argument.
IDL Reference Guide STRUCT_HIDE

1242

 the
Keywords

None

Example

To create a named structure called “bullwinkle” and prevent it from appearing in
HELP procedure’s default output:

tmp = { bullwinkle, moose:1, squirrel:0 }
STRUCT_HIDE, tmp

See Also

COMPILE_OPT
STRUCT_HIDE IDL Reference Guide

1243

are

L’s
ture
 of
STRUPCASE

The STRUPCASE function returns a copy ofString converted to upper case. Only
lowercase characters are modified—uppercase and non-alphabetic characters
copied without change.

Syntax

Result = STRUPCASE(String)

Arguments

String

The string to be converted. If this argument is not a string, it is converted using ID
default formatting rules. If it is an array, the result is an array with the same struc
where each element contains an uppercase copy of the corresponding element
String.

Example

To print an uppercase version of the string “IDL is fun”, enter:

PRINT, STRUPCASE('IDL is fun')

IDL prints:

IDL IS FUN

See Also

STRLOWCASE
IDL Reference Guide STRUPCASE

1244

nal

ur.
y-

st

w or
le

r:

e

ts
SURFACE

The SURFACE procedure draws a wire-mesh representation of a two-dimensio
array projected into two dimensions, with hidden lines removed.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal occ
The TRIGRID and TRIANGULATE routines can be used to interpolate irregularl
gridded data points to a regular grid before plotting.

If the T3D keyword is set, the 3D to 2D transformation matrix contained in !P.T mu
project the Z axis to a line parallel to the device Y axis, or errors will occur.

The surface lines may blend together when drawing large arrays, especially on lo
medium resolution displays. Use the REBIN or CONGRID procedure to resamp
the array to a lower resolution before plotting.

Syntax

SURFACE,Z [, X, Y] [, AX= degrees] [, AZ=degrees] [, BOTTOM=index]
[, /HORIZONTAL] [, /LEGO] [, /LOWER_ONLY | , /UPPER_ONLY]
[, MAX_VALUE= value] [, MIN_VALUE= value] [, /SAVE] [, SHADES=array]
[, SKIRT=value] [, /XLOG] [, /YLOG] [, ZAXIS={1 | 2 | 3 | 4}] [, /ZLOG]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except fo
PSYM, SYMSIZE.

Arguments

Z

The two-dimensional array to be displayed. IfX andY are provided, the surface is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise, th
surface is generated as a function of the array index of each element ofZ.

This argument is converted to single-precision floating-point before plotting. Plo
created with SURFACE are limited to the range and precision of single-precision
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element ofX specifies the X coordinate for a column ofZ
SURFACE IDL Reference Guide

1245

the
ee-
the

low)
e

is

d

This
n

awn
(e.g.,X[0] specifies the X coordinate forZ[0,*]). If X is a two-dimensional array,
each element ofX specifies the X coordinate of the corresponding point inZ (Xij
specifies the X coordinate forZij).

This argument is converted to single-precision floating-point before plotting.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element ofYspecifies the Y coordinate for a row ofZ (e.g.,
Y[0] specifies the Y coordinate forZ[*,0]). If Y is a two-dimensional array, each
element ofY specifies the Y coordinate of the corresponding point inZ (Yij specifies
the Y coordinate forZij).

This argument is converted to single-precision floating-point before plotting.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards
viewer. This keyword is effective only if !P.T3D is not set. If !P.T3D is set, the thr
dimensional to two-dimensional transformation used by SURFACE is taken from
4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see be
degrees about the Z axis, then by AX degrees about the X axis, tilting the surfac
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted and !P.T3D
0.

The three-dimensional to two-dimensional transformation represented by AX an
AZ, can be saved in !P.T by including the SAVE keyword.

AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis.
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, the
AX.

BOTTOM

The color index used to draw the bottom surface. If not specified, the bottom is dr
with the same color as the top.
IDL Reference Guide SURFACE

1246

ss

l to

than
the

the
EE

e

ers
HORIZONTAL

A keyword flag which if set causes SURFACE to only draw lines across the plot
perpendicular to the line of sight. The default is for SURFACE to draw both acro
the plot and from front to back.

LEGO

Set this keyword to produce stacked histogram-style plots. Each data value is
rendered as a box covering the XY extent of the cell and with a height proportiona
the Z value.

If the X andY arguments are specified, onlyNx-1 columns andNy-1 rows are drawn.
(This means that the last row and column of array data are not displayed.) The
rectangular area covered byZ[i, j] is given byX[i], X[i+1], Y[j], andY[j+1].

LOWER_ONLY

Set this keyword to draw only the lower surface of the object. By default, both
surfaces are drawn.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing and are not plotted. Note that
IEEE floating-point value NaN is also treated as missing data. (See“Special Floating-
Point Values” in Chapter 15 ofBuilding IDL Applcations for more information on
IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing and are not plotted. Note that the IE
floating-point value NaN is also treated as missing data. (See“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations for more information on IEEE
floating-point values.)

SAVE

Set this keyword to save the 3D to 2D transformation matrix established by
SURFACE in the system variable field !P.T. Use this keyword when combining th
output of SURFACE with additional output from other routines in the same plot.

When used with AXIS, the SAVE keyword parameter saves the scaling paramet
established by the call in the appropriate axis system variable, !X, !Y, or !Z. This
causes subsequent overplots to be scaled to the new axis.
SURFACE IDL Reference Guide

1247

ro, its

.0.

ord
point

t

e Z

 a
the
For example, to display a two-dimensional array using SURFACE, and to then
superimpose contours over the surface (this example assumes that !P.T3D is ze
default value.), enter the following commands:

; Make a surface plot and save the transformation:
SURFACE, Z, /SAVE

; Make contours, don’t erase, use the 3D to 2D transform placed
; in !P.T by SURFACE:
CONTOUR, Z, /NOERASE, /T3D

To display a surface and to then display a flat contour plot, registered above the
surface:

; Make the surface, save transform:
SURFACE, Z, /SAVE

; Now display a flat contour plot, at the maximum Z value
; (normalized coordinates):
CONTOUR, Z, /NOERASE, /T3D, ZVALUE=1.0

You can display the contour plot below the surface with by using a ZVALUE of 0

SHADES

This keyword allows user-specified coloring of the mesh surfaces. Set this keyw
to an array that specifies the color index of the lines emanating from each data
toward the top and right.

Warning
When using the SHADES keyword on True Color devices, we recommend tha
decomposed color support be turned off, by setting DEVICE, DECOMPOSED=0.
See“DEVICE” on page 365 and“DECOMPOSED” on page 2099.

SKIRT

This keyword represents a Z-value at which to draw a skirt around the array. Th
value is expressed in data units. The default is no skirt.

If the skirt is drawn, each point on the four edges of the surface is connected to
point on the skirt which has the given Z value, and the same X and Y values as
edge point. In addition, each point on the skirt is connected to its neighbor.

UPPER_ONLY

Set this keyword to draw only the upper surface of the object. By default, both
surfaces are drawn.
IDL Reference Guide SURFACE

1248

o

=

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Yaxis.

ZAXIS

This keyword specifies the placement of the Z axis for the SURFACE plot.

By default, SURFACE draws the Z axis at the upper left corner of the axis box. T
suppress the Z axis, useZAXIS=-1 in the call. The position of the Z axis is
determined from the value of ZAXIS as follows: 1 = lower right, 2 = lower left, 3
upper left, and 4 = upper right.

ZLOG

Set this keyword to specify a logarithmic Zaxis.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above.BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE,
[XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN , [XYZ]MINOR ,
[XYZ]RANGE, [XYZ]STYLE , [XYZ]THICK , [XYZ]TICKFORMAT ,
[XYZ]TICKLEN , [XYZ]TICKNAME , [XYZ]TICKS , [XYZ]TICKV ,
[XYZ]TICK_GET, [XYZ]TITLE , ZVALUE.

Example

; Create a simple dataset to display:
D = DIST(30)

; Plot a simple wire-mesh surface representation of D:
SURFACE, D

; Create a wire-mesh plot of D with a title and a "skirt" around
; the edges of the dataset at Z=0:
SURFACE, D, SKIRT=0.0, TITLE = 'Surface Plot', CHARSIZE = 2

See Also

CONTOUR, SHADE_SURF
SURFACE IDL Reference Guide

1249

he

iable.

le
SURFR

The SURFR procedure sets up 3D transformations. This procedure duplicates t
rotation, translation, and scaling features of the SURFACE routine, but does not
display any data. The resulting transformations are stored in the !P.T system var

This routine is written in the IDL language. Its source code can be found in the fi
surfr.pro in thelib subdirectory of the IDL distribution.

Syntax

SURFR [, AX=degrees] [, AZ=degrees]

Keywords

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.

See Also

SCALE3, SCALE3D, T3D
IDL Reference Guide SURFR

1250

al
n

SVDC

The SVDC procedure computes the Singular Value Decomposition (SVD) of a
square (n x n) or non-square (n x m) array as the product of orthogonal and diagon
arrays. SVD is a very powerful tool for the solution of linear systems, and is ofte
used when a solution cannot be determined by other numerical algorithms.

The SVD of an (m x n) non-square arrayA is computed as the product of an (mx n)
column orthogonal arrayU, an (n x n) diagonal arraySV, composed of the singular
values, and the transpose of an (n x n) orthogonal array V: A = U SV VT

SVDC is based on the routinesvdcmp described in section 2.6 ofNumerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

SVDC,A, W, U, V [, /COLUMN] [, /DOUBLE]

Arguments

A

The square (n x n) or non-square (n x m) single- or double-precision floating-point
array to decompose.

W

On output,W is ann-element output vector containing the “singular values.”

U

On output,U is ann-column,m-row orthogonal array used in the decomposition ofA.

V

On output,V is ann-column,n-row orthogonal array used in the decomposition ofA.

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).
SVDC IDL Reference Guide

1251

etic.

),
DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To find the singular values of an array A:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Compute the Singular Value Decomposition:
SVDC, A, W, U, V

; Print the singular values:
PRINT, W

IDL prints:

8.81973 2.65502 4.30598 6.84484

To verify the decomposition, use the relationship A = U ## SV ## TRANSPOSE(V
where SV is a diagonal array created from the output vector W:

sv = FLTARR(4, 4)
FOR K = 0, 3 DO sv(K,K) = W[K]
result = U ## sv ## TRANSPOSE(V)
PRINT, result

IDL prints:

1.00000 2.00000 -1.00000 2.50000
 1.50000 3.30000 -0.500001 2.00000
 3.10000 0.700000 2.20000 0.00000
 2.23517e-08 0.300000 -2.00000 5.30000
 2.10000 0.999999 4.30000 2.20000
 -3.91155e-07 5.50000 3.80000 0.200000

This is the input array, to within machine precision.

See Also

CHOLDC, LUDC, SVSOL

“Linear Systems” in Chapter 16 ofUsing IDL.
IDL Reference Guide SVDC

1252

nd

e
r of
SVDFIT

The SVDFIT function performs a least squares fit with optional error estimates a
returns a vector of coefficients. Either a user-supplied function written in the IDL
language or a built-in polynomial can be used to fit the data.

SVDFIT is based on the routinesvdfit described in section 15.4 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVDFIT(X, Y [, M] [, A=vector] [, CHISQ=variable] [, COVAR=variable]
[, /DOUBLE] [, FUNCTION_NAME=string] [, /LEGENDRE] [, SIGMA=variable]
[, SINGULAR=variable] [, VARIANCE=variable] [, WEIGHTS=vector]
[, YFIT=variable])

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length asX.

M

The number of coefficients in the fitting function. For polynomials,M is equal to the
degree of the polynomial + 1. If theM argument is not specified, you must supply
initial coefficient estimates using the A keyword. In this case,M is set equal to the
number of elements of the array specified by the A keyword.

Keywords

A

Set this keyword equal to a vector of initial estimates for the fitted function
parameters. SVDFIT returns a vector of coefficients that are improvements of th
initial estimates. If A is supplied, the M argument will be set equal to the numbe
elements in the vector specified by A.
SVDFIT IDL Reference Guide

1253

rrors

x of

etic.

asis

he

the
e

rd
CHISQ

Set this keyword equal to a named variable that will contain the sum of squared e
multiplied by weights if weights are specified.

COVAR

Set this keyword equal to a named variable that will contain the covariance matri
the fitted coefficients.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

FUNCTION_NAME

Set this keyword equal to a string containing the name of a user-supplied IDL b
function withM coefficients. If this keyword is omitted, and the LEGENDRE
keyword is not set, IDL assumes that the IDL procedure SVDFUNCT, found in t
file svdfunct.pro , located in thelib subdirectory of the IDL distribution, is to be
used. SVDFUNCT uses the basis functions for the fitting polynomial

The function to be fit must be written as an IDL function and compiled prior to
calling SVDFIT. The function must accept values ofX (a scalar), andM (a scalar). It
must return anM-element vector containing the basis functions.

See theExample section below for an example function.

LEGENDRE

Set this keyword to use Legendre polynomials instead of the function specified by
FUNCTION_NAME keyword. If the LEGENDRE keyword is set, the IDL uses th
function SVDLEG found in the filesvdleg.pro , located in thelib subdirectory of
the IDL distribution.

SIGMA

Set this keyword equal to a named variable that will contain the vector of standa
deviations for the returned coefficients.

y A i()xi

i 0=

M

∑=
IDL Reference Guide SVDFIT

1254

lar
tely

d

the
SINGULAR

Set this keyword equal to a named variable that will contain the number of singu
values returned. This value should be 0. If not, the basis functions do not accura
characterize the data.

VARIANCE

Set this keyword equal to a named variable that will contain the variance (sigma
squared) of each coefficientM.

WEIGHTS

Set this keyword equal to a vector of weights forYi. This vector should be the same
length asX andY. The error for each term is weighted by WEIGHTSi when
computing the fit. Frequently, WEIGHTSi = 1.0/σi, whereσ is the measurement error
or standard deviation ofYi (Gaussian or instrumental weighting), or WEIGHTS = 1/Y
(Poisson or statistical weighting). If WEIGHTS is not specified, WEIGHTSi is
assumed to be 1.0.

Warning
You can not set any of the elements of the WEIGHTS array equal to zero.

YFIT

Set this keyword equal to a named variable that will contain the vector of calculateY
values.

Example

This example fits a function of the following form:

First, create the function in IDL, then create a procedure to perform the fit. Create
following file calledexample_svdfit.pro :

PRO example_svdfit

; Provide an array of coefficients:
C = [7.77, 8.88, -9.99]
X = FINDGEN(100)/15.0 + 0.1
Y = C[0] + C[1] * SIN(2*X)/X + C[2] * COS(4.*X)^2.

F x() A 0() A 1() 2x()
x

----------- A 2() 4x()cos
2

+sin+=
SVDFIT IDL Reference Guide

1255

r

; Set uncertainties to 5%:
sig = 0.05 * Y
; Provide an initial guess:
A=[1,1,1]
result_a = SVDFIT(X, Y, A=A, WEIGHTS=(1/SIG^2.), $

FUNCTION_NAME='myfunct', SIGMA=SIGMA, YFIT=YFIT)
; Plot the results:
PLOT, X, YFIT
FOR I = 0, N_ELEMENTS(A)-1 DO $

PRINT, I, result_a[I], SIGMA[I], C[I],$
FORMAT = $
'(" result_a (",I1,") = ",F7.4," +- ",F7.4," VS. ",F7.4)'

END

FUNCTION myfunct, X ,M
RETURN,[[1.0], [SIN(2*X)/X], [COS(4.*X)^2.]]

END

Place the fileexample_svdfit.pro in a directory in the IDL search path, and ente
example_svdfit at the command prompt to create the plot.

IDL Output

In addition to creating the above plot, IDL prints:

result_a [0] = 7.7700 +- 0.1757 VS. 7.7700
result_a [1] = 8.8800 +- 0.1631 VS. 8.8800
result_a [2] = -9.9900 +- 0.2833 VS. -9.9900
IDL Reference Guide SVDFIT

1256
See Also

CURVEFIT, GAUSSFIT, LMFIT, POLY_FIT, POLYFITW, REGRESS, SFIT
SVDFIT IDL Reference Guide

1257

ar

ple

be
SVSOL

The SVSOL function uses “back-substitution” to solve a set of simultaneous line
equationsAx = b, given theU, W, andV arrays returned by the SVDC procedure.
None of the input arguments are modified, making it possible to call SVSOL multi
times with different right hand vectors,B.

SVSOL is based on the routinesvbksb described in section 2.6 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVSOL(U, W, V, B [, /COLUMN] [, /DOUBLE])

Arguments

U

An n-column,m-row orthogonal array used in the decomposition ofA. Normally,U is
returned from the SVDC procedure.

W

An n-element vector containing “singular values.” Normally,W is returned from the
SVDC procedure. Small values (close to machine floating-point precision) should
set to zero prior to calling SVSOL.

V

An n-column,n-row orthogonal array used in the decomposition ofA. Normally,V is
returned from the SVDC procedure.

B

An m-element vector containing the right hand side of the linear systemAx = b.

Keywords

COLUMN

Set this keyword if the input arraysU andV are in column-major format (composed
of column vectors) rather than in row-major format (composed of row vectors).
IDL Reference Guide SVSOL

1258

etic.
DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To solve the linear system Ax = b using Singular-value decomposition and back
substitution, begin with an array A which serves as the coefficient array:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Define the right-hand side vector B:
B = [0.0, 1.0, 5.3, -2.0, 6.3, 3.8]

; Decompose A:
SVDC, A, W, U, V

; Compute the solution and print the result:
PRINT, SVSOL(U, W, V, B)

IDL prints:

1.00095 0.00881170 0.984176 -0.0100954

This is the correct solution.

See Also

CRAMER, GS_ITER, LU_COMPLEX, CHOLSOL, LUSOL, SVDC, TRISOL
SVSOL IDL Reference Guide

1259

ays
te

e,

le
SWAP_ENDIAN

The SWAP_ENDIAN function reverses the byte ordering of arbitrary scalars, arr
or structures. It can make “big endian” number “little endian” and vice-versa. No
that the BYTEORDER procedure can be used to reverse the byte ordering ofscalars
and arrays (SWAP_ENDIAN also allows structures).

SWAP_ENDIAN returns values of the same type and structure as the input valu
with the pertinent bytes reversed.

This routine is written in the IDL language. Its source code can be found in the fi
swap_endian.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = SWAP_ENDIAN(Variable)

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.

Example

; Reverse the byte order of A:
A = SWAP_ENDIAN(A)

See Also

BYTEORDER
IDL Reference Guide SWAP_ENDIAN

1260

ince

970 is
ted

nth,

sed
e.

y a
SYSTIME

The SYSTIME function returns the current system time as either a string that
contains the current day, date and time, or as the number of seconds elapsed s
January 1, 1970.

Syntax

Result = SYSTIME(Arg) [, /JULIAN] [, /SECONDS]

Arguments

Arg

If Arg is present and nonzero, the number of seconds elapsed since January 1, 1
returned as a double-precision, floating-point value. The elapsed time is compu
from January 1, 1970, GMT.

Otherwise, ifArg is zero, a scalar string containing the current local date/time in
standard 24-character system format is returned. This format is:

DOW MON DD HH:MM:SS YEAR

where DOW is the day of the week, MON is the month, DD is the day of the mo
HH is the hour, MM is the minute, SS is the second, and YEAR is the year.

Keywords

JULIAN

If the JULIAN keyword is set, SYSTIME returns the time as a a double precision
floating value containing the current Julian date.

SECONDS

If the SECONDS keyword is set, SYSTIME returns the number of seconds elap
since January 1 1970. This option is equivalent to setting Arg to a non-zero valu

Examples

; Print the day of the week:
PRINT, STRMID(SYSTIME(0), 0, 3)

The following program fragment could be used to determine the time required b
16,384 point FFT:
SYSTIME IDL Reference Guide

1261
T = SYSTIME(1)
A = FFT(FINDGEN(16384), -1)
PRINT, SYSTIME(1) - T, ' Seconds'

See Also

CALDAT, CALENDAR, JULDAY
IDL Reference Guide SYSTIME

1262

le

.0,

 the

ion
s

T_CVF

The T_CVF function computes the cutoff valueV in a Student’s t distribution withDf
degrees of freedom such that the probability that a random variableX is greater than
V is equal to a user-supplied probabilityP.

This routine is written in the IDL language. Its source code can be found in the fi
T_cvf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = T_CVF(P, Df)

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the Student’s t distribution.

Example

Use the following command to compute the cutoff value in a Student’s t distribut
with five degrees of freedom such that the probability that a random variable X i
greater than the cutoff value is 0.025.

result = T_CVF(0.025, 5)
PRINT, result

IDL prints:

2.57058

See Also

CHISQR_CVF, F_CVF, GAUSS_CVF, T_PDF
T_CVF IDL Reference Guide

1263

le

toff

 the

,
l to
T_PDF

The T_PDF function computes the probabilityP that, in a Student’s t distribution
with Df degrees of freedom, a random variableX is less than or equal to a user-
specified cutoff valueV.

This routine is written in the IDL language. Its source code can be found in the fi
t_pdf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = T_PDF(V, Df)

Arguments

V

An integer, single-, or double-precision floating-point scalar that specifies the cu
value.

Df

A positive integer, single- or double-precision floating-point scalar that specifies
number of degrees of freedom of the Student’s t distribution.

Example

Use the following command to compute the probability that a random variable X
from the Student’s t distribution with 15 degrees of freedom, is less than or equa
0.691.

result = T_PDF(0.691, 15)
PRINT, result

IDL prints:

0.749940

See Also

BINOMIAL , CHISQR_PDF, F_PDF, GAUSS_PDF, T_CVF
IDL Reference Guide T_PDF

1264

n,

for
st
).

n
, the

king

le

er

the
T3D

The T3D procedure implements three-dimensional transforms.

This routine accumulates one or more sequences of translation, scaling, rotatio
perspective, and oblique transformations and stores the result in !P.T, the 3D
transformation system variable. All the IDL graphic routines use this (4,4) matrix
output. Note that !P.T3D isnotset, so for the transformations to have effect you mu
set !P.T3D = 1 (or set the T3D keyword in subsequent calls to graphics routines

This procedure is based on that of Foley & Van Dam,Fundamentals of Interactive
Computer Graphics, Chapter 8, “Viewing in Three Dimensions”. The matrix notatio
is reversed from the normal IDL sense, i.e., here, the first subscript is the column
second is the row, in order to conform with this reference.

A right-handed system is used. Positive rotations are counterclockwise when loo
from a positive axis position towards the origin.

This routine is written in the IDL language. Its source code can be found in the fi
t3d.pro in thelib subdirectory of the IDL distribution.

Syntax

T3D [, OBLIQUE=vector] [, PERSPECTIVE=p{eye at (0,0,p)}] [, /RESET]
[, ROTATE=[x, y, z]] [, SCALE=[x, y, z]] [, TRANSLATIONS=[x, y, z]]
[, /XYEXCH | , /XZEXCH | , /YZEXCH]

Keywords

Any, all, or none of the following keywords can be present in a call to T3D. The ord
of the input parameters does not matter.

The transformation specified by each keyword is performed in the order of their
descriptions below (e.g., if both TRANSLATE and SCALE are specified, the
translation is done first).

OBLIQUE

A two-element vector of oblique projection parameters. Points are projected onto
XY plane at Z=0 as follows:

x' = x + z(d * COS(a))
y' = y + z(d * SIN(a))

where OBLIQUE[0] = d and OBLIQUE[1] = a.
T3D IDL Reference Guide

1265

tance
nd

s.

port,
3D
PERSPECTIVE

Perspective transformation. This parameter is a scalar (p) that indicates the Z dis
of the center of the projection. Objects are projected into the XY plane at Z=0, a
the “eye” is at point (0,0,p).

RESET

Set this keyword to reset the transformation to the default identity matrix.

ROTATE

A three-element vector of the rotations, in DEGREES, about the X, Y, and Z axe
Rotations are performed in the order of X, Y, and then Z.

SCALE

A three-element vector of scale factors for the X, Y, and Z axes.

TRANSLATE

A three-element vector of the translations in the X, Y, and Z directions.

XYEXCH

Set this keyword to exchange the X and Y axes.

XZEXCH

Set this keyword to exchange the X and Z axes.

YZEXCH

Set this keyword to exchange the Y and Z axes.

Examples

To reset the transformation, rotate 30 degs about the X axis and do perspective
transformation with the center of the projection at Z = -1, X=0, and Y=0, enter:

T3D, /RESET, ROT = [30,0,0], PERS = 1.

Transformations may be cascaded, for example:

T3D, /RESET, TRANS = [-.5,-.5,0], ROT = [0,0,45]
T3D, TRANS = [.5,.5,0]

The first command resets, translates the point (.5,.5,0) to the center of the view
then rotates 45 degrees counterclockwise about the Z axis. The second call to T
moves the origin back to the center of the viewport.
IDL Reference Guide T3D

1266
See Also

SCALE3, SCALE3D, SURFR
T3D IDL Reference Guide

1267

s in
re

ust

 the

, a
TAG_NAMES

The TAG_NAMES function returns a string array containing the names of the tag
a structure expression. It can also be used to determine the expression’s structu
name (if the structure has a name).

Syntax

Result = TAG_NAMES(Expression [, /STRUCTURE_NAME])

Arguments

Expression

The structure expression for which the tag names are returned. This argument m
be of structure type. TAG_NAMES does not search for tags recursively, so if
Expression is a structure containing nested structures, only the names of tags in
outermost structure are returned.

Keywords

STRUCTURE_NAME

Set this keyword to return a scalar string that contains the name of the structure
instead of the names of the tags in the structure. If the structure is “anonymous”
null string is returned.

Example

Print the names of the tags in the system variable !P by entering:

PRINT, TAG_NAMES(!P)

IDL prints:

BACKGROUND CHARSIZE CHARTHICK CLIP COLOR FONT LINESTYLE MULTI
NOCLIP NOERASE NSUM POSITION PSYM REGION SUBTITLE SYMSIZE T
T3D THICK TITLE TICKLEN CHANNEL

Print the name of the structure in the system variable !P:

PRINT, TAG_NAMES(!P, /STRUCTURE_NAME)

IDL prints:

!PLT
IDL Reference Guide TAG_NAMES

1268
See Also

CREATE_STRUCT, N_TAGS
TAG_NAMES IDL Reference Guide

1269
TAN

The TAN function returns the tangent ofX.

Syntax

Result = TAN(X)

Arguments

X

The angle for which the tangent is desired, specified in radians. IfX is double-
precision floating-point, the result is of the same type. Complex values are not
allowed. All other types are converted to single-precision floating-point and yield
floating-point results. IfX is an array, the result has the same structure, with each
element containing the tangent of the corresponding element ofX.

Example

; Find the tangent of 0.5 radians and store the result in
; the variable T:
T = TAN(0.5)

See Also

ATAN, TANH
IDL Reference Guide TAN

1270

es
nd

 the
TANH

The TANH function returns the hyperbolic tangent of X.

Syntax

Result = TANH(X)

Arguments

X

The value for which the hyperbolic tangent is desired, specified in radians. IfX is
double-precision floating-point, the result is also double-precision. Complex valu
are not allowed. All other types are converted to single-precision floating-point a
yield floating-point results. TANH is defined as:

If X is an array, the result has the same structure, with each element containing
hyperbolic tangent of the corresponding element ofX.

Example

; Find the hyperbolic tangent of 1 radian and print the result:
PRINT, TANH(1)

; Plot the hyperbolic tangent from -5 to +5 with an increment
; of 0.1:
PLOT, TANH(FINDGEN(101)/10. - 5)

See Also

ATAN, TAN

tanh x() ex e x––
ex e x–+
-------------------=
TANH IDL Reference Guide

1271

ion,
ned
ble
e

d 9,

tape

er

ing.
TAPRD

The TAPRD procedure reads the next record on the selected tape unit into the
specified array. TAPRD is available only under VMS. No data or format convers
with the exception of optional byte reversal, is performed. The array must be defi
with the desired type and dimensions. If the read is successful, the system varia
!ERR is set to the number of bytes read. See the description of the magnetic tap
routines in“VMS-Specific Information” in Chapter 16 ofBuilding IDL Applcations.

Syntax

TAPRD,Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to read. This argument must be a number between 0 an
and should not be confused with standard file Logical Unit Numbers (LUN’s).

Array

A named variable into which the data is read. IfArray is larger than the tape record,
the extra elements of the array are not changed. If the array is shorter than the
record, a data overrun error occurs. The length ofArray and the records on the tape
can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped aft
reading, regardless of the type of data or variables. This enables reading tapes
containing short integers that were written on machines with different byte order
You can also use the BYTORDER routine to re-order different data types.

See Also

TAPWRT
IDL Reference Guide TAPRD

1272

d 9,

utput,
TAPWRT

The TAPWRT procedure writes data from theArray parameter to the selected tape
unit. TAPWRT is available only under VMS. One physical record containing the
same number of bytes as the array is written each time TAPWRT is called. The
parameters and usage are identical to those in the TAPRD procedure with the
exception that here theArray parameter can be an expression. Consult the TAPRD
procedure for details. See the description of the magnetic tape routines in“VMS-
Specific Information” in Chapter 16 ofBuilding IDL Applcations.

Syntax

TAPWRT,Array, Unit [, Byte_Reverse]

Arguments

Unit

The magnetic tape unit to write. This argument must be a number between 0 an
and should not be confused with standard file Logical Unit Numbers (LUNs).

Array

The expression representing the data to be output. The length ofArray and the
records on the tape can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped on o
regardless of the type of data or variables. This enables writing tapes that are
compatible with other machines.

See Also

TAPRD
TAPWRT IDL Reference Guide

1273

.

k,

d

TEK_COLOR

The TEK_COLOR procedure loads a 32-color colortable similar to the default
Tektronix 4115 colortable. This colortable is useful because of its distinct colors

By default, this palette consists of 32 colors. The first 9 colors are: Index 0=blac
1=white, 2=red, 3=green, 4=blue, 5=cyan, 6=magenta, 8=orange.

Syntax

TEK_COLOR [,Start_Index, Colors]

Arguments

Start_Index

An optional starting index for the palette. The default is 0. If this argument is
included, the colors are loaded into the current colortable starting at the specifie
index.

Colors

The number of colors to load. The default is 32, which is also the maximum.

See Also

LOADCT, XLOADCT
IDL Reference Guide TEK_COLOR

1274

hen
 that

tage

rray,
ice
TEMPORARY

The TEMPORARY function returns a temporary copy of a variable, and sets the
original variable to “undefined”. This function can be used to conserve memory w
performing operations on large arrays, as it avoids making a new copy of results
are only temporary. In general, the TEMPORARY routine can be used to advan
whenever a variable containing an array on the left hand side of an assignment
statement is also referenced on the right hand side.

Syntax

Result = TEMPORARY(Variable)

Arguments

Variable

The variable to be referenced and deleted.

Example

Assume the variableA is a large array. The statement:

A = A + 1

creates a new array for the result of the addition, places the sum into the new a
assigns it to a, and then frees the old allocation of a. Total storage required is tw
the size of a. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

See Also

DELVAR
TEMPORARY IDL Reference Guide

1275

e
ta
ertex
ray).

ach
.

he
TETRA_CLIP

The TETRA_CLIP function clips a tetrahedral mesh to an arbitrary plane in spac
and returns a tetrahedral mesh of the remaining portion. An auxiliary array of da
may also be passed and clipped. This array can have multiple values for each v
(the trailing array dimension must match the number of vertices in the Vertsin ar

A tetrahedral connectivity array consists of groups of four vertex index values. E
set of four index values specifies four vertices which define a single tetrahedron

Syntax

Result= TETRA_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of tetrahedra returned.

Arguments

Plane

Input four-element array describing the equation of the plane to be clipped to. T
elements are the coefficients (a,b,c,d) of the equationax+by+cz+d=0.

Vertsin

Input array of tetrahedral vertices [3,n].

Connin

Input tetrahedral mesh connectivity array.

Vertsout

Output array of tetrahedral vertices [3,n].

Connout

Output tetrahedral mesh connectivity array.
IDL Reference Guide TETRA_CLIP

1276

ed
f

into
Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and return
through AUXDATA_OUT. The trailing array dimension must match the number o
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a named variable to contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable to contain an output array of vertex indices (
Vertsout) of the vertices which are considered to be ‘on’ the clipped surface.
TETRA_CLIP IDL Reference Guide

1277

e of
rray

ray,
TETRA_SURFACE

The TETRA_SURFACE function extracts a polygonal mesh as the exterior surfac
a tetrahedral mesh. The output of this function is a polygonal mesh connectivity a
that can be used with the input Verts array to display the outer surface of the
tetrahedral mesh.

Syntax

Result= TETRA_SURFACE (Verts, Connin)

Return Value

Returns a polygonal mesh connectivity array. When used with the input vertex ar
this function yields the exposed tetrahedral mesh surface.

Arguments

Verts

Array of vertices [3,n].

Connin

Tetrahedral connectivity array.
IDL Reference Guide TETRA_SURFACE

1278

y.

ng

used
.

The
TETRA_VOLUME

The TETRA_VOLUME function computes properties of a tetrahedral mesh arra
The basic property is the volume. An auxiliary data array may be supplied which
specifies weights at each vertex which are interpolated through the volume duri
integration. Higher order moments (with respect to the X, Y, and Z axis) may be
computed as well (with or without weights).

Syntax

Result= TETRA_VOLUME (Verts, Conn [, AUXDATA= array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) volume of the tetrahedrons in the mesh.

Arguments

Verts

Array of vertices [3,n].

Conn

Tetrahedral connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are
to weight a vertex. The volume area integral will linearly interpolate these values
The volume integral will linearly interpolate these values within each tetrahedra.
default weight is 1.0 which results in a basic volume.
TETRA_VOLUME IDL Reference Guide

1279

or
and
MOMENT

Set this keyword to a named variable that will contain a three-element float vect
which corresponds to the first order moments computed with respect to the X, Y
Z axis. The computation is:

where v is the (weighted) volume of the tetrahedron and c is the centroid of the
tetrahedron, thus

yields the (weighted) centroid of the tetrahedral mesh.

m vi ci
ntetras
∑=

m volume⁄
IDL Reference Guide TETRA_VOLUME

1280

f
more

he

the
age

rs
lue

vely
THIN

The THIN function returns the “skeleton” of a bi-level image. The skeleton of an
object in an image is a set of lines that reflect the shape of the object. The set o
skeletal pixels can be considered to be the medial axis of the object. For a much
extensive discussion of skeletons and thinning algorithms, seeAlgorithms for
Graphics and Image Processing, Theo Pavlidis, Computer Science Press, 1982. T
THIN function is adapted from Algorithm 9.1 (the classical thinning algorithm).

On input, the bi-level image is a rectangular array in which pixels that compose
object have a nonzero value. All other pixels are zero. The result is a byte type im
in which skeletal pixels are set to 2 and all other pixels are zero.

Syntax

Result = THIN(Image[, /NEIGHBOR_COUNT] [, /PRUNE])

Arguments

Image

The two-dimensional image (array) to be thinned.

Keywords

NEIGHBOR_COUNT

Set this keyword to select an alternate form of output. In this form, output pixel
values count the number of neighbors an individual skeletal pixel has (including
itself). For example, a pixel that is part of a line will have the value 3 (two neighbo
and itself). Terminal pixels will have the value 2, while isolated pixels have the va
1.

PRUNE

If the PRUNE keyword is set, pixels with single neighbors are removed interacti
until only pixels with 2 or more neighbors exist. This effectively removes (or
“prunes”) skeleton branches, leaving only closed paths.

Example

The following commands display the “thinned” edges of a Sobel filtered image:

; Open a file for reading:
THIN IDL Reference Guide

1281
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Create a byte array in which to store the image:
A = BYTARR(192, 192)

; Read first 192 by 192 image:
READU, 1, A

; Close the file:
CLOSE, 1

; Display the image:
TV, A, 0

; Apply the Sobel filter, threshold the image at value 75, and
; display the thinned edges:
TVSCL, THIN(SOBEL(A) GT 75), 1

See Also

ROBERTS, SOBEL
IDL Reference Guide THIN

1282

f the
und
THREED IDL Reference Guide

THREED

The THREED procedure plots a 2D array as a pseudo 3D plot. The orientation o
data is fixed. This routine is written in the IDL language. Its source code can be fo
in the filethreed.pro in thelib subdirectory of the IDL distribution.

Syntax

THREED,A [, Sp] [, TITLE=string] [, XTITLE= string] [, YTITLE= string]

Arguments

A

The two-dimensional array to plot.

Sp

The spacing between plot lines. IfSp is omitted, the spacing is set to: (MAX(A)-
MIN(A))/ROWS. IfSp is negative, hidden lines are not removed.

Keywords

TITLE

Set this keyword to the main plot title.

XTITLE

Set this keyword to the X axis title.

YTITLE

Set this keyword to the Y axis title.

Example

; Create a 2D dataset:
A = -SHIFT(DIST(30), 15, 15)
; Make a THREED plot:
THREED, A
; Compare to SURFACE:
SURFACE, A

See Also

SURFACE

1283

t

le

test.
TIME_TEST2

The TIME_TEST2 procedure is a general-purpose IDL benchmark program tha
performs approximately 20 common operations and prints the time required.

This routine is written in the IDL language. Its source code can be found in the fi
time_test.pro in thelib subdirectory of the IDL distribution. This file also
contains the procedure GRAPHICS_TIMES, used to time graphical operations.

Syntax

TIME_TEST2 [,Filename]

Arguments

Filename

An optional string that contains the name of output file for the results of the time

Example

; Run the computational tests:
TIME_TEST2

; Run the graphics tests. Note that TIME_TEST2 must be compiled
; before GRAPHICS_TIMES will run:
GRAPHICS_TIMES

See Also

SYSTIME
IDL Reference Guide TIME_TEST2

1284

at

and
e

ce.

le
TM_TEST

The TM_TEST function computes the Student’s T-statistic and the probability th
two sample populationsX andY have significantly different means.X andY may be
of different lengths. The result is a two-element vector containing the T-statistic
its significance. The significance is a value in the interval [0.0, 1.0]; a small valu
(0.05 or 0.01) indicates thatX andY have significantly different means. The default
assumption is that the data is drawn from populations with the same true varian
This type of test is often referred to as the t-means test.

The T-statistic for sample populationsx andy with meansx andy is defined as:

wherex = (x0, x1, x2, ...,xN-1) andy = (y0, y1, y2 ...,yM-1)

This routine is written in the IDL language. Its source code can be found in the fi
tm_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TM_TEST(X, Y [, /PAIRED] [, /UNEQUAL])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An m-element integer, single-, or double-precision floating-point vector. If the
PAIRED keyword is set,X andY must have the same number of elements.

T x y–

xi x–()2 yi y–()2

j 0=

M 1–

∑+
j 0=

N 1–

∑
N M 2–+()

--
1
N
---- 1

M
-----+

--=
TM_TEST IDL Reference Guide

1285

he
Keywords

PAIRED

If this keyword is set,X andY are assumed to be paired samples and must have t
same number of elements.

UNEQUAL

If this keyword is set,X andY are assumed to be from populations with unequal
variances.

Example

; Define two n-element sample populations.
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the Student’s t-statistic and its significance assuming
; that X and Y belong to populations with the same true variance:
PRINT, TM_TEST(X, Y)

IDL Output

5.52839 2.52455e-06

The result indicates thatX andY have significantly different means.

See Also

FV_TEST, KW_TEST, RS_TEST, S_TEST
IDL Reference Guide TM_TEST

1286

t is

t or
sent,

ch
lso
he
TOTAL

The TOTAL function returns the sum of the elements ofArray. The sum of the array
elements over a given dimension is returned if theDimension argument is present.

Syntax

Result = TOTAL(Array [, Dimension] [, /CUMULATIVE] [, /DOUBLE] [, /NAN])

Arguments

Array

The array to be summed. This array can be of any basic type except string. IfArray is
double-precision floating-point, complex, or double-precision complex, the resul
of the same type. Otherwise, the result is single-precision floating-point.

Dimension

The dimension over which to sum, starting at one. If this argument is not presen
zero, the scalar sum of all the array elements is returned. If this argument is pre
the result is an array with one less dimension thanArray. For example, if the
dimensions ofArray areN1, N2, N3, andDimensionis 2, the dimensions of the result
are (N1, N3), and element(i,j) of the result contains the sum:

Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with ea
element, i, containing the sum of the input array elements 0 to i. This keyword a
works with the Dimension parameter, in which case the sum is performed over t
given dimension.

DOUBLE

Set this keyword to perform the summation in double-precision floating-point.

Ai k j, ,k 0=

N2 1–∑
TOTAL IDL Reference Guide

1287

ing-
NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

Example 1

This example sums the elements of a one-dimensional array:

; Define a one-dimensional array:
A = [20, 10, 5, 5, 3]

; Sum the elements of the array:
SUMA = TOTAL([20, 10, 5, 5, 3])

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of A = ', SUMA

IDL Output

A = 20 10 5 5 3
Sum of A = 43.0000

Example 2

The results are different when a multi-dimensional array is used:

; Define a multi-dimensional array:
A = FINDGEN(5,5)

; Sum each of the rows in A:
SUMROWS = TOTAL(A, 1)

; Sum each of the columns in A:
SUMCOLS = TOTAL(A, 2)

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of each row:', SUMROWS
PRINT, 'Sum of each column:', SUMCOLS

IDL Output

A = 0.000000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
IDL Reference Guide TOTAL

1288
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

Sum of each row: 10.0000 35.0000 60.0000 85.0000 110.000

Sum of each column: 50.0000 55.0000 60.0000 65.0000 70.0000

See Also

FACTORIAL
TOTAL IDL Reference Guide

1289

le

etic.
TRACE

The TRACE function computes the trace of ann by n array.

This routine is written in the IDL language. Its source code can be found in the fi
trace.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TRACE(A [, /DOUBLE])

Arguments

A

An n by n real or complex array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define an array:
A = [[2.0,1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the trace of A:
result = TRACE(A)

;Print the result:
PRINT, 'TRACE(A) = ', result

IDL Output

TRACE(A) = 3.00000

See Also

TOTAL
IDL Reference Guide TRACE

1290
TrackBall Object

SeeAppendix A, “IDL Object Class & Method Reference”
TrackBall Object IDL Reference Guide

1291
TRANSPOSE

The TRANSPOSE function returns the transpose ofArray. If an optional permutation
vector is provided, the dimensions ofArray are rearranged as well.

Syntax

Result = TRANSPOSE(Array [, P])

Arguments

Array

The array to be transposed.

P

A vector specifying how the dimensions ofArray will be permuted. The elements of
P correspond to the dimensions ofArray; theith dimension of the output array is
dimensionP[i] of the input array. Each element of the vectorP must be unique.
Dimensions start at zero and can not be repeated.

If P is not present, the order of the indices ofArray is reversed.

Example

Example 1

Print a simple array and its transpose by entering:

; Create an array:
A = INDGEN(3,3)
TRANSA = TRANSPOSE(A)

; Print the array and its transpose:
PRINT, 'A:'
PRINT, A
PRINT, 'Transpose of A:'
PRINT, TRANSA

IDL Output

A:
0 1 2
3 4 5
6 7 8
IDL Reference Guide TRANSPOSE

1292
Transpose of A:
0 3 6
1 4 7
2 5 8

Example 2

This example demonstrates multi-dimensional transposition:

; Create the array:
A = INDGEN(2, 3, 4)

; Take the transpose, reversing the order of the indices:
B = TRANSPOSE(A)

; Re-order the dimensions of A, so that the second dimension
; becomes the first, the third becomes the second, and the first
; becomes the third:
C = TRANSPOSE(A, [1, 2, 0])

; View the sizes of the three arrays:
HELP, A, B, C

IDL Output

A INT = Array[2, 3, 4]
B INT = Array[4, 3, 2]
C INT = Array[3, 4, 2]

See Also

REFORM, ROT, ROTATE, REVERSE
TRANSPOSE IDL Reference Guide

1293

nts
ray

ng

le

oints
sed:

all
TRI_SURF

The TRI_SURF function interpolates a regularly- or irregularly-gridded set of poi
with a smooth quintic surface. The result is s a two-dimensional floating-point ar
containing the interpolated surface, sampled at the grid points.

TRI_SURF is similar to MIN_CURVE_SURF but the surface fitted is a smooth
surface, not a minimum curvature surface. TRI_SURF has the advantage of bei
much more efficient for larger numbers of points.

Note
The TRI_SURF function is designed to interpolate low resolution data. Large
arrays may cause TRI_SURF to issue the following error message:
Partial Derivative Approximation Failed to Converge ”
In such cases, interpolation is most likely unnecessary.

This routine is written in the IDL language. Its source code can be found in the fi
tri_surf.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TRI_SURF(Z [, X, Y] [, /EXTRAPOLATE] [, MISSING=value]
[, /REGULAR] [, XGRID=[xstart, xspacing] | [, XVALUES=array]]
[, YGRID=[yxstart, yspacing] | [, YVALUES=array]] [, GS=[xspacing, yspacing]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value])

Arguments

X, Y, Z

arrays containing the X, Y, and Z coordinates of the data points on the surface. P
need not be regularly gridded. For regularly gridded input data, X and Y are not u
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two dimensional array. For irregular grids,
three parameters must be present and have the same number of elements.
IDL Reference Guide TRI_SURF

1294

e the

of
er

put
ints

e
t,
Keywords

EXTRAPOLATE

Set this keyword to cause TRI_SURF to extrapolate the surface to points outsid
convex hull of input points. This keyword has no effect if the input points are
regularly gridded.

LINEAR

Set this keyword to use linear interpolation, without gradient estimates, instead
quintic interpolation. Linear interpolation does not extrapolate, although it is fast
and more numerically stable.

MISSING

Set this keyword equal to the value to which points outside the convex hull of in
points should be set. The default is 0. This keyword has no effect if the input po
are regularly gridded.

Input Grid Description:

REGULAR

If set, theZ parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if ther
is only one parameter,Z. If REGULAR is set, and no grid specifications are presen
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in thex direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining thex locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in they direction. Do
not specify both YGRID and YVALUES.
TRI_SURF IDL Reference Guide

1295

6.
YVALUES

An n-element array defining they locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:

Note
The output grid must enclose the convex hull of the input points.

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points andys is the vertical spacing. The
default is based on the extents ofx andy. If the grid starts atx valuexminand ends at
xmax, then the default horizontal spacing is (xmax- xmin)/(NX-1). YS is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 2

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits inx and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent ofx andy.

NX

The output grid size in thex direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in they direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Example

Example 1

Regularly gridded case:

; Make some random data
Z = randomu(seed, 5, 6)

; Interpolate to a 26 x 26 grid:
CONTOUR, TRI_SURF(Z, /REGULAR)
IDL Reference Guide TRI_SURF

1296
Example 2

Irregularly gridded case:

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

; Use a 26 by 26 grid over the rectangle bounding x and y.
; Get the surface:
R = TRI_SURF(Z, X, Y)

; Alternatively, get a surface over the unit square, with spacing
; of 0.05:
R = TRI_SURF(z, x, y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

; Alternatively, get a 10 by 10 surface over the rectangle bounding
; x and y:
R = TRI_SURF(z, x, y, NX=10, NY=10)

See Also

CONTOUR, MIN_CURVE_SURF
TRI_SURF IDL Reference Guide

1297

et
 and
ly

gle
re

i
than
rea
ed

 as
.

ver

form
bed
TRIANGULATE

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar s
of points. Delaunay triangulations are very useful for the interpolation, analysis,
visual display of irregularly-gridded data. In most applications, after the irregular
gridded data points have been triangulated, the function TRIGRID is invoked to
interpolate surface values to a regular grid.

Since Delaunay triangulations have the property that the circumcircle of any trian
in the triangulation contains no other vertices in its interior, interpolated values a
only computed from nearby points.

TRIANGULATE can, optionally, return the adjacency list that describes, for each
node, the adjacent nodes in the Delaunay triangulation. With this list, the Vorono
polygon (the polygon described by the set of points which are closer to that node
to any other node) can be computed for each node. This polygon contains the a
influenced by its associated node. Tiling of the region in this manner is also call
Dirichlet, Wigner-Seithz, or Thiessen tessellation.

The grid returned by the TRIGRID function can be input to various routines such
SURFACE, TV, and CONTOUR. See the description of TRIGRID for an example

TRIANGULATE and TRIDGRID can also be used to perform gridding and
interpolation over the surface of a sphere. The interpolation isC1 continuous,
meaning that the result is continuous over both the function value and its first
derivative. This feature is ideal for interpolating an irregularly-sampled dataset o
part or all of the surface of the earth (or other (spherical) celestial bodies).
Extrapolation outside the convex hull of sample points is also supported. To per
spherical gridding, you must include the FVALUE and SPHERE keywords descri
below. The spherical gridding technique used in IDL is based on the paper
“Interpolation of Data on the Surface of a Sphere”, R. Renka,Oak Ridge National
Laboratory Report ORNL/CSD-108, 1982.

Syntax

TRIANGULATE, X, Y, Triangles [, B] [, CONNECTIVITY=variable]
[, /DEGREES] [, FVALUE=variable] [, REPEATS=variable] [, SPHERE=variable]

Arguments

X

An array that contains the X coordinates of the points to be triangulated.
IDL Reference Guide TRIANGULATE

1298

eters

e

e
nts

the
list

nt to
Y

An array that contains the Y coordinates of the points to be triangulated. Param
X andY must have the same number of elements.

Triangles

A named variable that, on exit, contains the list of triangles in the Delaunay
triangulation of the points specified by the X and Y arguments. Triangles is a
longword array dimensioned (3,number of triangles), whereTriangles[0, i] ,
Triangles[1, i] , andTriangles[2, i] contain the indices of the vertices of
the i-th triangle (i.e.,X[Tr[*, i]] andY[Triangles[*,]] are the X and Y
coordinates of the vertices of thei-th triangle).

B

An optional, named variable that, upon return, contains a list of the indices of th
boundary points in counterclockwise order.

Keywords

CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of theN
nodes (xy point) is returned. The list has the following form:

Each elementi, i ≤ 0 < N, contains the starting index of the connectivity list for nod
i within the list array. To obtain the adjacency list for node i, extract the list eleme
from LIST[i] to LIST[i+1]-1.

The adjacency list is ordered in the counter-clockwise direction. The first item on
list of boundary nodes is the subscript of the node itself. For interior nodes, the
contains the subscripts of the adjacent nodes in counter-clockwise order.

For example, the call:

TRIANGULATE, X, Y, CONNECTIVITY = LIST

returns the adjacency list in the variable LIST. The subscripts of the nodes adjace
X[i] and Y[i] are contained in the array:

LIST[LIST[i] : LIST[i+1]-1]

DEGREES

Set this keyword to indicate that theX andYarguments contain longitude and latitude
coordinates specified in degrees. This keyword is only effective if the SPHERE
TRIANGULATE IDL Reference Guide

1299

D to

ID to
mple

the
E

keyword is also set. If DEGREES is not set,X andY are assumed to be specified in
radians when a spherical triangulation is performed.

FVALUE

Set this keyword to a named variable that contains sample values for each
longitude/latitude point in a spherical triangulation. On output, the elements of
FVALUE are rearranged to correspond to the new ordering ofX andY (as described
in the SPHERE keyword, below). This reordered array can be passed to TRIGRI
complete the interpolation.

REPEATS

Set this keyword to a named variable to return a (2,n) list of the indices of duplicated
points. That is, for eachi,

X[REPEATS(0, i)] = X[REPEATS(1, i)]

and

Y[REPEATS(0, i)) = Y(REPEATS(1, i)]

SPHERE

Set this keyword to a named variable in which the results from a spherical
triangulation are returned. This result is a structure that can be passed to TRIGR
perform spherical gridding. The structure contains the 3D Cartesian locations sa
points and the adjacency list that describes the triangulation.

When spherical triangulation is performed,X andY are interpreted as longitude and
latitude, in either degrees or radians (see the DEGREE keyword, above). Also,
order of the elements within theX andY parameters is rearranged (see the FVALU
keyword, above).

Example

For a examples using the TRIANGULATE routine, see theTRIGRID function.

See Also

SPH_SCAT, TRIGRID
IDL Reference Guide TRIANGULATE

1300

n
 an

sing

ion

ble
E’s
TRIGRID

Given data points defined by the parametersX, Y, andZ and a triangulation of the
planar set of points determined byX andY, the TRIGRID function returns a regular
grid of interpolatedZ values. Linear or smooth quintic polynomial interpolation ca
be selected. Extrapolation for gridpoints outside of the triangulation area is also
option. The resulting grid is a two-dimensional array of the same data type asZ, with
user-specified bounds and spacing. An input triangulation can be constructed u
the procedure TRIANGULATE. Together, the TRIANGULATE procedure and the
TRIGRID function constitute IDL’s solution to the problem of irregularly-gridded
data, including spherical gridding.

Syntax

Result = TRIGRID(X, Y, Z, Triangles [, GS, Limits])

For spherical gridding:Result = TRIGRID(F , GS, Limits, SPHERE=S)

Keywords: [, /DEGREES] [, EXTRAPOLATE=array | , /QUINTIC]
[, INPUT=variable] [, MAX_VALUE= value] [, MIN_VALUE= value]
[, MISSING=value] [, NX=value] [, NY=value] [, SPHERE=variable]
[, XGRID=variable] [, YGRID=variable]

Arguments

X, Y, Z

Input arrays of X, Y, and Z coordinates of data points. Integer, long, double-precis
and floating-point values are allowed. In addition,Z can be a complex array. All three
arrays must have the same number of elements.

F

When performing a spherical gridding, this argument should be the named varia
that contains the rearranged sample values that were returned by TRIANGULAT
FVALUE keyword.

Triangles

A longword array of the form output by TRIANGULATE. That is,Triangles has the
dimensions (3,number of triangles) and, for eachi, Triangles[0,i] ,
Triangles[1,i] , andTriangles[2,i] are the indices of the vertices of thei-th
triangle.
TRIGRID IDL Reference Guide

1301

e

grid

r
as

ed

able
GS

If present,GS should be a two-element vector [XS, YS], whereXS is the horizontal
spacing between grid points andYSis the vertical spacing. The default is based on th
extents ofX andY. If the grid starts atX valuex0 and ends atx1,then the horizontal
spacing is

(x1- x0)/50

The default forYS is computed in the same way. Since the default grid spacing
divides each axis into 50 intervals and produces 51 samples, TRIGRID returns a
with dimensions (51, 51).

If the NX or NY keywords are set to specify the output grid dimensions, either o
both of the values ofGSmay be set to 0. In this case, the grid spacing is computed
the respective range divided by the dimension minus one:

(x1- x0)/(NX-1) and (y1- y0)/(NY-1)

For spherical gridding,GS is assumed to be specified in radians, unless the
DEGREES keyword is set.

Limits

If present,Limitsshould be a four-element vector [x0, y0, x1, y1] that specifies the data
range to be gridded (x0 andy0 are the lower X and Y data limits, andx1 andy1 are the
upper limits). The default forLimits is:

[MIN(X), MIN(Y), MAX(X), MAX(Y)]

If the NX or NY keywords are not specified, the size of the grid produced is specifi
by the value ofLimits. If the NX or NY keywords are set to specify the output grid
dimensions, a grid of the specified size will be used regardless of the value ofLimits.

Keywords

DEGREES

For a spherical gridding, set this keyword to indicate that the grid spacing (theGS
argument) is specified in degrees rather than radians.

EXTRAPOLATE

Set this keyword equal to an array of boundary node indices (as returned by the
optional parameter B of theTRIANGULATE procedure) to extrapolate to grid points
outside the triangulation. The extrapolation is not smooth, but should give accept
results in most cases.
IDL Reference Guide TRIGRID

1302

rd

size
d.
le
he

 by

itly
g
de
e

g

Setting this keyword sets the quintic interpolation mode, as if the QUINTIC keywo
has been specified.

INPUT

Set this keyword to a named variable (which must be an array of the appropriate
to hold the output from TRIGRID) in which the results of the gridding are returne
This keyword is provided to make it easy and memory-efficient to perform multip
calls to TRIGRID. The interpolates within each triangle overwrite the array and t
array is not initialized.

MAX_VALUE

Set this keyword to a value that represents the maximumZ value to be gridded. Data
larger than this value are treated as missing data and are not gridded.

MIN_VALUE

Set this keyword to a value that represents the minimumZ value to be gridded. Data
smaller than this value are treated as missing data and are not gridded.

MISSING

TheZ value to be used for grid points that lie outside the triangles inTriangles. The
default is 0. This keyword also applies to data points outside the range specified
MIN_VALUE and MAX_VALUE.

Note
Letting MISSING default to 0 does not always produce the same result as explic
setting it to 0. For example, if you specify INPUT and not EXTRAPOLATE, lettin
MISSING default to 0 will result in the INPUT values being used for data outsi
the Triangles; explicitly setting MISSSING to 0 will result in 0 being used for th
data outside the Triangles.

NX

The output grid size in thex direction. The default value is 51.

NY

The output grid size in they direction. The default value is 51.

QUINTIC

If QUINTIC is set, smooth interpolation is performed using Akima’s quintic
polynomials from “A Method of Bivariate Interpolation and Smooth Surface Fittin
TRIGRID IDL Reference Guide

1303

th.

e

for Irregularly Distributed Data Points” inACM Transactions on Mathematical
Software, 4, 148-159. The default method is linear interpolation.

Derivatives are estimated by Renka’s global method in “A Triangle-Based C1
Interpolation Method” inRocky Mountain Journal of Mathematics, vol. 14, no. 1,
1984.

QUINTIC is not available for complex data values. Setting the EXTRAPOLATE
keyword implies the use of quintic interpolation; it is not necessary to specify bo

SPHERE

For a spherical gridding, set this keyword to the named variable that contains th
results of the spherical triangulation returned by TRIANGULATE’s SPHERE
keyword.

XGRID

Set this keyword equal to a named variable that will contain a vector ofX values for
the output grid.

YGRID

Set this keyword equal to a named variable that will contain a vector ofY values for
the output grid.

The following table shows the interrelationships between the keywords
EXATRAPOLATE, INPUT, MAX_VALUE, MIN_VALUE, MISSING, and
QUINTIC.

INPUT EXTRAPOLATE MISSING Not in Triangles
Beyond

MIN_VALUE,
MAX_VALUE

no no no uses 0 uses 0

no no yes uses MISSING uses MISSING

no yes no EXTRAPOLATEs uses 0

no yes yes EXTRAPOLATEs uses MISSING

yes no no uses INPUT uses INPUT

yes no yes uses MISSING uses MISSING

Table 84: Keyword Interrelationships for the TRIGRID function
IDL Reference Guide TRIGRID

1304

tion.
Example

Example 1

This example creates and displays a 50 point random normal distribution. The
random points are then triangulated, with the triangulation displayed. Next, the
interpolated surface is computed and displayed using linear and quintic interpola
Finally, the smooth extrapolated surface is generated and shown.

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

; Make the Gaussian:
z = EXP(-(x^2 + y^2))

; Show points:
PLOT, x, y, psym=1

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

; Show the triangles:
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN & $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t] & $

ENDFOR

; Show linear surface:
SURFACE, TRIGRID(x, y, z, tr)

; Show smooth quintic surface:
SURFACE, TRIGRID(x, y, z, tr, /QUINTIC)

; Show smooth extrapolated surface:

yes yes no EXTRAPOLATEs uses INPUT

yes yes yes EXTRAPOLATEs uses MISSING

INPUT EXTRAPOLATE MISSING Not in Triangles
Beyond

MIN_VALUE,
MAX_VALUE

Table 84: Keyword Interrelationships for the TRIGRID function
TRIGRID IDL Reference Guide

1305
SURFACE, TRIGRID(x, y, z, tr, EXTRA = b)

; Output grid size is 12 x 24:
SURFACE, TRIGRID(X, Y, Z, Tr, NX=12, NY=24)

; Output grid size is 20 x 11. The X grid is
; [0, .1, .2, ..., 19 * .1 = 1.9]. The Y grid goes from 0 to 1:
SURFACE, TRIGRID(X, Y, Z, Tr, [.1, .1], NX=20)

; Output size is 20 x 40. The range of the grid in X and Y is
; specified by the Limits parameter. Grid spacing in X is
; [5-0]/(20-1) = 0.263. Grid spacing in Y is (4-0)/(40-1) = 0.128:
SURFACE, TRIGRID(X, Y, Z, Tr, [0,0], [0,0,5,4],NX=20, NY=40)

Example 2

This example shows how to perform spherical gridding:

; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. - 180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. - 90.

; Make a fake function value to be passed to FVALUE. The system
; variable !DTOR contains the conversion value for degrees to
; radians.
f = SIN(lon * !DTOR)^2 * COS(lat * !DTOR)

; Perform a spherical triangulation:
TRIANGULATE, lon, lat, tr, $

SPHERE=s, FVALUE=f, /DEGREES

; Perform a spherical triangulation using the values returned from
; TRIANGULATE. The result, r, is a 180 by 91 element array:
r=TRIGRID(f, SPHERE=s, [2.,2.],$

[-180.,-90.,178.,90.], /DEGREES)

Example 3

This example demonstrates the use of the INPUT keyword:

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

; Make the Gaussian:
z = EXP(-(x^2 + y^2))

; Show points:
IDL Reference Guide TRIGRID

1306
PLOT, x, y, psym=1

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

;Show the triangles.
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t]

ENDFOR

; The default size for the return value of trigrid. xtemp should be
; the same type as Z. xtemp provides temporary space for trigrid:
xtemp=FLTARR(51,51)
xtemp = TRIGRID(x, y, z, INPUT = xtemp, tr)

; Show linear surface:
SURFACE, xtemp
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, /QUINTIC)

; Show smooth quintic surface:
SURFACE,xtemp
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, EXTRA = b)

; Show smooth extrapolated surface:
SURFACE,xtemp
in=' '
READ,"Press enter",in
END

See Also

SPH_SCAT, TRIANGULATE
TRIGRID IDL Reference Guide

1307

l

etic.

,

TRIQL

The TRIQL procedure uses the QL algorithm with implicit shifts to determine the
eigenvalues and eigenvectors of a real, symmetric, tridiagonal array. The routine
TRIRED can be used to reduce a real, symmetric array to the tridiagonal form
suitable for input to this procedure.

TRIQL is based on the routinetqli described in section 11.3 ofNumerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

TRIQL, D, E, A [, /DOUBLE]

Arguments

D

On input, this argument should be ann-element vector containing the diagonal
elements of the array being analyzed. On output,D contains the eigenvalues.

E

An n-element vector containing the off-diagonal elements of the array.E0 is arbitrary.
On output, this parameter is destroyed.

A

A named variable that returns then eigenvectors. If the eigenvectors of a tridiagona
array are desired,A should be input as an identity array. If the eigenvectors of an
array that has been reduced by TRIRED are desired,A is input as the arrayQ output
by TRIRED.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

To compute eigenvalues and eigenvectors of a real, symmetric, tridiagonal array
begin with an array A representing a symmetric array:
IDL Reference Guide TRIQL

1308
; Create the array A:
A = [[3.0, 1.0, -4.0], $

[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

; Compute the tridiagonal form of A:
TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and the
; eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues:
PRINT, 'Eigenvalues:'
PRINT, D

; Print eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, A

IDL Output

Eigenvalues:
2.00000 4.76837e-7 12.0000

Eigenvectors:
0.707107 -0.707107 0.00000

-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvalues are:

[2.0, 0.0, 12.0]

The exact eigenvectors are:

[1.0/sqrt(2.0), -1.0/sqrt(2.0), 0.0/sqrt(2.0)],
[-1.0/sqrt(3.0), -1.0/sqrt(3.0), -1.0/sqrt(3.0)],
[-1.0/sqrt(6.0), -1.0/sqrt(6.0), 2.0/sqrt(6.0)]

See Also

EIGENVEC, ELMHES, HQR, TRIRED
TRIQL IDL Reference Guide

1309

c

rray.

etic.
TRIRED

The TRIRED procedure uses Householder’s method to reduce a real, symmetri
array to tridiagonal form.

TRIRED is based on the routinetred2 described in section 11.2 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

TRIRED,A, D, E [, /DOUBLE]

Arguments

A

An n by n real, symmetric array that is replaced, on exit, by the orthogonal arrayQ
effecting the transformation. The routine TRIQL can use this result to find the
eigenvectors of the arrayA.

D

An n-element output vector containing the diagonal elements of the tridiagonal a

E

An n-element output vector containing the off-diagonal elements.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

See the description ofTRIQL for an example using this function.

See Also

EIGENVEC, ELMHES, HQR, TRIQL
IDL Reference Guide TRIRED

1310

e

etic.
TRISOL

The TRISOL function solves tridiagonal systems of linear equations that have th
form: ATU = R

Note
Because IDL subscripts are in column-row order, the equation above is written ATU
= R rather than AU = R. The resultU is a vector of lengthn whose type is identical
to A.

TRISOL is based on the routinetridag described in section 2.4 ofNumerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = TRISOL(A, B, C, R [, /DOUBLE])

Arguments

A

A vector of lengthn containing then-1 sub-diagonal elements of AT. The first
element ofA, A0, is ignored.

B

An n-element vector containing the main diagonal elements of AT.

C

An n-element vector containing then-1 super-diagonal elements of AT. The last
element ofC, Cn-1, is ignored.

R

An n-element vector containing the right hand side of the linear system
ATU = R.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm
TRISOL IDL Reference Guide

1311

is no
Example

To solve a tridiagonal linear system, begin with an array representing a real
tridiagonal linear system. (Note that only three vectors need be specified; there
need to enter the entire array shown.)

; Define a vector A containing the sub-diagonal elements with a
; leading 0.0 element:
A = [0.0, 2.0, 2.0, 2.0]

; Define B containing the main diagonal elements:
B = [-4.0, -4.0, -4.0, -4.0]

; Define C containing the super-diagonal elements with a trailing
; 0.0 element:
C = [1.0, 1.0, 1.0, 0.0]

; Define the right-hand side vector:
R = [6.0, -8.0, -5.0, 8.0]

; Compute the solution and print:
result = TRISOL(A, B, C, R)
PRINT, result

IDL Output

-1.00000 2.00000 2.00000 -1.00000

The exact solution vector is [-1.0, 2.0, 2.0, -1.0].

See Also

CRAMER, GS_ITER, LU_COMPLEX, CHOLSOL, LUSOL, SVSOL, TRISOL

4.0– 1.0 0.0 0.0

2.0 4.0– 1.0 0.0

0.0 2.0 4.0– 1.0

0.0 0.0 2.0 4.0–
IDL Reference Guide TRISOL

1312

ical
ble
e
ted

re

:

TRNLOG

The TRNLOG function searches the VMS logical name tables for a specified log
name and returns the equivalence string(s) in an IDL variable. TRNLOG is availa
only under VMS. TRNLOG also returns the VMS status code associated with th
translation as a longword value. As with all VMS status codes, success is indica
by an odd value (least significant bit is set) and failure by an even value.

Syntax

Result = TRNLOG(Lognam, Value [, ACMODE={0 | 1 | 2 | 3}]
[, /FULL_TRANSLATION] [, /ISSUE_ERROR] [, RESULT_ACMODE=variable]
[, RESULT_TABLE=variable] [, TABLE=string])

Arguments

Lognam

A scalar string containing the name of the logical to be translated.

Value

A named variable into which the equivalence string is placed. If Lognam has mo
than one equivalence string, the first one is used. The FULL_TRANSLATION
keyword can be used to obtain all equivalence strings.

Keywords

ACMODE

The access mode to be used in the translation. The possible access modes are

Mode Value

Kernal 0

Executive 1

Supervisor 2

User 3

Table 85: TRNLOG Access Modes
TRNLOG IDL Reference Guide

1313

ged
tion
e

the
he

,
es.

error
on

ode

le

h is
When you specify the ACMODE keyword, all names at access modes less privile
than the specified mode are ignored. If you do not specify ACMODE, the transla
proceeds without regard to access mode. However, the search proceeds from th
outermost (User) to the innermost (Kernal) mode. Thus, if two logical names with
same name but different access modes exist in the same table, the name with t
outermost access mode is used.

FULL_TRANSLATION

Set this keyword to obtain the full set of equivalence strings forLognam. By default,
when translating a multivalued logical name,Valueonly receives the first equivalence
string as a scalar value. When this keyword is set,Valueinstead returns a string array.
Each element of this array contains one of the equivalence strings. For example
under recent versions of VMS, the SYS$SYSROOT logical can have multiple valu
To see these values from within IDL, enter:

; Translate the logical:
ret = TRNLOG('SYS$SYSROOT', trans, /FULL, /ISSUE_ERROR)
; View the equivalence strings:
PRINT, trans

ISSUE_ERROR

Set this keyword to issue an error message if the translation fails. Normally, no
is issued and the user must examine the return value to determine if the operati
failed.

RESULT_ACMODE

If present, this keyword specifies a named variable in which to place the access m
of the translated logical. The access modes are summarized above.

RESULT_TABLE

If present, this keyword specifies a named variable. The name of the logical tab
containing the translated logical is placed in this variable as a scalar string.

TABLE

A scalar string giving the name of the logical table in which to search forLognam. If
TABLE is not specified, the standard VMS logical tables are searched until a matc
found, starting with LNM$PROCESS_TABLE and ending with
LNM$SYSTEM_TABLE.

See Also

GETENV
IDL Reference Guide TRNLOG

1314

n

ies

rror
TS_COEF IDL Reference Guide

TS_COEF

The TS_COEF function computes the coefficientsφ1, φ2, ... ,φP used in aPth order
autoregressive time-series forecasting model. The result is aP-element vector whose
type is identical toX. This routine is written in the IDL language. Its source code ca
be found in the filets_coef.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TS_COEF(X, P [, MSE=variable])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-ser
samples.

P

An integer or long integer scalar that specifies the number of coefficients to be
computed.

Keywords

MSE

Use this keyword to specify a named variable that will contain the mean square e
of thePth order autoregressive model.

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the coefficients of a 5th order autoregressive model:
result = TS_COEF(X, 5)
PRINT, result

IDL Output

1.30168 -0.111783 -0.224527 0.267629 -0.233363

See Also

TS_FCAST

1315

n be

etic.
IDL Reference Guide TS_DIFF

TS_DIFF

The TS_DIFF function recursively computes the forward differences of ann-element
time-seriesk times. The result is ann-element differenced time-series with its lastk
elements as zeros. This routine is written in the IDL language. Its source code ca
found in the filets_diff.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TS_DIFF(X, K [, /DOUBLE])

Arguments

X

An n-element integer, single- or double-precision floating-point vector containing
time-series samples.

K

A positive integer or long integer scalar that specifies the number of timesX is to be
differenced.K must be in the interval [1, N_ELEMENTS(X) - 1].

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define an n-element vector of time-series samples:
X = [389, 345, 303, 362, 412, 356, 325, 375, $

410, 350, 310, 388, 399, 362, 325, 382, $
399, 382, 318, 385, 437, 357, 310, 391]

; Compute the second forward differences of X:
PRINT, TS_DIFF(X, 2)

IDL Output

2 101 -9 -106 25 81 -15 -95 20
118 -67 -48 0 94 -40 -34 -47 131
-15 -132 33 128 0 0

See Also

SMOOTH, TS_FCAST

1316

ries

ed

le

ies

lues
re

es to
TS_FCAST

The TS_FCAST function computes future or past values of a stationary time-se
using aPth order autoregressive model. The result is anNvalues-element vector
whose type is identical toX.

A Pth order autoregressive model relates a forecasted valuext of the time series
X = [x0, x1, x2, ... ,xt-1], as a linear combination ofP past values.

The coefficientsφ1, φ2, ... ,φP are calculated such that they minimize the uncorrelat
random error terms,wt.

This routine is written in the IDL language. Its source code can be found in the fi
ts_fcast.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = TS_FCAST(X, P, Nvalues [, /BACKCAST] [, /DOUBLE])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-ser
samples.

P

An integer or long integer scalar that specifies the number of actual time-series va
to be used in the forecast. In general, a larger number of values results in a mo
accurate forecast.

Nvalues

An integer or long integer scalar that specifies the number of future or past valu
be computed.

Keywords

BACKCAST

Set this keyword to produce past values (backward forecasts or “backcasts”)

xt φ1xt 1– φ2xt 2– … φPxt P– wt+ + + +=
TS_FCAST IDL Reference Guide

1317

etic.
DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute and print five future values of the time-series using ten
; time-series values:
PRINT, TS_FCAST(X, 10, 5)

; Compute five past values of the time-series using ten time-series
;values:
PRINT, TS_FCAST(X, 10, 5, /BACKCAST)

IDL Output

4.65870 4.58380 4.50030 4.48828 4.46971
6.94862 6.91103 6.86297 6.77826 6.70282

See Also

A_CORRELATE, COMFIT, CURVEFIT, SMOOTH, TS_COEF, TS_DIFF
IDL Reference Guide TS_FCAST

1318

are
t. The

le

ies

lues
d (the

the

etic.
TS_SMOOTH

The TS_SMOOTH function computes central, backward, or forward moving
averages of ann-element time-series. Autoregressive forecasting and backcasting
used to extrapolate the time-series and compute a moving average for each poin
result is ann-element vector of the same data type as the input vector.

Note that central moving averages requireNvalues/2 forecasts andNvalues/2
backcasts. Backward moving averages requireNvalues-1 backcasts. Forward moving
averages requireNvalues-1 forecasts.

This routine is written in the IDL language. Its source code can be found in the fi
ts_smooth.pro in thelib subdirectory of the IDL distribution.

Syntax

Result= TS_SMOOTH(X, Nvalues[, /BACKWARD] [, /DOUBLE] [, /FORWARD]
[, ORDER=value])

Arguments

X

An n-element single- or double-precision floating-point vector containing time-ser
samples. Note thatn must be greater than or equal to 11.

Nvalues

A scalar of type integer or long integer that specifies the number of time-series va
used to compute each moving-average. If central-moving averages are compute
default), this parameter must be an odd integer greater than or equal to three.

Keywords

BACKWARD

Set this keyword to compute backward-moving averages. If BACKWARD is set,
Nvalues argument must be an integer greater than one.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm
TS_SMOOTH IDL Reference Guide

1319

odel
me-
odel

ord
FORWARD

Set this keyword to compute forward-moving averages. If FORWARD is set, the
Nvalues argument must be an integer greater than one.

ORDER

An integer or long-integer scalar that specifies the order of the autoregressive m
used to compute the forecasts and backcasts of the time-series. By default, a ti
series with a length between 11 and 219 elements will use an autoregressive m
with an order of 10. A time-series with a length greater than 219 will use an
autoregressive model with an order equal to 5% of its length. The ORDER keyw
is used to override this default.

Example

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99,$

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31,$
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the 11-point central-moving-averages of the time-series:
PRINT, TS_SMOOTH(X, 11)

IDL Output

6.65761 6.60592 6.54673 6.47646 6.40480 6.33364
6.27000 6.20091 6.14273 6.09364 6.04455 5.99000
5.92273 5.85455 5.78364 5.72636 5.65818 5.58000
5.50182 5.42727 5.34182 5.24545 5.15273 5.07000
5.00182 4.94261 4.87205 4.81116 4.75828 4.71280

See Also

SMOOTH, TS_DIFF, TS_FCAST
IDL Reference Guide TS_SMOOTH

1320

sity.

ust

e
ring
e
g

not

ge,

ber
TV

The TV procedure displays images on the image display without scaling the inten
To display an image with scaling, use the TVSCL procedure.

Note
To display a true-color image (an image with 16, 24, or 32 bits per pixel) you m
specify the TRUE keyword.

While the TV procedure does notscale the intensity of an image, it does convert th
input image data to byte type. Values outside the range [0,255] are “wrapped” du
the conversion. In addition, for displays with less than 256 colors, elements of th
input image with values between !D.TABLE_SIZE and 255 will be displayed usin
the color index !D.TABLE_SIZE-1.

Syntax

TV, Image [, Position]

or

TV, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, CHANNEL=value] [, /ORDER]
[, TRUE={1 | 2 | 3}] [, /WORDS] [, XSIZE=value] [, YSIZE=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

Image

A vector or two-dimensional array to be displayed as an image. If this argument is
already of byte type, it is converted prior to use.

X, Y

If X andY are present, they specify the lower-left coordinate of the displayed ima
relative to the lower-left corner of the screen.

Position

An integer specifying the position forImage within the graphics window. Image
positions run from the top left of the screen to the bottom right. If a position num
TV IDL Reference Guide

1321

ns

IZE

s
hen

s 2,

h as
is used instead ofX andY, the position of the image is calculated from the dimensio
of the image as follows (integer arithmetic is used).

For example, when displaying 128 by 128 images on a 512 by 512 display, the
position numbers run from 0 to 15 as follows:

Note
When using a device with scalable pixels (e.g., PostScript), the XSIZE and YS
keywords should also be used.

Channel

The memory channel to be written. It is assumed to be zero if not specified. Thi
parameter is ignored on display systems that have only one memory channel. W
using a “decomposed” display system, the red channel is 1, the green channel i
and the blue channel is 3. Channel 0 indicates all channels.

Keywords

CENTIMETERS

Set this keyword to indicate that theX, Y, Xsize, Ysize, andZ arguments are given in
centimeters from the origin. This system is useful when dealing with devices, suc

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Xsize Ysize, Size of display or window=

Xdim Ydim, Dimensions of image to be displayed=

Nx
Xsize
Ydim
------------- Images across screen= =

X XdimPositionmoduloNx
Starting X= =

Y Ysize Ydim 1 Position
Nx

-------------------+– Starting Y= =
IDL Reference Guide TV

1322

and

rom

e of

for
he

bit)

e
o

e

o be
n
the
n to

. If
PostScript printers, that do not provide a direct relationship between image pixels
the size of the resulting image.

CHANNEL

The memory channel to be written to. The CHANNEL keyword is identical to the
optionalChannel argument.

INCHES

Set this keyword to indicate that all position and size values are given in inches f
the origin. This system is useful when dealing with devices, such as PostScript
printers, that do not provide a direct relationship between image pixels and the siz
the resulting image.

ORDER

If specified, ORDER overrides the current setting of the !ORDER system variable
the current image only. If set, the image is drawn from the top down instead of t
normal bottom up.

TRUE

Set this keyword to a nonzero value to indicate that a true-color (16-, 24-, or 32-
image is to be displayed. The value assigned to TRUE specifies the index of the
dimension over which color is interleaved. The image parameter must have thre
dimensions, one of which must be equal to three. For example, set TRUE to 1 t
display an image that is pixel interleaved and has dimensions of (3,m, n). Specify 2
for row-interleaved images, of size (m, 3,n), and 3 for band-interleaved images of th
form (m, n, 3).

See“True-Color Images” on page 2150 for an example using this keyword to write
24-bit images to the PostScript device.

WORDS

Set this keyword to indicate that words (short integers) instead of 8-bit bytes are t
transferred to the device. This keyword is valid only when using devices that ca
transfer 16-bit pixels. The normal transfer uses 8-bit pixels. If this keyword is set,
Image parameter is converted to short integer type, if necessary, and then writte
the display.

XSIZE

The width of the resulting image. On devices with scalable pixel size (such as
PostScript), if XSIZE is specified the image will be scaled to fit the specified width
neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plotting
TV IDL Reference Guide

1323

l-

ght.
g
l-
area, while preserving the image’s aspect ratio. This keyword is ignored by pixe
based devices that are unable to change the size of their pixels.

YSIZE

The height of the resulting image. On devices with scalable pixel size (such as
PostScript), if YSIZE is specified the image will be scaled to fit the specified hei
If neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plottin
area, while preserving the image’s aspect ratio. This keyword is ignored by pixe
based devices that are unable to change the size of their pixels.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.CHANNEL, DATA, DEVICE, NORMAL, T3D, Z.

Example

; Create and display a simple image:
D = BYTSCL(DIST(256)) & TV, D

; Erase the screen:
ERASE

; Use the position parameter to display a number of images in the
; same window.
; Display the image in the upper left corner.
TV, D, 0

; Display another copy of the image in the next position:
TV, D, 1

See Also

ERASE, SLIDE_IMAGE, TVRD, TVSCL, WIDGET_DRAW, WINDOW
IDL Reference Guide TV

1324

f the
 the
el

 the

 is
TVCRS

The TVCRS procedure manipulates the display device cursor. The initial state o
cursor is device dependent. Call TVCRS with one argument to enable or disable
cursor. Call TVCRS with two parameters to enable the cursor and place it on pix
location(X, Y).

Note
Under Macintosh, the cursor cannot be positioned from an IDL program using
TVCRS procedure. The Macintosh interface does not allow the cursor to be
positioned by any device except the mouse.

Syntax

TVCRS [,ON_OFF]

or

TVCRS [,X, Y]

Keywords: [, /CENTIMETERS | , /INCHES] [, /HIDE_CURSOR] [, /DATA | ,
/DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

ON_OFF

This argument specifies whether the cursor should be on or off. If this argument
present and nonzero, the cursor is enabled. IfON_OFF is zero or no parameters are
specified, the cursor is turned off.

X

The column to which the cursor is set.

Y

The row to which the cursor is set.
TVCRS IDL Reference Guide

1325

e

rrent

her
 for

 be

ter:
Keywords

CENTIMETERS

Set this keyword to cause X and Y to be interpreted as centimeters, based on th
current device resolution.

INCHES

Set this keyword to cause X and Y to be interpreted as inches, based on the cu
device resolution.

HIDE_CURSOR

By default, disabling the cursor works differently for window systems than for ot
devices. For window systems, the cursor is restored to the standard cursor used
non-IDL windows (and remains visible), while for other devices it is completely
blanked out. If the HIDE keyword is set, disabling the cursor causes it to always
blanked out.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.DATA, DEVICE, NORMAL, T3D, Z.

Example

To enable the graphics cursor and position it at device coordinate (100, 100), en

TVCRS, 100, 100

To position the cursor at data coordinate (0.5, 3.2), enter:

TVCRS, 0.5, 3.2, /DATA

See Also

CURSOR, RDPIX
IDL Reference Guide TVCRS

1326

ed
e

,
ha
e and
cribed
stem

lor

ly.
st
fault,

 is
.

TVLCT

The TVLCT procedure loads the display color translation tables from the specifi
variables. Although IDL uses the RGB color system internally, color tables can b
specified to TVLCT using any of the following color systems: RGB (Red, Green
Blue), HLS (Hue, Lightness, Saturation), and HSV (Hue, Saturation, Value). Alp
values may also be used when using the second form of the command. The typ
meaning of each argument is dependent upon the color system selected, as des
below. Color arguments can be either scalar or vector expressions. If no color-sy
keywords are present, the RGB color system is used. SeeUsing IDLChapter 14,
“Image Display Routines” for a more complete explanation of color systems.

Syntax

TVLCT, V1, V2, V3 [, Start] [, /GET] [, /HLS | , /HSV]

or

TVLCT, V [, Start] [, /GET] [, /HLS | , /HSV]

Arguments

TVLCT will accept either threen-element vectors (V1, V2, andV3) or a singlen by 3
array (V) as an argument. The vectors (or columns of the array) have different
meanings depending on the color system chosen. If an arrayV is specified,V[*,0] is
the same asV1, V[*,1] is the same asV2, V[*,2] is the same asV3. In the description
below, we assume that three vectors,V1, V2, andV3 are specified.

TheV1, V2, andV3 arguments have different meanings depending upon which co
system they represent.

R, G, B Color System

The parametersV1, V2, andV3 contain the Red, Green, and Blue values, respective
Values are interpreted as integers in the range 0 (lowest intensity) to 255 (highe
intensity). The parameters can be scalars or vectors of up to 256 elements. By de
the three arguments are assumed to be R, G, and B values.

H, L, S Color System

ParametersV1, V2, andV3 contain the Hue, Lightness, and Saturation values
respectively. All parameters are floating-point. Hue is expressed in degrees and
reduced modulo 360.V2 (lightness) andV3 (saturation) and can range from 0 to 1.0
Set the HLS keyword to have the arguments interpreted this way.
TVLCT IDL Reference Guide

1327

nd

f

alues

or

lor
H, S, V Color System

ParametersV1, V2, andV3 contain values for Hue, Saturation, and Value (similar to
intensity). All parameters are floating-point. Hue is in degrees. The Saturation a
Value can range from 0 to 1.0. Set the HSV keyword to have the arguments
interpreted this way.

Start

An integer value that specifies the starting point in the color translation table into
which the color intensities are loaded. If this argument is not specified, a value o
zero is used, causing the tables to be loaded starting at the first element of the
translation tables.

Keywords

GET

Set this keyword to return the RGB values from the internal color tables into theV1,
V2, andV3 parameters. For example, the statements:

TVLCT, H, S, V, /HSV
TVLCT, R, G, B, /GET

load a color table based in the HSV system, and then read the equivalent RGB v
into the variables R, G, and B.

HLS

Set this keyword to indicate that the parameters specify color using the HLS col
system.

HSV

Set this keyword to indicate that the parameters specify color using the HSV co
system.

Example

; Create a set of R, G, and B colormap vectors:
R = BYTSCL(SIN(FINDGEN(256)))
G = BYTSCL(COS(FINDGEN(256)))
B = BINDGEN(256)

; Load these vectors into the color table:
TVLCT, R, G, B

; Display an image to see the effect of the new color table:
IDL Reference Guide TVLCT

1328
TVSCL, DIST(400)

See Also

LOADCT, XLOADCT, XPALETTE
TVLCT IDL Reference Guide

1329

he
r
e

rly
ing

 X

r

ow
TVRD

The TVRD function returns the contents of the specified rectangular portion of t
current graphics window or device. (X0, Y0) is the coordinate of the lower left corne
of the area to be read andNx, Ny is the size of the rectangle in columns and rows. Th
result is a byte array of dimensionsNx by Ny. All parameters are optional. If no
arguments are supplied, the entire display device area is read.

Important Note about TVRD and Backing Store

On some systems, when backing store is provided by the window system (the
RETAIN keyword to DEVICE or WINDOW is set to 1), reading data from a window
using TVRD may cause unexpected results. For example, data may be imprope
read from the window even when the image displayed on screen is correct. Hav
IDL provide the backing store (set the RETAIN keyword to 2) ensures that the
window contents will be read properly. More detailed notes about TVRD and the
Window system can be found below in“Unexpected Results Using TVRD with X
Windows” on page 1330.

Syntax

Result = TVRD([X0 [, Y0 [, Nx [, Ny [, Channel]]]]] [, CHANNEL= value]
[, /ORDER] [, TRUE={1 | 2 | 3}] [, /WORDS])

Arguments

X0

The starting column of data to read. The default is 0.

Y0

The starting row of data to read. The default is 0.

Nx

The number of columns to read. The default is the width of the display device o
window lessX0.

Ny

The number of rows to read. The default is the height of the display device or wind
lessY0.
IDL Reference Guide TVRD

1330

zero.
el.

nal

for

nsion

is
rmal
rray.

ed

the

 of
Channel

The memory channel to be read. If not specified, this argument is assumed to be
This parameter is ignored on display systems that have only one memory chann

Keywords

CHANNEL

The memory channel to be read. The CHANNEL keyword is identical to the optio
Channel argument.

Note: if the display is a 24-bit display, and both the CHANNEL and TRUE
parameters are absent, the maximum RGB value in each pixel is returned.

ORDER

Set this keyword to override the current setting of the !ORDER system variable
the current image only. If set, it causes the image to be read from the top down
instead of the normal bottom up.

TRUE

If this keyword is present, it indicates that a true-color image is to be read, if the
display is capable. The value assigned to TRUE specifies the index of the dime
over which color is interleaved. The result is an (3,nx, ny) pixel-interleaved array if
TRUE is 1; or an (nx, 3,ny) line-interleaved array if TRUE is 2; or an (nx, ny, 3)
image-interleaved array if TRUE is 3.

WORDS

Set this keyword to indicate that words are to be transferred from the device. Th
keyword is valid only when using devices that can transfer 16-bit pixels. The no
transfer uses 8-bit pixels. If this keyword is set, the function result is an integer a

Unexpected Results Using TVRD with X Windows

When using TVRD with the X Windows graphics device, there are two unexpect
behaviors that can be confusing to users:

• When reading from a window that is obscured by another window (i.e., the
target window has another window “on top” or “in front” of it), TVRD may
return the contents of the window in front as part of the image contained in
target window.

• When reading from an iconified window, the X server may return a stream
“BadMatch” protocol events.
TVRD IDL Reference Guide

1331

 the

ase
ow
as
dow
tents

 this
ent

g

y the
for
IDL uses the Xlib functionXGetSubImage() to implement TVRD. The following
quote is from the documentation for XGetSubImage() found inThe X Window System
by Robert W. Scheifler and James Gettys, Second Edition, page 174. It explains
reasons for the behaviors described above:

“If the drawable is a window, the window must be viewable, and it must be the c
that if there were no... overlapping windows, the specified rectangle of the wind
would be fully visible on the screen, ... or a BadMatch error results. If the window h
backing-store, then the backing-store contents are returned for regions of the win
that are obscured... If the window does not have backing-store, the returned con
of such obscured regions are undefined.”

Hence, the first behavior is caused by attempting to use TVRD on an obscured
window that does not have backing store provided by the X server. The result in
case is undefined, meaning that the different servers can produce entirely differ
results. Many servers simply return the image of the obscuring window.

The second behavior is caused by attempting to read from a non-viewable (i.e.,
unmapped) window. Although IDL could refuse to allow TVRD to work with
unmapped windows, some X servers return valid and useful results. Therefore,
TVRD is allowed to attempt to read from unmapped windows.

Both of these behavior problems can be solved by using one of the following
methods:

• Always make sure that your target window is mapped and is not obscured
before using TVRD on it. The following IDL command can be used:

WSHOW, Window_Index, ICONIC=0

• Make IDL provide backing store (rather than the window system) by settin
the RETAIN keyword to DEVICE or WINDOW equal to 2.

For a full description of backing store, See“Backing Store” on page 2128. Note that
under X Windows, backing store is a request that may or may not be honored b
X server. Many servers will honor backing store for 8-bit visuals but ignore them
24-bit visuals because they require three times as much memory.

Example

; Read the entire contents of the current display device into the
; variable T:
T = TVRD()
IDL Reference Guide TVRD

1332
See Also

RDPIX, TV, WINDOW
TVRD IDL Reference Guide

1333

. The

eters
V
tion

eady

ge.
TVSCL

The TVSCL procedure scales the intensity values ofImage into the range of the
image display and outputs the data to the image display at the specified location
array is scaled so the minimum data value becomes 0 and the maximum value
becomes the maximum number of available colors (held in the system variable
!D.TABLE_SIZE) as follows:

where the maximum and minimum are found by scanning the array. The param
and keywords of the TVSCL procedure are identical to those accepted by the T
procedure. For additional information about each parameter, consult the descrip
of TV.

Syntax

TVSCL, Image [, Position]

or

TVSCL, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, CHANNEL=value] [, /NAN]
[, /ORDER] [, TOP=value] [, TRUE={1 | 2 | 3}] [, /WORDS] [, XSIZE=value]
[, YSIZE=value] [, /DATA | , /DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

Image

A two-dimensional array to be displayed as an image. If this argument is not alr
of byte type, it is converted prior to use.

X, Y

If X andY are present, they specify the lower left coordinate of the displayed ima

Position

Image position. See the discussion of the TV procedure for a full description.

Output !D.TABLE_SIZE
Data Datamin–

Datamax Datamin–
---=
IDL Reference Guide TVSCL

1334

ory

 0 is

ote

been
CL
Channel

The memory channel to be written. This argument is assumed to be zero if not
specified. This parameter is ignored on display systems that have only one mem
channel.

Keywords

TVSCL accepts all of the keywords accepted by the TV routine. See“TV” on
page 1320. In addition, there are two unique keywords:

NAN

Set this keyword to cause TVSCL to treat elements ofImage that are not numbers
(that is, elements that have the special floating-point valuesInfinity or NaN) as
missing data, and display them using color index 0 (zero). Note that color index
also used to display elements that have the minimum value in theImage array.

TOP

The maximum value of the scaled result. If TOP is not specified, 255 is used. N
that the minimum value of the scaled result is always 0.

Example

Display a floating-point array as an image using the TV command. Enter:

TV, DIST(200)

Note that the image is not easily visible because the values in the array have not
scaled into the full range of display values. Now display the image with the TVS
command by entering:

TVSCL, DIST(200)

Notice how much brighter the image appears.

See Also

ERASE, SLIDE_IMAGE, TV, WIDGET_DRAW, WINDOW
TVSCL IDL Reference Guide

1335

l

ts are
w

t to
UINDGEN

The UINDGEN function returns an unsigned integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensiona
subscript.

Syntax

Result = UINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create UI, a 10-element by 10-element 16-bit array where each element is se
the value of its one-dimensional subscript, enter:

UI = UINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide UINDGEN

1336

lt.
s can

ar.

tain
s to
ed to

ger
UINT

The UINT function returns a result equal toExpressionconverted to unsigned integer
type.

Syntax

Result = UINT(Expression[, Offset [, Dim1, ...,Dim8]])

Arguments

Expression

The expression to be converted to unsigned integer.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as unsigned integer data. See
the description inChapter 5, “Constants” of Building IDL Applcations for details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid integer and no conversion is possible. The default action in such cases i
print a warning message and return 0. The ON_IOERROR procedure can be us
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned inte
and stored in the variable B by entering:

B = UINT(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, ULONG, ULONG64
UINT IDL Reference Guide

1337

is

 enter:
UINTARR

The UINTARR function returns an unsigned integer vector or array.

Syntax

Result = UINTARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, UINTARR sets every element of the result to zero. If NOZERO is set, th
zeroing is not performed and UINTARR executes faster.

Example

To create L, a 100-element, unsigned integer vector with each element set to 0,

L = UINTARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, ULON64ARR, ULONARR
IDL Reference Guide UINTARR

1338

ts are
w

o the
UL64INDGEN

The UL64INDGEN function returns an unsigned 64-bit integer array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = UL64INDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create L, a 10-element by 10-element 64-bit array where each element is set t
value of its one-dimensional subscript, enter:

L = UL64INDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, ULINDGEN
UL64INDGEN IDL Reference Guide

1339

l

ts are
w

o the
ULINDGEN

The ULINDGEN function returns an unsigned longword array with the specified
dimensions. Each element of the array is set to the value of its one-dimensiona
subscript.

Syntax

Result = ULINDGEN(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified. If the dimension argumen
not integer values, IDL will convert them to integer values before creating the ne
array.

Example

To create L, a 10-element by 10-element 32-bit array where each element is set t
value of its one-dimensional subscript, enter:

L = ULINDGEN(10, 10)

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN
IDL Reference Guide ULINDGEN

1340

et,

nter:
ULON64ARR

The ULON64ARR function returns an unsigned 64-bit integer vector or array.

Syntax

Result = ULON64ARR(D1, ..., D8)

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULON64ARR sets every element of the result to zero. If NOZERO is s
this zeroing is not performed and ULON64ARR executes faster.

Example

To create L, a 100-element, unsigned 64-bit vector with each element set to 0, e

L = ULON64ARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULONARR
ULON64ARR IDL Reference Guide

1341

his

 0,
ULONARR

The ULONARR function returns an unsigned longword integer vector or array.

Syntax

Result = ULONARR(D1, ...,D8 [, /NOZERO])

Arguments

Di

The dimensions of the result. The dimension parameters can be any scalar
expression. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULONARR sets every element of the result to zero. If NOZERO is set, t
zeroing is not performed and ULONARR executes more quickly.

Example

To create L, a 100-element, unsigned longword vector with each element set to
enter:

L = ULONARR(100)

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR,
IDL Reference Guide ULONARR

1342

lt.
s can

ar.

tain
s to
ed to
ULONG

The ULONG function returns a result equal toExpression converted to the unsigned
longword integer type.

Syntax

Result = ULONG(Expression[, Offset [, Dim1, ...,Dim8]])

Arguments

Expression

The expression to be converted to unsigned longword integer.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpression to be treated as unsigned longword integer
data. See the description inChapter 5, “Constants” of Building IDL Applcations for
details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid integer and no conversion is possible. The default action in such cases i
print a warning message and return 0. The ON_IOERROR procedure can be us
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned
longword integer and stored in the variable B by entering:

B = ULONG(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG64
ULONG IDL Reference Guide

1343

a.

lt.
s can

ar.

tain
s to
ed to

-bit
ULONG64

The ULONG64 function returns a result equal toExpression converted to the
unsigned 64-bit integer type.

Syntax

Result = ULONG64(Expression[, Offset [, Dim1, ...,Dim8]])

Arguments

Expression

The expression to be converted to unsigned 64-bit integer.

Offset

Offset from beginning of theExpression data area. Specifying this argument allows
fields of data extracted fromExpressionto be treated as unsigned 64-bit integer dat
See the description inChapter 5, “Constants”of Building IDL Applcationsfor details.

Di

When extracting fields of data, theDi arguments specify the dimensions of the resu
The dimension parameters can be any scalar expression. Up to eight dimension
be specified. If no dimension arguments are given, the result is taken to be scal

When converting from a string argument, it is possible that the string does not con
a valid integer and no conversion is possible. The default action in such cases i
print a warning message and return 0. The ON_IOERROR procedure can be us
establish a statement to be jumped to in case of such errors.

Example

If A contains the floating-point value 32000.0, it can converted to an unsigned 64
integer and stored in the variable B by entering:

B = ULONG64(A)

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG
IDL Reference Guide ULONG64

1344

te
nded

last
is a

le

nto

f

UNIQ

The UNIQ function returns the subscripts of the unique elements in an array. No
that repeated elements must be adjacent in order to be found. This routine is inte
to be used with the SORT function: see the examples below. This function was
inspired by the UNIXuniq(1) command.

UNIQ returns an array of indices into the original array. Note that the index of the
element in each set of non-unique elements is returned. The following expression
copy of the sorted array with duplicate adjacent elements removed:

Array(UNIQ(Array))

UNIQ returns 0 (zero) if the argument supplied is a scalar rather than an array.

This routine is written in the IDL language. Its source code can be found in the fi
uniq.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = UNIQ(Array [, Index])

Arguments

Array

The array to be scanned. For UNIQ to work properly, the array must be sorted i
monotonic order unless the optional parameterIdx is supplied.

Index

This optional parameter is an array of indices intoArray that order the elements into
monotonic order. That is, the expression:

Array(Index)

yields an array in which the elements ofArray are rearranged into monotonic order. I
the array is not already in monotonic order, use the command:

UNIQ(Array, SORT(Array))

Examples

Find the unique elements of an unsorted array:

; Create an array:
array = [1, 2, 1, 2, 3, 4, 5, 6, 6, 5]
UNIQ IDL Reference Guide

1345
; Variable B holds an array containing the sorted, unique values in
; array:
b = array(UNIQ(array, SORT(array)))
PRINT, b

IDL prints

1 2 3 4 5 6

See Also

SORT, WHERE
IDL Reference Guide UNIQ

1346

ts

ces.

ata
wn

r is

s

1.0.

y

USERSYM

The USERSYM procedure is used to define the plotting symbol that marks poin
when the plotting symbol is set to plus or minus 8. Symbols can be drawn with
vectors or can be filled. Symbols can be of any size and can have up to 50 verti
See“Defining Your Own Plotting Symbols” in Chapter 11 ofUsing IDL.

Syntax

USERSYM,X [, Y] [, COLOR=value] [, /FILL] [, THICK= value]

Arguments

X, Y

TheX and/orY parameters define the vertices of the symbol as offsets from the d
point in units of approximately the size of a character. In the case of a vector dra
symbol, the symbol is formed by connecting the vertices in order. If only one
argument is specified, it must be a (2,N) array of vertices, with element [0,i]
containing the X coordinate of the vertex, and element [1,i] containing the Y. If both
arguments are provided,X contains only the X coordinates.

Keywords

COLOR

The color used to draw the symbols, or used to fill the polygon. The default colo
the same as the line color.

FILL

Set this keyword to fill the polygon defined by the vertices. If FILL is not set, line
are drawn connecting the vertices.

THICK

The thickness of the lines used in drawing the symbol. The default thickness is

Example

Make a large, diamond-shaped plotting symbol. Define the vectors of X values b
entering:

X = [-6, 0, 6, 0, -6]
USERSYM IDL Reference Guide

1347
Define the vectors of Y values by entering:

Y = [0, 6, 0, -6, 0]

Now call USERSYM to create the new plotting symbol 8. Enter:

USERSYM, X, Y

Generate a simple plot to test the plotting symbol by entering:

PLOT, FINDGEN(20), PSYM = 8

See Also

PLOT
IDL Reference Guide USERSYM

1348

r
r

al

e
(not-
VALUE_LOCATE

The VALUE_LOCATE function finds the intervals within a given monotonic vecto
that brackets a given set of one or more search values. This function is useful fo
interpolation and table-lookup, and is an adaptation of the locate() routine in
Numerical Recipes. VALUE_LOCATE uses the bisection method to locate the
interval.

Syntax

Result = VALUE_LOCATE (Vector, Value)

Return Value

Each return value, Result [i], is an index, j, into Vector, corresponding to the interv
into which the given Value [i] falls. The returned values are in the range –1≤ j ≤ N-1,
where N is the number of elements in the input vector.

If Vector is monotonically increasing, the result j is:

if j = –1 Value [i] < Vector [0]

if 0 ≤ j < N-1 Vector [j] ≤ Value [i] < Vector [j+1]

if j = N-1 Vector [N-1] ≤ Value [i]

If Vector is monotonically decreasing

if j = –1 Vector [0] ≤ Value [i]

if 0 ≤ j < N-1 Vector [j+1] ≤ Value [i] < Vector [j]

if j = N-1 Value [i] < Vector [N-1]

Arguments

Vector

A vector of monotonically increasing or decreasing values. Vector may be of typ
string, or any numeric type except complex, and may not contain the value NaN
a-number).
VALUE_LOCATE IDL Reference Guide

1349

e
ents
Value

The value for which the location of the intervals is to be computed. Value may b
either a scalar or an array. The return value will contain the same number of elem
as this parameter.

Keywords

None.

Example

; Define a vector of values.
vec = [2,5,8,10]

; Compute location of other values within that vector.
loc = VALUE_LOCATE(vec, [0,3,5,6,12])
PRINT, loc

IDL prints:

-1 0 1 1 3
IDL Reference Guide VALUE_LOCATE

1350

data

ing-
VARIANCE

The VARIANCE function computes the statistical variance of ann-element vector.

Syntax

Result = VARIANCE(X [, /DOUBLE] [, /NAN])

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, VARIANCE performs its computations in double precision
arithmetic and returns a double precision result. If this keyword is not set, the
computations and result depend upon the type of the input data (integer and float
return float results, while double data returns double results).

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE float
point value NaN in the input data. Elements with the value NaN are treated as
missing data. (See“Special Floating-Point Values” in Chapter 15 ofBuilding IDL
Applcations for more information on IEEE floating-point values.)

Example

; Define the n-element vector of sample data:
x = [1, 1, 1, 2, 5]
; Compute the variance:
result = VARIANCE(x)
PRINT, result

IDL prints:

3.00000

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS
VARIANCE IDL Reference Guide

1351

es

r.

tion.

,

VAX_FLOAT

The VAX_FLOAT function performs one of two possible actions:

1. Determine, and optionally change, the default value for the VAX_FLOAT
keyword to the OPEN procedures and the CALL_EXTERNAL function.

2. Determine if an open file unit has the VAX_FLOAT attribute set.

See the discussion of VAX floating-point conversion inAppendix A, “VMS Floating-
Point Arithmetic in IDL” in Building IDL Applcations and the VAX_FLOAT
keyword to“OPEN” on page 863 for more on the VAX floating-point conversion
issue.

Syntax

Result = VAX_FLOAT([Default] [, FILE_UNIT=lun])

Arguments

Default

Default is used to change the default value of the VAX_FLOAT keyword to the
OPEN procedures and the CALL_EXTERNAL function. A value of 0 (zero) mak
the default for those keywords False. A non-zero value makes the default True.
SpecifyingDefault in conjunction with the FILE_UNIT keyword will cause an erro

Note
If the FILE_UNIT keyword isnot specified, the value returned from VAX_FLOAT
is the default valuebefore any change is made. This is the case even ifDefault is
specified. This allows you to get the old setting and change it in a single opera

Keywords

FILE_UNIT

Set this keyword equal to the logical file unit number (LUN) of an open file.
VAX_FLOAT returns True (1) if the file was opened with the VAX_FLOAT attribute
or False (0) otherwise. Setting the FILE_UNIT keyword when theDefault argument
is specified will cause an error.
IDL Reference Guide VAX_FLOAT

1352

d

Example

To determine if the default VAX_FLOAT keyword value for OPEN and
CALL_EXTERNAL is True or False:

default_vax_float = VAX_FLOAT()

To determine the current default value of the VAX_FLOAT keyword for OPEN an
CALL_EXTERNAL and change it to True (1) in a single operation:

old_vax_float = VAX_FLOAT(1)

To determine if the file currently open on logical file unit 1 was opened with the
VAX_FLOAT keyword set:

file_is_vax_float = VAX_FLOAT(FILE_UNIT=1)

See Also

CALL_EXTERNAL, OPEN, “Command Line Options” in Chapter 4 ofUsing IDL,
andAppendix A, “VMS Floating-Point Arithmetic in IDL” in Building IDL
Applcations.
VAX_FLOAT IDL Reference Guide

1353

as

en

is

r
d as
int in
VECTOR_FIELD
The VECTOR_FIELD procedure is used to place colored, oriented vectors of
specified length at each vertex in an input vertex array. The output can be sent
directly to an IDLgrPolyline object. The generated display is generally referred to
a hedgehog display and is used to convey various aspects of a vector field.

Syntax

VECTOR_FIELD,Field, Outverts, Outconn [, ANISOTROPY=array]
[, SCALE=value] [, VERTICES=array]

Arguments

Field

Input vector field array. This can be a [3,x, y, z] array or a [2,x, y] array. The leading
dimension is the vector quantity to be displayed.

Outverts

Output vertex array ([3,N] or [2, N] array of floats). Useful if the routine is to be used
with Direct Graphics or the user wants to manipulate the data directly.

Outconn

Output polyline connectivity array to be applied to the output vertices.

Keywords

ANISOTROPY

Set this keyword to a two- or three-element array describing the distance betwe
grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

SCALE

Set this keyword to a scalar scaling factor. All vector lengths are multiplied by th
value. The default is 1.0.

VERTICES

Set this keyword to a [3,n] or [2, n] array of points. If this keyword is set, the vecto
field is interpolated at these points. The resulting interpolated vectors are displaye
line segments at these locations. If the keyword is not set, each spatial sample po
the input Field grid is used as the base point for a line segment.
IDL Reference Guide VECTOR_FIELD

1354

le

s

ctor

re
VEL

The VEL procedure draws a velocity (flow) field with arrows following the field
proportional in length to the field strength. Arrows are composed of a number of
small segments that follow the streamlines.

This routine is written in the IDL language. Its source code can be found in the fi
vel.pro in thelib subdirectory of the IDL distribution.

Syntax

VEL, U, V [, NVECS=value] [, XMAX= value{ xsize/ysize}]
[, LENGTH=value{ longest/steps}] [, NSTEPS=value] [, TITLE=string]

Arguments

U

The X component at each point of the vector field.U must be a 2D array.

V

The Y component at each point of the vector field.V must have the same dimension
asU.

Keywords

LENGTH

The length of each arrow line segment expressed as a fraction of the longest ve
divided by the number of steps. The default is 0.1.

NSTEPS

The number of shoots or line segments for each arrow. The default is 10.

NVECS

The number of vectors (arrows) to draw. If this keyword is omitted, 200 vectors a
drawn.

TITLE

A string containing the title for the plot.
VEL IDL Reference Guide

1355

red
XMAX

X axis size as a fraction of Y axis size. The default is 1.0. This argument is igno
when !P.MULTI is set.

Example

; Create a vector of X values:
X = DIST(20)

; Create a vector of Y values:
Y = SIN(X)*100

; Plot the vector field:
VEL, X, Y

See Also

FLOW3, PLOT_FIELD, VELOVECT
IDL Reference Guide VEL

1356

e

le

s

n

ay be
VELOVECT

The VELOVECT procedure produces a two-dimensional velocity field plot. A
directed arrow is drawn at each point showing the direction and magnitude of th
field.

This routine is written in the IDL language. Its source code can be found in the fi
velovect.pro in thelib subdirectory of the IDL distribution.

Syntax

VELOVECT, U, V [, X, Y] [, COLOR=index] [, MISSING=value [, /DOTS]]
[, LENGTH=value] [Also accepts all PLOT keywords]

Arguments

U

The X component of the two-dimensional field.U must be a two-dimensional array.

V

The Y component of the two dimensional field.V must have the same dimensions a
U.

X

Optional abcissae values.X must be a vector with a length equal to the first dimensio
of U andV.

Y

Optional ordinate values.Y must be a vector with a length equal to the second
dimension ofU andV.

Keywords

Note
Keywords not described here are passed directly to the PLOT procedure and m
used to set options such as TITLE, POSITION, NOERASE, etc.

COLOR

Set this keyword equal to the color index used for the plot.
VELOVECT IDL Reference Guide

1357

 or
d.

t

han
DOTS

Set this keyword to 1 to place a dot at each missing point. Set this keyword to 0
omit it to draw nothing for missing points. Has effect only if MISSING is specifie

LENGTH

Set this keyword equal to the length factor. The default of 1.0 makes the longes
(U,V) vector the length of a cell.

MISSING

Set this keyword equal to the missing data value. Vectors with a length greater t
MISSING are ignored.

PLOT Keywords

In addition to the keywords described above, all other keywords accepted by the
PLOT procedure are accepted by VELOVECT. SeePLOT.

Example

; Create some random data:
U = RANDOMN(S, 20, 20)
V = RANDOMN(S, 20, 20)

; Plot the vector field:
VELOVECT, U, V

; Plot the field, using dots to represent vectors with values
; greater than 18:
VELOVECT, U, V, MISSING=18, /DOTS

; Plot with a title. Note that the XTITLE keyword is passed
; directly to the PLOT procedure:
VELOVECT, U, V, MISSING=18, /DOTS, XTITLE='Random Vectors'

See Also

FLOW3, PLOT, PLOT_FIELD, VEL
IDL Reference Guide VELOVECT

1358

nd

le

trix

ory.
VERT_T3D

The VERT_T3D function transforms a 3D array by a 4x4 transformation matrix a
returns the transformed array. The 3D points are typically an array of polygon
vertices that were generated by SHADE_VOLUME or MESH_OBJ.

This routine is written in the IDL language. Its source code can be found in the fi
vert_t3d.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = VERT_T3D(Vertex_List [, MATRIX= 4x4_array] [, /NO_COPY]
[, /NO_DIVIDE [, SAVE_DIVIDE=variable]])

Arguments

Vertex_List

A 3 x n array of 3D coordinates to transform.

Keywords

MATRIX

The 4x4 transformation matrix to use. The default is to use the system viewing ma
(!P.T).

NO_COPY

Normally, a copy ofVertex_list is transformed and the originalVertex_list is
preserved. If NO_COPY is set, however, then the originalVertex_List will be
undefined after the call to VERT_T3D. Using the NO_COPY requires less mem

NO_DIVIDE

Normally, when a [x, y, z, 1] vector is transformed by a 4x4 matrix, the final
homogeneous coordinates are obtained by dividing thex, y, andz components of the
result vector by the fourth element in the result vector. Setting the NO_DIVIDE
keyword will prevent VERT_T3D from performing this division. In some cases
(usually when a perspective transformation is involved) the fourth element in the
result vector can be very close to (or equal to) zero.
VERT_T3D IDL Reference Guide

1359

 the

+2.0
SAVE_DIVIDE

Set this keyword to a named variable that will hold receive the fourth element of
transformed vector(s). IfVertex_list is a vector then SAVE_DIVIDE is a scalar. If
Vertex_list is an array then SAVE_DIVIDE is an array ofn elements. This keyword
only has effect when the NO_DIVIDE keyword is set.

Example

Transform four points representing a square in the x-y plane by first translating
in the positive X direction, and then rotating 60.0 degrees about the Y axis.

points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], $
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]

T3D, /RESET
T3D, TRANSLATE=[2.0, 0.0, 0.0]
T3D, ROTATE=[0.0, 60.0, 0.0]
points = VERT_T3D(points)

See Also

T3D
IDL Reference Guide VERT_T3D

1360

o

t

VOIGT

The VOIGT function returns the intensity of an atomic absorption line profile (als
known as a VOIGT profile) based on the Voigt damping parametera and the
frequency offsetu, in units of the Doppler width. The result is always floating-poin
and has the same structure as the arguments. Note thata andu should not both be
vectors.

The returned line profileφ(a, u) is defined as:

whereH is the classical Voigt function:

The Doppler width∆vD (assuming no turbulence), is defined as:

whereν0 is the line center frequency. The dimensionless frequency offsetu and the
damping parametera are determined by:

Here,Γ is the transition rate:

whereγ is the spontaneous decay rate, andνcol is the atomic collision rate. See
Radiative Processes in Astrophysics by G. B. Rybicki and A. P. Lightman (1979) p
291 for more information. The algorithm is from Armstrong,JQSRT 7, 85. (1967).

φ a u,() H a u,()
∆vD π
------------------≡

H a u,() a
π
--- e y2– yd

a2 u y–()2+

∞–

∞

∫=

∆vD

ν0

c
-----b

ν0

c
----- 2kT m⁄= =

u
ν ν0–

∆νD
--------------=

a Γ
4π∆νD
-----------------=

Γ γ 2νcol+=
VOIGT IDL Reference Guide

1361
Syntax

Result = VOIGT(A, U)

Arguments

A

The Voigt damping parameter.

U

The dimensionless frequency offset in Doppler widths.

See Also

LEEFILT, ROBERTS, SOBEL
IDL Reference Guide VOIGT

1362

f a

in a

plus

le
VORONOI

The VORONOI procedure computes the Voronoi polygon of a point within an
irregular grid of points, given the Delaunay triangulation. The Voronoi polygon o
point contains the region closer to that point than to any other point.

For interior points, the polygon is constructed by connecting the midpoints of the
lines connecting the point with its Delaunay neighbors. Polygons are traversed
counterclockwise direction.

For exterior points, the set is described by the midpoints of the connecting lines,
the circumcenters of the two triangles that connect the point to the two adjacent
exterior points.

This routine is written in the IDL language. Its source code can be found in the fi
voronoi.pro in thelib subdirectory of the IDL distribution.

Syntax

VORONOI,X, Y, I0, C, Xp, Yp, Rect

Arguments

X

An array containing the X locations of the points.

Y

An array containing the Y locations of the points.

I0

An array containing the indices of the points.

C

A connectivity list from the Delaunay triangulation. This list is produced with the
CONNECTIVITY keyword of the TRIANGULATE procedure.

Xp, Yp

Named variables that will contain the X and Y vertices of Voronoi polygon.
VORONOI IDL Reference Guide

1363

on
e

 be
t to a
Rect

The bounding rectangle: [Xmin, Ymin, Xmax, Ymax]. Because the Voronoi polyg
(VP) for points on the convex hull extends to infinity, a clipping rectangle must b
supplied to close the polygon. This rectangle has no effect on the VP of interior
points. If this rectangle does not enclose all the Voronoi vertices, the results will
incorrect. If this parameter, which must be a named variable, is undefined or se
scalar value, it will be calculated.

Example

To draw the Voronoi polygons of each point of an irregular grid:

N = 20

; Create a random grid of N points:
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; Triangulate it:
TRIANGULATE, X, Y, tr, CONN=C

FOR I=0, N-1 DO BEGIN & $
; Get the ith polygon:
VORONOI, X, Y, I, C, Xp, Yp & $

; Draw it:
POLYFILL, Xp, Yp, COLOR = (I MOD 10) + 2 & $

ENDFOR

See Also

TRIANGULATE
IDL Reference Guide VORONOI

1364

rom

ng the

f the

 by

tion

ume
ume
d Z

lor
s:

s of
aled
VOXEL_PROJ

The VOXEL_PROJ function generates visualizations of volumetric data by
computing 2D projections of a colored, semi-transparent volume. Parallel rays f
any given direction are cast through the volume, onto the viewing plane. User-
selected colors and opacities can be assigned to arbitrary data ranges, simulati
appearance of the materials contained within the volume.

The VOXEL_PROJ function can be combined with the Z-buffer to render volume
data over objects. Cutting planes can also be specified to view selected portions o
volume. Other options include: selectable resolution to allow quick “preview”
renderings, and average and maximum projections.

VOXEL_PROJ renders volumes using an algorithm similar to the one described
Drebin, Carpenter, and Hanrahan, in “Volume Rendering”,Computer Graphics,
Volume 22, Number 4, August 1988, pp. 125-134, but without the surface extrac
and enhancement step.

Voxel rendering can be quite time consuming. The time required to render a vol
is proportional to the viewing areas size, in pixels, times the thickness of the vol
cube in the viewing direction, divided by the product of the user-specified X, Y, an
steps.

Syntax

Result = VOXEL_PROJ(V [, RGBO] [, BACKGROUND=array]
[, CUTTING_PLANE=array] [, /INTERPOLATE] [, /MAXIMUM_INTENSITY]
[, STEP=[Sx, Sy, Sz]] [, XSIZE=pixels] [, YSIZE=pixels] [, ZBUFFER=int_array]
[, ZPIXELS=byte_array])

Arguments

V

A three-dimensional array containing the volume to be rendered. This array is
converted to byte type if necessary.

RGBO

This optional parameter is used to specify the look-up tables that indicate the co
and opacity of each voxel value. This argument can be one of the following type

• A (256, 4) byte array for true-color rendering. This array represents 256 set
red, green, blue, and opacity (RGBO) components for each voxel value, sc
VOXEL_PROJ IDL Reference Guide

1365

ady

erial
ys.

lay.

lt is

es

ch
word

ting

um
into the range of bytes (0 to 255). The R, G, and B components should alre
be scaled by the opacity. For example, if a voxel value of 100 contains a
material that is red, and 35% opaque, the RGBO values should be,
respectively: [89, 0, 0, 89] because 255 * 0.35 = 89. If more than one mat
is present, the RGBO arrays contain the sum of the individual RGBO arra
The content and shape of the RGBO curves is highly dependent upon the
volume data and experimentation is often required to obtain the best disp

• A (256, 2) byte array for volumes with only one material or monochrome
rendering. This array represents 256 sets of pixel values and their
corresponding opacities for each voxel value.

• If this argument is omitted, the average projection method, or maximum
intensity method (if the MAXIMUM_INTENSITY keyword is set) is used.

Keywords

BACKGROUND

A one- or three-element array containing the background color indices. The defau
(0,0,0), yielding a black background with most color tables.

CUTTING_PLANE

A floating-point array specifying the coefficients of additional cutting planes. The
array has dimensions of (4, N), where N is the number of additional cutting plan
from 1 to 6. Cutting planes are constraints in the form of:

C[0] * X + C[1] * Y + C[2] * Z + D > 0

The X, Y, and Z coordinates are specified in voxel coordinates. For example, to
specify a cutting plane that excludes all voxels with an X value greater than 10:

CUTTING_PLANE = [-1.0, 0, 0, 10.], for the constraint: -X + 10 > 0.

INTERPOLATE

Set this keyword to use tri-linear interpolation to determine the data value for ea
step on a ray. Otherwise, the nearest-neighbor method is used. Setting this key
improves the quality of images produced, especially when the volume has low
resolution in relation to the size of the viewing plane, at the cost of more compu
time.

MAXIMUM_INTENSITY

Set this keyword to make the value of each pixel in the viewing plane the maxim
data value along the corresponding ray. TheRGBO argument is ignored if present.
IDL Reference Guide VOXEL_PROJ

1366

 Y
on,

e
s
ut

ge

ins
ly-
, for

 the
 a Z-

d an
want
STEP

Set this keyword to a three-element vector, [Sx, Sy, Sz], that controls the resolution of
the resulting projection. The first two elements contain the step size in the X and
view plane, in pixels. The third element is the sampling step size in the Z directi
given in voxels.SxandSymust be integers equal to or greater than one, whileSzcan
contain a fractional part. IfSx or Sy are greater than one, the values of intermediat
pixels in the output image are linearly interpolated. Higher step sizes require les
time because fewer rays are cast, at the expense of lower resolution in the outp
image.

XSIZE

The width, in pixels, of the output image. If this keyword is omitted, the output ima
is as wide as the currently-selected output device.

YSIZE

The height, in pixels, of the output image. If this keyword is omitted, the output
image is as tall as the currently selected output device.

ZBUFFER

An integer array, with the same width and height as the output image, that conta
the depth portion of the Z-buffer. Include this parameter to combine the previous
read contents of a Z-buffer with a voxel rendering. See the third example, below
details.

ZPIXELS

A byte array, with the same width and height as the output image, that contains
image portion of the Z-buffer. Include this parameter to combine the contents of
buffer with a voxel rendering. See the third example, below, for details.

Examples

Example 1

In the following example, assume that variableV contains a volume of data, with
dimensionsVx by Vy by Vz. The volume contains two materials, muscle tissue
represented by a voxel range of 50 to 70, that we want to render with red color, an
opacity of 20; and bone tissue represented by a voxel range of 220-255, that we
to render with white color, and an opacity of 50:

; Create the opacity vector:
rgbo = BYTARR(256,4)
VOXEL_PROJ IDL Reference Guide

1367

e

pute

ut

ain
; Red and opacity for muscle:
rgbo[50:70, [0,3]] = 20

; White and opacity for bone:
rgbo[220:255, *] = 50

Example 2

Although it is common to use trapezoidal or Gaussian functions when forming th
RGBO arrays, this example uses rectangular functions for simplicity.

; Set up the axis scaling and default rotation:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute projected image:
C = VOXEL_PROJ(V, rgbo)

; Convert from 24-bit to 8-bit image and display:
TV, COLOR_QUAN(C, 3, R, G, B)

; Load quantized color tables:
TVLCT, R, G, B

This example required approximately 27 seconds on a typical workstation to com
the view in a 640- by 512-pixel viewing window. Adding the keyword
STEP=[2,2,1] in the call to VOXEL_PROJ decreased the computing time to abo
8 seconds, at the expense of slightly poorer resolution.

When viewing a volume with only one constituent, the RGBO array should cont
only an intensity/opacity value pair. To illustrate, if in the above example, only
muscle was of interest we create the RGBO argument as follows:

; Create an empty 256 x 2 array:
rgbo = BYTARR(256,2)

; Intensity and opacity for muscle:
rgbo[50:70, *] = 20
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute and display the projected image:
TV, VOXEL_PROJ(V, rgbo)

; Create color table array for red:
C = (FINDGEN(256)/255.) # [255., 0., 0]

; Load colors:
TVLCT, C[*,0], C[*,1], C[*,2]
IDL Reference Guide VOXEL_PROJ

1368

r:
Example 3

This example demonstrates combining a volume with the contents of the Z-buffe

; Set plotting to Z-buffer:
SET_PLOT, 'Z'

; Turn on Z buffering:
DEVICE, /Z_BUFFER

; Set scaling:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Draw a polygon at z equal to half the depth:
POLYFILL, [0, Vx-1, Vx-1, 0], [0, 0, Vy-1, Vy-1], Vz/2., /T3D

; Read pixel values from the Z-buffer:
zpix = TVRD()

; Read depth values from the Z-buffer:
zbuff = TVRD(/WORDS,/CHAN)

; Back to display window:
SET_PLOT, 'X'

; Compute the voxel projection and use the ZPIXELS and ZBUFFER
; keywords to combine the volume with the previously-read contents
; of the Z-buffer:
C = VOXEL_PROJ(V, rgbo, ZPIX=zpix, ZBUFF=zbuff)

;Convert from 24-bit to 8-bit image and display.
TV, COLOR_QUAN(C, 3, R, G, B)

; Load the quantized color tables:
TVLCT, R, G, B

See Also

POLYSHADE, PROJECT_VOL, RECON3, SHADE_VOLUME
VOXEL_PROJ IDL Reference Guide

1369

od.
sion

oint

, use
WAIT

The WAIT procedure suspends execution of an IDL program for a specified peri
Note that because of other activity on the system, the duration of program suspen
may be longer than requested.

Syntax

WAIT, Seconds

Arguments

Seconds

The duration of the wait, specified in seconds. This parameter can be a floating-p
value to specify a fractional number of seconds.

Example

To make an IDL program suspend execution for about five and one half seconds
the command:

WAIT, 5.5

See Also

EXIT, STOP
IDL Reference Guide WAIT

1370

ns

lt.

le

age.
WARP_TRI

The WARP_TRI function returns an image array with a specified geometric
correction applied. Images are warped using control (tie) points such that locatio
(Xi, Yi) are shifted to (Xo, Yo).

The irregular grid defined by (Xo, Yo) is triangulated using TRIANGULATE. Then
the surfaces defined by (Xo, Yo, Xi) and (Xo, Yo, Yi) are interpolated using TRIGRID
to get the locations in the input image of each pixel in the output image. Finally,
INTERPOLATE is called to obtain the result. Linear interpolation is used by defau
Smooth quintic interpolation is used if the QUINTIC keyword is set.

This routine is written in the IDL language. Its source code can be found in the fi
warp_tri.pro in thelib subdirectory of the IDL distribution.

Syntax

Result= WARP_TRI(Xo, Yo, Xi, Yi, Image[, OUTPUT_SIZE=vector] [, /QUINTIC]
[, /EXTRAPOLATE])

Arguments

Xo, Yo

Vectors containing the locations of the control (tie) points in the output image.

Xi, Yi

Vectors containing the location of the control (tie) points in the input image.Xi andYi
must be the same length asXo andYo.

Image

The image to be warped. May be any type of data.

Keywords

OUTPUT_SIZE

Set this keyword equal to a 2-element vector containing the size of the output im
If omitted, the output image is the same size asImage.
WARP_TRI IDL Reference Guide

1371

er
than

this
QUINTIC

Set this keyword to use smooth quintic interpolation. Quintic interpolation is slow
but the derivatives are continuous across triangles, giving a more pleasing result
the default linear interpolation.

EXTRAPOLATE

Set this keyword to extrapolate outside the convex hull of the tie points. Setting
keyword implies the use of QUINTIC interpolation.

See Also

INTERPOLATE, TRIANGULATE, TRIGRID
IDL Reference Guide WARP_TRI

1372

eir
 can

s.
bels

d for

ss,

esult
e

f a
ity
. 8-
WATERSHED

The WATERSHED function applies the morphological watershed operator to a
grayscale image. This operator segments images into watershed regions and th
boundaries. Considering the gray scale image as a surface, each local minimum
be thought of as the point to which water falling on the surrounding region drain
The boundaries of the watersheds lie on the tops of the ridges. This operator la
each watershed region with a unique index, and sets the boundaries to zero.

Typically, morphological gradients, or images containing extracted edges are use
input to the watershed operator. Noise and small unimportant fluctuations in the
original image can produce spurious minima in the gradients, which leads to
oversegmentation. Smoothing, or manually marking the seed points are two
approaches to overcoming this problem. For further reading, see Dougherty, “An
Introduction to Morphological Image Processing”, SPIE Optical Engineering Pre
1992

Syntax

Result = WATERSHED (Image [, CONNECTIVITY={4 | 8}])

Return Value

Returns an image of the same dimensions as the input image. Each pixel of the r
will be either zero if the pixel falls along the segmentation between basins, or th
identifier of the basin in which that pixel falls.

Arguments

Image

The two-dimensional image to be segmented.Image is converted to byte type if
necessary.

Keywords

CONNECTIVITY

Set this keyword to either 4 (to select 4-neighbor connectivity) or 8 (to select 8-
neighbor connectivity). Connectivity indicates which pixels in the neighborhood o
given pixel are sampled during the segmentation process. 4-neighbor connectiv
samples only the pixels that are immediately adjacent horizontally and vertically
WATERSHED IDL Reference Guide

1373

he
vity.

L

 of
 of
aller
e
ged
neighbor connectivity samples the diagonally adjacent neighbors in addition to t
immediate horizontal and vertical neighbors. The default is 4-neighbor connecti

Example

The following code snippet crudely segments the grains in the data file in the ID
Demo data directory containing an magnified image of grains of pollen.

It inverts the image, because the watershed operator finds holes, and the grains
pollen are bright. Next, the morphological closing operator is applied with a disc
radius 9, contained within a 19 by 19 kernel, to eliminate holes in the image sm
than the disc. The watershed operator is then applied to segment this image. Th
borders of the watershed images, which have pixel values of zero, are then mer
with the original image and displayed as white.

;Radius of disc...
r = 9

;Create a disc of radius r
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Invert the image
b = MAX(a) - a

TVSCL, b, 0

;Remove holes of radii less than r
c = MORPH_CLOSE(b, disc, /GRAY)

TVSCL, c, 1

;Create watershed image
d = WATERSHED(c)

;Display it, showing the watershed regions
TVSCL, d, 2

;Merge original image with boundaries of watershed regions
e = a > (MAX(a) * (d EQ 0b))

TVSCL, e, 3
IDL Reference Guide WATERSHED

1374

the
the
s
to
WDELETE

The WDELETE procedure deletes IDL windows.

Syntax

WDELETE [,Window_Index[, ...]]

Arguments

Window_Index

A list of one or more window indices to delete. If this argument is not specified,
current window (as specified by the system variable !D.WINDOW) is deleted. If
window being deleted is not the active window, the value of !D.WINDOW remain
unchanged. If the window being deleted is the active window, !D.WINDOW is set
the highest numbered window index or to -1 if no windows remain open.

If this window index is the widget ID of a draw widget, that widget is deleted.

Example

Create IDL graphics window number 5 by entering:

WINDOW, 5

Delete window 5 by entering:

WDELETE, 5

See Also

WINDOW, WSET, WSHOW
WDELETE IDL Reference Guide

1375

, on
MS.

ust
gical
WEOF

The WEOF procedure writes an end of file mark, sometimes called a tape mark
the designated tape unit at the current position. WEOF is available only under V
The tape must be mounted as a foreign volume. See“VMS-Specific Information” in
Chapter 16 ofBuilding IDL Applcations.

Syntax

WEOF,Unit

Arguments

Unit

The magnetic tape unit on which the end of file mark is written. This argument m
be a number between 0 and 9, and should not be confused with standard file Lo
Unit Numbers (LUNs).

See Also

TAPWRT
IDL Reference Guide WEOF

1376

tric
 to

le

ns.

ified
WF_DRAW

The WF_DRAW procedure draws weather fronts of various types using parame
spline interpolation to smooth the lines. WF_DRAW uses the POLYFILL routine
make the annotations on the front lines.

This routine is written in the IDL language. Its source code can be found in the fi
wf_draw.pro in thelib subdirectory of the IDL distribution.

Syntax

WF_DRAW,X, Y [[, /COLD | , FRONT_TYPE=1] | [, /WARM | , FRONT_TYPE=2]
| [, /OCCLUDED | , FRONT_TYPE=3] | [, /STATIONARY | , FRONT_TYPE=4] |
[, /CONVERGENCE | , FRONT_TYPE=5]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORM] [, INTERVAL=value] [, PSYM=value] [, SYM_HT=value]
[, SYM_LEN=value] [, THICK=value]

Arguments

X, Y

Vectors of abcissae and ordinates defining the front to be drawn.

Keywords

COLD

Set this keyword to draw a cold front. The default is a plain line with no annotatio
A cold front can also be specified by setting the keyword FRONT_TYPE = 1.

COLOR

Use this keyword to specify the color to use. The default = !P.COLOR.

CONVERGENCE

Set this keyword to draw a convergence line. A convergence line can also be spec
by setting the keyword FRONT_TYPE = 5.

DATA

Set this keyword if X and Y are specified in data coordinates.

DEVICE

Set this keyword if X and Y are specified in device coordinates.
WF_DRAW IDL Reference Guide

1377

e

he
ues

ified

by
FRONT_TYPE

Set this keyword equal to the numeric index of type of front to draw. Front type
indices are as follows: COLD=1, WARM=2, OCCLUDED=3, STATIONARY=4,
CONVERGENCE = 5. Not required if plain line is desired or if an explicit front typ
keyword is specified.

INTERVAL

Use this keyword to specify the spline interpolation interval, in normalized units. T
default = 0.01. Larger values give coarser approximations to curves, smaller val
make more interpolated points.

NORM

Set this keyword if X and Y are specified in normalized coordinates. This is the
default.

OCCLUDED

Set this keyword to draw an occluded front. An occluded front can also be spec
by setting the keyword FRONT_TYPE = 3.

PSYM

Set this keyword a standard PSYM value to draw a marker on each actual (X, Y) data
point. See“PSYM” on page 2184 for a list of the symbol types.

STATIONARY

Set this keyword to draw a stationary front. A stationary front can also be specified
setting the keyword FRONT_TYPE = 4.

SYM_HT

Use this keyword to specify the height of front symbols, in normalized units. The
default = 0.02.

SYM_LEN

Use this keyword to specify the length and spacing factor for front symbols, in
normalized units. The default = 0.15.

THICK

Use this keyword to specify the line thickness. The default = 1.0.
IDL Reference Guide WF_DRAW

1378

ing
WARM

Set this keyword to draw a warm front. A warm front can also be specified by sett
the keyword FRONT_TYPE = 2.

Example

Draw a front given 3 points:

WF_DRAW, [40, 20, 40], [30, 40, 25], /COLD

See Also

ANNOTATE, XYOUTS
WF_DRAW IDL Reference Guide

1379

nal

 the
ing

s for

Both
to be

in

ults
ilar
WHERE

The WHERE function returns a longword vector that contains the one-dimensio
subscripts of the nonzero elements ofArray_Expression. The length of the resulting
vector is equal to the number of nonzero elements in the parameter. Frequently
result of WHERE is used as a vector subscript to select elements of an array us
given criteria. If all elements ofArray_Expressionare zero the result of WHERE is a
scalar integer with the value -1.

The system variable !ERR is set to the number of nonzero elements. This effect i
compatibility with previous versions of IDL and shouldnotbe used in new code. Use
the COUNT argument to return this value instead.

Syntax

Result = WHERE(Array_Expression [, Count])

Arguments

Array_Expression

The array to be searched. This argument can be of any basic type except string.
the real and imaginary parts of a complex number must be zero for the number
considered zero.

Count

A named variable that, on exit, is set to the number of nonzero elements found
Array_Expression. This value is returned as a longword integer.

When WHERE Returns -1

If all the elements ofArray_Expression are zero, WHERE returns a scalar integer
with a value of -1. Attempting to use this result as an index into another array res
in a “subscripts out of bounds” error. In situations where this is possible, code sim
to the following can be used to avoid errors:

; Use Count to get the number of nonzero elements:
index = WHERE(array, count)

; Only subscript the array if it’s safe:
IF count NE 0 THEN result = array[index]
IDL Reference Guide WHERE

1380

ns.
r, B,
d to

of
Example

Example 1

; Create a 10-element integer array where each element is
; set to the value of its subscript:
array = INDGEN(10)
PRINT, 'array = ', array

; Find the subscripts of all the elements in the array that have
; a value greater than 5:
B = WHERE(array GT 5, count)
PRINT, 'Subscripts of elements > 5: ', B

; Print how many elements met the search criteria:
PRINT, 'Number of elements > 5: ', count

IDL Output

array = 0 1 2 3 4 5 6 7 8 9
Subscripts of elements > 5: 6 7 8 9
Number of elements > 5: 4

Example 2

The WHERE function behaves differently with different kinds of array expressio
For instance, if a relational operator is used to compare an array, A, with a scala
then every element of A is searched for B. However, if a relational operator is use
compare two arrays, C and D, then a comparison is made between each
corresponding element (i.e. Ci & Di, Ci+1 & Di+1, etc) of the two arrays. If the two
arrays have different lengths then a comparison is only made up to the number
elements for the shorter array. The following example illustrates this behavior:

; Compare array, a, and scalar, b:
a = [1,2,3,4,5,5,4,3,2,1]
b = 5
PRINT, 'a = ', a
PRINT, 'b = ', b

result=WHERE(a EQ b)
PRINT,'Subscripts of a that equal b: ', result

; Now compare two arrays of different lengths:
c = [1,2,3,4,5,5,4,3,2,1]
d = [0,2,4]
PRINT, 'c = ', c
PRINT, 'd = ', d
WHERE IDL Reference Guide

1381

t in
d has
result=WHERE(c EQ d)
PRINT, 'Subscripts of c that equal d: ', result

IDL Output

a = 1 2 3 4 5 5 4 3 2 1
b = 5
Subscripts of a that equal b: 4 5

c = 1 2 3 4 5 5 4 3 2 1
d = 0 2 4
Subscripts of c that equal d: 1

Note that WHERE found only one element in the array d that equals an elemen
array c. This is because only the first three elements of c were searched, since
only three elements.

See Also

UINT
IDL Reference Guide WHERE

1382

ially

ject
WHILE...DO

The WHILE...DO statement performs its subject statement(s) as long as the
expression evaluates to true. The subject is never executed if the condition is init
false.

Note
WHILE...DO is an IDL statement. For information on using statements, see
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

WHILE expression DO statement

or

WHILE expression DO BEGIN

statements

ENDWHILE

Example

i = 0
WHILE (i EQ 1) DO PRINT, i

Because the expression (which is false in this case) is evaluated before the sub
statement is executed, this code yields no output.
WHILE...DO IDL Reference Guide

1383

ve as

he
WIDGET_BASE

The WIDGET_BASE function is used to create base widgets. Base widgets ser
containers for other widgets.

Note
In most cases, you will want let IDL determine the placement of widgets within t
base widget. Do this by specifying either the COLUMN keyword or the ROW
keyword. See“Positioning Child Widgets Within a Base” on page 1400 for details.

The returned value of this function is the widget ID of the newly-created base.

Syntax

Result = WIDGET_BASE([Parent] [, /ALIGN_BOTTOM | , /ALIGN_CENTER | ,
/ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP]
[, APP_MBAR=variable{same as mbar on Windows and Motif} | , /MBAR | ,
/MODAL] [, /BASE_ALIGN_BOTTOM | , /BASE_ALIGN_CENTER | ,
/BASE_ALIGN_LEFT | , /BASE_ALIGN_RIGHT | , /BASE_ALIGN_TOP]
[, /COLUMN | , /ROW] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, /EXCLUSIVE | , /NONEXCLUSIVE] [, /FLOATING] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, /GRID_LAYOUT]
[, GROUP_LEADER=widget_id{must specify for modal dialogs}]
[, /KBRD_FOCUS_EVENTS] [, KILL_NOTIFY=string] [, /MAP{not for modal
bases}] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SCROLL{not for modal bases}] [, /SENSITIVE] [, SPACE=value{ignored if
exclusive or nonexclusive}] [, TITLE=string] [, TLB_FRAME_ATTR=value{top-
level bases only}] [, /TLB_KILL_REQUEST_EVENTS{top-level bases only}]
[, /TLB_SIZE_EVENTS{top-level bases only}] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, XOFFSET=value]
[, XPAD=value{ignored if exclusive or nonexclusive}] [, XSIZE=value]
[, X_SCROLL_SIZE=value] [, YOFFSET=value] [, YPAD=value{ignored if
exclusive or nonexclusive}] [, YSIZE=value] [, Y_SCROLL_SIZE=value])

X Windows Keywords: [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, RNAME_MBAR=string]
IDL Reference Guide WIDGET_BASE

1384

ake

ke
get

ly

take

ake

. On
bar

e

Arguments

Parent

The widget ID of the parent widget. To create atop-level base, omit theParent
argument.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To t
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To ta
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new wid
will be vertically centered. In COLUMN bases, the new widget will be horizontal
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To t
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

APP_MBAR

Set this keyword to a named variable that defines a widget application’s menubar
the Macintosh, the menubar defined by APP_MBAR becomes the system menu
(the menubar at the top of the Macintosh screen). On Motif platforms and under
Microsoft Windows, the APP_MBAR is treated in exactly the same fashion as th
menubar created with the MBAR keyword. See“MBAR” on page 1389 for details on
creating menubars.
WIDGET_BASE IDL Reference Guide

1385

se

udes

for
ng a

OW
ets

 left
ord

ight
ord

p of
new
ent
Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level ba
widget. Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that incl
the menubar, use theKBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

BASE_ALIGN_BOTTOM

Set this keyword to make all children of the new base align themselves with the
bottom of the base by default. To take effect, you must also set the ROW keyword
the new base. The default can be overridden for individual child widgets by setti
different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_CENTER

Set this keyword to make all children of the new base align themselves with the
center of the base by default. To take effect, you must also set the COLUMN or R
keyword for the new base. The default can be overridden for individual child widg
by setting a different ALIGN_XXX keyword when the child widget is created. In
ROW bases, child widgets will be vertically centered. In COLUMN bases, child
widgets will be horizontally centered.

BASE_ALIGN_LEFT

Set this keyword to make all children of the new base align themselves with the
side of the base by default. To take effect, you must also set the COLUMN keyw
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_RIGHT

Set this keyword to make all children of the new base align themselves with the r
side of the base by default. To take effect, you must also set the COLUMN keyw
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_TOP

Set this keyword to make all children of the new base align themselves with the to
the base by default. To take effect, you must also set the ROW keyword for the
base. The default can be overridden for individual child widgets by setting a differ
ALIGN_XXX keyword when the child widget is created.
IDL Reference Guide WIDGET_BASE

1386

f

ted
arted.

t
st

s

*
mn.

he

lay
t

e

T
e

COLUMN

If this keyword is included, the base lays out its children in columns. The value o
this keyword specifies the number of columns to be used. The number of child
widgets in each column is calculated by dividing the number of child widgets crea
by the number of columns specified. When one column is filled, a new one is st

Specifying both the COLUMN and ROW keywords causes an error.

Column Width

The width of each column is determined by the width of the widest widget in tha
column. If the GRID_LAYOUT keyword is set, all columns are as wide as the wide
widget in the base.

Horizontal Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget ha
its “natural” width, determined either by the value of the widget or by the XSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” width. If none of the BASE_ALIGN_
or (ALIGN_*) keywords are set, all widgets in the base are as wide as their colu

Vertical Placement

Child widgets are placed vertically one below the other, with no extra space. If t
GRID_LAYOUT keyword is set, each row is as high as its tallest member.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows disp
on which the base should be displayed. This keyword has no effect on Microsof
Windows and Macintosh platforms.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.
WIDGET_BASE IDL Reference Guide

1387

 the
s

n to
R

nd

base)
er be

l,
he
no

up
Note
If the base is a top-level base widget that is managed by the XMANAGER
procedure, any value specified via the EVENT_PRO keyword is overridden by
value of the EVENT_HANDLER keyword to XMANAGER. Note also that in thi
situation, if EVENT_HANDLER is not specified in the call to XMANAGER, an
event-handler name will be created by appending the string “_event ” to the
application name specified to XMANAGER. This means that there is no reaso
specify this keyword for a top-level base that will be managed by the XMANAGE
procedure.

EXCLUSIVE

Set this keyword to specify that the base can have only button-widget children a
that only one button can be set at a time. These buttons, unlike normal button
widgets, have two states—set and unset.

When one exclusive button is pressed, any other exclusive buttons (in the same
that are currently set are automatically released. Hence, only one button can ev
set at one time.

This keyword can be used to create exclusive button menus. See theCW_BGROUP
andCW_PDMENU functions for high-level menu-creation utilities.

FLOATING

Set this keyword—along with the GROUP_LEADER keyword—to create a
“floating” top-level base widget. If the windowing system provides Z-order contro
floating base widgets appear above the base specified as their group leader. If t
windowing system does not provide Z-order control, the FLOATING keyword has
effect.

The iconizing, layering, and destruction behavior of floating bases and their gro
leaders is discussed in“Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 1401.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.
IDL Reference Guide WIDGET_BASE

1388

is

r.

he
n

p
 any
ior is

ure
o

ch
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GRID_LAYOUT

Set this keyword to force the base to have a grid layout, in which all rows have t
same height, and all columns have the same width. The row heights and colum
widths are taken from the largest child widget.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. Widget application hierarchies are defined by group membershi
relationships between top-level widget bases. When a group leader is killed, for
reason, all widgets in the group are also destroyed. Iconizing and layering behav
discussed in“Iconizing, Layering, and Destroying Groups of Top-Level Bases” on
page 1401. (This is not available on the Mac.)

Note
If you specify a floating base (created with theFLOATING keyword) as a group
leader, all member bases must also have either the FLOATING or MODAL
keywords set. If you specify a modal base (created with theMODAL keyword) as a
group leader, all member bases must have the MODAL keyword set as well.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See the“Events” section below for more
information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
WIDGET_BASE IDL Reference Guide

1389

ER

hat

 are

ped

pped
pped

to the

vent

of the
f base

ed to
n
a
the
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MAP

Once a widget hierarchy has been realized, it can be mapped (visible) or unmap
(invisible). This keyword specifies the initial map state for the given base and its
descendants. Specifying a non-zero value indicates that the base should be ma
when realized (the default). A zero value indicates that the base should be unma
initially.

After the base is realized, its map state can be altered using the MAP keyword
WIDGET_CONTROL procedure.

Note
Modal bases cannot be mapped and unmapped.

Warning
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize e
is generated before any manipulation of the base widget by the user.

MBAR

Set this keyword to a named variable to cause a menubar to be placed at the top
base (the base must be a top-level base). The menubar is itself a special kind o
widget that can only have buttons as children. Upon return, the named variable
contains the widget ID of the new menubar base. This widget ID can then be us
fill the menubar with pulldown menus. For example, the following widget creatio
commands first create a base with a menubar, then populate the menubar with
simple pulldown menu (CW_PDMENU could also have been used to construct
pulldown menu):
IDL Reference Guide WIDGET_BASE

1390

ord,

AR

t.

udes

ncel
tem
on.

d on.

 top-
base = WIDGET_BASE(TITLE = 'Example', MBAR=bar)
file_menu = WIDGET_BUTTON(bar, VALUE='File', /MENU)
file_bttn1=WIDGET_BUTTON(file_menu, VALUE='Item 1',$

UVALUE='FILE1')
file_bttn2=WIDGET_BUTTON(file_menu, VALUE='Item 2',$

UVALUE='FILE2')

Note that to set X Window System resources for menubars created with this keyw
you must use the RNAME_MBAR keyword rather than the RESOURCE_NAME
keyword.

If you use CW_PDMENU to create a menu for the menubar, be sure to set the MB
keyword to that function as well.

Note also that the size returned by theGEOMETRY keyword to WIDGET_INFO
does not include the size of the menubar.

Note
To control the system menubar on the Macintosh, use theAPP_MBAR keyword.
On Windows and Motif platforms the MBAR and APP_MBAR keywords are
equivalent.

Warning
You cannot specify both the MBAR and MODAL keywords for the same widge
Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that incl
the menubar, use theKBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

MODAL

Set this keyword to create a modal dialog. Modal dialogs can have default and ca
buttons associated with them. Default buttons are highlighted by the window sys
and respond to a press on the “Return” or “Enter” keys as if they had been clicked
Cancel buttons respond to a press on the “Escape” key as if they had been clicke
See theDEFAULT_BUTTON andCANCEL_BUTTON keywords to
WIDGET_CONTROL for details.

Note
Modal dialogs must have a group leader. Specify the group leader for a modal
level base via theGROUP_LEADER keyword.
WIDGET_BASE IDL Reference Guide

1391

tting

fore
, it

p

sing

e for
 large.

r
 it
tain

o

UE
es

ese
sive

e
t to

ce
Modal dialogs cannot be scrollable, nor can they support menubars. Setting the
SCROLL, MBAR, or APP_MBAR keywords in conjunction with the MODAL
keyword will cause an error. Modal dialogs cannot be mapped or unmapped. Se
the MAP keyword on a modal base will cause an error.

Note
On Windows platforms, the group leader of a modal base must be realized be
the modal base itself can be realized. If the group leader has not been realized
will be realized automatically.

The iconizing, layering, and destruction behavior of modal bases and their grou
leaders is discussed in“Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 1401.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NONEXCLUSIVE

Set this keyword to specify that the base can only have button widget children. Th
buttons, unlike normal button widgets, have two states—set and unset. Non-exclu
bases allow any number of the toggle buttons to be set at one time. If neither th
ROW nor the COLUMN keyword is specified, the non-exclusive widget base is se
the column base by default.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
IDL Reference Guide WIDGET_BASE

1392

is

r.

get.

is

DL

y

e
ot
differ
set

u

s

(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
Once defined, this name can be used in the user’s.Xdefaults file to customize
widget resources not directly supported via the IDL widget routines. This keyword
accepted by all widget creation routines. This keyword only works with the “X”
device and is ignored on platforms that do not use the X Window System (i.e., I
for Windows, IDL for Macintosh).

RESOURCE_NAME allows unrestricted access to the underlying Motif widgets
within the following limitations:

• Users must have the appropriate resources defined in their.Xdefaults or
application default resource file, or IDL will not see the definitions and the
will not take effect.

• Motif resources are documented in theOSF/Motif Programmer’s Reference
Manual. To use them with RESOURCE_NAME, the IDL programmer must
determine the type of widget being used by IDL, and then look up the
resources that apply to them. Hence, RESOURCE_NAME requires some
programmer-level familiarity with Motif.

• Only resources that are not set within IDL can be modified using this
mechanism. Although it is not an error to set resources also set by IDL, th
IDL settings will silently override user settings. Research Systems does n
document the resources used by IDL since the actual resources used may
from release to release as the IDL widgets evolve. Therefore, you should
only those resources that are obviously not being set by IDL. Among the
resources that are not being set by IDL are those that control colors, men
mnemonics, and accelerator keys.

Example

The sample code below produces a pulldown menu named “Menu” with 2 entrie
named “Item 1” and “Item 2”.
WIDGET_BASE IDL Reference Guide

1393

s,
gets

o

n,
 the

 1”
g

to
act
Using the RESOURCE_NAME keyword in conjunction with X resource definition
we can alter “Item 1” in several ways not possible through the standard IDL wid
interface. We’ll give Item 1 a red background color. We’ll also assign “I” as the
keyboard mnemonic. Note that Motif automatically underlines the “I” in the title t
indicate this. We’ll also select Meta-F4 as the keyboard accelerator for selecting
“Item 1”. If Meta-F4 is pressed while the pointer is anywhere over this applicatio
the effect will be as if the menu was pulled down and “Item 1” was selected with
mouse.

; Simple event handler:
PRO test_event, ev
HELP, /STRUCTURE, ev
END

; Simple widget creation routine:
PRO test

; The base gets the resource name "test":
a = WIDGET_BASE(RESOURCE_NAME = 'test')
b = WIDGET_BUTTON(a, VALUE='Menu', /MENU)

; Assign the Item 1 button the resource name "item1":
c = WIDGET_BUTTON(b, VALUE='Item 1', $

RESOURCE_NAME='item1')
c = WIDGET_BUTTON(b, VALUE='Item 2')
WIDGET_CONTROL, /REALIZE, a
XMANAGER, 'test', a

END

Note that we gave the overall application the resource name “test”, and the “Item
button the resource name “item1”. Now we can use these names in the followin
.Xdefaults file entries:

Idl*test*item1*mnemonic: I
Idl*test*item1*accelerator: Meta<Key>F4
Idl*test*item1*acceleratorText: Meta-F4
Idl*test*item1*background: red

Note on Specifying Color Resources

If you wish to specify unique colors for your widgets, it is generally a good idea
use a color name (“red” or “lightblue”, for example) rather than specifying an ex
color match with a color string (such as “#b1b122222020”). If IDL is not able to
allocate an exact color, the entire operation may fail. Specifying a named color
implies “closest color match,” an operation that rarely fails.
IDL Reference Guide WIDGET_BASE

1394

he

the

is
in
ber

. If
e

s

*

the

the
he
If you need an exact color match and IDL fails to allocate the color, try modifying t
Idl.colors resource in the$IDL_DIR/resource/X11/lib/app-
defaults/Idl file.

RNAME_MBAR

A string containing an X Window System resource name to be applied to the
menubar created by the MBAR keyword. This keyword is identical to the
RESOURCE_NAME keyword except that the resource it specifies applies only to
menubar.

ROW

If this keyword is included, the base lays out its children in rows. The value of th
keyword specifies the number of rows to be used. The number of child widgets
each row is calculated by dividing the number of child widgets created by the num
of rows specified. When one row is filled, a new one is started.

Specifying both the COLUMN and ROW keywords causes an error.

Row Height

The height of each row is determined by the height of the tallest widget in that row
the GRID_LAYOUT keyword is set, all rows are as tall as the tallest widget in th
base.

Vertical Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget ha
its “natural” height, determined either by the value of the widget or by the YSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” height. If none of the BASE_ALIGN_
or (ALIGN_*) keywords are set, all widgets in the base are as tall as their row.

Horizontal Placement

Child widgets are placed horizontally one next to the other, with no extra space. If
GRID_LAYOUT keyword is set, each column is as wide as its widest member.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.
WIDGET_BASE IDL Reference Guide

1395

the
he

t
66.

et.

 user
use

cates

et.

e

een
SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

Note
For the Macintosh, if you set XSIZE or YSIZE to a value less than 48, the base
created with the SCROLL keyword will be a minimum of 48x48. If you have no
specified values for XSIZE or YSIZE, the base will be set to a minimum of 66x
If the base is resized, it will jump to the minimum size of 128x64.

Warning
You cannot specify both the SCROLL and MODAL keywords for the same widg
Doing so will cause an error.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

SPACE

The space, in units specified by the UNITS keyword (pixels are the default), betw
children of a row or column major base. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.
IDL Reference Guide WIDGET_BASE

1396

nly

 title

de

 can

se

ain
el
 by

ther.
ed
TITLE

A string containing the title to be used for the widget. Base widgets use the title o
if they are top-level widgets.

Note that if the widget base is not wide enough to contain the specified title, the
may appear truncated. If you must be able to see the full title, you have several
alternatives:

• Rearrange the widgets in the base so that the base becomes naturally wi
enough. This is the best solution.

• Don’t worry about this issue. If the user needs to see the entire label, they
resize the window using the mouse.

• Create the base without using the COLUMN or ROW keywords. Instead, u
the XSIZE keyword to explicitly set a usable width. This is an undesirable
solution that can lead to strange-looking widget layouts.

TLB_FRAME_ATTR

Set this keyword to one of the values shown in the table below to suppress cert
aspects of a top-level base’s window frame. This keyword applies only to top-lev
bases. The settings are merely hints to the window system and may be ignored
some window managers. Valid settings are:

This keyword is set bitwise, so multiple effects can be set by adding values toge
For example, to make a base that has no title bar (setting 4) and cannot be mov
(setting 16), set the TLB_FRAME_ATTR keyword to4+16 , or 20.

Value Meaning

1 Base cannot be resized, minimized, or maximized.

2 Suppress display of system menu.

4 Suppress title bar.

8 Base cannot be closed.

16 Base cannot be moved.

Table 86: Valid Values for TLB_FRAME_ATTR Keyword
WIDGET_BASE IDL Reference Guide

1397

a

ble

to

ts.

vent

ever
g

Note
For the Macintosh, you can not suppress the title bar; only modal dialogs use
window without a title bar. Any other use of a suppressed title bar would be
contrary to Macintosh Human Interface Guidelines and would create an immova
window.

TLB_KILL_REQUEST_EVENTS

Set this keyword, usable only with top-level bases, to send the top-level base a
WIDGET_KILL_REQUEST event if a user tries to destroy the widget using the
window manager (by default, widgets are simply destroyed). See the“Events”
section below for more information.

Use this keyword to perform complex actions before allowing a widget application
exit. Note that widgets that have this keyword set are responsible for killing
themselves after receiving a WIDGET_KILL_REQUEST event—they cannot be
destroyed using the usual window system controls.

Use a call to TAG_NAMES with the STRUCTURE_NAME keyword set to
differentiate a WIDGET_KILL_REQUEST event from other types of widget even
For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_KILL_REQUEST' THEN ...

TLB_SIZE_EVENTS

Set this keyword, when creating a top-level base, to make that base return an e
when the base is resized by the user. See the“Events” section below for more
information.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointerentersor leavesthe region covered by that widget. Widget trackin
events are returned as structures with the following definition:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID, TOP, and HANDLER are the standard fields found in every widget event.
ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.
IDL Reference Guide WIDGET_BASE

1398

ou
name

et

the
to

n.

en

 the

ls

k
y of
f

he
UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget layout.

XPAD

The horizontal space, in units specified by the UNITS keyword (pixels are the
default), between child widgets and the edges of a row or column major base. T
WIDGET_BASE IDL Reference Guide

1399

e

 the
ly a

ible

ars
ZE
n

re

k
y of
f

ult),
lt

 the
default value of XPAD is platform dependent. This keyword is ignored if either th
EXCLUSIVE or NONEXCLUSIVE keyword is present.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the vis
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll b
will be added in both the horizontal and vertical directions when X_SCROLL_SI
is specified. Because the default size of the scrolling viewport may differ betwee
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget layout.

YPAD

The vertical space, in units specified by the UNITS keyword (pixels are the defa
between child widgets and the edges of a row or column major base. The defau
value of YPAD is platform-dependent. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
IDL Reference Guide WIDGET_BASE

1400

ly a

isible
g

ars
ZE
n

 are

all

ild
tting
tly
ot
ts
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the v
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrollin
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll b
will be added in both the horizontal and vertical directions when Y_SCROLL_SI
is specified. Because the default size of the scrolling viewport may differ betwee
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
base widgets. In addition to those keywords that affect all widgets, the following
particularly useful:CANCEL_BUTTON, DEFAULT_BUTTON,
KBRD_FOCUS_EVENTS.

Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to base widgets. In addition to those keywords that apply to
widgets, the following are particularly useful:KBRD_FOCUS_EVENTS, MODAL,
TLB_KILL_REQUEST_EVENTS.

Exclusive And Non-Exclusive Bases

If the EXCLUSIVE or NONEXCLUSIVE keywords are specified, the base only
allows button widget children.

Positioning Child Widgets Within a Base

The standard base widget does not impose any placement constraints on its ch
widgets. Children of a “bulletin board” base (a base that was created without se
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is explici
specified via the XOFFSET or YOFFSET keywords. This means that if you do n
specify any of COLUMN, ROW, XOFFSET, or YOFFSET keywords, child widge
will be placed one on top of the other in the upper left corner of the base.
WIDGET_BASE IDL Reference Guide

1401

T

N
ng

out
ren

m’s
such
 an
he

ing

ay

p
ets
However, laying out widgets using the XSIZE, YSIZE, XOFFSET, and YOFFSE
keywords can be both tedious and error-prone. Also, if you want your widget
application to display properly on different platforms, you should use the COLUM
and ROW keywords to influence child widget layouts instead of explicitly formatti
your interfaces.

When the ROW or COLUMN keywords are specified, the base decides how to lay
its children, and any XOFFSET and YOFFSET keywords specified for such child
are ignored.

Positioning Top-Level Bases

When locating a new top level window, some window managers ignore the progra
positioning requests and either choose a position or allow the user to choose. In
cases, the XOFFSET and YOFFSET keywords to WIDGET_BASE will not have
effect. The window manager may provide a way to disable this positioning style. T
Motif window manager (mwm) can be told to honor positioning requests by plac
the lines:

Mwm*clientAutoPlace: False
Mwm*interactivePlacement: False

in your .Xdefaults file.

Iconizing, Layering, and Destroying Groups of Top-Level
Bases

Group membership (defined via the GROUP_LEADER keyword) controls the w
top-level base widgets are iconized, layered, and destroyed.

Note
A group can contain sub-groups. Group behavior affects all members of a grou
and its sub-groups. For example, suppose we create three top-level base widg
with the following group hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)
base3 = WIDGET_BASE(GROUP_LEADER=base2)

Effectively, two groups are created. One group hasbase2 as its leader andbase3 as
its member. The other group hasbase1 as its leader and bothbase2 andbase3 as
members. Ifbase1 is iconized, bothbase2 andbase3 are iconized as well. If
base2 is iconized,base3 is iconized butbase1 is not.
IDL Reference Guide WIDGET_BASE

1402

ly to

g

ized
f the

n the
both
ating
re

ized
f the

icon
 well.

 or

modal
Widgets behave slightly differently when displayed on different platforms, and
depending on whether they are floating or modal bases. The following rules app
groups of widgets within a group leader/member hierarchy. Widgets that do not
belong to the same group hierarchy cannot influence each other.

Iconization and Mapping

On Motif and Windows platforms, bases and groups of bases can beiconized (or
minimized) by clicking the system minimize control. Minimization has no meanin
on the Macintosh. On all platforms, bases and groups of bases can bemapped(made
visible) andunmapped (made invisible).

Motif

When a group leader is iconized or unmapped, all members of the group are icon
or unmapped as well. Similarly, when a group leader is restored, all members o
group are restored.

Floating and modal bases cannot be iconized or unmapped independently. Whe
group leader of a floating or modal base is iconized, a single icon is created for
the group leader and the floating or modal base. When the group leader of a flo
or modal base is unmapped, both the group leader and floating or modal base a
made invisible.

Windows

When a group leader is iconized or unmapped, all members of the group are icon
or unmapped as well. Similarly, when a group leader is restored, all members o
group are restored.

When a floating base is iconized, its group leader is iconized as well and a single
is created. When a floating base is unmapped, its group leader is unmapped as

Modal bases cannot be iconized or unmapped. Other bases cannot be iconized
unmapped until the modal base is dismissed.

Macintosh

On the Macintosh, iconization has no meaning.

When a floating base is unmapped, its group leader is unmapped as well.

Modal bases cannot be unmapped. Other bases cannot be unmapped until the
base is dismissed.
WIDGET_BASE IDL Reference Guide

1403

ne on

e a

roup

 on
oyed

 top

he
Layering

Layering is the process by which groups of widgets seem to share the same pla
the display screen. Within a layer on the screen, widgets have aZ-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

Motif

All elements on the screen—widgets, the IDLDE, other Motif applications—shar
single layer and have an arbitrary Z-order. There is no special layering of IDL
widgets.

Windows and Macintosh

All non-floating and non-modal widgets within a group hierarchy share the same
layer—that is, when one group member has the input focus, all members of the g
hierarchy are displayed in a layer that appears in front of all other groups or
applications. Within the layer, the widgets can have an arbitrary Z-order.

Widgets that are floating or modal always float above their group leaders.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking
the system “close” button, all members of the group and all sub-groups are destr
as well.

If a modal base is on the display, it must be dismissed before any widget can be
destroyed.

Events

Resize Events

Top-level widget bases return the following event structure only when they are
resized by the user and the base was created with theTLB_SIZE_EVENTSkeyword
set:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0, Y:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The X and Y fields return the new width of t
base, not including any frame provided by the window manager.
IDL Reference Guide WIDGET_BASE

1404

ges

 top

 is

s to
e

 top
Keyboard Focus Events

Widget bases return the following event structure when the keyboard focus chan
and the base was created with theKBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the base
gaining the keyboard focus, or 0 (zero) if the base is losing the keyboard focus.

Kill Request Events

Top-level widget bases return the following event structure only when a user trie
destroy the widget using the window manager and the base was created with th
TLB_KILL_REQUEST_EVENTS keyword set:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine.

See Also

Building IDL ApplcationsChapter 18, “Widgets”.
WIDGET_BASE IDL Reference Guide

1405

 a
nder
WIDGET_BUTTON

The WIDGET_BUTTON function creates button widgets.

The returned value of this function is the widget ID of the newly-created button.

Syntax

Result = WIDGET_BUTTON(Parent [, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /BITMAP] [, /DYNAMIC_RESIZE] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=value] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id] [, /HELP]
[, KILL_NOTIFY= string] [, /MENU] [, /NO_COPY] [, /NO_RELEASE]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SENSITIVE] [, /SEPARATOR]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE= value] [, X_BITMAP_EXTRA=bits]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

X Windows Keywords: [, RESOURCE_NAME=string]

Arguments

Parent

The widget ID of the parent for the new button widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the button’s text label.

ALIGN_LEFT

Set this keyword to left justify the button’s text label.

ALIGN_RIGHT

Set this keyword to right justify the button’s text label.

BITMAP

Set this keyword to specify that the bitmap specified with the VALUE keyword is
color bitmap. The value of a widget button can be a bitmap as described below u
IDL Reference Guide WIDGET_BUTTON

1406

r its
e
is
er

e

T
e

nt”
or

ed.

n
ws

 in
“Bitmap Button Labels”. If you specify a color bitmap with the VALUE keyword,
you must also set the /BITMAP keyword.

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value wheneve
value is changed. Note that this keyword does not take effect when used with th
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords
also set, the widget will be sized as specified by the sizing keyword and will nev
resize itself dynamically.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; i
general, the system default font is the font appropriate for the version of Windo
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored
some instances.
WIDGET_BUTTON IDL Reference Guide

1407

is

r.

oup

ure
o

t the

that

ch

ER

hat

 are
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

HELP

Set this keyword to tell the widget toolkit that this button is a “help” button for a
menubar and should be given that appearance. For example, Motif specifies tha
help menubar item is displayed on the far right of the menubar. This keyword is
ignored in all other contexts and may be ignored by window managers (including
for the Macintosh) that have no such special appearance defined.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.
IDL Reference Guide WIDGET_BUTTON

1408

 pull-
ull-

sing

e for
 large.

r
 it
tain

o

UE
es

ce

is
MENU

The presence of this keyword indicates that the button will be used to activate a
down menu. Such buttons can have button children that are then placed into a p
down menu.

Under Motif, if the value specified for MENU is greater than 1, the button label is
enclosed in a box to indicate that this button is a pull-down menu. See the
CW_PDMENU function for a high-level pull-down menu creation utility.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BUTTON or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NO_RELEASE

Set this keyword to make exclusive and non-exclusive buttons generate onlyselect
events. This keyword has no effect on regular buttons.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
WIDGET_BUTTON IDL Reference Guide

1409

r.

get.
rd.

the
he

the
he

 user
use

cates

et.

e

nu
word

ever
cture
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

SEPARATOR

Set this keyword to tell the widget toolkit that this button is part of a pulldown me
pane and that a separator line should be added directly above this entry. This key
is ignored in all other contexts.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
IDL Reference Guide WIDGET_BUTTON

1410

ou
name

et

the
to

n.

en

r

he

f a
acter
lly
n.) If
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget button is the label fo
that button. This label can be a string or a bitmap as described below under “Bitmap
Button Labels”. If you specify the filename for a color bitmap, you must also set t
/BITMAP keyword.

Note
Under Microsoft Windows, including the ampersand character (&) in the value o
button widget causes the window manager to place an underline under the char
following the ampersand. (This is a feature of Microsoft Windows, and is genera
used to indicate which character is used as a keyboard accelerator for the butto
you are designing an application that will run on different platforms, you should
avoid the use of the ampersand in button value strings.
WIDGET_BUTTON IDL Reference Guide

1411

n is

 you
ou

ls

k
y of
f

 the
ly a

re

k
y of
f

 the
ly a
X_BITMAP_EXTRA

When creating a bitmap button that is not of a “byte-aligned” size (i.e., a dimensio
not a multiple of 8), this keyword specifies how many bits of the supplied bitmap
must be ignored (within the end byte). For example, to create a 10 by 8 bitmap,
need to supply a 2 by 8 array of bytes and ignore the bottom 6 bits. Therefore, y
would specifyX_BITMAP_EXTRA = 6 .

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.
IDL Reference Guide WIDGET_BUTTON

1412

g

ts,

VE
o-

es the
NT

top

0 if
ill
sive

phic
Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
button widgets. In addition to those keywords that affect all widgets, the followin
are particularly useful:DYNAMIC_RESIZE, GET_VALUE, INPUT_FOCUS,
SET_BUTTON, SET_VALUE, X_BITMAP_EXTRA.

Keywords to WIDGET_INFO

Some keywords to theWIDGET_INFO function return information that applies
specifically to button widgets. In addition to those keywords that apply to all widge
the following are particularly useful:DYNAMIC_RESIZE.

Exclusive And Non-Exclusive Bases

Buttons placed into exclusive or non-exclusive bases (created via the EXCLUSI
or NONEXCLUSIVE keywords to WIDGET_BASE procedure) are created as tw
state “toggle” buttons, which are controlled by such bases.

Events Returned by Button Widgets

Pressing the mouse button while the mouse cursor is over a button widget caus
widget to generate an event. The event structure returned by the WIDGET_EVE
function is defined by the following statement:

{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0}

ID is the widget id of the button generating the event. TOP is the widget ID of the
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. SELECT is set to 1 if the button was set, and
released. Normal buttons do not generate events when released, so SELECT w
always be 1. However, toggle buttons (created by parenting a button to an exclu
or non-exclusive base) return separate events for the set and release actions.

Bitmap Button Labels

In addition to using a text string as the label of a button (set via the VALUE
keyword), a button can have a bitmap label. This allows buttons to contain a gra
symbol. The bitmap is specified via the VALUE keyword. If you specify a color
bitmap, you must also specify the /BITMAP keyword, like this:

button=WIDGET_BUTTON (base, VALUE='mybitmap.bmp', /BITMAP)

To modify the color bitmap after creation, use the /BITMAP keyword with
WIDGET_CONTROL, like this:
WIDGET_BUTTON IDL Reference Guide

1413

r,
nd
s,

n,

 it

 the

its
WIDGET_CONTROL, button. SET_VALUE='mybitmap2.bmp', /BITMAP

You can produce appropriate bitmaps in the following ways:

• On Windows, create a color bitmap using the IDL GUIBuilder Bitmap Edito
which creates 16 color bitmaps for buttons. The Bitmap Editor can read a
write bitmap files (*.bmp). Using the editor, you can create your own bitmap
or you can open existing bitmap files and modify them. Open the Bitmap
Editor from the Properties dialog for a created button. For more informatio
see“Using the Bitmap Editor” in Chapter 17 ofBuilding IDL Applcations.

• Use any color bitmap editor available on your operating system.

• Create a black and white bitmap using an external bitmap editor, and read
into an IDL byte array using the appropriate procedure (READ_BMP,
READ_PICT, etc.) and convert the byte array to a bitmap byte array using
CVTTOBM function.

• On an X-Window system, use the X11 bitmap utility to create a black and
white bitmap byte array and read it in to IDL using the READ_X11_BITMAP
routine.

• Create a black and white bitmap using the XBM_EDIT procedure. This
procedure offers several alternatives for the form of the final bitmap.

Although IDL places no restriction on the size of bitmap allowed, the various toolk
may prefer certain sizes.

See Also

CW_BGROUP, CW_PDMENU
IDL Reference Guide WIDGET_BUTTON

1414

get
WIDGET_CONTROL

The WIDGET_CONTROL procedure is used to realize, manage, and destroy wid
hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Syntax

WIDGET_CONTROL [,Widget_ID]

Keywords that apply to all widgets: [, BAD_ID=variable] [, /CLEAR_EVENTS]
[, DEFAULT_FONT=string{do not specifyWidget_ID}] [, /DELAY_DESTROY{do
not specifyWidget_ID}] [, /DESTROY] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GET_UVALUE=variable] [, GROUP_LEADER=widget_id] [, /HOURGLASS{do
not specifyWidget_ID}] [, KILL_NOTIFY= string] [, /MAP] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, /REALIZE]
[, /RESET{do not specifyWidget_ID}]

[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, SEND_EVENT=structure]
[, /SENSITIVE] [, SET_UNAME=string] [, SET_UVALUE=value] [, /SHOW]
[, TIMER=value] [, TLB_GET_OFFSET=variable] [, TLB_GET_SIZE=variable]
[, /TLB_KILL_REQUEST_EVENTS] [, TLB_SET_TITLE=string]
[, TLB_SET_XOFFSET=value] [, TLB_SET_YOFFSET=value]
[, /TRACKING_EVENTS] [, UNITS={0 | 1 | 2}] [, /UPDATE] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value]

Keywords that apply to widgets created with widget_base:
[, CANCEL_BUTTON=widget_id{for modal bases}]
[, DEFAULT_BUTTON=widget_id{for modal bases}] [, /ICONIFY]
[, /KBRD_FOCUS_EVENTS] [, /TLB_KILL_REQUEST_EVENTS]

Keywords that apply to widgets created with widget_button: [, /BITMAP]
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, /INPUT_FOCUS]
[, /SET_BUTTON] [, SET_VALUE=value] [, X_BITMAP_EXTRA=bits]

Keywords that apply to widgets created with widget_draw:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, /DRAW_MOTION_EVENTS] [, /DRAW_VIEWPORT_EVENTS]
[, DRAW_XSIZE=integer] [, DRAW_YSIZE=integer]
[, GET_DRAW_VIEW=variable] [, GET_UVALUE=variable]
[, GET_VALUE=variable] [, /INPUT_FOCUS] [, SET_DRAW_VIEW=[x, y]]
WIDGET_CONTROL IDL Reference Guide

1415

e that
Keywords that apply to widgets created with widget_droplist:
[, /DYNAMIC_RESIZE] [, SET_DROPLIST_SELECT=integer]
[, SET_VALUE=value]

Keywords that apply to widgets created with widget_label:
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_list:
[, SET_LIST_SELECT=value] [, SET_LIST_TOP=integer] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_slider:
[, GET_VALUE=value] [, SET_SLIDER_MAX=value]
[, SET_SLIDER_MIN=value] [, SET_VALUE=value]

Keywords that apply to widgets created with widget_table:[, ALIGNMENT={0 |
1 | 2}] [, /ALL_TABLE_EVENTS] [, AM_PM=[string, string]]
[, COLUMN_LABELS=string_array] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /DELETE_COLUMNS{not for
row_major mode}] [, /DELETE_ROWS{not for column_major mode}]
[, /EDITABLE] [, EDIT_CELL=[integer, integer]] [, FORMAT=value]
[, GET_VALUE=variable] [, INSERT_COLUMNS=value]
[, INSERT_ROWS=value] [, /KBRD_FOCUS_EVENTS]
[, MONTHS=string_array{12 names}] [, ROW_LABELS=string_array]
[, ROW_HEIGHTS=array] [, SET_TABLE_SELECT=[left, top, right, bottom]]
[, SET_TABLE_VIEW=[integer, integer]] [, SET_TEXT_SELECT=[integer,
integer]] [, SET_VALUE=value] [, TABLE_XSIZE=columns]
[, TABLE_YSIZE=rows] [, /USE_TABLE_SELECT | ,
USE_TABLE_SELECT=[left, top, right, bottom]] [, /USE_TEXT_SELECT]

Keywords that apply to widgets created with widget_text:
[, /ALL_TEXT_EVENTS] [, /APPEND] [, /EDITABLE] [, GET_VALUE=variable]
[, /INPUT_FOCUS] [, /KBRD_FOCUS_EVENTS] [, /NO_NEWLINE]
[, SET_TEXT_SELECT=[integer, integer]]
[, SET_TEXT_TOP_LINE=line_number] [, SET_VALUE=value]
[, /USE_TEXT_SELECT]

Arguments

Widget_ID

The widget ID of the widget to be manipulated. This argument is required by all
operations, unless the description of the specific keyword states otherwise. Not
if Widget_ID is not provided for a keyword that needs it, that keyword is quietly
ignored.
IDL Reference Guide WIDGET_CONTROL

1416

n
ts

ext
ith
in
ls
t of

e

be
ently
. See
Keywords

Not all keywords to WIDGET_CONTROL apply to all combinations of widgets. I
the following list, descriptions of keywords that affect only certain types of widge
include a list of the widgets for which the keyword is useful.

ALIGNMENT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to a scalar or 2-D array specifying the alignment of the t
within each cell. An alignment of 0 (the default) aligns the left edge of the text w
the left edge of the cell. An alignment of 2 right-justifies the text, while 1 results
text centered within the cell. If ALIGNMENT is set equal to a scalar, all table cel
are aligned as specified. If ALIGNMENT is set equal to a 2-D array, the alignmen
each table cell is governed by the corresponding element of the array. If the
USE_TABLE_SELECT keyword is set, then the alignment is changed only for th
selected cells.

ALL_TABLE_EVENTS

This keyword applies to widgets created with theWIDGET_TABLE function.

Along with the EDITABLE keyword, ALL_TABLE_EVENTS controls the type of
events generated by the table widget. Set the ALL_TABLE_EVENTS keyword to
cause the full set of events to be generated. If ALL_TABLE_EVENTS is not set,
setting EDITABLE causes only end-of-line events to be generated (which could
used by the programmer as an indication to check the cell value or to set the curr
selected cell to the next cell). If EDITABLE is not set, all events are suppressed
the table below for additional details. Note that the equivalent keyword in the
WIDGET_TABLE creation routine is called ALL_EVENTS.

Keywords Effects

ALL_TABLE_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events
WIDGET_CONTROL IDL Reference Guide

1417

use

et,
he

tring
es)
ALL_TEXT_EVENTS

This keyword applies to widgets created with theWIDGET_TEXT function.

Along with the EDITABLE keyword, ALL_TEXT_EVENTS controls the type of
events generated by the text widget. Set the ALL_TEXT_EVENTS keyword to ca
the full set of events to be generated. If ALL_TEXT_EVENTS is not set, setting
EDITABLE causes only end-of-line events to be generated. If EDITABLE is not s
all events are suppressed. See the table below for additional details. Note that t
equivalent keyword in the WIDGET_TEXT creation routine is called
ALL_EVENTS.

AM_PM

This keyword applies to widgets created with theWIDGET_TABLE function.

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the FORMAT keyword.

Set Set Yes All events

Keywords Effects

ALL_TEXT_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 88: Effects of using the ALL_TEXT_EVENTS and EDITABLE keywords

Keywords Effects

ALL_TABLE_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Table 87: Effects of using the ALL_TABLE_EVENTS and EDITABLE keywords
IDL Reference Guide WIDGET_CONTROL

1418

ted

er

sent
s

l
n a

the

s of
n

l

APPEND

This keyword applies to widgets created with theWIDGET_TEXT function.

When using the SET_VALUE keyword to set the contents of a text widget (as crea
with the WIDGET_TEXT procedure), setting this keyword indicates that the
supplied text should be appended to the existing contents of the text widget rath
than replace it.

BAD_ID

This keyword applies to all widgets.

If Widget_ID is not a valid widget identifier, this WIDGET_CONTROL normally
issues an error and causes program execution to stop. However, if BAD_ID is pre
and specifies a named variable, the invalid ID is stored into the variable, and thi
routine quietly returns. If no error occurs, a zero is stored.

CANCEL_BUTTON

This keyword applies to widgets created with theWIDGET_BASEfunction using the
MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the cance
button on a modal base widget. Pressing the “Escape” key on the keyboard whe
modal widget is on the screen is the same as clicking the button. On Motif and
Windows platforms, selecting “close” from the system menu (generally located at
upper left of the base widget) generates a button event for the Cancel button.

CLEAR_EVENTS

This keyword applies to all widgets.

If set, any events generated by the widget hierarchy rooted atWidget_ID which have
arrived but have not been processed (via the WIDGET_EVENT procedure) are
discarded.

COLUMN_LABELS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the column
the table. If no label is specified for a column, it receives the default label “Colum
n” wheren is the column number. If this keyword is set to the empty string (''), al
column labels are set to be empty.
WIDGET_CONTROL IDL Reference Guide

1419

he
th

re

eek

t

get

or
COLUMN_WIDTHS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to an array of widths for the columns of the table widget. T
widths are given in any of the units as specified with the UNITS keyword. If no wid
is specified for a column, that column is set to the default size, which varies by
platform. If COLUMN_WIDTHS is set to a scalar value, all of the column widths a
set to that value.

DAYS_OF_WEEK

This keyword applies to widgets created with theWIDGET_TABLE function.

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

DEFAULT_BUTTON

This keyword applies to widgets created with theWIDGET_BASEfunction using the
MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the defaul
button on a modal base widget. The default button is highlighted by the window
system. Pressing the “Enter” or “Return” key on the keyboard when a modal wid
is on the screen is the same as clicking the button.

DEFAULT_FONT

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

A string containing the name of the default font to be used.

If the font to be used for a given widget is not explicitly specified (via the FONT
keyword to the widget creation function), a default supplied by the window system
server is used. Use this keyword to change the default. See“About Device Fonts” on
page 2240 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

Note
On Microsoft Windows platforms, IDL uses the system default font. Different
versions of Windows use different system default fonts; in general, the system
default font is the font appropriate for the version of Windows in question.
IDL Reference Guide WIDGET_CONTROL

1420

it is

 is

the
the

s. It

CT
DELAY_DESTROY

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Normally, when the user destroys a widget hierarchy using the window manager,
immediately removed. This can cause problems for applications that use the
background task facility provided by the XMANAGER procedure if the hierarchy
destroyed while a background task is using it.

If DELAY_DESTROY is set, attempts to destroy the hierarchy are delayed until
next attempt to obtain an event for it. Setting DELAY_DESTROY to zero restores
default behavior.

XMANAGER uses this keyword automatically when managing background task
is not expected that applications will need to use it directly.

DELETE_COLUMNS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to delete the currently-selected columns. If the
USE_TABLE_SELECT keyword is given as a four element array, the columns
specified are deleted.

Warning
You cannot delete columns from a table which displays structure data in
/ROW_MAJOR (default) mode because it would change the structure.

DELETE_ROWS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to delete the currently-selected rows. If the USE_TABLE_SELE
keyword is given as a four element array, the rows specified are deleted.

Warning
You cannot delete rows from a table which displays structure data in
/COLUMN_MAJOR mode because it would change the structure.

DESTROY

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

1421

y

alue

ero

ero

hics

the

ets
Set this keyword to destroy the widget and any child widgets in its hierarchy. An
further attempts to use the IDs for these widgets will cause an error.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to enable button press events for draw widgets. Setting a zero v
disables such events.

DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to enable viewport expose events for draw widgets. Setting a z
value disables such events.

Note
You must explicitly disable backing store (by setting the RETAIN keyword to
WIDGET_DRAW equal to zero) in order to generate expose events.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to enable motion events for draw widgets. Setting a zero value
disables such events.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to enable viewport motion events for draw widgets. Setting a z
value disables such events.

DRAW_XSIZE

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to an integer that specifies the new horizontal size for the grap
region (thevirtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is
same as setting SCR_XSIZE or XSIZE. However, for scrolling draw widgets
DRAW_XSIZE is the only way to change the width of the drawable area (XSIZE s
the viewport size).
IDL Reference Guide WIDGET_CONTROL

1422

s

the

of

get.
the

, to
:

DRAW_YSIZE

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to an integer that specifies the new vertical size for the graphic
region (thevirtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is
same as setting SCR_YSIZE or YSIZE. However, for scrolling draw widgets
DRAW_YSIZE is the only way to change the height of the drawable area (YSIZE
sets the viewport size).

DYNAMIC_RESIZE

This keyword applies to widgets created with theWIDGET_BUTTON,
WIDGET_DROPLIST, andWIDGET_LABEL functions.

Set this keyword to activate (if set to 1) or deactivate (if set to 0) dynamic resizing
the specified WIDGET_BUTTON, WIDGET_LABEL, or WIDGET_DROPLIST
widget (see the documentation for the DYNAMIC_RESIZE keyword to those
procedures for more information about dynamic widget resizing).

EDITABLE

This keyword applies to widgets created with theWIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to allow direct user editing of the contents of a text or table wid
Normally, the text in text and table widgets is read-only. See the descriptions of
ALL_TABLE_EVENTS andALL_TEXT_EVENTSkeywords for additional details.

EDIT_CELL

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to a two-element integer array containing the x (row) and
y (column) coordinates of a table cell to put that cell into edit mode. For example
put the top left cell of a table widget into edit mode, use the following command

WIDGET_CONTROL,table, EDIT_CELL=[0, 0]

wheretable is the Widget ID of the table widget.

EVENT_FUNC

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

1423

T

mat
the

as

for
rned
ly to
A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.

This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

EVENT_PRO

This keyword applies to all widgets.

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.

This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

FORMAT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to a single string or an array of strings that specify the for
of data displayed within table cells. The string(s) are of the same form as used by
FORMAT keyword to the PRINT procedure, and the default format is the same
that used by thePRINT/PRINTF procedure. If the USE_TABLE_SELECT keyword
is set, then the format is changed only for the selected cells.

FUNC_GET_VALUE

This keyword applies to all widgets.

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
function specified by FUNC_GET_VALUE is called with the widget ID as an
argument. The function specified by FUNC_GET_VALUE should return a value
a widget. Using this technique allows you to change the value that should be retu
for a widget. Compound widgets use this ability to define their values transparent
the user.

GET_DRAW_VIEW

This keyword applies to widgets created with theWIDGET_DRAW function.
IDL Reference Guide WIDGET_CONTROL

1424

 X

dget.

value
he

ord

e

in

 The

in

es

ue
Specifies a named variable which will be assigned the current position of a draw
widget viewport. The position is returned as a 2-element integer array giving the
and Y position relative to the lower left corner of the graphics area.

GET_UVALUE

This keyword applies to all widgets.

Set this keyword to a named variable to contain the current user value of the wi

Each widget can contain a user set value of any data type and organization. This
is not used by the widget in any way, and exists entirely for the convenience of t
IDL programmer. This keyword allows you to obtain the current user value.

The user value of a widget can be set with the SET_UVALUE keyword to this
routine, or with the UVALUE keyword to the routine that created it.

To improve the efficiency of the data transfer, consider using the NO_COPY keyw
(described below) with GET_UVALUE.

GET_VALUE

This keyword applies to widgets created with theWIDGET_BUTTON,
WIDGET_DRAW, WIDGET_LABEL, WIDGET_SLIDER, WIDGET_TABLE, and
WIDGET_TEXT functions.

Note
If you would like information about the values returned for a specific compound
widget—beginning with the prefix “CW_”—please refer to the description of th
compound widget, which may also include a section titled, “Keywords to
WIDGET_CONTROL and WIDGET_INFO”. Compound widgets are described
theReference Guide.

Set this keyword to a named variable to contain the current value of the widget.
type of value returned depends on the widget type:

• Button: If the button label is text, it is returned as a string. Attempts to obta
the value of a button with a bitmap label is an error.

• Draw: The value of a draw widget depends on whether the draw widget us
IDL Direct Graphics or IDL Object Graphics. (The type of graphics used is
specified by theGRAPHICS_LEVELkeyword to WIDGET_DRAW.) The two
possibilities are:

A. By default, draw widgets use IDL Direct Graphics. In this case, the val
of a draw widget is the IDL window ID for the drawing area. This ID is
WIDGET_CONTROL IDL Reference Guide

1425

s to
me

ed

nal

 may

s a

. If
he

 the

r

oup

ure
o

used with procedures such as WSET, WSHOW, etc., to direct graphic
the widget. The window ID is assigned to drawing area widgets at the ti
they are realized. If the widget has not yet been realized, a value of -1 is
returned.

B. If the draw widget uses IDL Object Graphics (that is, if the
GRAPHICS_LEVEL keyword to WIDGET_DRAW is set equal to 2), the
value of the draw widget is the object reference of the window object us
in the draw widget.

• Label: The label text is returned as a string.

• Slider: The current value of the slider is returned as an integer.

• Table: Normally, the data for the whole table are returned as a two dimensio
array or a vector of structures. However, if the USE_TABLE_SELECT
keyword is present, the value returned is a subset of the whole data. This
either be a two dimensional array or a vector of (possibly anonymous)
structures. If the USE_TEXT_SELECT keyword is set, the value returned i
string corresponding to the currently-selected text in the currently-selected
cell.

• Text: The current contents of the text widget are returned as a string array
the USE_TEXT_SELECT keyword is also specified, only the contents of t
current selection are returned.

• Widget types not listed above do not return a value. Attempting to retrieve
value of such a widget causes an error.

The value of a widget can be set with the SET_VALUE keyword to this routine, o
with the VALUE keyword to the routine that created it.

GROUP_LEADER

This keyword applies to all widgets.

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.
IDL Reference Guide WIDGET_CONTROL

1426

ted. If
, the

ive
e
 can
a

is

ost
re
HOURGLASS

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Set this keyword to turn on an “hourglass-shaped” cursor for all IDL widgets and
graphics windows. The hourglass remains in place until the WIDGET_EVENT
function attempts to process the next event. Then the previous cursor is reinsta
an application starts a time-intensive calculation inside an event-handling routine
hourglass cursor should be used to indicate that the system is not currently
responding to events.

ICONIFY

This keyword applies to all widgets.

Set this keyword to a non-zero value to cause the specified widget to become
iconified. Set this keyword to zero to open an iconified widget.

INPUT_FOCUS

This keyword applies to widgets created with theWIDGET_BUTTON,
WIDGET_DRAW, andWIDGET_TEXT functions.

If Widget_IDis a text widget, you can set this keyword to cause the widget to rece
the keyboard focus. IfWidget_ID is a button widget, set this keyword to position th
mouse pointer over the button (on Motif), or set the focus to the button so that it
be “pushed” with the spacebar (on Windows). You cannot set the input focus to
button in IDL for Macintosh. IfWidget_IDis a draw widget, set this keyword to give
it the focus in IDL for Macintosh; this allows you to print from the draw widget. Th
keyword has no effect for other widget types.

Note
You cannot assign the input focus to an unrealized widget.

INSERT_COLUMNS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to the number of columns to be added to the right of the rightm
column of the table. If the USE_TABLE_SELECT keyword is set, the columns a
inserted to the left of the current selection.
WIDGET_CONTROL IDL Reference Guide

1427

the
the

get

ch

ER

e for
to

hat

 are
Warning
You cannot insert columns into a table which displays structure data in
/ROW_MAJOR (default) mode because it would change the structure.

INSERT_ROWS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to the number of rows to be added below the bottommost row of
table. If the USE_TABLE_SELECT keyword is set, the rows are inserted above
current selection.

Warning
You cannot insert rows into a table which displays structure data in
/COLUMN_MAJOR mode because it would change the structure.

KBRD_FOCUS_EVENTS

This keyword applies to widgets created with theWIDGET_BASE,
WIDGET_TABLE, andWIDGET_TEXT functions.

Set this keyword to cause widget keyboard focus events to be issued for the wid
whenever the keyboard focus of that widget changes. See the
KBRD_FOCUS_EVENTS keywords to WIDGET_BASE, WIDGET_TABLE, and
WIDGET_TEXT for details.

KILL_NOTIFY

This keyword applies to all widgets.

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

Use this keyword to change or remove a previously-specified callback procedur
Widget_ID. A previously-defined callback can be removed by setting this keyword
the null string ('').

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
IDL Reference Guide WIDGET_CONTROL

1428

t is

ified

ot a

AP

en
ith

sing

e for
 large.

r
 it
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MANAGED

This keyword applies to all widgets.

This keyword is used by the XMANAGER procedure to mark those widgets that i
currently managing. User applications should not use this keyword directly.

MAP

This keyword applies to all widgets.

Set this keyword to zero to unmap the widget hierarchy rooted at the widget spec
by Widget_ID. The hierarchy disappears from the screen, but still exists.

The mapping operation applies only to base widgets. If the specified widget is n
base, IDL searches upward in the widget hierarchy until it finds the closest base
widget. The map operation is applied to that base.

Set MAP to a nonzero value to re-map the widget hierarchy and make it visible.
Normally, the widget is automatically mapped when it is realized, so use of the M
keyword is not required.

MONTHS

This keyword applies to widgets created with theWIDGET_TABLE function.

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

NO_COPY

This keyword applies to all widgets.

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
WIDGET_CONTROL IDL Reference Guide

1429

tain

o

“get”
e

sing

ord

ce

g

ID
value
ly to
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the SET_UVALUE keyword to
WIDGET_CONTROL), the variable passed as value becomes undefined. On a
operation (GET_UVALUE keyword to WIDGET_CONTROL), the user value of th
widget in question becomes undefined.

Note
The NO_COPY keyword increases efficiency when sending event structures u
the SEND_EVENT keyword to WIDGET_CONTROL.

NO_NEWLINE

This keyword applies to widgets created with theWIDGET_TEXT function.

When setting the value of a multi-line text widget, newline characters are
automatically appended to the end of each line of text. The NO_NEWLINE keyw
suppresses this action.

NOTIFY_REALIZE

This keyword applies to all widgets.

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. A previously-set callback routine can be removed by settin
this keyword to the null string (''). The callback routine is called with the widget ID
as its only argument.

PRO_SET_VALUE

This keyword applies to all widgets.

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
procedure specified by PRO_SET_VALUE is called with 2 arguments— a widget
and a value. Using this technique allows you to designate a routine that sets the
for a widget. Compound widgets use this ability to define their values transparent
the user.

REALIZE

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

1430

chy
he

vent

f the

t to

e

If set, the widget hierarchy is realized. Until the realization step, the widget hierar
exists only within IDL. Realization is the step of actually creating the widgets on t
screen (and mapping them if necessary).

When a previously-realized widget gets a new child widget, the new child is
automatically realized.

Tip
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize e
is generated before any manipulation of the base widget by the user.

RESET

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword. Set the RESET keyword to destroy every currently active widget. This
keyword should be used with caution.

Warning
Using RESET while Insight is running will destroy your interaction with Insight.
You must restart IDL to run Insight again. If possible, exit Insight before using
RESET. Data can be corrupted or lost during a reset.

ROW_LABELS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the rows o
table. If no label is specified for a row, it receives the default label “Rown” wheren is
the row number. If this keyword is set to the empty string (''), all row labels are se
be empty.

ROW_HEIGHTS

This keyword applies to widgets created with theWIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword equal to an array of heights for the rows of the table widget. Th
heights are given in any of the units as specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
WIDGET_CONTROL IDL Reference Guide

1431

t to

 size,

an

e, in
ge

Note
ord.
.

e

ord

t. For
over
t by
ero,
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are se
that value.

SCR_XSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new horizontal
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the size of a widget that is part of a menubar or pulldown menu causes
error. Note that, in many cases, setting this keyword is equivalent to setting the
XSIZE keyword. However, this keyword is useful for resizing table, text, list, and
scrolling widgets.

SCR_YSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new vertical siz
units specified by the UNITS keyword (pixels are the default). Attempting to chan
the size of a widget that is part of a menubar or pulldown menu causes an error.
that, in many cases, setting this keyword is equivalent to setting the YSIZE keyw
However, this keyword is useful for resizing table, text, list, and scrolling widgets

SEND_EVENT

This keyword applies to all widgets.

Set this keyword to a structure containing a valid widget event to be sent to the
specified widget. The value of SEND_EVENTmust be a structure and the first three
fields must be ID, TOP, and HANDLER (all of LONG type). Additional fields can b
of any type.

To improve the efficiency of the data transfer, consider using the NO_COPY keyw
with SEND_EVENT.

SENSITIVE

Set this keyword to control the sensitivity state of a widget after creation. This
keyword applies to all widgets. Use the SENSITIVE keyword with the widget
creation function to control the initial sensitivity state.

When a widget is sensitive, it has normal appearance and can receive user inpu
instance, a sensitive button widget can be activated by moving the mouse cursor
it and pressing a mouse button. When a widget is insensitive, it indicates the fac
changing its appearance, and ignores any input directed at it. If SENSITIVE is z
the widget hierarchy becomes insensitive. If nonzero, it becomes sensitive.
IDL Reference Guide WIDGET_CONTROL

1432

t. It
are

f
all
n a
tion.

 a
rt.

 to
the

., the

red.
 new

ly
ble
f the
Sensitivity can be used to control when a user is allowed to manipulate a widge
should be noted that some widgets do not change their appearance when they
made insensitive, and simply cease generating events.

SET_BUTTON

This keyword applies to widgets created with theWIDGET_BUTTON function.

This keyword allows changing the current state of toggle buttons. If zero, every
toggle button in the hierarchy specified byWidget_IDis set to the unselected state. I
nonzero, the action depends on the type of base holding the buttons. Normally,
buttons are selected. However, exclusive bases may or may not allow more tha
single button to be selected in this manner, depending on the toolkit implementa

SET_DRAW_VIEW

This keyword applies to widgets created with theWIDGET_DRAW function.

A scrollable draw widget provides a large graphics area which is viewed through
smaller viewport. This keyword allows changing the current position of the viewpo
The desired position is specified as a 2-element integer array giving the X and Y
position in units specified by the UNITS keyword (pixels are the default) relative
the lower left corner of the graphics area. For example, to position the viewport to
lower left corner of the image:

WIDGET_CONTROL, widget, SET_DRAW_VIEW=[0, 0]

SET_DROPLIST_SELECT

This keyword applies to widgets created with theWIDGET_DROPLIST function.

Set this keyword to an integer that specifies the droplist element to be current (i.e
element that is displayed on the droplist button). Positions start at zero. If the
specified element is outside the possible range, no new selection is set.

SET_LIST_SELECT

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword to an integer scalar or vector that specifies the list element or
elements to be highlighted. The previous selection (if there is a selection) is clea
Positions start at zero. If the specified element is outside the possible range, no
selection in set. Note that the MULTIPLE keyword to WIDGET_LIST must have
been set in more than a single list element is specified.

If the selected position is not currently on the screen, the list widget automatical
move the current scrolling viewport to make it visible. The resulting topmost visi
element is toolkit specific. If you wish to ensure a certain element is at the top o
WIDGET_CONTROL IDL Reference Guide

1433

nge

ally

he
list, use the SET_LIST_TOP keyword (described below) to explicitly set the
viewport.

SET_LIST_TOP

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword to an integer that specifies the element of the list widget to the
positioned at the top of the scrolling list. If the specified element is outside the ra
of list elements, nothing happens.

SET_SLIDER_MAX

This keyword applies to widgets created with theWIDGET_SLIDER function.

Set this keyword to a new maximum value for the specified slider widget.

Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_SLIDER_MIN

This keyword applies to widgets created with theWIDGET_SLIDER function.

Set this keyword to a new minimum value for the specified slider widget.

Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_TABLE_SELECT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to an array of zero-based cell indices, of the form

[left, top, right, bottom]

giving the range of cells to select.

If the selected position is not currently on the screen, the table widget automatic
moves the current scrolling viewport to make a portion of it visible. The resulting
top-left visible cell is toolkit specific. If you wish to ensure a certain element is at t
top of the list, use the SET_TABLE_VIEW keyword to explicitly set the viewport.
IDL Reference Guide WIDGET_CONTROL

1434

 the
fied

et a
the
ugh

ent,

e

ciate
ry the
ime,

et
SET_TABLE_VIEW

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to a two-element array of zero-based cell indices that specifies
cell of the table widget to the positioned at the top-left of the widget. If the speci
cell is outside the range of valid cells, nothing happens.

SET_TEXT_SELECT

This keyword applies to widgets created with theWIDGET_TABLE and
WIDGET_TEXT functions.

Use this keyword to clear any current selection in the specified table cell or text
widget, and either set a new selection, or simply set the text insertion point. To s
selection, specify a two-element integer array containing the starting position and
length of the selection. For example, to set a selection covering characters 3 tho
23:

WIDGET_CONTROL, widgetID, SET_TEXT_SELECT=[3, 20]

To move the text insertion point without setting a selection, omit the second elem
or set it to zero.

SET_TEXT_TOP_LINE

This keyword applies to widgets created with theWIDGET_TEXT function.

Set this keyword to the zero-based line number of the line to be positioned on th
topmost visible line in the text widget’s viewport. No horizontal scrolling is
performed. Note that this is a line number, not a character offset.

SET_UNAME

This keyword applies to all widgets.

Set this keyword to a string that can be used to identify the widget. You can asso
a name with each widget in a specific hierarchy, and then use that name to que
widget hierarchy and get the correct widget ID. You can set the name at creation t
using the UNAME keyword with the creation function.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.
WIDGET_CONTROL IDL Reference Guide

1435

ay,
ows

ord

lar

es.

as
sed

ata
 less
e of
than
SET_UVALUE

This keyword applies to all widgets.

Each widget can contain a user-set value. This value is not used by IDL in any w
and exists entirely for the convenience of the IDL programmer. This keyword all
you to set this value.

To improve the efficiency of the data transfer, consider using the NO_COPY keyw
with SET_UVALUE.

SET_VALUE

This keyword applies to widgets created with theWIDGET_BUTTON,
WIDGET_DROPLIST, WIDGET_LABEL, WIDGET_LIST, WIDGET_SLIDER,
WIDGET_TABLE, andWIDGET_TEXT functions.

Sets the value of the specified widget. The meaning of the value differs between
widget types:

• Button: The label to be used for the button. This value can be either a sca
string, or a 2D byte array containing a bitmap.

• Droplist: The contents of the droplist widget (string or string array).

• Label: The text to be displayed by the label widget.

• List: The contents of the list widget (string or string array).

• Slider: The current position of the slider (integer).

• Table: Normally, the data for the whole table is changed to the given data
which must be of the form of a two dimensional array or a vector of structur
In this form, the table is resized to fit the given data (unless the
TABLE_XSIZE or TABLE_YSIZE keywords are given).

If the USE_TABLE_SELECT keyword is present, the value given is treated
a subset of the whole data, and only the given range of cells are updated. U
in this form, the type of data stored in the table cannot be changed. The d
passed in is converted, as appropriate, to the type of the selected cells. If
data is passed in than fits in the current selection, the cells outside the rang
data (but inside the selection) are left unchanged. If more data is passed in
fits in the current selection, the extra data is ignored.

If the USE_TEXT_SELECT keyword is present, the value must be a string
which replaces the currently-selected text in the currently-selected cell.
IDL Reference Guide WIDGET_CONTROL

1436

he

xt

to

t

g

at if
S

nd/or
 in the

R
w

t

T.
• Text: The text to be displayed. If the APPEND keyword is also specified, t
text is appended to the current contents instead of instead of completely
replacing it (string or string array). If the USE_TEXT_SELECT keyword is
specified, the new string replaces only the currently-selected text in the te
widget.

• Widget types not listed above do not allow the setting of a value. Attempting
set the value of such a widget causes an error.

The value of a widget can also be set with the VALUE keyword to the routine tha
created it.

SHOW

This keyword applies to all widgets.

Controls the visibility of a widget hierarchy. If set to zero, the hierarchy containin
Widget_ID is pushed behind any other windows on the screen. If nonzero, the
hierarchy is pulled in front.

TABLE_XSIZE

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to the number of data columns in the table widget. Note th
the table widget was created with row titles enabled (that is, if the NO_HEADER
keyword to WIDGET_TABLE wasnot set), the table will contain one column more
than the number specified by TABLE_XSIZE.

If the table is made smaller as a result of the application of the TABLE_XSIZE
keyword, the data outside the new range persists, but the number of columns a
rows changes as expected. If the table is made larger, the data type of the cells
new columns is set according to the following rules:

1. If the table was not created with either the ROW_MAJOR or COLUMN_MAJO
keywords set (if the table is an array rather than a vector of structures), the ne
cells have the same type as all the original cells.

2. If the SET_VALUE keyword is given, the types of all columns are set
according to the new structure.

3. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new columns inheri
their type from the cells to their left.

4. If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new columns default to type IN
WIDGET_CONTROL IDL Reference Guide

1437

the
S

nd/or
 in the

R
w

to

ir

ord
vent

mer
erate
ed
t

TABLE_YSIZE

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword equal to the number of data rows in the table widget. Note that if
table widget was created with column titles enabled (that is, if the NO_HEADER
keyword to WIDGET_TABLE wasnotset), the table will contain one row more than
the number specified by TABLE_YSIZE.

If the table is made smaller as a result of the application of the TABLE_YSIZE
keyword, the data outside the new range persists, but the number of columns a
rows changes as expected. If the table is made larger, the data type of the cells
new rows is set according to the following rules:

1. If the table was not created with either the ROW_MAJOR or COLUMN_MAJO
keywords set (if the table is an array rather than a vector of structures), the ne
cells have the same type as all the original cells.

2. Ifthe SET_VALUE keyword is given, the types of all rows are set according
the new structure.

3. If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new rows inherit the
type from the cells above.

4. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new rows default to type INT.

TIMER

This keyword applies to all widgets.

If this keyword is present, a WIDGET_TIMER event is generated. Set this keyw
to a floating-point value that represents the number of seconds before the timer e
arrives. Note that this event is identical to any other widget event except that it
contains only the 3 standard event tags. These event structures are defined as:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

It is left to the caller to tell the difference between standard widget events and ti
events. The standard way to do this is to use a widget that doesn’t normally gen
events (e.g., a base or label). Alternately, the TAG_NAMES function can be call
with the STRUCTURE_NAME keyword to differentiate a WIDGET_TIMER even
from other types of events. For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_TIMER' THEN ...
IDL Reference Guide WIDGET_CONTROL

1438

ity

und
to

 the
the
rner

he
the
l and

se.

ase

fied
per-
Using the TIMER keyword is more efficient than the background task functional
found in the XMANAGER procedure because it doesn’t “poll” like the original
background task code. Research Systems will eventually eliminate the backgro
task functionality from XMANAGER. We encourage all users to modify their code
use the TIMER keyword instead.

TLB_GET_OFFSET

This keyword applies to all widgets.

Set this keyword to a named variable in which the offset of the top-level base of
specified widget is returned, in units specified by the UNITS keyword (pixels are
default). The offset is measured in device coordinates relative to the upper-left co
of the screen. This offset value does not include the size of the enclosing frame
(which is provided by the window manager).

TLB_GET_SIZE

This keyword applies to all widgets.

Set this keyword to a named variable in which the size of the top-level base of t
specified widget is returned, in units specified by the UNITS keyword (pixels are
default). The size is returned as a two-element vector that contains the horizonta
vertical size of the base in device coordinates.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with theWIDGET_BASE function.

Use this keyword to set or clear kill request events for the specified top-level ba
For more information on these events see“TLB_KILL_REQUEST_EVENTS” on
page 1397.

TLB_SET_TITLE

This keyword applies to all widgets.

Set this keyword to a scalar string to change the title of the specified top-level b
after it has been created.

TLB_SET_XOFFSET

This keyword applies to all widgets.

Use this keyword to set the horizontal position of the top level base of the speci
widget. The offset is measured from the upper-left corner of the screen to the up
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).
WIDGET_CONTROL IDL Reference Guide

1439

per-

g
ixels
 to 2

TS

 the
or
many
TLB_SET_YOFFSET

This keyword applies to all widgets.

Use this keyword to set the vertical position of the top level base of the specified
widget. The offset is measured from the upper-left corner of the screen to the up
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).

TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to a non-zero value to enable tracking events for the widget
specified byWidget_ID. Set the keyword to 0 to disable tracking events for the
specified widget. For a description of tracking events, see“TRACKING_EVENTS”
on page 1397.

UNITS

This keyword applies to all widgets.

Use this keyword to specify the unit of measurement used for most widget sizin
operations. Set UNITS equal to 0 (zero) to specify that all measurements are in p
(this is the default), to 1 (one) to specify that all measurements are in inches, or
(two) to specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNI
is ignored when setting the XSIZE or YSIZE keywords toWIDGET_LIST,
WIDGET_TABLE, orWIDGET_TEXT.

UPDATE

This keyword applies to all widgets.

Use this keyword to enable (if set to 1) or disable (if set to 0) screen updates for
widget hierarchy to which the specified widget belongs. This keyword is useful f
preventing unwanted intermediate screen updates when changing the values of
widgets at once or when adding several widgets to a previously-realized widget
hierarchy. When first realized, widget hierarchies are set to update.
IDL Reference Guide WIDGET_CONTROL

1440

AT

the
es

, on
.

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly when
UPDATE is turned back on.

USE_TABLE_SELECT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to modify the behavior of the ALIGNMENT,COLUMN_WIDTH,
FORMAT, GET_VALUE, ROW_HEIGHT, and SET_VALUE keywords. If
USE_TABLE_SELECT is set, these other keywords only apply to the currently-
selected cells. Normally, these keywords apply to the entire contents of a table
widget.

Note
In order to set the format of the currently-selected cells, the value of the FORM
keyword must be an array of the same dimensions as the selected area.

This keyword can also be specified as a four-element array, of the form

[left, top, right, bottom]

giving the group of cells to act on. In this usage, the value -1 is used to refer to
row or column titles. If row or column titles are selected, this keyword only modifi
the behavior of the COLUMN_WIDTH and ROW_HEIGHTS keywords.

Warning
You should set values to -1 only when you can change the labels. For example
the Macintosh, only COLUMN_WIDTH and ROW_HEIGHT should be set to -1

USE_TEXT_SELECT

This keyword applies to widgets created with theWIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to modify the behavior of the GET_VALUE and SET_VALUE
keywords. If USE_TEXT_SELECT is set, GET_VALUE and SET_VALUE apply
only to the current text selection. Normally, these keywords apply to the entire
contents of a text widget.
WIDGET_CONTROL IDL Reference Guide

1441

imes
icate
 can

set,

new

 is

ls.

n be
 and

w
nu

t, in
ge
X_BITMAP_EXTRA

This keyword applies to widgets created with theWIDGET_BUTTON function.

When the value of a button widget is a bitmap, the usual width is taken to be 8 t
the number of columns in the source byte array. This keyword can be used to ind
the number of bits in the last byte of each row that should be ignored. The value
range between 0 and 7.

XOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new horizontal off
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the offset of a widget that is the child of a ROW or COLUMN base or a
widget that is part of a menubar or pulldown menu causes an error.

XSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s
horizontal size.

• Text and List widgets: Size is specified in characters. The UNITS keyword
ignored.

• Table widgets: Size is specified in columns. The width of the row labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixe

For most non-scrollable widgets, this size is the same as the “screen size” that ca
set using the SCR_XSIZE keyword. For scrollable widgets (e.g., scrolling bases
scrolling draw widgets), this keyword adjusts theviewport size. Use the
DRAW_XSIZE keyword to change the width of the drawing area in scrolling dra
widgets. Attempting to resize a widget that is part of a menubar or pulldown me
causes an error.

YOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new vertical offse
units specified by the UNITS keyword (pixels are the default). Attempting to chan
IDL Reference Guide WIDGET_CONTROL

1442

t is

new

ls.

n be
 and

w
nu
the offset of a widget that is the child of a ROW or COLUMN base or a widget tha
part of a menubar or pulldown menu causes an error.

YSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s
vertical size

• Text and List widgets: Size is specified in lines. The UNITS keyword is
ignored.

• Table widgets: Size is specified in rows. The height of the column labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixe

For most non-scrollable widgets, this size is the same as the “screen size” that ca
set using the SCR_YSIZE keyword. For scrollable widgets (e.g., scrolling bases
scrolling draw and table widgets), this keyword adjusts theviewport size. Use the
DRAW_YSIZE keyword to change the height of the drawing area in scrolling dra
widgets. Attempting to resize a widget that is part of a menubar or pulldown me
causes an error.

See Also

Building IDL ApplcationsChapter 18, “Widgets”.
WIDGET_CONTROL IDL Reference Guide

1443

an
the

llow

ed
the
WIDGET_DRAW

The WIDGET_DRAW function is used to create draw widgets. Draw widgets are
rectangular areas that IDL treats as standard graphics windows. Draw widgets c
use either IDL Direct graphics or IDL Object graphics, depending on the value of
GRAPHICS_LEVEL keyword. Any graphical output that can be produced by IDL
can be directed to a draw widget. Draw widgets can have optional scroll bars to a
viewing a larger graphics area than could otherwise be displayed in the widget’s
visible area.

The returned value of this function is the widget ID of the newly-created draw
widget.

Note
On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD() may cause unexpect
results. For example, data may be improperly read from the window even when
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

Syntax

Result = WIDGET_DRAW(Parent [, /APP_SCROLL] [, /BUTTON_EVENTS]
[, /COLOR_MODEL] [, COLORS=integer] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, /EXPOSE_EVENTS] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GRAPHICS_LEVEL=2]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY= string]
[, /MOTION_EVENTS] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, RENDERER={0 | 1}]
[, RESOURCE_NAME=string] [, RETAIN={0 | 1 | 2}] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE= value]
[, /VIEWPORT_EVENTS] [, XOFFSET=value] [, XSIZE=value]
[, X_SCROLL_SIZE=width] [, YOFFSET=value] [, YSIZE=value]
[, Y_SCROLL_SIZE=height])

Arguments

Parent

The widget ID of the parent widget of the new draw widget.
IDL Reference Guide WIDGET_DRAW

1444

ecify

rds.
ch as

tion

es
events

in

tons
draw

t

cs

ect

.

Keywords

APP_SCROLL

Set this keyword to create a scrollable draw widget with horizontal and vertical
scrollbars and a draw area canvas with the same size as the viewport. You can sp
the size of the viewport using the X_SCROLL_SIZE and Y_SCROLL_SIZE
keywords, and the virtual size of the canvas using the XSIZE and YSIZE keywo
If APP_SCROLL is set, the application generates expose and viewport events su
would occur with EXPOSE=1, RETAIN=0, and VIEWPORT_EVENTS=1. This
allows you to redraw the appropriate part of the virtual canvas when your applica
receives expose or viewport events.

Use the APP_SCROLL keyword when displaying images, or anything drawn in
device units or pixels. This keyword is good when you are displaying large imag
because the entire images does not have to be redrawn when change viewport
are generated.

Use the SCROLL keyword when a draw widget is going to display graphics drawn
data units (e.g., PLOT, CONTOUR, SURFACE).

BUTTON_EVENTS

Set this keyword to make the draw widget generate events when the mouse but
are pressed or released (and the mouse pointer is in the draw widget). Normally,
widgets do not generate events.

COLOR_MODEL

Set this keyword equal to 1 (one) to cause the draw widget’s associated
IDLgrWindow object to use indexed color. If the COLOR_MODEL keyword is no
set, or is set to a value other than one, the draw widget will use RGB color.

This keyword is only valid when the draw widget uses IDL Object Graphics. (The graphi
type used by a draw widget is determined by setting theGRAPHICS_LEVEL keyword to
WIDGET_DRAW.)For information on using indexed color in Object Graphics
window objects, seeChapter 20, “Working with Color” in Using IDL.

COLORS

The maximum number of color table indices to be used. This parameter has eff
only if it is supplied when thefirst IDL graphics window is created.

If COLORS is not specified when the first window is created, all or most of the
available color indices are allocated, depending upon the window system in use
WIDGET_DRAW IDL Reference Guide

1445

the

e

T
e

he
ing

d.

to

ified.
 a
To use monochrome windows on a color display, set COLORS equal to 2 when
creating the first window. One color table is maintained for all IDL windows. A
negative value for COLORS specifies that all but the given number of colors from
shared color table should be used.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EXPOSE_EVENTS

Set this keyword to make the draw widget generate event when the visibility of t
draw widget changes. This may occur when the widget is hidden behind someth
else on the screen, brought to the foreground, or when the scroll bars are move
Normally, draw widgets do not generate events.

Note
You must explicitly disable backing store (by setting the RETAIN keyword equal
zero) in order to generate expose events. Additional expose events may be
generated if both EXPOSE_EVENTS and RETAIN=1 are turned on.

Warning
Large numbers of events may be generated when EXPOSE_EVENTS is spec
You may wish to compress the events (perhaps using a timer) and only act on
subset.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.
IDL Reference Guide WIDGET_DRAW

1446

is

r.

. If
he

oup

ure
o

ch

ER

hat

 are

sor
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GRAPHICS_LEVEL

Set this keyword equal to 2 (two) to use IDL Object Graphics in the draw widget
the GRAPHICS_LEVEL keyword is not set, or is set to a value other than two, t
draw widget will use IDL Direct Graphics.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MOTION_EVENTS

Set this keyword to make the draw widget generate events when the mouse cur
moves across the widget. Normally, draw widgets do not generate events.
WIDGET_DRAW IDL Reference Guide

1447

that

raw
e
get

sing

e for
 large.

r
 it
tain

o

UE
es

ce

is

r.

hen
Draw widgets that return motion events can generate a large number of events
can result in poor performance on slower machines.

Note that it is possible to generate motion events with coordinates outside the d
widget. If you position the mouse cursor inside the draw widget, press the mous
button, and drag the cursor out of the draw widget, the X and Y fields of the wid
event will specify coordinates outside the draw widget.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DRAW or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use w
drawing objects within the window. Valid values are:
IDL Reference Guide WIDGET_DRAW

1448

rm
 is

get.
rd.

r the

the
he

the
he

f

in
d

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platfo
does not have a native OpenGL implementation, IDL’s software implementation
used regardless of the value of this property. See“Hardware vs. Software Rendering”
in Chapter 28 ofUsing IDL for details. Your choice of renderer may also affect the
maximum size of a draw widget. See“IDLgrWindow” on page 2052 for details.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled fo
draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that the
server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See“Backing Store” on page 1453 for details on the
use of RETAIN with Direct Graphics. For more information on the use of RETAIN
with Object Graphics, see“IDLgrWindow::Init” on page 2066.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the draw widget scroll bars that allow viewing portions o
the widget contents that are not currently on the screen.

Use the SCROLL keyword when a draw widget is going to display graphics drawn
data units (e.g., PLOT, CONTOUR, SURFACE). Use the APP_SCROLL keywor
when displaying images, or anything drawn in device units or pixels.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.
WIDGET_DRAW IDL Reference Guide

1449

 user
use

cates

et.

e

ever
cture

ou
name

et

the
to

n.

en
If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.
IDL Reference Guide WIDGET_DRAW

1450

w
ics
ified

are
able

an

ls

k
y of
f

 the
ly a
ts
VALUE

The initial value setting of the widget. The value of a draw widget is the IDL windo
number for use with Direct Graphics routines, such as WSET. For Object Graph
routines, it is the draw window object reference. This value cannot be set or mod
by the user.

To obtain the window number for a newly-created draw widget, use the
GET_VALUE keyword to WIDGET_CONTROLafter the draw widget has been
realized. Draw widgets do not have a window number assigned to them until they
realized. For example, to return the window number of a draw widget in the vari
win_num, use the command:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = win_num

wheremy_drawwidget is the widget ID of the desired draw widget.

When using Object Graphics for the widget draw, the following command returns
object reference to the draw window:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = oWindow

whereoWindow is a window object.

VIEWPORT_EVENTS

Set this keyword to enable viewport motion events for draw widgets.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget layout.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations. By default, draw widge
are 100 pixels wide by 100 pixels high.
WIDGET_DRAW IDL Reference Guide

1451

ible

re

k
y of
f

 the
ly a
ts

isible
g

re
X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the vis
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
hint to the toolkit and may be ignored in some situations. By default, draw widge
are 100 pixels wide by 100 pixels high.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the v
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrollin
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
draw widgets. In addition to those keywords that affect all widgets, the following a
particularly useful:DRAW_BUTTON_EVENTS, DRAW_EXPOSE_EVENTS,
DRAW_MOTION_EVENTS, DRAW_VIEWPORT_EVENTS, DRAW_XSIZE,
DRAW_YSIZE, GET_DRAW_VIEW, GET_VALUE, INPUT_FOCUS,
SET_DRAW_VIEW.
IDL Reference Guide WIDGET_DRAW

1452

all

rd
 the
g the

S
 the

nt.

ured
s in
Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to draw widgets. In addition to those keywords that apply to
widgets, the following are particularly useful:DRAW_BUTTON_EVENTS,
DRAW_EXPOSE_EVENTS, DRAW_MOTION_EVENTS,
DRAW_VIEWPORT_EVENTS.

Widget Events Returned by Draw Widgets

By default, draw widgets do not generate events. If the BUTTON_EVENTS keywo
is set when the widget is created, pressing or releasing any mouse button while
mouse cursor is over the draw widget causes events to be generated. Specifyin
MOTION_EVENTS keyword causes events to be generatedcontinuously as the
mouse cursor moves across the draw widget. Specifying the EXPOSE_EVENT
keyword causes events to be generated whenever the visibility of any portion of
draw window (or viewport) changes.

The event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0}

ID, TOP, and HANDLER are the three standard fields found in every widget eve
TYPE returns a value that describes the type of draw widget interaction that
generated an event. The values for TYPE are shown in the table below.

The X and Y fields give the device coordinates at which the event occurred, meas
from the lower left corner of the drawing area. PRESS and RELEASE are bitmask
which the least significant bit represents the leftmost mouse button. The

Value Meaning

0 Button Press

1 Button Release

2 Motion

3 Viewport Moved (Scrollbars)

4 Visibility Changed (Exposed)

Table 89: Values for the TYPE field
WIDGET_DRAW IDL Reference Guide

1453

ASE

ss

er

e

state
s in

 the
ng
can

nd
corresponding bit of PRESS is set when a mouse button is pressed, and in RELE
when the button is released. If the event is a motion event, both PRESS and
RELEASE are zero.

The CLICKS field returns either 1 or 2. If the time interval between two button-pre
events is less than the time interval for a double-click event for the platform, the
CLICKS field returns 2. If the time interval between button-press events is great
than the time interval for a double-click event for the platform, the CLICKS field
returns 1. This means that if you are writing a widget application that requires th
user to double-click on a draw widget, you will need to handle two events. The
CLICKS field will return a 1 on the first click and a 2 on the second click.

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button
information from a draw widget, examine the X, Y, PRESS, and RELEASE field
the structures returned by the draw widget in response to cursor events.

Backing Store

Draw widgets with scroll bars rely on backing store to repaint the visible area of
window as it is moved. Their performance is best on systems that provide backi
store. However, if your system does not automatically provide backing store, you
make IDL supply it with the statement:

DEVICE, RETAIN=2

or by using the RETAIN keyword to WIDGET_DRAW.

Note
If you are using graphics acceleration, you may wish to turn off backing store
entirely and enable expose events (via the EXPOSE_EVENTS keyword) and
redraw the draw widget’s contents manually. However, because the number of
events generated may be quite high, you may wish to enable a timer as well a
only redraw the draw widget periodically.

See Also

SLIDE_IMAGE, WINDOW
IDL Reference Guide WIDGET_DRAW

1454

a
ose.
tton
ining
n the

r its
e
is
er
WIDGET_DROPLIST

The WIDGET_DROPLIST function creates “droplist” widgets. A droplist widget is
button with a label that, when selected, reveals a list of options from which to cho
When the user selects a new option from the list, the list disappears and the bu
title displays the currently-selected option. This action generates an event conta
the index of the selected item, which ranges from 0 to the number of elements i
list minus one, and updates the label on the push-button.

The returned value of this function is the widget ID of the newly-created droplist
widget.

Syntax

Result = WIDGET_DROPLIST(Parent [, /DYNAMIC_RESIZE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY= string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, TITLE=string] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE= value] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new droplist widget.

Keywords

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value wheneve
value is changed. Note that this keyword does not take effect when used with th
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords
also set, the widget will be sized as specified by the sizing keyword and will nev
resize itself dynamically.
WIDGET_DROPLIST IDL Reference Guide

1455

e

T
e

is

r.

oup

ure
o

ch

ER

hat

 are
EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a hint to the toolkit, and may be ignored in
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
IDL Reference Guide WIDGET_DROPLIST

1456

sing

e for
 large.

r
 it
tain

o

in

ce

is

r.

get.
rd.
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DROPLIST or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as value becomes undefined. On a “get” operation
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget
question becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo
WIDGET_DROPLIST IDL Reference Guide

1457

the
he

the
he

 user
use

cates

et.

e

ever
cture

ou
name
SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

TITLE

Set this keyword to a string to be used as the title for the droplist widget.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
IDL Reference Guide WIDGET_DROPLIST

1458

et

the
to

n.

en

ing

item

ls

k
y of
f

he
ride
ist.
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a droplist widget is a scalar str
or array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest
specified in the array of values for the VALUE keyword.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The desired width of the droplist widget area, in units specified by the UNITS
keyword (pixels are the default). Most widgets attempt to size themselves to fit t
situation. However, if the desired effect is not produced, use this keyword to over
it. This keyword does not control the size of the droplist button or of the dropped l
Instead, it controls the size “around” the droplist button and, as such, is not
particularly useful.
WIDGET_DROPLIST IDL Reference Guide

1459

re

k
y of
f

are
er, if
oes
the

ng

all

list
te an
at the
ned
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels
the default). Most widgets attempt to size themselves to fit the situation. Howev
the desired effect is not produced, use this keyword to override it. This keyword d
not control the size of the droplist button or of the dropped list. Instead, it controls
size “around” the droplist button and, as such, is not particularly useful.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
droplist widgets. In addition to those keywords that affect all widgets, the followi
are particularly useful:DYNAMIC_RESIZE, SET_DROPLIST_SELECT,
SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to droplist widgets. In addition to those keywords that apply to
widgets, the following are particularly useful:DROPLIST_NUMBER,
DROPLIST_SELECT, DYNAMIC_RESIZE.

Widget Events Returned by Droplist Widgets

Pressing the mouse button while the mouse cursor is over an element of a drop
widget causes the widget to change the label on the droplist button and to genera
event. The appearance of any previously selected element is restored to normal
same time. The event structure returned by the WIDGET_EVENT function is defi
by the following statement:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }
IDL Reference Guide WIDGET_DROPLIST

1460

mes

erate
The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of na
originally used to set the widget’s value.

Note
Platform-specific UI toolkits behave differently if a droplist widget has only a
single element. On some platforms, selecting that element again does not gen
an event. Events are always generated if the list contains multiple items.

See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_LIST
WIDGET_DROPLIST IDL Reference Guide

1461

t

ed

ts

er, if
WIDGET_EVENT

The WIDGET_EVENT function returns events for the widget hierarchy rooted a
Widget_ID. Widgets communicate information by generating events. Events are
generated when a button is pressed, a slider position is changed, and so forth.

Note
Widget applications should use the XMANAGER procedure in preference to
calling WIDGET_EVENT directly. See“Widget Events”in Chapter 18 ofBuilding
IDL Applcations.

Syntax

Result = WIDGET_EVENT([Widget_ID]) [, BAD_ID=variable] [, /NOWAIT]
[, /SAVE_HOURGLASS]

UNIX Keywords: [, /YIELD_TO_TTY]

Arguments

Widget_ID

Widget_ID specifies the widget hierarchy for which events are desired. The first
available event for the specified widget or any of its children is returned. If this
argument is not specified, WIDGET_EVENT processes events for all existing
widgets.

Widget_IDcan also be an array of widget identifiers, in which case all of the specifi
widget hierarchies are searched.

Note
Attempting to obtain events for a widget hierarchy which is not producing even
will hang IDL, unless the NOWAIT keyword is used.

Keywords

BAD_ID

If one of the values supplied viaWidget_ID is not a valid widget identifier, this
function normally issues an error and causes program execution to stop. Howev
IDL Reference Guide WIDGET_EVENT

1462

he

er,
 the

til

it to

. The
:

 the
BAD_ID is present and specifies a named variable, the invalid ID is stored into t
variable, and this routine quietly returns. If no error occurs, a zero is stored.

This keyword can be used to handle the situation in which IDL is waiting within
WIDGET_EVENT when the user kills the widget hierarchy.

This keyword has meaning only ifWidget_ID is explicitly specified.

NOWAIT

When no events are currently available for the specified widget hierarchy,
WIDGET_EVENT normally waits until one is available and then returns it. Howev
if NOWAIT is set and no events are present, it immediately returns. In this case,
ID field of the returned structure will be zero.

SAVE_HOURGLASS

Set this keyword to prevent the hourglass cursor from being cleared by
WIDGET_EVENT. This keyword can be of use if a program has to poll a widget
periodically during a long computation.

YIELD_TO_TTY

Unless the NOWAIT keyword is specified, WIDGET_EVENT does not return un
the asked for event is available. If the user should enter a line of input from the
keyboard, it cannot be processed until WIDGET_EVENT returns. If the
YIELD_TO_TTY keyword is specified and the user enters a line of input,
WIDGET_EVENT returns immediately. In this case, the ID field of the returned
structure will be zero.

Note
This keyword is supported under UNIX only, and there are no plans to extend
other operating systems. Do not use it if you intend to use non-UNIX systems.

Event Processing

All events for a given widget are processed in the order that they are generated
event processing performed by WIDGET_EVENT consists of the following steps

• Wait for an event from one of the specified widgets to arrive.

• Starting with the widget that the event belongs to, move up the widget
hierarchy looking for a widget that has an event handling procedure or
function associated with it. Such routines are associated with a widget via
WIDGET_EVENT IDL Reference Guide

1463

ns

rst

 a
p.

t has

ENT

 is
ive

 by

ry
ure,
The

ction,
et

as
EVENT_PRO and EVENT_FUNC keywords to the widget creation functio
or the WIDGET_CONTROL procedure.

• If an event handlingprocedure is found, it is called with the widget ID as its
argument. When the procedure returns, WIDGET_EVENT returns to the fi
step. Hence, event procedures are said to “swallow” events.

• If an event handlingfunction is found, it is called with the widget ID as its
argument. When the function returns, its value is examined. If the value is
non-structure, it is discarded and WIDGET_EVENT returns to the first ste

This behavior allows event functions to selectively act like event procedures and
swallow events. If the returned value is a structure, it is checked to ensure that i
the standard first 3 fields: ID, TOP, and HANDLER. If not an error is issued.
Otherwise the value replaces the event found in the first step and WIDGET_EV
returns to the second step.

Hence, event functions are said to “rewrite” events. This ability to rewrite events
the basis of the “compound widget” in which several widgets are combined to g
the appearance of a single, more complicated widget.

• If an event reaches the top of a widget hierarchy without being swallowed
an event handler, it is returned as the value of WIDGET_EVENT.

Events

A widget event is returned in a structure. The exact contents of this structure va
depending upon the type of widget involved. The first three elements of this struct
however, are always the same. Any other elements vary from widget type to type.
three fixed elements are:

ID

The widget ID of the widget that generated the event.

TOP

The widget ID of the top level base for the widget hierarchy containingID .

HANDLER

When an event is passed as the argument to an event handling procedure or fun
as discussed in the previous section, this field contains the identifier of the widg
associated with the handler routine. When an event is returned from
WIDGET_EVENT, this value is always zero to indicate that no handler routine w
found.
IDL Reference Guide WIDGET_EVENT

1464
See Also

XMANAGER
WIDGET_EVENT IDL Reference Guide

1465

ired
WIDGET_INFO

The WIDGET_INFO function is used to obtain information about the widget
subsystem and individual widgets. The specific area for which information is des
is selected by setting the appropriate keyword.

Syntax

Result = WIDGET_INFO([Widget_ID])

Keywords that apply to all widgets: [, /ACTIVE] [, /CHILD] [, /EVENT_FUNC]
[, /EVENT_PRO] [, FIND_BY_UNAME=string] [, /GEOMETRY]
[, /KBRD_FOCUS_EVENTS] [, MANAGED=variable] [, /NAME] [, /PARENT]
[, /REALIZED] [, /SIBLING] [, /TRACKING_EVENTS] [, /TYPE] [, UNITS={0 | 1
| 2}] [, /UNAME] [, /UPDATE] [, /VALID_ID] [, /VERSION]

Keywords that apply to widgets created with widget_base: [, /MODAL]
[, /TLB_KILL_REQUEST_EVENTS]

Keywords that apply to widgets created with widget_button:
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_draw:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, /DRAW_MOTION_EVENTS] [, /DRAW_VIEWPORT_EVENTS]

Keywords that apply to widgets created with widget_droplist:
[, /DROPLIST_NUMBER] [, /DROPLIST_SELECT] [, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_label:
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with widget_list: [, /LIST_MULTIPLE]
[, /LIST_NUMBER] [, /LIST_NUM_VISIBLE] [, /LIST_SELECT] [, /LIST_TOP]

Keywords that apply to widgets created with widget_slider:
[, /SLIDER_MIN_MAX]

Keywords that apply to widgets created with widget_table:
[, /COLUMN_WIDTHS] [, /ROW_HEIGHTS{not supported in Windows}]
[, /TABLE_ALL_EVENTS] [, /TABLE_EDITABLE] [, /TABLE_EDIT_CELL]
[, /TABLE_SELECT] [, /TABLE_VIEW] [, /USE_TABLE_SELECT]

Keywords that apply to widgets created with widget_text:
[, /TEXT_ALL_EVENTS] [, /TEXT_EDITABLE] [, /TEXT_NUMBER]
IDL Reference Guide WIDGET_INFO

1466

is
t

n

dget

by

mn
[, TEXT_OFFSET_TO_XY=integer] [, /TEXT_SELECT] [, /TEXT_TOP_LINE]
[, TEXT_XY_TO_OFFSET=[column, line]]

Arguments

Widget_ID

Usually this argument should be the widget ID of the widget for which information
desired. If the ACTIVE or VERSION keywords are specified, this argument is no
required.

Widget_ID can also be an array of widget identifiers, in which case the result is a
array with the same structure in which information on all the specified widgets is
returned.

Keywords

Not all keywords to WIDGET_INFO apply to all combinations of widgets. In the
following list, descriptions of keywords that affect only certain types of widgets
include a list of the widgets for which the keyword is useful.

ACTIVE

This keyword applies to all widgets.

Set this keyword to return 1 if there is at least one realized, managed, top-level wi
on the screen. Otherwise, 0 is returned.

CHILD

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first child of the widget specified
Widget_ID. If the widget has no children, 0 is returned.

COLUMN_WIDTHS

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to return an array of long integers giving the width of each colu
in the table. If USE_TABLE_SELECT is set, only the column widths for the
currently-selected cells are returned.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.
WIDGET_INFO IDL Reference Guide

1467

ified

ent

.

Set this keyword to return 1 ifWidget_ID is a draw widget with the
BUTTON_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to return 1 ifWidget_ID is a draw widget with the
EXPOSE_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to return 1 ifWidget_ID is a draw widget with the
MOTION_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with theWIDGET_DRAW function.

Set this keyword to return 1 ifWidget_ID is a draw widget with the
VIEWPORT_EVENTS attribute set. Otherwise, 0 is returned.

DROPLIST_NUMBER

This keyword applies to widgets created with theWIDGET_DROPLIST function.

Set this keyword to return the number of elements currently contained in the spec
droplist widget.

DROPLIST_SELECT

This keyword applies to widgets created with theWIDGET_DROPLIST function.

Set this keyword to return the zero-based number of the currently-selected elem
(i.e., the currently-displayed element) in the specified droplist widget.

DYNAMIC_RESIZE

This keyword applies to widgets created with theWIDGET_BUTTON,
WIDGET_DROPLIST, andWIDGET_LABEL functions.

Set this keyword to return a True value (1) if the widget specified byWidget_ID is a
button, droplist, or label widget that has had its DYNAMIC_RESIZE attribute set
Otherwise, False (0) is returned.

EVENT_FUNC

This keyword applies to all widgets.
IDL Reference Guide WIDGET_INFO

1468

ction

dure

hy,

s

of
Set this keyword to return a string containing the name of the event handler fun
associated withWidget_ID. A null string is returned if no event handler function
exists.

EVENT_PRO

This keyword applies to all widgets.

Set this keyword to return a string containing the name of the event handler proce
associated withWidget_ID. A null string is returned if no event handler procedure
exists.

FIND_BY_UNAME

This keyword applies to all widgets.

Set this keyword to a UNAME value that will be searched for in the widget hierarc
and if a widget with the given UNAME is in the hierarchy, its ID is returned. The
search starts in the hierarchy with the given widget ID and travels down, and thi
keyword returns the widget ID of the first widget that has the specified UNAME
value.

If a widget is not found, 0 is returned.

GEOMETRY

This keyword applies to all widgets.

Set this keyword to return a WIDGET_GEOMETRY structure that describes the
offset and size information for the widget specified byWidget_ID. This structure has
the following definition:

{ WIDGET_GEOMETRY,
XOFFSET:0.0,
YOFFSET:0.0,
XSIZE:0.0,
YSIZE:0.0,
SCR_XSIZE:0.0,
SCR_YSIZE:0.0,
DRAW_XSIZE:0.0,
DRAW_YSIZE:0.0,
MARGIN:0.0,
XPAD:0.0,
YPAD:0.0,
SPACE:0.0 }

With the exception of MARGIN, all of the structure’s fields correspond to the
keywords of the same name to the various widget routines. MARGIN is the width
WIDGET_INFO IDL Reference Guide

1469

are

ine
Y
ture

 of a

L.
e

d by

gets

the
any frame added to the widget, in units specified by the UNITS keyword (pixels
the default). Therefore, the actual width of any widget is:

SCR_XSIZE + (2* MARGIN)

The actual height of any widget is:

SCR_YSIZE + (2 * MARGIN)

Note also that if the top-level base includes a menubar, it is not possible to determ
the actual height of the base widget. Calling WIDGET_INFO with the GEOMETR
keyword on a top level base that includes a menubar will return a geometry struc
that contains zeroes rather than the actual sizes of the widget.

Note
Menubars are not included in the size of a top-level base, so the actual height
widget that includes a menubar is:

SCR_YSIZE + (2 * MARGIN) + menubar height

It is not possible to either determine or change the height of a menubar within ID
Retrieving the WIDGET_GEOMETRY structure of a menubar yields a structur
with all the fields set equal to zero.

KBRD_FOCUS_EVENTS

This keyword applies to all widgets.

Set this keyword to return the keyboard focus events status of the widget specifie
Widget ID. WIDGET_INFO returns 1 (one) if keyboard focus events are currently
enabled for the widget, or 0 (zero) if they are not. Only base, table, and text wid
can generate keyboard focus events.

LIST_MULTIPLE

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword equal to a named variable that will contain a non-zero value if
list widget supports multiple item selections. See the MULTIPLE keyword to
WIDGET_LIST for more on multiple item selections.

LIST_NUMBER

This keyword applies to widgets created with theWIDGET_LIST function.
IDL Reference Guide WIDGET_INFO

1470

ified

lling
otal

ed)
d. If

y

the

l to
ll
Set this keyword to return the number of elements currently contained in the spec
list widget.

LIST_NUM_VISIBLE

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword to return the number of elements that can be visible in the scro
viewport of the specified list widget. Note that this value can be larger than the t
number of elements actually in the list.

LIST_SELECT

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword to return the index or indices of the currently-selected (highlight
element or elements in the specified list widget. Note that this offset is zero-base
no element is currently selected, -1 is returned.

LIST_TOP

This keyword applies to widgets created with theWIDGET_LIST function.

Set this keyword to return the zero-based offset of the topmost element currentl
visible in the specified list widget.

MANAGED

This keyword applies to all widgets.

Set this keyword equal to a named variable. If a single widget ID is specified in
call to WIDGET_INFO, the variable will contain a True (1) value if the specified
widget is managed, or False (0) otherwise. If no widget ID is specified in the cal
WIDGET_INFO, the variable will contain an array containing the widget IDs of a
currently-managed widgets.

MODAL

This keyword applies to widgets created with theWIDGET_BASE function and the
MODAL keyword.

If this keyword is set, WIDGET_INFO will return True (1) if the base widget
specified byWidget_ID is a modal base widget, or False (0) otherwise.

NAME

This keyword applies to all widgets.
WIDGET_INFO IDL Reference Guide

1471

 in

by

fied
nt 1
Set this keyword to return the widget type name of the widget specified by
Widget_ID. The returned value will be one of the following strings: “BASE”,
“BUTTON”, “DRAW”, “DROPLIST”, “LABEL”, “LIST”, “SLIDER”, “TABLE”,
or “TEXT”. Set the TYPE keyword to return the widget’s type code.

PARENT

This keyword applies to all widgets.

Set this keyword to return the widget ID of the parent of the widget specified by
Widget_ID. If the widget is a top-level base (i.e., it has no parent), 0 is returned.

REALIZED

This keyword applies to all widgets.

Set this keyword to return 1 if the widget specified byWidget_IDhas been realized. If
the widget has not been realized, 0 is returned.

ROW_HEIGHTS

This keyword applies to widgets created with theWIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword to return an array of long integers giving the height of each row
the table. If USE_TABLE_SELECT is set, only the row heights for the currently-
selected cells are returned.

SIBLING

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first sibling of the widget specified
Widget_ID. If the widget is the last sibling in the chain, 0 is returned.

SLIDER_MIN_MAX

This keyword applies to widgets created with theWIDGET_SLIDER function.

Set this keyword to return the current minimum and maximum values of the speci
slider as a two-element integer array. Element 0 is the minimum value and eleme
is the maximum value.

TABLE_ALL_EVENTS

This keyword applies to widgets created with theWIDGET_TABLE function.
IDL Reference Guide WIDGET_INFO

1472

is

ed

et.
Set this keyword to return 1 (one) ifWidget_ID is a table widget with the
ALL_EVENTS attribute set. Otherwise, 0 (zero) is returned.

TABLE_EDITABLE

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to return 1 (one) ifWidget_ID is a table widget that allows user
editing of its contents. Otherwise, 0 (zero) is returned.

TABLE_EDIT_CELL

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to return a two-element integer array containing theX andY
coordinates of the currently editable cell. If none of the cells in the table widget
currently editable, the array [-1, -1] is returned.

TABLE_SELECT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to return an array of the form [left, top, right, bottom] containing
the zero-based indices of the currently-selected (highlighted) cells in the specifi
table widget.

TABLE_VIEW

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to return a two-element array of the form [left, top] containing the
zero-based offsets of the top-left cell currently visible in the specified table widg

TEXT_ALL_EVENTS

This keyword applies to widgets created with theWIDGET_TEXT function.

Set this keyword to return 1 ifWidget_ID is a text widget with the ALL_EVENTS
attribute set. Otherwise, 0 is returned.

TEXT_EDITABLE

This keyword applies to widgets created with theWIDGET_TEXT function.

Set this keyword to return 1 ifWidget_ID is a text widget that allows user editing of
its contents. Otherwise, 0 is returned.

TEXT_NUMBER

This keyword applies to widgets created with theWIDGET_TEXT function.
WIDGET_INFO IDL Reference Guide

1473

o be
n

ed is

) of
s a
 as
 the

 top
-

t

g to
Set this keyword to return the number of characters currently contained in the
specified text widget.

TEXT_OFFSET_TO_XY

This keyword applies to widgets created with theWIDGET_TEXT function.

Use this keyword to translate a text widget character offset into column and line
form. The value of this keyword should be set to the character offset (an integer) t
translated. WIDGET_INFO returns a two-element integer array giving the colum
(element 0) and line (element 1) corresponding to the offset. If the offset specifi
out of range, the array [-1,-1] is returned.

TEXT_SELECT

This keyword applies to widgets created with theWIDGET_TEXT function.

Set this keyword to return the starting character offset and length (in characters
the selected (highlighted) text in the specified text widget. WIDGET_INFO return
two-element integer array containing the starting position of the highlighted text
an offset from character zero of the text in the widget (element 0), and length of
current selection (element 1).

TEXT_TOP_LINE

This keyword applies to widgets created with theWIDGET_TEXT function.

Set this keyword to return the zero-based line number of the line currently at the
of a text widget’s display viewport. Note that this value is different from the zero
based character offset of the characters in the line. The character offset can be
calculated from the line offset via the TEXT_XY_TO_OFFSET keyword.

TEXT_XY_TO_OFFSET

This keyword applies to widgets created with theWIDGET_TEXT function.

Use this keyword to translate a text widget position given in line and column form
into a character offset. The value of this keyword should be set to a two-elemen
integer array specifying the column (element 0) and line (element 1) position.
WIDGET_INFO returns the character offset (as a longword integer) correspondin
the position. If the position specified is out of range, -1 is returned.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with theWIDGET_BASE function.

Set this keyword to return 1 if the top-level base of the widget specified byWidget_ID
is set to return kill request events. Otherwise, 0 is returned.
IDL Reference Guide WIDGET_INFO

1474

he

e

TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to return the tracking events status for the widget specified by
Widget_ID. WIDGET_INFO returns 1 if tracking events are currently enabled for t
widget. Otherwise, 0 is returned.

TYPE

This keyword applies to all widgets.

Set this keyword to return the type code of the specifiedWidget_ID. Possible values
are given the following table. Note that you can set the NAME keyword to return
string names instead.

UNAME

This keyword applies to all widgets.

Set this keyword to have the WIDGET_INFO function return the user name of th
widget.

UNITS

This keyword applies to all widgets.

Value Type

0 Base

1 Button

2 Slider

3 Text

4 Draw

5 Label

6 List

8 Droplist

9 Table

Table 90: Widget Type Codes
WIDGET_INFO IDL Reference Guide

1475

ions
ents
 in

TS

ray,
e,
Use this keyword to specify the unit of measurement used when returning dimens
for most widget types. Set UNITS equal to 0 (zero) to specify that all measurem
are in pixels (this is the default), to 1 (one) to specify that all measurements are
inches, or to 2 (two) to specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNI
is ignored when retrieving the XSIZE or YSIZE of aWIDGET_LIST,
WIDGET_TABLE, orWIDGET_TEXT.

UPDATE

This keyword applies to all widgets.

Set this keyword to return 1 if the widget hierarchy that containsWidget_ID is set to
display updates. Otherwise, 0 is returned. See“UPDATE” on page 1439.

USE_TABLE_SELECT

This keyword applies to widgets created with theWIDGET_TABLE function.

Set this keyword to modify the behavior of the COLUMN_WIDTHS and
ROW_HEIGHTS keywords. If USE_TABLE_SELECT is set, the
COLUMN_WIDTHS and ROW_HEIGHTS keywords only apply to the currently-
selected cells. Normally, these keywords apply to the entire contents of a table
widget.

The USE_TABLE_SELECT keyword can also be specified as a four-element ar
of the form [left, top, right, bottom], giving the group of cells to act on. In this usag
the value -1 is used to refer to the row or column titles.

VALID_ID

This keyword applies to all widgets.

Set this keyword to return 1 ifWidget_ID represents a currently-valid widget.
Otherwise, 0 is returned.

VERSION

This keyword applies to all widgets.

Set this keyword to return a structure that gives information about the widget
implementation. This structure has the following definition:

{ WIDGET_VERSION, STYLE:'', TOOLKIT:'', RELEASE:'' }
IDL Reference Guide WIDGET_INFO

1476

otif
STYLE is the style of widget toolkit used.TOOLKIT is the implementation of the
toolkit. RELEASE is the version level of the toolkit. This field can be used to
distinguish between different releases of a given toolkit, such as Motif 1.0 and M
1.1.

See Also

Building IDL ApplcationsChapter 18, “Widgets”.
WIDGET_INFO IDL Reference Guide

1477

r its

he
WIDGET_LABEL

The WIDGET_LABEL function is used to create label widgets.

The returned value of this function is the widget ID of the newly-created label
widget.

Syntax

Result = WIDGET_LABEL(Parent[, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /DYNAMIC_RESIZE] [, FONT=value] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY= string] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, RESOURCE_NAME=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE= value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new label widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the label text.

ALIGN_LEFT

Set this keyword to left justify the label text.

ALIGN_RIGHT

Set this keyword to right justify the label text.

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value wheneve
value is changed. Note that this keyword cannot be used with the SCR_XSIZE,
SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is also set, t
IDL Reference Guide WIDGET_LABEL

1478

lf

nt”
s
r

n
ws

 in

is

r.

oup

ure
o

ch
widget will be sized as specified by the sizing keyword and will never resize itse
dynamically.

FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Window
systems). See“About Device Fonts”on page 2240 for details on specifying names fo
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; i
general, the system default font is the font appropriate for the version of Windo
in question. This keyword is not supported on the Macintosh.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
WIDGET_LABEL IDL Reference Guide

1479

ER

hat

 are

sing

e for
 large.

r
 it
tain

o

UE
es

ce

is

r.
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LABEL or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use
IDL Reference Guide WIDGET_LABEL

1480

get.
rd.

the
he

the
he

 user
use

cates

et.

e

ever
cture

ou
name
RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.
WIDGET_LABEL IDL Reference Guide

1481

et

the
to

n.

en

ls

k
y of
f

 the
ly a
To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget label is a string
containing the text for the label.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.
IDL Reference Guide WIDGET_LABEL

1482

re

k
y of
f

 the
ly a

re

ts,
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
label widgets. In addition to those keywords that affect all widgets, the following a
particularly useful:DYNAMIC_RESIZE, GET_VALUE, SET_VALUE.

Keywords to WIDGET_INFO

Some keywords to theWIDGET_INFO function return information that applies
specifically to label widgets. In addition to those keywords that apply to all widge
the following are particularly useful:DYNAMIC_RESIZE.

Widget Events Returned by Label Widgets

Label widgets do not return an event structure.

See Also

CW_FIELD, WIDGET_TEXT
WIDGET_LABEL IDL Reference Guide

1483

e
y
s an
er of

et.

e

T
e

WIDGET_LIST

The WIDGET_LIST function is used to create list widgets. A list widget offers th
user a list of text elements from which to choose. The user can select an item b
pointing at it with the mouse cursor and pressing a button. This action generate
event containing the index of the selected item, which ranges from 0 to the numb
elements in the list minus one.

The returned value of this function is the widget ID of the newly-created list widg

Syntax

Result= WIDGET_LIST(Parent[, EVENT_FUNC=string] [, EVENT_PRO=string]
[, FONT=value] [, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY= string] [, /MULTIPLE]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE= value] [, VALUE= value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new list widget.

Keywords

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.
IDL Reference Guide WIDGET_LIST

1484

nt”
or

ed.

n
ws

 in

is

r.

oup

ure
o

ch

ER
FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; i
general, the system default font is the font appropriate for the version of Windo
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.
WIDGET_LIST IDL Reference Guide

1485

hat

 are

 an

ing

sing

e for
 large.

r
 it
tain
The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MULTIPLE

Set this keyword to allow the user to select more than one item from the list in a
single operation. Multiple selections are handled using the platform’s native
mechanism:

Motif

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the mouse button when
selecting items also selects a range. Holding down the Control key and clicking
item toggles that item between the selected and unselected state.

Windows

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the Control key and click
an item toggles that item between the selected and unselected state.

Macintosh

Holding down the Shift key and clicking an item selects the range from the
previously selected item to the new item. Holding down the Command key and
clicking an item toggles that item between the selected and unselected state.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
IDL Reference Guide WIDGET_LIST

1486

o

UE
es

ce

is

r.

get.
rd.

the
he

the
he

 user
use
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LIST or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
WIDGET_LIST IDL Reference Guide

1487

cates

et.

e

ever
cture

ou
name

et

the
to

TS

n.
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNI
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
IDL Reference Guide WIDGET_LIST

1488

en

 or

item

ls

k
y of
f

this

e

re

k
y of
f

convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a list widget is a scalar string
array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest
specified in the array of values for the VALUE keyword.

Note that the value of a list widget can only be set. It cannot be retrieved using
WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The desired width of the widget, in characters. Most widgets attempt to size
themselves to fit the situation. However, if the desired effect is not produced, use
keyword to override it. Note that the final size of the widget may be adjusted to
include space for scrollbars (which are not always visible), so your widget may b
slightly larger than specified.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.
WIDGET_LIST IDL Reference Guide

1489

ot
ay

ur

re

idget
n

at the
ned

ay of
or
d,

list
e

YSIZE

The desired height of the widget, in number of list items visible. Most widgets
attempt to size themselves to fit the situation. However, if the desired effect is n
produced, use this keyword to override it. Note that the final size of the widget m
be adjusted to include space for scrollbars (which are not always visible), so yo
widget may be slightly larger than specified.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
list widgets. In addition to those keywords that affect all widgets, the following a
particularly useful:SET_LIST_SELECT, SET_LIST_TOP, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to list widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful:LIST_MULTIPLE, LIST_NUMBER,
LIST_NUM_VISIBLE, LIST_SELECT, LIST_TOP.

Widget Events Returned by List Widgets

Pressing the mouse button while the mouse cursor is over an element of a list w
causes the widget to highlight the appearance of that element and to generate a
event. The appearance of any previously selected element is restored to normal
same time. The event structure returned by the WIDGET_EVENT function is defi
by the following statement:

{WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L}

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the arr
names originally used to set the widget’s value. The CLICKS field returns either 1
2, depending upon how the list item was selected. If the list item is double-clicke
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a
widget, you will need to handle two events. The CLICKS field will return a 1 on th
first click and a 2 on the second click.
IDL Reference Guide WIDGET_LIST

1490
See Also

CW_BGROUP, WIDGET_DROPLIST
WIDGET_LIST IDL Reference Guide

1491

are
of a
ion is
 by
re.

s
ly
ed.

be
ption
WIDGET_SLIDER

The WIDGET_SLIDER function is used to create slider widgets. Slider widgets
used to indicate an integer value from a range of possible values. They consist
rectangular region which represents the possible range of values. Inside this reg
a sliding pointer that displays the current value. This pointer can be manipulated
the user via the mouse, or from within IDL via the WIDGET_CONTROL procedu

To indicated floating-point values, seeCW_FSLIDER.

The returned value of this function is the widget ID of the newly-created slider
widget.

Syntax

Result = WIDGET_SLIDER(Parent [, /DRAG] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=value] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY= string] [, MAXIMUM= value] [, MINIMUM= value]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, SCROLL=units] [, /SENSITIVE] [, /SUPPRESS_VALUE]
[, /TRACKING_EVENTS] [, TITLE=string] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE= value] [, VALUE= value] [, /VERTICAL] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent for the new slider widget.

Keywords

DRAG

Set this keyword to cause events to be generated continuously while the slider i
being dragged by the user. Normally, slider widgets generate position events on
when the slider comes to rest at its final position and the mouse button is releas

When a slider widget is set to return drag events, a large number of events can
generated. On slower machines, poor performance can result. Therefore, this o
should only be used when detailed or truly interactive control is required.
IDL Reference Guide WIDGET_SLIDER

1492

ts.

e

T
e

nt”
or

ed.

 in

is

r.
Warning
Under Microsoft Windows and Macintosh, sliders do not generate DRAG even
Sliders created with the DRAG keyword behave just like regular sliders.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use
WIDGET_SLIDER IDL Reference Guide

1493

oup

ure
o

ch

ER

hat

 are

not

ot

sing

e for
 large.

r
 it
GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MAXIMUM

The maximum value of the range encompassed by the slider. If this keyword is
supplied, a default of 100 is used.

MINIMUM

The minimum value of the range encompassed by the slider. If this keyword is n
supplied, a default of 0 is used.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
IDL Reference Guide WIDGET_SLIDER

1494

tain

o

UE
es

ce

is

r.

get.
rd.

the
he

the
he

n

directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_SLIDER or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SCROLL

Under the Motif window manager, the value provided for SCROLL specifies how
many units the scroll bar should move when the user clicks the left mouse butto
WIDGET_SLIDER IDL Reference Guide

1495

er

 user
use

cates

et.

e

tual
 to

ever
cture

ou
name
inside the slider area, but not on the slider itself. This keyword has no effect und
other window systems.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

SUPPRESS_VALUE

Set this keyword to inhibit the display of the current slider value.

Sliders work only with integer units. This keyword can be used to suppress the ac
value of a slider so that a program can present the user with a slider that seems
work in other units (such as floating-point) or with a non-linear scale.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

TITLE

A string containing the title to be used for the slider widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
IDL Reference Guide WIDGET_SLIDER

1496

et

the
to

n.

en

s

ls

k
y of
f

 the
ly a
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget slider is the current
position of the slider.

VERTICAL

Set this keyword to create a vertical slider. If this keyword is omitted, the slider i
horizontal.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.
WIDGET_SLIDER IDL Reference Guide

1497

re

k
y of
f

 the
ly a

re

ts,

he

e

ation,
ider.
e

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if
desired effect is not produced, use this keyword to override it. This keyword is on
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
slider widgets. In addition to those keywords that affect all widgets, the following a
particularly useful:GET_VALUE, SET_SLIDER_MAX, SET_SLIDER_MIN,
SET_VALUE.

Keywords to WIDGET_INFO

Some keywords to theWIDGET_INFO function return information that applies
specifically to slider widgets. In addition to those keywords that apply to all widge
the following are particularly useful:SLIDER_MIN_MAX.

Slider Widget Events

Slider widgets generate events when the mouse is used to change their value. T
event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0}

ID is the widget ID of the button generating the event. TOP is the widget ID of th
top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. VALUE returns the new value of the slider.
DRAG returns integer 1 if the slider event was generated as part of a drag oper
or zero if the event was generated when the user had finished positioning the sl
Note that the slider widget only generates events during the drag operation if th
IDL Reference Guide WIDGET_SLIDER

1498

lly
DRAG keyword is set, and if the application is running under Motif. When the
DRAG keyword is set, the DRAG field can be used to avoid computationally
expensive operations until the user releases the slider.

Known Implementation Problems

Under Motif 1.0, vertical sliders with a title organized in row bases get horizonta
truncated and the slider doesn’t show (the title does). Use the XSIZE keyword to
work around this.

See Also

CW_FSLIDER
WIDGET_SLIDER IDL Reference Guide

1499

-
ws
 can

s to

mns
than
WIDGET_TABLE

The WIDGET_TABLE function creates table widgets. Table widgets display two
dimensional data and allow in-place data editing. They can have one or more ro
and columns, and automatically create scroll bars when viewing more data than
otherwise be displayed on the screen.

Note on Table Sizing

Table widgets are sized according to the value of the following pairs of keyword
WIDGET_TABLE, in order of precedence:SCR_XSIZE/SCR_YSIZE,
XSIZE/YSIZE, X_SCROLL_SIZE/Y_SCROLL_SIZE, VALUE. If either dimension
remains unspecified by one of the above keywords, the default value of six (colu
or rows) is used when the table is created. If the width or height specified is less
the size of the table, scroll bars are added automatically.

The returned value of this function is the widget ID of the newly-created table
widget.

Syntax

Result= WIDGET_TABLE(Parent[, ALIGNMENT={0 | 1 | 2}] [, /ALL_EVENTS]
[, AM_PM=[string, string]] [, COLUMN_LABELS=string_array]
[, /COLUMN_MAJOR | , /ROW_MAJOR] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=value]
[, FORMAT=value] [, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY= string] [, MONTHS=string_array{12 names}] [, /NO_COPY]
[, /NO_HEADERS] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, /RESIZEABLE_COLUMNS] [, /RESIZEABLE_ROWS{not supported in
Windows}] [, RESOURCE_NAME=string] [, ROW_HEIGHTS=array{not
supported in Windows}] [, ROW_LABELS=string_array] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE= value]
[, XOFFSET=value] [, XSIZE=value] [, X_SCROLL_SIZE=width]
[, YOFFSET=value] [, YSIZE=value] [, Y_SCROLL_SIZE=height])
IDL Reference Guide WIDGET_TABLE

1500

ext
ith
in
ls
t of

t of
nly
sed.
Arguments

Parent

The widget ID of the parent widget for the new table widget.

Keywords

ALIGNMENT

Set this keyword equal to a scalar or 2-D array specifying the alignment of the t
within each cell. An alignment of 0 (the default) aligns the left edge of the text w
the left edge of the cell. An alignment of 2 right-justifies the text, while 1 results
text centered within the cell. If ALIGNMENT is set equal to a scalar, all table cel
are aligned as specified. If ALIGNMENT is set equal to a 2-D array, the alignmen
each table cell is governed by the corresponding element of the array.

ALL_EVENTS

Along with the EDITABLE keyword, ALL_EVENTS controls the type of events
generated by the table widget. Set the ALL_EVENTS keyword to cause the full se
events to be generated. If ALL_EVENTS is not set, setting EDITABLE causes o
end-of-line events to be generated. If EDITABLE is not set, all events are suppres
See the table below for additional details.

Keywords Effects

ALL_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 91: Effects of using the ALL_EVENTS and EDITABLE keywords
WIDGET_TABLE IDL Reference Guide

1501

tring
es)

he

 the

he
th

at

eek

y,
AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the FORMAT keyword.

COLUMN_LABELS

Set this keyword equal to an array of strings used as labels for the columns of t
table widget. The default labels are of the form “Columnn”, wheren is the column
number. If this keyword is set to the empty string (''), all column labels are set to be
empty.

COLUMN_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See theVALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one column’s data. Note that the
structures must all be of the same type, and must have one field for each row in
table. If this keyword is not set, the table widget behaves as if the ROW_MAJOR
keyword were set.

COLUMN_WIDTHS

Set this keyword equal to an array of widths for the columns of the table widget. T
widths are given in any of the units as specified with the UNITS keyword. If no wid
is specified for a column, that column is set to the default size, which varies by
platform. If COLUMN_WIDTHS is set to a scalar value, all columns are set to th
width.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normall
the text in text widgets is read-only. See“ALL_EVENTS” on page 1500 for a
description of how EDITABLE interacts with the ALL_EVENTS keyword.
IDL Reference Guide WIDGET_TABLE

1502

the
-

e

T
e

nt”
or

ed.

n
ws

at of
the
as
Note
The method by which text widgets are placed into edit mode is dependent upon
windowing system. On Microsoft Windows, for instance, a cell must be double
clicked to be placed into edit mode.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

A single font is shared by the row and column labels and by all of the cells in the
widget.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; i
general, the system default font is the font appropriate for the version of Windo
in question.

FORMAT

Set this keyword equal to a single string or array of strings that specify the form
data displayed within table cells. The string(s) are of the same form as used by
FORMAT keyword to the PRINT procedure, and the default format is the same
that used by the PRINT procedure.
WIDGET_TABLE IDL Reference Guide

1503

 are

 in

is

r.

oup

ure
o

ch

ER
Warning
If the format specified is incompatible with the data displayed in a table cell, an
error message is generated. Since the error is generatedfor each cell displayed, the
number of messages printed is potentially large, and can slow execution
significantly. Note also that each time a new cell is displayed (when scroll bars
repositioned, for example), a new error is generatedfor each cell displayed.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget. Note that this keyword is only a “hint” to the toolkit, and may be ignored
some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See“Widget Events Returned by Table Widgets”
on page 1510 for more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.
IDL Reference Guide WIDGET_TABLE

1504

hat

 are

en
ith

sing

e for
 large.

r
 it
tain

o

UE
es

 row

ce
The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MONTHS

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the FORMAT keyword.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TABLE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NO_HEADERS

Set this keyword to disable the display of the table widget’s header area (where
and column labels are normally displayed).

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
WIDGET_TABLE IDL Reference Guide

1505

is

r.

se.
d

Note
ively.

get.
rd.

e

t to

f the
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESIZEABLE_COLUMNS

Set this keyword to allow the user to change the size of columns using the mou
Note that if the NO_HEADERS keyword was set, the columns cannot be resize
interactively.

RESIZEABLE_ROWS

Set this keyword to allow the user to change the size of rows using the mouse.
that if the NO_HEADERS keyword was set, the rows cannot be resized interact

Under Microsoft Windows, the row size cannot be changed.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

ROW_HEIGHTS

Set this keyword equal to an array of heights for the rows of the table widget. Th
heights are given in any of the units as specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are se
that value.

Note
This keyword is not supported under Microsoft Windows.

ROW_LABELS

Set this keyword equal to an array of strings to be used as labels for the rows o
table. If no label is specified for a row, it receives the default label “Rown”, wheren
is the row number. If this keyword is set to the empty string (''), all row labels are
set to be empty.
IDL Reference Guide WIDGET_TABLE

1506

tures
ble.

the
t
s

the
t

es

 user
use

cates

et.
ROW_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See theVALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one row’s data. Note that the struc
must all be of the same type, and must have one field for each column in the ta
This is the default behavior if neither the COLUMN_MAJOR or ROW_MAJOR
keyword is set.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). Note that the screen width of the widge
includes the width of scroll bars, if any are present. Setting SCR_XSIZE override
values set for the XSIZE or X_SCROLL_SIZE keywords. See“Note on Table
Sizing” on page 1499.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). Note that the screen height of the widge
includes the height of scroll bars, if any are present. Setting SCR_YSIZE overrid
values set for the YSIZE or Y_SCROLL_SIZE keywords. See“Note on Table
Sizing” on page 1499.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen. See“Note on Table Sizing” on
page 1499

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.
WIDGET_TABLE IDL Reference Guide

1507

e

ever
cture

ou
name

et

the
to

TS

n.

en

-

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNI
is ignored when setting the XSIZE or YSIZE keywords.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget's initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a table widget is either a two
dimensional array or a vector of structures.
IDL Reference Guide WIDGET_TABLE

1508

data

mn-

t

 in

e
d by

ls

k
y of
f

e
 of
e

ars
ZE
n

If the value is specified as a two-dimensional array, all data must be of the same
type.

If the value is specified as a vector of structures, it can be displayed either in colu
major or row-major format by setting either theCOLUMN_MAJOR keyword or the
ROW_MAJOR keyword. All of the structures must be of the same type, and mus
contain one field for each column (if COLUMN_MAJOR is set) or row (if
ROW_MAJOR is set) in the table. If neither keyword is set, the data is displayed
row major format.

If none of [XY]SIZE, SCR_[XY]SIZE, or [XY]_SCROLL_SIZE is present, the siz
of the table is determined by the size of the array or vector of structures specifie
VALUE. See“Note on Table Sizing” on page 1499.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The width of the widget in columns. If row labels are present, one column is
automatically added to this value. See“Note on Table Sizing” on page 1499.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget, in columns. When th
SCROLL keyword is specified, this size is not necessarily the same as the width
the visible area. The X_SCROLL_SIZE keyword allows you to set the width of th
scrolling viewport independently of the actual width of the widget. See“Note on
Table Sizing” on page 1499.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll b
will be added in both the horizontal and vertical directions when X_SCROLL_SI
is specified. Because the default size of the scrolling viewport may differ betwee
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.
WIDGET_TABLE IDL Reference Guide

1509

re

k
y of
f

t of
the

ars
ZE
n

are
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

YSIZE

The height of the widget in rows. If column labels are present, one row is
automatically added to this value. See“Note on Table Sizing” on page 1499.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. in rows. When the
SCROLL keyword is specified, this size is not necessarily the same as the heigh
the visible area. The Y_SCROLL_SIZE keyword allows you to set the height of
scrolling viewport independently of the actual width of the widget. See“Note on
Table Sizing” on page 1499.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll b
will be added in both the horizontal and vertical directions when Y_SCROLL_SI
is specified. Because the default size of the scrolling viewport may differ betwee
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
table widgets. In addition to those keywords that affect all widgets, the following
particularly useful:ALIGNMENT, ALL_TABLE_EVENTS, COLUMN_LABELS,
COLUMN_WIDTHS, DELETE_COLUMNS, DELETE_ROWS, EDITABLE,
EDIT_CELL, FORMAT, GET_VALUE, INSERT_COLUMNS, INSERT_ROWS,
KBRD_FOCUS_EVENTS, ROW_LABELS, ROW_HEIGHTS,
SET_TABLE_SELECT, SET_TABLE_VIEW, SET_TEXT_SELECT,
SET_VALUE, TABLE_XSIZE, TABLE_YSIZE, USE_TABLE_SELECT,
USE_TEXT_SELECT.
IDL Reference Guide WIDGET_TABLE

1510

all

e
fields
pe
fore
table

 of a

 is
ress

 cell

of the

ll of
Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to table widgets. In addition to those keywords that apply to
widgets, the following are particularly useful:COLUMN_WIDTHS,
KBRD_FOCUS_EVENTS, ROW_HEIGHTS, TABLE_ALL_EVENTS,
TABLE_EDITABLE, TABLE_EDIT_CELL, TABLE_SELECT, TABLE_VIEW,
USE_TABLE_SELECT.

Widget Events Returned by Table Widgets

There are several variations of the table widget event structure depending on th
specific event being reported. All of these structures contain the standard three
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which ty
of structure has been returned. Programs should always check the field type be
referencing fields that are not present in all table event structures. The different
widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed into a cell
table widget by a user.

{WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the character
inserted. CH is the ASCII value of the character. X and Y give the zero-based add
of the cell within the table.

Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a
by the window system.

{WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L}

OFFSET is the (zero-based) insertion position that will result after the text is
inserted. STR is the string to be inserted. X and Y give the zero-based address
cell within the table.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a ce
a table widget.
WIDGET_TABLE IDL Reference Guide

1511

also
H
f the

) by

ed)
er of
n,

any
text

on

) or

ls
EFT,

le)
{WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L}

OFFSET is the (zero-based) character position of the first character deleted. It is
the insertion position that will result when the next character is inserted. LENGT
gives the number of characters involved. X and Y give the zero-based address o
cell within the table.

Text Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted
the user.

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

The event announces a change in the insertion point. OFFSET is the (zero-bas
character position of the first character to be selected. LENGTH gives the numb
characters involved. A LENGTH of zero indicates that the widget has no selectio
and that the insertion position is given by OFFSET. X and Y give the zero-based
address of the cell within the table.

Note
Text insertion, text deletion, or any change in the current insertion point causes
current selection to be lost. In such cases, the loss of selection is implied by the
event reporting the insert/delete/movement and a separate zero length selecti
event is not sent.

Cell Selection (TYPE = 4)

This is the type of structure returned when range of cells is selected (highlighted
deselected by the user.

{WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L}

The event announces a change in the currently selected cells. The range of cel
selected is given by the zero-based indices into the table specified by the SEL_L
SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When cells are deselected
(either by changing the selection or by clicking in the upper left corner of the tab
an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIGHT, and
SEL_BOTTOM fields contain the value -1.
IDL Reference Guide WIDGET_TABLE

1512

an

nd

 user.
tains

er.

he
TH

t pass

ents
iven

nges
Note
This means that two WIDGET_TABLE_CELL_SEL events are generated when
existing selection is changed to a new selection. If your code pays attention to
WIDGET_TABLE_CELL_SEL events, be sure to differentiate between select a
deselect events.

Row Height Changed (TYPE = 6)

This is the type of structure returned when a row height is changed by the user.

{WIDGET_TABLE_ROW_HEIGHT, ID:0L, TOP:0L, HANDLER:0L, TYPE:6,
ROW:0L, HEIGHT:0L}

The event announces that the height of the given row has been changed by the
The ROW field contains the zero-based row number, and the HEIGHT field con
the new height.

Column Width Changed (TYPE = 7)

This is the type of structure returned when a column width is changed by the us

{WIDGET_TABLE_COLUMN_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COLUMN:0L, WIDTH:0L}

The event announces that the width of the given column has been changed by t
user. The COLUMN field contains the zero-based column number, and the WID
field contains the new width.

Invalid Data (TYPE = 8)

This is the type of structure returned when the text entered by the user does no
validation, and the user has finished editing the field (by hitting TAB or ENTER).

{WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L}

When this event is generated, the cell’s data is left unchanged. The invalid cont
entered by the user is given as a text string in the STR field. The cell location is g
by the X and Y fields.

Keyboard Focus Events

Table widgets return the following event structure when the keyboard focus cha
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }
WIDGET_TABLE IDL Reference Guide

1513

of
t

ID is the widget ID of the table widget generating the event. TOP is the widget ID
the top level widget containing ID. HANDLER contains the widget ID of the widge
associated with the handler routine. The ENTER field returns 1 (one) if the table
widget is gaining the keyboard focus, or 0 (zero) if the table widget is losing the
keyboard focus.

See Also

WIDGET_CONTROL
IDL Reference Guide WIDGET_TABLE

1514

n

get.

t of
nly
WIDGET_TEXT

The WIDGET_TEXT function creates text widgets. Text widgets display text and
optionally get textual input from the user. They can have 1 or more lines, and ca
optionally contain scroll bars to allow viewing more text than can otherwise be
displayed on the screen.

The returned value of this function is the widget ID of the newly-created text wid

Syntax

Result = WIDGET_TEXT(Parent [, /ALL_EVENTS] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=value]
[, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY= string] [, /NO_COPY] [, /NO_NEWLINE]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE= value] [, /WRAP]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget for the new text widget.

Keywords

ALL_EVENTS

Along with the EDITABLE keyword, ALL_EVENTS controls the type of events
generated by the text widget. Set the ALL_EVENTS keyword to cause the full se
events to be generated. If ALL_EVENTS is not set, setting EDITABLE causes o
WIDGET_TEXT IDL Reference Guide

1515

sed.

y,

e

T
e

nt”
or

ed.
end-of-line events to be generated. If EDITABLE is not set, all events are suppres
See the following table for additional details.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normall
the text in text widgets is read-only. See“ALL_TEXT_EVENTS” on page 1417 for a
description of how EDITABLE interacts with the ALL_TEXT_EVENTS keyword.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVEN
function when an event arrives from a widget in the widget hierarchy rooted at th
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

Keywords Effects

ALL_EVENT
S EDITABLE Input changes

widget contents?
Type of events

generated.

Not set Not set No None

Not set Set Yes End-of-line insertion

Set Not set No All events

Set Set Yes All events

Table 92: Effects of using the ALL_EVENTS and EDITABLE keywords
IDL Reference Guide WIDGET_TEXT

1516

es.

is

r.

oup

ure
o

ch
Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget.

Note
This keyword is only a “hint” to the toolkit, and may be ignored in some instanc
Under Microsoft Windows, text widgetsalways have frames.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the use

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the gr
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL proced
can be used to add additional group associations to a widget. It is not possible t
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See“Text Widget Events” on page 1521 for
more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single su
“callback” procedure. It can be removed by setting the routine to the null string ('').
WIDGET_TEXT IDL Reference Guide

1517

ER

hat

 are

sing

e for
 large.

r
 it
tain

o

UE
es

re
ress

ce
Note that the procedure specified is used only if you are not using the XMANAG
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At t
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or u
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fin
small data, it can have a significant memory cost when the data being copied is

If the NO_COPY keyword is set, IDL handles these operations differently. Rathe
than copy the source data, it takes the data away from the source and attaches
directly to the destination. This feature can be used by compound widgets to ob
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable t
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TEXT or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVAL
keyword to WIDGET_CONTROL), the user value of the widget in question becom
undefined.

NO_NEWLINE

Normally, when setting the value of a multi-line text widget, newline characters a
automatically appended to the end of each line of text. Set this keyword to supp
this action.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just on
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
IDL Reference Guide WIDGET_TEXT

1518

is

r.

get.
rd.

the
he

the
he

 user
use

cates

et.

e

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using th
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the use

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the wid
See“RESOURCE_NAME”on page 1392 for a complete discussion of this keywo

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by
UNITS keyword (pixels are the default). In many cases, setting this keyword is t
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive
input. For example, a sensitive button widget can be activated by moving the mo
cursor over it and pressing a mouse button. When a widget is insensitive, it indi
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widg
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using th
SENSITIVE keyword with theWIDGET_CONTROL procedure.
WIDGET_TEXT IDL Reference Guide

1519

ever
cture

ou
name

et

the
to

TS

n.

en

xt
TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget when
the mouse pointer enters or leaves the region covered by that widget. For the stru
of tracking events, see“TRACKING_EVENTS” on page 1397 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use theWIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two)
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNI
is ignored when setting the XSIZE or YSIZE keywords toWIDGET_TEXT.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organizatio
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value wh
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a text widget is the current te
displayed by the widget.
IDL Reference Guide WIDGET_TEXT

1520

 by
if

e

nt

ls

k
y of
f

get
lt
ac,
the

re

k
y of
f

VALUE can be either a string or an array of strings. Note that variables returned
the GET_VALUE keyword to WIDGET_CONTROL are always string arrays, even
a scalar string is specified in the call to WIDGET_TEXT.

WRAP

Set this keyword to indicate that scrolling or multi-line text widgets should
automatically break lines between words to keep the text from extending past th
right edge of the text display area. Note that carriage returns arenot automatically
entered when lines wrap; the value of the text widget will remain a single-eleme
array unless you explicitly enter a carriage return.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixe
are the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.

XSIZE

The width of the widget in characters. Note that the physical width of the text wid
depends on both the value of XSIZE and on the size of the font used. The defau
value of XSIZE varies according to your windowing system. On Windows and M
the default size is roughly 20 characters. On Motif, the default size depends on
width of the text widget.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels a
the default) relative to its parent. This offset is specified relative to theupper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not wor
because those widgets enforce their own layout policies. This keyword is primaril
use relative to a plain base widget. Note that it is best to avoid using this style o
widget programming.
WIDGET_TEXT IDL Reference Guide

1521

get
lt

re

ll

e
fields
pe
fore
xt

nto a

 is
YSIZE

The height of the widget in text lines. Note that the physical height of the text wid
depends on both the value of YSIZE and on the size of the font used. The defau
value of YSIZE is one line.

Keywords to WIDGET_CONTROL

A number of keywords to theWIDGET_CONTROLprocedure affect the behavior of
text widgets. In addition to those keywords that affect all widgets, the following a
particularly useful:ALL_TEXT_EVENTS, APPEND, EDITABLE, GET_VALUE,
KBRD_FOCUS_EVENTS, INPUT_FOCUS, NO_NEWLINE,
SET_TEXT_SELECT, SET_TEXT_TOP_LINE, SET_VALUE,
USE_TEXT_SELECT.

Keywords to WIDGET_INFO

A number of keywords to theWIDGET_INFO function return information that
applies specifically to text widgets. In addition to those keywords that apply to a
widgets, the following are particularly useful:KBRD_FOCUS_EVENTS,
TEXT_ALL_EVENTS, TEXT_EDITABLE, TEXT_NUMBER,
TEXT_OFFSET_TO_XY, TEXT_SELECT, TEXT_TOP_LINE,
TEXT_XY_TO_OFFSET.

Text Widget Events

 There are several variations of t1he text widget event structure depending on th
specific event being reported. All of these structures contain the standard three
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which ty
of structure has been returned. Programs should always check the type field be
referencing fields that are not present in all text event structures. The different te
widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed or pasted i
text widget by a user.

{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character
inserted. CH is the ASCII value of the character.
IDL Reference Guide WIDGET_TEXT

1522

 text

text

. It is
.
at

) by

ed)
er of
, and

t
plied
th

ges
Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a
widget by the window system.

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is
inserted. STR is the string to be inserted.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a
widget.

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted
also the insertion position that will result when the characters have been deleted
LENGTH gives the number of characters involved. A LENGTH of zero indicates th
no characters were deleted.

Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted
the user.

{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

The event announces a change in the insertion point. OFFSET is the (zero-bas
character position of the first character to be selected. LENGTH gives the numb
characters involved. A LENGTH of zero indicates that no characters are selected
the new insertion position is given by OFFSET.

Note that text insertion, text deletion, or any change in the current insertion poin
causes any current selection to be lost. In such cases, the loss of selection is im
by the text event reporting the insert/delete/movement and a separate zero leng
selection event isnot sent.

Keyboard Focus Events

Text widgets return the following event structure when the keyboard focus chan
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }
WIDGET_TEXT IDL Reference Guide

1523

 of
t

ID is the widget ID of the text widget generating the event. TOP is the widget ID
the top level widget containing ID. HANDLER contains the widget ID of the widge
associated with the handler routine. The ENTER field returns 1 (one) if the text
widget is gaining the keyboard focus, or 0 (zero) if the text widget is losing the
keyboard focus.

See Also

CW_FIELD, XDISPLAYFILE
IDL Reference Guide WIDGET_TEXT

1524

 is
ecial
 any
dow

t

ct.

ue
d,

ore

ord
t
are
WINDOW

The WINDOW procedure creates a window for the display of graphics or text. It
only necessary to use WINDOW if more than one simultaneous window or a sp
size window is desired because a window is created automatically the first time
display procedure attempts to access the window system. The newly-created win
becomes the current window, and the system variable !D.WINDOW is set to tha
window’s window index. (See the description of theWSET procedure for a
discussion of the current IDL window.)

The behavior of WINDOW varies slightly depending on the window system in effe
See the discussion of IDL graphics devices inAppendix B, “IDL Graphics Devices”
for additional details.

Syntax

WINDOW [, Window_Index] [, COLORS=value] [, /FREE] [, /PIXMAP]
[, RETAIN={0 | 1 | 2}] [, TITLE=string] [, XPOS=value] [, YPOS=value]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Window_Index

The window index for the newly-created window. A window index is an integer val
between 0 and 31 that is used to refer to the window. If this parameter is omitte
window index 0 is used. If the value ofWindow_Index specifies an existing window,
the existing window is deleted and a new one is created. If you need to create m
than 32 windows, use the FREE keyword described below.

Keywords

COLORS

Note
This keyword is ignored on Windows and Macintosh.

The maximum number of color table indices to be used when drawing. This keyw
has an effect only if supplied when the first window is created. If COLORS is no
present when the first window is created, all or most of the available color indices
allocated depending upon the window system in use.
WINDOW IDL Reference Guide

1525

 2

the

ove

he

r the

en
To use monochrome windows on a color display in X Windows, use COLORS =
when creating the first window. One color table is maintained for all windows. A
negative value for COLORS specifies that all but the given number of colors from
shared color table should be allocated.

Although this keyword is ignored on Windows and Macintosh, we could use the
following code to use a monochrome window on all platforms:

WINDOW, COLORS=2 ; ignored on Windows and Mac
white=!D.N_COLORS-1
PLOT, FINDGEN(20), COLOR=white

FREE

Set this keyword to create a window using the smallest unused window index ab
32. If this keyword is present, theWindow_Index argument can be omitted. The
default position of the new window is opposite that of the current window. Using t
FREE keyword allows the creation of a large number of windows. The system
variable !D.WINDOW is set to the index of the newly-created window.

PIXMAP

Set the PIXMAP keyword to specify that the window being created is actually an
invisible portion of the display memory called a pixmap.

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled fo
window:

• 0 = no backing store

• 1 = requests that the server or window system provide backing store

• 2 = specifies that IDL provide backing store directly

See“Backing Store” on page 2128 for details.

TITLE

A scalar string that contains the window’s label. If not specified, the window is giv
a label of the form “IDLn”, wheren is the index number of the window. For
example, to create a window with the label “IDL Graphics”, enter:

WINDOW, TITLE='IDL Graphics'
IDL Reference Guide WINDOW

1526

s,

t

eft

of

)

n of
XPOS

The X position of the window, specified in device coordinates. On Motif platform
XPOS specifies the X position of thelower left corner and is measured from the
lower left corner of the screen. On Windows and Macintosh platforms, XPOS
specifies the X position of theupper left corner and is measured from the upper lef
corner of the screen. That is, specifying

WINDOW, XPOS = 0, YPOS = 0

will create a window in the lower left corner on Motif machines and in the upper l
corner on Windows and Macintosh machines.

If no position is specified, the position of the window is determined from the value
Window Index using the following rules:

• Window 0 is placed in the upper right hand corner.

• Even numbered windows are placed on the top half of the screen and odd
numbered windows are placed on the bottom half.

• Windows 0,1,4,5,8, and 9 are placed on the right side of the screen and
windows 2,3,6, and 7 are placed on the left.

Note
The order of precedence (highest to lowest) for positioning windows is:
XPOS/YPOS keywords to WINDOW, Tile/Cascade IDE graphics (user system
preferences, optional index argument to WINDOW. Also realize that setting
LOCATION is only a request to the Window manager and may not always be
honored due to system peculiarities.

YPOS

The Y position of the window, specified in device coordinates. See the descriptio
XPOS for details.

XSIZE

The width of the window in pixels.

YSIZE

The height of the window in pixels.
WINDOW IDL Reference Guide

1527

at
Example

Create graphics window number 0 with a size of 400 by 400 pixels and a title th
reads “Square Window” by entering:

WINDOW, 0, XSIZE=400, YSIZE=400, TITLE='Square Window'

See Also

WDELETE, WSET, WSHOW
IDL Reference Guide WINDOW

1528

 not
ytes

le

e of
age
d.

ed.

, an
WRITE_BMP

The WRITE_BMP procedure writes an image and its color table vectors to a
Microsoft Windows Version 3 device independent bitmap file (.BMP).

WRITE_BMP does not handle 1-bit-deep images or compressed images, and is
fast for 4-bit images. The algorithm works best on images where the number of b
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the fi
write_bmp.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_BMP,Filename, Image[, R, G, B] [, /FOUR_BIT] [, IHDR=structure]
[, HEADER_DEFINE=h{defineh before call}]

Arguments

Filename

A scalar string containing the full pathname of the bitmap file to write.

Image

The array to write into the new bitmap file. The array should be scaled into a rang
bytes for 8- and 24-bit deep images. Scale to 0-15 for 4 bit deep images. If the im
has 3 dimensions and the first dimension is 3, a 24 bit deep bitmap file is create
Note: for 24-bit images, color interleaving is blue, green, red:Image[0,i,j] = blue,
Image[1,i,j] = green, etc.

R, G, B

Color tables. If omitted, the colors loaded in the COLORS common block are us

Keywords

FOUR_BIT

Set this keyword to write as a 4-bit device independent bitmap. If omitted or zero
8-bit deep bitmap is written.
WRITE_BMP IDL Reference Guide

1529

r
 can

 be

w

,

IHDR

Set this keyword to a BITMAPINFOHEADER structure containing the file heade
fields that are not obtained from the image itself. The fields in this structure that
be set are:bi{XY}PelsPerMeter , biClrUsed , andbiClrImportant .

HEADER_DEFINE

If this keyword is set, WRITE_BMP returns an empty BITMAPINFOHEADER
structure, containing zeros. No other actions are performed. This structure may
then modified with the pertinent fields and passed in via the IHDR keyword
parameter. See the Microsoft Windows Programmers Reference Guide for a
description of each field in the structure.

Note: this parameter must be definedbefore the call. For example:

H = 0
WRITE_BMP, HEADER_DEFINE = H

Examples

The following command captures the contents of the current IDL graphics windo
and saves it to a Microsoft Windows Bitmap file with the nametest.bmp . Note that
this works only on a PseudoColor (8-bit) display:

WRITE_BMP, 'test.bmp', TVRD()

The following commands scale an image to 0-15, and then write a 4-bit BMP file
using a grayscale color table:

; Create a ramp from 0 to 255:
r = BYTSCL(INDGEN(16))

WRITE_BMP, 'test.bmp', BYTSCL(Image, MAX=15), r, r, r, /FOUR

See Also

READ_BMP, QUERY_* Routines
IDL Reference Guide WRITE_BMP

1530

hics

l

.

le

and
GIF

 file
WRITE_GIF

The WRITE_GIF procedure writes an image and its color table vectors to a Grap
Interchange Format (GIF) file.

WRITE_GIF produces 8-bit GIF files of the standard type: non-interlaced, globa
colormap.

Note
The Graphics Interchange Format© is the Copyright property of CompuServ
Incorporated. GIF(sm) is a Service Mark property of CompuServ Incorporated

This routine is written in the IDL language. Its source code can be found in the fi
write_gif.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_GIF,Filename, Image[, R, G, B] [, /MULTIPLE [, /CLOSE]]

Arguments

Filename

A scalar string containing the full pathname of the GIF file to write.

Image

The array to write into the new GIF file.

R, G, B

The Red, Green, and Blue color vectors to be written with to the GIF file. IfR, G, B
values are not provided, the last color table established using LOADCT is saved,
the table is padded to 256 entries. If no color table has been established, WRITE_
calls LOADCT to load the grayscale entry (table 0).

Keywords

CLOSE

Set this keyword to close any open files. The CLOSE keyword is only useful if a
containing multiple images (as specified by the MULTIPLE keyword) is being
WRITE_GIF IDL Reference Guide

1531

er

s

 a

w

written. If the CLOSE keyword is specified, nothing is written to the file, and all oth
parameters are ignored.

MULTIPLE

Set this keyword to write multiple images to a file. Each call to WRITE_GIF write
the next image, with the file remaining open between calls. TheFilenameargument is
ignored after the first call,but must be supplied. After the first image has been
written, any R, G, and B color vectors supplied are ignored. All images written to
GIF file must be the same size.

Example

The following command captures the contents of the current IDL graphics windo
and saves it to a GIF file namedtest.gif . Note that this works only on a
PseudoColor (8-bit) display:

WRITE_GIF, 'test.gif', TVRD()

See Also

READ_GIF, WRITE_JPEG, QUERY_* Routines
IDL Reference Guide WRITE_GIF

1532

, to

E

ists.

ists.

iting
per
WRITE_IMAGE

The WRITE_IMAGE procedure writes an image and its color table vectors, if any
a file of a specified type. WRITE_IMAGE can write most types of image files
supported by IDL.

Syntax

WRITE_IMAGE, Filename, Format, Data [, Red, Green, Blue] [, /APPEND]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See QUERY_IMAG
for a list of supported formats.

Data

An IDL variable containing the image data to write to the file.

Red

An optional vector containing the red channel of the color table if a colortable ex

Green

An optional vector containing the green channel of the color table if a colortable
exists.

Blue

An optional vector containing the blue channel of the color table if a colortable ex

Keywords

APPEND

Set this keyword to force the image to be appended to the file instead of overwr
the file. APPEND may be used with image formats that supports multiple images
file and is ignored for formats that support only a single image per file.
WRITE_IMAGE IDL Reference Guide

1533

or

es
er

r, on
ned
ou

JFIF,

sing
e
ion,

lace,

g

WRITE_JPEG

The WRITE_JPEG procedure writes compressed images to files. JPEG (Joint
Photographic Experts Group) is a standardized compression method for full-col
and gray-scale images. This procedure is based in part on the work of the
“Independent JPEG Group”.

As the Independent JPEG Group states, JPEG is intended for “real-world” scen
(such as digitized photographs). Line art, such as drawings or IDL plots, and oth
“unrealistic” images are not its strong suit. Note also that JPEG is a “lossy”
compression scheme. That is, the output image isnot identical to the input image.
Hence you must not use JPEG if you have to have identical output bits. Howeve
typical images of real-world scenes, very good compression levels can be obtai
with no visible change, and amazingly high compression levels are possible if y
can tolerate a low-quality image. You can trade off output image quality against
compressed file size by adjusting a compression parameter. Files are encoded in
the JPEG File Interchange Format (however, such files are usually simply called
“JPEG” files).

If you need to store images in a compressed format that is not lossy, consider u
the WRITE_GIF procedure. This procedure writes 8-bit (256 color) images in th
Graphics Interchange Format. To store 8-bit or 24-bit images without compress
consider using the WRITE_BMP (for Microsoft Bitmap format files) or
WRITE_TIFF (to write Tagged Image Format Files) procedures.

For a short technical introduction to the JPEG compression algorithm, see: Wal
Gregory K. “The JPEG Still Picture Compression Standard”,Communications of the
ACM, April 1991 (vol. 34, no. 4), pp. 30-44.

Note
All JPEG files consist of byte data. Input data is converted to bytes before bein
written to a JPEG file.

Syntax

WRITE_JPEG[,Filename], Image [, /ORDER] [, /PROGRESSIVE]
[, QUALITY= value{0 to 100}] [, TRUE={1 | 2 | 3}] [, UNIT=lun]
IDL Reference Guide WRITE_JPEG

1534

n.
ee
the

y is

hen
age

ntire

y.

olor
ions
Arguments

Filename

A string containing the name of file to be written in JFIF (JPEG) format. If this
parameter is not present, the UNIT keyword must be specified.

Image

A byte array of either two or three dimensions, containing the image to be writte
Grayscale images must have two dimensions. True-color images must have thr
dimensions with the index of the dimension that contains the color specified with
TRUE keyword.

Keywords

ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image arra
in the standard IDL order (i.e., from bottom-to-top) set ORDER to 0, its default
value. If the image array is in top-to-bottom order, ORDER must be set to 1.

PROGRESSIVE

Set this keyword to write the image as a series of scans of increasing quality. W
used with a slow communications link, a decoder can generate a low-quality im
very quickly, and then improve its quality as more scans are received.

Warning
Not all JPEG applications can handle “progressive” JPEG files, and it is up the
JPEG reader to progressively display the JPEG image. For example, IDL’s
READ_JPEG routine will ignore the progressive readout request and read the e
image in at the first reading.

QUALITY

This keyword specifies the quality index, in the range of 0 (“terrible”) to 100
(“excellent”) for the JPEG file. The default value is 75, to obtain “very good” qualit
Lower values of QUALITY produce higher compression ratios and smaller files.

TRUE

This keyword specifies the index, starting at 1, of the dimension over which the c
is interleaved. For example, for an image that is pixel interleaved and has dimens
of (3,m, n), set TRUE to 1. Specify 2 for row-interleaved images (m, 3,n); and 3 for
WRITE_JPEG IDL Reference Guide

1535

e

the
in

ty
band-interleaved images (m, n, 3). If TRUE is not set, the image is assumed to hav
no interleaving (it is not a true-color image).

UNIT

This keyword designates the logical unit number of an already open file to receive
output, allowing multiple JFIF images per file or the embedding of JFIF images
other data files. If this keyword is used,Filename should not be specified. When
using VMS, open the file with the /STREAM keyword.

Examples

Write the image contained in the array A, using JPEG compression with a quali
index of 25. The image is stored in bottom-to-top order:

image = DIST(100)
WRITE_JPEG, 'test1.jpg', image, QUALITY=25

Write a true-color image to a JPEG file. The image is contained in the band-
interleaved array A with dimensions (m,n,3). Assume it is stored in top-to-bottom
order:

WRITE_JPEG, 'test2.jpg', image, TRUE=3, /ORDER

See Also

READ_JPEG, WRITE_GIF, QUERY_* Routines
IDL Reference Guide WRITE_JPEG

1536

AR

8-
it

nce

e of

le

ue
m

ges.
WRITE_NRIF

The WRITE_NRIF procedure writes an image and its color table vectors to an NC
Raster Interchange Format (NRIF) rasterfile.

WRITE_NRIF only writes 8- or 24-bit deep rasterfiles of types “Indexed Color” (
bit) and “Direct Color integrated” (24-bit). The color map is included only for 8-b
files.

See the document “NCAR Raster Interchange Format and TAGS Raster Refere
Manual,” available from the Scientific Computing Division, National Center for
Atmospheric Research, Boulder, CO, 80307-3000, for information on the structur
NRIF files.

This routine is written in the IDL language. Its source code can be found in the fi
write_nrif.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_NRIF,File, Image[, R, G, B]

Arguments

File

A scalar string containing the full path name of the NRIF file to write.

Image

The byte array to be written to the NRIF file. IfImagehas the dimensions (n,m), an 8-
bit NRIF file with color tables is created. IfImage has the dimensions (3,n,m), a 24-
bit NRIF file is created, where each byte triple represents the red, green, and bl
intensities at (n,m) on a scale from 0 to 255. The NRIF image will be rendered fro
bottom to top, in accordance with IDL standards.

R, G, B

The Red, Green, and Blue color vectors to be used as a color table with 8-bit ima
If color vectors are supplied, they are included in the output (8-bit images only). IfR,
G, B values are not provided, the last color table established using LOADCT is
included. If no color table has been established, WRITE_NRIF calls LOADCT to
load the grayscale entry (table 0).
WRITE_NRIF IDL Reference Guide

1537

if
ude
Note
WRITE_NRIF does not recognize color vectors loaded directly using TVLCT, so
a custom color table is desired and it is not convenient to use XPALETTE, incl
the R, G, and B vectors that were used to create the color table.
IDL Reference Guide WRITE_NRIF

1538

ICT

le

d. If

ly on
WRITE_PICT

The WRITE_PICT procedure writes and image and its color table vectors to a P
(version 2) format image file. The PICT format is used by Apple Macintosh
computers.

Note: WRITE_PICT only works with 8-bit displays

This routine is written in the IDL language. Its source code can be found in the fi
write_pict.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_PICT,Filename[, Image, R, G, B]

Arguments

Filename

A scalar string containing the full pathname of the PICT file to write.

Image

The byte array to be written to the PICT file. IfImage is omitted, the entire current
graphics window is read into an array and written to the PICT file.

R, G, B

The Red, Green, and Blue color vectors to be written to the PICT file. IfR, G, B
values are not provided, the last color table established using LOADCT is include
no color table has been established, WRITE_PICT calls LOADCT to load the
grayscale entry (table 0).

Example

Create a pseudo screen dump from the current window. Note that this works on
a PseudoColor (8-bit) display:

WRITE_PICT, 'test.pict', TVRD()

See Also

READ_PICT, QUERY_* Routines
WRITE_PICT IDL Reference Guide

1539

rk
ing
IDL

ed

lor

gle
WRITE_PNG

The WRITE_PNG procedure writes a 2D or 3D IDL variable into a Portable Netwo
Graphics (PNG) file. The data in the file is stored using lossless compression us
either 8, 16, or 32 data bits per channel, based on the input IDL variable type. 3D
variables must have the number of channels as their leading dimension (pixel
interleaved). For BYTE format 2D IDL variables, an optional palette may be stor
in the image file along with a list of pixel values which are to be considered
‘transparent’ by a reading program.

Syntax

WRITE_PNG,Filename, Image[, R, G, B] [, /VERBOSE]
[, TRANSPARENT=array]

Arguments

Filename

A scalar string containing the full pathname of the PNG file to write.

Image

The array to write into the new PNG file.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors if a co
table exists.

Keywords

VERBOSE

Produces additional diagnostic output during the write.

TRANSPARENT

Set this keyword to an array of pixel index values which are to be treated as
“transparent” for the purposes of image display. This keyword is only valid for sin
channel (color indexed) images.
IDL Reference Guide WRITE_PNG

1540

th a
Example

Create an RGBA (16-bits/channel) and a Color Indexed (8-bit/channel) image wi
palette.

rgbdata = INTARR(4,320,240)
cidata = BYTSCL(DIST(256))
red = INDGEN(256)
green = INDGEN(256)
blue = INDGEN(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue

; Query and Read the data:
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN

ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR

See Also

READ_PNG, QUERY_* Routines
WRITE_PNG IDL Reference Guide

1541

y
und

es

ite
WRITE_PPM

The WRITE_PPM procedure writes an image to a PPM (true-color) or PGM (gra
scale) file. This routine is written in the IDL language. Its source code can be fo
in the filewrite_ppm.pro in thelib subdirectory of the IDL distribution.

Note
WRITE_PPM only writes 8-bit deep PGM/PPM files of the standard type. Imag
should be ordered so that the first row is the top row.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

Syntax

WRITE_PPM,Filename, Image [, /ASCII]

Arguments

Filename

A scalar string specifying the full pathname of the PPM or PGM file to write.

Image

The 2D (gray scale) or 3D (true-color) array to be written to a file.

Keywords

ASCII

Set this keyword to force WRITE_PPM to use formatted ASCII input/output to wr
the image data. The default is to use the far more efficient binary input/output
(RAWBITS) format.

Example

image = DIST(100)
WRITE_PPM, 'file.ppm', image

See Also

READ_PPM, QUERY_* Routines
IDL Reference Guide WRITE_PPM

1542

n.
WRITE_SPR

The WRITE_SPR procedure writes a row-indexed sparse array structure to a
specified file. Row-indexed sparse arrays are created using the SPRSIN functio

Syntax

WRITE_SPR,AS, Filename

Arguments

AS

A row-indexed sparse array created by SPRSIN.

Filename

The name of the file that will contain AS.

Example

; Create an array:
A = [[3.,0., 1., 0., 0.],$

[0.,4., 0., 0., 0.],$
[0.,7., 5., 9., 0.],$
[0.,0., 0., 0., 2.],$
[0.,0., 0., 6., 5.]]

; Convert it to sparse storage format:
A = SPRSIN(A)

; Store it in the file sprs.as:
WRITE_SPR, A, 'sprs.as'

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR
WRITE_SPR IDL Reference Guide

1543

n

D.

le

ay

lor
ntry

up.

r.
WRITE_SRF

The WRITE_SRF procedure writes an image and its color table vectors to a Su
Raster File (SRF).

WRITE_SRF only writes 32-, 24-, and 8-bit-deep rasterfiles of type RT_STANDAR
Use the UNIX commandrasfilter8to1 to convert these files to 1-bit deep files.
See the file/usr/include/rasterfile.h for the structure of Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the fi
write_srf.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_SRF,Filename [, Image, R, G, B] [, /ORDER] [, /WRITE_32]

Arguments

Filename

A scalar string containing the full pathname of the SRF to write.

Image

The array to be written to the SRF. IfImage has dimensions (3,n,m), a 24-bit SRF is
written. If Image is omitted, the entire current graphics window is read into an arr
and written to the SRF file.Image should be of byte type, and in top to bottom scan
line order.

R, G, B

The Red, Green, and Blue color vectors to be written to the file. IfR, G, B values are
not provided, the last color table established using LOADCT is included. If no co
table has been established, WRITE_SRF calls LOADCT to load the grayscale e
(table 0).

Keywords

ORDER

Set this keyword to write the image from the top down instead of from the bottom
This setting is only necessary when writing a file from the current IDL graphics
window; it is ignored when writing a file from a data array passed as a paramete
IDL Reference Guide WRITE_SRF

1544
WRITE_32

Set this keyword to write a 32-bit file. If the input image is a true color image,
dimensioned (3,n, m), it is normally written as a 24-bit raster file.

Example

Create a pseudo screen dump from the current window:

WRITE_SRF, 'test.srf', TVRD()

See Also

READ_SRF, QUERY_* Routines
WRITE_SRF IDL Reference Guide

1545

ite

e,
ed

le

the

e

WRITE_SYLK

The WRITE_SYLK function writes the contents of an IDL variable to a SYLK
(Symbolic Link) format spreadsheet data file. The function returns TRUE if the wr
operation was successful.

Note
This routine writes only numeric and string SYLK data. It cannot handle
spreadsheet and cell formatting information (cell width, text justification, font typ
date, time, monetary notations, etc.). A given SYLK data file cannot be append
with data blocks through subsequent calls.

This routine is written in the IDL language. Its source code can be found in the fi
write_sylk.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = WRITE_SYLK(File, Data [, STARTCOL=column] [, STARTROW=row])

Arguments

File

A scalar string specifying the full path name of the SYLK file to write.

Data

A scalar, vector, or 2D array to be written toFile.

Keywords

STARTCOL

Set this keyword to the first column of spreadsheet cells to write. If not specified,
write operation begins with the first column found in the file (column 0).

STARTROW

Set this keyword to the first row of spreadsheet cells to write. If not specified, th
write operation begins with the first row of cells found in the file (row 0).
IDL Reference Guide WRITE_SYLK

1546

ft
d:
Example

Suppose you wish to write the contents of a 2 by 2 floating-point array,data , to a
SYLK data file called “bar.slk” such that the matrix would appear with it’s upper le
data at the cell in the 10th row and the 20th column. Use the following comman

status = WRITE_SYLK("bar.slk", data, STARTROW = 9, STARTCOL = 19)

The IDL variablestatus will contain the value 1 if the operation was successful.

See Also

READ_SYLK
WRITE_SYLK IDL Reference Guide

1547

ere

nd
ree-

For

SE
WRITE_TIFF

The WRITE_TIFF procedure can write TIFF files with one or more channels, wh
each channel can contain 8, 16, 32, or floating point pixels.

Syntax

WRITE_TIFF,Filename [, Image, Order] [, /APPEND] [, RED=value]
[, GREEN=value] [, BLUE=value] [, COMPRESSION={0 | 1 | 2}]
[, GEOTIFF=structure] [, /LONG | , /SHORT | ,/FLOAT] [, PLANARCONFIG={1 |
2}] [, /VERBOSE] [, XRESOL=pixels/inch] [, YRESOL=pixels/inch]

Arguments

Filename

A scalar string containing the full pathname of the TIFF to write.

Image

The array to be written to the TIFF. IfImage has dimensions (k,n,m), a k-channel
TIFF is written. Image should be in top to bottom scan line order. By default, this
array is converted to byte format before being written (see the LONG, SHORT a
FLOAT keywords below). Note that many TIFF readers can read only one- or th
channel images.

Note
The Image argument is optional if PLANARCONFIG is set to 2 and the RED,
GREEN, and BLUE keywords have been set to 2D arrays.

Order

This argument should be 0 if the image is stored from bottom to top (the default).
images stored from top to bottom, this argument should be 1.

Warning
Not all TIFF readers honor the value of theOrder argument. IDL writes the value
into the file, but many known readers ignore this value. In such cases, we
recommend that you convert the image to top to bottom order with the REVER
function and then setOrder to 1.
IDL Reference Guide WRITE_TIFF

1548

age

keys
om
Keywords

APPEND

Specifies that the image should be added to the existing file, creating a multi-im
TIFF file.

COMPRESSION

Set this keyword to select the type of compression to be used:

0 - none (default), 1 - LZW, 2 - PackBits.

FLOAT

Write the pixel components as floating point entities (the default is 8 bit).

GEOTIFF

An anonymous structure containing one field for each of the GeoTIFF tags and
to be written into the file. The GeoTIFF structure is formed using fields named fr
the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

"GEOGGEODETICDATUMGEOKEY" INT

"GEOGPRIMEMERIDIANGEOKEY" INT

Table 93: GEOTIFF Structures
WRITE_TIFF IDL Reference Guide

1549
"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

"PROJFALSEORIGINLATGEOKEY" DOUBLE

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 93: GEOTIFF Structures
IDL Reference Guide WRITE_TIFF

1550

he
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

LONG

Write the pixel components as 32 bit entities (the default is 8 bit).

PLANARCONFIG

This keyword determines the order in which a multi-channel image is stored and
written. It has no effect with a single-channel image. Set this keyword to 2 to if t
Image parameter is interleaved by “plane”, or band, and its dimensions are (Columns,
Rows, Channels). The default value is 1, indicating that multi-channel images are
interleaved by color, also called channel, and its dimensions are (Channels, Columns,
Rows).

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Anonymous Structure Field Name IDLDatatype

Table 93: GEOTIFF Structures
WRITE_TIFF IDL Reference Guide

1551

ed by
it to

ble

d
e

ly on
As a special case, this keyword may be set to 2 to write an RGB image that is
contained in three separate arrays (color planes), stored in the variables specifi
the RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set
1).

Note
Many TIFF readers can read only one- or three-channel images.

RED, GREEN, BLUE

If you are writing a Palette color image, set these keywords equal to the color ta
vectors, scaled from 0 to 255.

If you are writing an RGB interleaved image (i.e., if the PLANARCONFIG keywor
is set to 2), set these keywords to the names of the variables containing the thre
image components.

SHORT

Write the pixel components as unsigned 16-bit entities (the default is 8-bit).

VERBOSE

Produce additional diagnostic output during the write.

XRESOL

The horizontal resolution, in pixels per inch. The default is 100.

YRESOL

The vertical resolution, in pixels per inch. The default is 100.

Example

Example 1

Create a pseudo screen dump from the current window. Note that this works on
a PseudoColor (8-bit) display:

WRITE_TIFF, 'test.tiff', TVRD()

Example 2

Write a three-channel image from three one-channel (two-dimensional) arrays,
contained in the variables Red, Green, and Blue:

WRITE_TIFF, 'test.tif', Red, Green, Blue, PLANARCONFIG=2
IDL Reference Guide WRITE_TIFF

1552
Example 3

Write and read a multi-image TIFF file. The first image is a 16-bit single channel image
stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND
; Read the image data back
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF

See Also

READ_TIFF, QUERY_* Routines
WRITE_TIFF IDL Reference Guide

1553

f the
e

WRITE_WAV

The WRITE_WAV procedure writes the audio stream to the named .WAV file.

Syntax

WRITE_WAV, Filename, Data, Rate

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to write.

Data

The array to write into the new .WAV file. The array can be a one- or two-
dimensional array. A two-dimensional array is written as a multi-channel audio
stream where the leading dimension of the IDL array is the number of channels. I
input array is in BYTE format, the data is written as 8-bit samples, otherwise, th
data is written as signed 16-bit samples.

Rate

The sampling rate for the data array in samples per second.

Keywords

None.
IDL Reference Guide WRITE_WAV

1554

le

ed,

ed,
WRITE_WAVE

The WRITE_WAVE procedure writes a three dimensional IDL array to a.wave or
.bwave file for use with the Wavefront Advanced Data Visualizer. Note that this
routine only writes one scalar field for each Wavefront file that it creates.

This routine is written in the IDL language. Its source code can be found in the fi
write_wave.pro in thelib subdirectory of the IDL distribution.

Syntax

WRITE_WAVE, File, Array [, /BIN] [, DATANAME= string]
[, MESHNAME=string] [, /NOMESHDEF] [, /VECTOR]

Arguments

File

A scalar string containing the full path name of the Wavefront file to write.

Array

A 3D array to be written to the file.

Keywords

BIN

Set this keyword to create a binary file. By default, text files are created.

DATANAME

Set this keyword to the name of the data inside of the Wavefront file. If not specifi
the name used is “idldata”.

MESHNAME

Set this keyword to the name of the mesh used in the Wavefront file. If not specifi
the name used is “idlmesh”.

NOMESHDEF

Set this keyword toomit the mesh definition from the Wavefront file.
WRITE_WAVE IDL Reference Guide

1555

of 3-
 a
VECTOR

Set this keyword to write the variable as a vector. The data is written as an array
space vectors. The array may contain any number of dimensions but must have
leading dimension of 3. If the leading array dimension is not 3, this keyword is
ignored.

See Also

READ_WAVE
IDL Reference Guide WRITE_WAVE

1556

 a
ing

lied
L

ame
d is
unt

N
n

ss or
WRITEU

The WRITEU procedure writes unformatted binary data from an expression into
file. This procedure performs a direct transfer with no processing of any kind be
done to the data.

Syntax

WRITEU, Unit, Expr1 ...,Exprn

UNIX Keywords: [, TRANSFER_COUNT=variable]

VMS Keywords: [, /REWRITE]

Arguments

Unit

The IDL file unit to which the output is sent.

Expr i

The expressions to be output. For non-string variables, the number of bytes imp
by the data type is output. When WRITEU is used with a variable of type string, ID
outputs exactly the number of bytes contained in the existing string.

UNIX Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the output operation. Note that the number of elements is not the s
as the number of bytes (except in the case where the data type being transferre
bytes). For example, transferring 256 floating-point numbers yields a transfer co
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the NOSTDIO keyword to the OPE
routines. Normally, writing more data than an output device will accept causes a
error. Files opened with the NOSTDIO keyword will not generate such an error.
Instead, the programmer must keep track of the transfer count to judge the succe
failure of a WRITEU operation.
WRITEU IDL Reference Guide

1557

 input
VMS Keywords

Note that the obsolete FORWRT routine has been replaced by WRITEU.

REWRITE

When writing data to a file with indexed organization, setting the REWRITE
keyword specifies that the data should update the contents of the most recently
record instead of creating a new record.

Examples

Create some data to store in a file by entering:

D = BYTSCL(DIST(200))

Open a new file for writing as IDL file unit number 1 by entering:

OPENW, 1, 'newfile'

To write the data in D to the file, enter:

WRITEU, 1, D

Close file unit 1 by entering:

CLOSE, 1

See Also

OPEN, READU
IDL Reference Guide WRITEU

1558

not

is

this

!D
WSET

The WSET procedure selects the current window. Most IDL graphics routines do
explicitly require the IDL window to be specified. Instead, they use the window
known as the current window. The window index number of the current window
contained in the read-only system variable !D.WINDOW. WSET only works with
devices that have windowing systems.

Syntax

WSET [,Window_Index]

Arguments

Window_Index

This argument specifies the window index of the window to be made current. If
argument is not specified, a default of 0 is used.

If you setWindow_Index equal to -1, IDL will try to locate an existing window to
make current, ignoring any managed draw widgets that may exist. If there is no
window to make current, WSET changes the value of the WINDOW field of the
system variable to -1, indicating that there are no current windows.

Examples

Create IDL windows 1 and 2 by entering:

WINDOW, 1 & WINDOW, 2

Set the current window to window 1 and display an image by entering:

WSET, 1 & TVSCL, DIST(100)

Set the current window to window 2 and display an image by entering:

WSET, 2 & TVSCL, DIST(100)

See Also

WDELETE, WINDOW, WSHOW
WSET IDL Reference Guide

1559

t
w
the

.

rd
ore
WSHOW

The WSHOW procedure exposes or hides the designated window.

Syntax

WSHOW [,Window_Index [, Show]] [, /ICONIC]

Arguments

Window_Index

The window index of the window to be hidden or exposed. If this argument is no
specified, the current window is assumed. If this index is the window ID of a dra
widget, the widget base associated with that drawable is brought to the front of
screen.

Show

SetShow to 0 to hide the window. Omit this argument or set it to 1 to expose the
window.

Keywords

ICONIC

Set this keyword to iconify the window. Set ICONIC to 0 to de-iconify the window

Under windowing systems, iconification is the task of the window manager, and
client applications such as IDL have no direct control over it. The ICONIC keywo
serves as a hint to the window manager, which is free to iconify the window or ign
the request as it sees fit.

Example

To bring IDL window number 0 to the front, enter:

WSHOW, 0

See Also

WDELETE, WINDOW, WSET
IDL Reference Guide WSHOW

1560

ues

etic.

TN
WTN

The WTN function returns a multi-dimensional discrete wavelet transform of the
input array A. The transform is based on a Daubechies wavelet filter.

WTN is based on the routinewtn described in section 13.10 ofNumerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = WTN(A, Coef [, /COLUMN] [, /DOUBLE] [, /INVERSE]
[, /OVERWRITE])

Arguments

A

The input vector or array. The dimensions ofA must all be powers of 2.

Coef

An integer that specifies the number of wavelet filter coefficients. The allowed val
are 4, 12, or 20. WhenCoef is 4, thedaub4() function (seeNumerical Recipes,
section 13.10) is used. WhenCoef is 12 or 20,pwt() is called, preceded by
pwtset() (seeNumerical Recipes, section 13.10).

Keywords

COLUMN

Set this keyword if the input arrayA is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithm

INVERSE

If the INVERSE keyword is set, the inverse transform is computed. By default, W
performs the forward wavelet transform.
WTN IDL Reference Guide

1561

rse
t, an

de
ta file

ed
OVERWRITE

Set the OVERWRITE keyword to perform the transform “in place.” The result
overwrites the original contents of the array.

Example

This example demonstrates the use of IDL’s discrete wavelet transform and spa
array storage format to compress and store an 8-bit gray-scale digital image. Firs
image selected from thepeople.dat data file is transformed into its wavelet
representation and written to a separate data file using the WRITEU procedure.

Next, the transformed image is converted, using the SPRSIN function, to row-
indexed sparse storage format retaining only elements with an absolute magnitu
greater than or equal to a specified threshold. The sparse image is written to a da
using the WRITE_SPR procedure.

Finally, the transformed image is reconstructed from the storage file and display
alongside the original.

; Begin by choosing the number of wavelet coefficients to use and a
; threshold value:
coeffs = 12 & thres = 10.0

; Open the people.dat data file, read an image using associated
; variables, and close the file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
images = assoc(1, bytarr(192, 192))
image_1 = images[0]
close, 1

; Expand the image to the nearest power of two using cubic
; convolution, and transform the image into its wavelet
; representation using the WTN function:
pwr = 256
image_1 = CONGRID(image_1, pwr, pwr, /CUBIC)
wtn_image = WTN(image_1, coeffs)

; Write the image to a file using the WRITEU procedure and check
; the size of the file (in bytes) using the FSTAT function:
OPENW, 1, 'original.dat'
WRITEU, 1, wtn_image
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the file is ', status.size, ' bytes.'

; Now, we convert the wavelet representation of the image to a
; row-indexed sparse storage format using the SPRSIN function,
IDL Reference Guide WTN

1562

ray.
; write the data to a file using the WRITE_SPR procedure, and check
; the size of the "compressed" file:
sprs_image = SPRSIN(wtn_image, THRES = thres)
WRITE_SPR, sprs_image, 'sparse.dat'
OPENR, 1, 'sparse.dat'
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the compressed file is ', status.size, ' bytes.'

; Determine the number of elements (as a percentage of total
; elements) whose absolute magnitude is less than the specified
; threshold. These elements are not retained in the row-indexed
; sparse storage format:
PRINT, 'Percentage of elements under threshold: ',$

100.*N_ELEMENTS(WHERE(ABS(wtn_image) LT thres, $
count)) / N_ELEMENTS(image_1)

; Next, read the row-indexed sparse data back from the file
; sparse.dat using the READ_SPR function and reconstruct the
; image from the non-zero data using the FULSTR function:
sprs_image = READ_SPR('sparse.dat')
wtn_image = FULSTR(sprs_image)

; Apply the inverse wavelet transform to the image:
image_2 = WTN(wtn_image, COEFFS, /INVERSE)

; Calculate and print the amount of data used in reconstruction of
; the image:
PRINT, 'The image on the right is reconstructed from:', $

100.0 - (100.* count/N_ELEMENTS(image_1)),$
'% of original image data.'

; Finally, display the original and reconstructed images side by
; side:
WINDOW, 1, XSIZE = pwr*2, YSIZE = pwr, $

TITLE = 'Wavelet Image Compression and File I/O'
TV, image_1, 0, 0
TV, image_2, pwr - 1, 0

IDL Output

Size of the file is 262144 bytes.
Size of the compressed file is 69600 bytes.
Percentage of elements under threshold: 87.0331
The image on the right is reconstructed from: 12.9669% of original
image data.

The sparse array contains only 13% of the elements contained in the original ar
The following figure is created from this example. The image on the left is the
WTN IDL Reference Guide

1563

e

e.
ges
original 256 by 256 image. The image on the right was compressed by the abov
process and was reconstructed from 13% of the original data. The size of the
compressed image’s data file is 26.6% of the size of the original image’s data fil
Note that due to limitations in the printing process, differences between the ima
may not be as evident as they would be on a high-resolution printer or monitor.

See Also

FFT

Figure 18: Original image (left) and image reconstructed
from 13% of the data (right).
IDL Reference Guide WTN

1564

L
ap

can
ine
f the
ck

le

tive

the

new
be

n.
XBM_EDIT

The XBM_EDIT procedure allows users to create and edit icons for use with IDL
widgets as bitmap labels for widget buttons.

The icons created with XBM_EDIT can be saved in two different file formats. ID
“array definition files” are text files that can be inserted into IDL programs. “Bitm
array files” are data files that can be read into IDL programs. Bitmap array files
should be used temporarily until the final icon design is determined and then they
be saved as IDL array definitions for inclusion in the final widget code. This rout
does not check the file types of the files being read and assumes that they are o
correct size and type for reading. XBM_EDIT maintains its state in a common blo
so it is restricted to one working copy at a time.

This routine is written in the IDL language. Its source code can be found in the fi
xbm_edit.pro in thelib subdirectory of the IDL distribution.

Syntax

XBM_EDIT [, /BLOCK] [, FILENAME= string] [, GROUP=widget_id]
[, XSIZE=pixels] [, YSIZE=pixels]

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

FILENAME

Set this keyword to a scalar string that contains the filename to be used for the
icon. If this argument is not specified, the name “idl.bm” is used. The filename can
changed in XBM_EDIT by editing the “Filename” field before selecting a file optio

GROUP

The widget ID of the widget that calls XBM_EDIT. When this ID is specified, the
death of the caller results in the death of XBM_EDIT.
XBM_EDIT IDL Reference Guide

1565

lt

alue
XSIZE

The number of pixels across the bitmap is in the horizontal direction. The defau
value is 16 pixels.

YSIZE

The number of pixels across the bitmap is in the vertical direction. The default v
is 16 pixels.

See Also

WIDGET_BUTTON
IDL Reference Guide XBM_EDIT

1566

ce.

le

tive

the

nt”
or

ed.

,

XDISPLAYFILE

The XDISPLAYFILE procedure displays an ASCII text file using a widget interfa

This routine is written in the IDL language. Its source code can be found in the fi
xdisplayfile.pro in thelib subdirectory of the IDL distribution.

Syntax

XDISPLAYFILE, Filename [, /BLOCK] [, FONT=string] [, GROUP=widget_id]
[, HEIGHT=lines] [, /MODAL] [, TEXT= string or string array] [, TITLE=string]
[, WIDTH=characters]

Arguments

Filename

A scalar string that contains the filename of the file to display.Filenamecan include a
path to that file.

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

FONT

A string containing the name of the font to use. The font specified is a “device fo
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
Macintosh systems). See“About Device Fonts” on page 2240 for details on
specifying names for device fonts. If this keyword is omitted, the default font is us

GROUP

The widget ID of the widget that calls XDISPLAYFILE. If this keyword is specified
the death of the group leader results in the death of XDISPLAYFILE.
XDISPLAYFILE IDL Reference Guide

1567

d is

the

 file.
HEIGHT

The number of text lines that the widget should display at one time. If this keywor
not specified, 24 lines is the default.

MODAL

Set this keyword to create the XDISPLAYFILE dialog as a modal dialog. Setting
MODAL keyword allows you to call XDISPLAYFILE from another modal dialog.

TEXT

A string or string array to be displayed in the widget instead of the contents of a
If this keyword is present, theFilename input argument is ignored (but is still
required). String arrays are displayed one element per line.

TITLE

A string to use as the widget title rather than the file name or “XDisplayFile”.

WIDTH

The width of the widget display in characters. If this keyword is not specified, 80
characters is the default.

See Also

PRINT/PRINTF, XYOUTS
IDL Reference Guide XDISPLAYFILE

1568

cted
ed.

le

th

so
the
XFONT

The XFONT function creates a modal widget for selecting and viewing an X
Windows font. The function returns a string containing the name of the last sele
font. If no font is selected, or the “Cancel” button is clicked, a null string is return

Calling XFONT resets the current X Windows font.

This routine is written in the IDL language. Its source code can be found in the fi
xfont.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = XFONT([, GROUP=widget_id] [, /PRESERVE])

Keywords

GROUP

The widget ID of the widget that calls XFONT. When this ID is specified, the dea
of the caller results in the death of XFONT.

PRESERVE

Set this keyword to make XFONT save the server font directory in common blocks
that subsequent calls to XFONT start-up much faster. If this keyword is not set,
common block is cleaned.

See Also

EFONT, SHOWFONT
XFONT IDL Reference Guide

1569

ing
n be

o
PEG

le

ast
es,

ages
ed
XINTERANIMATE

The XINTERANIMATE procedure displays an animated sequence of images us
off-screen pixmaps or memory buffers. The speed and direction of the display ca
adjusted using the widget interface.

MPEG animation files can be created either programmatically using keywords t
open and save a file, or interactively using the widget interface. Note that the M
standard does not allow movies with odd numbers of pixels to be created.

Note
Only a single copy of XINTERANIMATE can run at a time. If you need to run
multiple instances of the animation widget concurrently, use the CW_ANIMATE
compound widget.

This routine is written in the IDL language. Its source code can be found in the fi
xinteranimate.pro in thelib subdirectory of the IDL distribution.

Using XINTERANIMATE

Displaying an animated series of images using XINTERANIMATE requires at le
three calls to the routine: one to initialize the animation widget, one to load imag
and one to display the images. When initialized using the SET keyword,
XINTERANIMATE creates an approximately square pixmap or memory buffer,
large enough to contain the requested number of frames of the requested size. Im
are loaded using the IMAGE and FRAME keywords. Finally, images are display
by copying them from the pixmap or memory buffer to the visible draw widget.

SeeCW_ANIMATE for a description of the widget interface controls used by
XINTERANIMATE.

Syntax

XINTERANIMATE [, Rate]

Keywords for initialization: [, SET=[sizex, sizey, nframes]] [, /CYCLE]
[, /MPEG_OPEN, MPEG_FILENAME=string] [, /NO_BLOCK] [, /SHOWLOAD]
[, /TRACK] [, TITLE=string]

Keywords for loading images: [, FRAME=value{0 to (nframes-
1)}[, IMAGE= value]] [, /ORDER] [, WINDOW=[window_num [, x0, y0, sx, sy]]]
IDL Reference Guide XINTERANIMATE

1570

ntage
e
t be

;

to
e.

tion

e

Keywords for running animations: [, /CLOSE] [, GROUP=widget_id]
[, /KEEP_PIXMAPS] [, /MPEG_CLOSE] [, XOFFSET=pixels]
[, YOFFSET=pixels]

Arguments

Rate

A value between 0 and 100 that represents the speed of the animation as a perce
of the maximum display rate. The fastest animation is with a value of 100 and th
slowest is with a value of 0. The default animation rate is 100. The animation mus
initialized using the SET keyword before calling XINTERANIMATE with a rate
value.

Keywords—Initialization

The following keywords are used to initialize the animation display. The SET
keywordmust be provided. Other keywords described in this section are optional
note that they work only when SET is specified.

SET

Set this keyword to a three-element vector [Sizex, Sizey, Nframes] to initialize
XINTERANIMATE. Sizex andSizey represent the width and height of the images
be displayed, in pixels.Nframes is the number of frames in the animation sequenc
Note thatNframes must be at least 2 frames.

CYCLE

Normally, frames are displayed going either forward or backwards. If the CYCLE
keyword is set, the animation reverses direction after the last frame in either direc
is displayed.

MPEG_FILENAME

Set this keyword equal to a string specifying the name of the MPEG file. If no fil
name is specified, the default value (idl.mpg) is used.

MPEG_OPEN

Set this keyword to open an MPEG file.

NO_BLOCK

Set this keyword equal to zero to have XMANAGERblock when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
XINTERANIMATE IDL Reference Guide

1571

.

re

t. If

y

ust

n

om

he
ing
command line if active command line processing is available. Note that setting
NO_BLOCK=0 will causeall widget applications to block, not just this application
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

SHOWLOAD

Set this keyword to display each frame and update the frame slider as frames a
loaded.

TRACK

Set this keyword to cause the frame slider to track the current frame when the
animation is in progress. The default is not to track.

TITLE

Use this keyword to specify a string to be used as the title of the animation widge
TITLE is not specified, the title is set to “XInterAnimate.”

Keywords—Loading Images

The following keywords are used to load images into the animation display. The
have no effect when initializing or running animations.

FRAME

Use this keyword to specify the frame number when loading frames. FRAME m
be set to a number in the range 0 toNframes-1.

IMAGE

Use this keyword to specify a single image to be loaded at the animation positio
specified by the FRAME keyword. (FRAMEmust also be specified.)

ORDER

Set this keyword to display images from the top down instead of the default bott
up.

WINDOW

When this keyword is specified, an image is copied from an existing window to t
animation pixmap or memory buffer. (When using some windowing systems, us
this keyword is much faster than reading from the display and then calling
XINTERANIMATE with a 2D array.)
IDL Reference Guide XINTERANIMATE

1572

tire

ect

dget

n

r

e,

e,
The value of this parameter is either an IDL window number (in which case the en
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

Keywords—Running Animations

The following keywords are used when running the animation. They have no eff
when initializing the animation or loading images.

CLOSE

Set this keyword to delete the offscreen pixmaps or buffers and the animation wi
itself. This also takes place automatically when the user presses the “Done With
Animation” button or closes the window with the window manager.

GROUP

Set this keyword to the widget ID of the widget that calls XINTERANIMATE. Whe
GROUP is specified, the death of the calling widget results in the death of
XINTERANIMATE.

KEEP_PIXMAPS

If this keyword is set, XINTERANIMATE will not destroy the animation pixmaps o
buffers when it is killed. Calling XINTERANIMATE again without going through
the SET and LOAD steps will play the same animation without the overhead of
creating the pixmaps.

MPEG_CLOSE

Set this keyword to close and save the MPEG file. This keyword has no effect if
MPEG_OPEN was not used during initialization.

XOFFSET

Use this keyword to specify the horizontal offset, in pixels from the left of the fram
of the image in the destination window.

YOFFSET

Use this keyword to specify the vertical offset, in pixels from the bottom of the fram
of the image in the destination window.
XINTERANIMATE IDL Reference Guide

1573

a

and
Example

Enter the following commands to open the fileABNORM.DAT (a series of images of a
human heart) and animate the images it contains using XINTERANIMATE. For
more detailed example of using XINTERANIMATE, see“Animation with
XINTERANIMATE” in Chapter 11 ofGetting Started with IDL.

OPENR, unit, FILEPATH('abnorm.dat', SUBDIR=['examples','data']), $
/GET_LUN

H = BYTARR(64, 64, 16)
READU, unit, H
CLOSE, unit

; Read the images into variable H:
H = REBIN(H, 128, 128, 16)

; Initialize XINTERANIMATE:
XINTERANIMATE, SET=[128, 128, 16], /SHOWLOAD

; Load the images into XINTERANIMATE:
FOR I=0,15 DO XINTERANIMATE, FRAME = I, IMAGE = H[*,*,I]

; Play the animation:
XINTERANIMATE, /KEEP_PIXMAPS

Note
Since the KEEP_PIXMAPS keyword was supplied, the same animation can be
replayed (after the animation widget has been destroyed) with the single comm
XINTERANIMATE.

See Also

CW_ANIMATE
IDL Reference Guide XINTERANIMATE

1574

le
le to
sfer

le

tive

the

th
XLOADCT

The XLOADCT procedure provides a graphical widget interface to the LOADCT
procedure. XLOADCT displays the current colortable and shows a list of availab
predefined color tables. Clicking on the name of a color table causes the color tab
be loaded. Many other options, such as Gamma correction, stretching, and tran
functions can also be applied to the colortable.

This routine is written in the IDL language. Its source code can be found in the fi
xloadct.pro in thelib subdirectory of the IDL distribution.

Syntax

XLOADCT [, /BLOCK] [, BOTTOM=value] [, /FILE] [, GROUP=widget_id]
[, /MODAL] [, NCOLORS=value] [, /SILENT]
[, UPDATECALLBACK=‘ procedure_name’ [, UPDATECBDATA=value]]
[, /USE_CURENT]

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

BOTTOM

The first color index to use. XLOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.

FILE

If this keyword is set, the file by the given name is used instead of the file
colors1.tbl in the IDL directory.

GROUP

The widget ID of the widget that calls XLOADCT. When this ID is specified, a dea
of the caller results in a death of XLOADCT.
XLOADCT IDL Reference Guide

1575

uits

t

is

at

to
y.

e

MODAL

Set this keyword to block processing of events from other widgets until the user q
XLOADCT. A group leader must be specified (via the GROUP keyword) for the
MODAL keyword to have any effect. By default, XLOADCT does not block even
processing.

NCOLORS

The number of colors to use. Use color indices from 0 to the smaller of
!D.TABLE_SIZE-1 and NCOLORS-1. The default is all available colors
(!D.TABLE_SIZE).

SILENT

Normally, no informational message is printed when a color map is loaded. If th
keyword is set to zero, the message is printed.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure th
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.

UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword
the user-supplied procedure specified via the UPDATECALLBACK keyword, if an
If the UPDATECBDATA keyword is not set the value accepted by the DATA
keyword to the procedure specified by UPDATECALLBACK will be undefined.

USE_CURRENT

Set this keyword to use the current color tables, regardless of the contents of th
COLORS common block.

See Also

LOADCT, XPALETTE, TVLCT
IDL Reference Guide XLOADCT

1576

h

le

e of

 the
XMANAGER

The XMANAGER procedure provides the main event loop and management for
widgets created using IDL. Calling XMANAGER “registers” a widget program wit
the XMANAGER event handler. XMANAGER takes control of event processing
until all widgets have been destroyed.

Beginning with IDL version 5.0, IDL supports anactive command linethat allows the
IDL command input line to continue accepting input while properly configured
widget applications are running. See“A Note About Blocking in XMANAGER” on
page 1579 for a more detailed explanation of the active command line.

This routine is written in the IDL language. Its source code can be found in the fi
xmanager.pro in thelib subdirectory of the IDL distribution.

Syntax

XMANAGER [, Name, ID] [, /CATCH] [, CLEANUP=string]
[, EVENT_HANDLER=‘procedure_name’] [, GROUP_LEADER=widget_id]
[, /JUST_REG] [, /NO_BLOCK]

Arguments

Name

A string that contains the name of the routine that creates the widget (i.e., the nam
the widget creation routine that is calling XMANAGER).

Note
TheNameargument is stored in a COMMON block for use by theXREGISTERED
routine. The stored name is case-sensitive.

ID

The widget ID of the new widget’s top-level base.

Keywords

BACKGROUND

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the TIMER keyword to
WIDGET_CONTROL procedure.
XMANAGER IDL Reference Guide

1577

n the

to

ues).

ng

ely,

ior
by

H

ER
hould

hen
cept
 by
y

A string that contains the name of a background task procedure to be called whe
event loop is idle.

CATCH

Set this keyword to cause XMANAGER to catch any errors, using theCATCH
procedure, when dispatching widget events. If the CATCH keyword is set equal
zero, execution halts and IDL provides traceback information when an error is
detected. This keyword is set by default (errors are caught and processing contin

Do not specify either theNameor ID argument to XMANAGER when specifying the
CATCH keyword (they are ignored). CATCH acts as a switch to turn error catchi
on and off forall applications managed by XMANAGER. When CATCH is
specified, XMANAGER changes its error-catching behavior and returns immediat
without taking any other action.

Note
Beginning with IDL version 5.0, the default behavior of XMANAGER is to catch
errors and continue processing events. In versions of IDL prior to version 5.0,
XMANAGER halted when an error was detected. This change in default behav
was necessary in order to allow multiple widget applications (all being managed
XMANAGER) to coexist peacefully. When CATCH is set equal to zero, (the old
behavior), any error halts XMANAGER, and thus halts event processing for all
running widget applications.

Note also that CATCH is only effective if XMANAGER is blocking to dispatch
errors. If event dispatching for an active IDL command line is in use, the CATC
keyword has no effect.

The CATCH=0 setting (errors are not caught and processing halts in XMANAG
when an error is detected) is intended as a debugging aid. Finished programs s
not set CATCH=0.

CLEANUP

Set this keyword to a string that contains the name of the routine to be called w
the widget dies. If not specified, no routine is called. The cleanup routine must ac
one parameter which is the widget ID of the dying widget. The routine specified
CLEANUP becomes the KILL_NOTIFY routine for the application, overriding an
cleanup routines that may have been set previously via theKILL_NOTIFY keyword
to WIDGET_CONTROL.
IDL Reference Guide XMANAGER

1578

n a
ot
x

der
ader

mo

d
ted

line,

ent

ve
EVENT_HANDLER

Set this keyword to a string that contains the name of a routine to be called whe
widget event occurs in the widget program being registered. If this keyword is n
supplied, XMANAGER will construct a default name by adding the “_event” suffi
to the Name argument. See the example below for a more detailed explanation.

GROUP_LEADER

The widget ID of the group leader for the widget being processed. When the lea
dies either by the users actions or some other routine, all widgets that have that le
will also die.

For example, a widget that views a help file for a demo widget would have that de
widget as its leader. When the help widget is registered, it sets the keyword
GROUP_LEADER to the widget ID of the demo widget. If the demo widget were
destroyed, the help widget led by it would be killed by the XMANAGER.

JUST_REG

Set this keyword to indicate that XMANAGER should just register the widget an
return immediately. This keyword is useful if you want to register a group of rela
top-level widgets before beginning event processing and either:

• your command-processing front-end does not support an active command
or

• one or more of the registered widgets requests that XMANAGER block ev
processing. (Note that in this case a later call to XMANAGER without the
JUST_REG keyword is necessary to begin blocking.)

(See“A Note About Blocking in XMANAGER” on page 1579 for further discussion
of the active command line.)

Warning
JUST_REG is not the same as NO_BLOCK. See“JUST_REG vs. NO_BLOCK”
on page 1580 for additional details.

NO_BLOCK

Set this keyword to tell XMANAGER that the registering client does not require
XMANAGER to block if active command line event processing is available. If acti
command line event processing is availableand every current XMANAGER client
specifies NO_BLOCK, then XMANAGER will not block and the user will have
access to the command line while widget applications are running.
XMANAGER IDL Reference Guide

1579

its

nt-

ions:

tty.
.

ront-
ll-

for

s

ce
Warning
NO_BLOCK is not the same as JUST_REG. See“JUST_REG vs. NO_BLOCK”
on page 1580 for additional details.

Warning

Although this routine is written in the IDL language, it may change in the future in
internal implementation. For future upgradability, it is best not to modify or even
worry about what this routine does internally.

A Note About Blocking in XMANAGER

Beginning with IDL version 5.0, most versions of IDL’s command-processing fro
end are able to support anactive command line while running properly constructed
widget applications. What this means is that—provided the widget application is
properly configured—the IDL command input line is available for input while a
widget application is running and widget events are being processed.

There are currently 5 separate IDL command-processing front-end implementat

• Apple Macintosh Integrated Development Environment (IDLDE)

• Microsoft Windows IDLDE

• Motif IDLDE (UNIX and VMS)

• UNIX plain tty

• VMS plain tty

All of these front-ends are able to process widget events except for the VMS plain
VMS users can still enjoy an active command line by using the IDLDE interface

If the command-processing front-end can process widget events (that is, if the f
end isnot the VMS plain tty), it is still necessary for widget applications to be we
behaved with respect to blocking widget event processing. Since in most cases
XMANAGER is used to handle widget event processing, this means that in order
the command line to remain active, all widget applications must be run with the
NO_BLOCK keyword to XMANAGER set. (Note that since NO_BLOCK isnot the
default, it is quite likely that some application will block.) If a single application run
in blocking mode, the command line will be inaccessible until the blocking
application exits. When a blocking application exits, the IDL command line will on
again become active.
IDL Reference Guide XMANAGER

1580

y do

t

 the

o
e

ts

T
ed to
JUST_REG vs. NO_BLOCK

Although their names imply a similar function, the JUST_REG and NO_BLOCK
keywords perform very different services. It is important to understand what the
and how they differ.

The JUST_REG keyword tells XMANAGER that it should simply register a clien
and then return immediately. The result is that the client becomes known to
XMANAGER, and that future calls to XMANAGER will take this client into
account. Therefore, JUST_REG only controls how the registering call to
XMANAGER should behave. The client can still be registered as requiring
XMANAGER to block by setting NO_BLOCK=0. In this case,future calls to
XMANAGER will block.

Note
JUST_REG is useful in situations where you suspect blocking might occur—if
active command line is not supported and you wish to keep it active before
beginning event processing, or if blocking will be requested at a later time. If n
blocking will occur or if the blocking behavior is useful, it is not necessary to us
JUST_REG.

The NO_BLOCK keyword tells XMANAGER that the registered client does not
require XMANAGER to block if the command-processing front-end is able to
support active command line event processing. XMANAGER remembers this
attribute of the client until the client exits, even after the call to XMANAGER that
registered the client returns. NO_BLOCK is just a “vote” on how XMANAGER
should behave—the final decision is made by XMANAGER by considering the
NO_BLOCK attributes ofall of its current clients as well as the ability of the
command-processing front-end in use to support the active command line.

Blocking vs. Non-blocking Applications

The issue of blocking in XMANAGER requires some explanation. IDL widget even
are not processed until the WIDGET_EVENT function is called to handle them.
Otherwise, they are queued by IDL indefinitely. Knowing how and when to call
WIDGET_EVENT is the primary service provided by XMANAGER.

There are two ways blocking is typically handled:

1. The first call to XMANAGER processes events by calling WIDGET_EVEN
as necessary until no managed widgets remain on the screen. This is referr
as “blocking” because XMANAGER does not return to the caller until it is
done, and the IDL command line is not available.
XMANAGER IDL Reference Guide

1581

nd
ary

r

t is,

d.)

for
at
ng

t

ne
esses
at
2. XMANAGER does not block, and instead, the part of IDL that reads comma
input also watches for widget events and calls WIDGET_EVENT as necess
while also reading command input. This is referred to as “non-blocking” o
“active command line” mode.

XMANAGER will block unless all of the following conditions are met:

• The command-processing front-end is able to process widget events (tha
the front-end is not the VMS plain tty).

• All registered widget applications have the NO_BLOCK keyword to
XMANAGER set.

• No modal dialogs are displayed. (Modal dialogs always block until dismisse

In general, we suggest that new widget applications be written with XMANAGER
blocking disabled (that is, with the NO_BLOCK keyword set). Since a widget
application that does block event processing for itself will block event processing
all other widget applications (and the IDL command line) as well, we suggest th
older widget applications be upgraded to take advantage of the new, non-blocki
behavior by adding the NO_BLOCK keyword to most calls to XMANAGER.

Example

The following code creates a widget named EXAMPLE that is just a base widge
with a “Done” button and registers it with the XMANAGER. Widgets being
registered with the XMANAGER must provide at least two routines. The first routi
creates the widget and registers it with the manager and the second routine proc
the events that occur within that widget. An example widget is supplied below th
uses only two routines. A number of other “Simple Widget Examples”, can be
viewed by entering WEXMASTER at the IDL prompt. These simple programs
demonstrate many aspects of widget programming.

The following lines of code would be saved in a single file, namedexample.pro :

; Begin the event handler routine for the EXAMPLE widget:
PRO example_event, ev

; The uservalue is retrieved from a widget when an event occurs:
WIDGET_CONTROL, ev.id, GET_UVALUE = uv

; If the event occurred in the Done button, kill the widget
; example:
if (uv eq 'DONE') THEN WIDGET_CONTROL, ev.top, /DESTROY

; End of the event handler part:
END
IDL Reference Guide XMANAGER

1582

s the
r

e
 is
e as
; This is the routine that creates the widget and registers it with
; the XMANAGER:
PRO example

; Create the top-level base for the widget:
base = WIDGET_BASE(TITLE='Example')

; Create the Done button and set its uservalue to "DONE":
done = WIDGET_BUTTON(base, VALUE = 'Done', UVALUE = 'DONE')
; Realize the widget (i.e., display it on screen):
WIDGET_CONTROL, base, /REALIZE

; Register the widget with the XMANAGER, leaving the IDL command
; line active:
XMANAGER, 'example', base, /NO_BLOCK

; End of the widget creation part:
END

First the event handler routine is listed. The handler routine has the same name a
main routine with the characters “_event” added. If you would like to use anothe
event handler name, you would need to pass its name to XMANAGER using the
EVENT_HANDLER keyword.

Notice that the event routine is listed before the main routine. This is because th
compiler will not compile the event routine if it was below the main routine. This
only needed if both routines reside in the same file and the file name is the sam
the main routine name with the.pro extension added.

Notice also the NO_BLOCK keyword to XMANAGER has been included. This
allows IDL to continue processing events and accepting input at the command
prompt while theexample widget application is running.

See Also

XMTOOL, XREGISTERED, Building IDL ApplcationsChapter 18, “Widgets”.
XMANAGER IDL Reference Guide

1583

.

n of

e

tive

the

e

XMNG_TMPL

The XMNG_TMPL procedure is a template for widgets that use the XMANAGER
Use this template instead of writing your widget applications from “scratch”. This
template can be found in the filexmng_tmpl.pro in thelib subdirectory of the IDL
distribution.

The documentation header should be altered to reflect the actual implementatio
the XMNG_TMPL widget. Use a global search and replace to replace the word
XMNG_TMPL with the name of the routine you would like to use. All the comments
with a “*** ” in front of them should be read, decided upon and removed from th
final copy of your new widget routine.

Syntax

XMNG_TMPL [, /BLOCK] [, GROUP=widget_id]

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls XMNG_TMPL. When this ID is specified, th
death of the caller results in the death of XMNG_TMPL.

See Also

CW_TMPL
IDL Reference Guide XMNG_TMPL

1584

e

le

tive

the

d,
XMTOOL

The XMTOOL procedure displays a tool for viewing widgets currently being
managed by the XMANAGER. Only one instance of the XMTOOL can run at on
time.

This routine is written in the IDL language. Its source code can be found in the fi
xmtool.pro in thelib subdirectory of the IDL distribution.

Syntax

XMTOOL [, /BLOCK] [, GROUP=widget_id]

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls XMTOOL. If the calling widget is destroye
the XMTOOL is also destroyed.

See Also

XLOADCT
XMTOOL IDL Reference Guide

1585

L
ar
ing
verall
ich

 two

y
tive
uses
ee

 an
ture
XOBJVIEW

The XOBJVIEW procedure is used to quickly and easily view and manipulate ID
Object Graphics on screen. It displays given objects in an IDL widget with toolb
buttons and menus providing functionality for manipulating, printing, and export
the resulting graphic. The mouse can be used to rotate, scale, or translate the o
model shown in a view, or to select atomic graphic objects (or model objects wh
have their SELECT_TARGET property set) shown in a view.

Syntax

XOBJVIEW, Obj [, /BLOCK] [, GROUP=widget_id] [, STATIONARY=objref(s)]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Obj

A reference to an atomic graphics object, an IDLgrModel, or an array of such
references. IfObj is an array, the array can contain a mixture of such references.
Also, if Obj is an array, all object references in the array must be unique (i.e. no
references in the array can refer to the same object).

Obj is not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. B
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting the BLOCK keyword ca
all widget applications to block, not just this application. For more information, s
the documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls XOBJVIEW. When this ID is specified, the
death of the caller results in the death of XOBJVIEW.

STATIONARY

Set this keyword to a reference to an atomic graphics object, an IDLgrModel, or
array of such references. If this keyword is an array, the array can contain a mix
IDL Reference Guide XOBJVIEW

1586

rray
t).
e in
lights
via

.

of such references. Also, if this keyword is an array, all object references in the a
must be unique (i.e., no two references in the array can refer to the same objec
Objects passed to XOBJVIEW via this keyword will not scale, rotate, or translat
response to mouse events. Default stationary objects are two lights. These two
are replaced if one or more lights are supplied via this keyword. Objects specified
this keyword are not destroyed by XOBJVIEW when XOBJVIEW is quit or killed

XSIZE

The width of the drawable area in pixels. The default is 400.

YSIZE

The height of the drawable area in pixels. The default is 400.

Using XOBJVIEW

XOBJVIEW displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

Figure 19: The XOBJVIEW draw widget
XOBJVIEW IDL Reference Guide

1587

:

ut.

.

The XOBJVIEW Toolbar

The XOBJVIEW toolbar contains the following buttons:

Examples

Example 1

This example displays a simple IDLgrSurface object using XOBJVIEW:

oSurf = OBJ_NEW('IDLgrSURFACE', DIST(20))
XOBJVIEW, oSurf

Example 2

This example displays an IDLgrModel object consisting of two separate objects

; Create contour object:
oCont = OBJ_NEW('IDLgrContour', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20, N_LEVELS=10)

; Create surface object:
oSurf = OBJ_NEW('IDLgrSurface', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20)

; Create model object:
oModel = OBJ_NEW('IDLgrModel')

; Add contour and surface objects to model:
oModel->Add, oCont
oModel->Add, oSurf

; View model:
XOBJVIEW, oModel

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or o

Select: Click on the object. The name (or class if no name) is displayed
IDL Reference Guide XOBJVIEW

1588

s of
 to

sing
This code results in the following view in the XOBJVIEW widget:

Note that when you click the Select button, and then click on an object, the clas
that object appears next to the Select button. If you want the class of the model
appear when you click over any object in the model, you could set the
SELECT_TARGET property of the model as follows:

oModel->SetProperty, /SELECT_TARGET

Also note that it is not necessary to create a model to view more than one object u
XOBJVIEW. We could view the oCont and oSurf objects created in the above
example by placing them in an array as follows:

XOBJVIEW, [oCont, oSurf]

Figure 20: Using XOBJVIEW to view a model consisting of two objects
XOBJVIEW IDL Reference Guide

1589

r

le

tive

the

th

at

to
y.
XPALETTE

The XPALETTE procedure displays a widget interface that allows interactive
creation and modification of colortables using the RGB, CMY, HSV, or HLS colo
systems. Single colors can be defined or multiple color indices between two
endpoints can be interpolated.

This routine is written in the IDL language. Its source code can be found in the fi
xpalette.pro in thelib subdirectory of the IDL distribution.

Syntax

XPALETTE [, /BLOCK] [, GROUP=widget_id]
[, UPDATECALLBACK=‘ procedure_name’ [, UPDATECBDATA=value]]

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls XPALETTE. When this ID is specified, a dea
of the caller results in a death of XPALETTE.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure th
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.

UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword
the user-supplied procedure specified via the UPDATECALLBACK keyword, if an
If the UPDATECBDATA keyword is not set the value accepted by the DATA
keyword to the procedure specified by UPDATECALLBACK will be undefined.
IDL Reference Guide XPALETTE

1590

is

the

um
is

in

is
ter

he

t

x.
Using the XPALETTE Interface

Calling XPALETTE causes a graphical interface to appear. The elements of this
interface are described below.

Plots on Left Side of Interface

Three plots show the current red, green, and blue vectors.

Status Region

The center of the XPALETTE widget is a status region containing:

• The total number of colors.

• The current color index. XPALETTE allows changing one color at a time. Th
color is known as the “current color” and is indicated in the color spectrum
display with a special marker.

• The current mark index. The mark is used to remember a color index. Click
“Set Mark Button” to make the current color index the mark index.

• A sample of the current color. The special marker used in the color spectr
display prevents the user from seeing the color of the current index, but it
visible here.

Control Panel

A panel of 8 buttons control common XPALETTE functions:

• Done:Click this button to exit XPALETTE. The new color tables are saved
the COLORS common block and loaded to the display.

• Predefined:Click this button to start XLOADCT, allowing selection of one of
the predefined color tables. Note that when you change the color map via
XLOADCT, XPALETTE is not always able to keep its display accurate. Th
problem can be overcome by pressing the XPALETTE “Redraw” button af
changing the colortable via XLOADCT.

• Help: Click this button to display help information.

• Redraw: Click this button to redraws the display using the current state of t
color map.

• Set Mark: Click this button to set the value of the mark index to the curren
color index.

• Switch Mark: Click this button to exchange the mark and the current inde
XPALETTE IDL Reference Guide

1591

y

t

ap
es
ex
t

and
t
ame

per

and
y
ly.
he
• Copy Current: Click this button to make every color lying between the
current index and the mark index (inclusive) the same color as the current
color.

• Interpolate: Click this button to smoothly interpolate colors between the
current index and the mark index.

Color System Control

This section of the interface allows you to select the color system used to modif
individual colors. The “Select Color System” pulldown menu lets you select from
four different systems—RGB, CMY, HSV, and HLS. Depending upon the curren
system, 3 sliders below the pulldown menu allow you to alter the current color.

Right Side Color Spectrum Display

A display on the right side of the XPALETTE interface shows the current color m
as a series of squares. Color index 0 is at the upper left. The color index increas
monotonically by rows going left to right and top to bottom. The current color ind
is indicated by a special marker symbol. There are 4 ways to change the curren
color:

• Click on any square in the color map display.

• Use the “By Index” slider to move to the desired color index.

• Use the “Row” Slider to move the marker vertically.

• Use the “Column” Slider to move the marker horizontally.

A Note about the Colors Used in the Interface

XPALETTE uses two colors from the current color table as drawing foreground
background colors. These are used for the RGB plots on the left, and the curren
index marker on the right. This means that if the user set these two colors to the s
value, the XPALETTE display could become unreadable (like writing on black pa
with black ink). XPALETTE minimizes this possibility by noting changes to the
color map and always using the brightest available color for the foreground color
the darkest for the background. Thus, the only way to make XPALETTE’s displa
unreadable is to set the entire color map to a single color, which is highly unlike
The only side effect of this policy is that you may notice XPALETTE redrawing t
entire display after you’ve modified the current color. This simply means that the
change has made XPALETTE pick new drawing colors.
IDL Reference Guide XPALETTE

1592
See Also

LOADCT, MODIFYCT, XLOADCT, TVLCT
XPALETTE IDL Reference Guide

1593

is

ces
ht

le

he

R

XREGISTERED

The XREGISTERED function returns True if the widget named as its argument
currently registered with the XMANAGER as an exclusive widget. Otherwise the
routine returns false.

If the named widget is registered, XREGISTERED returns the number of instan
of that name in the list maintained by XMANAGER. The registered widget is broug
to the front of the desktop unless the NOSHOW keyword is set.

This routine is written in the IDL language. Its source code can be found in the fi
xregistered.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = XREGISTERED(Name [, /NO_SHOW])

Arguments

Name

A string containing the name of the widget in question.

Note
XREGISTERED checks forNamein a COMMON block created byXMANAGER.
The stored name is case-sensitive.

Keywords

NOSHOW

If the widget in question is registered, it is brought to the front of all the other
windows by default. Set this keyword to keep the widget from being brought to t
front.

Example

Suppose that you have a widget program that registers itself with the XMANAGE
with the command:

XMANAGER, 'mywidget', base
IDL Reference Guide XREGISTERED

1594

:

You could limit this widget to one instantiation by adding the following line as the
first line (after the procedure definition statement) of the widget creation routine

IF XREGISTERED('mywidget') THEN RETURN

See Also

XMANAGER
XREGISTERED IDL Reference Guide

1595

. The
 one-

ments
f the
-

le

g

g

ed
s
t
n the
XSQ_TEST

The XSQ_TEST function computes the Chi-square goodness-of-fit test between
observed frequencies and the expected frequencies of a theoretical distribution
result is a two-element vector containing the Chi-square test statistic X2 and the
tailed probability of obtaining a value of X2 or greater.

Expected frequencies of magnitude less than 5 are combined with adjacent ele
resulting in a reduction of cells used to formulate the chi-squared test statistic. I
observed frequencies differ significantly from the expected frequencies, the Chi
square test statistic will be large and the fit is poor. This situation requires the
rejection of the hypothesis that the given observed frequencies are an accurate
approximation to the expected frequency distribution.

This routine is written in the IDL language. Its source code can be found in the fi
xsq_test.pro in thelib subdirectory of the IDL distribution.

Syntax

Result = XSQ_TEST(Obfreq, Exfreq [, EXCELL=variable] [, OBCELL=variable]
[, RESIDUAL=variable])

Arguments

Obfreq

An n-element integer, single-, or double-precision floating-point vector containin
observed frequencies.

Exfreq

An n-element integer, single-, or double-precision floating-point vector containin
expected frequencies.

Keywords

EXCELL

Set this keyword to a named variable that will contain a vector of expected
frequencies used to formulate the Chi-square test statistic. If each of the expect
frequencies contained inExfreq, has a magnitude of 5 or greater, then this vector i
identical toExfreq. If Exfreq contains elements of magnitude less than 5, adjacen
expected frequencies are combined. The identical combinations are performed o
corresponding elements ofObfreq.
IDL Reference Guide XSQ_TEST

1596

ector
is

ces
.

e.

an 5,
cal
cies.
OBCELL

Set this keyword to a named variable that will contain a vector of observed
frequencies used to formulate the Chi-square test statistic. The elements of this v
are often referred to as the “cells” of the observed frequencies. The length of th
vector is determined by the length of EXCELL described below.

RESIDUAL

Set this keyword to a named variable that will contain a vector of signed differen
between corresponding cells of observed frequencies and expected frequencies

RESIDUAL[i] = OBCELL[i] - EXCELL[i].

The length of this vector is determined by the length of EXCELL described abov

Example

; Define the vectors of observed and expected frequencies:
obfreq = [2, 1, 4, 15, 10, 5, 3]
exfreq = [0.5, 2.1, 5.9, 10.3, 10.7, 7.0, 3.5]

; Test the hypothesis that the given observed frequencies are an
; accurate approximation to the expected frequency distribution:
result = XSQ_TEST(obfreq, exfreq)
PRINT, result

IDL Output

3.05040 0.383920

Since the vector of expected frequencies contains elements of magnitude less th
adjacent expected frequencies are combined resulting in fewer cells. The identi
combinations are performed on the corresponding elements of observed frequen
The computed value of 0.383920 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level.

See Also

CTI_TEST
XSQ_TEST IDL Reference Guide

1597

g
urface
CE

le

tive

the
XSURFACE

The XSURFACE procedure provides a graphical interface to the SURFACE and
SHADE_SURF commands. Different controls are provided to change the viewin
angle and other plot parameters. The command used to generate the resulting s
plot is shown in a text window. Note that this procedure does not accept SURFA
or SHADE_SURF keywords.

This routine is written in the IDL language. Its source code can be found in the fi
xsurface.pro in thelib subdirectory of the IDL distribution.

Syntax

XSURFACE,Data [, /BLOCK] [, GROUP=widget_id]

Arguments

Data

The two-dimensional array to display as a wire-mesh or shaded surface.

Keywords

BLOCK

Set this keyword to have XMANAGERblock when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting BLOCK=1 will causeall
widget applications to block, not just this application. For more information, see
documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

Set this keyword to the widget ID of the widget that calls XSURFACE. When
GROUP is specified, the death of the calling widget results in the death of
XSURFACE.

Example

; Make a 2D array:
z = DIST(30)

; Call XSURFACE. The XSURFACE widget appears:
XSURFACE, z
IDL Reference Guide XSURFACE

1598
See Also

SHADE_SURF, SURFACE
XSURFACE IDL Reference Guide

1599

rite

le

user

if

th

t is

 4.
XVAREDIT

The XVAREDIT procedure is a widget-based editor for any IDL variable. Use the
input fields to change desired values of the variable or array. Click “Accept” to w
the new values into the variable. Click “Cancel” to exit XVAREDIT without saving
changes.

This routine is written in the IDL language. Its source code can be found in the fi
xvaredit.pro in thelib subdirectory of the IDL distribution.

Syntax

XVAREDIT, Var [, NAME='variable_name'{ignored if variable is a structure}]
[, GROUP=widget_id] [, X_SCROLL_SIZE=columns] [, Y_SCROLL_SIZE=rows]

Arguments

Var

The variable to be edited. On output, this variable contains the edited value if the
selects the “Accept” button, or the original value if the user selects the “Cancel”
button.

Keywords

NAME

The NAME of the variable. This keyword is overwritten with the structure name
the variable is a structure.

GROUP

The widget ID of the widget that calls XVAREDIT. When this ID is specified, a dea
of the caller results in a death of XVAREDIT.

X_SCROLL_SIZE

Set this keyword to specify the column width of the scrolling viewport. The defaul
4.

Y_SCROLL_SIZE

Set this keyword to specify the row width of the scrolling viewport. The default is
IDL Reference Guide XVAREDIT

1600

the

de:
,
; and
ith

an

ings.
ing
XYOUTS

The XYOUTS procedure draws text on the currently-selected graphics device
starting at the designated coordinate.

ArgumentsX, Y, andString can be any combination of scalars or arrays. If the
arguments are arrays, multiple strings are output.

If the optionalX andY arguments are omitted, the text is positioned at the end of
most recently output text string.

Important keywords that control the appearance and positioning of the text inclu
ALIGNMENT, the justification of the text; CHARSIZE, the size of the text; FONT
chooses between vector drawn and hardware fonts; COLOR, the color of the text
ORIENTATION, the angle between the baseline of the text and the horizontal. W
hardware fonts, most of the text attributes, (e.g., size and orientation), are
predetermined and not changeable.

Note
Specify the Z coordinate with the Z keyword when positioning text in three
dimensions.

Syntax

XYOUTS, [X, Y,] String [, ALIGNMENT=value{0.0 to 1.0}] [, CHARSIZE=value]
[, CHARTHICK=value] [, TEXT_AXES={0 | 1 | 2 | 3 | 4 | 5}] [, WIDTH=variable]
[, CLIP=[X0, Y0, X1, Y1] | , /NOCLIP] [, COLOR=index] [, /DATA | , /DEVICE | ,
/NORMAL] [, ORIENTATION= ccw_degrees_from_horiz] [, /T3D | Z=value]

Arguments

X, Y

The horizontal and vertical coordinates used to position the string(s).X andY are
normally interpreted in data coordinates. The DEVICE and NORMAL keywords c
be used to specify the coordinate units.

X andY can be arrays of positions ifString is an array.

String

The string(s) to be output. This argument can be a scalar string or an array of str
If this argument is not a string, it is converted prior to use using the default formatt
XYOUTS IDL Reference Guide

1601

t

gns

ing
t

ct

Y
for

of

, in
rules. IfString is an array,X, Y, and the COLOR keyword can also be arrays so tha
each string can have a separate location and color.

Keywords

ALIGNMENT

Specifies the alignment of the text baseline. An alignment of 0.0 (the default) ali
the left edge of the text baseline with the given (x, y) coordinate. An alignment of 1.0
right-justifies the text, while 0.5 results in text centered over the point (x, y).

CHARSIZE

The overall character size for the annotation. A CHARSIZE of 1.0 is normal. Sett
CHARSIZE = -1 suppresses output of the text string. This keyword has no effec
when used with the hardware drawn fonts; for exceptions, see“Scaled Hardware
Fonts” on page 1602.

CHARTHICK

The line thickness of the vector drawn font characters. This keyword has no effe
when used with the hardware drawn fonts; for exceptions, see“Scaled Hardware
Fonts” on page 1602. The default value is 1.0.

TEXT_AXES

This keyword specifies the plane of vector drawn text when three-dimensional
plotting is enabled. By default, text is drawn in the plane of the XY axes. The
horizontal text direction is in the X plane, and the vertical text direction is in the
plane. Values for this keyword can range from 0 to 5, with the following effects: 0
XY, 1 for XZ, 2 for YZ, 3 for YX, 4 for ZX, and 5 for ZY. The notation ZY means
that the horizontal direction of the text lies in the Z plane, and the vertical direction
the text is drawn in the Y plane.

WIDTH

Set this keyword to a named variable in which to return the width of the text string
normalized coordinate units.

Graphics Keywords Accepted

SeeAppendix C, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.CLIP, COLOR, DATA, DEVICE, FONT, NOCLIP,
NORMAL, ORIENTATION, T3D, Z.
IDL Reference Guide XYOUTS

1602

:

ion.

ow,

size)

le

 are

nts,

ands
n a
hey

ware
Examples

Print the string “This is text” at device coordinate position (100,100) by entering

XYOUTS, 100, 100, 'This is text', /DEVICE

Print an array of strings with each element of the array printed at a different locat
Use larger text than in the previous example. Enter:

XYOUTS, [0, 200, 250], [200, 50, 100], $
['This', 'is', 'text'], CHARSIZE = 3, /DEVICE

To determine the text size for a window device before opening an on-screen wind
enter:

WINDOW, /FREE, /PIXMAP, XSIZE=myWinXSize, YSIZE=myWinYSize
XYOUTS, 'Check this out', WIDTH=w
WDELETE

(wheremyWinXSize andmyWinYSize are chosen to match your onscreen window.)
Since we can not know the characteristics of a given device (such as character
until a window has been opened, the PIXMAP keyword to“WINDOW” on
page 1524 allows you to compute appropriate dimensions for text with an invisib
window before displaying a window on your screen.

Scaled Hardware Fonts

One example of hardware fonts which can be scaled are PostScript fonts. If you
using PostScript fonts, the keywords CHARTHICK and CHARSIZE will have an
effect on a call to XYOUTS. Of the devices we provide that support hardware fo
only the PostScript device uses scalable PostScript fonts for its “hardware” font
system. All other devices use a bitmapped font technology.

Scaling is related to whether or not a device supports Hershey formatting comm
when hardware fonts are used. Formatting requires the ability to scale the text o
per-character basis (i.e. for subscripting). To see if a given device supports Hers
formatting when hardware fonts are used, look at bit 12 of !D.“FLAGS” on
page 2205. You can also use this indicator to determine whether or not the hard
fonts will be scaled.

See Also

ANNOTATE, PRINT/PRINTF
XYOUTS IDL Reference Guide

1603

d in
and

le

in a
inal

the

ld
 the

e
ers.
ZOOM

The ZOOM procedure displays part of an image from the current window enlarge
a new (“zoom”) window. The cursor is used to mark the center of the zoom area,
different zoom factors can be specified interactively.

Note
ZOOM only works with color systems.

This routine is written in the IDL language. Its source code can be found in the fi
zoom.pro in thelib subdirectory of the IDL distribution.

Using ZOOM

After calling ZOOM, place the mouse cursor over an image in an IDL graphics
window. Click the left mouse button to display a magnified version of the image
new window. The zoomed image is centered around the pixel selected in the orig
window. Click the middle mouse button to display a menu of zoom factors. Click
right mouse button to exit the procedure.

Using ZOOM with Draw Widgets

Note that the ZOOM procedure is only for use with IDL graphics windows. It shou
not be used with draw widgets. To obtain a zooming effect in a draw widget, use
CW_ZOOM function.

Syntax

ZOOM [, /CONTINUOUS] [, FACT=integer] [, /INTERP] [, /KEEP]
[, /NEW_WINDOW] [, XSIZE=value] [, YSIZE=value]
[, ZOOM_WINDOW=variable]

Keywords

CONTINUOUS

Set this keyword to make the zoom window track the mouse without requiring th
user to press the left mouse button. This feature only works well on fast comput
IDL Reference Guide ZOOM

1604

ult

ion.

e

ow.
FACT

Use this keyword to specify the zoom factor, which must be an integer. The defa
zoom factor is 4.

INTERP

Set this keyword to use bilinear interpolation. The default is to use pixel replicat

KEEP

Set this keyword to keep the zoom window after exiting the procedure.

NEW_WINDOW

Normally, if ZOOM is called with KEEP and then called again, it will use the sam
window to display the new zoomed image. Set the NEW_WINDOW keyword to
force ZOOM to create a new window for this purpose.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

ZOOM_WINDOW

Set this keyword to a named variable that will contain the index of the zoom wind
KEEP must also be set. If KEEP is not set, ZOOM_WINDOW will contain the
integer -1.

See Also

CW_ZOOM, ZOOM_24
ZOOM IDL Reference Guide

1605

sor
rk

tively.

le

ver a

e is
or in

to
the
ck
use

get,
ZOOM_24

The ZOOM_24 procedure displays part of a 24-bit color image from the current
window expanded in a new (“zoom”) window, and provides information about cur
location and color values in an auxiliary (“data”) window. The cursor is used to ma
the center of the zoom area, and different zoom factors can be specified interac

Note
ZOOM only works on 24-bit color systems.

This routine is written in the IDL language. Its source code can be found in the fi
zoom_24.pro in thelib subdirectory of the IDL distribution.

Using ZOOM_24

After calling ZOOM_24, windows titled “Zoomed Image” (the zoom window) and
“Pixel Values” (the data window) appear on the screen. Place the mouse cursor o
24-bit color image in an IDL graphics window and click the left mouse button to
display a magnified version of the image in the zoom window. The zoomed imag
centered around the pixel selected in the original window. Move the mouse curs
the zoom window to determine the coordinates (in the original image) and color
values of individual pixels.

With the cursor located in the zoom window, click the right mouse button to return
selection mode, which allows you to either choose a new zoom center, change
zoom factor, or exit the procedure. Move the cursor to the original image and cli
the middle mouse button to display a menu of zoom factors, or click the right mo
button to exit the procedure.

Using ZOOM_24 with Draw Widgets

Note that the ZOOM_24 procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain a zooming effect in a draw wid
use the CW_ZOOM function.

Syntax

ZOOM_24 [, FACT=integer] [, /RIGHT] [, XSIZE=value] [, YSIZE=value]
IDL Reference Guide ZOOM_24

1606

ult

al
Keywords

FACT

Use this keyword to specify the zoom factor, which must be an integer. The defa
zoom factor is 4.

RIGHT

Set this keyword to position the zoom and data windows to the right of the origin
window.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

See Also

CW_ZOOM, ZOOM
ZOOM_24 IDL Reference Guide

Appendix A:

IDL Object Class &
Method Reference
d in
This appendix describes IDL’s built-in graphics class library. The following objects are covere
this appendix:

• IDL_Container • IDLgrColorbar • IDLgrPattern • IDLgrSymbol

• IDLanROI • IDLgrContour • IDLgrPlot • IDLgrTessellator

• IDLanROIGroup • IDLgrFont • IDLgrPolygon • IDLgrText

• IDLffDICOM • IDLgrImage • IDLgrPolyline • IDLgrView

• IDLffDXF • IDLgrLegend • IDLgrPrinter • IDLgrViewgroup

• IDLffLanguageCat • IDLgrLight • IDLgrROI • IDLgrVolume

• IDLgrAxis • IDLgrModel • IDLgrROIGroup • IDLgrVRML

• IDLgrBuffer • IDLgrMPEG • IDLgrScene • IDLgrWindow

• IDLgrClipboard • IDLgrPalette • IDLgrSurface • TrackBall
IDL Reference Guide 1607

1608 Appendix A: IDL Object Class & Method Reference

is
and
e

f the

dure

nal
 to

n,

ould
Using this Appendix

The elements of IDL’s graphics class library are documented alphabetically in th
appendix. The page or pages describing each class include references to sub-
super-classes, and to the methods associated with the class. Class methods ar
documented alphabetically following the description of the class itself.

A description of each method follows its name. Beneath the general description o
method are a number of sections that describe the Syntax for the method, its
arguments (if any), its keywords (if any). These sections are described below.

Syntax

The Syntax section shows the proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:

Obj -> Procedure_Name,Argument[, Optional_Arguments]

whereObj is a valid object reference, Procedure_Name is the name of the proce
method,Argument is a required parameter, andOptional_Argument is an optional
parameter to the procedure method. Note that the square brackets around optio
arguments are not used in the actual call to the procedure, they are simply used
denote the optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:

Result =Obj -> Function_Name(Argument [, Optional_Arguments])

whereObj is a valid object reference,Result is the returned value of the function
method, Function_Name is the name of the function method,Argument is a required
parameter, andOptional_Argument is an optional parameter. Note that the square
brackets around optional arguments are not used in the actual call to the functio
they are simply used to denote the optional nature of the arguments within this
document. Note also that all arguments and keyword arguments to functions sh
be suppliedwithin the parentheses that follow the function’s name.
Using this Appendix IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1609

t
icated

med

ng an

ote
r.

e
t.
ple,

ord
n
rned

ual

 the

the
t.
Arguments

The “Arguments” section describes each valid argument to the method. Note tha
these arguments are positional parameters that must be supplied in the order ind
by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “named variables”. A na
variable is simply a valid IDL variable name. This variabledoes not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sendi
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the method. N
that keyword arguments are formal parameters that can be supplied in any orde

Keyword arguments are supplied to IDL methods by including the keyword nam
followed by an equal sign (“=”) and the value to which the keyword should be se
Note that keywords can be abbreviated to their shortest unique length. For exam
the XSTYLE keyword can be abbreviated to XST.

Setting Keywords

When the documentation for a keyword says something similar to, “Set this keyw
to enable logarithmic plotting,” the keyword is simply a switch that turns an optio
on and off. Usually, setting such keywords equal to 1 causes the option to be tu
on. Explicitly setting the keyword to zero (or not including the keyword) turns the
option off.

There is a “shortcut” that can be used to set a keyword equal to 1 without the us
syntax (i.e.,KEYWORD=1). To “set” a keyword, simply preface it with a slash
character (“/”). For example, to create a surface object with a skirt around it, set
SKIRT keyword to the SURFACE routine as follows:

mySurface = OBJ_NEW('IDLgrSurface', DIST(10), /SKIRT)

Creating Objects from the Graphics Class Library

To create an object from the IDL Graphics Class Library, use the OBJ_NEW
function. See“OBJ_NEW” on page 854. The Init method for each class describes
arguments and keywords available when you are creating a new graphics objec
IDL Reference Guide Using this Appendix

1610 Appendix A: IDL Object Class & Method Reference

the

For example, to create a new graphics object from the IDLgrAxis class, use the
following call to OBJ_NEW along with the arguments and keywords accepted by
IDLgrAxis::Init method:

myAxis = OBJ_NEW(IDLgrAxis, DIRECTION=1, RANGE=[0.0,40.0])
Using this Appendix IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1611

ct
.

IDL_Container

An IDL_Container object holds other objects. Destroying an IDL_Container obje
destroys any objects that have been added to the container via the Add method

Superclasses

This class has no superclasses.

Subclasses

The following classes are subclassed from this class:

• IDLgrModel

• IDLgrScene

• IDLgrView

• IDLgrViewgroup

Creation

See“IDL_Container::Init” on page 1616.

Methods

Intrinsic Methods

This class has the following methods:

• IDL_Container::Add

• IDL_Container::Cleanup

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::Init

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove
IDL Reference Guide IDL_Container

1612 Appendix A: IDL Object Class & Method Reference

.

r at
end

ion.
IDL_Container::Add

The IDL_Container::Add procedure method adds a child object to the container

Syntax

Obj -> [IDL_Container::]Add,Object [POSITION=index])

Arguments

Object

An instance of an object to be added to the container object.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the containe
which the new object should be placed. The default is to add the new object at the
of the list of contained items.

Example

If the container has three objects, the new object will be placed at the fourth posit
Since positions begin at zero, this would be equivalent to setting POSITION=3.
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1613

ect.

e
ll the
wn
p

IDL_Container::Cleanup

The IDL_Container::Cleanup procedure method performs all cleanup on the obj

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj-> [IDL_Container::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDL_Container

1614 Appendix A: IDL Object Class & Method Reference

ned
IDL_Container::Count

The IDL_Container::Count function method returns the number of objects contai
by the container object.

Syntax

Result = Obj -> [IDL_Container::]Count()

Arguments

None

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1615

o
first
et

e

ts

hat

 the
IDL_Container::Get

The IDL_Container::Get function method returns an array of object references t
objects in a container. Unless the ALL or POSITION keywords are specified, the
object in the container is returned. If no objects are found in the container, the G
function returns -1.

Syntax

Result = Obj -> [IDL_Container::]Get ([, /ALL [, ISA=class_name(s)] | ,
POSITION=index] [COUNT=variable])

Arguments

None

Keywords

ALL

Set this keyword to return an array of object references to all of the objects in th
container.

COUNT

Set this keyword equal to a named variable that will contain the number of objec
selected by the function. If the ALL keyword is also specified, specifying this
keyword is the same as calling the IDL_Container::Count method.

ISA

Set this keyword equal to a class name or vector of class names. Only objects t
inherit from the specified class will be returned.

Note
This keyword is ignored if the ALL keyword is not provided.

POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of
positions of the objects to return.
IDL Reference Guide IDL_Container

1616 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDL_Container::Init

The IDL_Container::Init function method initializes the container object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDL_Container')

or

Result = Obj -> [IDL_Container::]Init()(Only in a subclass’ Init method.)

Arguments

None

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1617

the

) at
IDL_Container::IsContained

The IDL_Container::IsContained function method returns true (1) if the specified
object is in the container, or false (0) otherwise.

Syntax

Result = Obj-> [IDL_Container::]IsContained(Object [, POSITION=variable])

Arguments

Object

The object reference or vector of object references of the object(s) to search for in
container.

Keywords

POSITION

Set this keyword to a named variable that upon return will contain the position(s
which (each of) the argument(s) is located within the container, or -1 if it is not
contained.
IDL Reference Guide IDL_Container

1618 Appendix A: IDL Object Class & Method Reference

in a
ins

cts.
l
dered

if the

e

IDL_Container::Move

The IDL_Container::Move procedure method moves an object from one position
container to a new position. The order of the other objects in the container rema
unchanged.

Positioning within a container controls the rendering order of the contained obje
The object whose location has the lowest index value is rendered first. If severa
objects are located at the same point in three-dimensional space, the object ren
first will occlude objects rendered later. Objects located “behind” other objects in
three-dimensional space must be rendered before objects in front of them, even
“front” objects are translucent.

Syntax

Obj -> [IDL_Container::]Move,Source, Destination

Arguments

Source

The zero-based index of the current location of the object to be moved.

Destination

The zero-based index of the location in the container where the object will resid
after being moved.

Keywords

None
IDL_Container IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1619

ect

the

e

IDL_Container::Remove

The IDL_Container::Remove procedure method removes an object from the
container.

Syntax

Obj -> [IDL_Container::]Remove [,Child_object | , POSITION=index | , /ALL]

Arguments

Child_object

The object reference of the object to be removed from the container. IfChild_object
is not provided (and neither the ALL nor POSITION keyword are set), the first obj
in the container will be removed.

Keywords

ALL

Set this keyword to remove all objects from the container. If this keyword is set,
Child_object argument is not required.

POSITION

Set this keyword equal to the zero-based index of the object to be removed. If th
Child_object argument is supplied, this keyword is ignored.
IDL Reference Guide IDL_Container

1620 Appendix A: IDL Object Class & Method Reference

ay be
tion
IDLanROI

The IDLanROI object class represents a region of interest.

Note
The IDLan* naming convention is used for objects in the analysis domain.

Regions of interest are described as a set of vertices that may be connected to
generate a path or a polygon, or may be treated as separate points. This object m
used as a source for analytical computations on regions. (For additional informa
about display of ROIs in Object Graphics, refer to theIDLgrROI object class.)

Superclasses

None.

Subclasses

This class is a superclass ofIDLgrROI.

Creation

SeeIDLanROI::Init.

Methods

Intrinsic Methods

The IDLanROI class has the following methods.

• IDLanROI::AppendData

• IDLanROI::Cleanup

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::GetProperty

• IDLanROI::Init

• IDLanROI::RemoveData
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1621
• IDLanROI::ReplaceData

• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::SetProperty

• IDLanROI::Translate
IDL Reference Guide IDLanROI

1622 Appendix A: IDL Object Class & Method Reference

ctor,
d
ell as

ctor,
d
ell as

ctor,
d

IDLanROI::AppendData

The IDLanROI::AppendData procedure method appends vertices to the region.

Syntax

Obj–>[IDLanROI::]AppendData,X [, Y] [, Z] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing theX components of the vertices to be appended. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the vertices to be appended.

Z

A vector providing theZ components of the vertices to be appended.

Keywords

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], representing theX range of the modification to the region. The reporte
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], representing theY range of the modification to the region. The reporte
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], representing theZ range of the modification to the region. The reporte
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1623

ell as
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.
IDL Reference Guide IDLanROI

1624 Appendix A: IDL Object Class & Method Reference

nnot
te
the
IDLanROI::Cleanup

The IDLanROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLanROI::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1625

alue

alue
a.

alue
r 1
on. If

se

alue
IDLanROI::ComputeGeometry

The IDLanROI::ComputeGeometry function method computes the geometrical
values for area, perimeter, and/or centroid of the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeGeometry [, AREA=variable]
[, CENTROID=variable] [, PERIMETER=variable] [, SPATIAL_OFFSET=vector]
[, SPATIAL_SCALE=vector]

Return Value

Result

This function method returns a 1 for success, or a 0 for failure. Each computed v
is returned in thevariable name assigned to each keyword.

Arguments

None.

Keywords

AREA

Set this keyword to a named variable that upon return contains a floating point v
representing the area of the region. Interior regions (holes) return a negative are

CENTROID

Set this keyword to a named variable that upon return contains a floating point v
representing the centroid for the region. If the TYPE of the region is 0 (points) o
(path), the centroid is computed as the average of each of the vertices in the regi
the TYPE of the region is 2 (polygon), the centroid is computed as a weighted
average of the centroids of the polygons making up the ROI (interior centroids u
negative weights). Weights are proportional to the polygon area.

PERIMETER

Set this keyword to a named variable that upon return contains a floating point v
representing the perimeter of the region.
IDL Reference Guide IDLanROI

1626 Appendix A: IDL Object Class & Method Reference

The
he

The
SPATIAL_OFFSET

Set this keyword to a two or three-element vector, [tx, ty] or [tx, ty, tz], representing
the spatial calibration offset factors to be applied for the geometry calculations.
value of SPATIAL_SCALE is applied before the spatial offset values are applied. T
default is [0.0, 0.0, 0.0].

SPATIAL_SCALE

Set this keyword to a two or three-element vector, [sx, sy] or [sx, sy, sz], representing
the spatial calibration scaling factors to be applied for the geometry calculations.
spatial calibration scale is applied first, then the value of SPATIAL_OFFSET is
applied. The default is [1.0, 1.0, 1.0].
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1627

sk

 to
for

the

 on

rd
IDLanROI::ComputeMask

The IDLanROI::ComputeMask function method prepares a two-dimensional ma
for the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }] [, PLANE_NORMAL=[x, y, z]]
[, PLANE_XAXIS=[x,y,z]])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0
255. The mask is computed by applying the following formula to the current mask
each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

whereMroi is 255 andExt is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the region is 0 (points), a single mask pixel is set for each region
vertex that falls within the bounds of the mask.

If the TYPE of the region is 1 (path), one-pixel-wide line segments are set within
mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is
the plane of a region, and the pixel falls within the region (according to the
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keywo
IDL Reference Guide IDLanROI

1628 Appendix A: IDL Object Class & Method Reference

de:

lt if

he
it

tch

iven

e

is ignored and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values inclu

• –1 = The mask is not initialized. This option is useful when updating an
already existing mask. This is the default if the MASK_IN keyword is set.

• 0 = The mask is initialized so that each pixel is set to 0. This is the defau
the MASK_IN keyword is not set.

• 1 = The mask is initialized so that each pixel is set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, t
data portion of this variable is grabbed and used in the returned value (an implic
NO_COPY). If this keyword is not provided, a mask is allocated by default to ma
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a g
pixel should be set within the mask. Valid values include:

• 0 = Boundary only. All pixels falling on a region’s boundary are set.

• 1 = Interior only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary ar
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1629

he
 PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). T
default is [1, 0, 0].
IDL Reference Guide IDLanROI

1630 Appendix A: IDL Object Class & Method Reference

ata

that
IDLanROI::ContainsPoints

The IDLanROI::ContainsPoints function method determines whether the given d
coordinates are contained within the closed polygon region.

Syntax

Result = Obj–>[IDLanROI::]ContainsPoints(X [, Y [, Z]])

Return Value

Result

The return value is a vector of values, one per provided point, indicating whether
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly out of bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On edge. The point lies on an edge of the ROI boundary.

• 3 = On vertex. The point matches a vertex of the ROI.

A point is considered to be exterior if:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of the region.

• the region TYPE property is set to 0 (points) or 1 (path).

Arguments

X

A vector providing theX components of the points to be tested. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the points to be tested.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1631
Z

A scalar or vector providing theZ component(s) of the points to be tested. If not
provided, theZ components default to 0.0.

Keywords

None.
IDL Reference Guide IDLanROI

1632 Appendix A: IDL Object Class & Method Reference

 or

ect.
not

o-

o-
IDLanROI::GetProperty

The IDLanROI::GetProperty procedure method retrieves the value of a property
group of properties for the region.

Syntax

Obj–>[IDLanROI::]GetProperty [, ALL=variable] [, ROI_XRANGE=variable]
[, ROI_YRANGE=variable] [, ROI_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword toIDLanROI::Init followed by the word(Get) can be retrieved using
IDLanROI::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this obj
State information about the object includes things like block size, type, etc., but
vertex data.

Note
The fields in this structure may change in subsequent releases of IDL.

ROI_XRANGE

Set this keyword to a named variable. Upon return, ROI_XRANGE contains a tw
element vector of the form [xmin, xmax] that specifies the range ofX data coordinates
covered by the region.

ROI_YRANGE

Set this keyword to a named variable. Upon return, ROI_YRANGE contains a tw
element vector of the form [ymin, ymax] that specifies the range ofYdata coordinates
covered by the region.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1633

o-
ROI_ZRANGE

Set this keyword to a named variable. Upon return, ROI_ZRANGE contains a tw
element vector of the form [zmin, zmax] that specifies the range ofZ data coordinates
covered by the region.
IDL Reference Guide IDLanROI

1634 Appendix A: IDL Object Class & Method Reference

e the
Init
ss
IDLanROI::Init

The IDLanROI::Init function method initializes a region of interest object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLanROI::Init([X [, Y [, Z]]] [, BLOCKSIZE{Get, Set}=vertices]
[, DATA{Get, Set}=array] [, /INTERIOR{Get, Set}] [, TYPE{Get}={ 0 | 1 | 2 }])

or

Obj = OBJ_NEW('IDLanROI' [,X [, Y [, Z]]])

(In a subclass’ Init method only.)

Arguments

X

A vector providing theX components of the vertices for the region. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the vertices.

Z

A scalar or vector providing theZ component(s) of the vertices. If not provided,Z
values default to 0.0.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1635

e
he

s a

es
lues
Keywords

BLOCK_SIZE (Get, Set)

Set this keyword to the number of vertices to allocate per block as needed for th
region. When additional vertices are required, an additional block is allocated. T
default is 100.

DATA (Get, Set)

Set this keyword to a 2-by-n or 3-by-n array which defines the vertex data for the
region. DATA is equivalent to the optional arguments,X, Y, andZ.

INTERIOR (Get, Set)

Set this keyword to mark this region as an interior region (i.e., a region treated a
hole). By default, the region is treated as an exterior region.

TYPE (Get)

Set this keyword to indicate the type of the region. The TYPE keyword determin
how computational operations, such as mask generation, are performed. Valid va
include:

• 0 = points

• 1 = path

• 2 = closed polygon (the default)
IDL Reference Guide IDLanROI

1636 Appendix A: IDL Object Class & Method Reference

n.

oval

ctor,

just

ctor,

just

ctor,

just
IDLanROI::RemoveData

The IDLanROI::RemoveData procedure method removes vertices from the regio

Syntax

Obj–>[IDLanROI::]RemoveData[, COUNT=vertices] [, START=index]
[, XRANGE=variable] [, YRANGE=variable][, ZRANGE=variable]

Arguments

None.

Keywords

COUNT

Set this keyword to the number of vertices to remove. The default is one vertex.

START

Set this keyword to an index (into the region’s current vertex list) where the rem
is to begin. By default, the final vertex is removed.

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], that represents theX range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], that represents theY range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], that represents theZ range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1637

with
r of

the

rent
IDLanROI::ReplaceData

The IDLanROI::ReplaceData procedure method replaces vertices in the region
alternate values. The number of replacement values need not match the numbe
values being replaced.

Syntax

Obj–>[IDLanROI::]ReplaceData,X[, Y[, Z]] [, START=index] [, FINISH=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing theX components of the new replacement vertices. If theYandZ
arguments are not specified,X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2, *] or [3, *]), in which case,X[0, *] represents theX
values,X[1, *] represents theY values, andX[2, *] represents theZ values.

Y

A vector providing theY components of the new replacement vertices.

Z

A vector providing theZ components of the new replacement vertices.

Keywords

FINISH

Set this keyword to the index of the region’s current subregion vertex list where
replacement ends. If the START keyword value is≥ 0, the default FINISH is given by

FINISH = ((START + N_NEW – 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the cur
subregion.

If the START keyword is not set or is negative, the default FINISH is given by

FINISH = N_OLD – 1
IDL Reference Guide IDLanROI

1638 Appendix A: IDL Object Class & Method Reference

ing
new

he

rent

0

ctor,
d
 (if
tices.

ctor,
d
 (if
tices.

ctor,
d
 (if
tices.
FINISH may be less than START in which case the vertices, including and follow
START and the vertices preceding and including FINISH, are replaced with the
values.

START

Set this keyword to an index of the region’s current subregion vertex list where t
replacement begins. If the FINISH keyword value is≥ 0, the default START is given
by

START = ((FINISH – N_NEW + 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the cur
subregion.

If the FINISH keyword is not set (or negative), the default START is clamped to
and is given by

N_OLD – N_NEW

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], representing theX range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], representing theY range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], representing theZ range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1639
IDLanROI::Rotate

The IDLanROI::Rotate procedure method modifies the vertices for the region by
applying a rotation.

Syntax

Obj–>[IDLanROI::]Rotate,Axis, Angle [, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
is to be rotated.

Angle

The angle, measured in degrees, by which the rotation is to occur.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0].
IDL Reference Guide IDLanROI

1640 Appendix A: IDL Object Class & Method Reference
IDLanROI::Scale

The IDLanROI::Scale procedure method modifies the vertices for the region by
applying a scale.

Syntax

Obj–>[IDLanROI::]Scale,Sx[, Sy[, Sz]]

Arguments

Sx

TheX scale factor. If theSy andSz arguments are not specified,Sx must be a two or
three-element vector, in which caseSx[0] represents the scale inX, Sx[1] represents
the scale inY, Sx[2] represents the scale inZ.

Sy

TheY scale factor.

Sz

TheZ scale factor.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1641

roup
IDLanROI::SetProperty

The IDLanROI::SetProperty procedure method sets the value of a property or g
of properties for the region.

Syntax

Obj–>[IDLanROI::]SetProperty

Arguments

None.

Keywords

Any keywords toIDLanROI::Init followed by the word (Set) can be set using
IDLanROI::SetProperty.
IDL Reference Guide IDLanROI

1642 Appendix A: IDL Object Class & Method Reference

 by
IDLanROI::Translate

The IDLanROI::Translate procedure method modifies the vertices for the region
applying a translation.

Syntax

Obj–>[IDLanROI::]Translate,Tx[, Ty[, Tz]]

Arguments

Tx

TheX translation factor. If theTy andTz arguments are not specified,Tx must be a
two or three-element vector, in which caseTx[0] represents translation inX, Tx[1]
represents translation inY, Tx[2] represents translation inZ.

Ty

TheY translation factor.

Tz

TheZ translation factor.

Keywords

None.
IDLanROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1643
IDLanROIGroup

The IDLanROIGroup object class is an analytical representation of a group of
regions of interest.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

This class is a superclass ofIDLgrROIGroup.

Creation

SeeIDLanROIGroup::Init.

Methods

Intrinsic Methods

The IDLanROIGroup class has the following methods:

• IDLanROIGroup::Add

• IDLanROIGroup::Cleanup

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::ComputeMesh

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Init

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale

• IDLanROIGroup::Translate

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count
IDL Reference Guide IDLanROIGroup

1644 Appendix A: IDL Object Class & Method Reference
• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1645

.
the

 of
IDLanROIGroup::Add

The IDLanROIGroup::Add procedure method adds a region to the region group
Only objects of the IDLanROI class may be added to the group. The regions in
group must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLanROIGroup::]Add,ROI

Arguments

ROI

A reference to an instance of the IDLanROI object class representing the region
interest to be added to the group.

Keywords

Accepts all keywords accepted by theIDL_Container::Add method.
IDL Reference Guide IDLanROIGroup

1646 Appendix A: IDL Object Class & Method Reference

ion

nnot
te
the
IDLanROIGroup::Cleanup

The IDLanROIGroup::Cleanup procedure method performs all cleanup for a reg
of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLanROIGroup::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1647

al

 to
for

ach

e

 on
the

rd
IDLanROIGroup::ComputeMask

The IDLanROIGroup::ComputeMask function method prepares a two-dimension
mask for this group of regions.

Syntax

Result = Obj–>[IDLanROIGroup::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0
255. The mask is computed by applying the following formula to the current mask
each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

whereMroi is 255 andExt is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the contained regions is 0 (points), a single mask pixel is set for e
region vertex that falls within the bounds of the mask.

If the TYPE of the contained regions is 1 (path), each pixel along the paths of th
regions is set if it falls within the mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is
the plane of a contained region, and the pixel falls within that region (according to
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keywo
IDL Reference Guide IDLanROIGroup

1648 Appendix A: IDL Object Class & Method Reference

de:

t.

he
it

tch

iven

e

e

is ignored, and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values inclu

• –1 = The mask is not initialized; the default if the MASK_IN keyword is se
This option is useful when updating an already existing mask.

• 0 = The mask is initialized with each pixel set to 0; the default if the
MASK_IN keyword is not set.

• 1 = The mask is initialized with each pixel set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, t
data portion of this variable is grabbed and used in the returned value (an implic
NO_COPY). If this keyword is not provided, a mask is allocated by default to ma
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a g
pixel should be set within the mask. Valid values include:

• 0 = Boundary Only. All pixels falling on a region’s boundary are set.

• 1 = Interior Only. All pixels falling within the region’s boundary, but not on th
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary ar
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1649

he
PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). T
default is [1, 0, 0].
IDL Reference Guide IDLanROIGroup

1650 Appendix A: IDL Object Class & Method Reference

sh

e

y
tour
x

h
d, it

the
IDLanROIGroup::ComputeMesh

The IDLanROIGroup::ComputeMesh function method triangulates a surface me
with optional capping from the stack of regions contained within this group.

Note
The contained regions may be concave. However, this method will fail under th
following conditions:

• The region group contains fewer than two regions.
• The TYPE property of the contained regions is 0 (points) or 1 (path).
• Any of the contained regions are not simple

(i.e., a region is self-intersecting).
• The region group contains interior regions (holes).
• More than one region lies on the same plane

(i.e., the region group contains branches).

Each region pair is normalized by perimeter and the triangulation is computed b
walking the contours in parallel, keeping the normalized progress along each con
in sync. The returned triangulation minimizes the mesh surface area. Each verte
may appear only once in the output, and the resulting polygon mesh is solid wit
outward facing normals computed via the right-hand rule. If capping is requeste
is computed using theIDLgrTessellator on the top and bottom regions, and/or the
regions on either side of an inter-slice gap.

Syntax

Result = Obj->[IDLanROIGroup::]ComputeMesh(Vertices, Conn
[, CAPPED={0 | 1 |2}] [, SURFACE_AREA=variable])

Return Value

Result

The return value of this function method is the number of triangles generated if
surface mesh triangulation is successful, or zero if unsuccessful.

Arguments

Vertices

An output [3,n] array of float vertices.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1651

he
t the
e

ost

ce
n of
Conn

An output polygon mesh connectivity array.

Keywords

CAPPED

Set this keyword to a value to indicate whether flat caps are to be computed at t
top-most or bottom-most regions (as selected by a counter-clockwise rule), or a
regions on either side of an inter-slice gap. The value of this keyword is a bit-wis
OR of the values shown below. For example, to cap the top-most and bottom-m
regions only, set the CAPPED keyword to 3. The default is 0 (no caps).

• 0 = no caps

• 1 = cap the top-most region

• 2 = cap the bottom-most region

SURFACE_AREA

Set this keyword to a named variable that upon return contains the overall surfa
area of the computed triangulation. This value was minimized in the computatio
the triangulation.
IDL Reference Guide IDLanROIGroup

1652 Appendix A: IDL Object Class & Method Reference

e
ns

that
IDLanROIGroup::ContainsPoints

The IDLanROIGroup::ContainsPoints procedure method determines whether th
given points (in data coordinates) are contained within the closed polygon regio
within this group.

A point is considered to be exterior if any of the following conditions are true:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of any of the contained regions.

• the TYPE property of the contained regions is set to 0 (points) or 1 (path).

 Syntax

Result = Obj–>[IDLanROIGroup::]ContainsPoints(X[, Y[, Z]])

Return Value

Result

The return value is a vector of values, one per provided point, indicating whether
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly outside the bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On Edge. The point lies on an edge of the ROI boundary.

• 3 = On Vertex. The point matches a vertex of the ROI.

Arguments

X

A vector providing theX components of the points to be tested. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the points to be tested.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1653
Z

A scalar or vector providing theZ components of the points to be tested. If not
provided, theZ components default to 0.0.

 Keywords

None.
IDL Reference Guide IDLanROIGroup

1654 Appendix A: IDL Object Class & Method Reference

ins

ins
IDLanROIGroup::GetProperty

The IDLanROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj–>[IDLanROIGroup::]GetProperty[, ALL=variable]
[, ROIGROUP_XRANGE=variable] [, ROIGROUP_YRANGE=variable]
[, ROIGROUP_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword toIDLanROIGroup::Init followed by the word (Get) can be retrieved
using IDLanROIGroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable. Upon return, ALL contains an anonymous
structure with the values of all of the properties associated with the state of this
object.

Note
The fields in this structure may change in subsequent releases of IDL.

ROIGROUP_XRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_XRANGE conta
a two-element vector of the form [xmin, xmax] specifying the range ofX data
coordinates covered by the regions in this group.

ROIGROUP_YRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_YRANGE conta
a two-element vector of the form [ymin, ymax] specifying the range ofY data
coordinates covered by the regions in this group.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1655

ins
ROIGROUP_ZRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_ZRANGE conta
a two-element vector of the form [zmin, zmax] specifying the range ofZ data
coordinates covered by the regions in this group.
IDL Reference Guide IDLanROIGroup

1656 Appendix A: IDL Object Class & Method Reference

e the
Init
ss
IDLanROIGroup::Init

The IDLanROIGroup::Init function method initializes a region of interest group
object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLanROIGroup::Init()

or

Obj = OBJ_NEW(‘IDLanROIGroup’)

(In a subclass’ Init method only.)

Arguments

None.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1657

ions
IDLanROIGroup::Rotate

The IDLanROIGroup::Rotate procedure method modifies the vertices for all reg
within the group by applying a rotation.

Syntax

Obj–>[IDLanROIGroup::]Rotate,Axis, Angle[, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
group is to be rotated.

Angle

The angle, measured in degrees, by which to rotate the ROI group.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y] or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0].
IDL Reference Guide IDLanROIGroup

1658 Appendix A: IDL Object Class & Method Reference

on
IDLanROIGroup::Scale

The IDLanROIGroup::Scale procedure method modifies the vertices for the regi
by applying a scale.

Syntax

Obj–>[IDLanROIGroup::]Scale,Sx[, Sy[, Sz]]

Arguments

Sx

TheX scale factor. If theSy andSz arguments are not specified,Sx must be a two or
three-element vector, in which caseSx[0] represents the scale inX, Sx[1] represents
the scale inY, andSx[2] represents the scale inZ.

Sy

TheY scale factor.

Sz

TheZ scale factor.

Keywords

None.
IDLanROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1659
IDLanROIGroup::Translate

The IDLanROIGroup::Translate procedure method modifies the vertices of all
regions within the group by applying a translation.

Syntax

Obj–>[IDLanROIGroup::]Translate,Tx[, Ty[, Tz]]

Arguments

Tx

TheX translation factor. If theTy andTz arguments are not specified,Tx must be a
two or three-element vector, in which caseTx[0] represents translation inX, Tx[1]
represents translation inY, andTx[2] represents translation inZ.

Ty

TheY translation factor.

Tz

TheZ translation factor.

Keywords

None.
IDL Reference Guide IDLanROIGroup

1660 Appendix A: IDL Object Class & Method Reference

ds
e
ader

n the
 to
ent
IDLffDICOM

An IDLffDICOM object contains the data for one or more images embedded in a
DICOM Part 10 file. The API to the IDLffDICOM object provides accessor metho
to the basic data elements of a DICOM file, namely the group/element tag, valu
representation, length, and data values. Additional methods deal with the file he
preamble, data dictionary description for individual elements, and embedded
sequences of elements. Most methods take a DICOM group/element tag as a
parameter. An alternative parameter to the DICOM tag in some methods is the
reference. A reference value is a LONG integer that is unique to each element i
DICOM object. This value can be used to directly access a specific element and
differentiate between elements in the DICOM file that have the same group/elem
tag. Valid reference values are always positive.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

SeeIDLffDICOM::Init .

Methods

• IDLffDICOM::Cleanup

• IDLffDICOM::DumpElements

• IDLffDICOM::GetChildren

• IDLffDICOM::GetDescription

• IDLffDICOM::GetElement

• IDLffDICOM::GetGroup

• IDLffDICOM::GetLength

• IDLffDICOM::GetParent

• IDLffDICOM::GetPreamble
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1661
• IDLffDICOM::GetReference

• IDLffDICOM::GetValue

• IDLffDICOM::GetVR

• IDLffDICOM::Init

• IDLffDICOM::Read

• IDLffDICOM::Reset
IDL Reference Guide IDLffDICOM

1662 Appendix A: IDL Object Class & Method Reference

ort

nce
s,

,

ent
dles

M

l
that

n

IDL 5.3 DICOM v3.0 Conformance Summary

Introduction

This section is an abbreviated DICOM conformance statement for IDL 5.3, and
specifies the compliance of Research Systems IDL 5.3 DICOM file reading supp
to the DICOM v3.0 standard. As described in the DICOM Standard PS 3.2
(Conformance), the purpose of this document is to outline the level of conforma
to the DICOM standard and to enumerate the supported DICOM Service Classe
Information Objects, and Communications Protocols supported by this
implementation.

IDL 5.3 does not contain or support any of the DICOM services such as Storage
Query/Retrieve, Print, Verification, etc., so there will be no conformance claims
relating to these services and no mention of any Application Entities for these
services. Communications Protocol profiles will also be absent from this docum
for the same reasons. The remainder of this document will describe how IDL han
the various Information Objects it is capable of reading.

Reading of DICOM Part 10 files

IDL 5.3 supports reading files that conform to the DICOM Standard PS 3.10 DICO
File Format. This format provides a means to encapsulate in a file the Data Set
representing a SOP (Service Object Pair) Instance related to a DICOM IOD
(Information Object Definition). Files written to disk in this DICOM File Format wil
be referred to as DICOM Part 10 files for the remainder of this document. Note
IDL 5.3 does NOT support the writing of files in this DICOM File Format, only
reading.

Encapsulated Transfer Syntaxes Supported

IDL 5.3 supports reading DICOM Part 10 files whose contents have been writte
using the following Transfer Syntaxes. The Transfer Syntax UID is in the file's
DICOM Tag field (0002,0010).

UID Value UID Name

1.2.840.10008.1.2 Implicit VR Little Endian: Default Transfer Syntax for
DICOM

1.2.840.10008.1.2.1 Explicit VR Little Endian

Table A-1: Encapsulated Transfer Syntaxes Supported
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1663

L 5.3
les
OM

x for

s 6 &

s 7 &

10 &

11 &
Encapsulated Transfer Syntaxes NOT Supported

IDL 5.3 does NOT support reading DICOM Part 10 files whose contents have
compressed data that has been written using the following Transfer Syntaxes. ID
will NOT be able to access the data element (DICOM Tag field (7FE0,0010)) of fi
with these types of compressed data. The Transfer Syntax UID is in the file's DIC
Tag field (0002,0010).

1.2.840.10008.1.2.2 Explicit VR Big Endian

UID Value UID Name

1.2.840.10008.1.2.4.50 JPEG Baseline (Process 1): Default Transfer Synta
Lossy JPEG 8 Bit Image Compression

1.2.840.10008.1.2.4.51 JPEG Extended (Process 2 & 4): Default Transfer
Syntax for Lossy JPEG 12 Bit Image Compression
(Process 4 only)

1.2.840.10008.1.2.4.52 JPEG Extended (Process 3 & 5)

1.2.840.10008.1.2.4.53 JPEG Spectral Selection, Non-Hierarchical (Proces
8)

1.2.840.10008.1.2.4.54 JPEG Spectral Selection, Non-Hierarchical (Proces
9)

1.2.840.10008.1.2.4.55 JPEG Full Progression, Non-Hierarchical (Process
12)

1.2.840.10008.1.2.4.56 JPEG Full Progression, Non-Hierarchical (Process
13)

1.2.840.10008.1.2.4.57 JPEG Lossless, Non-Hierarchical (Process 14)

1.2.840.10008.1.2.4.58 JPEG Lossless, Non-Hierarchical (Process 15)

1.2.840.10008.1.2.4.59 JPEG Extended, Hierarchical (Process 16 & 18)

1.2.840.10008.1.2.4.60 JPEG Extended, Hierarchical (Process 17 & 19)

Table A-2: Encapsulated Transfer Syntaxes NOT Supported

UID Value UID Name

Table A-1: Encapsulated Transfer Syntaxes Supported
IDL Reference Guide IDLffDICOM

1664 Appendix A: IDL Object Class & Method Reference

data
ld

& 22)

& 23)

 26)

 27)

ion

ge
Encapsulated SOP Classes Supported

IDL 5.3 supports reading DICOM Part 10 files whose contents encapsulate the
of the following SOP Classes. The SOP Class UID is in the file's DICOM Tag fie
(0008,0016).

1.2.840.10008.1.2.4.61 JPEG Spectral Selection, Hierarchical (Process 20

1.2.840.10008.1.2.4.62 JPEG Spectral Selection, Hierarchical (Process 21

1.2.840.10008.1.2.4.63 JPEG Full Progression, Hierarchical (Process 24 &

1.2.840.10008.1.2.4.64 JPEG Full Progression, Hierarchical (Process 25 &

1.2.840.10008.1.2.4.65 JPEG Lossless, Hierarchical (Process 28)

1.2.840.10008.1.2.4.66 JPEG Lossless, Hierarchical (Process 29)

1.2.840.10008.1.2.4.70 JPEG Lossless, Non-Hierarchical, First-Order
Prediction (Process 14 [Selection Value 1]): Default
Transfer Syntax for Lossless JPEG Image Compress

1.2.840.10008.1.2.5 RLE Lossless

UID Value UID Name

1.2.840.10008.5.1.4.1.1.1 CR Image Storage

1.2.840.10008.5.1.4.1.1.2 CT Image Storage

1.2.840.10008.5.1.4.1.1.4 MR Image Storage

1.2.840.10008.5.1.4.1.1.6.1 Ultrasound Image Storage

1.2.840.10008.5.1.4.1.1.7 Secondary Capture Image Storage

1.2.840.10008.5.1.4.1.1.12.1 X-Ray Angiographic Image Storage

1.2.840.10008.5.1.4.1.1.12.2 X-Ray Radiofluoroscopic Image Storage

1.2.840.10008.5.1.4.1.1.20 Nuclear Medicine Image Storage

1.2.840.10008.5.1.4.1.1.128 Positron Emission Tomography Image Stora

Table A-3: Encapsulated SOP Classes Supported

UID Value UID Name

Table A-2: Encapsulated Transfer Syntaxes NOT Supported
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1665

 data
en

ata
ng

ormat
a

dard
e
ts,

rivate

ing
ata
Handling of odd length data elements

The DICOM Standard PS 3.5 (Data Structures and Encoding) specifies that the
element values which make up a DICOM data stream must be padded to an ev
length. The toolkit upon which IDL's DICOM reading functionality is built strictly
enforces this specification. If IDL encounters an incorrectly formed odd length d
field while reading a DICOM Part 10 file it will report an error and stop the readi
process.

Handling of undefined VRs

The VR (Value Representation) of a data element describes the data type and f
of that data element's values. If IDL encounters an undefined VR while reading
DICOM Part 10 file, it will set that data element's VR to be UN (unknown).

Handling of retired and private data elements

Certain data elements are no longer supported under the v3.0 of the DICOM stan
and are denoted as retired. Also, some DICOM implementations may require th
communication of information that cannot be contained in standard data elemen
and thus create private data elements to contain such information. Retired and p
data elements should pose no problem to IDL's DICOM Part 10 file reading
capability. When IDL encounters a retired or private data element tag during read
a DICOM part 10 file, it will treat it just like any standard data element: read the d
value and allow it to be accessed via the IDLffDICOM::GetValue method.
IDL Reference Guide IDLffDICOM

1666 Appendix A: IDL Object Class & Method Reference

e
ll the
wn
p

IDLffDICOM::Cleanup

This method destroys the IDLffDICOM object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: if you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

OBJ-> [IDLffDICOM::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Examples

; create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
obj->DumpElements
OBJ_DESTROY, obj

; executing this statement should produce an invalid object
; reference error since obj no longer exists:
obj->DumpElements
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1667

M

p

ome
IDLffDICOM::DumpElements

This method dumps a description of the DICOM data elements of the IDLffDICO
object to the screen or to a file.

Syntax

Obj -> [IDLffDICOM::]DumpElements [,Filename]

Arguments

Filename

A scalar string that contains the full path and filename of the file to which to dum
the elements. The file is written as ASCII text.

Keywords

None

Examples

The columns output by DumpElements are the element reference, the (group,
element) tuple, the value representation, the description, the value length, and s
of the data values.

; create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
obj->DumpElements

; dump the contents of the current DICOM object to a file under
; Windows:
obj->DumpElements, 'c:\rsi\elements.dmp'

; dump the contents of the current DICOM object to a file under
; UNIX:
obj->DumpElements, '/rsi/elements.dmp'

OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1668 Appendix A: IDL Object Class & Method Reference

ce. It
parent
ct that
 by a

y
scalar
IDLffDICOM::GetChildren

This method is used to find the member element references of a DICOM sequen
takes as an argument a scalar reference to a DICOM element representing the
of the sequence, and returns an array of references to the elements of the obje
are members of that sequence. The scalar parent reference is possibly obtained
previous call to GetReference or any method that generates a reference list. An
member of a sequence may also itself be the parent of another sequence. If the
reference argument is not the parent of a sequence, the method returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetChildren(Reference)

Arguments

Reference

This argument is a scalar reference to a DICOM element that is known to be the
parent of a DICOM sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get a list of references to all elements that are
; sequences:
refs = obj->GetReference(VR='SQ')

; cycle through the returned list and print out the immediate
; children references and descriptions of each sequence:
FOR i = 0, N_ELEMENTS(refs)-1 DO $
BEGIN

IF (refs[i] NE -1) THEN $
BEGIN

children = obj->GetChildren(refs[i])
FOR j = 0, N_ELEMENTS(children)-1 DO $

BEGIN
PRINT,children[j]

PRINT,obj->GetDescription(REFERENCE=children[j])
ENDFOR
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1669
ENDIF
ENDFOR
OBJ_DESTROY,obj
IDL Reference Guide IDLffDICOM

1670 Appendix A: IDL Object Class & Method Reference

the
o

ns for
ND
will

en
rch,
ed,
IDLffDICOM::GetDescription

This accessor method takes optional DICOM group and element arguments and
returns an array of STRING descriptions. The description is a string describing
field’s contents as per the data dictionary in the DICOM specification PS 3.6. If n
arguments or keywords are specified, the returned array contains the descriptio
all elements in the object. The effect of multiple keywords and parameters is to A
their results. If no DICOM elements can be found matching the search criteria, -1
be returned.

Syntax

array = Obj -> [IDLffDICOM::]GetDescription([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this argument to the value for the DICOM element for which to sea
such as ‘0010’x. If this argument is omitted and the Group argument was specifi
then all elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return
description values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get the description of the patient name element
arr = obj->GetDescription('0010'x,'0010'x)
PRINT,arr
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1671
; get an array of all of the descriptions from the patient
; info group:
arr = obj->GetDescription('0010'x)
FOR i = 0, N_ELEMENTS(arr)-1 DO $

BEGIN
PRINT,arr[i]

ENDFOR

OBJ_DESTROY,obj
IDL Reference Guide IDLffDICOM

1672 Appendix A: IDL Object Class & Method Reference

and
ents

D

en
uch
en

ent
IDLffDICOM::GetElement

This accessor method takes optional DICOM group and/or element arguments
returns an array of DICOM Element numbers for those parameters. If no argum
or keywords are specified, the returned array contains Element numbers for all
elements in the object. The effect of multiple keywords and parameters is to AN
their results. If no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetElement([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this argument to the value for the DICOM element to search for, s
as ‘0010’x. If this argument is omitted and the Group argument was specified, th
all elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return elem
number values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get references to all elements with "patient" in the description
refs = obj->GetReference(DESCRIPTION='patient')

; get the element numbers of the elements containing "patient"
FOR i = 0, N_ELEMENTS(refs)-1 DO $
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1673
BEGIN
num = obj->GetElement(REFERENCE=refs[i])
PRINT,num

ENDFOR

; get the element numbers from the Patient Info group,
; 0010
elements = obj->GetElement('0010'x)
PRINT,elements

OBJ_DESTROY,obj
IDL Reference Guide IDLffDICOM

1674 Appendix A: IDL Object Class & Method Reference

and
ts or

ps in
. If

,
ts

en
 as
 all

ber
IDLffDICOM::GetGroup

This accessor method takes optional DICOM group and/or element arguments
returns an array of DICOM Group numbers for those parameters. If no argumen
keywords are specified, the returned array contains Group numbers for all grou
the object. The effect of multiple keywords and parameters is to AND their results
no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetGroup([Group[, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elemen
are returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this to the value for the DICOM element for which to search, such
‘0010’x. If this argument is omitted and the Group argument was specified, then
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return group num
values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')

; get the group numbers of the elements containing "patient":
FOR i = 0, N_ELEMENTS(refs)-1 DO $
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1675
BEGIN
num = obj->GetGroup(REFERENCE=refs[i])
PRINT,num

ENDFOR

; get the group numbers from the Patient Info group, 0010:
grp = obj->GetGroup('0010'x)
PRINT,grp

OBJ_DESTROY,obj
IDL Reference Guide IDLffDICOM

1676 Appendix A: IDL Object Class & Method Reference

and
the
ents
ts in
. If

,
ned.

en
 as
 all

es.
IDLffDICOM IDL Reference Guide

IDLffDICOM::GetLength

This accessor method takes optional DICOM group and/or element arguments
returns an array of LONGs. The length is the field length that explicitly exists in
DICOM file, and represents the length of the element value in bytes. If no argum
or keywords are specified, the returned array contains the lengths for all elemen
the object. The effect of multiple keywords and parameters is to AND their results
no matching elements can be found, the function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetLength([Group [, Element]]
[, REFERENCE=list of element references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search
such as ‘0018’x. If this argument is omitted, all DICOM array elements are retur

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this to the value for the DICOM element for which to search, such
‘0010’x. If this argument is omitted and the Group argument was specified, then
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return length valu

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get the length of the patient name element
arr = obj->GetLength('0010'x,'0010'x)
PRINT,arr

; get an array of all of the lengths from the patient info group:
arr = obj->GetLength('0010'x)
PRINT,arr
OBJ_DESTROY,obj

Appendix A: IDL Object Class & Method Reference 1677

M

 is
IDL Reference Guide IDLffDICOM

IDLffDICOM::GetParent

This method is used to find the parent references of a set of elements in a DICO
sequence. It takes as an argument an array of references that represent DICOM
elements. If no members of the ReferenceList are members of a sequence, a -1
returned, and for each member of the ReferenceList which is not a member of a
sequence, a -1 is returned.

Syntax

array = Obj ->[IDLffDICOM::]GetParent(ReferenceList)

Arguments

ReferenceList

An array of references to DICOM elements that are known to be members of a
DICOM sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get the reference to the Referenced Study Sequence
; element, if it exists:
ref = obj->GetReference('0008'x,'1110'x)
PRINT,ref
PRINT,obj->GetDescription(REFERENCE=ref)

; get and print the parent sequence, if it exists.
; This should result in a -1 since this element is not
; a member of a sequence:
parent = obj->GetParent(ref)
PRINT,parent
PRINT,obj->GetDescription(REFERENCE=parent)

; get the children of the Referenced Study Sequence
; element, if it exists:
refs = obj->GetChildren(ref[0])
PRINT,refs
PRINT,obj->GetDescription(REFERENCE=refs)
OBJ_DESTROY,obj

1678 Appendix A: IDL Object Class & Method Reference

s a
 by
IDLffDICOM::GetPreamble

This method returns the preamble of a DICOM v3.0 Part 10 file. The preamble i
fixed 128 byte field available for implementation specified usage. If it is not used
the implementor of the file, it will be set to all zeroes. The return value is a 128-
element BYTE array.

Syntax

array = Obj -> [IDLffDICOM::]GetPreamble()

Arguments

None

Keywords

None

Examples

; create a DICOM object, read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))

; get an array of the byte contents of the DICOM file preamble:
arr = obj->GetPreamble()
PRINT, arr

OBJ_DESTROY, obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1679

s an

 the
rray
and

,
ts

en
0’x.
ents

e

e

IDLffDICOM::GetReference

This method takes optional DICOM group and/or element arguments and return
array of references to matching elements in the object. References are opaque,
meaning that they have no specific significance other than a correspondence to
element they refer to. If no arguments or keywords are specified, the returned a
contains references to all elements in the object. The effect of multiple keywords
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetReference([Group [, Element]]
[, DESCRIPTION=string] [, VR=DICOM VR string])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elemen
are returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this to the value for the DICOM element to search for, such as ‘001
If this argument is omitted and the Group argument was specified, then all elem
of the specified Group are returned.

Keywords

DESCRIPTION

Set this keyword to a string containing text to be searched for in each element’s
DICOM description. An element will be returned only if the text in this string can b
found in the description. The text comparison is case-insensitive.

VR

Set this keyword to a DICOM VR string. An element will be returned only if its valu
representation matches this string.
IDL Reference Guide IDLffDICOM

1680 Appendix A: IDL Object Class & Method Reference
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get the reference to the patient name element:
ref = obj->GetReference('0010'x,'0010'x)
PRINT,ref

; get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')
FOR i = 0, N_ELEMENTS(refs)-1 DO $

BEGIN
PRINT,refs[i]
PRINT,obj->GetDescription(REFERENCE=refs[i])

ENDFOR

; get references to all elements with a VR of DA (date):
refs = obj->GetReference(vr='DA')
FOR i = 0, N_ELEMENTS(refs)-1 DO $

BEGIN
PRINT,refs[i]
PRINT,obj->GetDescription(REFERENCE=refs[i])

ENDFOR

OBJ_DESTROY,obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1681

s an
f no

D

,
ts

en
 as
 all

es.

for
the
IDLffDICOM::GetValue

This method takes optional DICOM group and/or element arguments and return
array of POINTERs to the values of the elements matching those parameters. I
arguments or keywords are specified, the returned array contains pointers to all
elements in the object. The effect of multiple keywords and parameters is to AN
their results. If no matching elements can be found, the function returns -1.

Syntax

ptrArray = Obj -> [IDLffDICOM::]GetValue([Group [, Element]]
[, REFERENCE=list of element references] [, /NO_COPY])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elemen
are returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this to the value for the DICOM element for which to search, such
‘0010’x. If this argument is omitted and the Group argument was specified, then
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return pointer valu

NO_COPY

If this keyword is set, the pointers returned point to the actual data in the object
the specified DICOM fields. If not set (the default), the pointers point to copies of
data instead, and need to be freed by using PTR_FREE.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))
IDL Reference Guide IDLffDICOM

1682 Appendix A: IDL Object Class & Method Reference
; Get all of the image data element(s), 7fe0,0010, from the file:
array = obj->GetValue('7fe0'x,'0010'x,/NO_COPY)

; Get the row & column size of the image(s):
rows = obj->GetValue('0028'x,'0010'x,/NO_COPY)
cols = obj->GetValue('0028'x,'0011'x,/NO_COPY)

; If the image has a samples per pixel value greater than 1
; it is most likely a color image, get the samples per pixel:
isColor = 0
samples = obj->GetValue('0028'x,'0002'x,/NO_COPY)
IF (SIZE(samples,/N_DIMENSIONS) NE 0) THEN $

BEGIN
IF (*samples[0] GT 1) THEN isColor = 1

ENDIF

; Next, we need to differentiate between files with color data
; that is either color-by-plane or color-by-pixel, get the planar
; configuration:
IF (isColor EQ 1) THEN $

BEGIN
isPlanar = 0
planar = obj->GetValue('0028'x,'0006'x,/NO_COPY):

IF (SIZE(planar,N_DIMENSIONS) NE 0) THEN $
BEGIN

IF (*planar[0] EQ 1) THEN isPlanar = 1
ENDIF

ENDIF

; Display the first NumWin images from the file:
IF N_ELEMENTS(array) GT 10 THEN NumWin = 10 $
ELSE NumWin = N_ELEMENTS(array)
offset = 0
FOR index = 0, NumWin-1 DO $

BEGIN

; Create a window for each image which is the size of
; the image:

WINDOW,index,XSize=*cols[0],YSize=*rows[0],XPos=offset,YPos=0
WSET,index

; Display the image data
IF (isColor EQ 1) THEN $

IF (isPlanar EQ 1) THEN $
; color-by-plane
TVScl,TRANSPOSE(*array[index],[2,0,1]),/TRUE $

ELSE $

; color-by-pixel
TVScl,*array[index],/TRUE $
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1683
ELSE $

; monochrome
TVScl,*array[index]
offset = offset+10

ENDFOR

; Clean up
OBJ_DESTROY,obj
Another example of GetValue:
obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the image data
array = obj->GetValue('7fe0'x, '0010'x)
OBJ_DESTROY, obj

TVScl, *array[0]
PTR_FREE, array
IDL Reference Guide IDLffDICOM

1684 Appendix A: IDL Object Class & Method Reference

and
VR

COM
ray

,
ts

en
 as
 all
IDLffDICOM::GetVR

This accessor method takes optional DICOM group and/or element arguments
returns an array of VR (Value Representation) STRINGs for those parameters. A
is a string that represents a DICOM value representation as described in the DI
specification PS 3.5. If no arguments or keywords are specified, the returned ar
contains VRs for all elements in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Syntax

array = Obj -> [IDLffDICOM::]GetVR([Group [, Element]] [, REFERENCE=list
of references])

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elemen
are returned.

Element

This optional argument can be specified only if the Group argument has also be
specified. Set this to the value for the DICOM element for which to search, such
‘0010’x. If this argument is omitted and the Group argument was specified, then
elements of the specified Group are returned.

Keywords

REFERENCE

Use the specified list of references from which to return VR STRING values.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; get the VR of the patient name element
arr = obj->GetVR('0010'x,'0010'x)
PRINT,arr
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1685
; get an array of all of the VRs from the patient info group:
arr = obj->GetVR('0010'x)
PRINT,arr

OBJ_DESTROY,obj
IDL Reference Guide IDLffDICOM

1686 Appendix A: IDL Object Class & Method Reference

d

 of a
 is
IDLffDICOM::Init

This method creates a new IDLffDICOM object and optionally reads the specifie
file as defined in the IDLffDICOM::Read method.

Syntax

Result = OBJ_NEW(‘IDLffDICOM’ [, Filename] [, /VERBOSE]) (Only in a
subclass’ Init method.)

Arguments

Filename

This optional argument is a scalar string that contains the full path and filename
DICOM v3.0 Part 10 file to open, read into memory, then close, when the object
created. It is the same as calling: result->Read(Filename).

Keywords

VERBOSE

Set this keyword to print informational messages to the Output Log during the
operational life of the object.

Examples

; create a DICOM object
obj = OBJ_NEW('IDLffDICOM')

; create a DICOM object and read in a DICOM file named ct_head.dcm
; under Microsoft Windows:
obj = OBJ_NEW('IDLffDICOM', $

'c:\rsi\idl52\examples\data\mr_brain.dcm')

; create a DICOM object and allow the user to choose a DICOM file
; to be read:
obj = OBJ_NEW('IDLffDICOM', DIALOG_PICKFILE(FILTER="*"))
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1687

into
n

OM
IDLffDICOM::Read

This method opens and reads from the specified disk file, places the information
the DICOM object, then closes the file. The return value is 1 on success and 0 o
failure.

Syntax

result = Obj -> [IDLffDICOM::]Read(Filename [, ENDIAN={1 | 2 | 3 | 4}])

Arguments

Filename

This argument is a scalar string that contains the full path and filename of a DIC
Part 10 file to open and read into memory.

Keywords

ENDIAN

Set this keyword to configure the endian format when reading a DICOM file.

• 1 = Implicit VR Little Endian

• 2 = Explicit VR Little Endian

• 3 = Implicit VR Big Endian

• 4 = Explicit VR Big Endian

Examples

; create a DICOM object and read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
OBJ_DESTROY, obj
IDL Reference Guide IDLffDICOM

1688 Appendix A: IDL Object Class & Method Reference

e

IDLffDICOM::Reset

This method removes all of the elements from the IDLffDICOM object, leaving th
object otherwise intact.

Syntax

Obj -> [IDLffDICOM::]Reset

Arguments

None

Keywords

None

Examples

; create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
obj->DumpElements
obj->Reset

; DumpElements should produce no output here:
obj->DumpElements
OBJ_DESTROY, obj
IDLffDICOM IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1689

ped
IDLffDXF

An IDLffDXF object contains geometry, connectivity and attributes for graphics
primitives.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLffDXF::Init” on page 1707

Methods

Intrinsic Methods

This class has the following methods:

• IDLffDXF::Cleanup

• IDLffDXF::GetContents

• IDLffDXF::GetEntity

• IDLffDXF::GetPalette

• IDLffDXF::Init

• IDLffDXF::PutEntity

• IDLffDXF::Read

• IDLffDXF::RemoveEntity

• IDLffDXF::Reset

• IDLffDXF::SetPalette

• IDLffDXF::Write

This object treats a DXF file as a list of entities. Note, these are not directly map
to DXF entity types, rather they are an abstraction of the DXF types. The Read
IDL Reference Guide IDLffDXF

1690 Appendix A: IDL Object Class & Method Reference

ser
nd
t
od.
yed
this

ple,

hods.
tten
le,

e the
l

t are
This
is a
ng),
hese
method is used to read the contents of a DXF file into the current entity list. The u
may then query this list using the GetContents method to determine the types a
number of entities in the file. The user may retrieve arrays of entities from the lis
using the GetEntity method and add additional entities using the PutEntity meth
Entities can also be removed from the list (RemoveEntity) or the entire list destro
(Reset). The current list of entities can also be written to disk as a DXF file. Note,
object converts DXF entities to IDL entities and back. This conversion is not
reversible; thus, if a DXF file is read and then written, the data in the file is not
changed, but the internal DXF entity types may be changed by IDL. As an exam
DXF face3d entities may be written as DXF polyline entities.

The object has one attribute which can be modified using the Get/SetPalette met
This palette is used to convert color index values. The palette is not actually wri
to the DXF file. So, if the user wanted to specify entity colors from a 256 entry tab
that table would be set using SetPalette, but the actual colors written to the file ar
closest colors matched to the fixed AutoCAD color palette. There are two specia
color values: (0) = color by block color, (256) = color by layer color.

In this object, blocks and layers are treated as named entities with attributes, bu
special in that all other entities have a block and layer entity reference in them.
allows the user to use these entity names as filters for many operations. There
default block and a default layer. The default block has the name “” (the null stri
and the default layer is '0'. The user may change the (non-name) attributes for t
implicit blocks using PutEntity.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1691

e
ll the
wn
p

IDLffDXF::Cleanup

The IDLffDXF::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLffDXF::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLffDXF

1692 Appendix A: IDL Object Class & Method Reference

e
ound
 the
IDLffDXF::GetContents

The IDLffDXF::GetContents method returns the DXF entity types contained in th
object. The returned value is a one-dimensional string array of the type names f
in the file. The Read or PutEntity methods must have been called previously for
results of this method to be valid.

Valid DXF ENTITY Types DXF_TYPE
(0=default)

ARC 1

CIRCLE 2

ELLIPSE 3

LINE 4

LINE3D 5

TRACE 6

POLYLINE 7

LWPOLYLINE 8

POLYGON 9

FACE3D 10

SOLID 11

RAY 12

XLINE 13

TEXT 14

MTEXT 15

POINT 16

SPLINE 17

BLOCK 18

INSERT 19

LAYER 20

Table A-4: DXF Entity Types
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1693

iated
he
XF

 If
ect
This object uses a small number of IDL named structures to return the data assoc
which each entity. This means that several of these DXF types are returned in t
same structures, using different values of the DXF_TYPE field. The mapping of D
entities to IDL named structures is as follows (each of these structures are
documented in the GetEntity method):

Syntax

Result = Obj-> [IDLffDXF::]GetContents([Filter] [BLOCK=string]
[, COUNT=variable] [LAYER=string])

Arguments

Filter

An integer array of the DXF entity types to which the return types are restricted.
set, Result can contain only types given in this argument and count will also refl
that restriction.

IDL_DXF_ELLIPSE arc, circle, ellipse

IDL_DXF_POLYLI
NE

line, line3d, trace, polyline,
lwpolyline

IDL_DXF_POLYGO
N

face3d, solid, polyline (3d
mesh)

IDL_DXF_POINT point

IDL_DXF_XLINE ray, xline

IDL_DXF_SPLINE spline

IDL_DXF_TEXT text, multitext

IDL_DXF_BLOCK block

IDL_DXF_INSERT insert

IDL_DXF_LAYER layer

Table A-5: DXF mapping to IDL structures
IDL Reference Guide IDLffDXF

1694 Appendix A: IDL Object Class & Method Reference

s

 of

s

Keywords

BLOCK

Set this keyword to a string value containing the block name to obtain the entitie
from. The default is all blocks.

COUNT

A long array containing the number of each entity type contained within the DXF
object. If the Filter argument was provided, the numbers reflect the reduced set
entities caused by the Filter argument.

LAYER

Set this keyword to a string value containing the layer name to obtain the entitie
from. The default is all layers.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1695

d

ty
ull
y

tity

s

IDLffDXF::GetEntity

The IDLffDXF::GetEntity method returns an array of vertex data for the requeste
entity type.

Syntax

Result = Obj-> [IDLffDXF::]GetEntity(Type[, BLOCK=string] [, INDEX=value]
[, LAYER=string])

Note
Result has one of the named structure formats described in“Structure Formats” on
page 1697.

Arguments

Type

The integer DXF entity type to obtain the geometry information from.

Keywords

BLOCK

Set this keyword to a block name specifying the graphic block to obtain the enti
geometry information from. The default is all blocks. Setting this keyword to the n
string '' '' will cause this method to only return entities from the default DXF entit
block.

INDEX

Set this keyword to a scalar long or a long array of indices to return from the en
type. If not set, this method returns all entities for the given type.

LAYER

Set this keyword to a string value containing the layer name to obtain the entitie
from. The default is all layers.

Fields Common to all Structures

BLOCK

The name of the block this entity is in (these may be in the default block “”).
IDL Reference Guide IDLffDXF

1696 Appendix A: IDL Object Class & Method Reference

hen
COLOR

A color index value into the current object palette with 0=use block color and
256=use layer color.

EXTRUSION

The DXF extrusion vector (if any).

LAYER

The name of the layer this entity is in (the default layer is '0').

LINESTYLE

Defined the same as the user linestyle for IDLgrPolyline::Init.

THICKNESS

In AutoCAD units.

DXF_TYPE

Set to one of the values listed in IDLffDXF::GetContents.

Note
It is the user's responsibility to free all the pointers returned in these structures w
the entity is no longer needed.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1697

SET.
 as

on

 be
Structure Formats

Structure IDL_DXF_ELLIPSE

This object is centered at PT0 and has a radius defined by the vector PT1_OFF
This vector determines the length and orientation of the major axis of an ellipse
well.

The MIN_TO_MAJ_RATIO value specifies the length of the minor axis as a fracti
of the major axis length. For a circle, this value is 1.0.

The START_ANGLE and END_ANGLE values select the portion of the curve to
drawn. If they are equal, the entire circle or ellipse is drawn.

Field Data Type

PT0 Double [3]

PT1_OFFSET Double [3]

MIN_TO_MAJ_RATIO Double

START_ANGLE Double

END_ANGLE Double

EXTRUSION Double [3]

LINESTYLE Integer [2]

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-6: Fields of the IDL_DXF_ELLIPSE structure
IDL Reference Guide IDLffDXF

1698 Appendix A: IDL Object Class & Method Reference

is

e

1]).

es.
o the

s

Structure IDL_DXF_POLYGON

VERTICES is a pointer to an array of dimension [3,n] containing the points for th
entity.

CONNECTIVITY is the array used to connect these points into polygons (see th
POLYGONS keyword for IDLgrPolygon::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[

VERTEX_COLORS points to an array of color index values for each of the vertic
If a quad mesh is being returned, it can be closed in either dimension according t
CLOSED array.

FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) thi
polygon assumes.

Field Data Type

VERTICES Pointer (to an array of 3-d points)

CONNECTIVITY Pointer (to an array on Integers)

VERTEX_COLORS Pointer (to an array of Integers)

MESH_DIMS Integer [2]

CLOSED Integer [2]

COLOR Integer

EXTRUSION Double [3]

FIT_TYPE Integer

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-7: Fields of the IDL_DXF_POLYGON structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1699

is

e

1]).

es.
o the

s

Structure IDL_DXF_POLYLINE

VERTICES is a pointer to an array of dimension [3,n] containing the points for th
entity.

CONNECTIVITY is the array used to connect these points into polylines (see th
POLYLINES keyword for IDLgrPolyline::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[

VERTEX_COLORS points to an array of color index values for each of the vertic
If a quad mesh is being returned, it can be closed in either dimension according t
CLOSED array.

FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) thi
polyline assumes.

Field Data Type

VERTICES Pointer (to an array of 3-d points)

CONNECTIVITY Pointer (to an array on Integers)

VERTEX_COLORS Pointer (to an array of Integers)

COLOR Integer

MESH_DIMS Integer [2]

CLOSED Integer [2]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

FIT_TYPE String

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-8: Fields of the IDL_DXF_POLYLINE structure
IDL Reference Guide IDLffDXF

1700 Appendix A: IDL Object Class & Method Reference

g.
Structure IDL_DXF_POINT

PT0 is the location of the point in space.

UCSX_ANGLE is an internal DXF orientation parameter used for symbol plottin

Field Data Type

PT0 Double [3]

UCSX_ANGLE Double

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-9: Fields of the IDL_DXF_POINT structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1701
Structure IDL_DXF_SPLINE

This structure is returned verbatim from the DXF spline structure without
interpretation. It is up to the user to interpret these values.

Field Data Type

CTR_PTS Pointer

FIT_PTS Pointer

KNOTS Pointer

WEIGHTS Pointer

COLOR Integer

DEGREE Integer

PERIODIC Integer

RATIONAL Integer

PLANAR Integer

LINEAR Integer

KNOT_TOLERANCE Double

CTL_TOLERANCE Double

FIT_TOLERANCE Double

START_TANGENT Double [3]

END_TANGENT Double [3]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-10: Fields of the IDL_DXF_SPLINE structure
IDL Reference Guide IDLffDXF

1702 Appendix A: IDL Object Class & Method Reference

line
Structure IDL_DXF_TXT

PT0 is the location of the text string.

TEXT_STR is the actual string.

HEIGHT specifies the overall scaling of the glyphs while WIDTH_FACTOR is a
correction in the baseline direction (anisotropic scaling). For multi-line text,
BOX_WIDTH determines where the line breaks should be placed (0.0 for single
text).

The text baseline is specified by DIRECTION and its rotation about the Z axis is
specified by ROT_ANGLE. Justification is specified by JUSTIFICATION and

Field Data Type

PT0 Double [3]

TEXT_STR String

COLOR Integer

HEIGHT Double

WIDTH_FACTOR Double

BOX_WIDTH Double

DIRECTION Double [3]

ROT_ANGLE Double

JUSTIFICATION Integer (0=left, 1=center, 2=right,
3=aligned, 4=middle, 5=fit)

VERTICAL_ALIGN Integer (0=baseline, 1=bottom,
2=middle, 3=top)

SHAPE_FILE String

THICKNESS Double

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-11: Fields of the IDL_DXF_TXT structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1703

is

INE
VERTICAL_ALIGN. SHAPE_FILE is the name of the glyph file used to image th
string. The shape file is NOT read by IDL.

Structure IDL_DXF_XLINE

PT0 is the start of a ray or a point on a infinite line in space in the case of an XL
entity.

UNIT_VEC determines the direction of the line in space.

Field Data Type

PT0 Double [3]

UNIT_VEC Double [3]

COLOR Integer

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table A-12: Fields of the IDL_DXF_XLINE structure
IDL Reference Guide IDLffDXF

1704 Appendix A: IDL Object Class & Method Reference

rid

he
Structure IDL_DXF_INSERT

The insert entity allows for the “instancing” of a block in a grid fashion.

INSTANCE_BLOCK is the name of a block to repeat.

The block is scaled by SCALE and rotated about the Z axis by ROTATION. The g
begins at PT0 and contains the number of rows and columns specified by
NUM_ROW_COL (Note: 0 rows or columns will always give a single instance of t
block).

The spacing of the grid is specified by DISTANCE_BETWEEN.

Field Data Type

SCALE Double [3]

PT0 Double [3]

ROTATION Double

INSTANCE_BLOCK String

NUM_ROW_COL Integer [2]

DISTANCE_BETWEEN Double [2]

DXF_TYPE Integer

BLOCK String

COLOR Integer

LAYER String

Table A-13: Fields of the IDL_DXF_INSERT structure
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1705

the
t

Structure IDL_DXF_BLOCK

This entity specifies a BLOCK. Blocks have a location in space (PT0) [objects in
block are interpreted relative to this point], a name, and a COLOR. They are no
contained in layers or other blocks, so these fields are not present.

Structure IDL_DXF_LAYER

This entity specifies a LAYER. Layer is a NAME and a COLOR. They are not
contained in layers or other blocks, so these fields are not present.

Field Data Type

PT0 Double [3]

COLOR Integer

NAME String

DXF_TYPE Integer

Table A-14: Fields of the IDL_DXF_BLOCK structure

Field Data Type

COLOR Integer

NAME String

DXF_TYPE Integer

Table A-15: Fields of the IDL_DXF_LAYER structure
IDL Reference Guide IDLffDXF

1706 Appendix A: IDL Object Class & Method Reference
IDLffDXF::GetPalette

The IDLffDXF::GetPalette method returns the current color table in the object.

Syntax

Obj-> [IDLffDXF::]GetPalette,Red, Green, Blue

Arguments

Red

Returns an array of the red components to the current color table.

Green

Returns an array of the green components to the current color table.

Blue

Returns an array of the blue components to the current color table.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1707

e
Init
ss

of a
IDLffDXF::Init

The IDL_Container::Init function method initializes the DXF object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW(‘IDLffDXF’[, Filename])(Only in a subclass’ Init method.)

Arguments

Filename

Set this optional argument to a scalar string containing the full path and filename
DXF file to be read as the object is created.

Keywords

None
IDL Reference Guide IDLffDXF

1708 Appendix A: IDL Object Class & Method Reference

.
If

f
s

or
IDLffDXF::PutEntity

The IDLffDXF::PutEntity procedure method inserts an entity into the DXF object
The type of the entity is determined from the DXF_TYPE field of the entity struct.
DXF_TYPE is set to 0, the type is implied by the entity struct.

Note
Line3D entity types will be written as Line entities due to the obsolete status o
Line3D. Polyline entities will be automatically converted to Lightweight Polyline
where applicable.

Syntax

Obj -> [IDLffDXF::]PutEntity, Data

Arguments

Data

An array of Entity structures as defined by the GetEntity method.

Note
If the entity references a non-existent block or layer, one will automatically be
created. Blocks and layers can also be created by passing IDL_DXF_BLOCK
IDL_DXF_LAYER structures to this routine.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1709

f

IDLffDXF::Read

The IDLffDXF::Read method reads a file, parsing the DXF object information
contained in the file, and inserts it into itself. This method returns an indication o
success in reading the file.

Syntax

Result = Obj-> [IDLffDXF::]Read(Filename)

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be read.

Example

; Read all the lines from the electrical layer:
oDXF = OBJ_NEW('IDLffDXF')
IF (oDXF->Read('myDXF.dxf')) then BEGIN

contents = oDXF->GetContents(4,COUNT=numLines, $
LAYER='Electrical')

IF (numLines ne 0) then begin
lines = oDXF->GetEntity(4,LAYER='Electrical')

ENDIF
ENDIF
IDL Reference Guide IDLffDXF

1710 Appendix A: IDL Object Class & Method Reference

m

 to

XF
IDLffDXF::RemoveEntity

The IDLffDXF::RemoveEntity method removes the specified entity or entities fro
the DXF object.

Syntax

Obj -> [IDLffDXF::]RemoveEntity[,Type] [, INDEX=value]

Arguments

Type

An optional scalar string containing the DXF type to be removed from the DXF
object.

Note
Specifying a block or layer entity will cause all the entities in that layer or block
be removed.

Keywords

INDEX

Set this keyword to a scalar long or a long array of indices to remove from the D
object. If not set, or set negative, all entities of the given type are removed.
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1711
IDLffDXF::Reset

The IDLffDXF::Reset method removes all the entities from the DXF object.

Syntax

Obj-> [IDLffDXF::]Reset

Arguments

None

Keywords

None
IDL Reference Guide IDLffDXF

1712 Appendix A: IDL Object Class & Method Reference
IDLffDXF::SetPalette

The IDLffDXF::SetPalette method sets the current color table in the object.

Syntax

Obj-> [IDLffDXF::]SetPalette,Red, Green, Blue

Arguments

Red

Sets the red components of the current color table to this array.

Green

Sets the green components of the current color table to this array.

Blue

Sets the blue components of the current color table to this array.

Keywords

None
IDLffDXF IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1713

t

.

IDLffDXF::Write

The IDLffDXF::Write method writes a file for the DXF entity information this objec
contains. This method returns an indication of success in writing the file.

Syntax

Result = Obj-> [IDLffDXF::]Write(Filename)

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be written

Example

; Write a square to a new DXF file using lines:
oDXF = OBJ_NEW('IDLffDXF')
lines = {IDL_DXF_POLYLINE}
lines.dxf_type = 4
lines.layer='myLayer'
lines.thickness = 1.0

; Create clockwise square:
lines = REPLICATE(lines, 4)
lines[0].vertices = PTR_NEW([[0.0,0.0,0.0], $

 [0.0,1.0,0.0]])
lines[0].connectivity = PTR_NEW([0,1])
lines[1].vertices = PTR_NEW([[0.0,1.0,0.0], $

[1.0,1.0,0.0]])
lines[1].connectivity = PTR_NEW([0,1])
lines[2].vertices = PTR_NEW([[1.0,1.0,0.0], $

[1.0,0.0,0.0]])
lines[2].connectivity = PTR_NEW([0,1])
lines[3].vertices = PTR_NEW([[1.0,0.0,0.0], $

[0.0,0.0,0.0]])
lines[3].connectivity = PTR_NEW([0,1])
oDXF->PutEntity, lines
IF (not oDXF->Write('mySquare.dxf')) THEN $

print,'Write Failed.'
; Clean up the memory in the structs:
OBJ_DESTROY, oDXF
FOR i=0,3 DO BEGIN

PTR_FREE, lines[i].vertices, lines[i].connectivity
ENDFOR
IDL Reference Guide IDLffDXF

1714 Appendix A: IDL Object Class & Method Reference

s.

alid
IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog file

Note
This object is not savable. Restored IDLffLanguageCat objects may contain inv
data.

Note
This object is not intended to be created with OBJ_NEW. TheMSG_CAT_OPEN
function is used to return the correct object reference.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

SeeMSG_CAT_OPEN.

Methods

• IDLffLanguageCat::IsValid

• IDLffLanguageCat::Query

• IDLffLanguageCat::SetCatalog

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, MSG_CAT_OPEN
IDLffLanguageCat IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1715

e

IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether th
object has a valid catalog.

Syntax

Result = Obj -> [IDLffLanguageCat::]IsValid()

Arguments

None

Keywords

None
IDL Reference Guide IDLffLanguageCat

1716 Appendix A: IDL Object Class & Method Reference

ring
ault

f key

d in
IDLffLanguageCat::Query

The IDLffLanguageCat::Query function method is used to return the language st
associated with the given key. If the key is not found in the given catalog, the def
string is returned.

Syntax

Result = Obj -> [IDLffLanguageCat::]Query(key [, DEFAULT_STRING=string])

Arguments

key

The scalar, or array of (string) keys associated with the desired language string. I
is an array,Result will be a string array of the associated language strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be foun
the catalog file. The default value is the empty string.
IDLffLanguageCat IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1717

te

log

ale

talog
IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropria
catalog file. This function returns 1 upon success, and 0 on failure.

Syntax

Result = Obj -> [IDLffLanguageCat::]SetCatalog(application
[, FILENAME=string] [, LOCALE=string] [, PATH=string])

Arguments

application

A scalar string representing the name of the desired application’s catalog file.

Keywords

FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open. If this keyword is set,application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current loc
is used.

PATH

Set this keyword to a scalar string containing the path to search for language ca
files. The default is the current directory.
IDL Reference Guide IDLffLanguageCat

1718 Appendix A: IDL Object Class & Method Reference

ck
IDLgrAxis

An axis object represents a single vector that may include a set of tick marks, ti
labels, and a title.

An IDLgrAxis object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrAxis::Init” on page 1724.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrAxis::Cleanup

• IDLgrAxis::GetCTM

• IDLgrAxis::GetProperty

• IDLgrAxis::Init

• IDLgrAxis::SetProperty
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1719

e
ll the
wn
p

IDLgrAxis::Cleanup

The IDLgrAxis::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrAxis::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrAxis

1720 Appendix A: IDL Object Class & Method Reference

e
ed

of

is
tion
lias.

from
rsued.

to

d.
IDLgrAxis::GetCTM

The IDLgrAxis::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrAxis::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the axis
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrAxis::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1721

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDL Reference Guide IDLgrAxis

1722 Appendix A: IDL Object Class & Method Reference

 or

,

xis

terval

the
IDLgrAxis::GetProperty

The IDLgrAxis::GetProperty procedure method retrieves the value of a property
group of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]GetProperty [, ALL=variable] [, CRANGE=variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrAxis::Init followed by “Get” can be retrieved using
IDLgrAxis::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

CRANGE

Set this keyword to a named variable that will contain the actual full range of the a
as a vector of the form [minval, maxval]. This range may not exactly match the
requested range provided via the RANGE keyword in the Init and SetProperty
methods. Adjustments may have been made to round to the nearest even tick in
or to accommodate the EXTEND keyword.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1723

r of

r of

r of
XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.

YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDL Reference Guide IDLgrAxis

1724 Appendix A: IDL Object Class & Method Reference

e
Init
ss

an
IDLgrAxis::Init

The IDLgrAxis::Init function method initializes an axis object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrAxis' [,Direction])

or

Result = Obj -> [IDLgrAxis::]Init([Direction] [, COLOR{Get, Set}=index or
RGB_vector] [, DIRECTION{Get, Set}=integer] [, /EXACT{Get, Set}]
[, /EXTEND{Get, Set}] [, GRIDSTYLE{Get, Set}=integer{0 to 6}or [repeat{1 to
255}, bitmask]] [, /HIDE{Get, Set}] [, LOCATION{Get, Set}=[x, y] or [x, y, z]]
[, /LOG{Get, Set}] [, MAJOR{Get, Set}=integer] [, MINOR{Get, Set}=integer]
[, NAME{Get, Set}=string] [, /NOTEXT{Get, Set}] [, PALETTE{Get, Set}=objref]
[, RANGE{Get, Set}=[min, max]] [, SUBTICKLEN{Get, Set}=value]
[, TEXTALIGNMENTS{Get, Set}=[horiz{0.0 to 1.0}, vert{0.0 to 1.0}]]
[, TEXTBASELINE{Get, Set}=vector] [, TEXTPOS{Get, Set}={0 | 1}]
[, TEXTUPDIR{Get, Set}=vector] [, THICK{Get, Set}=points{1 to 10}]
[, TICKDIR{Get, Set}={0 | 1}] [, TICKFORMAT{Get, Set}=string]
[, TICKFRMTDATA{Get, Set}=value] [, TICKLEN{Get, Set}=value]
[, TICKTEXT{Get, Set}=objref or vector] [, TICKVALUES{Get, Set}=vector]
[, TITLE{Get, Set}=objref] [, /USE_TEXT_COLOR{Get, Set}] [, UVALUE{Get,
Set}=value] [, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get,
Set}=vector] [, ZCOORD_CONV{Get, Set}=vector]) (Only in a subclass’ Init
method.)

Arguments

Direction

An integer value specifying which axis is being created. Specify 0 (zero) to create
X axis, 1 (one) to create a Y axis, or 2 to create a Z axis.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1725

tring
es)

e
fault

eek

ify 0

rd is
aced

fied
and

d of
Keywords

Properties retrievable viaIDLgrAxis::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrAxis::SetProperty are indicated
by the word “Set” following the keyword.

AM_PM (Get, Set)

Supplies a string array of 2 names to be used for the names of the AM and PM s
when processing explicitly formatted dates (CAPA, CApA, and CapA format cod
with the TICKFORMAT keyword.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this axis. Th
color may be specified as a color lookup table index or as an RGB vector. The de
is [0, 0, 0].

DAYS_OF_WEEK (Get, Set)

Supplies a string array of 7 names to be used for the names of the days of the w
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the TICKFORMAT keyword.

DIRECTION (Get, Set)

Set this keyword to an integer value specifying which axis is being created. Spec
(zero) to create an X axis, 1 (one) to create a Y axis, or 2 to create a Z axis.
Specifying this keyword is the same as specifying the optionalDirection argument.

EXACT (Get, Set)

Set this keyword to force the axis range to be exactly as specified. If this keywo
not set, the range may be lengthened or shortened slightly to allow for evenly sp
tick marks.

EXTEND (Get, Set)

Set this keyword to a nonzero value to extend the axis slightly beyond the speci
range. This can be useful when you specify the axis range based on the minimum
maximum data values, but do not want the graphic to extend all the way to the en
the axis.
IDL Reference Guide IDLgrAxis

1726 Appendix A: IDL Object Class & Method Reference

ick
e, or

its

 of

wn:

0].
GRIDSTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the axis’ t
marks. The value can be either an integer value specifying a pre-defined line styl
a two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the GRIDSTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
whererepeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in thebitmask
and the value ofrepeat is 2, then the line that is drawn will have six consecutive b
turned off.) The value ofrepeat must be in the range 1≤ repeat≤ 255.

Thebitmask indicates which pixels are drawn and which are not along the length
the line.Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example,GRIDSTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LOCATION (Get, Set)

Set this keyword to a two- or three-element vector of the form [x, y] or [x, y, z] to
specify the coordinate through which the axis should pass. The default is [0, 0,
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1727

en
ith

ct.

f the

 a
GB
LOG (Get, Set)

Set this keyword to indicate that the axis is logarithmic.

MAJOR (Get, Set)

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

MINOR (Get, Set)

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

MONTHS (Get, Set)

Supplies a string array of 12 names to be used for the names of the months wh
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) w
the TICKFORMAT keyword.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

NOTEXT (Get, Set)

Set this keyword to prevent the tick labels and the axis title from being drawn.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

RANGE (Get, Set)

Set this keyword to a two-element vector containing the minimum and maximum
data values covered by the axis. The default is [0.0, 1.0].
IDL Reference Guide IDLgrAxis

1728 Appendix A: IDL Object Class & Method Reference

e to
rk

t

ich
the
is

 tick
 text
SUBTICKLEN (Get, Set)

Set this keyword to a scale ratio specifying the length of minor tick marks relativ
the length of major tick marks. The default is 0.5, specifying that the minor tick ma
is one-half the length of the major tick mark.

TEXTALIGNMENTS (Get, Set)

Set this keyword to a two-element floating point vector, [horizontal, vertical],
specifying the horizontal and vertical alignments for the tick text. Each alignmen
value should be a value between 0.0 and 1.0. For horizontal alignment, 0.0 left-
justifies the text; 1.0 right-justifies the text. For vertical alignment, 0.0 bottom-
justifies the text, 1.0 top-justifies the text. The defaults are as follows:

• X-Axis: [0.5, 1.0] (centered horizontally, top-justified vertically)

• Y-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

• Z-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

TEXTBASELINE (Get, Set)

Set this keyword to a two- or three-element vector describing the direction in wh
the baseline of the tick text is to be oriented. Use this keyword in conjunction with
TEXTUPDIR keyword to specify the plane on which the tick text lies. The default
[1,0,0].

TEXTPOS (Get, Set)

Set this keyword to either a zero or one to indicate on which side of the axis the
text labels are to be drawn. The table below describes the placement of the tick
with each setting.

Axis TEXTPOS=0 TEXTPOS=1

X

Tick text will be drawnbelow
the X axis, wherebelow is
defined as being toward the
direction of the negative Y axis
(this is the default).

Tick text will be drawnabove
the X axis, whereabove is
described as being toward the
direction of the positive Y axis.

Table A-16: Values for the TEXTPOS keyword
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1729

ich
ith

:

ess

X
the
e
ns
e
to
 be
TEXTUPDIR (Get, Set)

Set this keyword to a two- or three-element vector describing the direction in wh
the up-vector of the tick text is to be oriented. Use this keyword in conjunction w
the TEXTBASELINE keyword to specify the plane on which the tick text lies.
TEXTUPDIR should be orthogonal to TEXTBASELINE. The default is as follows

• X-Axis: [0, 1, 0]

• Y-Axis: [0, 1, 0]

• Z-Axis: [0, 0, 1]

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
used to draw the axis, in points. The default is one point.

TICKDIR (Get, Set)

Set this keyword to either zero or one to indicate the tick mark direction. For an
axis, setting TICKDIR=0 means the tick marks will be drawn above the X axis, in
direction of the positive Y axis (this is the default); setting TICKDIR=1 means th
tick marks will be drawn below the X axis. For a Y axis, setting TICKDIR=0 mea
the tick marks will be drawn to the right of the Y axis, in the direction of the positiv
X axis (this is the default); setting TICKDIR=1 means the tick marks will be drawn
the left of the Y axis. For a Z axis, setting TICKDIR=0 means the tick marks will
drawn to the right the Z axis, in the direction of the positive X axis (this is the

Y

Tick text will be drawn to the
left of the Y Axis, whereleft is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Y axis, whereright
is defined as being toward the
direction of the positive X axis.

Z

Tick text will be drawn to the
left of the Z axis, whereleft is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Z axis, whereright
is defined as being toward the
direction of the positive X axis.

Axis TEXTPOS=0 TEXTPOS=1

Table A-16: Values for the TEXTPOS keyword
IDL Reference Guide IDLgrAxis

1730 Appendix A: IDL Object Class & Method Reference

 Z

rk
, the
be

ed

to
f
nd

The

r
t,

e

default); setting TICKDIR=1 means the tick marks will be drawn to the left of the
axis.

TICKFORMAT (Get, Set)

Set this keyword to either a standard IDL format string (see chapter 11 ofBuilding
IDL Applicationsfor details on format codes) or a string containing the name of a
user-supplied function that returns a string to be used to format the axis tick ma
labels. The function should accept integer arguments for the direction of the axis
index of the tick mark, and the value of the tick mark, and should return a string to
used as the tick mark's label. The function may optionally accept a keyword call
DATA, which will be automatically set to the TICKFRMTDATA value. The default
TICKFORMAT is '', the null string, which indicates that IDL will determine the
appropriate format for each value.

TICKFRMTDATA (Get, Set)

Set this keyword to a value of any type. It will be passed via the DATA keyword
the user-supplied formatting function specified via the TICKFORMAT keyword, i
any. By default, this value is 0, indicating that the DATA keyword will not be set (a
furthermore, need not be supported by the user-supplied function.)

Note
TICKFRMTDATA will not be included in the structure returned via the ALL
keyword to the IDLgrColorbar::GetProperty method.

TICKLEN (Get, Set)

Set this keyword to the length of each major tick mark, measured in data units.
recommended, and default, tick mark length is 0.2.

TICKTEXT (Get, Set)

Set this keyword to either a single instance of theIDLgrText object class (with
multiple strings) or to a vector of instances of the IDLgrText object class (one pe
major tick) to specify the annotations to be assigned to the tickmarks. By defaul
with TICKTEXT set equal to a null object, IDL computes the tick labels based on
major tick values. The positions of the provided text objects may be overwritten;
position is determined according to tick mark location. The tickmark text will hav
the same color as the IDLgrAxis object, regardless of the color specified by the
COLOR property of the IDLgrText object or objects, unless the
USE_TEXT_COLOR keyword is specified.
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1731

rk

mark.
xis

ill
on.
r

r
 text

ct

 any
r or
en

s
:

Note
If IDL computes the tick labels, the text object it creates will be destroyed
automatically when the axis object is destroyed, even if you have altered the
properties of the text object. If you create your own text object containing tickma
text, however, it willnot be destroyed automatically.

TICKVALUES (Get, Set)

Set this keyword to a vector of data values representing the values at each tick
If TICKVALUES set to 0, the default, IDL computes the tick values based on the a
range and the number of major ticks.

TITLE (Get, Set)

Set this keyword to an instance of theIDLgrText object class to specify the title for
the axis. The default is the null object, specifying that no title is drawn. The title w
be centered along the axis, even if the text object itself has an associated locati
The title will have the same color as the IDLgrAxis object, regardless of the colo
specified by the COLOR property of the IDLgrText object, unless the
USE_TEXT_COLOR keyword is specified.

USE_TEXT_COLOR (Get, Set)

Set this keyword to indicate that, for the tick text and/or title of the axis, the colo
property values set for the given IDLgrText objects are to be used to draw those
items. By default, this value is zero, indicating that the color properties of the
IDLgrText objects will be ignored, and that the COLOR property for the axis obje
will be used for these text items instead.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:
IDL Reference Guide IDLgrAxis

1732 Appendix A: IDL Object Class & Method Reference

s
:

s
:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDLgrAxis IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1733

roup
IDLgrAxis::SetProperty

The IDLgrAxis::SetProperty procedure method sets the value of a property or g
of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrAxis::Init followed by the word “Set” can be set using
IDLgrAxis::SetProperty.
IDL Reference Guide IDLgrAxis

1734 Appendix A: IDL Object Class & Method Reference

s
 be

n
er
IDLgrBuffer

An IDLgrBuffer object is an in-memory, off-screen destination object. Object tree
can be drawn to instances of the IDLgrBuffer object and the resulting image can
retrieved from the buffer using the Read() method. The off-screen representatio
avoids dithering artifacts by providing a full-resolution buffer for objects using eith
the RGB or Color Index color models.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrBuffer::Init” on page 1745.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrBuffer::Cleanup

• IDLgrBuffer::Draw

• IDLgrBuffer::Erase

• IDLgrBuffer::GetContiguousPixels

• IDLgrBuffer::GetDeviceInfo

• IDLgrBuffer::GetFontnames

• IDLgrBuffer::GetProperty

• IDLgrBuffer::GetTextDimensions
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1735
• IDLgrBuffer::Init

• IDLgrBuffer::PickData

• IDLgrBuffer::Read

• IDLgrBuffer::Select

• IDLgrBuffer::SetProperty
IDL Reference Guide IDLgrBuffer

1736 Appendix A: IDL Object Class & Method Reference

.

e
ll the
wn
p

IDLgrBuffer::Cleanup

The IDLgrBuffer::Cleanup procedure method performs all cleanup on the object

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrBuffer::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1737

cs

 the

part

t

rt of
IDLgrBuffer::Draw

The IDLgrBuffer::Draw procedure method draws the given picture to this graphi
destination.

Note
Objects are drawn to the destination device in the order that they are added to
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrBuffer::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of anIDLgrView object), viewgroup (an instance of an
IDLgrViewgroupobject) or scene (an instance of anIDLgrSceneobject) to be drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one to specify that this scene or view is the unchanging
of a drawing. Some destinations can make an instance from the current window
contents without having to perform a complete redraw. If the view or scene to be
drawn is identical to the previously drawn view or scene, this keyword can be se
equal to 2 to hint the destination to create the instance from the current window
contents if it can.

DRAW_INSTANCE

Set this keyword to specify that this scene, viewgroup, or view is the changing pa
the drawing. It is overlaid on the result of the most recent CREATE_INSTANCE
draw.
IDL Reference Guide IDLgrBuffer

1738 Appendix A: IDL Object Class & Method Reference

as a
IDLgrBuffer::Erase

The IDLgrBuffer::Erase procedure method erases this graphics destination.

Syntax

Obj -> [IDLgrBuffer::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified
color lookup table index or as an RGB vector.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1739

or

his
zero,
et an

 The
IDLgrBuffer::GetContiguousPixels

The IDLgrBuffer::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index col
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. T
means that within the array, the elements in the largest available range are set to
the elements in the second-largest range are set to one, etc. Use this range to s
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface andIDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values.
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrBuffer::]GetContiguousPixels()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrBuffer

1740 Appendix A: IDL Object Class & Method Reference

s

ith

me
IDLgrBuffer::GetDeviceInfo

The IDLgrBuffer::GetDeviceInfo function method returns information which allow
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrBuffer::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure w
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two-element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two-element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1741

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
IDL Reference Guide IDLgrBuffer

1742 Appendix A: IDL Object Class & Method Reference

ts
e

ts
ca”.

se

IDL

as

lue is
IDLgrBuffer::GetFontnames

The IDLgrBuffer::GetFontnames function method returns the list of available fon
that can be used inIDLgrFontobjects. This method will only return the names of th
available TrueType fonts. Hershey fonts will not be returned. SeeAppendix G,
“Fonts” for more information.

Syntax

Return= Obj -> [IDLgrBuffer::]GetFontnames(FamilyName[, IDL_FONTS={0 | 1 |
2 }] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fon
must belong. The string may be a fully specified family name—such as “Helveti
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, u
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default va
the string, “*”, which returns all fontnames containing theFamilyName argument,
with or without style modifiers.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1743

y or

ct

the
r

e

the
s

IDLgrBuffer::GetProperty

The IDLgrBuffer::GetProperty procedure method retrieves the value of a propert
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]GetProperty [, ALL=variable] [, IMAGE_DATA= variable]
[, SCREEN_DIMENSIONS=variable] [, ZBUFFER_DATA=variable]

Keywords

Any keyword toIDLgrBuffer::Init followed by the word “Get” can be retrieved using
IDLgrBuffer::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje
(except IMAGE_DATA and ZBUFFER_DATA).

IMAGE_DATA

Set this keyword to a named variable that will contain a byte array representing
image that is currently rendered within the buffer. If the buffer uses an RGB colo
model, the returned array will have dimensions (3,xdim, ydim). If the window object
uses an indexed color model, the returned array will have dimensions (xdim, ydim).

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of th
form [width, height] specifying the maximum allowed dimensions (measured in
device units) for the buffer object.

ZBUFFER_DATA

Set this keyword to a named variable that will contain a float array representing
zbuffer that is currently within the buffer. The returned array will have dimension
(xdim, ydim).
IDL Reference Guide IDLgrBuffer

1744 Appendix A: IDL Object Class & Method Reference

f a
int
ed

sted.

int

he
s, or

is
ions.

he
. If
rent

s

dd
IDLgrBuffer::GetTextDimensions

The IDLgrBuffer::GetTextDimensions function method retrieves the dimensions o
text object that will be rendered in the buffer. The result is a 3-element floating-po
vector [xDim, yDim, zDim] representing the dimensions of the text object, measur
in data units.

Syntax

Result = Obj -> [IDLgrBuffer::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which text dimensions are reque

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of floating-po
values (one for each string in the IDLgrText object). The values represent the
distance to travel (parallel to the UPDIR vector) from the text baseline to reach t
bottom of the lowest descender in the string. All values will be negative number
zero. This keyword is valid only ifTextObj is an IDLgrText object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the text dimens
Each path object reference specified with this keyword must contain an alias. T
text dimensions are computed for the version of the object falling within that path
this keyword is not set, the PARENT properties determine the path from the cur
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrBuffer::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::A
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1745

e
Init
ss
IDLgrBuffer::Init

The IDLgrBuffer::Init function method initializes the buffer object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW(‘IDLgrBuffer’)

or

Result = Obj -> [IDLgrBuffer::]Init([, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref] [, N_COLORS{Get}=integer{2 to 256}] [, PALETTE{Get,
Set}=objref] [, QUALITY{Get, Set}={ 0 | 1 | 2}] [, RESOLUTION{Get, Set}=[xres,
yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value]) (Only in a
subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrBuffer::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrBuffer::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:

• 0 = RGB (default)

• 1 = Color Index
IDL Reference Guide IDLgrBuffer

1746 Appendix A: IDL Object Class & Method Reference

od
iated

be

 are

.

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the buffer in units specified by the UNITS property. The default is
[640,480].

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw meth
on the destination object with no arguments will cause the object reference assoc
with this property to be drawn. If this object is valid and the destination object is
destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Color Index.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to
loaded into the buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics
to be drawn to the buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel. The default value is: [0.0352778,
0.0352778] (72 DPI).

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property
Valid values are:

• 0 = Device (default)
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1747

 any
r or
en
• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to 1600 x 1200

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDL Reference Guide IDLgrBuffer

1748 Appendix A: IDL Object Class & Method Reference

l
bject
iable.

d.

ace

e

s of
 data

ither
,

ay

is
IDLgrBuffer::PickData

The IDLgrBuffer::Pickdata function method maps a point in the two-dimensiona
device space of the buffer to a point in the three-dimensional data space of an o
tree. The resulting 3D data space coordinates are returned in a user-specified var
The Pickdata function returns one if the specified location in the buffer’s device
space “hits” a graphic object, or zero otherwise.

Syntax

Result = Obj -> [IDLgrBuffer::]PickData(View, Object, Location, XYZLocation
[, PATH=objref(s)])

Arguments

View

The object reference of an IDLgrView object that contains the object being picke

Object

The object reference of a model or atomic graphic object from which the data sp
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the buffer’s device space of th
point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional data space coordinate
the picked point. Note that the value returned in this variable is a location, not a
value.

Note
If the atomic graphic object specified as the target has been transformed using e
the LOCATION or DIMENSIONS properties (this is only possible with IDLgrAxis
IDLgrImage, and IDLgrText objects), these transformations willnotbe included in
the data coordinates returned by the Pickdata function. This means that you m
need to re-apply the transformation accomplished by specifying LOCATION or
DIMENSIONS once you have retrieved the data coordinates with Pickdata. Th
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1749

he

is
to a
ust

bject
ine
aths

d.
situation does not occur if you transform the axis, text, or image object using t
[XYZ]COORD_CONV properties.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
data space coordinate. Each path object reference specified with this keyword m
contain an alias. The data space coordinate is computed for the version of the o
falling within that path. If this keyword is not set, the PARENT properties determ
the path from the current object to the top of the graphics hierarchy and no alias p
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrBuffer

1750 Appendix A: IDL Object Class & Method Reference
IDLgrBuffer::Read

The IDLgrWindow::Read function method reads an image from a buffer. The
returned value is an instance of theIDLgrImage object class.

Syntax

Result = Obj -> [IDLgrBuffer::]Read()

Arguments

None

Keywords

None
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1751

tain
ic
cts
ject

are
t

IDLgrBuffer::Select

The IDLgrBuffer::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Syntax

Result = Obj -> [IDLgrBuffer::]Select(Picture, XY[, DIMENSIONS=[width,
height]] [, UNITS={0 | 1 | 2 | 3}])

Arguments

Picture

The view, viewgroup, or scene (an instance of theIDLgrView, IDLgrViewgroup, or
IDLgrScene class) whose children are among the candidates for selection.

If the first argument is a scene or viewgroup, then the returned object list will con
one or more views. If the first argument is a view, the list will contain atomic graph
objects (or model objects which have their SELECT_TARGET property set). Obje
are returned in order, according to their distance from the viewer. The closer an ob
is to the viewer, the lower its index in the returned object list. If multiple objects
at the same distance from the viewer (views in a scene or 2D geometry), the las
object drawn will appear at a lower index in the list.

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a widthw and a heighth, and will be centered about the coordinates [x, y]
specified in theXY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))

Any object which intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

UNITS

Set this keyword to indicate the units of measure. Valid values are:
IDL Reference Guide IDLgrBuffer

1752 Appendix A: IDL Object Class & Method Reference
• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.
IDLgrBuffer IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1753
IDLgrBuffer::SetProperty

The IDLgrBuffer::SetProperty procedure method sets the value of a property or
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrBuffer::Init followed by the word “Set” can be retrieved using
IDLgrBuffer::SetProperty.
IDL Reference Guide IDLgrBuffer

1754 Appendix A: IDL Object Class & Method Reference

em

, as a
(EPS)
IDLgrClipboard IDL Reference Guide

IDLgrClipboard

An IDLgrClipboard object will send Object Graphics output to the operating syst
native clipboard in bitmap format. The format of bitmaps sent to the clipboard is
operating system dependent: output is stored as a PICT image on the Macintosh
device-independent bitmap under Windows, and as an Encapsulated PostScript
image under UNIX and VMS.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrClipboard::Init” on page 1765.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrClipboard::Cleanup

• IDLgrClipboard::Draw

• IDLgrClipboard::GetContiguousPixels

• IDLgrClipboard::GetDeviceInfo

• IDLgrClipboard::GetFontnames

• IDLgrClipboard::GetProperty

• IDLgrClipboard::GetTextDimensions

• IDLgrClipboard::Init

• IDLgrClipboard::SetProperty

Appendix A: IDL Object Class & Method Reference 1755

ject.

e
ll the
wn
p

IDLgrClipboard::Cleanup

The IDLgrClipboard::Cleanup procedure method performs all cleanup on the ob

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj-> [IDLgrClipboard::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrClipboard

1756 Appendix A: IDL Object Class & Method Reference

 the

ould

be in
afile
ript

es
IDLgrClipboard::Draw

The IDLgrClipboard::Draw procedure method draws the given picture to this
graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrClipboard::]Draw [,Picture] [, FILENAME=string]
[, POSTSCRIPT=value] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of anIDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object) or scene (an instance of anIDLgrSceneobject) to be drawn.

Keywords

FILENAME

Set this keyword to a string representing the name of a file to which the output sh
be written. By default, this keyword is the null string, indicating that the output is
written to the clipboard.

POSTSCRIPT

Set this keyword to a nonzero value to indicate that the generated output should
PostScript format. By default, the generated output is in Windows Enhanced Met
Format on Windows platforms, PICT format on Macintosh platforms, and PostSc
on Unix/VMS platforms.

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid valu
include:

0 = Bitmap (default)

1 = Vector
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1757

en
the

r
ter.

,

e

If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and th
copies the buffer to the printer in bitmap format. The bitmap retains the quality of
original image, but the user cannot scale the bitmap effectively on all devices.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vecto
operations that result in a representation of the Scene that is scalable to the prin
The vector representation does not retain all the attributes of the original image
however, a user can effectively scale it on other devices. On Windows, the
representation is the Windows Enhanced Metafile (EMF). On UNIX platforms, th
representation is PostScript. On Macintosh, it is PICT.
IDL Reference Guide IDLgrClipboard

1758 Appendix A: IDL Object Class & Method Reference

ng
or

his
zero,
et an

 The
IDLgrClipboard::GetContiguousPixels

The IDLgrClipboard::GetContiguousPixels function method returns an array of lo
integers whose length is equal to the number of colors available in the index col
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. T
means that within the array, the elements in the largest available range are set to
the elements in the second-largest range are set to one, etc. Use this range to s
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface andIDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values.
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrClipboard::]GetContiguousPixels()

Arguments

None

Keywords

None
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1759

or

ith

me
IDLgrClipboard::GetDeviceInfo

The IDLgrClipboard::GetDeviceInfo function method returns information which
allows IDL applications to intelligently make decisions for optimal performance. F
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrClipboard::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure w
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
IDL Reference Guide IDLgrClipboard

1760 Appendix A: IDL Object Class & Method Reference

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1761

s

ts
ca”.

se

IDL

as

lue is
IDLgrClipboard::GetFontnames

The IDLgrClipboard::GetFontnames function method returns the list of available
fonts that can be used inIDLgrFont objects. This method will only return the name
of the available TrueType fonts. Hershey fonts will not be returned; seeAppendix G,
“Fonts” for more information.

Syntax

Return = Obj -> [IDLgrClipboard::]GetFontnames(FamilyName
[, IDL_FONTS={0 | 1 | 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fon
must belong. The string may be a fully specified family name—such as “Helveti
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, u
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default va
the string, “*”, which returns all fontnames containing theFamilyName argument,
with or without style modifiers.
IDL Reference Guide IDLgrClipboard

1762 Appendix A: IDL Object Class & Method Reference

erty

ct.

e

IDLgrClipboard::GetProperty

The IDLgrClipboard::GetProperty procedure method retrieves the value of a prop
or group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]GetProperty [, ALL=variable]
[, SCREEN_DIMENSIONS=variable]

Arguments

None

Keywords

Any keyword toIDLgrClipboard::Init followed by the word “Get” can be retrieved
using IDLgrClipboard::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of th
form [width, height] specifying the maximum allowed dimensions (measured in
device units) for the clipboard object.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1763

ns
ent

int

he
s, or

is
ions.

he
. If
rent

e
s

IDLgrClipboard::GetTextDimensions

The IDLgrClipboard::GetTextDimensions function method retrieves the dimensio
of a text object that will be rendered in the clipboard buffer. The result is a 3-elem
floating-point vector [xDim, yDim, zDim] representing the dimensions of the text
object, measured in data units.

Syntax

Result = Obj -> [IDLgrClipboard::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of floating-po
values (one for each string in the IDLgrText object). The values represent the
distance to travel (parallel to the UPDIR vector) from the text baseline to reach t
bottom of the lowest descender in the string. All values will be negative number
zero. This keyword is valid only ifTextObj is an IDLgrText object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the text dimens
Each path object reference specified with this keyword must contain an alias. T
text dimensions are computed for the version of the object falling within that path
this keyword is not set, the PARENT properties determine the path from the cur
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrClipboard::GetTextDimensions is called from within a Draw method and th
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.
IDL Reference Guide IDLgrClipboard

1764 Appendix A: IDL Object Class & Method Reference

d.

Note

For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1765

e
Init
ss
IDLgrClipboard::Init

The IDLgrClipboard::Init function method initializes the clipboard object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrClipboard')

or

Result = Obj -> [IDLgrClipboard::]Init([, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref] [, N_COLORS{Get}=integer{2 to 256}] [, PALETTE{Get,
Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}] [, RESOLUTION{Get, Set}=[xres,
yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value]) (Only in a
subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrClipboard::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrClipboard::SetProperty
are indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the clipboard buffer:

• 0 = RGB (default)

• 1 = Color Index
IDL Reference Guide IDLgrClipboard

1766 Appendix A: IDL Object Class & Method Reference

od
iated

be

 are
DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the clipboard buffer in units specified by the UNITS property. The
default is [640,480].

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw meth
on the destination object with no arguments will cause the object reference assoc
with this property to be drawn. If this object is valid and the destination object is
destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Color Index.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to
loaded into the clipboard buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics
to be drawn to the clipboard buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel. The default value is: [0.0352778,
0.0352778] (72 DPI).
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1767

es
N,

.

 any
r or
en
Note
To match screen rendering on an IDLgrClipboard object, the following properti
should be matched between the devices: DIMENSIONS, UNITS, RESOLUTIO
COLOR_MODEL and N_COLORS.

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized (relative to 1600 x 1200)

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDL Reference Guide IDLgrClipboard

1768 Appendix A: IDL Object Class & Method Reference

 or
IDLgrClipboard::SetProperty

The IDLgrClipboard::SetProperty procedure method sets the value of a property
group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrClipboard::Init followed by the word “Set” can be retrieved
using IDLgrClipboard::SetProperty.
IDLgrClipboard IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1769

nd

d in
IDLgrColorbar

The IDLgrColorbar object consists of a color-ramp with an optional framing box a
annotation axis. The object can be horizontal or vertical.

An IDLgrColorbar object is a composite object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be foun
the fileidlgrcolorbar.pro in thelib subdirectory of the IDL distribution.

Superclasses

This class is a subclass ofIDLgrModel.

Subclasses

This class has no subclasses.

Creation

See“IDLgrColorbar::Init” on page 1774.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrColorbar::Cleanup

• IDLgrColorbar::ComputeDimensions

• IDLgrColorbar::GetProperty

• IDLgrColorbar::Init

• IDLgrColorbar::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLgrModel::GetCTM
IDL Reference Guide IDLgrColorbar

1770 Appendix A: IDL Object Class & Method Reference

ect.

e
ll the
wn
p

IDLgrColorbar::Cleanup

The IDLgrColorbar::Cleanup procedure method performs all cleanup on the obj

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrColorbar::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1771

ons
t
r

g

is
Each
t
this

e
s

d.
IDLgrColorbar::ComputeDimensions

The IDLgrColorbar::ComputeDimensions function method retrieves the dimensi
of a colorbar object for the given destination object. The result is a three-elemen
floating-point vector [xDim, yDim, zDim] representing the dimensions of the colorba
object measured in data units.

Syntax

Result = Obj-> [IDLgrColorbar::]ComputeDimensions(DestinationObj
[, PATH=objref(s)])

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the colorbar are bein
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the dimensions.
path object reference specified with this keyword must contain an alias. The tex
dimensions are computed for the version of the object falling within that path. If
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrColorbar::ComputeDimensions is called from within a Draw method and th
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrColorbar

1772 Appendix A: IDL Object Class & Method Reference

erty

ct.

e

e

IDLgrColorbar::GetProperty

The IDLgrColorbar::GetProperty procedure method retrieves the value of a prop
or group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrColorbar::Init followed by the word “Get” can be retrieved
using IDLgrColorbar::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this colorbar.

XRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [xmin, xmax] specifying the range of thex data coordinates covered by the
colorbar.

YRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [ymin, ymax] specifying the range of theY data coordinates covered by the
colorbar.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1773

e

es
t the
ZRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [zmin, zmax] specifying the range of theZ data coordinates covered by the
colorbar.

Note
Until the colorbar is drawn to the destination object, the [XYZ]RANGE properti
will be zero. Use the ComputeDimensions method on the colorbar object to ge
data dimensions of the colorbar prior to a draw operation.
IDL Reference Guide IDLgrColorbar

1774 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrColorbar::Init

The IDLgrColorbar::Init function method initializes the colorbar object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrColorbar')

or

Result = Obj -> [IDLgrColorbar::]Init([aRed, aGreen, aBlue]
[, BLUE_VALUES{Get, Set}=vector] [, COLOR{Get, Set}=index or RGB vector]
[, DIMENSIONS{Get, Set}=[dx , dy]] [, GREEN_VALUES{Get, Set}=vector]
[, /HIDE{Get, Set}] [, MAJOR{Get, Set}=integer] [, MINOR{Get, Set}=integer]
[NAME{Get, Set}=string] [, PALETTE{Get, Set}=objref] [, RED_VALUES{Get,
Set}=vector] [, SHOW_AXIS{Get, Set}={0 | 1 | 2}] [, /SHOW_OUTLINE{Get,
Set}] [, SUBTICKLEN{Get, Set}=minor_tick_length/major_tick_length]
[, THICK{Get, Set}=points{1 to 10}] [, /THREED{Get}] [, TICKFORMAT{Get,
Set}=string] [, TICKFRMTDATA{Get, Set}=value] [, TICKLEN{Get, Set}=value]
[, TICKTEXT{Get, Set}=objref(s)] [, TICKVALUES{Get, Set}=vector]
[, TITLE{Get, Set}=objref] [, UVALUE{Get, Set}=value]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector]) (Only in a subclass’ Init method.)

Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0 <Value < 255. The number of elements comprising theaRed
vector must not exceed 256.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1775

be

ame

GB

e

aGreen

A vector containing the green values for the color palette. These values should
within the range of 0 <Value< 255. The number of elements comprising theaGreen
vector must not exceed 256.

aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0 <Value < 255. The number of elements comprising theaBlue
vector must not exceed 256.

If aRed, aGreen, andaBlue are not provided, the color palette will default to a 256
entry greyscale ramp.

Keywords

Properties retrievable viaIDLgrColorbar::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrColorbar::SetPropertyare
indicated by the word “Set” following the keyword.

BLUE_VALUES (Get, Set)

A vector containing the blue values for the color palette. Setting this value is the s
as specifying the aBlue argument to the IDLgrColorbar::Init method.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for the axis and
outline box. The color may be specified as a color lookup table index or as an R
vector. The default is [0, 0, 0].

DIMENSIONS (Get, Set)

Set this keyword to a two element vector [dx, dy] that specifies the size of the ramp
display (not the axis) in pixels. Ifdx> dy, the colorbar is drawn horizontally with the
axis placed below or above the ramp box depending on the value of the
SHOW_AXIS property. Ifdx < dy, the colorbar is drawn vertically with the axis
placed to the right or left of the ramp box depending on the value of the
SHOW_AXIS property. The default value is [16,256].

GREEN_VALUES (Get, Set)

A vector containing the green values for the color palette. Setting this value is th
same as specifying theaGreen argument to the IDLgrColorbar::Init method.
IDL Reference Guide IDLgrColorbar

1776 Appendix A: IDL Object Class & Method Reference

awn:

ject.

is a

ame

n:

ld be
HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be dr

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

MAJOR (Get, Set)

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

MINOR (Get, Set)

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this ob
The default is the null string, ''.

PALETTE (Get, Set)

Set this keyword to an instance of the IDLgrPalette object class. If this keyword
valid object reference, the colors within the IDLgrPalette are used to specify the
colors for the colorbar.

RED_VALUES (Get, Set)

A vector containing the red values for the color palette. Setting this value is the s
as specifying theaRed argument to the IDLgrColorbar::Init method.

SHOW_AXIS (Get, Set)

Set this keyword to an integer value indicating whether the axis should be draw

• 0 = Do not display axis (the default)

• 1 = Display axis on left side or below the color ramp

• 2 = Display axis on right side or above the color ramp

SHOW_OUTLINE (Get, Set)

Set this keyword to a boolean value indicating whether the colorbar bounds shou
outlined:
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1777

e to
rk

ess

n be

to
r the
nd
ally

to
f
nd

nits.
• 0 = Do not display outline (the default)

• 1 = Display outline

SUBTICKLEN (Get, Set)

Set this keyword to a scale ratio specifying the length of minor tick marks relativ
the length of major tick marks. The default is 0.5, specifying that the minor tick ma
is one-half the length of the major tick mark.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
used to draw the axis and box outline, in points. The default is one point.

THREED (Get)

Set this keyword on initialization to create the colorbar as a graphic object that ca
fully transformed in three dimensions. By default, the colorbar always faces the
viewer and is drawn at z=0.

TICKFORMAT (Get, Set)

Set this keyword to either a standard IDL format string (seeChapter 16, “Files and
Input/Output” in Building IDL Applcations for details on format codes) or a string
containing the name of a user-supplied function that returns a string to be used
format the axis tick mark labels. The function should accept integer arguments fo
direction of the axis, the index of the tick mark, and the value of the tick mark, a
should return a string to be used as the tick mark's label. The function may option
accept a keyword called DATA, which will be automatically set to the
TICKFRMTDATA value. The default TICKFORMAT is '', the null string, which
indicates that IDL will determine the appropriate format for each value.

TICKFRMTDATA (Get, Set)

Set this keyword to a value of any type. It will be passed via the DATA keyword
the user-supplied formatting function specified via the TICKFORMAT keyword, i
any. By default, this value is 0, indicating that the DATA keyword will not be set (a
furthermore, need not be supported by the user-supplied function). Note that
TICKFRMTDATA will not be included in the structure returned via the ALL
keyword to the IDLgrColorbar::GetProperty method.

TICKLEN (Get, Set)

Set this keyword to the length of each major tick mark, measured in dimension u
The default, tick mark length is 8.
IDL Reference Guide IDLgrColorbar

1778 Appendix A: IDL Object Class & Method Reference

h a
ault,

he

mark.

s.

for
ill
on.

s
:

s
:

TICKTEXT (Get, Set)

Set this keyword to either a single instance of the IDLgrText object class (with
multiple strings) or to a vector of instances of the IDLgrText object class (each wit
single string) to specify the annotations to be assigned to the tick marks. By def
TICKTEXT is set to the NULL object, which indicates that IDL will compute tick
annotations based upon the major tick values. The positions and orientation of t
provided text object(s) may be overwritten by the colorbar.

TICKVALUES (Get, Set)

Set this keyword to a vector of data values representing the values at each tick
If TICKVALUES set to 0, the default, IDL computes the tick values based on the
number of elements in the RED_VALUES property and the number of major tick

TITLE (Get, Set)

Set this keyword to an instance of the IDLgrText object class to specify the title
the axis. The default is the null object, specifying that no title is drawn. The title w
be centered along the axis, even if the text object itself has an associated locati

UVALUE (Get, Set)

Set this keyword to a value of any type. You may use this value to contain any
information you wish.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1779

s
:

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDL Reference Guide IDLgrColorbar

1780 Appendix A: IDL Object Class & Method Reference

or
IDLgrColorbar::SetProperty

The IDLgrColorbar::SetProperty procedure method sets the value of a property
group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrColorbar::Init followed by the word “Set” can be retrieved
using IDLgrColorbar::SetProperty.
IDLgrColorbar IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1781

rray
be
IDLgrContour

The IDLgrContour object draws a contour plot from data stored in a rectangular a
or from a set of unstructured points. Both line contours and filled contour plots can
created.

An IDLgrContour object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrContour::Init” on page 1787.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrContour::Cleanup

• IDLgrContour::GetCTM

• IDLgrContour::GetProperty

• IDLgrContour::Init

• IDLgrContour::SetProperty
IDL Reference Guide IDLgrContour

1782 Appendix A: IDL Object Class & Method Reference

ct.

e
ll the
wn
p

IDLgrContour::Cleanup

The IDLgrContour::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrContour::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1783

m

e
ed

of

ace

is
tion
lias.

from
rsued.

to

d.
IDLgrContour::GetCTM

The IDLgrContour::GetCTM function method returns the 4 x 4 graphics transfor
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrContour::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surf
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrContour::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrContour

1784 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1785

erty

le:

ct.

with

e

e

IDLgrContour::GetProperty

The IDLgrContour::GetProperty procedure method retrieves the value of a prop
or group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]GetProperty [, ALL=variable] [, GEOM=variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrContour::Init followed by the word “Get” can be retrieved
using IDLgrContour::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

GEOM

Set this keyword to a named variable that will contain the geometry associated
this contour.

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this contour.

XRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [xmin, xmax] specifying the range of theX data coordinates covered by the
contour.

YRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [ymin, ymax] specifying the range of theY data coordinates covered by the
contour.
IDL Reference Guide IDLgrContour

1786 Appendix A: IDL Object Class & Method Reference

e

ZRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [zmin, zmax] specifying the range of theZ data coordinates covered by the
contour.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1787

e
Init
ss

the
 the
IDLgrContour::Init

The IDLgrContour::Init function method initializes the contour object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrContour')

or

Result = Obj -> [IDLgrContour::]Init([Values] [, ANISOTROPY{Get, Set}=[x , y,
z]] [, C_COLOR{Get, Set}=vector] [, C_FILL_PATTERN{Get, Set}=array of
IDLgrPattern objects] [, C_LINESTYLE{Get, Set}=array of linestyles]
[, C_THICK{Get, Set}=array of line thicknesses] [, C_VALUE{Get, Set}=vector]
[, COLOR{Get, Set}=index or RGB vector] [, DATA_VALUES{Get, Set}=vector or
2D array] [, /DOWNHILL{Get, Set}] [, /FILL{Get, Set}] [, GEOMX{Set}=vector
or 2D array] [, GEOMY{Set}=vector or 2D array] [, GEOMZ{Set}=scalar, vector,
or 2D array] [, /HIDE{Get, Set}] [, MAX_VALUE{Get, Set}=value]
[, MIN_VALUE{Get, Set}=value] [, NAME{Get, Set}=string] [, N_LEVELS{Get,
Set}=value] [, PALETTE{Get, Set}=objref] [, /PLANAR{Get, Set}]
[, POLYGONS{Get, Set}=array of polygon descriptions] [, SHADE_RANGE{Get,
Set}=[min, max]] [, SHADING{Get, Set}={0 |1}] [, TICKINTERVAL{Get,
Set}=value] [, TICKLEN{Get, Set}=value] [, UVALUE{Get, Set}=value]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector]) (Only in a subclass’ Init method.)

Arguments

Values

A vector or two-dimensional array of values to be contoured. If no values are
provided, the values will be derived from the GEOMZ keyword value (if set and
PLANAR keyword is not set). In this case, the values to be contoured will match
Z coordinates of the provided geometry.
IDL Reference Guide IDLgrContour

1788 Appendix A: IDL Object Class & Method Reference

axis

d

:

1].

ch
lors
n

 be

ult).
Keywords

Properties retrievable viaIDLgrContour::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrContour::SetProperty are
indicated by the word “Set” following the keyword.

ANISOTROPY (Get, Set)

Set this keyword equal to a three-element vector [x, y, z] that represents the
multipliers to be applied to the internally computed correction factors along each
that account for anisotropic geometry. Correcting for anisotropy is particularly
important for the appropriate representations of downhill tickmarks.

By default, IDL will automatically compute correction factors for anisotropy base
on the [XYZ] range of the contour geometry. If the geometry (as provided via the
GEOMX, GEOMY, and GEOMZ keywords) falls within the range [xmin, ymin, zmin]
to [xmax, ymax, zmax], then the default correction factors are computed as follows

dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
; Get the maximum of the ranges:
maxRange = (dx > dy) > dz
IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $

xcorrection = maxRange / dx
IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $

ycorrection = maxRange / dy
IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $

zcorrection = maxRange / dz

This internally computed correction is then multiplied by the corresponding [x, y, z]
values of the ANISOTROPY keyword. The default value for this keyword is [1,1,

C_COLOR (Get, Set)

Set this keyword to a vector of colors representing the colors to be applied at ea
contour level. If there are more contour levels than elements in this vector, the co
will be cyclically repeated. If C_COLORS is set to 0, all contour levels will be draw
in the color specified by the COLOR keyword (this is the default).

C_FILL_PATTERN (Get, Set)

Set this keyword to an array of IDLgrPattern objects representing the patterns to
applied at each contour level if the FILL keyword is non-zero. If there are more
contour levels than fill patterns, the patterns will be cyclically repeated. If this
keyword is set to 0, all contour levels are filled with a solid color (this is the defa
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1789

d at
e-
ern
e
his

ses,

this
e

0].

e

 of

raw
C_LINESTYLE (Get, Set)

Set this keyword to an array of linestyles representing the linestyles to be applie
each contour level. The array may be either a vector of integers representing pr
defined linestyles, or an array of 2-element vectors representing a stippling patt
specification. If there are more contour levels than linestyles, the linestyles will b
cyclically repeated. If this keyword is set to 0, all levels are drawn as solid lines (t
is the default).

C_THICK (Get, Set)

Set this keyword to an array of line thicknesses representing the thickness to be
applied at each contour level. If there are more contour levels than line thicknes
the thicknesses will be cyclically repeated. If this keyword is set to 0, all contour
levels are drawn with a line thickness of 1.0 points (this is the default).

C_VALUE (Get, Set)

Set this keyword to a vector of values for which contour levels are to be drawn. If
keyword is set to 0, contour levels will be evenly sampled across the range of th
DATA_VALUES, using the value of the N_LEVELS keyword to determine the
number of samples.

COLOR (Get, Set)

Set this keyword to the color to be used to draw the contours. The color may be
specified as a color lookup table index or as an RGB vector. The default is [0,0,
This value will be ignored if the C_COLORS keyword is set to a vector.

DATA_VALUES (Get, Set)

Set this keyword to a vector or two-dimensional array specifying the values to b
contoured. This keyword is the same as theValues argument described in the
Arguments section above.

DOWNHILL (Get, Set)

Set this keyword to indicate that downhill tick marks should be rendered as part
each contour level to indicate the downhill direction relative to the contour line.

FILL (Get, Set)

Set this keyword to indicate that the contours should be filled. The default is to d
the contour levels as lines without filling. Filling contour may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.
IDL Reference Guide IDLgrContour

1790 Appendix A: IDL Object Class & Method Reference

s of

d

s of

d

 Z

ur
ar,

the

ity
the

awn:
GEOMX (Set)

Set this keyword to a vector or two-dimensional array specifying the X coordinate
the geometry with which the contour values correspond. If X is a vector, it must
match the number of elements in theValues argument or DATA_VALUES keyword
value, or it must match the first of the two dimensions of theValues argument or
DATA_VALUES keyword value (in which case, the X coordinates will be repeate
for each row of data values).

GEOMY (Set)

Set this keyword to a vector or two-dimensional array specifying the Y coordinate
the geometry with which the contour values correspond. If Y is a vector, it must
match the number of elements in theValues argument or DATA_VALUES keyword
value, or it must match the second of the two dimensions of theValues argument or
DATA_VALUES keyword value (in which case, the Y coordinates will be repeate
for each column of data values).

GEOMZ (Set)

Set this keyword to a scalar, a vector, or a two-dimensional array specifying the
coordinates of the geometry with which the contour values correspond.

• If GEOMZ is a scalar, and the PLANAR keyword is set, the resulting conto
geometry will be projected onto the plane Z=GEOMZ. If GEOMZ is a scal
and the PLANAR keyword is not set, any geometry associated with the
contour will be freed.

• If GEOMZ is a vector or an array, it must match the number of elements in
Values argument or the DATA_VALUES keyword value.

• If GEOMZ is not set, the geometry will be derived from the DATA_VALUES
property (if it is set to a two-dimensional array). In this case, the connectiv
is implied. The X and Y coordinates match the row and column indices of
array, and the Z coordinates match the data values.

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be dr

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1791

this
t Z

alue
a.

ject.

red
s

 of

f the

 a
GB

ne.
., to

tivity

f

t,
MAX_VALUE (Get, Set)

Set this keyword to the maximum value to be plotted. Data values greater than
value are treated as missing data. The default is the maximum value of the inpu
data.

MIN_VALUE (Get, Set)

Set this keyword to the minimum value to be plotted. Data values less than this v
are treated as missing data. The default is the minimum value of the input Z dat

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this ob
The default is the null string, ''.

N_LEVELS (Get, Set)

Set this keyword to the number of contour levels to generate. This keyword is igno
if the C_VALUE keyword is set to a vector, in which case, the number of levels i
derived from the number of elements in that vector. Set this keyword to zero to
indicate that IDL should compute a default number of levels based on the range
data values. This is the default.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

PLANAR (Get, Set)

Set this keyword to indicate that the contoured data is to be projected onto a pla
This keyword is ignored if GEOMZ is not a scalar. The default is non-planar (i.e
display the contoured data at the Z locations provided by the GEOMZ keyword.

POLYGONS (Get, Set)

Set this keyword to an array of polygon descriptions that represents the connec
information for the data to be contoured (as specified in theValues argument or the
DATA_VALUES keyword). A polygon description is an integer or longword array o
the form: [n, i0, i1, ..., in-1], wheren is the number of vertices that define the
polygon, and i0..in-1 are indices into theX, Y, andZ arguments that represent the
polygon vertices. To ignore an entry in the POLYGONS array, set the vertex counn,
IDL Reference Guide IDLgrContour

1792 Appendix A: IDL Object Class & Method Reference

nt an

olor
ixel.
ed
del.

g

l

ks,

you
to 0. To end the drawing list, even if additional array space is available, setn to -1. If
this keyword is not specified, a single polygon will be generated.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be
shared by the multiple polygons. Consequently, the polygon object can represe
entire mesh and compute reasonable normal estimates in most cases.

SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (c
indices) to use for shading. The first element is the color index for the darkest p
The second element is the color index for the brightest pixel. This value is ignor
when the contour is drawn to a graphics destination that uses the RGB color mo

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then alon
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

TICKINTERVAL (Get, Set)

Set this keyword equal to a number indicating the distance between downhill
tickmarks, in data units. If TICKINTERVAL is not set, or if you explicitly set it equa
to zero, IDL will compute the distance based on the geometry of the contour.

TICKLEN (Get, Set)

Set this keyword equal to a number indicating the length of the downhill tickmar
in data units. If TICKLEN is not set, or if you explicitly set it equal to zero, IDL will
compute the length based on the geometry of the contour.

UVALUE (Get, Set)

Set this keyword to a value of any type. Use this value to contain any information
wish.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1793

s
:

s
:

s
:

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDL Reference Guide IDLgrContour

1794 Appendix A: IDL Object Class & Method Reference

r

IDLgrContour::SetProperty

The IDLgrContour::SetProperty procedure method sets the value of a property o
group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrContour::Init followed by the word “Set” can be retrieved
using IDLgrContour::SetProperty.
IDLgrContour IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1795
IDLgrFont

A font object represents a typeface, style, weight, and point size that may be
associated with text objects.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLgrFont::Init” on page 1798.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrFont::Cleanup

• IDLgrFont::GetProperty

• IDLgrFont::Init

• IDLgrFont::SetProperty
IDL Reference Guide IDLgrFont

1796 Appendix A: IDL Object Class & Method Reference

e
ll the
wn
p

IDLgrFont::Cleanup

The IDLgrFont::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrFont::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1797

 or

,

IDLgrFont::GetProperty

The IDLgrFont::GetProperty procedure method retrieves the value of a property
group of properties for the font.

Syntax

Obj -> [IDLgrFont:]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword toIDLgrFont::Init followed by the word “Get” can be retrieved using
IDLgrFont::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrFont

1798 Appendix A: IDL Object Class & Method Reference

e
Init
ss

form

ol.
IDLgrFont::Init

The IDLgrFont::Init function method initializes the font object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrFont' [,Fontname])

or

Result = Obj -> [IDLgrFont::]Init([Fontname][, NAME{Get, Set}=string]
[, SIZE{Get, Set}=points] [, SUBSTITUTE{Get, Set}={ 'Helvetica' | 'Courier' |
'Times' | 'Symbol' | 'Hershey'}] [, THICK{Get, Set}=points{1 to 10}]
[, UVALUE{Get, Set}=value]) (Only in a subclass’ Init method.)

Arguments

Fontname

A string representing the name of the font to be used. This string should take the
'fontname*modifier1*modifier2*...*modifierN'. All destination objects support the
following fontnames: Helvetica, Courier, Times, Symbol, and Monospace Symb
(These fonts are included with IDL; you may have other fonts installed on your
system as well.) Valid modifiers for each of these fonts (except Symbol and
Monospace Symbol) are:

• Font weight: Bold

• Font angle: Italic

For example, 'Helvetica*Bold*Italic'.

To select a Hershey font, use a fontname of the form: 'Hershey*fontnum'. See
Appendix G, “Fonts” for further information and a list of fonts supported by IDL.
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1799

in

 the

he

ly
L).

ess
t.

 any
r or
en
Note
Beginning with IDL version 5.1, only TrueType and Hershey fonts are supported
the Object Graphics system.

Keywords

Properties retrievable viaIDLgrFont::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrFont::SetProperty are indicated
by the word “Set” following the keyword.

NAME (Get, Set)

Set this keyword equal to a string containing the name of the font to use. Setting
NAME keyword is the same as supplying theFontname argument described above.

SIZE (Get, Set)

Set this keyword equal to a floating-point integer representing the point size of t
font. The default is 12.0 points.

SUBSTITUTE (Get, Set)

Set this keyword to a string that indicates the font to use as a substitute if the
specifiedFontnameis not available on the graphics destination. Valid values are on
those fonts that are available on all destination objects (the fonts included with ID
These are: 'Helvetica' (the default), 'Courier', 'Times', 'Symbol', or 'Hershey'.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, indicating the line thickn
(measured in points) to use for the Hershey vector fonts. The default is one poin

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDL Reference Guide IDLgrFont

1800 Appendix A: IDL Object Class & Method Reference

roup
IDLgrFont::SetProperty

The IDLgrFont::SetProperty procedure method sets the value of a property or g
of properties for the font.

Syntax

Obj -> [IDLgrFont:]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrFont::Init followed by the word “Set” can be set using
IDLgrFont::SetProperty.
IDLgrFont IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1801

es to
e

o

ge
ta
h Z

y be

age
ded
e or
IDLgrImage

An image object represents a mapping from a two-dimensional array of data valu
a two dimensional array of pixel colors, resulting in a flat 2D-scaled version of th
image, drawn at Z = 0.

The image object is drawn at Z =0 and is positioned and sized with respect to tw
points:

p1 = [LOCATION(0), LOCATION(1), 0]
p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].

where LOCATION and DIMENSION are properties of the image object. These
points are transformed in three dimensions, resulting in screen space points
designated as p1' and p2'. The image data is drawn on the display as a 2D ima
within the 2D rectangle defined by (p1'[0], p1'[1] - p2'[0], p2'[1]). The 2D image da
is scaled in 2D (not rotated) to fit into this projected rectangle and then drawn wit
buffering disabled

Note
Image objects do not take into account the Z locations of other objects that ma
included in the view object. This means that objects that are drawn to the
destination object (window or printer)after the image is drawnwill appear to be in
front of the image, even if they are located at a negative Z value (behind the im
object). Objects are drawn to a destination device in the order that they are ad
(via the Add method) to the model, view, or scene that contains them. To rotat
position image objects in three-dimensional space, use theIDLgrPolygon object
with texture mapping enabled.

An IDLgrImage object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.
IDL Reference Guide IDLgrImage

1802 Appendix A: IDL Object Class & Method Reference
Creation

See“IDLgrImage::Init” on page 1808.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrImage::Cleanup

• IDLgrImage::GetCTM

• IDLgrImage::GetProperty

• IDLgrImage::Init

• IDLgrImage::SetProperty
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1803

t.

e
ll the
wn
p

IDLgrImage::Cleanup

The IDLgrImage::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrImage::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrImage

1804 Appendix A: IDL Object Class & Method Reference

e
ed

of

ge

is
tion
lias.

from
rsued.

to

d.
IDLgrImage::GetCTM

The IDLgrImage::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrImage::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the ima
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrImage::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1805

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDL Reference Guide IDLgrImage

1806 Appendix A: IDL Object Class & Method Reference

erty

,

the

r of
IDLgrImage::GetProperty

The IDLgrImage::GetProperty procedure method retrieves the value of the prop
or group of properties for the image.

Syntax

Obj -> [IDLgrImage::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrImage::Initfollowed by the word “Get” can be retrieved using
IDLgrImage::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1807

r of

r of
YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDL Reference Guide IDLgrImage

1808 Appendix A: IDL Object Class & Method Reference

e
Init
ss

y of
ny of

tion
IDLgrImage::Init

The IDLgrImage::Init function method initializes the image object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrImage' [,ImageData])

or

Result = Obj -> [IDLgrImage::]Init([ImageData] [, BLEND_FUNCTION{Get,
Set}=vector] [, CHANNEL{Get, Set}=hexadecimal bitmask] [, DATA{Get,
Set}=nxm, 2xnxm, 3xnxm, or4xnxm array of image data] [, DIMENSIONS{Get,
Set}=[width , height]] [, /GREYSCALE{Get, Set}] [, /HIDE{Get, Set}]
[, INTERLEAVE{Get, Set}={0 | 1 | 2}] [, /INTERPOLATE{Get, Set}]
[LOCATION{Get, Set}=[x , y] or [x, y, z]] [, NAME{Get, Set}=string]
[, /NO_COPY{Get, Set}] [, /ORDER{Get, Set}] [, PALETTE{Get, Set}=objref]
[, /RESET_DATA{Set}] [, SHARE_DATA{Set}=objref] [, SUB_RECT{Get,
Set}=[x, y, xdim, ydim]] [, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get,
Set}=vector] [YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get,
Set}=vector]) (Only in a subclass’ Init method.)

Arguments

ImageData

An array of data values to be displayed as an image. If this argument is not alread
byte type, it is converted when the image object is created. ImageData can be a
the following, wheren is the width of the image, andm is the height:

• An n x m array of color lookup table indices.

• An n x m greyscale image, or a 2 xn x m, n x 2 x m, orn x m x 2 greyscale
image with an alpha channel. (The alpha channel is ignored if the destina
device uses Indexed color mode.)
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1809

 only
e

• A 3 x n x m, n x 3 x m, orn x mx 3 RGB image, or a 4 xn x m, n x 4 x m, or
n x m x 4 RGB image with an alpha channel.

If the array has more than one channel, the interleave is specified by the
INTERLEAVE property.

Keywords

Properties retrievable viaIDLgrImage::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrImage::SetProperty are
indicated by the word “Set” following the keyword.

BLEND_FUNCTION (Get, Set)

Set this keyword equal to a two-element vector [src, dst] specifying one of the
functions listed below for each of the source and destination objects. These are
valid for RGB model destinations. If no Alpha data are specified in an image, th
image’s Alpha value is assumed to be 1.0. The values of the blending function (Vsrc
andVdst) are used in the following equation

where Cd is the initial color of a pixel on the destination device (the background
color), Ci is the color of the pixel in the image, and Cd' is the resulting color of the
pixel.

Settingsrc anddst in the BLEND_FUNCTION vector to the following values
determine how each term in the equation is calculated:

src or dst V src or Vdst What the function does

0 n/a Alpha blending is disabled. Cd' = Ci.

1 0 The value ofVsrcor Vdst in the equation is
zero, thus the value of the term is zero.

2 1 The value ofVsrcor Vdst in the equation is
one, thus the value of the term is the same
as the color value.

3 Imageα The value ofVsrcor Vdst in the equation is
the value of the alpha channel of the
image.

Cd' Vsrc Ci⋅() Vdst Cd⋅()+=
IDL Reference Guide IDLgrImage

1810 Appendix A: IDL Object Class & Method Reference

o
,
d is

The

t in

n

l

CHANNEL (Get, Set)

Set this keyword to a hexadecimal bitmask that defines which color channel(s) t
draw. Each bit that is a 1 is drawn; each bit that is a 0 is not drawn. For example
'ff0000'X represents a Red channel write. The default is to draw all channels, an
represented by the hexadecimal value 'ffffff'X.

Note
This keyword is ignored for CI destination objects.

DATA (Get, Set)

Set this keyword to an x m, 2 x n x m, 3 x nx m, or 4 x nx marray of image data for
the object. Then andm values may be in any position as specified by the
INTERLEAVE keyword. This keyword is equivalent to the optional argument,
ImageData.

DIMENSIONS (Get, Set)

Set this keyword equal to a two-element vector of the form [width, height] specifying
the dimensions of the rectangle in which the image is to be drawn on the device.
image will be resampled as necessary to fit within this rectangle. The default is
derived from the dimensions of the given image data and is measured in pixels.

GREYSCALE (Get, Set)

Set this keyword to specify that the image not be drawn through a palette.

If this keyword is not set, for an RGB colormodel destination, if a palette is presen
the image object, it is used. If there is no current destination palette, a greyscale
palette is used. For a Color Index colormodel destination, the current destinatio
palette is used.

4 1-Imageα The value ofVsrcor Vdst in the equation is
one minus the value of the alpha channe
of the image.

src or dst V src or Vdst What the function does

Table A-17: Values for src and dst in BLEND_FUNCTION
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1811

wn:

ges

mage

on.

ct.
Note
Only single band images (i.e.1 x n x m) are affected by this keyword. By default,
GREYSCALE is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

INTERLEAVE (Get, Set)

Set this keyword to indicate the dimension over which color is interleaved for ima
with more than one channel:

• 0 = Pixel interleaved: Images with dimensions (3,m, n)

• 1 = Scanline interleaved (row interleaved): Images with dimensions (m, 3,n)

• 2 = Planar interleaved: Images with dimensions (m, n, 3).

Note
If an alpha channel is present, the 3s should be replaced by 4s. In a greyscale i
with an alpha channel, the 3s should be replaced by 2s.

INTERPOLATE (Get, Set)

Set this keyword to one to display the IDLgrImage object using bilinear interpolati
The default is to use nearest neighbor interpolation.

LOCATION (Get, Set)

A 2- or 3-element vector [x, y] or [x, y, z] specifying the position of the lower lefthand
corner of the image, measured in data units. If the vector is of the form [x, y], thez
value is set equal to zero. The default is [0, 0, 0].

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.
IDL Reference Guide IDLgrImage

1812 Appendix A: IDL Object Class & Method Reference

om.

f the

exed
se
e
d

 set
.
set

 the

 be
NO_COPY (Get, Set)

Set this keyword to relocate the image data from the input variable to the image
object, leaving the input variableImageData undefined. Only theImageData
argument is affected. If this keyword is omitted, the input image data will be
duplicated and a copy will be stored in the object.

ORDER (Get, Set)

Set this keyword to force the rows of the image data to be drawn from top to bott
By default, image data is drawn from the bottom row up to the top row.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class) to specify the red, green, and blue values of the color
lookup table to be associated with the image if it is an indexed color image. This
property is ignored if the image is a greyscale or RGB image.

Note
This table is only used when the destination is an RGB model device. The Ind
color model writes the indices directly to the device. In order to ensure that the
colors are used when the image is displayed, this palette must be copied to th
graphics destination’s palette for any graphics destination that uses the Indexe
color model.

RESET_DATA (Set)

Set this keyword to treat the data provided via the DATA property as a new data
unique to this object, rather than overwriting data that is shared by other objects
There is no reason to use this keyword if the object on which the property is being
does not currently share data with another object (that is, if the SHARE_DATA
property is not in use). This keyword has no effect if no new data is provided via
DATA property.

SHARE_DATA (Set)

Set this keyword equal to the object reference of an object with which data is to
shared by this image. An image may only share data with another image. The
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1813

.

 any
r or
en

s
:

s
:

s
:

SUB_RECT (Get, Set)

Set this keyword to a four-element vector, [x, y, xdim, ydim], specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle to display

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDL Reference Guide IDLgrImage

1814 Appendix A: IDL Object Class & Method Reference

or
IDLgrImage::SetProperty

The IDLgrImage::SetProperty procedure method sets the value of the property
group of properties for the image.

Syntax

Obj -> [IDLgrImage::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrImage::Init followed by the word “Set” can be set using
IDLgrImage::SetProperty.
IDLgrImage IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1815

e
ems
ists

n a
 in
nt
n
tern

d in
IDLgrLegend

The IDLgrLegend object provides a simple interface for displaying a legend. Th
legend itself consists of a (filled and/or framed) box around one or more legend it
(arranged in a single column) and an optional title string. Each legend item cons
of a glyph patch positioned to the left of a text string. The glyph patch is drawn i
square which is a fraction of the legend label font height. The glyph itself can be
one of two types (see the TYPE keyword). In line type, the glyph is a line segme
with linestyle, thickness and color attributes and an optional symbol object draw
over it. In fill type, the glyph is a square patch drawn with color and optional pat
object attributes.

An IDLgrLegend object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be foun
the fileidlgrlegend.pro in thelib subdirectory of the IDL distribution.

Superclasses

This class is a subclass ofIDLgrModel.

Subclasses

This class has no subclasses.

Creation

See“IDLgrLegend::Init” on page 1821.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrLegend::Cleanup

• IDLgrLegend::ComputeDimensions

• IDLgrLegend::GetProperty

• IDLgrLegend::Init
IDL Reference Guide IDLgrLegend

1816 Appendix A: IDL Object Class & Method Reference
• IDLgrLegend::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLgrModel::GetCTM
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1817

ct.

e
ll the
wn
p

IDLgrLegend::Cleanup

The IDLgrLegend::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrLegend::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrLegend

1818 Appendix A: IDL Object Class & Method Reference

s of
ting-

is
Each
t
this

s

d.
IDLgrLegend::ComputeDimensions

The IDLgrLegend::ComputeDimensions function method retrieves the dimension
a legend object for the given destination object. The result is a three-element floa
point vector [xDim, yDim, zDim] representing the dimensions of the legend object
measured in data units.

Syntax

Result = Obj-> [IDLgrLegend::]ComputeDimensions(DestinationObject
[, PATH=objref(s)])

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the legend are being
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the dimensions.
path object reference specified with this keyword must contain an alias. The tex
dimensions are computed for the version of the object falling within that path. If
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrLegend::ComputeDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1819

ty or

le:

ct.

e

e

e

IDLgrLegend::GetProperty

The IDLgrLegend::GetProperty procedure method retrieves the value of a proper
group of properties for the legend.

Syntax

Obj -> [IDLgrLegend::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrLegend::Init followed by the word “Get” can be retrieved
using IDLgrLegend::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this legend.

XRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [xmin, xmax] specifying the range of theX data coordinates covered by the
legend.

YRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [ymin, ymax] specifying the range of theY data coordinates covered by the
legend.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector of th
form [zmin, zmax] specifying the range of theZ data coordinates covered by the
legend.
IDL Reference Guide IDLgrLegend

1820 Appendix A: IDL Object Class & Method Reference

s
 the
Note
Until the legend is drawn to the destination object, the [XYZ]RANGE propertie
will be zero. Use the ComputeDimensions method on the legend object to get
data dimensions of the legend prior to a draw operation.
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1821

e
Init
ss

y is
king

s

IDLgrLegend::Init

The IDLgrLegend::Init function method initializes the legend object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLegend')

or

Result = Obj -> [IDLgrLegend::]Init([aItemNames] [, BORDER_GAP{Get,
Set}=value] [, COLUMNS{Get, Set}=integer] [, FILL_COLOR{Get, Set}=index or
RGB vector] [, FONT{Get, Set}=objref] [, GAP{Get, Set}=value]
[, GLYPH_WIDTH{Get, Set}=value] [, /HIDE{Get, Set}] [, ITEM_COLOR{Get,
Set}=array of colors] [, ITEM_LINESTYLE{Get, Set}=int array]
[, ITEM_NAME{Get, Set}=string array] [, ITEM_OBJECT{Get, Set}=array of
objrefs of type IDLgrSymbol or IDLgrPattern] [, ITEM_THICK{Get, Set}=int
array] [, ITEM_TYPE{Get, Set}=int array{each element 0 or 1}] [, NAME{Get,
Set}=string] [, OUTLINE_COLOR{Get, Set}=index or RGB vector]
[, OUTLINE_THICK{Get, Set}=integer] [, /SHOW_FILL{Get, Set}]
[, /SHOW_OUTLINE{Get, Set}] [, TEXT_COLOR{Get, Set}=index or RGB
vector] [, TITLE{Get, Set}=objref] [, UVALUE{Get, Set}=value]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector]) (Only in a subclass’ Init method.)

Arguments

aItemNames

An array of strings to be used as the displayed item label. The length of this arra
used to determine the number of items to be displayed. Each item is defined by ta
one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors. If the number of item
(as defined by the ITEM_NAME array) exceeds any of the attribute vectors, the
attribute defaults will be used for any additional items.
IDL Reference Guide IDLgrLegend

1822 Appendix A: IDL Object Class & Method Reference

be
are

nd

olor
t is

t to

be
ions
The
tring.

ght).
Keywords

Properties retrievable viaIDLgrLegend::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrLegend::SetProperty are
indicated by the word “Set” following the keyword.

BORDER_GAP (Get, Set)

Set this keyword to a floating-point value to indicate the amount of blank space to
placed around the outside of the glyphs and text items. The units for this property
fractions of the legend label font height. The default is 0.1 (10% of the label font
height).

COLUMNS (Get, Set)

Set this keyword to an integer value to indicate the number of columns the lege
items should be displayed in. The default is one column.

FILL_COLOR (Get, Set)

Set this keyword to the color to be used to fill the legend background box. The c
may be specified as a color lookup table index or as an RGB vector. The defaul
[255,255,255].

FONT (Get, Set)

Set this keyword to an instance of an IDLgrFont object class to describe the fon
use to draw the legend labels. The default is 12 point Helvetica.

Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a font object that will be destroyed when this
legend object is destroyed, leaving a dangling object reference.

GAP (Get, Set)

Set this keyword to a floating-point value to indicate the amount of blank space to
placed vertically between each legend item. The units for this keyword are fract
of the legend label font height. The default is 0.1 (10% of the label font height).
same gap is placed horizontally between the legend glyph and the legend text s

GLYPH_WIDTH (Get, Set)

Set this keyword to a floating-point value to indicate the width of the glyphs,
measured as a fraction of the font height. The default is 0.8 (80% of the font hei
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1823

awn:

e value

 if

ee

 A
to
HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be dr

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

ITEM_COLOR (Get, Set)

Set this keyword to an array of colors defining the color of each item. The array
definesM different colors, and should be either of the form [3,M] or [M]. In the first
case, the three values are used as an RGB triplet, in the second case, the singl
is used as a color index value. The default color is [0,0,0].

ITEM_LINESTYLE (Get, Set)

Set this keyword to an array of integers defining the style of the line to be drawn
the TYPE property is set to zero. The array can be of the form [M] or [2,M]. The first
form selects the linestyle for each legend item from the predefined defaults:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

The second form specifies the stippling pattern explicitly for each legend item (s
the LINESTYLE keyword toIDLgrPolyline::Init for details).

ITEM_NAME (Get, Set)

Set this keyword to an array of strings. Specifying this keyword is the same as
providing theaName argument for the IDLgrLegend::Init method.

ITEM_OBJECT (Get, Set)

Set this keyword to an array of object references of type IDLgrSymbol or
IDLgrPattern. A symbol object is drawn only if the TYPE property is set to zero.
pattern object is used when drawing the color patch if the TYPE property is set
one. The default object is the NULL object.
IDL Reference Guide IDLgrLegend

1824 Appendix A: IDL Object Class & Method Reference

of

 line,
lt is

ject.

or
t is

n

e

Note
If one or more IDlgrSymbol object references are provided, the SIZE property
those objects may be modified by this legend to suit its layout needs.

ITEM_THICK (Get, Set)

Set this keyword to an array of integers which define the thickness of each item
in points. This property is only used if the TYPE property is set to zero. The defau
1 point.

ITEM_TYPE (Get, Set)

Set this keyword to an array of integers which define the type of glyph to be
displayed for each item:

• 0 = line type (the default)

• 1 = filled box type

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this ob
The default is the null string, ''.

OUTLINE_COLOR (Get, Set)

Set this keyword to the color to be used to draw the legend outline box. The col
may be specified as a color lookup table index or as an RGB vector. The defaul
[0,0,0].

OUTLINE_THICK (Get, Set)

Set this keyword to an integer which defines the thickness of the outline frame i
points. The default is 1 point.

SHOW_FILL (Get, Set)

Set this keyword to a boolean value indicating whether the background should b
filled with a color:

• 0 = Do not fill background (the default)

• 1 = Fill background
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1825

e

may
,0].

for
tle
iated

you

s
:

s
:

SHOW_OUTLINE (Get, Set)

Set this keyword to a boolean value indicating whether the outline box should b
displayed:

• 0 = Do not display outline (the default)

• 1 = Display outline

TEXT_COLOR (Get, Set)

Set this keyword to the color to be used to draw the legend item text. The color
be specified as a color lookup table index or as an RGB vector. The default is [0,0

TITLE (Get, Set)

Set this keyword to an instance of the IDLgrText object class to specify the title
the legend. The default is the null object, specifying that no title is drawn. The ti
will be centered at the top of the legend, even if the text object itself has an assoc
location.

UVALUE (Get, Set)

Set this keyword to a value of any type. Use this value to contain any information
wish.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]
IDL Reference Guide IDLgrLegend

1826 Appendix A: IDL Object Class & Method Reference

s
:

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDLgrLegend IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1827

r

,

le:

e
d

IDLgrLegend::SetProperty

The IDLgrLegend::SetProperty procedure method sets the value of a property o
group of properties for the legend.

Syntax

Obj-> [IDLgrLegend::]SetProperty [, RECOMPUTE={0 | 1}{0 prevents recompute
1 is the default}]

Arguments

None

Keywords

Any keyword toIDLgrLegend::Init followed by the word “Set” can be retrieved
using IDLgrLegend::SetProperty. In addition, the following keywords are availab

RECOMPUTE

Set this keyword to 1 to force IDL to recompute the legend dimensions when th
legend is redrawn. Set this keyword to 0 to prevent IDL from recomputing legen
dimensions.
IDL Reference Guide IDLgrLegend

1828 Appendix A: IDL Object Class & Method Reference
IDLgrLight

A light object represents a source of illumination for three-dimensional graphic
objects. Lights may be either ambient, positional, directional, or spotlights. A
maximum of 8 lights per view are allowed. Lights are not required for objects
displayed in two dimensions.

An IDLgrLight object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrLight::Init” on page 1833.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrLight::Cleanup

• IDLgrLight::GetCTM

• IDLgrLight::GetProperty

• IDLgrLight::Init

• IDLgrLight::SetProperty
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1829

e
ll the
wn
p

IDLgrLight::Cleanup

The IDLgrLight::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrLight::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrLight

1830 Appendix A: IDL Object Class & Method Reference

e
ed

of

t

is
tion
lias.

from
rsued.

to

d.
IDLgrLight::GetCTM

The IDLgrLight::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrLight::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the ligh
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrLight::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1831

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDL Reference Guide IDLgrLight

1832 Appendix A: IDL Object Class & Method Reference

 or

,

the
IDLgrLight::GetProperty

The IDLgrLight::GetProperty procedure method retrieves the value of a property
group of properties for the light.

Syntax

Obj -> [IDLgrLight::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword toIDLgrLight::Init followed by the word “Get” can be retrieved using
IDLgrLight::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1833

e
Init
ss

r,
to
ot
ted
IDLgrLight::Init

The IDLgrLight::Init function method initializes the light object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLight')

or

Result= Obj -> [IDLgrLight::]Init([, ATTENUATION{Get, Set} =[constant, linear,
quadratic]] [, COLOR{Get, Set}=[R , G, B]] [, CONEANGLE{Get, Set}=degrees]
[, DIRECTION{Get, Set}=3-element vector] [, FOCUS{Get, Set}=value]
[, /HIDE{Get, Set}] [, INTENSITY{Get, Set}=value{0.0 to 1.0}]
[, LOCATION{Get, Set}=[x , y, z]] [, NAME{Get, Set}=string] [, TYPE{Get,
Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get,
Set}=vector] [, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get,
Set}=vector]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrLight::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrLight::SetPropertyare indicated
by the word “Set” following the keyword.

ATTENUATION (Get, Set)

Set this keyword to a 3-element floating point vector of the form [constant, linea
quadratic] that describes the factor by which light intensity is to fall with respect
distance from the light source. ATTENTUATION applies only to Positional and Sp
lights, as specified by the TYPE keyword. The overall attenuation factor is compu
as follows:
IDL Reference Guide IDLgrLight

1834 Appendix A: IDL Object Class & Method Reference

he
n

ich
s

. The

 a

ity
. This
f the
is

led:
attenuation = 1/(constant + linear*distance +
quadratic*distance^2)

By default, the values are [1, 0, 0].

COLOR (Get, Set)

Set this keyword to a three-element vector specifying the RGB color of the light. T
default is [255, 255, 255], which is a white light. The color of a light is ignored whe
graphics are sent to graphics destinations using the Indexed color model, in wh
case light intensities are scaled into the range of colors available on the graphic
destination.

CONEANGLE (Get, Set)

Set this keyword to the angle (measured in degrees) of coverage for a spotlight
default is 60.

DIRECTION (Get, Set)

Set this keyword to the three-element vector representing the direction in which
spotlight is to be pointed. The default is [0,0,-1].

Note
For directional lights, the light’s parallel rays follow a vector beginning at the
position specified by LOCATION and ending at [0, 0, 0].

FOCUS (Get, Set)

Set this keyword to a floating-point value that describes the attenuation of intens
for spotlights as the distance from the center of the cone of coverage increases
factor is used as an exponent to the cosine of the angle between the direction o
spotlight and the direction from the light to the vertex being lighted. The default
0.0.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this light should be enab

• 0 = Enable light (the default)

• 1 = Disable light
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1835

st)

ct.

o
e
t
e is

t
e.

 any
r or
Note
If no lights are present in the view (or if all lights in the view are hidden), an
ambient light will be provided by default.

INTENSITY (Get, Set)

Set this keyword to a floating point value between 0.0 (darkest) and 1.0 (brighte
indicating the intensity of the light. The default is 1.0.

LOCATION (Get, Set)

Set this keyword to a vector of the form [x, y, z] describing the position of the light.
By default, the position is [0, 0, 0].

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

TYPE (Get, Set)

Set this keyword to one of the following values, indicating the type of light. Valid
values are:

• 0 = Ambient light. An ambient light is a universal light source, which has n
direction or position. An ambient light illuminates every surface in the scen
equally, which means that no edges are made visible by contrast. Ambien
lights control the overall brightness and color of the entire scene. If no valu
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

• 2 = Directional light. A directional light supplies parallel light rays. The effec
is that of a positional light source located at an infinite distance from scen

• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
IDL Reference Guide IDLgrLight

1836 Appendix A: IDL Object Class & Method Reference

en

s
:

s
:

s
:

object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDLgrLight IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1837

oup
IDLgrLight::SetProperty

The IDLgrLight::SetProperty procedure method sets the value of a property or gr
of properties for the light.

Syntax

Obj -> [IDLgrLight::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrLight::Init followed by the word “Set” can be set using
IDLgrLight::SetProperty.
IDL Reference Guide IDLgrLight

1838 Appendix A: IDL Object Class & Method Reference

med
l
t

IDLgrModel

A model object represents a graphical item or group of items that can be transfor
(rotated, scaled, and/or translated). It serves as a container of other IDLgrMode
objects or atomic graphic objects. IDLgrModel applies a transform to the curren
view tree.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

The following classes are subclassed from this class:

• IDLgrColorbar

• IDLgrLegend

Creation

See“IDLgrModel::Init” on page 1847.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrModel::Add

• IDLgrModel::Cleanup

• IDLgrModel::Draw

• IDLgrModel::GetByName

• IDLgrModel::GetCTM

• IDLgrModel::GetProperty

• IDLgrModel::Init

• IDLgrModel::Reset

• IDLgrModel::Rotate
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1839
• IDLgrModel::Scale

• IDLgrModel::SetProperty

• IDLgrModel::Translate

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move
IDL Reference Guide IDLgrModel

1840 Appendix A: IDL Object Class & Method Reference

 the

ject
ct to

e, if
l is

r at
IDLgrModel::Add

The IDLgrModel::Add procedure method adds a child to this Model.

Syntax

Obj -> [IDLgrModel::]Add, Object[, /ALIAS] [, POSITION=index]

Arguments

Object

An instance of an atomic graphic object or another model object to be added to
model object.

Keywords

ALIAS

Set this keyword to a nonzero value to indicate that an alias—rather than the ob
itself—is to be added to the model. With this keyword you can add the same obje
multiple models without duplicating that object and its children. If this keyword is
set, the PARENT keyword on the object being added will not change. Furthermor
this keyword is set, the object being added will not be destroyed when the mode
destroyed.

POSITION

Set this keyword equal to the zero-based index of the position within the containe
which the new object should be placed.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1841

.

e
ll the
wn
p

IDLgrModel::Cleanup

The IDLgrModel::Cleanup procedure method performs all cleanup on the object

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrModel::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrModel

1842 Appendix A: IDL Object Class & Method Reference

g

 the
IDLgrModel::Draw

The IDLgrModel::Draw procedure method draws the specified picture to the
specified graphics destination.This method is provided for purposes of sub-classin
only, and is intended to be called only from the Draw method of a subclass of
IDLgrModel.

Note
Objects are drawn to the destination device in the order that they are added to
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrModel::]Draw,Destination, Picture

Arguments

Destination

The destination object (IDLgrBuffer, IDLgrClipboard, IDLgrPrinter, or
IDLgrWindow) to which the specified view object will be drawn.

Picture

The view (an instance of anIDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of anIDLgrScene object) to be
drawn.

Keywords

None
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1843

and
, the

he

ts
s

od is
IDLgrModel::GetByName

The IDLgrModel::GetByName function method finds contained objects by name
returns the object reference to the named object. If the named object is not found
GetByName function returns a null object reference.

Note
The GetByName function doesnot perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of t
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrModel::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX file system. Objec
contained by other objects can include the name of their parent object; this allow
you to create a fully qualified name specification. For example, ifobject1 contains
object2 , which in turn containsobject3 , the string specifying the fully qualified
object name of object3 would be'object1/object2/object3' .

Object names are specified relative to the object on which the GetByName meth
called. If used at the beginning of the name string, the/ character represents the top
of an object hierarchy. The string'..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrModel

1844 Appendix A: IDL Object Class & Method Reference

e
ed

of

el

is
tion
lias.

from
rsued.

to

d.
IDLgrModel::GetCTM

The IDLgrModel::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrModel::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the mod
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrModel::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1845

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDL Reference Guide IDLgrModel

1846 Appendix A: IDL Object Class & Method Reference

y or

the
IDLgrModel::GetProperty

The IDLgrModel::GetProperty procedure method retrieves the value of a propert
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword toIDLgrModel::Init followed by the word “Get” can be retrieved using
IDLgrModel::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with this object.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1847

e
Init
ss

wn:
IDLgrModel::Init

The IDLgrModel::Init procedure method initializes the model object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrModel')

or

Result = Obj -> [IDLgrModel::]Init([, /HIDE{Get, Set}] [, LIGHTING{Get,
Set}={0 | 1 | 2}] [, NAME{Get, Set}=string] [, /SELECT_TARGET{Get, Set}]
[, TRANSFORM{Get, Set}=4x4 transformation matrix] [, UVALUE{Get,
Set}=value]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrModel::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrModel::SetProperty are
indicated by the word “Set” following the keyword.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw model and children (the default)

• 1 = Do not draw model or children

Note
HIDE only controls the display attributes of IDLgrModel children since the
IDLgrModel object itself lacks geometry.
IDL Reference Guide IDLgrModel

1848 Appendix A: IDL Object Class & Method Reference

be
nt.

y
s

ct.

n any

is
e).

 any
r or
en
LIGHTING (Get, Set)

Set this keyword to one of the following values to indicate whether lighting is to
enabled or disabled for all atomic graphic objects that have this model as a pare
IDLgrModel objects that have this model as a parent will not be effected, as the
have their own value for this property. If this value is set to 0, any lights added a
children of this model will be used to illuminate any other models in the view
hierarchy that have lighting enabled.

• 0 = Disable lighting

• 1 = Enable single-sided lighting

• 2 = Enable double-sided lighting (the default)

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

SELECT_TARGET (Get, Set)

Set this keyword to tag the model object as the target object to be returned whe
object contained by the model is selected via theIDLgrWindow::Select method. By
default, an IDLgrModel object cannot be returned as the target of a SELECT
operation since it contains no geometry.

TRANSFORM (Get, Set)

Set this keyword to a 4 x 4 transformation matrix to be applied to this object. Th
matrix will be multiplied by its parent’s transformation matrix (if the parent has on
The default is the identity transformation matrix.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1849

the
IDLgrModel::Reset

The IDLgrModel::Reset procedure method sets the current transform matrix for
model object to the identity matrix.

Note
Using this method is functionally identical to the following statement:

Obj -> [IDLgrModel::]SetProperty, TRANSFORM=IDENTITY(4)

Syntax

Obj -> [IDLgrModel::]Reset

Arguments

None

Keywords

None
IDL Reference Guide IDLgrModel

1850 Appendix A: IDL Object Class & Method Reference

d

l

IDLgrModel::Rotate

The IDLgrModel::Rotate procedure method rotates the model about the specifie
axis by the specified angle.

Syntax

Obj -> [IDLgrModel::]Rotate, Axis, Angle[, /PREMULTIPLY]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the mode
is to be rotated.

Angle

The angle (measured in degrees) by which the rotation is to occur.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified byAxis andAngle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1851

aling

.

IDLgrModel::Scale

The IDLgrModel::Scale procedure method scales the model by the specified sc
factors.

Syntax

Obj -> [IDLgrModel::]Scale, Sx, Sy, Sz[, /PREMULTIPLY]

Arguments

Sx, Sy, Sz

The scaling factors in thex, y, andz dimensions by which the model is to be scaled

Keywords

PREMULTIPLY

Set this keyword to cause the scaling matrix specified bySx, Sy, Szto be pre-
multiplied to the model’s transformation matrix. By default, the scaling matrix is
post-multiplied.
IDL Reference Guide IDLgrModel

1852 Appendix A: IDL Object Class & Method Reference
IDLgrModel::SetProperty

The IDLgrModel::SetProperty procedure method sets the value of a property or
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrModel::Init followed by the word “Set” can be set using
IDLgrModel::SetProperty.
IDLgrModel IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1853

ified

 is
IDLgrModel::Translate

The IDLgrModel::Translate procedure method translates the model by the spec
translation offsets.

Syntax

Obj -> [IDLgrModel::]Translate, Tx, Ty, Tz[, /PREMULTIPLY]

Arguments

Tx, Ty, Tz

The offsets inX, Y, andZ, respectively, by which the model is to be translated.

Keywords

PREMULTIPLY

Set this keyword to cause the translation matrix specified byTx, Ty, Tzto be pre-
multiplied to the model’s transformation matrix. By default, the translation matrix
post-multiplied.
IDL Reference Guide IDLgrModel

1854 Appendix A: IDL Object Class & Method Reference

es.
IDLgrMPEG

An IDLgrMPEG object creates an MPEG movie file from an array of image fram

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrMPEG::Init” on page 1857.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrMPEG::Cleanup

• IDLgrMPEG::GetProperty

• IDLgrMPEG::Init

• IDLgrMPEG::Put

• IDLgrMPEG::Save

• IDLgrMPEG::SetProperty
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1855

t.

e
ll the
wn
p

IDLgrMPEG::Cleanup

The IDLgrMPEG::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrMPEG::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrMPEG

1856 Appendix A: IDL Object Class & Method Reference

y or

e:

ct.
IDLgrMPEG::GetProperty

The IDLgrMPEG::GetProperty procedure method retrieves the value of a propert
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword toIDLgrMPEG::Init followed by the word “Get” can be retrieved
using IDLgrMPEG::GetProperty. In addition, the following keywords are availabl

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1857

e
Init
ss

h of
the
IDLgrMPEG::Init

The IDLgrMPEG::Init function method initializes the MPEG object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrMPEG')

or

Result = Obj -> [IDLgrMPEG::]Init([, DIMENSIONS{Get, Set}=2-element array]
[, FILENAME{Get, Set}=string] [, FORMAT{Get, Set}={0 | 1}]
[, FRAME_RATE{Get, Set} ={1| 2 | 3 | 4 | 5 | 6 | 7 | 8} [,/INTERLACED{Get, Set}]
[, SCALE{Get, Set}=[xscale, yscale]] [, /STATISTICS{Get, Set}]
[, TEMP_DIRECTORY=string]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrMPEG::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrMPEG::SetProperty are
indicated by the word “Set” following the keyword.

DIMENSIONS (Get, Set)

Set this keyword to a 2-element array specifying the dimensions (in pixels) of eac
the images to be used as frames for the movie. If this property is not specified,
dimensions of the first image loaded will be used. OnceIDLgrMPEG::Put has been
called, this keyword can no longer be set.
IDL Reference Guide IDLgrMPEG

1858 Appendix A: IDL Object Class & Method Reference

ed

sed

age
FILENAME (Get, Set)

Set this keyword to a string representing the name of the file in which the encod
MPEG sequence is to be stored. The default is'idl.mpg' .

FORMAT (Get, Set)

Set this keyword to one of the following values to specify the type of MPEG
encoding to use:

• 0 = MPEG1 (the default)

• 1 = MPEG2

FRAME_RATE (Get, Set)

Set this keyword to one of the following integer values to specify the frame rate u
in creating the MPEG file:

• 1 = 23.976 frames/sec: NTSC encapsulated film rate

• 2 = 24 frames/sec: Standard international film rate

• 3 = 25 frames/sec: PAL video frame rate

• 4 = 29.97 frames/sec: NTSC video frame rate

• 5 = 30 frames/sec: NTSC drop frame video frame rate (the default)

• 6 = 50 frames/sec: Double frame rate/progressive PAL

• 7 = 59.94 frames/sec: Double frame rate NTSC

• 8 = 60 frames/sec: Double frame rate NTSC drop frame video

INTERLACED (Get, Set)

Set this keyword to indicate that frames in the encoded MPEG file should be
interlaced. The default is non-interlaced.

SCALE (Get, Set)

Set this keyword to a two-element vector, [xscale, yscale], indicating the scale factors
to be stored with the MPEG file as hints for playback. The default is [1.0, 1.0],
indicating that the movie should be played back at the dimensions of the stored im
frames.
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1859

he
STATISTICS (Get, Set)

Set this keyword to save statistical information about MPEG encoding for the
supplied image frames in a file when the IDLgrMPEG::Save method is called. T
information will be saved in a file with a name that matches that specified by the
FILENAME keyword, with the extension “.stat ”. By default, statistics are not
saved.

TEMP_DIRECTORY

Set the keyword to a string value which specifies a directory in which to place
temporary files while creating the MPEG movie file. The default value is platform
specific.
IDL Reference Guide IDLgrMPEG

1860 Appendix A: IDL Object Class & Method Reference

ust

ons

ame

case
.

IDLgrMPEG::Put

The IDLgrMPEG::Put procedure method puts a given image into the MPEG
sequence at the specified frame. Note that all images in a given MPEG movie m
have matching dimensions. If no dimensions were explicitly specified when the
MPEG object was initialized, the dimensions will be set according to the dimensi
of the first image.

Syntax

Obj -> [IDLgrMPEG::]Put,Image[, Frame]

Arguments

Image

An instance of an IDLgrImage object or amx n or 3 xmx n array representing the
image to be loaded at the given frame.

Frame

An integer specifying the index of the frame at which the image is to be added. Fr
indices start at zero. IfFrame is not supplied, the frame number used will be one
more than the last frame that was put. Frame number need not be consecutive; in
of a gap in frame numbers, the frame before the gap is repeated to fill the space

Keywords

None
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1861

nce to

sed
m

ed
IDLgrMPEG::Save

The IDLgrMPEG::Save procedure method encodes and saves the MPEG seque
the specified filename.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Syntax

Obj -> [IDLgrMPEG::]Save [, FILENAME=string]

Macintosh Keywords: [, CREATOR_TYPE=string]

Arguments

None

Keywords

CREATOR_TYPE

Set this keyword to a four character string representing the creator string to be u
when writing this file on a Macintosh. This property is ignored if the current platfor
is not a Macintosh. The default isTVOD (Apple Movie Player application).

FILENAME

Set this keyword to a string representing the name of the file in which the encod
MPEG sequence is to be stored. The default isidl.mpg .
IDL Reference Guide IDLgrMPEG

1862 Appendix A: IDL Object Class & Method Reference
IDLgrMPEG::SetProperty

The IDLgrMPEG::SetProperty procedure method sets the value of a property or
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrMPEG::Init followed by the word “Set” can be retrieved using
IDLgrMPEG::SetProperty.
IDLgrMPEG IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1863

 and
IDLgrPalette

A palette object represents a color lookup table that maps indices to red, green,
blue values.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLgrPalette::Init” on page 1867.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrPalette::Cleanup

• IDLgrPalette::GetRGB

• IDLgrPalette::GetProperty

• IDLgrPalette::Init

• IDLgrPalette::LoadCT

• IDLgrPalette::NearestColor

• IDLgrPalette::SetRGB

• IDLgrPalette::SetProperty
IDL Reference Guide IDLgrPalette

1864 Appendix A: IDL Object Class & Method Reference

t.

e
ll the
wn
p

IDLgrPalette::Cleanup

The IDLgrPalette::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrPalette::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1865

the
rm

lor
ty
IDLgrPalette::GetRGB

The IDLgrPalette::GetRGB function method returns the RGB values contained in
palette at the given index. The returned value is a three-element vector of the fo
[red, green, blue].

Syntax

Result = Obj -> [IDLgrPalette::]GetRGB(Index)

Arguments

Index

The index whose RGB values are desired. This value should be in the range of
0 ≤ Index< N_COLORS, where N_COLORS is the number of elements in the co
palette, as returned by the N_COLORS keyword to the IDLgrPalette:GetProper
method.

Keywords

None
IDL Reference Guide IDLgrPalette

1866 Appendix A: IDL Object Class & Method Reference

ty or

le:

,

f

IDLgrPalette::GetProperty

The IDLgrPalette::GetProperty procedure method retrieves the value of a proper
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]GetProperty [, ALL=variable] [, N_COLORS=variable]

Arguments

None

Keywords

Any keyword toIDLgrPalette::Init followed by the word “Get” can be retrieved
using IDLgrPalette::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

N_COLORS

Set this keyword to a named variable that upon return will contain the number o
elements in the color palette.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1867

e
Init
ss

be
IDLgrPalette::Init

The IDLgrPalette::Init function method initializes a palette object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj=OBJ_NEW('IDLgrPalette', [aRed, aGreen, aBlue])

or

Result=Obj-> [IDLgrPalette::]Init([aRed, aGreen, aBlue] [, BLUE_VALUES{Get,
Set}=vector] [, BOTTOM_STRETCH{Get, Set}=value{0 to 100}] [, GAMMA{Get,
Set}=value{0.1 to 10.0}] [, GREEN_VALUES{Get, Set}=vector] [, NAME{Get,
Set}=string] [, RED_VALUES{Get, Set}=vector] [, TOP_STRETCH{Get,
Set}=value{0 to 100}] [, UVALUE{Get, Set}=value]) (Only in a subclass’ Init
method.)

Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0≤ Value≤ 255. The number of elements comprising theaRed
vector must not exceed 256.

aGreen

A vector containing the green values for the color palette. These values should
within the range of 0≤ Value≤ 255. The number of elements comprising theaGreen
vector must not exceed 256.

aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0≤ Value≤ 255. The number of elements comprising theaBlue
vector must not exceed 256.
IDL Reference Guide IDLgrPalette

1868 Appendix A: IDL Object Class & Method Reference

ame

ette.

e

e

ct.

ame

tte.

 any
r or
en
Keywords

Properties retrievable viaIDLgrPalette::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrPalette::SetProperty are
indicated by the word “Set” following the keyword.

BLUE_VALUES (Get, Set)

A vector containing the blue values for the color palette. Setting this value is the s
as specifying theaBlue argument to the IDLgrPalette::Init method.

BOTTOM_STRETCH (Get, Set)

Set this keyword equal to the bottom parameter for stretching the colors in the pal
This value must be in the range of 0≤ Value≤ 100. The default value is 0.

GAMMA (Get, Set)

Set this keyword to the gamma value to be applied to the color palette. This valu
should be in the range of 0.1≤ Gamma≤ 10.0. The default is 1.0.

GREEN_VALUES (Get, Set)

A vector containing the green values for the color palette. Setting this value is th
same as specifying theaGreen argument to the IDLgrPalette::Init method.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

RED_VALUES (Get, Set)

A vector containing the red values for the color palette. Setting this value is the s
as specifying theaRed argument to the IDLgrPalette::Init method.

TOP_STRETCH (Get, Set)

Set this keyword equal to the top parameter for stretching the colors in the pale
This value must be in the range of 0≤ Value≤ 100. The default value is 100.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object to which the user value applies.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1869

olor
IDLgrPalette::LoadCT

The IDLgrPalette::LoadCT procedure method loads one of the IDL predefined c
tables into an IDLgrPalette object.

Syntax

Obj -> [IDLgrPalette::]LoadCT,TableNum[, FILENAME=colortable filename]

Arguments

TableNum

The number of the pre-defined IDL color table to load, from 0 to 40.

Keywords

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl in the IDL distribution. The MODIFYCT procedure can be used to
create and modify colortable files.
IDL Reference Guide IDLgrPalette

1870 Appendix A: IDL Object Class & Method Reference

the

he

the

 the
IDLgrPalette::NearestColor

The IDLgrPalette::NearestColor function method returns the index of the color in
palette that best matches the given RGB values.

Syntax

Result= Obj-> [IDLgrPalette::]NearestColor(Red, Green, Blue)

Arguments

Red

The red value of the color that should be matched. This value should be within t
range of 0≤ Value≤ 255.

Green

The green value of the color that should be matched. This value should be within
range of 0≤ Value≤ 255.

Blue

The blue value of the color that should be matched. This value should be within
range of 0≤ Value≤ 255.

Keywords

None
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1871

d

of
IDLgrPalette::SetRGB

The IDLgrPalette::SetRGB procedure method sets the color values at a specifie
index in the palette to the specified Red, Green and Blue values.

Syntax

Obj -> [IDLgrPalette::]SetRGB,Index, Red, Green, Blue

Arguments

Index

The index within the Palette object to be set. This value should be in the range
0 ≤ Value< N_COLORS.

Red

The red value to set in the color palette.

Green

The green value to set in the color palette.

Blue

The blue value to set in the color palette.

Keywords

None
IDL Reference Guide IDLgrPalette

1872 Appendix A: IDL Object Class & Method Reference

r

IDLgrPalette::SetProperty

The IDLgrPalette::SetProperty procedure method sets the value of a property o
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPalette::Init followed by the word “Set” can be set using
IDLgrPalette::SetProperty.
IDLgrPalette IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1873

an
f a
IDLgrPattern

A pattern object describes which pixels are filled and which are left blank when
area is filled. Pattern objects are used by setting the FILL_PATTERN property o
polygon object equal to the object reference of the pattern object.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

SeeIDLgrPattern::Init.

Methods

Intrinsic Methods

This class has this following methods:

• IDLgrPattern::Cleanup

• IDLgrPattern::GetProperty

• IDLgrPattern::Init

• IDLgrPattern:SetProperty
IDL Reference Guide IDLgrPattern

1874 Appendix A: IDL Object Class & Method Reference

t.

e
ll the
wn
p

IDLgrPattern::Cleanup

The IDLgrPattern::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrPattern::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1875

ty or

le:

,

IDLgrPattern::GetProperty

The IDLgrPattern::GetProperty procedure method retrieves the value of a proper
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword toIDLgrPattern::Init followed by the word “Get” can be retrieved
using IDLgrPattern::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrPattern

1876 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrPattern::Init

The IDLgrPattern::Init function method initializes the pattern object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPattern' [,Style])

or

Result = Obj -> [IDLgrPattern::]Init([Style] [, ORIENTATION{Get, Set}=ccw
degrees from horiz] [, NAME{Get, Set}=string] [, PATTERN{Get, Set}=32 x 32 bit
array] [, SPACING{Get, Set}=pixels] [, STYLE{Get, Set}={0 | 1 | 2}]
[, THICK=integer{1 to 10}] [, UVALUE{Get, Set}=value]) (Only in a subclass’ Init
method.)

Arguments

Style

A integer value representing the type of pattern. Valid values are:

• 0 = Solid color (default)

• 1 = Line Fill

• 2 = Pattern

Keywords

Properties retrievable viaIDLgrPattern::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrPattern:SetProperty are
indicated by the word “Set” following the keyword.
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1877

rd

ct.

n
yte
ch

ured
the

ess
el.

.

 any
r or
en
ORIENTATION (Get, Set)

Set this keyword to a scalar representing the angle (measured in degrees
counterclockwise from the horizontal) of the lines used in a Line Fill. This keywo
is ignored unless theStyle argument (or STYLE property) is set to one.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

PATTERN (Get, Set)

A 32 x 32 bit array (bitmap) describing the pattern that will be tiled over a polygo
when a Pattern fill is used. The bitmap must be configured as a 4 x 32 “bitmap b
array” as created by the IDL CVTTOBM function. Each bit that is a 1 is drawn, ea
bit that is 0 is not drawn. This keyword is ignored unless theStyle argument (or
STYLE property) is set to two.

SPACING (Get, Set)

Set this keyword equal to a floating-point value representing the distance (meas
in pixels) between the lines used for a Line Fill. This keyword is ignored unless
Style argument (or STYLE property) is set to one. The default is 2.0 pixels.

STYLE (Get, Set)

Set this keyword to specify the type of pattern to be used. Valid values are:

• 0 = Solid (default)

• 1 = Linefill

• 2 = Pattern

This keyword is the same as theStyle argument described above.

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to be used to draw the pattern lines for a Line Fill, in pixels. The default is one pix
This keyword is ignored unless theStyle argument or STYLE keyword is set to one

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object to which the user value applies.
IDL Reference Guide IDLgrPattern

1878 Appendix A: IDL Object Class & Method Reference

r

IDLgrPattern:SetProperty

The IDLgrPattern::SetProperty procedure method sets the value of a property o
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPattern::Init followed by the word “Set” can be set using
IDLgrPattern::SetProperty.
IDLgrPattern IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1879

l

IDLgrPlot

A plot object creates a set of polylines connecting data points in two-dimensiona
space.

An IDLgrPlot object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrPlot::Init” on page 1885.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPlot::Cleanup

• IDLgrPlot::GetCTM

• IDLgrPlot::GetProperty

• IDLgrPlot::Init

• IDLgrPlot::SetProperty
IDL Reference Guide IDLgrPlot

1880 Appendix A: IDL Object Class & Method Reference

e
ll the
wn
p

IDLgrPlot::Cleanup

The IDLgrPlot::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj or Obj -> [IDLgrPlot::]Cleanup (Only in subclass’ Cleanup
method.)

Arguments

None

Keywords

None
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1881

rix

e
ed

of

is
tion
lias.

from
rsued.

to

d.
IDLgrPlot::GetCTM

The IDLgrPlot::GetCTM function method returns the 4 x 4 graphics transform mat
from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrPlot::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the plot
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrPlot::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrPlot

1882 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1883

y or

,

the

r of
IDLgrPlot::GetProperty

The IDLgrPlot::GetProperty procedure method retrieves the value of the propert
group of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]GetProperty [, ALL=variable] [, DATA= variable]
[, PARENT=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrPlot::Init followed by the word “Get” can be retrieved using
IDLgrPlot::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DATA

Set this keyword to a named variable that will contain the plot data in a 3 xn array,
[DataX, DataY, DataZ].

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] specifying the range ofz data values covered by the graphic
object.
IDL Reference Guide IDLgrPlot

1884 Appendix A: IDL Object Class & Method Reference

rty
 or
Note
The XRANGE and YRANGE properties can also be retrieved via the GetPrope
method; ZRANGE, however, can only be retrieved, not initialized (Init method)
set (SetProperty method).
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1885

e
Init
ss
IDLgrPlot::Init

The IDLgrPlot::Init function method initializes the plot object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPlot' [, [X,] Y])

or

Result = Obj -> [IDLgrPlot::]Init([[X,] Y] [, COLOR{Get, Set}=index or RGB
vector | , VERT_COLORS{Get, Set}=vector] [, DATAX {Set}= vector]
[, DATAY{Set}= vector] [, /HIDE{Get, Set}] [, /HISTOGRAM{Get, Set}]
[, LINESTYLE{Get, Set}=integer or two-element vector] [, MAX_VALUE{Get,
Set}=value] [, MIN_VALUE{Get, Set}=value] [, NAME{Get, Set}=string]
[, NSUM{Get, Set}=value] [, PALETTE{Get, Set}=objref] [, /POLAR{Get, Set}]
[, /RESET_DATA{Set}] [, SHARE_DATA{Set}=objref] [, SYMBOL{Get,
Set}=objref(s)] [, THICK{Get, Set}=points{1 to 10}] [, /USE_ZVALUE]
[, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get, Set}=vector]
[, XRANGE{Get, Set}=[xmin, xmax]] [, YCOORD_CONV{Get, Set}=vector]
[, YRANGE{Get, Set}=[ymin, ymax]] [, ZCOORD_CONV{Get, Set}=vector]
[, ZVALUE{Get, Set}=value]) (Only in a subclass’ Init method.)

Arguments

X

A vector representing the abscissa values to be plotted. IfX is provided,Y is plotted
as a function ofX. This argument is converted to single-precision floating-point
values.

Y

Either a vector of two-element arrays [x, y] representing the points to be plotted, or a
vector representing the ordinate values to be plotted. IfY is a vector of ordinate
IDL Reference Guide IDLgrPlot

1886 Appendix A: IDL Object Class & Method Reference

e
fault

 is

 is

wn:

t the

es.
 two-
values andX is not specified,Y is plotted as a function of the vector index ofY. This
argument is converted to single-precision floating point.

Keywords

Properties retrievable viaIDLgrPlot::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrPlot::SetProperty are indicated
by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this plot. Th
color may be specified as a color lookup table index or as an RGB vector. The de
is [0, 0, 0].

DATAX (Set)

Set this keyword to a vector specifying the X values to be plotted. This keyword
the same as theX argument.

DATAY (Set)

Set this keyword to a vector specifying the Y values to be plotted. This keyword
the same as theY argument.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HISTOGRAM (Get, Set)

Set this keyword to force only horizontal and vertical lines to be used to connec
plotted points. By default, the points are connected using a single straight line.

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the plot lin
The value can be either an integer value specifying a pre-defined line style, or a
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1887

its

 of

than
 that

the
 the

ct.

 is
oint.
• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
whererepeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in thebitmask
and the value ofrepeat is 2, then the line that is drawn will have six consecutive b
turned off.) The value ofrepeat must be in the range 1≤ repeat≤ 255.

Thebitmask indicates which pixels are drawn and which are not along the length
the line.Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example,LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

MAX_VALUE (Get, Set)

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing data and are not plotted. Note
the IEEE floating-point value NaN is also treated as missing data.

MIN_VALUE (Get, Set)

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing data and are not plotted. Note that
IEEE floating-point value NaN is also treated as missing data.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

NSUM (Get, Set)

Set this keyword to the number of data points to average when plotting. If NSUM
larger than 1, every group of NSUM points is averaged to produce one plotted p
If there are M data points, then M/NSUM points are plotted.
IDL Reference Guide IDLgrPlot

1888 Appendix A: IDL Object Class & Method Reference

f the

 a
GB

t.

s a
ther

rty is

 is

ay
e
tting

re
are
 a

ess
PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLAR (Get, Set)

Set this keyword to create a polar plot. TheX andY arguments must both be presen
TheX argument represents the radius, and theY argument represents the angle
expressed in radians.

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA[XY] properties a
new data set unique to this object, rather than overwriting data that is shared by o
objects. There is no reason to use this keyword if the object on which the prope
being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data
provided via a DATA property.

SHARE_DATA (Set)

Set this keyword to an object with which data is to be shared by this plot. A plot m
only share data with another plot. The SHARE_DATA property is intended for us
when data values are not set via an argument to the object’s Init method or by se
the object’s DATA property.

SYMBOL (Get, Set)

Set this keyword to a vector containing instances of theIDLgrSymbol object class.
Each symbol in the vector will be drawn at the corresponding plotted point. If the
are more points than elements in SYMBOL, the elements of the SYMBOL vector
cyclically repeated. By default, no symbols are drawn. To remove symbols from
plot, set the SYMBOL property equal to a null object reference.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to be used to draw the plotted lines, in points. The default is one point.
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1889

 any
r or
en

. If

s
:

ot

s
:

USE_ZVALUE

Set this keyword to use the current ZVALUE. The plot is considered three-
dimensional if this keyword is set.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices. If there are more plot points than elements in
VERT_COLORS, the elements of VERT_COLORS are cyclically repeated. By
default, the plot is all drawn in the single color provided by the COLOR keyword
the VERT_COLORS is provided, the COLOR keyword is ignored.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

XRANGE (Get, Set)

Set this keyword equal to a two-element vector of the form [xmin, xmax] specifying
the range ofx data coordinates covered by the graphic object. If this property is n
specified, the minimum and maximum data values are used.

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]
IDL Reference Guide IDLgrPlot

1890 Appendix A: IDL Object Class & Method Reference

s
:

d by

ct.
The default is [0.0, 1.0].

YRANGE (Get, Set)

Set this keyword equal to a two-element vector of the form [ymin, ymax] specifying
the range ofy data values covered by the graphic object. If this property is not
specified, the minimum and maximum data values are used.

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

The default is [0.0, 1.0].

ZVALUE (Get, Set)

Set this keyword to a floating point value representing the constantZ value to be used
for this plot. The plotted lines and symbols are projected onto the plane specifie
this value. The default is 0.0.

Note
The USE_ZVALUE keyword needs to be set in order for ZVALUEs to take affe
IDLgrPlot IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1891

roup
IDLgrPlot::SetProperty

The IDLgrPlot::SetProperty procedure method sets the value of the property or g
of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPlot::Init followed by the word “Set” can be set using
IDLgrPlot::SetProperty.
IDL Reference Guide IDLgrPlot

1892 Appendix A: IDL Object Class & Method Reference

tices
any
s

IDLgrPolygon

A polygon object represents one or more polygons that share a given set of ver
and rendering attributes. All polygons must be convex—that is, a line connecting
pair of vertices on the polygon cannot fall outside the polygon. Concave polygon
can be converted to a set of convex polygons using theIDLgrTessellator object.

An IDLgrPolygon object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrPolygon::Init” on page 1898.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPolygon::Cleanup

• IDLgrPolygon::GetCTM

• IDLgrPolygon::GetProperty

• IDLgrPolygon::Init

• IDLgrPolygon::SetProperty
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1893

ct.

e
ll the
wn
p

IDLgrPolygon::Cleanup

The IDLgrPolygon::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrPolygon::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPolygon

1894 Appendix A: IDL Object Class & Method Reference

m

e
ed

of

on

is
tion
lias.

from
rsued.

to

d.
IDLgrPolygon::GetCTM

The IDLgrPolygon::GetCTM function method returns the 4 x 4 graphics transfor
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrPolygon::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polyg
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrPolygonl::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1895

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDL Reference Guide IDLgrPolygon

1896 Appendix A: IDL Object Class & Method Reference

ble:

,

the

r of
IDLgrPolygon::GetProperty

The IDLgrPolygon::GetProperty procedure method retrieves the value of the
property or group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

There are no arguments for this methods.

Keywords

Any keyword toIDLgrPolygon::Init followed by the word “Get” can be retrieved
using IDLgrPolygon::GetProperty. In addition, the following keywords are availa

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1897

r of

r of
YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDL Reference Guide IDLgrPolygon

1898 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrPolygon::Init

The IDLgrPolygon::Init function method initializes the polygons object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolygon' [,X [, Y[, Z]]])

or

Result = Obj -> [IDLgrPolygon::]Init([X, [Y, [Z]]] [, BOTTOM{Get, Set}=index or
RGB vector] [, COLOR{Get, Set}=index or RGB vector |, VERT_COLORS{Get,
Set}=vector] [, DATA{Get, Set}=array] [, FILL_PATTERN{Get, Set}=objref to
IDLgrPattern object] [, /HIDDEN_LINES] [, /HIDE{Get, Set}]
[, LINESTYLE{Get, Set}=value] [, NAME{Get, Set}=string] [, NORMALS{Get,
Set}=array] [, PALETTE=objref] [, POLYGONS{Get, Set}=array of polygon
descriptions] [, REJECT{Get, Set}={0 | 1 | 2}] [, /RESET_DATA{Set}]
[, SHADE_RANGE{Get, Set}=array] [, SHADING{Get, Set}={0 | 1}]
[, SHARE_DATA{Set}=objref] [, STYLE{Get, Set}={0 | 1 | 2}]
[, TEXTURE_COORD{Get, Set}=array] [, /TEXTURE_INTERP{Get, Set}]
[, TEXTURE_MAP{Get, Set}=objref to IDLgrImage object] [, THICK{Get,
Set}=points{1 to 10}] [, XCOORD_CONV{Get, Set}=vector]
[, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get, Set}=vector]
[, ZERO_OPACITY_SKIP{Get, Set}={0 | 1}]) (Only in a subclass’ Init method.)

Arguments

X

A vector argument providing theX coordinates of the vertices. The vector must
contain at least three elements. If theY andZ arguments are not provided,X must be
an array of either two or three vectors (i.e., [2,*] or [3,*]), in which case,X[0,*]
specifies theX values,X[1,*] specifies theYvalues, andX[2,*] specifies theZ values.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1899

ast

ast

ons.
m

lor

rray
y

wn:
Y

A vector providing theYcomponents of the vertices. The vector must contain at le
three elements.

Z

A vector providing theZ components of the vertices. The vector must contain at le
three elements.

Keywords

Properties retrievable viaIDLgrPolygon::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrPolygon::SetPropertyare
indicated by the word “Set” following the keyword.

BOTTOM (Get, Set)

Set this keyword to an RGB or Indexed color for drawing the backs of the polyg
(Theback of a polygon is the side opposite the normal direction). Setting a botto
color is only supported when the destination device uses RGB color mode.

COLOR (Get, Set)

Set this keyword to an RGB or Indexed color for drawing polygons. The default co
is [0, 0, 0] (white). If the TEXTURE_MAP property is used, the final color is
modulated by the texture map pixel values. This keyword is ignored if the
VERT_COLORS keyword is provided.

DATA (Get, Set)

Set this keyword to a2 x n or 3 x n array which defines, respectively, the 2D or 3D
vertex data. DATA is equivalent to the optional arguments,X, Y, andZ.

FILL_PATTERN (Get, Set)

Set this keyword equal to an object reference to an IDLgrPattern object (or an a
of IDLgrPattern objects) to specify the fill pattern to use for filling the polygons. B
default, FILL_PATTERN is set to a null object reference, specifying a solid fill.

HIDDEN_LINES

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra
IDL Reference Guide IDLgrPolygon

1900 Appendix A: IDL Object Class & Method Reference

on.
 two-

its

 of

ct.

 is, if
• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the polyg
The value can be either an integer value specifying a pre-defined line style, or a
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
whererepeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in thebitmask
and the value ofrepeat is 2, then the line that is drawn will have six consecutive b
turned off.) The value ofrepeat must be in the range 1≤ repeat≤ 255.

Thebitmask indicates which pixels are drawn and which are not along the length
the line.Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example,LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

NORMALS (Get, Set)

Set this keyword to a3 x n array of unit polygon normals at each vertex. If this
keyword is not set, vertex normals are computed by averaging shared polygon
normals at each vertex. Normals are computed using the Right Hand Rule; that
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1901

o

d

f the

 a
GB

, set

nt an

g on
the polygon is facing the viewer, vertices are taken in counterclockwise order. T
remove previously specified normals, set NORMALS to a scalar.

Note
Computing normals is a computationally expensive operation. Rendering spee
increases significantly if you supply the surface normals explicitly. You can
compute the array of polygon normals used by this keyword automatically. See
“COMPUTE_MESH_NORMALS” on page 196 for details.

PALETTE

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLYGONS (Get, Set)

Set this keyword to an array of polygon descriptions. A polygon description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], wheren is the number of
vertices that define the polygon, and i0..in-1 are indices into theX, Y, andZ arguments
that represent the polygon vertices. To ignore an entry in the POLYGONS array
the vertex count,n, to 0. To end the drawing list, even if additional array space is
available, setn to -1. If this keyword is not specified, a single polygon will be
generated.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be
shared by the multiple polygons. Consequently, the polygon object can represe
entire mesh and compute reasonable normal estimates in most cases.

REJECT (Get, Set)

Set this keyword to an integer value to reject polygons as being hidden dependin
the orientation of their normals. Select from one of the following values:

• 0 = No polygons are hidden

• 1 = Polygons whose normals point away from the viewer are hidden
IDL Reference Guide IDLgrPolygon

1902 Appendix A: IDL Object Class & Method Reference

 set
.
set

 the

olor
ixel.
55].
 that

ne
upon

S.
• 2 = Polygons whose normals point toward the viewer are hidden

Set this keyword to zero to draw all polygons regardless of the direction of their
normals.

RESET_DATA (Set)

Set this keyword to treat the data provided via the DATA property as a new data
unique to this object, rather than overwriting data that is shared by other objects
There is no reason to use this keyword if the object on which the property is being
does not currently share data with another object (that is, if the SHARE_DATA
property is not in use). This keyword has no effect if no new data is provided via
DATA property.

SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (c
indices) to use for shading. The first element is the color index for the darkest p
The second element is the color index for the brightest pixel. The default is [0, 2
This keyword is ignored when the polygons are drawn to a graphics destination
uses the RGB color model.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color of the first vertex in each polygon is used to defi
the color for the entire polygon. The color has a constant intensity based
the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors, and then along scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object with which data is to be shared by this polygon(s).
Polygons may only share data with another polygons object or a polyline. The
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property.

STYLE (Get, Set)

Set this keyword to specify how the polygon should be drawn:

• 0 = Points: Only vertices are drawn, using either COLOR or VERT_COLOR
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1903

If
age

256

ing

ssly

f

to
ect
• 1 = Lines: Each polygon is outlined by connecting vertices.

• 2 = Filled (default): The polygon faces are shaded.

Note
Texturing is in effect only when STYLE = 2 (Filled).

TEXTURE_COORD (Get, Set)

A 2 x n array containing the texture map coordinates for each of then polygon
vertices. Use this keyword in conjunction with the TEXTURE_MAP keyword to
wrap images over 2D and 3D polygons. Default coordinates are not provided.

Texture coordinates are normalized. This means that themx n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0].
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the im
object is tiled into the larger range.

For example, suppose the image object specified via TEXTURE_MAP is a 256 x
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

TEXTURE_INTERP (Get, Set)

Set this keyword to indicate that bilinear sampling is to be used for texture mapp
an image onto the polygon(s). The default is nearest neighbor sampling.

TEXTURE_MAP (Get, Set)

Set this keyword to the object reference of an IDLgrImage object to be texture
mapped onto the polygons. The tiling or mapping of the texture is defined expre
by TEXTURE_COORD. If this keyword is omitted, polygons are filled with the
color specified by the COLOR or VERT_COLORS property. If both
TEXTURE_MAP and COLORS or VERT_COLORS properties exist, the color o
the texture is modulated by the base color of the object. (This means that for the
clearest display of the texture image, the COLOR property should be set equal
[255,255,255].) To remove a texture map, set TEXTURE_MAP equal to a null obj
reference.
IDL Reference Guide IDLgrPolygon

1904 Appendix A: IDL Object Class & Method Reference

e
nts)

re
e

 to

exed
ight

s
:

s
:

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the size of th
points or the thickness of the lines to be drawn when STYLE is set to either 0 (Poi
or 1 (Lines), in points. The default is one point.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are mo
vertices than elements in VERT_COLORS, the elements of VERT_COLORS ar
cyclically repeated. By default, the polygons are all drawn in the single color
provided by the COLOR keyword. To remove vertex colors, set VERT_COLORS
a scalar.

Note
If the polygon object is being rendered on a destination device that uses the Ind
color model, and the view that contains the polygon also contains one or more l
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1905

s
:

ls
ect
 any
ffer
. By
d as

e

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to gain finer control over the rendering of textured polygon pixe
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not aff
the color of a screen pixel since they have no opacity. If this keyword is set to 1,
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-bu
is updated for these pixels and the display image is not affected as noted above
updating the Z-buffer without updating the display image, the polygon can be use
aclipping surface for other graphics primitives drawn after the current graphics
object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map is used or if the texture map in us
does not contain an opacity channel.
IDL Reference Guide IDLgrPolygon

1906 Appendix A: IDL Object Class & Method Reference

y or
IDLgrPolygon::SetProperty

The IDLgrPolygon::SetProperty procedure method sets the value of the propert
group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPolygon::Init followed by the word “Set” can be set using
IDLgrPolygon::SetProperty.
IDLgrPolygon IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1907

nd
IDLgrPolyline

A polyline object represents one or more polylines that share a set of vertices a
rendering attributes.

An IDLgrPolyline object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrPolyline::Init” on page 1913.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPolyline::Cleanup

• IDLgrPolyline::GetCTM

• IDLgrPolyline::GetProperty

• IDLgrPolyline::Init

• IDLgrPolyline::SetProperty
IDL Reference Guide IDLgrPolyline

1908 Appendix A: IDL Object Class & Method Reference

ct.

e
ll the
wn
p

IDLgrPolyline::Cleanup

The IDLgrPolyline::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrPolyline::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1909

m

e
ed

of

ne

is
tion
lias.

from
rsued.

to

d.
IDLgrPolyline::GetCTM

The IDLgrPolyline::GetCTM function method returns the 4 x 4 graphics transfor
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrPolyline::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polyli
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrPolyline::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrPolyline

1910 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1911

erty

le:

,

the

r of
IDLgrPolyline::GetProperty

The IDLgrPolyline::GetProperty procedure method retrieves the value of a prop
or group of properties for the polylines.

Syntax

Obj -> [IDLgrPolyline::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrPolyline::Init followed by the word “Get” can be retrieved
using IDLgrPolyline::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.
IDL Reference Guide IDLgrPolyline

1912 Appendix A: IDL Object Class & Method Reference

r of

r of
YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1913

e
Init
ss
IDLgrPolyline::Init

The IDLgrPolyline::Init function method initializes the polylines object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolyline' [,X [, Y[, Z]]])

or

Result = Obj -> [IDLgrPolyline::]Init([X, [Y, [Z]]] [, COLOR{Get, Set}=index or
RGB vector| , VERT_COLORS{Get, Set}=vector] [, DATA{Get, Set}=array]
[, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value] [, NAME{Get, Set}=string]
[, PALETTE{Get, Set}=objref] [, POLYLINES{Get, Set}=array of polyline
descriptions] [, /RESET_DATA{Set}] [, SHADING{Get, Set}={0 | 1}]
[, SHARE_DATA{Set}=objref] [, SYMBOL{Get, Set}=objref(s)] [, THICK{Get,
Set}=points{1 to 10}] [, UVALUE{Get, Set}=value] [, XCOORD_CONV{Get,
Set}=vector] [, YCOORD_CONV{Get, Set}=vector] [, ZCOORD_CONV{Get,
Set}=vector]) (Only in a subclass’ Init method.)

Arguments

X

A vector providing theX components of the points to be connected. If theY andZ
arguments are not specified,X must be an array of either two or three vectors (i.e.,
[2,*] or [3,*]), in which caseX[0,*] represent theX values,X[1,*] represent theY
values, andX[2,*] represent theZ values.

Y

A vector providing theY components of the points to be connected.

Z

A vector providing theZ components of the points to be connected.
IDL Reference Guide IDLgrPolyline

1914 Appendix A: IDL Object Class & Method Reference

lor

wn:

e.
 two-
Keywords

Properties retrievable viaIDLgrPolyline::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrPolyline::SetPropertyare
indicated by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to an RGB or Indexed color for drawing polylines. The default co
is [0, 0, 0] (white). This keyword is ignored if the VERT_COLORS keyword is
provided.

DATA (Get, Set)

Set this keyword to a2 x n or 3 x n array which defines, respectively, the 2D or 3D
vertex data. DATA is equivalent to the optional arguments,X, Y, andZ.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the polylin
The value can be either an integer value specifying a pre-defined line style, or a
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
whererepeat indicates the number of times consecutive runs of 1’s or 0’s in the
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1915

its

 of

ct.

f the

 a
GB

ES

red
ntire

w
r

bitmask should be repeated. (That is, if three consecutive 0’s appear in thebitmask
and the value ofrepeat is 2, then the line that is drawn will have six consecutive b
turned off.) The value ofrepeat must be in the range 1≤ repeat≤ 255.

Thebitmask indicates which pixels are drawn and which are not along the length
the line.Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example,LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

POLYLINES (Get, Set)

Set this keyword to an array of polyline descriptions. A polyline description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], wheren is the number of
vertices that define the polyline, and i0..in-1 are indices into theX, Y, andZ arguments
that represent the vertices of the polyline(s). To ignore an entry in the POLYLIN
array, set the vertex count,n, to 0. To end the drawing list, even if additional array
space is available, setn to -1. If this keyword is not specified, a single connected
polyline will be generated from theX, Y, andZ arguments.

Note
The connectivity array described by POLYLINES allows an individual object to
contain more than one polyline. Vertex, normal and color information can be sha
by the multiple polylines. Consequently, the polyline object can represent an e
mesh and compute reasonable normal estimates in most cases.

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA property as a ne
data set unique to this object, rather than overwriting data that is shared by othe
IDL Reference Guide IDLgrPolyline

1916 Appendix A: IDL Object Class & Method Reference

rty is

 is

sity

line
TA

line.
OL

bols

ess

 any
r or
en
objects. There is no reason to use this keyword if the object on which the prope
being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data
provided via the DATA property.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color of the first vertex in a line segment is used to
define the color for the entire line segment. The color has a constant inten
based upon the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object whose data is to be shared by this polyline. A poly
may only share data with a polygon object or another polyline. The SHARE_DA
property is intended for use when data values are not set via an argument to the
object’s Init method or by setting the object’s DATA property.

SYMBOL (Get, Set)

Set this keyword to a vector containing one or more instances of theIDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the poly
If there are more vertices than elements in SYMBOL, the elements of the SYMB
vector are cyclically repeated. By default, no symbols are drawn. To remove sym
from a polyline, set SYMBOL to a scalar.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to be used to draw the polyline, in points. The default is one point.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1917

re
e
 by

s
:

s
:

s
:

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are mo
vertices than elements in VERT_COLORS, the elements of VERT_COLORS ar
cyclically repeated. By default, the polyline is drawn in the single color provided
the COLOR keyword. To remove vertex colors, set VERT_COLORS to a scalar.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDL Reference Guide IDLgrPolyline

1918 Appendix A: IDL Object Class & Method Reference

 or
IDLgrPolyline::SetProperty

The IDLgrPolylines::SetProperty procedure method sets the value of a property
group of properties for the polylines.

Syntax

Obj -> [IDLgrPolylines::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPolyline::Init followed by the word “Set” can be set using
IDLgrPolyline::SetProperty.
IDLgrPolyline IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1919

ct is
nge
IDLgrPrinter

A printer object represents a hardcopy graphics destination. When a printer obje
created, the printer device to which it refers is the default system printer. To cha
the printer, utilize the printer dialogs (see“DIALOG_PRINTJOB” on page 378 and
“DIALOG_PRINTERSETUP” on page 377.)

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLgrPrinter::Init” on page 1929.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrPrinter::Cleanup

• IDLgrPrinter::Draw

• IDLgrPrinter::GetContiguousPixels

• IDLgrPrinter::GetFontnames

• IDLgrPrinter::GetProperty

• IDLgrPrinter::GetTextDimensions

• IDLgrPrinter::Init

• IDLgrPrinter::NewDocument

• IDLgrPrinter::NewPage
IDL Reference Guide IDLgrPrinter

1920 Appendix A: IDL Object Class & Method Reference
• IDLgrPrinter::SetProperty
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1921

If a
nt is

e
ll the
wn
p

IDLgrPrinter::Cleanup

The IDLgrPrinter::Cleanup procedure method performs all cleanup on the object.
document is open (that is, if graphics have been draw to the printer), the docume
closed and the pending graphics are sent to the current printer.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrPrinter::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPrinter

1922 Appendix A: IDL Object Class & Method Reference

ics

 the

es

en
the

r
ter.

. The
IDLgrPrinter::Draw

The IDLgrPrinter::Draw procedure method draws the given picture to this graph
destination.

Note
Objects are drawn to the destination device in the order that they are added to
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrPrinter::]Draw [,Picture] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of anIDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of anIDLgrScene object) to be
drawn.

Keywords

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid valu
include:

0 = Bitmap (default)

1 = Vector

If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and th
copies the buffer to the printer in bitmap format. The bitmap retains the quality of
original image.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vecto
operations that result in a representation of the Scene that is scalable to the prin
The vector representation does not retain all the attributes of the original image
vector representation is sent to the printer.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1923

or

his
zero,
et an

 The
IDLgrPrinter::GetContiguousPixels

The IDLgrPrinter::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index col
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. T
means that within the array, the elements in the largest available range are set to
the elements in the second-largest range are set to one, etc. Use this range to s
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface andIDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values.
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrPrinter::]GetContiguousPixels()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPrinter

1924 Appendix A: IDL Object Class & Method Reference

nts
e

ts
ca”.

se

IDL

as

lue is
IDLgrPrinter::GetFontnames

The IDLgrPrinter::GetFontnames function method returns the list of available fo
that can be used inIDLgrFontobjects. This method will only return the names of th
available TrueType fonts. Hershey fonts will not be returned; seeAppendix G,
“Fonts” for more information.

Syntax

Return= Obj -> [IDLgrPrinter::]GetFontnames(FamilyName[, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fon
must belong. The string may be a fully specified family name—such as “Helveti
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, u
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default va
the string, “*”, which returns all fontnames containing theFamilyName argument,
with or without style modifiers.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1925

y or

e:

,

e
 a
TS
IDLgrPrinter::GetProperty

The IDLgrPrinter::GetProperty procedure method retrieves the value of a propert
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]GetProperty [, ALL=variable] [, DIMENSIONS=variable]
[, NAME=string] [, RESOLUTION=variable]

Arguments

None

Keywords

Any keyword toIDLgrPrinter::Init followed by the word “Get” can be retrieved
using IDLgrPrinter::GetProperty. In addition, the following keywords are availabl

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of th
form [width, height] specifying the overall ‘drawable’ area that may be printed on
page. By default, the dimensions are measured in device units (refer to the UNI
keyword).

NAME

A string containing the operating system-specific name of the print stream. e.g.
'\\BORG\HpJet'.
IDL Reference Guide IDLgrPrinter

1926 Appendix A: IDL Object Class & Method Reference
RESOLUTION

Set this keyword to a named variable that will contain a vector of the form [xres, yres]
defining the pixel resolution, measured in centimeters per pixel.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1927

of a
oint
ed

int

he
s, or

is
ions.

he
. If
rent

s

IDLgrPrinter::GetTextDimensions

The IDLgrPrinter::GetTextDimensions function method retrieves the dimensions
text object that will be rendered on the printer. The result is a 3-element floating-p
vector [xDim, yDim, zDim] representing the dimensions of the text object, measur
in data units.

Syntax

Result = Obj -> [IDLgrPrinter::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of floating-po
values (one for each string in the IDLgrText object). The values represent the
distance to travel (parallel to the UPDIR vector) from the text baseline to reach t
bottom of the lowest descender in the string. All values will be negative number
zero. This keyword is valid only ifTextObj is an IDLgrText object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the text dimens
Each path object reference specified with this keyword must contain an alias. T
text dimensions are computed for the version of the object falling within that path
this keyword is not set, the PARENT properties determine the path from the cur
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrPrinter::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.
IDL Reference Guide IDLgrPrinter

1928 Appendix A: IDL Object Class & Method Reference
Note
For more information on aliases, refer to theALIAS keyword in IDLgrModel::Add.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1929

e
Init
ss
IDLgrPrinter::Init

The IDLgrPrinter::Init function method initializes the printer object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPrinter')

or

Result = Obj -> [IDLgrPrinter::]Init([, COLOR_MODEL{Get}=0 | 1}]
[, GRAPHICS_TREE{Get, Set}=objref of type IDLgrScene, IDLgrViewgroup, or
IDLgrView] [, /LANDSCAPE{Get, Set}] [, N_COLORS{Get}=integer{2 to 256}]
[, N_COPIES{Get, Set}=integer] [, PALETTE{Get, Set}=objref]
[, PRINT_QUALITY{Get, Set}={0 | 1 | 2}] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value]) (Only in a
subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrPrinter::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrPrinter::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:

• 0 = RGB (default)

• 1 = Color Index
IDL Reference Guide IDLgrPrinter

1930 Appendix A: IDL Object Class & Method Reference

od
iated

e of

to

int

o

f the
e
l is
GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw meth
on the destination object with no arguments will cause the object reference assoc
with this property to be drawn. If this object is valid and the destination object is
destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

LANDSCAPE (Get, Set)

Set this keyword to produce hardcopy output in landscape mode. The default valu
zero indicates Portrait mode.

Note
The printer driver may not support the LANDSCAPE option; in general, it is best
use the printer dialogs to set orientation.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if the
COLOR_MODEL is set to Indexed (1). This keyword is ignored if the
COLOR_MODEL is set to RGB (0).

N_COPIES (Get, Set)

Set this keyword equal to an integer that determines the number of copies of pr
data to be generated. The default is 1 copy.

Note
Your specific printer driver may not support the N_COPIES option. You can als
use the printer dialogs to set the number of copies.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class) to specify the red, green, and blue values that are to b
loaded into the graphics destination’s color lookup table if the Indexed color mode
used.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1931

are
ring

e

ese

.

PRINT_QUALITY (Get, Set)

Set this keyword to an integer value indicating the print quality at which graphics
to be drawn to the printer. Note that the print quality is independent of the rende
quality (as set by the QUALITY keyword). Valid values are:

• 0 = Low

• 1 = Normal (this is the default)

• 2 = High

Generally, setting the print quality to a lower value will increase the speed of the
printing job, but decrease the resolution; setting it to a higher value will cause th
printing job to take more time, but will increase the resolution.

Note
Some printer drivers may not be able to support different printing qualities. In th
cases, the setting of the PRINT_QUALITY property will be quietly ignored.

QUALITY (Get, Set)

Set this keyword to an integer value indicating the rendering quality at which
graphics are to be drawn to this destination. Note that the rendering quality is
independent of the print quality (as set by the PRINT_QUALITY keyword). Valid
values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the drawable area on a page.
IDL Reference Guide IDLgrPrinter

1932 Appendix A: IDL Object Class & Method Reference

out
t

 any
r or
en
Note
If you set the value of the UNITS property (using the SetProperty method) with
also setting the value of the DIMENSIONS property, IDL will convert the curren
size value into the new units.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1933

nt (a
ter,
IDLgrPrinter::NewDocument

The IDLgrPrinter::NewDocument procedure method closes the current docume
page or group of pages), which causes any pending output to be sent to the prin
finishing the printer job.

Syntax

Obj -> [IDLgrPrinter::]NewDocument

Arguments

None

Keywords

None
IDL Reference Guide IDLgrPrinter

1934 Appendix A: IDL Object Class & Method Reference

 the
IDLgrPrinter::NewPage

The IDLgrPrinter::NewPage procedure method issues a new page command to
printer.

Syntax

Obj -> [IDLgrPrinter::]NewPage

Arguments

None

Keywords

None
IDLgrPrinter IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1935
IDLgrPrinter::SetProperty

The IDLgrPrinter::SetProperty procedure method sets the value of a property or
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrPrinter::Init followed by the word “Set” can be set using
IDLgrPrinter::SetProperty.
IDL Reference Guide IDLgrPrinter

1936 Appendix A: IDL Object Class & Method Reference

rest.
IDLgrROI

The IDLgrROI object class is an object graphics representation of a region of inte

Superclasses

This class is a subclass ofIDLanROI.

Subclasses

None.

Creation

SeeIDLgrROI::Init.

Methods

Intrinsic Methods

The IDLgrROI object class has the following methods:

• IDLgrROI::Cleanup

• IDLgrROI::GetProperty

• IDLgrROI::Init

• IDLgrROI::PickVertex

• IDLgrROI::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLanROI::AppendData

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::RemoveData

• IDLanROI::ReplaceData
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1937
• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::Translate
IDL Reference Guide IDLgrROI

1938 Appendix A: IDL Object Class & Method Reference

nnot
te
the
IDLgrROI::Cleanup

The IDLgrROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLgrROI::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1939

or

e

t

IDLgrROI::GetProperty

The IDLgrROI::GetProperty procedure method retrieves the value of a property
group of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]GetProperty [, ALL=variable]

Arguments

None.

Keywords

Note
All keywords accepted byIDLanROI::GetProperty are also accepted by this
method. Furthermore, any keyword toIDLgrROI::Init followed by the word (Get)
can be retrieved using IDLgrROI::GetProperty.

The following keywords are also accepted:

ALL

Set this keyword to a named variable to contain an anonymous structure with th
values of all of the properties associated with the state of this object. State
information about the object may include things like color, line style, etc., but no
vertex data or user values.

Note
The fields in this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrROI

1940 Appendix A: IDL Object Class & Method Reference

st.

e the
Init
ss
IDLgrROI::Init

The IDLgrROI::Init function method initializes an Object Graphics region of intere

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLgrROI::Init([X[, Y[, Z]]] [, COLOR{Get, Set}=vector]
[, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value] [, NAME{Get, Set}=string]
[, PALETTE{Get, Set}=objref] [, STYLE{Get, Set}={ 0 | 1 | 2 }]
[, SYMBOL{Get, Set}=objref] [, THICK{Get, Set}=points {1.0 to 10.0}]
[, UVALUE{Get, Set}=uvalue] [, XCOORD_CONV{Get, Set}=[s0, s1]]
[, YCOORD_CONV{Get, Set}=[s0, s1]] [, ZCOORD_CONV{Get, Set}=[s0, s1]])

or

Obj = OBJ_NEW(‘IDLgrROI’[, X[, Y[, Z]]])

(In a subclass’ Init method only.)

Arguments

X

A vector providing theX components of the vertices for the region. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2, *] or [3, *]), in which case,X[0, *] represents theX
values,X[1, *] represents theY values, andX[2, *] represents theZ values.

Y

A vector providing theY components of the vertices.

Z

A scalar or vector providing theZ components of the vertices. If not provided,Z
values default to 0.0.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1941

wn:

e
or
Keywords

Note
All keywords accepted byIDLanROI::Init are accepted by this method as well.

In addition, the following keywords are accepted:

COLOR (Get, Set)

Set this keyword to an RGB or indexed color for drawing the region. The default
color is [0, 0, 0].

HIDE (Get, Set)

Set this keyword to a Boolean value indicating whether this region should be dra

• 0 = draw the region (the default)

• 1 = do not draw the region

LINESTYLE (Get, Set)

Set this keyword to the line style to be used to draw the region. The value can b
either an integer value specifying a pre-defined line style, or a two-element vect
specifying a stippling pattern.

The valid values for the pre-defined line styles are:

• 0 = solid (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

NAME (Get, Set)

Set this keyword to a string to use as the name for this region.
IDL Reference Guide IDLgrROI

1942 Appendix A: IDL Object Class & Method Reference

ion
e

ion

s, or

.
must

:

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used for Object Graphics
destinations using the RGB color model. In this case, if the color value for the reg
is specified as a color index value, this palette is used to look up the color for th
region. If the PALETTE keyword is not set, the destination object PALETTE
property is used, which defaults to a gray scale ramp.

STYLE (Get, Set)

Set this keyword to indicate the geometrical primitive to use to represent the reg
when displayed. Valid values include:

• 0 = points

• 1 = open polyline

• 2 = closed polyline (the default)

SYMBOL (Get, Set)

Set this keyword to reference anIDLgrSymbolobject for the symbol used for display
when STYLE = 0 (points). By default, a dot is used.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the size of the point
the thickness of the lines, measured in points. The default is one point.

UVALUE (Get, Set)

Set this keyword to a user value of any type to contain any information you wish
Remember if you set this user value equal to a pointer or object reference, you
destroy the pointer or object reference explicitly when destroying this region.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertX coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1*DataX

Recommended values are:

[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1943

:

:

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertY coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1*DataY

Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertZ coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1*DataZ

Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]
IDL Reference Guide IDLgrROI

1944 Appendix A: IDL Object Class & Method Reference

en

s are

is
to a
this

f the
IDLgrROI::PickVertex

The IDLgrROI::PickVertex function method picks a vertex of the region which, wh
projected onto the given destination device, is nearest to the given 2D device
coordinate.

Syntax

Result = Obj–>[IDLgrROI::]PickVertex(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the index of the nearest region vertex. If two or more vertice
equally nearest to the point, the smallest index of those vertices is returned.

Arguments

Dest

An object reference to anIDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to theIDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location used for picking a
nearest vertex.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
location in the data space of the region. Each path object reference specified with
keyword must contain an alias. The selected vertex is computed for the version o
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROI IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1945

oup
IDLgrROI::SetProperty

The IDLgrROI::SetProperty procedure method sets the value of a property or gr
of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]SetProperty

Arguments

None.

Keywords

Note
Any keywords accepted byIDLanROI::SetProperty are also accepted by this
method. Furthermore, any keywords toIDLgrROI::Init followed by the word(Set)
can be set using IDLgrROI::SetProperty as well.
IDL Reference Guide IDLgrROI

1946 Appendix A: IDL Object Class & Method Reference

p of
IDLgrROIGroup

The IDLgrROIGroup object class is an Object Graphics representation of a grou
regions of interest.

Superclasses

This class is a subclass ofIDLanROIGroup.

Subclasses

None.

Creation

SeeIDLgrROIGroup::Init.

Methods

Intrinsic Methods

The IDLgrROIGroup class has the following methods:

• IDLgrROIGroup::Add

• IDLgrROIGroup::Cleanup

• IDLgrROIGroup::Init

• IDLgrROIGroup::PickRegion

Inherited Methods

This class inherits the following methods:

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale

• IDLanROIGroup::Translate
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1947

nly
oup

 of
IDLgrROIGroup::Add

The IDLgrROIGroup::Add procedure method adds a region to the region group. O
objects of the IDLgrROI class may be added to the group. The regions in the gr
must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLgrROIGroup::]Add,ROI

Arguments

ROI

A reference to an instance of the IDLgrROI object class representing the region
interest to add to the group.

Keywords

Accepts all keywords accepted by theIDLanROIGroup::Add method.
IDL Reference Guide IDLgrROIGroup

1948 Appendix A: IDL Object Class & Method Reference

ject

nnot
te
the
IDLgrROIGroup::Cleanup

The IDLgrROIGroup::Cleanup procedure method performs all cleanup for an Ob
Graphics region of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLgrROIGroup::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1949

f

e the
Init
ss
IDLgrROIGroup::Init

The IDLgrROIGroup::Init function method initializes an Object Graphics region o
interest group object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLgrROIGroup::Init()

or

Obj = OBJ_NEW('IDLgrROIGroup')

(In a subclass’ Init method only.)

Arguments

None.

Keywords

None.
IDL Reference Guide IDLgrROIGroup

1950 Appendix A: IDL Object Class & Method Reference

p
 2D

ions
t is

is
to a
this

f the
IDLgrROIGroup::PickRegion

The IDLgrROIGroup::PickRegion function method picks a region within the grou
which, when projected onto the given destination device, is nearest to the given
device coordinate.

Syntax

Result = Obj–>[IDLgrROIGroup::]PickRegion(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the object reference of the nearest region. If two or more reg
are equally nearest to the point, the one that was added to the region group firs
returned.

Arguments

Dest

An object reference to anIDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to theIDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location to use for picking a
nearest region.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
location in the data space of the region. Each path object reference specified with
keyword must contain an alias. The selected region is computed for the version o
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROIGroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1951

er of
IDLgrScene

A scene object represents the entire scene to be drawn and serves as a contain
IDLgrView or IDLgrViewgroup objects.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

This class has no subclasses.

Creation

See“IDLgrScene::Init” on page 1956.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrScene::Add

• IDLgrScene::Cleanup

• IDLgrScene::GetByName

• IDLgrScene::GetProperty

• IDLgrScene::Init

• IDLgrScene::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move
IDL Reference Guide IDLgrScene

1952 Appendix A: IDL Object Class & Method Reference

e of
r

r at
IDLgrScene::Add

The IDLgrScene::Add function method verifies that the added item is an instanc
anIDLgrView or IDLgrViewgroup object. If it is, IDLgrScene:Add adds the view o
viewgroup to the specified scene.

Syntax

Obj -> [IDLgrScene::]Add,View [, POSITION=index]

Arguments

View

An instance of theIDLgrView or IDLgrViewgroup object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the containe
which the new object should be placed.
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1953

t.

e
ll the
wn
p

IDLgrScene::Cleanup

The IDLgrScene::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrScene::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrScene

1954 Appendix A: IDL Object Class & Method Reference

and
, the

he

s
s

od is
IDLgrScene::GetByName

The IDLgrScene::GetByName function method finds contained objects by name
returns the object reference to the named object. If the named object is not found
GetByName function returns a null object reference.

Note
The GetByName function doesnot perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of t
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrScene::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Object
contained by other objects can include the name of their parent object; this allow
you to create a fully qualified name specification. For example, ifobject1 contains
object2 , which in turn containsobject3 , the string specifying the fully qualified
object name of object3 would be'object1/object2/object3' .

Object names are specified relative to the object on which the GetByName meth
called. If used at the beginning of the name string, the/ character represents the top
of an object hierarchy. The string'..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1955

ty or

,

IDLgrScene::GetProperty

The IDLgrScene::GetProperty procedure method retrieves the value of a proper
group of properties for the contour.

Syntax

Obj -> [IDLgrScene::]GetProperty [, ALL=variable]

Keywords

Any keyword toIDLgrScene::Initfollowed by the word “Get” can be retrieved using
IDLgrScene::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrScene

1956 Appendix A: IDL Object Class & Method Reference

e
Init
ss

wn:

g.
IDLgrScene::Init

The IDLgrScene::Init function method initializes the scene object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrScene')

or

Result = Obj -> [IDLgrScene::]Init([, COLOR{Get, Set}=index or RGB vector]
[, /HIDE{Get, Set}] [, NAME{Get, Set}=string] [, /TRANSPARENT{Get, Set}]
[, UVALUE{Get, Set}=value]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrScene::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrScene::SetPropertyare indicated
by the word “Set” following the keyword.

HIDE

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

COLOR (Get, Set)

Set this keyword to the color to which the scene should be erased before drawin
The color may be specified as a color lookup table index or an RGB vector.
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1957

ct.

s

 any
r or
en
NAME

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

TRANSPARENT (Get, Set)

Set this keyword to disable window clearing. If this keyword is not set, the
destination object in use by the scene is automatically erased when the scene i
initialized.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDL Reference Guide IDLgrScene

1958 Appendix A: IDL Object Class & Method Reference

roup
IDLgrScene::SetProperty

The IDLgrScene::SetProperty procedure method sets the value of a property or g
of properties for the buffer.

Syntax

Obj -> [IDLgrScene::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrScene::Init followed by the word “Set” can be set using
IDLgrScene::SetProperty.
IDLgrScene IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1959
IDLgrSurface

A surface object represents a shaded or vector representation of a mesh grid.

An IDLgrSurface object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrSurface::Init” on page 1965.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrSurface::Cleanup

• IDLgrSurface::GetCTM

• IDLgrSurface::GetProperty

• IDLgrSurface::Init

• IDLgrSurface::SetProperty
IDL Reference Guide IDLgrSurface

1960 Appendix A: IDL Object Class & Method Reference

ct.

e
ll the
wn
p

IDLgrSurface::Cleanup

The IDLgrSurface::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrSurface::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1961

e
ed

of

ace

is
tion
lias.

from
rsued.

to

d.
IDLgrSurface::GetCTM

The IDLgrSurface::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrSurface::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surf
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrSurface::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrSurface

1962 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1963

rty

le:

,

ata.

the

r of
IDLgrSurface::GetProperty

The IDLgrSurface::GetProperty procedure method retrieves the value of a prope
or group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]GetProperty [, ALL=variable] [, DATA= variable]
[, PARENT=variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrSurface::Init followed by the word “Get” can be retrieved
using IDLgrSurface::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

DATA

Set this keyword to a named variable that upon return will contain the surface d

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.
IDL Reference Guide IDLgrSurface

1964 Appendix A: IDL Object Class & Method Reference

r of

r of
YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1965

e
Init
ss

he
IDLgrSurface::Init

The IDLgrSurface::Init function method initializes the surface object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSurface' [,Z [, X, Y]])

or

Result = Obj -> [IDLgrSurface::]Init([Z, [X, Y]] [, BOTTOM{Get, Set}=index or
RGB vector] [, COLOR{Get, Set}=index or RGB vector] [, DATAX{Set}= vector or
2D array] [, DATAY{Set}= vector or 2D array] [, DATAZ{Set}= 2D array]
[, /EXTENDED_LEGO{Get, Set}] [, /HIDDEN_LINES{Get, Set}] [, /HIDE{Get,
Set}] [, LINESTYLE{Get, Set}=value] [, MAX_VALUE{Get, Set}=value]
[, MIN_VALUE{Get, Set}=value] [, NAME{Get, Set}=string] [, PALETTE{Get,
Set}=objref] [, /RESET_DATA{Set}] [, SHADE_RANGE{Get, Set}=[index of
darkest pixel, index of brightest pixel]] [, SHADING{Get, Set}={0 | 1}]
[, SHARE_DATA{Set}=objref] [, /SHOW_SKIRT{Get, Set}] [, SKIRT{Get, Set}=Z
value] [, STYLE{Get, Set}={0 | 1 | 2 | 3 | 4 | 5 | 6}] [, TEXTURE_COORD{Get,
Set}=array] [, /TEXTURE_INTERP{Get, Set}] [, TEXTURE_MAP{Get,
Set}=objref to IDLgrImage] [, THICK{Get, Set}=points{1 to 10}] [, UVALUE{Get,
Set}=value] [, /USE_TRIANGLES{Get, Set}] [, VERT_COLORS{Get,
Set}=vector] [, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get,
Set}=vector] [, ZCOORD_CONV{Get, Set}=vector]
[, ZERO_OPACITY_SKIP{Get, Set}={0 | 1}]) (Only in a subclass’ Init method.)

Arguments

Z

The two-dimensional array to be displayed. IfX andY are provided, the surface is
defined as a function the (X, Y) locations specified by their contents. Otherwise, t
surface is generated as a function of the array indices of each element ofZ. This
argument is converted to single-precision floating-point.
IDL Reference Guide IDLgrSurface

1966 Appendix A: IDL Object Class & Method Reference

ative
m

The
fault

tes

tes
X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element ofX specifies the X coordinate for a column ofZ
(e.g.,X[0] specifies the X coordinate forZ[0,*]). If X is a two-dimensional array, each
element ofX specifies the X coordinate of the corresponding point inZ (Xij specifies
the X coordinate forZij). This argument is converted to single-precision floating-
point.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element ofYspecifies the Y coordinate for a row ofZ (e.g.,
Y(0) specifies the Y coordinate forZ[*,0]). If Y is a two-dimensional array, each
element ofY specifies the Y coordinate of the corresponding point inZ (Yij specifies
the Y coordinate forZij). This argument is converted to single-precision floating-
point.

Keywords

Properties retrievable viaIDLgrSurface::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrSurface::SetProperty are
indicated by the word “Set” following the keyword.

BOTTOM (Get, Set)

The color value used to draw the bottom surface. If not specified, or set to a neg
scalar value, the bottom is drawn with the same color as the top. Setting a botto
color is only supported when the destination device uses RGB color mode.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for this model.
color may be specified as a color lookup table index or as an RGB vector. The de
is [0, 0, 0].

DATAX (Set)

Set this keyword to a vector or a two-dimensional array specifying the X coordina
of the surface grid. This keyword is the same as theX argument described above.

DATAY (Set)

Set this keyword to a vector or a two-dimensional array specifying the Y coordina
of the surface grid. This keyword is the same as theY argument described above.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1967

ord

mn

wn:

e
or a
DATAZ (Set)

Set this keyword to the two-dimensional array to display as a surface. This keyw
is the same as theZ argument described above.

EXTENDED_LEGO (Get, Set)

Set this keyword to force the IDLgrSurface object to display the last row and colu
of data when lego display styles are selected.

HIDDEN_LINES (Get, Set)

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LINESTYLE (Get, Set)

Set this keyword to indicate the line style that should be used to draw the surfac
lines. The value can be either an integer value specifying a pre-defined line style,
two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
whererepeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in thebitmask
IDL Reference Guide IDLgrSurface

1968 Appendix A: IDL Object Class & Method Reference

its

 of

than

the
EE

ct.

f the

 a
GB

s a
ther

rty is

 is
and the value ofrepeat is 2, then the line that is drawn will have six consecutive b
turned off.) The value ofrepeat must be in the range 1≤ repeat≤ 255.

Thebitmask indicates which pixels are drawn and which are not along the length
the line.Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example,LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

MAX_VALUE (Get, Set)

The maximum value to be plotted. If this keyword is present, data values greater
the value of MAX_VALUE are treated as missing and are not plotted when the
surface is drawn. Note that the IEEE floating-point value NaN is also treated as
missing data.

MIN_VALUE (Get, Set)

The minimum value to be plotted. If this keyword is present, data values less than
value of MIN_VALUE are treated as missing and are not plotted. Note that the IE
floating-point value NaN is also treated as missing data.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

RESET_DATA (Set)

Set this keyword to treat the data provided via one of the DATA[XYZ] properties a
new data set unique to this object, rather than overwriting data that is shared by o
objects. There is no reason to use this keyword if the object on which the prope
being set does not currently share data with another object (that is, if the
SHARE_DATA property is not in use). This keyword has no effect if no new data
provided via a DATA property.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1969

olor
ixel.
red

set

g

ce
ed
r by

The
t on
en Z
e

 the
SHADE_RANGE (Get, Set)

Set this keyword to a two-element array that specifies the range of pixel values (c
indices) to use for shading. The first element is the color index for the darkest p
The second element is the color element for the brightest pixel. This value is igno
when the polygons are drawn to a graphics destination that uses the RGB color
model.

SHADING (Get, Set)

Set this keyword to an integer representing the type of shading to use if STYLE is
to 2 (Filled) or 6 (LegoFilled).

• 0 = Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then alon
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHARE_DATA (Set)

Set this keyword to an object whose data is to be shared by this surface. A surfa
may only share data with another surface. The SHARE_DATA property is intend
for use when data values are not set via an argument to the object’s Init method o
setting the object’s DATA property.

SHOW_SKIRT (Get, Set)

Set this keyword to enable skirt drawing. The default is to disable skirt drawing.

SKIRT (Get, Set)

Set this keyword to the Z value at which a skirt is to be defined around the array.
Z value is expressed in data units; the default is 0.0. If a skirt is defined, each poin
the four edges of the surface is connected to a point on the skirt which has the giv
value, and the sameX andY values as the edge point. In addition, each point on th
skirt is connected to its neighbor. The skirt value is ignored if skirt drawing is
disabled (see SHOW_SKIRT above).

STYLE (Get, Set)

Set this keyword to and integer value that indicates the style to be used to draw
surface. Valid values are:

• 0 = Points
IDL Reference Guide IDLgrSurface

1970 Appendix A: IDL Object Class & Method Reference

e
etely,
l to

If
age

256

sed

ture

se
, the
• 1 = Wire mesh (the default)

• 2 = Filled

• 3 = RuledXZ

• 4 = RuledYZ

• 5 = Lego

• 6 = LegoFilled: for outline or shaded and stacked histogram-style plots.

TEXTURE_COORD (Get, Set)

A 2 x n array of surface coordinate-texturemap coordinate pairs [s, t] at each vertex.,
containing the fill pattern array subscripts of each of then polygon vertices. Use this
keyword in conjunction with the TEXTURE_MAP keyword to warp images over th
surface. To stretch (or shrink) the texture map to cover the surface mesh compl
set TEXTURE_COORD to a scalar. By default, TEXTURE_COORD is set equa
[0.0, 0.0] to [1.0, 1.0] over the surface bounds.

Texture coordinates are normalized. This means that themx n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0].
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the im
object is tiled into the larger range.

For example, suppose the image object specified via TEXTURE_MAP is a 256 x
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

TEXTURE_INTERP (Get, Set)

 Set this keyword to a nonzero value to indicate that bilinear sampling is to be u
with texture mapping. The default method is nearest-neighbor sampling.

TEXTURE_MAP (Get, Set)

Set this keyword to an instance of theIDLgrImage object class to be texture mapped
onto the surface. If this keyword is omitted or set to a null object reference, no tex
map is applied and the surface is filled with the color specified by the COLOR or
VERT_COLORS property. If both TEXTURE_MAP and COLORS or
VERT_COLORS properties exist, the color of the texture is modulated by the ba
color of the object. (This means that for the clearest display of the texture image
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1971

ap

ess

 any
r or
en

s to

re
e

tex
R

exed
 light
COLOR property should be set equal to [255,255,255].) By default, the texture m
will be stretched (or shrunk) to cover the surface mesh completely.

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to use to draw surface lines, in points. The default is one point.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object of which it is a user value.

USE_TRIANGLES (Get, Set)

Set this keyword to force the IDLgrSurface object to use triangles instead of quad
draw the surface and skirt.

VERT_COLORS (Get, Set)

Set this keyword to a vector of colors to be used to draw at each vertex. Color is
interpolated between vertices if SHADING is set to 1 (Gouraud). If there are mo
vertices than elements in VERT_COLORS, the elements of VERT_COLORS ar
cyclically repeated. By default, the polygons are all drawn in the single color
provided by the COLOR keyword. If this keyword is omitted or set to a scalar, ver
colors are removed and the surface is drawn in the color specified by the COLO
keyword.

Note
If the surface object is being rendered on a destination device that uses the Ind
color model, and the view that contains the surface also contains one or more
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead.
IDL Reference Guide IDLgrSurface

1972 Appendix A: IDL Object Class & Method Reference

s
:

s
:

s
:

ls
ect
 any
ffer
. By
ed as
XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to gain finer control over the rendering of textured surface pixe
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not aff
the color of a screen pixel since they have no opacity. If this keyword is set to 1,
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-bu
is updated for these pixels and the display image is not affected as noted above
updating the Z-buffer without updating the display image, the surface can be us
aclipping surface for other graphics primitives drawn after the current graphics
object. The default value for this keyword is 1.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1973

e

Note

This keyword has no effect if no texture map is used or if the texture map in us
does not contain an opacity channel.
IDL Reference Guide IDLgrSurface

1974 Appendix A: IDL Object Class & Method Reference

r

IDLgrSurface::SetProperty

The IDLgrSurface::SetProperty procedure method sets the value of a property o
group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrSurface::Init followed by the word “Set” can be set using
IDLgrSurface::SetProperty.
IDLgrSurface IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1975

cular
IDLgrSymbol

A symbol object represents a graphical element that is plotted relative to a parti
position.

Note
Seven predefined symbols are provided by IDL.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLgrSymbol::Init” on page 1978.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrSymbol::Cleanup

• IDLgrSymbol::GetProperty

• IDLgrSymbol::Init

• IDLgrSymbol::SetProperty
IDL Reference Guide IDLgrSymbol

1976 Appendix A: IDL Object Class & Method Reference

ct.

e
ll the
wn
p

IDLgrSymbol::Cleanup

The IDLgrSymbol::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrSymbol::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1977

rty

le:

,

IDLgrSymbol::GetProperty

The IDLgrSymbol::GetProperty procedure method retrieves the value of a prope
or group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]GetProperty [, ALL=variable]

Arguments

None

Keywords

Any keyword toIDLgrSymbol::Init followed by the word “Get” can be retrieved
using IDLgrSymbol::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.
IDL Reference Guide IDLgrSymbol

1978 Appendix A: IDL Object Class & Method Reference

e
Init
ss

r an
IDLgrSymbol::Init

The IDLgrSymbol::Init function method initializes the plot symbol.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSymbol' [Data])

or

Result = Obj -> [IDLgrSymbol::]Init([Data] [, COLOR{Get, Set}=index or RGB
vector] [, DATA{Get, Set}=integer or objref] [, NAME{Get, Set}=string]
[, SIZE{Get, Set}=vector] [, THICK{Get, Set}=points{1 to 10}] [, UVALUE{Get,
Set}=value]) (Only in a subclass’ Init method.)

Arguments

Data

Either an integer value from the list shown below, or an object reference to eithe
IDLgrModel object or atomic graphic object.

Use one of the following scalar-represented internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1979

the
ain
ned

d as
the

ct.

d Z

qual

e as

are

ess
oint.
If an instance of the IDLgrModel object class or an atomic graphic object is used,
object tree is used as the symbol. For best results, the object should fill the dom
from -1 to +1 in all dimensions. The pre-defined symbols listed above are all defi
in the domain -1 to +1.

Keywords

Properties retrievable viaIDLgrSymbol::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrSymbol::SetProperty are
indicated by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to the color used to draw the symbol. The color may be specifie
a color lookup table index or as an RGB vector. The default color is the color of
object for which this symbol is being used.

DATA (Get, Set)

Set this keyword to specify a symbol. This keyword is equivalent to theData
argument.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

SIZE (Get, Set)

Set this keyword to a one-, two-, or three-element vector describing the X, Y, an
scaling factors to be applied to the symbol. The default is [1.0, 1.0, 1.0].

• If SIZE is specified as a scalar, then the X, Y, and Z scale factors are all e
to the scalar value.

• If SIZE is specified as a 2-element vector, then the X and Y scale factors ar
specified by the vector, and the Z scale factor is 1.0.

• If SIZE is specified as a 3-element vector, then the X, Y, and Z scale factors
as specified by the vector.

THICK (Get, Set)

Set this keyword to an integer value between 1 and 10, specifying the line thickn
to used to draw any lines that make up the symbol, in points. The default is one p
IDL Reference Guide IDLgrSymbol

1980 Appendix A: IDL Object Class & Method Reference

 any
r or
en
UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrSymbol IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1981

r

IDLgrSymbol::SetProperty

The IDLgrSymbol::SetProperty procedure method sets the value of a property o
group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrSymbol::Init followed by the word “Set” can be set using
IDLgrSymbol::SetProperty.
IDL Reference Guide IDLgrSymbol

1982 Appendix A: IDL Object Class & Method Reference

h
 is
nd

all
 is
a
o an

 the
IDLgrTessellator

A tessellator object converts a simple concave polygon (or a simple polygon wit
“holes”) into a number of simple convex polygons (general triangles). A polygon
simple if it includes no duplicate vertices, if the edges intersect only at vertices, a
exactly two edges meet at any vertex.

Each polygon can be marked as being either an interior or an exterior (default)
polygon. Interior polygons are treated as holes in the exterior polygons. Multiple
non-overlapping exterior polygons are allowed as well. All polygons should be
specified in the same orientation (either clockwise or counter-clockwise). Once
the polygons have been passed into the tessellator object, the final triangulation
accomplished by the IDLgrTessellator::Tessellate method. A list of vertices and
connectivity array are returned. You may process these by hand, or pass them t
IDLgrPolygon object. The tessellator object will not create any vertices in the
process, rather the output vertex list will include only those vertices passed into
object originally.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrTessellator::Init” on page 1986.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrTessellator::AddPolygon

• IDLgrTessellator::Cleanup

• IDLgrTessellator::Init

• IDLgrTessellator::Reset

• IDLgrTessellator::Tessellate
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1983

t the
IDLgrTessellator::AddPolygon

The IDLgrTessellator::AddPolygon procedure method adds a polygon to the
tessellator object.

Syntax

Obj -> [IDLgrTessellator::]AddPolygon,X [, Y[, Z]] [, POLYGON{Get, Set}=array
of polygon descriptions] [, /INTERIOR]

Arguments

X

A 1 x n, 2 x n, or 3 x n array of polygon vertices.

Y

A vector of Y values. IfX andY are both specified, they must be one-dimensional
vectors of the same length.

Z

A vector of Z values. IfX, Y, andZ are all specified, they must all three be one-
dimensional vectors of the same length. If noZ values are specified, theZ value for
the polygon is set to 0.

Keywords

POLYGON (Get, Set)

Set this keyword to an array of polygon descriptions. A polygon description is an
integer or longword array of the form: [n, i0, i1, ..., in-1], wheren is the number of
vertices that define the polygon, and i0..in-1 are indices into theX, Y, andZ arguments
that represent the polygon vertices. To ignore an entry in the POLYGON array, se
vertex count,n, to 0. To end the drawing list, even if additional array space is
available, setn to -1. If this keyword is not specified, a single polygon will be
generated.

Note
The connectivity array described by POLYGONS allows you to add multiple
polygons to the tessellator object with a single AddPolygon operation.
IDL Reference Guide IDLgrTessellator

1984 Appendix A: IDL Object Class & Method Reference

hole
INTERIOR

Set this keyword to set a polygon to be an interior polygon, which is treated as a
in the exterior polygons.
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1985

ject.

e
ll the
wn
p

IDLgrTessellator::Cleanup

The IDLgrTessellator::Cleanup procedure method performs all cleanup on the ob

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrTessellator::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrTessellator

1986 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrTessellator::Init

The IDLgrTessellator::Init function method initializes the tessellator object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrTesselator')

or

Result = Obj -> [IDLgrTessellator::]Init() (Only in a subclass’ Init method.)

Arguments

None

Keywords

None
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1987

. All
d for
IDLgrTessellator::Reset

The IDLgrTessellator::Reset procedure method resets the object’s internal state
previously added polygons are removed from memory and the object is prepare
a new tessellation task.

Syntax

Obj -> [IDLgrTessellator::]Reset

Arguments

None

Keywords

None
IDL Reference Guide IDLgrTessellator

1988 Appendix A: IDL Object Class & Method Reference

n.

nts of
, the

d
e

he
ject.

e

IDLgrTessellator::Tessellate

The IDLgrTessellator::Tessellate function method performs the actual tessellatio

Syntax

Result = Obj-> [IDLgrTessellator::]Tessellate(Vertices, Poly [, /QUIET])

Arguments

If the tessellation succeeds, IDLgrTessellator::Tessellate returns 1 and the conte
Vertices and Poly are set to the results of the tessellation. If the tessellation fails
function returns 0.

Vertices

A 2 x narray if all the input polygons were 2D. A 3x narray if all the input polygons
were 3D.

Poly

An array of polygon descriptions. A polygon description is an integer or longwor
array of the form: [n, i0, i1, ..., in-1], wheren is the number of vertices that define th
polygon, and i0..in-1 are indices into theX, Y, andZ arguments that represent the
polygon vertices.

Note
On output, theVerticesarray can be used as the value of the DATA property, and t
Polyarray can be used as the value of the POLYGON property, of a polygon ob

Keywords

QUIET

Set this keyword to suppress warning and error message generation due to
tessellation errors. !ERROR_STATE is not updated in the case of the return valu
being ‘0’ when the QUIET keyword is specified.
IDLgrTessellator IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1989

for

f the

 a
GB
IDLgrText

A text object represents one or more text strings that share common rendering
attributes. An IDLgrText object is an atomic graphic object; it is one of the basic
drawable elements of the IDL Object Graphics system, and it is not a container
other objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrText::Init” on page 1995.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrText::Cleanup

• IDLgrText::GetCTM

• IDLgrText::GetProperty

• IDLgrText::Init

• IDLgrText::SetProperty

Keywords

PALETTE

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).
IDL Reference Guide IDLgrText

1990 Appendix A: IDL Object Class & Method Reference

e
ll the
wn
p

IDLgrText::Cleanup

The IDLgrText::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrText::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1991

e
ed

of

is
tion
lias.

from
rsued.

to

d.
IDLgrText::GetCTM

The IDLgrText::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrText::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the text
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrText::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrText

1992 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1993

 or

,

the

r of
IDLgrText::GetProperty

The IDLgrText::GetProperty procedure method retrieves the value of a property
group of properties for the text.

Syntax

Obj -> [IDLgrText::]GetProperty [, ALL=variable] [, PARENT=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrText::Init followed by the word “Get” can be retrieved using
IDLgrText::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.
IDL Reference Guide IDLgrText

1994 Appendix A: IDL Object Class & Method Reference

r of

r of

ill

ion.
YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.

Note
Until the text is drawn to the destination object, the [XYZ]RANGE properties w
only report the locations of the text. Use the GetTextDimensions method of the
destination object to get the data dimensions of the text prior to a draw operat
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1995

e
Init
ss

s

IDLgrText::Init

The IDLgrText::Init function method initializes the text object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrText' [,String or vector of strings])

or

Result = Obj -> [IDLgrText::]Init([, String or vector of strings]
[, ALIGNMENT{Get, Set}=value{0.0 to 1.0}] [, BASELINE{Get, Set}=vector]
[, CHAR_DIMENSIONS{Get, Set}=[width, height]] [, COLOR{Get, Set}=index or
RGB vector] [, /ENABLE_FORMATTING{Get, Set}] [, FONT{Get, Set}=objref]
[, /HIDE{Get, Set}] [, LOCATIONS{Get, Set}=array] [, NAME{Get, Set}=string]
[, /ONGLASS{Get, Set}] [, PALETTE{Get, Set}=objref]
[, RECOMPUTE_DIMENSIONS{Get, Set}={0 | 1 | 2}] [, STRINGS{Get,
Set}=string or vector of strings] [, UPDIR{Get, Set}=vector] [, UVALUE{Get,
Set}=value] [, VERTICAL_ALIGNMENT{Get, Set}=value{0.0 to 1.0}]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, ZCOORD_CONV{Get, Set}=vector]) (Only in a subclass’ Init method.)

Arguments

String

The string (or vector of strings) to be created. If this argument is not a string, it i
converted prior to using the default formatting rules.

Keywords

Properties retrievable viaIDLgrText::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrText::SetProperty are indicated
by the word “Set” following the keyword.
IDL Reference Guide IDLgrText

1996 Appendix A: IDL Object Class & Method Reference

ult)

.

hich

used

far
ont.

 by
 you

the X

Y

olor
s [0,
ALIGNMENT (Get, Set)

Set this keyword to a floating point value between 0.0 and 1.0 to indicate the
requested horizontal alignment of the text baseline. An alignment of 0.0 (the defa
aligns the left-justifies the text at the given position; an alignment of 1.0 right-
justifies the text, and an alignment of 0.5 centers the text over the given position

BASELINE (Get, Set)

Set this keyword to a two (or three) element vector describing the direction in w
the baseline is to be oriented. Use this keyword in conjunction with the UPDIR
keyword to specify the plane on which the text lies. The default BASELINE is
[1.0,0,0] (i.e., parallel to the x-axis).

CHAR_DIMENSIONS (Get, Set)

Set this keyword equal to a two-element vector [width, height] indicating the
dimensions (measured in data units) of a bounding box for each character, to be
when scaling text projected in three dimensions. If eitherwidth or height is zero, the
text will be scaled such that if it were positioned halfway between the near and
clipping planes, it will appear at the point size associated with this text object’s f
The default value is [0, 0].

Note
If you set the CHAR_DIMENSIONS property to [0,0] (using the SetProperty
method), indicating that IDL should calculate the text size, the value (returned
the GetProperty method) will not be updated to reflect the calculated size until
call either the Draw method or the GetTextDimensions method.

For example, if the VIEWPLANE_RECT of the view the text object is being
rendered in is set equal to [0,0,10,10] (that is, it spans ten data units in each of
and Y directions), setting the CHAR_DIMENSIONS property equal to [2, 3] will
scale the text such that each character fills 20% of the X range and 30% of the
range.

This property has no effect if the ONGLASS property is set equal to one.

COLOR (Get, Set)

Set this keyword to the color to be used as the foreground color for the text. The c
may be specified as a color lookup table index or as an RGB vector. The default i
0, 0].
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1997

y-

t to

wn:

ying
ctor is

e

ct.

f the
ENABLE_FORMATTING (Get, Set)

Set this keyword to indicate that the text object should honor embedded Hershe
style formatting codes within the strings. (Formatting codes are described in
Appendix G, “Fonts”.) The default is not to honor the formatting codes.

FONT (Get, Set)

Set this keyword to an instance of an IDLgrFont object class to describe the fon
use to draw this string. The default is 12 point Helvetica. SeeIDLgrFont for details.

Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a null object.

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

LOCATIONS (Get, Set)

Set this keyword to an array of one or more two- or three-element vectors specif
the coordinates (measured in data units) used to position the string(s). Each ve
of the form [x, y] or [x, y, z]; if z is not provided, it is assumed to be zero. Each
location corresponds to the corresponding string in theString argument. If only one
location is provided, and theStringargument is a vector of more than one strings, th
initial string is positioned at the given location, and each subsequent string is
positioned by cyclically reusing the location values.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

ONGLASS (Get, Set)

Set this keyword to indicate that the text should be displayed “on the glass”. The
default is projected 3D text.

PALETTE (Get, Set)

Set this keyword equal to the object reference of a palette object (an instance o
IDLgrPalette object class). This keyword is only used if the destination device is
IDL Reference Guide IDLgrText

1998 Appendix A: IDL Object Class & Method Reference

 a
GB

the

ious

ent

the

t.

ion

E.

 any
r or
en
using the RGB color model. If so, and a color value for the object is specified as
color index value, the palette set by this keyword is used to translate the color to R
space. If the PALETTE property on this object is not set, the destination object
PALETTE property is used (which defaults to a grayscale ramp).

RECOMPUTE_DIMENSIONS (Get, Set)

Set this keyword to one of the following values to indicate when this text object’s
character dimensions (refer to the CHAR_DIMENSIONS property) are to be
recomputed automatically:

• 0 = Never recompute. Always use the character dimensions provided via
CHAR_DIMENSIONS property. If CHAR_DIMENSIONS is set to [0,0],
compute once and re-use the resulting dimensions until the
CHARACTER_DIMENSIONS are modified.

• 1 = Recompute, but reuse the current transformation matrix from the prev
draw of this text object. If this is the first time the text object is drawn,
compute the current transformation matrix. (This option is useful if the par
model of this text object is scaled for zooming, and the text is supposed to
increase in size, rather having its data dimensions recomputed to ensure
font size is matched.)

• 2 = Recompute always, including the current transformation matrix.

STRINGS (Get, Set)

Set this keyword to the string (or vector of strings) associated with the text objec
This keyword is the same as theString argument described above.

UPDIR (Get, Set)

Set this keyword to a two (or three) element vector describing the vertical direct
for the string. Theupward directionis the direction defined by a vector pointing from
the origin to the point specified. Use this keyword in conjunction with the
BASELINE keyword to specify the plane on which the text lies; the direction
specified by UPDIR should be orthogonal to the direction specified by BASELIN
The default UPDIR is [0.0, 1.0, 0.0] (i.e., parallel to theY axis).

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 1999

-
 the

s
:

s
:

s
:

VERTICAL_ALIGNMENT (Get, Set)

Set this keyword to a floating point value between 0.0 and 1.0 to indicate the
requested vertical alignment of the text. An alignment of 0.0 (the default) bottom
justifies the text at the given location; an alignment of 1.0 top-justifies the text at
given location.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].
IDL Reference Guide IDLgrText

2000 Appendix A: IDL Object Class & Method Reference

oup
IDLgrText::SetProperty

The IDLgrText::SetProperty procedure method sets the value of a property or gr
of properties for the text.

Syntax

Obj -> [IDLgrText::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrText::Init followed by the word “Set” can be set using
IDLgrText::SetProperty.
IDLgrText IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2001

. It is
IDLgrView

A view object represents a rectangular area in which graphics objects are drawn
a container for objects of theIDLgrModel class.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

This class has no subclasses.

Creation

See“IDLgrView::Init” on page 2006.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrView::Add

• IDLgrView::Cleanup

• IDLgrView::GetByName

• IDLgrView::GetProperty

• IDLgrView::Init

• IDLgrView::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move
IDL Reference Guide IDLgrView

2002 Appendix A: IDL Object Class & Method Reference

r at
IDLgrView::Add

The IDLgrView::Add procedure method adds a child to this view.

Syntax

Obj -> [IDLgrView::]Add, Model[, POSITION=index]

Arguments

Model

An instance of theIDLgrModel object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the containe
which the new object should be placed.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2003

e
ll the
wn
p

IDLgrView::Cleanup

The IDLgrView::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrView::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrView

2004 Appendix A: IDL Object Class & Method Reference

If

he

s
s

od is
IDLgrView::GetByName

The IDLgrView::GetByName function method finds contained objects by name.
the named object is not found, the GetByName function returns a null object
reference.

Note
The GetByName function doesnot perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of t
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrView::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Object
contained by other objects can include the name of their parent object; this allow
you to create a fully qualified name specification. For example, ifobject1 contains
object2 , which in turn containsobject3 , the string specifying the fully qualified
object name of object3 would be'object1/object2/object3' .

Object names are specified relative to the object on which the GetByName meth
called. If used at the beginning of the name string, the/ character represents the top
of an object hierarchy. The string'..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2005

y or

,

the
IDLgrView::GetProperty

The IDLgrView::GetProperty procedure method retrieves the value of the propert
group of properties for the view.

Syntax

Obj -> [IDLgrView::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword toIDLgrView::Init followed by the word “Get” can be retrieved using
IDLgrView::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.
IDL Reference Guide IDLgrView

2006 Appendix A: IDL Object Class & Method Reference

e
Init
ss

a
lor
IDLgrView::Init

The IDLgrView::Init function method initializes the view object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrView')

or

Result = Obj -> [IDLgrView::]Init([, COLOR{Get, Set}=index or RGB vector]
[, DEPTH_CUE{Get, Set}=[zbright, zdim]] [, DIMENSIONS{Get, Set}=[width,
height]] [, EYE{Get, Set}=distance] [, LOCATION{Get, Set}=[x, y]]
[, PROJECTION{Get, Set}={1 | 2}] [, /TRANSPARENT{Get, Set}] [, UNITS{Get,
Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value] [, VIEWPLANE_RECT{Get,
Set}=[x, y, width, height]] [, ZCLIP{Get, Set}=[near, far]]) (Only in a subclass’ Init
method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrView::GetProperty are indicated by the word “Get”
following the keyword. Properties settable viaIDLgrView::SetPropertyare indicated
by the word “Set” following the keyword.

COLOR (Get, Set)

Set this keyword to the color for the view. This is the color to which the view are
will be erased before its contents are drawn. The color may be specified as a co
lookup table index or as an RGB vector. The default is [255, 255, 255] (white).
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2007

only

view

e

e
 at
r.

h
 is
ord.

).
le.

nt

ice
DEPTH_CUE (Get, Set)

Set this keyword to a two-element floating point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect. Depth cueing is
honored when drawing to a destination object that uses the RGB color model.

Depth cuing causes an object to appear to fade into the background color of the
object with changes in depth. If the depth of an object is further thanzdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified byzdim), the object will be painted in the background color. Similarly, if th
object is closer than the value ofzbright, the object will appear in its “normal” color.
Anywhere in-between, the object will be a blend of the background color and th
object color. For example, if the DEPTH_CUE property is set to [-1,1], an object
the depth of 0.0 will appear as a 50% blend of the object color and the view colo

The relationship betweenZbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth queuing.

You can disable depth cueing by settingzbright = zdim. The default is [0.0, 0.0].

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] specifying the
dimensions of the viewport (the rectangle in which models are displayed on a
graphics destination). By default, the viewport dimensions are set to [0, 0], whic
indicates that it will match the dimensions of the graphics destination to which it
drawn. The dimensions are measured in the units specified by the UNITS keyw

EYE (Get, Set)

Set this keyword to specify the distance from the eyepoint to the viewplane (Z=0
The default is 4.0. The eyepoint is always centered within the viewplane rectang
(That is, if the VIEWPLANE_RECT property is set equal to [0,0,1,1], the eyepoi
will be at X=0.5, Y=0.5.)

LOCATION (Get, Set)

Set this keyword to a two-element vector of the form [x, y] specifying the position of
the lower lefthand corner of the view. The default is [0, 0], and is measured in dev
units.
IDL Reference Guide IDLgrView

2008 Appendix A: IDL Object Class & Method Reference

hin
f

ated

the

.

t

), the

 any
r or
en
PROJECTION (Get, Set)

Set this keyword to and integer value indicating the type of projection to use wit
this view. All models displayed within this view will be projected using this type o
projection. Valid values are described below.

• 1 = Orthogonal projection (default).

• 2 = Perspective: Indicates that all models are projected toward the eye (loc
at the origin), which is the apex of the viewing frustum. With a perspective
projection, models that are farther away from the eye will appear smaller in
view than models that are nearer to the eye.

TRANSPARENT (Get, Set)

Set this keyword to disable the viewport erase, making the viewport transparent

UNITS (Get, Set)

Set this keyword to specify the units of measure for this view. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the graphics destination’srect.

Note
If you set the UNITS property (using the SetProperty method) of a view withou
also setting the LOCATION and DIMENSIONS properties, IDL will use the
existing size and location values in the new units,without conversion. This means
that if your view’s location and dimensions were previously measured in
centimeters, and you change the value of UNITS to 1 (measurement in inches
actual size of the view object will change.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object to which the user value applies.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2009

he

e

anes
VIEWPLANE_RECT (Get, Set)

Set this keyword to a four-element vector of the form [x, y, width, height] to describe
the bounds in x and y of the view volume. Objects within the view volume are
projected into the viewport. These values are measured in normalized space. T
default is [-1.0, -1.0, 2.0, 2.0]

Note
The z bounds of the view volume are set via the ZCLIP keyword. The viewplan
rectangle is always located at Z=0.

ZCLIP (Get, Set)

Set this keyword to a two element vector representing the near and far clipping pl
to be applied to the objects in this view. The vector should take the form [near, far].
By default, these values are [1, -1].
IDL Reference Guide IDLgrView

2010 Appendix A: IDL Object Class & Method Reference
IDLgrView::SetProperty

The IDLgrView::SetProperty procedure method sets the value of the property or
group of properties for the view.

Syntax

Obj -> [IDLgrView::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrView::Init followed by the word “Set” can be set using
IDLgrView::SetProperty.
IDLgrView IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2011

ne
o

IDLgrViewgroup

The IDLgrViewgroup object is a simple container object, very similar to the
IDLgrScene object. It contains one or more IDLgrView objects and an IDLgrSce
can contain one or more of these objects. This object is special in that it can als
contain objects which do not have a Draw method (e.g. IDLgrPattern and
IDLgrFont). An IDLgrViewgroup object cannot be returned by a call to the
IDLgrWindow::Select method.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

This class has no subclasses.

Creation

SeeIDLgrViewgroup::Init.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrViewgroup::Add

• IDLgrViewgroup::Cleanup

• IDLgrViewgroup::GetByName

• IDLgrViewgroup::GetProperty

• IDLgrViewgroup::Init

• IDLgrViewgroup::SetProperty

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count

• IDL_Container::Get
IDL Reference Guide IDLgrViewgroup

2012 Appendix A: IDL Object Class & Method Reference
• IDL_Container::IsContained

• IDL_Container::Move
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2013

 or

r at
IDLgrViewgroup::Add

The IDLgrViewgroup::Add function method verifies that the added item is not an
instance of the IDLgrScene or IDLgrViewgroup object. If it is not,
IDLgrViewgroup:Add adds the object to the specified viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]Add,Object

Arguments

Object

An instance of an object or a list of objects. Objects which subclass IDLgrScene
IDLgrViewGroup can not be added (avoiding circularity constraints). All other
objects are allowed.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the containe
which the new object should be placed.
IDL Reference Guide IDLgrViewgroup

2014 Appendix A: IDL Object Class & Method Reference

ject.

e
ll the
wn
p

IDLgrViewgroup::Cleanup

The IDLgrViewgroup::Cleanup procedure method performs all cleanup on the ob

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrViewgroup::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2015

ject

he

s
s

od is
IDLgrViewgroup::GetByName

The IDLgrViewgroup::GetByName function method finds contained objects by
name. If the named object is not found, the GetByName function returns a null ob
reference.

Note
The GetByName function doesnot perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of t
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrViewgroup::]GetByName(Name)

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Object
contained by other objects can include the name of their parent object; this allow
you to create a fully qualified name specification. For example, ifobject1 contains
object2 , which in turn containsobject3 , the string specifying the fully qualified
object name of object3 would be'object1/object2/object3' .

Object names are specified relative to the object on which the GetByName meth
called. If used at the beginning of the name string, the/ character represents the top
of an object hierarchy. The string'..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrViewgroup

2016 Appendix A: IDL Object Class & Method Reference

ct.
IDLgrViewgroup::GetProperty

The IDLgrViewgroup::GetProperty procedure method retrieves the value of a
property or group of properties for the viewgroup object.

Syntax

Obj -> [IDLgrViewgroup::]GetProperty [, ALL=variable] [, PARENT=variable]

Arguments

None

Keywords

Any keyword toIDLgrViewgroup::Init followed by the word “Get” can be retrieved
using IDLgrViewgroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

PARENT

Set this keyword to a named variable that will contain an object reference to the
object that contains this viewgroup.
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2017

e
Init
ss

awn:

ject.
IDLgrViewgroup::Init

The IDLgrViewgroup::Init function method initializes the viewgroup object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrViewgroup')

or

Result = Obj -> [IDLgrViewgroup::]Init([, /HIDE{Get, Set}] [, NAME{Get,
Set}=string] [, UVALUE{Get, Set}=value]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrViewgroup::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrViewgroup::SetProperty
are indicated by the word “Set” following the keyword.

HIDE (Get, Set)

Set this keyword to a boolean value to indicate whether this object should be dr

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

NAME (Get, Set)

Set this keyword to a string representing the name to be associated with this ob
The default is the null string, ''.
IDL Reference Guide IDLgrViewgroup

2018 Appendix A: IDL Object Class & Method Reference
UVALUE (Get, Set)

Set this keyword to a value of any type. You may use this value to contain any
information you wish.
IDLgrViewgroup IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2019

ty or
IDLgrViewgroup::SetProperty

The IDLgrViewgroup::SetProperty procedure method sets the value of a proper
group of properties for the viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrViewgroup::Init followed by the word “Set” can be retrieved
using IDLgrViewgroup::SetProperty.
IDL Reference Guide IDLgrViewgroup

2020 Appendix A: IDL Object Class & Method Reference

 a
o

IDLgrVolume

A volume object represents a mapping from a three-dimensional array of data to
three-dimensional array of voxel colors, which, when drawn, are projected to tw
dimensions.

An IDLgrVolume object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrVolume::Init” on page 2027.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrVolume::Cleanup

• IDLgrVolume::ComputeBounds

• IDLgrVolume::GetCTM

• IDLgrVolume::GetProperty

• IDLgrVolume::Init

• IDLgrVolume::PickVoxel

• IDLgrVolume::SetProperty
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2021

ct.

e
ll the
wn
p

IDLgrVolume::Cleanup

The IDLgrVolume::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrVolume::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDL Reference Guide IDLgrVolume

2022 Appendix A: IDL Object Class & Method Reference

en
.

n

to

hen
. The
e

IDLgrVolume::ComputeBounds

The IDLgrVolume::ComputeBounds procedure method computes the smallest
bounding box that contains all voxels whose opacity lookup is greater than a giv
opacity value. The BOUNDS property is updated to the computed bounding box

Syntax

Obj -> [IDLgrVolume::]ComputeBounds [, OPACITY=value] [, /RESET]
[, VOLUMES=int array]

Arguments

None

Keywords

OPACITY

Set this keyword to the opacity value to be used to determine which voxels are
included within the bounding box. All voxels whose opacity lookup is greater tha
this value will be included. The default value is zero.

RESET

Set this keyword to cause the BOUNDS keyword of IDLgrVolume::Init to be reset
contain the entire volume.

VOLUMES

Set this keyword to an array of integers which select which volumes to consider w
computing the bounding box. A non-zero value selects a volume to be searched
default is to search all loaded volumes. For example: VOLUMES=[0,1] will caus
ComputeBounds to search only the volume loaded in DATA1.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2023

e
ed

of

me

is
tion
lias.

from
rsued.

to

d.
IDLgrVolume::GetCTM

The IDLgrVolume::GetCTM function method returns the 4 x 4 graphics transform
matrix from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrVolume::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that th
projection matrix for the View object in the current tree be included in the return
transformation matrix. The resulting matrix will transform a point in the data space
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the volu
object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the transforma
matrix. Each path object reference specified with this keyword must contain an a
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path
the current object to the top of the graphics hierarchy and no alias paths are pu
If IDLgrVolume::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used
find the object during the draw is used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrVolume

2024 Appendix A: IDL Object Class & Method Reference

d is
TOP

Set this keyword equal to the object reference to anIDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM metho
called up to but not including the specified model object.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2025

rty

le:

,

the

(one
n

IDLgrVolume::GetProperty

The IDLgrVolume::GetProperty procedure method retrieves the value of a prope
or group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]GetProperty [, ALL=variable] [, PARENT=variable]
[, VALID_DATA= variable] [, XRANGE=variable] [, YRANGE=variable]
[, ZRANGE=variable]

Arguments

None

Keywords

Any keyword toIDLgrVolume::Init followed by the word “Get” can be retrieved
using IDLgrVolume::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

PARENT

Set this keyword equal to a named variable that will contain an object reference to
object that contains this object.

VALID_DATA

Set his keyword equal to a named variable that will contain an array of integers
per volume, DATA0, DATA1, etc.) which have the value 1 if volume data has bee
loaded for that volume and 0 if that volume data is currently undefined.
IDL Reference Guide IDLgrVolume

2026 Appendix A: IDL Object Class & Method Reference

r of

r of

r of
XRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [xmin, xmax] that specifies the range ofx data coordinates covered by the
graphic object.

YRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [ymin, ymax] that specifies the range ofy data coordinates covered by the
graphic object.

ZRANGE

Set this keyword equal to a named variable that will contain a two-element vecto
the form [zmin, zmax] that specifies the range ofzdata coordinates covered by the
graphic object.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2027

e
Init
ss
IDLgrVolume::Init

The IDLgrVolume::Init function method initializes the volume object. At least one
volume method must be specified, via arguments or keywords.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW(‘IDLgrVolume’ [,vol0 [, vol1 [, vol2 [, vol3]]]])

or

Result = Obj -> [IDLgrVolume::]Init([vol0 [, vol1 [, vol2 [, vol3]]]]
[, AMBIENT{Get, Set}=RGB vector] [, BOUNDS{Get, Set}=[xmin, ymin, zmin,
xmax, ymax, zmax]] [, COMPOSITE_FUNCTION{Get, Set}={0 | 1 | 2 | 3}]
[, CUTTING_PLANES{Get, Set}=array] [, DATA0{Get, Set}=[dx, dy, dz]]
[, DATA1{Get, Set}=[dx, dy, dz]] [, DATA2{Get, Set}=[dx, dy, dz]] [, DATA3{Get,
Set}=[dx, dy, dz]] [, DEPTH_CUE{Get, Set}=[zbright, zdim]] , /HIDE{Get, Set}]
[, HINTS{Get, Set}={0 | 1 | 2 | 3}] [, /INTERPOLATE{Get, Set}]
[, /LIGHTING_MODEL{Get, Set}] [, NAME{Get, Set}=string] [, /NO_COPY{Get,
Set}] [, OPACITY_TABLE0{Get, Set}=256-element byte array]
[, OPACITY_TABLE1{Get, Set}=256-element byte array] [, RENDER_STEP{Get,
Set}=[x, y, z]] [, RGB_TABLE0{Get, Set}=256 x 3-element byte array]
[, RGB_TABLE1{Get, Set}=256 x 3-element byte array] [, /TWO_SIDED{Get,
Set}] [, UVALUE{Get, Set}=value] [, VOLUME_SELECT{Get, Set}={0 | 1 | 2}]
[, XCOORD_CONV{Get, Set}=vector] [, YCOORD_CONV{Get, Set}=vector]
[, /ZBUFFER{Get, Set}] [, ZCOORD_CONV{Get, Set}=vector]
[, ZERO_OPACITY_SKIP{Get, Set}={0 | 1}]) (Only in a subclass’ Init method.)

Arguments

vol 0

A three-element array (dx, dy, dz) which specifies a data volume.
IDL Reference Guide IDLgrVolume

2028 Appendix A: IDL Object Class & Method Reference

ing.

e

vol 1

A three-element array (dx, dy, dz) which specifies a data volume.

vol 2

A three-element array (dx, dy, dz) which specifies a data volume.

vol 3

A three-element array (dx, dy, dz) which specifies a data volume.

Note
If two or more of the above arguments are specified, they must have matching
dimensions.

Keywords

Properties retrievable viaIDLgrVolume::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrVolume::SetProperty are
indicated by the word “Set” following the keyword.

AMBIENT (Get, Set)

Use this keyword to set the color and intensity of the volume’s base ambient light
Color is specified as an RGB vector. The default is [255, 255, 255]. AMBIENT is
applicable only when LIGHTING_MODEL is set.

BOUNDS (Get, Set)

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered.

COMPOSITE_FUNCTION (Get, Set)

The composite function determines the value of a pixel on the viewing plane by
analyzing the voxels falling along the corresponding ray, according to one of the
following compositing functions:

• 0 = Alpha (default): Alpha-blending. The recursive equation

dest' = src * srcalpha + dest * (1 - srcalpha)

is used to compute the final pixel color.

• 1 = MIP: Maximum intensity projection. The value of each pixel on the
viewing plane is set to the brightest voxel, as determined by its opacity. Th
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2029

e

lor
lues

age

g.

ting

ting

ting
most opaque voxel’s color appropriation is then reflected by the pixel on th
viewing plane.

• 2 = Alpha sum: Alpha-blending. The recursive equation

dest' = src + dest * (1 - srcalpha)

is used to compute the final pixel color. This equation assumes that the co
tables have been pre-multiplied by the opacity tables. The accumulated va
can be no greater than 255.

• 3 = Average: Average-intensity projection. The resulting image is the aver
of all voxels along the corresponding ray.

CUTTING_PLANES (Get, Set)

Set this keyword to a floating point array with dimensions (4,n) specifying the
coefficients ofn cutting planes. The cutting plane coefficients are in the form {{nx,
ny, nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

DATA0 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including thevol0 argument at
creation time. If the data volume dimensions do not match those of any pre-exis
data in DATA1, DATA2, or DATA3, all existing data is removed from the object.

DATA1 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including thevol1 argument at
creation time. If the data volume dimensions do not match those of any pre-exis
data in DATA0, DATA2, or DATA3, all existing data is removed from the object.

DATA2 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including thevol2 argument at
creation time. If the data volume dimensions do not match those of any pre-exis
data in DATA0, DATA1, or DATA3, all existing data is removed from the object.

DATA3 (Get, Set)

Set this keyword to a three-element array of the format (dx, dy, dz), which specifies a
data volume. Setting this property is the same as including thevol3 argument at
IDL Reference Guide IDLgrVolume

2030 Appendix A: IDL Object Class & Method Reference

ting

only

view

e

e
 at
r.

wn:

arest
creation time. If the data volume dimensions do not match those of any pre-exis
data in DATA0, DATA1, or DATA2, all existing data is removed from the object.

Note
DATA0, DATA1, DATA2, and DATA3 sizes are dynamic.

DEPTH_CUE (Get, Set)

Set this keyword to a two-element floating point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect. Depth cueing is
honored when drawing to a destination object that uses the RGB color model.

Depth cuing causes an object to appear to fade into the background color of the
object with changes in depth. If the depth of an object is further thanzdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified byzdim), the object will be painted in the background color. Similarly, if th
object is closer than the value ofzbright, the object will appear in its “normal” color.
Anywhere in-between, the object will be a blend of the background color and th
object color. For example, if the DEPTH_CUE property is set to [-1,1], an object
the depth of 0.0 will appear as a 50% blend of the object color and the view colo

The relationship betweenZbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth queuing.

You can disable depth cueing by settingzbright = zdim. The default is [0.0, 0.0].

HIDE (Get, Set)

Set this keyword to a boolean value indicating whether this object should be dra

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HINTS (Get, Set)

Set this keyword to specify one of the following acceleration hints:

• 0 = Disables all acceleration hints (default).

• 1 = Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the ne
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2031

 the
r

ness.
bles
tion

s
up

the
ges

low
g is

n

es

ct.
non-zero opacity voxel. The map is used to speed ray casting by allowing
ray to jump over open spaces. It is most useful with sparse volumes. Afte
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume’s sparse
A new map is not automatically generated to match changes in opacity ta
or volume data (for performance reasons). The user may force recomputa
of the EDM map by setting the HINTS property to 1 again.

• 2 = Enables the use of multiple CPUs for volume rendering if the platform
used support such use. If HINTS is set to 2, IDL will use all the available (
to 8) CPUs to render portions of the volume in parallel.

• 3 = Selects the two acceleration options described above.

INTERPOLATE (Get, Set)

Set this keyword to indicate that Trilinear interpolation is to be used to determine
data value for each step on a ray. Setting this keyword improves the quality of ima
produced, at the cost of more computing time. especially when the volume has
resolution with respect to the size of the viewing plane. Nearest neighbor samplin
used by default.

LIGHTING_MODEL (Get, Set)

Set this keyword to use the current lighting model during rendering in conjunctio
with a local gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sourc
increases the rendering time.

NAME (Get, Set)

Set this keyword equal to a string containing the name associated with this obje
The default is the null string, ' '.

NO_COPY (Get, Set)

Set this keyword to relocate volume data from the input variables to the volume
object, leaving the input variables undefined. Only the DATA0 keyword and thevol0
argument are affected. If this keyword is omitted, the input volume data will be
duplicated and a copy will be stored in the object.
IDL Reference Guide IDLgrVolume

2032 Appendix A: IDL Object Class & Method Reference

A0.

A1.

for

for

he

t is

 any
r or
en

red.
OPACITY_TABLE0 (Get, Set)

Set this keyword to a 256-element byte array to specify an opacity table for DAT
The default table is the linear ramp.

OPACITY_TABLE1 (Get, Set)

Set this keyword to a 256-element byte array to specify an opacity table for DAT
The default table is the linear ramp. This table is used only when
VOLUME_SELECT is set equal to 1.

RENDER_STEP (Get, Set)

Set this keyword to a three element vector of the form [x, y, z] to specify the stepping
factor through the voxel matrix.

RGB_TABLE0 (Get, Set)

Set this keyword to a 256 x 3-element byte array to specify an RGB color table
DATA0. The default table is the linear ramp.

RGB_TABLE1 (Get, Set)

Set this keyword to a 256 x 3-element byte array to specify an RGB color table
DATA1. The default table is the linear ramp. This table is used only when
VOLUME_SELECT is set equal to 1.

TWO_SIDED (Get, Set)

Set this keyword to force the lighting model to use a two-sided voxel gradient. T
two-sided gradient is different from the one-sided gradient (default) in that the
absolute value of the inner product of the light direction and the surface gradien
used instead of clamping to 0.0 for negative values.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.

VOLUME_SELECT (Get, Set)

Set this keyword to an integer value to select the form of the volume to be rende
The VOLUME_SELECT keyword is used to modify thesrc andsrcalpha
parameters for the COMPOSITE_FUNCTION keyword.

• 0 = render voxels from the 8bit DATA0 volume (the default)
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2033

A0

s
:

s
:

src = RGB_TABLE0[DATA0]
srcalpha = OPACITY_TABLE0[DATA0]

• 1 = render voxels formed by modulating the RGBA components from DAT
and DATA1 (after RGB and OPACITY table lookups).

src = (RGB_TABLE0[DATA0]*RGB_TABLE1[DATA1])/256
srcalpha=(OPACITY_TABLE0[DATA0]*OPACITY_TABLE1[DATA1])/256

• 2 = render voxels formed using a byte from DATA0 (red), DATA1 (green),
DATA2(blue) and DATA3(alpha). The keywords OPACITY_TABLE0 and
RGB_TABLE0, described above, are used to indirect the data from each
volume before forming the RGBA pixel.

src=(RGB_TABLE[DATA0,0],RGB_TABLE[DATA1,1],RGB_TABLE[DATA2,2])/256
srcalpha = (OPACITY_TABLE0[DATA3])/256

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert X coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0].

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Y coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0].

ZBUFFER (Get, Set)

Set this keyword to clip the rendering to the current Z-buffer and then update the
buffer. The default is to not modify the current Z-buffer.
IDL Reference Guide IDLgrVolume

2034 Appendix A: IDL Object Class & Method Reference

s
:

the

o

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convert Z coordinate
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0].

ZERO_OPACITY_SKIP (Get, Set)

Set this keyword to skip voxels with an opacity of 0. This keyword can increase
output contrast of MIP (MAXIMUM_INTENSITY) projections by allowing the
background to show through. If this keyword is set, voxels with an opacity of zer
will not modify the Z-buffer. The default (not setting the keyword) continues to
render voxels with an opacity of zero.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2035

ee
-1,-

is
to a

s
d no

d.
IDLgrVolume::PickVoxel

The IDLgrVolume::PickVoxel function method computes the coordinates of the
voxel projected to a location specified by the 2D device coordinates point, [xi, yi], and
the current Z-buffer. The function returns the volume indices as a a vector of thr
long integers. If the selected point is not within the volume, this function returns [
1,-1].

Syntax

Result = Obj -> [IDLgrVolume::]PickVoxel (Win, View, Point [, PATH=objref(s)])

Arguments

Win

TheIDLgrWindow object from which the Z-buffer is to be used.

View

The IDLgrView object that contains the volume.

Point

The [x, y] viewport coordinates of the point chosen.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
voxel coordinate. Each path object reference specified with this keyword must
contain an alias. The voxel coordinate is computed for the version of the object
falling within the specified path. If this keyword is not set, the PARENT propertie
determine the path from the current object to the top of the graphics hierarchy an
alias paths are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrVolume

2036 Appendix A: IDL Object Class & Method Reference

r

IDLgrVolume::SetProperty

The IDLgrVolume::SetProperty procedure method sets the value of a property o
group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrVolume::Init followed by the word “Set” can be set using
IDLgrVolume::SetProperty.
IDLgrVolume IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2037

le

bject
be

 be

y if
re not

rs,
 face
IDLgrVRML

The IDLgrVRML object allows you to save the contents of an Object Graphics
hierarchy into a VRML 2.0 format file. The graphics tree can only contain a sing
view due to limitations in the VRML specification. The resulting VRML file is
interactive and allows you to explore the geometry interactively using a VRML
browser.

Note
Objects or subclasses of this type can not be saved or restored.

Aspect ratios are difficult to duplicate as they can be browser dependent. The o
is limited to the primitives supported by VRML. Texture maps (and images) will
inlined into the output file. While this will generate large VRML files, the files are
fully self-contained.

Several entities cannot be translated perfectly. These include:

IDLgrImage objects

Rotation and Z buffer behavior are not completely supported. Image objects will
converted into texture mapped polygons. BLEND_FUNCTION is not completely
supported (only binary srcAlpha,1-srcAlpha) This function is applied automaticall
an Alpha channel is present. It is also very browser dependent. Channel masks a
supported.

IDLgrPolygon and IDLgrSurface objects

Hidden line/hidden point display, color and vertex color blending with texture colo
and bottom color are not supported. Shading may be browser dependent. Front
culling is not supported and back face culling is only supported at the browser’s
discretion.

IDLgrLight objects

Lighting scope and intensity may be browser dependent.

IDLgrText objects

Text using the ONGLASS property is only supported for the initial view.

IDLgrViewgroup, IDLgrScene, IDLgrVolume objects

These objects are not supported.
IDL Reference Guide IDLgrVRML

2038 Appendix A: IDL Object Class & Method Reference

en
IDLgrPalette objects

Palette objects are simulated using an RGB color model.

IDLgrPattern objects

Only solid or clear patterns are supported.

IDLgrFont, IDLgrSymbol objects

The THICK property is not supported.

IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and
IDLgrPlot objects

Line attributes (thickness, linestyle) are not supported.

IDLgrView objects

Z-clipping control, aspect ratio preservation, the LOCATION property, and
orthographic projections are not supported.

Destination objects

The COLOR_MODEL property is not fully supported in Indexed Color mode, wh
using a SHADER_RANGE (an RGB model will be substituted instead). The
QUALITY property is not supported.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“IDLgrVRML::Init” on page 2048.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrVRML::Cleanup
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2039
• IDLgrVRML::Draw

• IDLgrVRML::GetDeviceInfo

• IDLgrVRML::GetFontnames

• IDLgrVRML::GetProperty

• IDLgrVRML::GetTextDimensions

• IDLgrVRML::Init

• IDLgrVRML::SetProperty
IDL Reference Guide IDLgrVRML

2040 Appendix A: IDL Object Class & Method Reference

t.

e
ll the
wn
p

IDLgrVRML::Cleanup

The IDLgrVRML::Cleanup procedure method performs all cleanup on the objec

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrVRML::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2041

cs
IDLgrVRML::Draw

The IDLgrVRML::Draw procedure method draws the given picture to this graphi
destination.

Syntax

Obj -> [IDLgrVRML::]Draw [, Picture]

Arguments

Picture

The view (an instance of anIDLgrView object) to be drawn. If the view has a
LOCATION property, it is ignored.

Keywords

None
IDL Reference Guide IDLgrVRML

2042 Appendix A: IDL Object Class & Method Reference

s

ith

s

s

IDLgrVRML::GetDeviceInfo

The IDLgrVRML::GetDeviceInfo function method returns information which allow
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrVRML::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure w
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that specifie
the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONScontains a two element integer array that specifie
the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return,NAMEcontains the name of
the rendering device as a string.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2043

L.

rix,

the
NUM_CPUS

Set this keyword equal to a named variable. Upon return,NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return,VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return,VERSION contains the
version of the rendering device driver as a string.
IDL Reference Guide IDLgrVRML

2044 Appendix A: IDL Object Class & Method Reference

ts
e

ts
a”.

se

IDL

as

lue is
IDLgrVRML::GetFontnames

The IDLgrVRML::GetFontnames function method returns the list of available fon
that can be used inIDLgrFontobjects. This method will only return the names of th
available TrueType fonts. Hershey fonts will not be returned; seeAppendix G,
“Fonts” for more information.

Syntax

Return= Obj -> [IDLgrVRML::]GetFontnames(FamilyName[, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fon
must belong. The string may be a fully specified family name, such as “Helvetic
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, u
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default va
the string, “*”, which returns all fontnames containing theFamilyName argument,
with or without style modifiers.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2045

or

:

ct.

e
or
red in
IDLgrVRML::GetProperty

The IDLgrVRML::GetProperty procedure method retrieves the value of a property
group of properties for the VRML object.

Syntax

Obj -> [IDLgrVRML::]GetProperty [, ALL=variable]
[, SCREEN_DIMENSIONS=variable]

Arguments

None

Keywords

Any keyword toIDLgrVRML::Init followed by the word “Get” can be retrieved
using IDLgrVRML::GetProperty. In addition, the following keywords are available

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the retrievable properties associated with this obje

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of th
form [width, height] specifying the dimensions of the overall screen dimensions f
the screen with which this object associated. The screen dimensions are measu
device units.
IDL Reference Guide IDLgrVRML

2046 Appendix A: IDL Object Class & Method Reference

 of
nt

int

he
s, or

is
ions.

he
. If
rent

s

IDLgrVRML::GetTextDimensions

The IDLgrVRML::GetTextDimensions function method retrieves the dimensions
a text object that will be rendered in the clipboard buffer. The result is a 3-eleme
floating-point vector [xDim, yDim, zDim] representing the dimensions of the text
object, measured in data units.

Syntax

Result = Obj -> [IDLgrVRML::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of floating-po
values (one for each string in the IDLgrText object). The values represent the
distance to travel (parallel to the UPDIR vector) from the text baseline to reach t
bottom of the lowest descender in the string. All values will be negative number
zero. This keyword is valid only ifTextObj is an IDLgrText object.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the text dimens
Each path object reference specified with this keyword must contain an alias. T
text dimensions are computed for the version of the object falling within that path
this keyword is not set, the PARENT properties determine the path from the cur
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrVRML::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2047

d.

Note

For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDL Reference Guide IDLgrVRML

2048 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrVRML::Init

The IDLgrVRML::Init function method initializes the VRML object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrVRML')

or

Result= Obj -> [IDLgrVRML::]Init([, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set}=[width, height]] [, FILENAME{Get, Set}=string]
[, GRAPHICS_TREE{Get, Set}=objref] [, N_COLORS{Get}=integer(2 to 256}]
[, PALETTE{Get, Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, RESOLUTION{Get, Set}=[xres, yres]] [, UNITS{Get, Set}={0 | 1 | 2 | 3}]
[, UVALUE{Get, Set}=value] [, WORLDINFO=string array]
[, WOLRDTITLE=string]) (Only in a subclass’ Init method.)

Arguments

None

Keywords

Properties retrievable viaIDLgrVRML::GetPropertyare indicated by the word “Get”
following the keyword. Properties settable viaIDLgrVRML::SetProperty are
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the buffer:

• 0=RGB (the default)

• 1=Color indexed.
IDLgrVRML IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2049

is

the

he

a

awn.
will
 the

be

 are
DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the window in units specified by the UNITS property. The default
[640,480].

Note
The only use of this property is to support the use of normalized coordinates for
dimensions of the IDLgrView object passed to the IDLgrVRML::Draw method.

FILENAME (Get, Set)

Set this keyword to the name of a file into which the vector data will be saved. T
default isidl.wrl .

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrView. If this property is set to
valid object reference, calling the Draw method on the destination object with no
arguments will cause the object reference associated with this property to be dr
If this object is valid and the destination object is destroyed, this object reference
be destroyed as well. By default the GRAPHICS_TREE property is set equal to
null-object.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to indexed.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to
loaded into the buffer’s color lookup table.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics
to be drawn to the buffer. Valid values are:

• 0=Low

• 1=Medium

• 2=High (the default)
IDL Reference Guide IDLgrVRML

2050 Appendix A: IDL Object Class & Method Reference

The

.

ny

.

IDLgrVRML IDL Reference Guide

RESOLUTION (Get, Set)

Set this keyword to a two-element vector of the form [xres, yres] specifying the
device resolution in centimeters per pixel.

Note
This keyword is used for text scaling and partial aspect ratio preservation only.
default value is [0.0352778, 0.0352778] (72 DPI).

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the DIMENSIONS property
Valid values are:

• 0=Device (the default)

• 1=Inches

• 2=Centimeters

• 3=Normalized (relative to 1600 x 1200).

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this user value to contain a
information you wish.

WORLDINFO

Set this keyword to a list of strings for the info field of the VRML WorldInfo node
The default is the null string, ''.

WOLRDTITLE

Set this keyword to a string containing the title for the VRML WorldInfo node,
TITLE field. The default is 'IDL VRML file' .

Appendix A: IDL Object Class & Method Reference 2051
IDLgrVRML::SetProperty

The IDLgrVRML::SetProperty procedure method sets the value of a property or
group of properties for the VRML world.

Syntax

Obj -> [IDLgrVRML::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrVRML::Init followed by the word “Set” can be retrieved
using IDLgrVRML::SetProperty.
IDL Reference Guide IDLgrVRML

2052 Appendix A: IDL Object Class & Method Reference

at

le
ware

m

IDLgrWindow

A window object is a representation of an on-screen area on a display device th
serves as a graphics destination.

Note
Objects or subclasses of this type can not be saved or restored.

Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawab
area. The limits are device-dependent — they depend both on your graphics hard
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280 x 1024 pixels; the limit on your syste
may be larger.

Superclasses

This class has no superclass.

Subclasses

This class has no subclasses.

Creation

See“IDLgrWindow::Init” on page 2066.

Methods

Intrinsic Methods

This class has the following methods:

• IDLgrWindow::Cleanup

• IDLgrWindow::Draw

• IDLgrWindow::Erase

• IDLgrWindow::GetContiguousPixels

• IDLgrWindow::GetDeviceInfo
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2053
• IDLgrWindow::GetFontnames

• IDLgrWindow::GetProperty

• IDLgrWindow::GetTextDimensions

• IDLgrWindow::Iconify

• IDLgrWindow::Init

• IDLgrWindow::Pickdata

• IDLgrWindow::Read

• IDLgrWindow::Select

• IDLgrWindow::SetCurrentCursor

• IDLgrWindow::SetProperty

• IDLgrWindow::Show
IDL Reference Guide IDLgrWindow

2054 Appendix A: IDL Object Class & Method Reference

ct.

e
ll the
wn
p

IDLgrWindow::Cleanup

The IDLgrWindow::Cleanup procedure method performs all cleanup on the obje

Note
Cleanup methods are speciallifecycle methods, and as such cannot be called outsid
the context of object destruction. This means that in most cases, you cannot ca
Cleanup method directly. There is one exception to this rule: If you write your o
subclass of this class, you can call the Cleanup method from within the Cleanu
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrWindow::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2055

 the

rt of
tents

2 to
can.

ing.
IDLgrWindow::Draw

The IDLgrWindow::Draw procedure method draws the specified scene or view
object to this graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrWindow::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of anIDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of anIDLgrScene object) to be
drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one specify that this scene or view is the unchanging pa
a drawing. Some destinations can make an instance from the current window con
without having to perform a complete redraw. If the view or scene to be drawn is
identical to the previously drawn view or scene, this keyword can be set equal to
hint the destination to create the instance from the current window contents if it

DRAW_INSTANCE

Set this keyword to specify that this scene or view is the changing part of a draw
It is overlaid on the result of the most recent CREATE_INSTANCE draw.
IDL Reference Guide IDLgrWindow

2056 Appendix A: IDL Object Class & Method Reference

as a
IDLgrWindow::Erase

The IDLgrWindow::Erase procedure method erases the entire contents of the
window.

Syntax

Obj -> [IDLgrWindow::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified
color lookup table index or as an RGB vector. The default erase color is white.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2057

g
or

his
zero,
et an

 The
IDLgrWindow::GetContiguousPixels

The IDLgrWindow::GetContiguousPixels function method returns an array of lon
integers whose length is equal to the number of colors available in the index col
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. T
means that within the array, the elements in the largest available range are set to
the elements in the second-largest range are set to one, etc. Use this range to s
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface andIDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values.
following would be considered contiguous:

[0,1,2,3,4]

[4,3,2,1,0]

Syntax

Return = Obj -> [IDLgrWindow::]GetContiguousPixels()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrWindow

2058 Appendix A: IDL Object Class & Method Reference

or

ith

me
IDLgrWindow::GetDeviceInfo

The IDLgrWindow::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. F
example, it allows an application to determine if RENDERER=0 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrWindow::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure w
the values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2059

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
IDL Reference Guide IDLgrWindow

2060 Appendix A: IDL Object Class & Method Reference

nts
e

ts
ca”.

se

IDL

as

lue is
IDLgrWindow::GetFontnames

The IDLgrWindow::GetFontnames function method returns the list of available fo
that can be used inIDLgrFontobjects. This method will only return the names of th
available TrueType fonts. Hershey fonts will not be returned; seeAppendix G,
“Fonts” for more information.

Syntax

Return= Obj -> [IDLgrWindow::]GetFontnames(FamilyName[, IDL_FONTS={0 |
1 | 2}] [, STYLES=string])

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fon
must belong. The string may be a fully specified family name—such as “Helveti
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, u
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default va
the string, “*”, which returns all fontnames containing theFamilyName argument,
with or without style modifiers.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2061

erty

le:

,

the
B

IDLgrWindow::GetProperty

The IDLgrWindow::GetProperty procedure method retrieves the value of a prop
or group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]GetProperty [, ALL=variable] [, IMAGE_DATA= variable]
[, RESOLUTION=variable] [, SCREEN_DIMENSIONS=variable]
[, ZBUFFER_DATA=variable]

Arguments

None

Keywords

Any keyword toIDLgrWindow::Init followed by the word “Get” can be retrieved
using IDLgrWindow::GetProperty. In addition, the following keywords are availab

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with thestate of this object.
State information about the object includes things like color, range, tick direction
etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

IMAGE_DATA

Set this keyword to a named variable that will contain a byte array representing
image that is currently displayed in the window. If the window object uses an RG
color model, the returned array will have dimensions (3,winXSize, winYSize), or (4,
winXSize, winYSize) if an alpha channel is included. If the window object uses an
Indexed color model, the returned array will have dimensions (winXSize, winYSize).
See“IDLgrWindow::Read” on page 2073 for more information.

RESOLUTION

Set this keyword to a named variable that will contain a vector of the form [xres, yres]
reporting the pixel resolution, measured in centimeters per pixel.
IDL Reference Guide IDLgrWindow

2062 Appendix A: IDL Object Class & Method Reference

e
or

the
s

SCREEN_DIMENSIONS

Set this keyword to a named variable that will contain a two-element vector of th
form [width, height] specifying the dimensions of the overall screen dimensions f
the screen with which this window is associated. The screen dimensions are
measured in device units.

ZBUFFER_DATA

Set this keyword to a named variable that will contain a float array representing
zbuffer that is currently within the buffer. The returned array will have dimension
(xdim, ydim).
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2063

of
ng-

nce
all
nly

is
ions.

he
. If
rent

s

IDLgrWindow::GetTextDimensions

The IDLgrWindow::GetTextDimensions function method retrieves the dimensions
a text object that will be rendered in the window. The result is a 3-element floati
point vector [xDim, yDim, zDim] representing the dimensions of the text object,
measured in data units.

Syntax

Result = Obj -> [IDLgrWindow::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of floating-
point values (one for each string in the IDLgrText object). The values are the dista
to travel (parallel to the UPDIR direction) from the baseline to reach the bottom of
the descenders for the string; the values will be negative or 0. This keyword is o
valid if TextObj is of the class IDLgrText.

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to compute the text dimens
Each path object reference specified with this keyword must contain an alias. T
text dimensions are computed for the version of the object falling within that path
this keyword is not set, the PARENT properties determine the path from the cur
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrWindow::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw i
used, rather than the PARENT path.
IDL Reference Guide IDLgrWindow

2064 Appendix A: IDL Object Class & Method Reference

d.

Note

For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2065

.

he

If
IDLgrWindow::Iconify

The IDLgrWindow::Iconify procedure method iconifies or de-iconifies the window

Note
Iconification under window systems is solely handled by the window manager;
client applications, such as IDL, do not have the capability to manage icons. T
Iconify method provides a hint to the window manager, which applies the
information as it sees fit. (On the Macintosh, for example, iconfication is not a
standard option; the Iconify method is ignored on the Mac.)

Syntax

Obj -> [IDLgrWindow::]Iconify, IconFlag

Arguments

IconFlag

SetIconFlagto 1 (one) to iconify the window or to 0 (zero) to restore the window.
the window is already restored, it is brought to the front of the window stack.

Keywords

None
IDL Reference Guide IDLgrWindow

2066 Appendix A: IDL Object Class & Method Reference

e
Init
ss
IDLgrWindow IDL Reference Guide

IDLgrWindow::Init

The IDLgrWindow::Init function method initializes the window object.

Note
Init methods are speciallifecycle methods, and as such cannot be called outside th
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrWindow')

or

Result = Obj -> [IDLgrWindow::]Init([, COLOR_MODEL{Get}={0 | 1}]
[, DIMENSIONS{Get, Set} =[width, height]] [, GRAPHICS_TREE{Get,
Set}=objref of type IDLgrScene, IDLgrViewgroup, or IDLgrView]
[, LOCATION{Get, Set}=[x, y]] [, N_COLORS{Get}=integer{2 to 256}]
[, PALETTE{Get, Set}=objref] [, QUALITY{Get, Set}={0 | 1 | 2}]
[, RENDERER{Get}={0 | 1}] [, RETAIN{Get}={0 | 1 | 2}] [, TITLE{Get,
Set}=string] [, UNITS{Get, Set}={0 | 1 | 2 | 3}] [, UVALUE{Get, Set}=value])
(Only in a subclass’ Init method.)

X Windows Keywords: [, DISPLAY_NAME{Get}=string]

Arguments

None

Keywords

Properties retrievable viaIDLgrWindow::GetProperty are indicated by the word
“Get” following the keyword. Properties settable viaIDLgrWindow::SetPropertyare
indicated by the word “Set” following the keyword.

COLOR_MODEL (Get)

Set this keyword to the color model to be used for the window:

• 0 = RGB (default)

• 1 = Color Index

Appendix A: IDL Object Class & Method Reference 2067

n

no

.

r

to

od
iated

ur
Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that a
RGB color model destination will be available for all display situations.

DIMENSIONS (Get, Set)

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the window in units specified by the UNITS property. By default, if
value is specified for DIMENSIONS, IDL uses the value of the “Default Window
Width” and “Default Window Height” preferences set in the IDL Development
Environment’s (IDLDE) Preferences dialog. If there is no preference file for the
IDLDE, the DIMENSIONS property is set equal to one quarter of the screen size
There are limits on the maximum size of an IDLgrWindow object; see“Note on
Window Size Limits” on page 2052 for details.

Note
Changing DIMENSIONS properties is merely a request and may be ignored fo
various reasons.

DISPLAY_NAME (Get) [X Only]

Set this keyword to the name of the X Windows display on which the window is
appear.

GRAPHICS_TREE (Get, Set)

Set this keyword to an object reference of type IDLgrScene, IDLgrViewgroup, or
IDLgrView. If this property is set to a valid object reference, calling the Draw meth
on the destination object with no arguments will cause the object reference assoc
with this property to be drawn. If this object is valid and the destination object is
destroyed, this object reference will be destroyed as well. By default the
GRAPHICS_TREE property is set equal to the null-object.

LOCATION (Get, Set)

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper lefthand corner of the window relative to the display screen, in units
specified by the UNITS property. By default, the window is positioned at one of fo
quadrants on the display screen, and the location is measured in device units.
IDL Reference Guide IDLgrWindow

2068 Appendix A: IDL Object Class & Method Reference

a
 of

e
d

 are

hen
Note
Changing LOCATION properties is merely a request and may be ignored for
various reasons. LOCATION may be adjusted to take into account window
decorations.

N_COLORS (Get)

Set this keyword to the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Indexed (1). This keyword is ignored if
COLOR_MODEL is set to RGB (0).

Note
If COLOR_MODEL is set to Color Index (1), setting N_COLORS is treated as
request to your operating system. You should always check the actual number
available colors for any Color Indexed destination with the
IDLgrWindow::GetProperty method. The actual number of available colors
depends on your system and also on how you have used IDL.

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class) to specify the red, green, and blue values that are to b
loaded into the graphics destination’s color lookup table, applicable if the Indexe
color model is used.

QUALITY (Get, Set)

Set this keyword to an integer indicating the rendering quality at which graphics
to be drawn to this destination. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default).

RENDERER (Get)

Set this keyword to an integer value indicating which graphics renderer to use w
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2069

rm
 is

r the
e

ys

e.
ing

s,

, set
ap

s any
e
ation
tly
By default, your platform’s native OpenGL implementation is used. If your platfo
does not have a native OpenGL implementation, IDL’s software implementation
used regardless of the value of this property. See“Hardware vs. Software Rendering”
in Chapter 28 ofUsing IDL for details. Your choice of renderer may also affect the
maximum size of an IDLgrWindow object; see“Note on Window Size Limits” on
page 2052 for details.

RETAIN (Get)

Set this keyword to 0, 1, or 2 to specify how backing store should be handled fo
window. By default, if no value is specified for RETAIN, IDL uses the value of th
“Backing Store” preference set in the IDL Development Environment’s (IDLDE)
Preferences dialog. If there is no preference file for the IDLDE (that is, if you alwa
use IDL in plain tty mode), the RETAIN property is set equal to 0 by default.

• 0 = No backing store.

• 1 = The server or window system is requested to provide the backing stor
Note that requesting backing store from the server is only a request; back
store may not be provided in all situations.

• 2 = Requests that IDL provide the backing store directly. In some situation
IDL can not provide this backing store in Object Graphics. To see if IDL
provided backing store, query the RETAIN keyword of
IDLgrWindow::GetProperty. IDL may also alter the RENDERER keyword
while attempting to provide backing store.

In IDL Object Graphics, it is almost always best to disable backing store (that is
the RETAIN property equal to zero). This is because drawing to an off-screen pixm
(which is what happens when backing store is enabled) almost always bypasse
hardware graphics acceleration that may be available, causing all rendering to b
done in software. To ensure that windows are redrawn properly, enable the gener
of expose events on the WIDGET_DRAW window and redraw the window explici
when an expose event is received.

TITLE (Get, Set)

Set this keyword equal to a string that represents the title of the window.

UNITS (Get, Set)

Set this keyword to indicate the units of measure for the LOCATION and
DIMENSIONS properties. Valid values are:

• 0 = Device (default)

• 1 = Inches
IDL Reference Guide IDLgrWindow

2070 Appendix A: IDL Object Class & Method Reference

out
l

 any
r or
en
• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the screen.

Note
If you set the value of the UNITS property (using the SetProperty method) with
also setting the value of the LOCATION and DIMENSIONS properties, IDL wil
convert the current size and location values into the new units.

UVALUE (Get, Set)

Set this keyword to a value of any type. You can use this “user value” to contain
information you wish. Remember that if you set the user value equal to a pointe
object reference, you should destroy the pointer or object reference explicitly wh
destroying the object it is a user value of.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2071

al

cified
w’s
rns -

d.

ace

f

s of
 data

ither
,

ay

is
IDLgrWindow::Pickdata

The IDLgrWindow::Pickdata function method maps a point in the two-dimension
device space of the window to a point in the three-dimensional data space of an
object tree. The resulting 3D data space coordinates are returned in a user-spe
variable. The Pickdata function returns one if the specified location in the windo
device space “hits” a graphic object, or zero if no object was “hit”. Pickdata retu
1 if the point selected falls outside of the specified view or window.

Syntax

Result = Obj -> [IDLgrWindow::]Pickdata(View, Object, Location, XYZLocation
[, PATH=objref(s)])

Arguments

View

The object reference of an IDLgrView object that contains the object being picke

Object

The object reference of a model or atomic graphic object from which the data sp
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the window’s device space o
the point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional data space coordinate
the picked point. Note that the value returned in this variable is a location, not a
value.

Note
If the atomic graphic object specified as the target has been transformed using e
the LOCATION or DIMENSIONS properties (this is only possible with IDLgrAxis
IDLgrImage, and IDLgrText objects), these transformations willnotbe included in
the data coordinates returned by the Pickdata function. This means that you m
need to re-apply the transformation accomplished by specifying LOCATION or
DIMENSIONS once you have retrieved the data coordinates with Pickdata. Th
IDL Reference Guide IDLgrWindow

2072 Appendix A: IDL Object Class & Method Reference

he

is
to a
ust

bject
ine
aths

d.
situation does not occur if you transform the axis, text, or image object using t
[XYZ]COORD_CONV properties.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
data space coordinate. Each path object reference specified with this keyword m
contain an alias. The data space coordinate is computed for the version of the o
falling within that path. If this keyword is not set, the PARENT properties determ
the path from the current object to the top of the graphics hierarchy and no alias p
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Ad
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2073
IDLgrWindow::Read

The IDLgrWindow::Read function method reads an image from a window. The
returned value is an instance of theIDLgrImage object class.

Syntax

Result = Obj -> [IDLgrWindow::]Read()

Arguments

None

Keywords

None
IDL Reference Guide IDLgrWindow

2074 Appendix A: IDL Object Class & Method Reference

ore
or

ct is
 at
bject
IDLgrWindow::Select

The IDLgrWindow::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Syntax

Result = Obj -> [IDLgrWindow::]Select(Picture, XY[, DIMENSIONS=[width,
height]] [, UNITS={0 | 1 | 2 | 3}])

Arguments

Picture

The view or scene (an instance of theIDLgrView, IDLgrViewgroup, orIDLgrScene
class) whose children are among the candidates for selection.

If the first argument is a scene, then the returned object list will contain one or m
views. If the first argument is a view, the list will contain atomic graphic objects (
model objects which have their SELECT_TARGET property set). Objects are
returned in order, according to their distance from the viewer. The closer an obje
to the viewer, the lower its index in the returned object list. If multiple objects are
the same distance from the viewer (views in a scene or 2D geometry), the last o
drawn will appear at a lower index in the list.

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a widthw and a heighth, and will be centered about the coordinates [x, y]
specified in theXY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))

Any object that intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

UNITS

Set this keyword to indicate the units of measure. Valid values are:
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2075
• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.
IDL Reference Guide IDLgrWindow

2076 Appendix A: IDL Object Class & Method Reference

of

eger
int

sly
n the
IDLgrWindow::SetCurrentCursor

The IDLgrWindow::SetCurrentCursor procedure method sets the current cursor
image to be used while positioned over a drawing area.

Syntax

Obj-> [IDLgrWindow::]SetCurrentCursor [,CursorName] [, IMAGE=16 x 16
bitmap] [, MASK=16 x 16 bitmap] [, HOTSPOT=[x, y]]

X Windows Only Keywords: [, STANDARD=index]

Arguments

CursorName

A string that specifies which built-in cursor to use. This argument is ignored if one
the keywords to this routine is set. This string can be one of the following:

Keywords

IMAGE [X and Macintosh Only]

Set this keyword to a 16x16 column bitmap, contained in a 16-element short int
vector, specifying the cursor pattern. The offset from the upper-left pixel to the po
that is considered the “hot spot” can be provided via the HOTSPOT keyword.

MASK [X and Macintosh Only]

When the IMAGE keyword is set, the MASK keyword can be used to simultaneou
specify the mask that should be used. In the mask, bits that are set indicate bits i
IMAGE that should be seen and bits that are not are “masked” out”.

• ARROW • CROSSHAIR

• ICON • IBEAM

• MOVE • ORIGINAL

• SIZE_NE • SIZE_NW

• SIZE_SE • SIZE_SW

• SIZE_NS • SIZE_EW

• UP_ARROW
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2077

he
E is
he

ursor
is
HOTSPOT [X and Macintosh Only]

Set this keyword to a two-element vector specifying the [x, y] pixel offset of the
cursor “hot spot”, the point which is considered to be the mouse position, from t
upper left corner of the cursor image. This parameter is only applicable if IMAG
provided. The cursor image is displayed top-down (the first row is displayed at t
top).

STANDARD [X Only]

Set this keyword to an X11 cursor font index to change the appearance of the c
in the IDL graphics window to a glyph in this font. On non-X platforms, setting th
keyword displays the crosshair cursor.
IDL Reference Guide IDLgrWindow

2078 Appendix A: IDL Object Class & Method Reference

r

IDLgrWindow::SetProperty

The IDLgrWindow::SetProperty procedure method sets the value of a property o
group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]SetProperty

Arguments

None

Keywords

Any keyword toIDLgrWindow::Init followed by the word “Set” can be set using
IDLgrWindow::SetProperty.
IDLgrWindow IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2079

the
IDLgrWindow::Show

The IDLgrWindow::Show procedure method exposes or hides a window.

Syntax

Obj -> [IDLgrWindow::]Show,Position

Arguments

Position

Set this argument equal to a non-zero value to expose the window, or to 0 to hide
window.

Keywords

None
IDL Reference Guide IDLgrWindow

2080 Appendix A: IDL Object Class & Method Reference

r

d in
TrackBall

A TrackBall object translates widget events from a draw widget (created with the
WIDGET_DRAW function) into transformations that emulate a virtual trackball (fo
transforming object graphics in three dimensions).

This object class is implemented in the IDL language. Its source code can be foun
the filetrackball__define.pro in thelib subdirectory of the IDL distribution.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See“TrackBall::Init” on page 2081.

Methods

Intrinsic Methods

This class has the following methods:

• TrackBall::Init

• Trackball::Reset

• TrackBall::Update
TrackBall IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2081

re to

ned
TrackBall::Init

The TrackBall::Init function method initializes the TrackBall object.

Syntax

Obj = OBJ_NEW('TrackBall',Center, Radius)

or

Result = Obj -> [TrackBall::]Init(Center, Radius[, AXIS={0 | 1 | 2}]
[, /CONSTRAIN] [, MOUSE=bitmask]) (Only in a subclass’ Init method.)

(Only in a subclass’ Init method.)

Arguments

Center

A two-dimensional vector, [X, Y], specifying the center coordinates of the trackball.X
andY should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

AXIS

Set this keyword to an integer value to indicate the axis about which rotations a
be constrained if the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around theX axis.

• 1 = Rotate only around theY axis.

• 2 = Rotate only around theZ axis (this is the default).

CONSTRAIN

Set this keyword to indicate that the trackball transformations are to be constrai
about the axis specified by the AXIS keyword. The default is not to constrain the
transformations.
IDL Reference Guide TrackBall

2082 Appendix A: IDL Object Class & Method Reference

all
bit
. The
MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackb
events. The least significant bit represents the leftmost button, the next highest
represents the middle button, and the next highest bit represents the right button
default is 1b, for the left mouse button.
TrackBall IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2083

.

re to

ned

all
bit
. The
Trackball::Reset

The TrackBall::Reset procedure method resets the state of the TrackBall object

Syntax

Obj -> [TrackBall::]Reset(Center, Radius[, AXIS={0 | 1 | 2}] [, /CONSTRAIN]
[, MOUSE=bitmask])

Arguments

Center

A two-dimensional vector, [X, Y], specifying the center coordinates of the trackball.X
andY should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

AXIS

Set this keyword to an integer value to indicate the axis about which rotations a
be constrained if the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around theX axis.

• 1 = Rotate only around theY axis.s

• 2 = Rotate only around theZ axis (this is the default).

CONSTRAIN

Set this keyword to indicate that the trackball transformations are to be constrai
about the axis specified by the AXIS keyword. The default is not to constrain the
transformations.

MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackb
events. The least significant bit represents the leftmost button, the next highest
represents the middle button, and the next highest bit represents the right button
default is 1b, for the left mouse button.
IDL Reference Guide TrackBall

2084 Appendix A: IDL Object Class & Method Reference

t
rn
 or

all
bit
. The

oint
t.

to

uses

ining
TrackBall::Update

The TrackBall::Update function method updates the state of the TrackBall objec
based on the information contained in the input widget event structure. The retu
value is nonzero if a transformation matrix is calculated as a result of the event,
zero otherwise.

Syntax

Result = Obj -> [TrackBall::]Update(sEvent[, MOUSE=bitmask]
[, TRANSFORM=variable] [, /TRANSLATE])

Arguments

sEvent

The widget event structure.

Keywords

MOUSE

Set this keyword to a bitmask to indicate which mouse button to honor for trackb
events. The least significant bit represents the leftmost button, the next highest
represents the middle button, and the next highest bit represents the right button
default is 1b, for the left mouse button.

TRANSFORM

Set this keyword to a named variable that will contain a 4 x 4 element floating-p
array if a new transformations matrix is calculated as a result of the widget even

TRANSLATE

Set this keyword to indicate that the trackball movement should be constrained
translation in theX-Y plane rather than rotation about an axis.

Example

The example code below provides a skeleton for a widget-based application that
the TrackBall object to interactively change the orientation of graphics.

Create a trackball centered on a 512x512 pixel drawable area, and a view conta
the model to be manipulated:

xdim = 512
TrackBall IDL Reference Guide

Appendix A: IDL Object Class & Method Reference 2085

e
, and

e,
s
CK
ydim = 512
wBase = WIDGET_BASE()
wDraw = WIDGET_DRAW(wBase, XSIZE=xdim, YSIZE=ydim, $

GRAPHICS_LEVEL=2, /BUTTON_EVENTS, $
/MOTION_EVENTS, /EXPOSE_EVENTS, RETAIN=0)

WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=oWindow

oTrackball = OBJ_NEW('Trackball', [xdim/2.,ydim/2.], xdim/2.)
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
XMANAGER, 'TrackEx', wBase

You must handle the trackball updates in the widget event-handling code. As th
trackball transformation changes, update the transformation for the model object
redraw the view:

PRO TrackEx_Event, sEvent
...
bHaveXform = oTrackball->Update(sEvent, TRANSFORM=TrackXform)
IF (bHaveXform) THEN BEGIN
oModel->GetProperty, TRANSFORM=ModelXform
oModel->SetProperty, TRANSFORM=ModelXform # TrackXform
oWindow->Draw, oView
ENDIF
...
END

For a complete example, see the filesurf_track.pro , located in theobject
subdirectory of theexamples directory of the IDL distribution. The SURF_TRACK
procedure uses IDL widgets to create a graphical user interface to an object tre
creates a surface object from user-specified data (or from default data, if none i
specified), and places the surface object in an IDL draw widget. The SURF_TRA
interface allows the user to specify several attributes of the object hierarchy via
pulldown menus.
IDL Reference Guide TrackBall

2086 Appendix A: IDL Object Class & Method Reference
TrackBall IDL Reference Guide

Appendix B:

IDL Graphics
Devices

The following topics are covered in this appendix:
5
7

48
0
1
3
4
2

Supported Devices 2088
Keywords Accepted by the IDL Devices. 2089
Window Systems 2128
Printing Graphics Output Files 2131
The CGM Device 2134
The HP-GL Device 2136
The LJ Device . 2139
The Macintosh Display Device 2143
The Null Display Device 2144

The PCL Device . 214
The Printer Device 214
The PostScript Device. 21
The Regis Terminal Device. 216
The Tektronix Device 216
The Microsoft Windows Device 216
The X Windows Device 216
The Z-Buffer Device. 217
IDL Reference Guide 2087

2088 Appendix B: IDL Graphics Devices

ut.
see

pt

CE,
d to
t

Supported Devices

IDL Direct Graphics support graphic output to the devices listed below:

Each of these devices is described in a section of this chapter. The SET_PLOT
procedure can be used to select the graphic device to which IDL directs its outp
IDL Object Graphics does not rely on the concept of a current graphics device;
Using IDL for details about IDL Object Graphics.

The DEVICE procedure controls the graphic device-specific functions. An attem
has been made to isolate all device-specific functions in this procedure. DEVICE
controls the graphics device currently selected by SET_PLOT. When using DEVI
it is important to make sure that the current graphics device is the one you inten
use. This is because most of the devices have different keywords—you will mos
likely get a ‘‘Keyword not allowed in call to: Device ’’ error if
you call DEVICE when the wrong device is selected.

Device Name Description

CGM Computer Graphics Metafile

HP Hewlett-Packard Graphics Language (HP-GL)

LJ Digital Equipment LJ250 (VMS Only)

MAC Macintosh display

NULL No graphics output

PCL Hewlett-Packard Printer Control Language (PCL)

PRINTER System printer

PS PostScript

REGIS Regis graphics protocol (DEC systems only)

TEK Tektronix compatible terminal

WIN Microsoft Windows

X X Window System

Z Z-buffer pseudo device

Table B-1: IDL Graphics Output Devices
Supported Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2089

he

m,
Keywords Accepted by the IDL Devices

The following table indicates which keywords are accepted by the DEVICE
procedure. The NULL device is not listed as it accepts no keywords. Details of t
various keywords can be found on the page indicated in the table.

Note
Most keywords to the DEVICE procedure are “sticky” — that is, once you set the
they remain in effect until you explicitly change them again, or end your IDL
session. The exceptions are keywords used to return a value from the system
(GET_FONTNAMES, for example) and those that perform a one-time-only
operation (CLOSE_FILE, for example).

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

AVANTGARDE •

AVERAGE_LINES •

BINARY •

BITS_PER_PIXEL •

BKMAN •

BOLD •

BOOK •

BYPASS_TRANSLATION • • •

CLOSE •

CLOSE_DOCUMENT •

CLOSE_FILE • • • • • • •

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2090 Appendix B: IDL Graphics Devices
COLOR • •

COLORS • •

COPY • • •

COURIER •

CURSOR_CROSSHAIR • •

CURSOR_IMAGE •

CURSOR_MASK •

CURSOR_ORIGINAL • • •

CURSOR_STANDARD • • •

CURSOR_XY •

DECOMPOSED • • •

DEMI •

DEPTH •

DIRECT_COLOR •

EJECT •

ENCAPSULATED •

ENCODING •

FILENAME • • • • • • •

FLOYD • • • •

FONT • • •

FONT_INDEX •

FONT_SIZE •

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2091
GET_CURRENT_FONT • • • •

GET_DECOMPOSED • • •

GET_FONTNAMES • • • •

GET_FONTNUM • • • •

GET_GRAPHICS_FUNCTION • • • •

GET_SCREEN_SIZE • • •

GET_VISUAL_DEPTH • • •

GET_VISUAL_NAME • • •

GET_WINDOW_POSITION • • •

GET_WRITE_MASK • •

GIN_CHARS •

GLYPH_CACHE • • • • •

HELVETICA •

INCHES • • • • •

INDEX_COLOR •

ISOLATIN1 •

ITALIC •

LANDSCAPE • • • • •

LIGHT •

MEDIUM •

NARROW •

NCAR •

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2092 Appendix B: IDL Graphics Devices
OBLIQUE •

OPTIMIZE •

ORDERED • • • •

OUTPUT • •

PALATINO •

PIXELS • •

PLOT_TO • •

PLOTTER_ON_OFF •

POLYFILL •

PORTRAIT • • • • •

PREVIEW •

PRINT_FILE •

PSEUDO_COLOR • •

RESET_STRING •

RESOLUTION • •

RETAIN • • •

SCALE_FACTOR • •

SCHOOLBOOK •

SET_CHARACTER_SIZE • • • • • • • • • • • •

SET_COLORMAP •

SET_COLORS •

SET_FONT • • • • •

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2093
SET_GRAPHICS_FUNCTION • • • •

SET_RESOLUTION •

SET_STRING •

SET_TRANSLATION •

SET_WRITE_MASK • •

STATIC_COLOR •

STATIC_GRAY •

SYMBOL •

TEK4014 •

TEK4100 •

TEXT •

THRESHOLD • • • •

TIMES •

TRANSLATION • • •

TRUE_COLOR • • •

TT_FONT • • • • •

TTY • •

USER_FONT •

VT240, VT241 •

VT340, VT341 •

WINDOW_STATE • •

XOFFSET • • • • •

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
IDL Reference Guide Keywords Accepted by the IDL Devices

2094 Appendix B: IDL Graphics Devices

ces

ult
e. If
Keywords accepted by the DEVICE command are described below. A list of devi
that accept the keyword is included in parentheses below the keyword name.

AVANTGARDE

(PS)

Set this keyword to select the ITC Avant Garde PostScript font.

AVERAGE_LINES

(REGIS)

Controls the method of writing images to the VT240. If this keyword is set, (defa
setting), even and odd pairs of image lines are averaged and written to a single lin
clear, each image line is written to the screen. See the discussion below. This
keyword has no effect when using a VT300 series terminal.

BINARY

(CGM)

Set this keyword to set the encoding type for the CGM output file to binary.

XON_XOFF •

XSIZE • • • • •

YOFFSET • • • • •

YSIZE • • • • •

ZAPFCHANCERY •

ZAPFDINGBATS •

Z_BUFFERING •

Keywords

Devices

C
G

M

H
P

LJ M
A

C

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table B-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2095

ing

ify

iter
bits).
ight

.
in

uld

uld

alue

hen
BITS_PER_PIXEL

(PS)

IDL is capable of producing PostScript images with 1, 2, 4, or 8 bits per pixel. Us
more bits per pixel gives higher resolution at the cost of generating larger files.
BITS_PER_PIXEL is used to specify the number of bits to use. If you do not spec
a value of 1, 2, 4, or 8, IDL selects the closest one.

It should be noted that many laser printers, including the original Apple Laserwr
are capable of only 32 different shades of gray (which can be represented by 5
Thus, specifying 8 bits per pixel does not give 256 apparent shades of grey as m
be expected, only 32, at a cost of sending twice the number of bits to the printer
Often, 4 bits (16 levels of gray) will give acceptable results with a large savings
file size.

BKMAN

(PS)

Set this keyword to select the ITC Bookman PostScript font.

BOLD

(PS)

Set this keyword to specify that the bold version of the current PostScript font sho
be used.

BOOK

(PS)

Set this keyword to specify that the book version of the current PostScript font sho
be used.

BYPASS_TRANSLATION

(MAC, WIN, X)

Set this keyword to bypass the translation tables, allowing direct specification of
color indices. See“Color Translation”on page 2169 Pixel values read via the TVRD
function are not translated if this keyword is set, and the result contains the byte v
of the actual pixel values present in the display.

By default, the translation tables are used with shared and static color tables. W
using displays with private color tables, the translation tables are bypassed.
IDL Reference Guide Keywords Accepted by the IDL Devices

2096 Appendix B: IDL Graphics Devices

),

ice

ent

nd
nd),
st.

le

ble
This keyword is accepted by the WIN device (for compatibility with the X device
but has no effect when set.

CLOSE

(Z)

Set this keyword to deallocate the memory used by the Z-buffer. The Z-buffer dev
is reinitialized if subsequent graphics operations are directed to the device.

CLOSE_DOCUMENT

(PRINTER)

Set this keyword to have IDL send any buffered output to the currently selected
printer. This keyword is applicable only when the printer device is selected. See“The
Printer Device” on page 2147 for details.

CLOSE_FILE

(CGM, HP, LJ, PCL, PS, REGIS, TEK)

Set this keyword to have IDL output any buffered commands and close the curr
graphics file.

Caution: Under operating systems other than VMS, if you close the output file a
then cause IDL to produce more output (e.g., by executing a new PLOT comma
IDL will open the file again, causing the contents of the recently closed file to be lo
To avoid this, use the FILENAME keyword to specify a different file name or use
SET_PLOT to disable the graphics driver, or be sure to print the closed output fi
before creating more output.

See the discussion of printing output files in“Printing Graphics Output Files” on
page 2131

COLOR

(PCL, PS)

Set this keyword to enable color PCL or PostScript output. See“The PCL Device”on
page 2145 or“The PostScript Device” on page 2148.

COLORS

(CGM, TEK)

This keyword specifies the maximum number of colors and the size of the color ta
used for output. The value of the system variable fields !D.N_COLORS and
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2097

r

ms.
ctly

t by
 the

to

s

he
!D.TABLE_SIZE are set to this value and !P.COLOR is set to one less than this
value.

For Tektronix Terminals Only

This keyword sets the number of colors supported by a 4100 series terminal. Fo
example, if your terminal has 4-bit planes, the number of colors is 24 = 16:

DEVICE, COLORS = 16

Valid values of this parameter are: 2, 4, 8, 16, or 64; other values will cause proble
Some Tektronix terminals will not operate properly if this parameter does not exa
match the number of colors available in the terminal hardware.

This parameter sets the field !D.N_COLORS, which affects the loading of color
tables, the scaling used by the TVSCL procedure, and the number of bits outpu
the TV procedure to the terminal. It also changes the default color, !P.COLOR to
number of colors minus one.

COPY

(MAC, WIN, X)

Use this keyword to copy a rectangular area of pixels from one region of a window
another. COPY should be set a six or seven element array: [Xs, Ys, Nx, Ny, Xd, Yd, W],
where: (Xs, Ys) is the lower left corner of the source rectangle, (Nx, Ny) are the number
of columns and rows in the rectangle, and (Xd, Yd) is the coordinate of the destination
rectangle. Optionally,Wis the index of the windowfrom which the pixels should

be copied to thecurrent window. If it is not supplied, the current window is used a
both the source and destination.

COURIER

(PS)

Set this keyword to select the Courier PostScript font.

CURSOR_CROSSHAIR

(WIN, X)

Set this keyword to selects the crosshair cursor type. This is the IDL default.

CURSOR_IMAGE

(X)

Specifies the cursor pattern. The value of this keyword must be a 16-line by 16-
column bitmap, contained in a 16-element short integer vector. The offset from t
IDL Reference Guide Keywords Accepted by the IDL Devices

2098 Appendix B: IDL Graphics Devices

 the

GE

sk.
black

s, it

ows.

lue of

ment:

nt
r is in
upper left pixel to the point that is considered the “hot spot” can be provided via
CURSOR_XY keyword.

CURSOR_MASK

(X)

When the CURSOR_IMAGE keyword is used to specify a cursor bitmap, the
CURSOR_MASK keyword can be used to simultaneously specify the mask that
should be used. In the mask, bits that are set indicate bits in the CURSOR_IMA
that should be seen and bits that are not set are “masked out”.

By default, the CURSOR_IMAGE bitmap is used for both the image and the ma
This can cause the cursor to be invisible on a black background (because only
pixels are allowed to be displayed).

CURSOR_ORIGINAL

(MAC, WIN, X)

Set this keyword to select the window system’s default cursor. Under X Window
is the cursor in use by the root window when IDL starts. For the Macintosh and
Microsoft Windows devices, it is the arrow pointer.

CURSOR_STANDARD

(MAC, WIN, X)

This keyword can be used to change the cursor appearance in IDL graphics wind

For X Windows

This keyword selects one of the predefined cursors provided by the X Window
system. The available cursors shapes are defined in the filecursorfonts.h in the
directory/usr/include/X11 (UNIX), or DECW$INCLUDE:(VMS). In order to use
one of these cursors, you select the number of the cursor and provide it as the va
the CURSOR_STANDARD keyword. For example, the file gives the value of
XC_CROSS as being 30. In order to make that the current cursor, use the state

DEVICE, CURSOR_STANDARD=30

For Microsoft Windows

The table below shows the values for CURSOR_STANDARD that result in differe
cursor shapes. For example, to change the cursor to an “I-beam” when the curso
an IDL graphics window, use the command:
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2099

”,
r of

the

lor
DEVICE, CURSOR_STANDARD = 32513

For Macintosh

Setting the CURSOR_STANDARD keyword changes the cursor to a crosshair in
IDL graphics windows.

CURSOR_XY

(X)

A two element integer vector giving the (X, Y) pixel offset of the cursor “hot spot
the point which is considered to be the mouse position, from the lower left corne
the cursor image. This parameter is only applicable if CURSOR_IMAGE is
provided. The cursor image is displayed top-down—the first row is displayed at
top.

DECOMPOSED

(MAC, WIN, X)

This keyword is used to control the way in which graphics color index values are
interpreted when using displays with decomposed color (TrueColor or DirectCo
visuals). This keyword has no effect with other types of visuals.

Cursor Shape Value

Arrow 32512

I-Beam 32513

Hourglass 32514

Black Crosshair 32515

Up Arrow 32516

Size (Windows NT only) 32640

Icon (Windows NT only) 32641

Size NW-SE 32642

Size NE-SW 32643

Size E-W 32644

Size N-S 32645

Table B-3: Values for the WIN device CURSOR_STANDARD keyword
IDL Reference Guide Keywords Accepted by the IDL Devices

2100 Appendix B: IDL Graphics Devices

dices
e
ay
olor.

 to
and

lays

this
ays.
s

uld

50
er of

e of

-bit
of 1
8 bits
ixel

values
have
Set this keyword to 1 to cause color indices to be interpreted as 3, 8-bit color in
where the least-significant 8 bits contain the red value, the next 8 bits contain th
green value, and the most-significant 8 bits contain the blue value. This is the w
IDL has always interpreted pixels when using visual classes with decomposed c

Set this keyword to 0 to cause the least-significant 8 bits of the color index value
be interpreted as a PseudoColor index. This setting allows users with DirectColor
TrueColor displays to use IDL programs written for standard, PseudoColor disp
without modification.

In older versions of IDL, color index values higher than !D.N_COLORS-1 were
clipped to !D.N_COLORS-1 in the higher level graphics routines. In some cases,
clipping caused the exclusive-OR graphics mode to malfunction with raster displ
This clipping has been removed. Programs that incorrectly specified color indice
higher than !D.N_COLORS-1 will now probably exhibit different behavior.

DEMI

(PS)

Set this keyword to specify that the demi version of the current PostScript font sho
be used.

DEPTH

(LJ)

The DEPTH keyword specifies the number of significant bits in a pixel. The LJ2
can support between 1 and 4 significant bits (known also as planes). The numb
available colors is related to the number of significant planes by the equation:

Colors = 2#planes

Therefore, the LJ250 can support 2, 4, 8, or 16 separate colors on a single pag
output. The default is to use a single plane, producing monochrome output.

Since IDL is based around 8-bit pixels, it is necessary to define which bits in a 8
pixel are used by the LJ250 driver, and which are ignored. When using a depth
(monochrome), dithering techniques are used to render images. In this case, all
are used. If more than a single plane is used, the least significant n bits of a 8-bit p
are used, where n is the selected depth. For example, using a depth of 4, pixel
of 15, 31, and 47 are all considered to have the value 15 because all three values
the same binary representation in their 4 least significant digits.

When the depth is changed, the standard color map given in Table 7-5 of the
LJ250/LJ252 Companion Color Printer Programmer Reference Manual is
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2101

ws

this

page

t at

e.

R

automatically loaded. Therefore, color maps should be loaded with TVLCT after
changing the depth.

DIRECT_COLOR

(X)

Set this keyword to select the DirectColor visual. The value of the keyword
represents the number of bits per pixel. This keyword has effect only if no windo
have been created. Visual classes are discussed in more detail in“X Windows
Visuals” on page 2164.

EJECT

(HP)

In order to perform an erase operation on a plotter, it is necessary to remove the
current sheet of paper and load a fresh sheet. The ability of various plotters to do
varies, so the EJECT keyword allows you to specify what should be done. The
following table describes the possible values.

Many HP-GL plotters lack a sheet feeder, and require the user to load the next
manually. Therefore, the default action is for IDL to not issue any page eject
instructions. In this case, you must restrict yourself to generating only a single plo
a time. If your plotter has a sheet feeder, you will want to issue the command:

DEVICE, /EJECT

to tell IDL that it should use the sheet feeder instead of placing the plotter off-lin

If your plotter does not have a sheet feeder, but it does understand the HP-GL N
command, use the command:

DEVICE, EJECT=2

Value Meaning

0 Do nothing. Note that this is likely to cause one page to plot over
the previous one, so you should limit yourself to one page of output
per file. This is the default.

1 Use the sheet feeder to load the next page.

2 Put the plotter off-line at the beginning of each page after the first.

Table B-4: Values for the HP-GL Eject Keyword
IDL Reference Guide Keywords Accepted by the IDL Devices

2102 Appendix B: IDL Graphics Devices

ses
puts
y the

into

t

.)

 to a
ge
utput

ands.

the
the

is

ms

e any
, use
to place the plotter off-line at the start of every plot except the first one. This cau
the plotter to wait between plots for the user to replace the paper. When the user
the plotter back on-line, the graphics commands for the new page are executed b
plotter. Consult the programming manual for your plotter to determine if this
instruction is provided.

ENCAPSULATED

(PS)

Set this keyword to create an encapsulated PostScript file, suitable for importing
another document (e.g., a LaTeX or FrameMaker document).

Note
You must explicitly set this keyword to zero to create “regular” PostScript outpu
after creating encapsulated output. (That is, like most keyword settings to the
DEVICE procedure, the setting “sticks” until you change it, or until you quit IDL

Normally, IDL assumes that its PostScript-generated output will be sent directly
printer. It therefore includes PostScript commands to position the plot on the pa
and to eject the page from the printer. These commands are undesirable if the o
is going to be inserted into the middle of another PostScript document. If
ENCAPSULATED is present and non-zero, IDL does not generate these comm

IDL follows the standard PostScript convention for encapsulated files. It assumes
standard PostScript scaling is in effect (72 points per inch), In addition, it declares
size, orbounding box of the plotting region at the top of the output file. This size
determined when the output file is opened (when the first graphics command is
given), by multiplying the size of the plotting region (as specified with the XSIZE
and YSIZE keywords) by the current scale factor (as specified by the
SCALE_FACTOR keyword).

Changing the size of the plotting region or scale factor once graphics have been
output will not be reflected in the declared bounding box, and will confuse progra
that attempt to import the resulting graphics. Therefore, when generating
encapsulated PostScript, do not change the plot region size or scaling factor onc
graphics commands have been issued. If you need to change these parameters
the FILENAME keyword to start a new file.

ENCODING

(CGM)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2103

: 1
.

cted
ed

o a

ort

m
e, to

gest
Set this keyword to set the CGM encoding type for the output file. Valid values are
(binary encoding, the default), 2 (text encoding), and 3 (NCAR binary encoding)
The encoding type can only be changed when there is no CGM file open.

FILENAME

(CGM, HP, LJ, PCL, PS, REGIS, TEK)

Normally, all generated output is sent to a file namedidl.xxx , wherexxx is the
lowercase name of the device shown in the table under“Supported Devices” on
page 2088. The FILENAME keyword can be used to change these defaults. If
FILENAME is specified:

1. If the file is already open (as happens if plotting commands have been dire
to the file since the call to SET_PLOT), then the file is completed and clos
as if CLOSE_FILE had been specified.

2. The specified file is opened for subsequent graphics output.

HP-GL Only

Under UNIX, if you wish to send HP-GL output directly to a plotter without
generating an intermediate file, you should specify the device special file for the
plotter as the argument to FILENAME. For example, if your plotter is connected t
serial input/output port known on your system as/dev/ttya , you would issue the
command:

DEVICE, FILENAME='/dev/ttya'

All subsequent HP-GL output is sent directly to the plotter connected to serial p
/dev/ttya .

FLOYD

(LJ, MAC, PCL, X)

Set this keyword to select the Floyd-Steinberg method of dithering. This algorith
distributes the error, due to displaying intermediate shades in either black or whit
surrounding pixels. This method generally gives the most pleasing results but
requires the most computer time.

FONT

(MAC, WIN, X)

This keyword is now obsolete and has been replaced by theSET_FONT keyword.
Code that uses the FONT keyword will continue to function as before, but we sug
that all new code use SET_FONT.
IDL Reference Guide Keywords Accepted by the IDL Devices

2104 Appendix B: IDL Graphics Devices

nt.

o the
the

on

ned
. If

e

s of
This

our
T

FONT_INDEX

(PS)

An integer representing the font index to be mapped to the current PostScript fo

Normally the font specification keywords (AVANTGARDE, etc.) take effect
immediately to change the current font. The FONT_INDEX keyword alters this
behavior. The current font is not changed. Instead, the specified font is mapped t
specified font index. This mapping can then be used within text strings to change
font in the middle of the string. See“Using PostScript Fonts” on page 2149

FONT_SIZE

(PS)

The default height used for displayed text. FONT_SIZE is given in points (a comm
typesetting unit of measure). The default size is 12 point text.

GET_CURRENT_FONT

(MAC, PRINTER, WIN, X)

Set this keyword to a named variable in which the name of the current font is retur
as a scalar string. A null string is returned if the Windows font is the default font
the current device is PRINTER, the current printer font is returned.

GET_DECOMPOSED

(MAC, WIN, X)

Set this keyword to a named variable in which is returned the current state of th
decomposed flag in the current direct graphics device.

GET_FONTNAMES

(MAC, PRINTER, WIN, X)

Set this keyword to a named variable in which a string array containing the name
available fonts is returned. If no fonts are found, a null scalar string is returned.
keyword must be used in conjunction with the FONT keyword. Set the FONT
keyword to a scalar string containing the name of the desired font or a wildcard.

GET_FONTNUM

(MAC, PRINTER, WIN, X)

Set this keyword to a named variable in which the number of fonts available to y
installation is returned. This keyword must be used in conjunction with the FON
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2105

ired

ics

hen

ing
t

e of
keyword. Set the FONT keyword to a scalar string containing the name of the des
font or a wildcard.

GET_GRAPHICS_FUNCTION

(MAC, WIN, X, Z)

Set this keyword to a named variable that returns the value of the current graph
function (which is set with the SET_GRAPHICS_FUNCTION keyword). This can
be used to remember the current graphics function, change it temporarily, and t
restore it. See“SET_GRAPHICS_FUNCTION” on page 2119 keyword for an
example.

GET_SCREEN_SIZE

(MAC, WIN, X)

Set this keyword to a named variable in which to return a two-word array that
contains the width and height of the server’s screen, in pixels.

Note
For the Macintosh, anchoring the Command Input Line reduces the amount of
available screen space.

GET_VISUAL_DEPTH

(MAC, WIN, X)

Set this keyword to a named variable into which a long integer is returned contain
the depth of the visual associated with this device. Under X, if the X server is no
connected when you call the DEVICE procedure with this keyword set, a new
connection is made.

GET_VISUAL_NAME

(MAC, WIN, X)

Set this keyword equal to a named variable in which a string containing the nam
the current visual class IDL is using is returned. Possible return values are:

• StaticGray (X only)

• GrayScale (X only)

• StaticColor (X only)

• PseudoColor
IDL Reference Guide Keywords Accepted by the IDL Devices

2106 Appendix B: IDL Graphics Devices

E

g the

)
t the
too

put

 at
ted
eated
• TrueColor

• DirectColor (X only)

Under X, if no connection to the X server has been established when the DEVIC
procedure is called with this keyword set, a new connection is made.

GET_WINDOW_POSITION

(MAC, WIN, X)

Set this keyword to a named variable that returns a two-element array containin
(X,Y) position of the lower left corner of the current window on the screen. The
origin is also in the lower left corner of the screen.

GET_WRITE_MASK

(WIN, X)

Specifies the name of a variable to receive the current value of the write mask.

GIN_CHARS

(TEK)

The number of characters IDL is to read when accepting a GIN (Graphics INput
report. The default is 5. If your terminal is configured to send a carriage return a
end of each GIN report, set this parameter to 6. If the number of GIN characters is
large, the IDL CURSOR procedure will not respond until two or more keys are
struck. If it is too small, the extra characters sent by the terminal will appear as in
to the next IDL prompt.

GLYPH_CACHE

(MAC, PRINTER, PS, WIN, Z)

Set this keyword to a scalar specifying the maximum number of glyphs to cache
any given time. The first time a glyph from a TrueType font is used, it is tessella
into triangles. These triangles are cached so that the tessellation step is not rep
for each use of that glyph. If the glyph cache fills, the least used glyph will be
released before a new glyph is generated and cached. The default is 256.

HELVETICA

(PS)

Set this keyword to select the Helvetica PostScript font.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2107

 in
in

ult.

rts
n

uld

hort
n

citly

d a

log
INCHES

(HP, LJ, PCL, PRINTER, PS)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified
centimeters. However, if INCHES is present and non-zero, they are taken to be
inches instead.

INDEX_COLOR

(PRINTER)

Set this keyword to place the printer device in index color mode. This is the defa
This keyword is applicable only when the printer device is selected. See“The Printer
Device” on page 2147 for details.

ISOLATIN1

(PS)

Set this keyword to use Adobe ISO Latin 1 font encoding with any font that suppo
such coding. Use of this keyword allows access to many commonly-used foreig
characters.

ITALIC

(PS)

Set this keyword to specify that the italic version of the current PostScript font sho
be used.

LANDSCAPE

(HP, LJ, PCL, PRINTER, PS)

IDL normally generates plots with portrait orientation (the abscissa is along the s
dimension of the page). If the LANDSCAPE keyword is set, landscape orientatio
(abscissa along the long dimension of the page) is used instead. Note that expli
setting LANDSCAPE=0 is the same as setting thePORTRAIT keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed an
new page set to landscape layout is started.

Note
The ability to set a printer to landscape mode is printer-driver dependent. Your
printer may not support this functionality; use the system native print setup dia
to set the orientation of the print job.
IDL Reference Guide Keywords Accepted by the IDL Devices

2108 Appendix B: IDL Graphics Devices

uld

nt

t

ry.

.

n.
e

t

LIGHT

(PS)

Set this keyword to specify that the light version of the current PostScript font sho
be used.

MEDIUM

(PS)

Set this keyword to specify that the medium version of the current PostScript fo
should be used.

NARROW

(PS)

Set this keyword to specify that the narrow version of the current PostScript fon
should be used.

NCAR

(CGM)

Set this keyword to set the encoding type for the CGM output file to NCAR bina

The NCAR Binary Encoding

The NCAR binary encoding is used exclusively by the NCAR graphics package
Version 3.01 of NCAR View (ctrans , ictrans , andcgm2ncgm) does not correctly
handle the following graphic elements:

• Cell arrays (raster images) with an odd number of pixels in the X dimensio
Solution: specify an even number of pixels for the X dimension or make th
image one column wider and fill with zeros.

• Raster images drawn in top down order. Solution: invert the image prior to
using TV or TVSCL and do not use the /ORDER keyword. For example:

TV, image
; Draw image top to bottom:
TV, ROTATE(image, 7)

OBLIQUE

(PS)

Set this keyword to specify that the oblique version of the current PostScript fon
should be used.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2109

ut
d to

th
n

s
L
the

ts

,
es

ded
te:
t

nt

y
does
OPTIMIZE

(PCL)

It is desirable, though not always possible, to compress the size of the PCL outp
file. Such optimization reduces the size of the output file, and improves I/O spee
the printer. There are three levels of optimization:

• 0 = No optimization is performed. This is the default because it will work wi
any PCL device. However, users of devices which can support optimizatio
should use one of the other optimization levels.

• 1 = Optimization is performed using PCL optimization primitives. This give
the best output compression and printing speed. Unfortunately, not all PC
devices support it. On those that can’t, the result will be garbage printed on
page.

Consult the programmers manual for your printer to determine if it suppor
the required escape sequences. The required sequences are:<ESC>*b0M
(select full graphics mode),<ESC>*b1M (select compacted graphics mode 1)
and<ESC>*b2M(select compacted graphics mode 2). The HP LaserJet II do
not support this optimization level. The DeskJet PLUS does.

• 2 = IDL attempts to optimize the output by explicitly moving the left margin
and then outputting non-blank sections of the page. This is primarily inten
for use with the LaserJet II, which does not support optimization level 1. No
This optimization can be very slow on some devices (such as the DeskJe
PLUS). On such devices, it is best to avoid this optimization level.

ORDERED

(LJ, MAC, PCL, X)

Set this keyword to select the ordered dither method. This introduces a pseudo-
random error into the display by using a 4 by 4 “dither” matrix, yielding 16 appare
intensities. This is the default method.

Macintosh Only

This keyword is identical to theTHRESHOLD keyword.

OUTPUT

(HP, PS)

Specifies a scalar string that is sent directly to the graphics output file without an
processing, allowing the user to send arbitrary commands to the file. Since IDL
IDL Reference Guide Keywords Accepted by the IDL Devices

2110 Appendix B: IDL Graphics Devices

rect

 in
ls
ally

l to
to a
 to

your

tive
d

the

P-
ands
not examine the string, it is the user’s responsibility to ensure that the string is cor
for the target device.

PALATINO

(PS)

Set this keyword to select the Palatino PostScript font.

PIXELS

(LJ, PCL)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified
centimeters. However, if the PIXELS keyword is set, they are taken to be in pixe
instead. Note that the selected resolution will determine how large a region is actu
written on the page.

PLOT_TO

(REGIS, TEK)

Directs the Tektronix graphic output that would normally go to the user’s termina
the specified I/O unit. The logical unit specified should be open with write access
device or file. Graphic output may be saved in files for later playback, redirected
other terminals, or to devices that can accept Textronix graphic commands.

Do not use the interactive graphics cursor when graphic output is not directed to
terminal.

To direct the graphic data to both the terminal and the file, set the unit to the nega
of the actual unit number. Alternatively, you can use the TTY keyword, describe
below.

If the specified unit number is zero then Tektronix output to the file is stopped.

PLOTTER_ON_OFF

(HP)

There are some configurations in which a HP-GL plotter is connected between
computer and a terminal. In this mode (known as eavesdrop mode), the plotter
ignores everything it is sent and passes it through to the terminal—the plotter is
logically off. This state continues until an escape sequence is sent that turns the
plotter logically on. At this point the plotter interprets and executes all input as H
GL commands. Another escape sequence is sent at the end of the HP-GL comm
to return the plotter to the logically off state.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2111

ally

s. If
cketed
 a
ord

ers
rates
ue
ng

runs
 for
er
 this
ut
tter,
ns.

s

d a

ter
t the
Most configurations do not use eavesdrop mode, and the plotter is always logic
on. However, if you are using this style of connection, you must use
PLOTTER_ON_OFF to instruct IDL to generate the necessary on/off command
present and non-zero, PLOTTER_ON_OFF causes each output page to be bra
by device control commands that turn the plotter logically on and off. Specifying
value of zero stops the issuing of such commands. You should only use this keyw
before any output has been generated.

POLYFILL

(HP)

Some plotters (e.g., HP7550A) can perform polygon filling in hardware, while oth
(e.g., HP7475) cannot. IDL therefore assumes that the plotter cannot, and gene
all polygon operations in software using line drawing. Specifying a non-zero val
for the POLYFILL keyword causes IDL to use the hardware polygon filling. Setti
it to zero reverts to software filling.

Different implementations of HP-GL plotters may have different limits for the
number of vertices that can be specified for a polygon region before the plotter
out of internal memory. Since this limit can vary, the HP-GL driver cannot check
calls to POLYFILL that specify too many points. Therefore, it is possible for the us
to produce HP-GL output that causes an error when sent to the plotter. To avoid
situation, minimize the number of points used. On the HP7550A, the limit is abo
127 points. If you do generate output that exceeds the limit imposed by your plo
you will have to break that polygon filling operation into multiple smaller operatio

PORTRAIT

(HP, LJ, PCL, PRINTER, PS)

Set the PORTRAIT keyword to generate plots using portrait orientation. Portrait
orientation is the default. Note that explicitly setting PORTRAIT=0 is the same a
setting theLANDSCAPE keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed an
new page set to portrait layout is started.

Note
The ability to set a printer to portrait mode is printer-driver dependent. Your prin
may not support this functionality; use the system native print setup dialog to se
orientation of the print job.
IDL Reference Guide Keywords Accepted by the IDL Devices

2112 Appendix B: IDL Graphics Devices

CII
on-
The

r,

ted
et

ord
if no

The
PREVIEW

(PS)

Set this keyword to 1 to add a “platform-independent preview” to the PostScript
output file in encapsulated PostScript interchange format (EPSI). EPSI is an AS
format. Set this keyword to 2 to write the EPS file in EPSF format, including an
screen preview that is supported by many windows applications, e.g. MSWord.
default (0) is to not include a preview.

Note
EPSF is not an ASCII format and cannot be sent directly to a Postscript printe
unlike the EPSI format. It must be imported into an application for printing.

PRINT_FILE

(WIN)

Set this keyword to the name of a file (e.g., PostScript or PCL) to be sent to the
currently-selected Windows printer. IDL performs no type checking on this file
before sending it to the printer. Therefore, if you have a PostScript printer selec
and you send a file that contains no valid PostScript information, you’ll simply g
text output.

To send the filemyfile.ps to the currently-selected Windows printer, enter:

DEVICE, PRINT_FILE='myfile.ps'

PSEUDO_COLOR

(MAC, X)

If this keyword is present, the PseudoColor visual is used. The value of the keyw
represents the number of bits per pixel to be used. This keyword has effect only
windows have been created. Visual classes are discussed in more detail in“X
Windows Visuals” on page 2164

Macintosh Only

Setting this keyword causes all screen manipulations to be done in 8-bit mode.
value of the keyword is ignored, as is the current bit-depth of the monitor.

RESET_STRING

(TEK)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2113

r

ode

5,

d
files

ting
ed

 the
The string used to place the terminal back into the normal interactive mode afte
drawing graphics. Use this parameter, in conjunction with the SET_STRING
keyword, to control the mode switching of your terminal.

For example, the GraphON 200 series terminals require the string<ESC>2to activate
the alphanumeric window after drawing graphics. The call to set this is:

DEVICE, RESET = string(27b) + '2'

If the 4100 series mode switch is set, using the keyword TEK4100, the default m
resetting string is<ESC>%!1, which selects the ANSI code mode.

RESOLUTION

(LJ, PCL)

PCL Only

The resolution at which the PCL printer will work. PCL supports resolutions of 7
100, 150, and 300 dots per inch. The default is 300 dpi. Lower resolution gives
smaller output files, while higher resolution gives superior quality.

LJ250 Only

The resolution at which the LJ printer will work. LJ supports resolutions of 90 an
180 dots per inch. The default is 180 dpi. Lower resolution gives smaller output
and a larger selection of colors, while higher resolution gives superior quality.

RETAIN

(MAC, WIN, X)

Use this keyword to specify the default method used for backing store when crea
new windows. This is the method used when the RETAIN keyword is not specifi
with the WINDOW procedure. Backing store is discussed in more detail under
“Backing Store” on page 2128, along with the possible values for this keyword. If
RETAIN is not used to specify the default method, method 1 (server-supplied
backing store) is used.

Microsoft Windows Only

The initial value of this parameter can be set by selecting File-Preferences from
menu bar. See“Backing Store” on page 2128

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
IDL Reference Guide Keywords Accepted by the IDL Devices

2114 Appendix B: IDL Graphics Devices

 the

s of

ing
k

to
00 x

e

.)
g
ter:
results. For example, data may be improperly read from the window even when
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These type
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 1330

SCALE_FACTOR

(PRINTER, PS)

Specifies a scale factor applied to the entire plot. The default value is 1.0, allow
output to appear at its normal size. SCALE_FACTOR is used to magnify or shrin
the resulting output.

The SCALE_FACTOR keyword behaves slightly differently in the context of the
PRINTER device than it does in the context of the PS device.

When the current device is PRINTER, the SCALE_FACTOR keyword is designed
emulate a scalable resolution setting on the printer. For example, if you have a 3
300 pixel image—stored in the variableimage—the following IDL commands will
print image in a 0.5 inch square on a 600 dpi printer:

SET_PLOT, 'printer'
TV, image

Setting SCALE_FACTOR to 2 will scale the image to a 1 inch square on the sam
600 dpi printer:

SET_PLOT, 'printer'
DEVICE, SCALE_FACTOR=2
TV, image

The output of IDL’s Direct Graphics routines (CONTOUR, PLOT, SURFACE, etc
is automatically scaled to fill the available drawing area. As a result, the followin
IDL commands will produce two identical copies of the same output on any prin

SET_PLOT, 'printer'
PLOT, data
DEVICE, SCALE_FACTOR=2
PLOT, data

SCHOOLBOOK

(PS)

Set this keyword to select the New Century Schoolbook PostScript font.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2115

nts.
y

the

n the

The
and

d by
xed;
ing
cing

se,

other
e that

-
P

s

SET_CHARACTER_SIZE

(CGM, HP, LJ, MAC, PCL, PRINTER, PS, REGIS, TEK, WIN, X, Z)

Set this keyword equal to a two-element vector to specify the font size and line
spacing (leading) of vector and TrueType fonts, and the line spacing of device fo
The way that the value of this vector determines character size is not completel
intuitive.

The vector specified to the SET_CHARACTER_SIZE keyword sets the values of
X_CH_SIZE and Y_CH_SIZE fields in the!D System Variable structure. These
values describe the size of the rectangle that contains the “average” character i
current font. (It is not important what the “average” character is; it is used only to
calculate a scaling factor that will be applied to all of the characters in the font.)
first element specifies the width of the rectangle in device units (usually pixels),
the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determine
thewidth of the rectangle. The aspect ratio of the “average” character remains fi
the character is scaled so that its width fits in the specified rectangle. The result
scale factor is then applied to all of the characters in the font. The amount of spa
between lines (baseline to baseline) is determined explicitly by the height of the
rectangle.

For device fonts, the character size is fixed. When the device font system is in u
the first element of the vector specified to SET_CHARACTER_SIZE is silently
ignored, and only the line-spacing value is used.

Note
Changing between font systems (and sometimes changing from one font to an
within the same font system) can also change the !D structure, so do not assum
the character size you have set is preserved when you change fonts.

SET_COLORMAP

(PCL)

Set this keyword to a 14,739 (= 3⋅ 173) element byte vector containing the RGB-to
printer color translation table for a color PCL printer. The default table is for an H
Deskjet 500C printer.

The translation table is divided into red, green, and blue planes of 4913 (=173)
elements each. For a given RGB triple, the offset into each plane is calculated a
follows:
IDL Reference Guide Keywords Accepted by the IDL Devices

2116 Appendix B: IDL Graphics Devices

ter
ue at

CL

is

e is
ith
Offset = (Red/16)*289 + (Green/16)*17 + (Blue/16)

Thus, if the RGB triple is [16,32,160], the offset into each plane is 333. The prin
will use the value at element 332 of the translation table as the red value, the val
element 5245 (=4913+332) as the green value, and the value at element 10158
(=9826+332) as the blue value.

The following example shows how to scale an existing colortable for use by a P
printer.

; Set the plot window to the X device:
SET_PLOT, 'X'
; Create a window:
WINDOW,0,XS=300,YS=300
; Load a color table:
LOADCT,13
; Read color table values into variables:
TVLCT,r,g,b,/GET
; Re-size color table variables:
r2=CONGRID(r,4913)
g2=CONGRID(g,4913)
b2=CONGRID(b,4913)
; Create 14,739-element color map:
colormap=[r2,g2,b2]
; Change to the PCL device:
SET_PLOT, 'PCL'
; Set file name, resolution, color, and color map:
DEVICE, FILE = 'pcl.pcl', RESOLUTION = 300, $

/COLOR, SET_COLORMAP = colormap
; Display an image:
TVSCL,DIST(900)
; Close the device:
DEVICE,/CLOSE

Note
The color table used need not be one of IDL’s predefined tables.

SET_COLORS

(Z)

Sets the number of pixel values, !D.N_COLORS and !D.TABLE_SIZE. This value
used by a number of IDL routines to determine the scaling of pixel data and the
default drawing index. Allowable values range from 2 to 256, and the default valu
256. Use this parameter to make the Z-buffer device compatible with devices w
fewer than 256 colors indices.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2117

ted,
hen
e

 be

es in

t
yed.

f the

 all
r

SET_FONT

(MAC, PRINTER, PS, WIN, Z)

Set this keyword to a scalar string specifying the name of the font used when a
hardware or TrueType font is selected. Note that hardware fonts cannot be rota
scaled, or projected, and that the "!" commands for formatting may not work. W
generating three-dimensional plots, it is best to use the vector-drawn or TrueTyp
characters. Note that for the PS device, only one hardware font (other than the
predefined fonts set via the fontname keywords, such as /AVANTEGARDE) may
loaded at a time.

Note on the FONT Keyword

The SET_FONT keyword was introduced with IDL version 5.1 and replaces the
FONT and USER_FONT keywords used in previous versions.

Using TrueType Fonts

For TrueType fonts, the specified font name must exactly match one of the nam
the first column of thettfont.map file in theresource/fonts/tt directory or
(on Macintosh and Windows platforms) the name of an installed font. See“About
TrueType Fonts”on page 2235 for details on thettfont.map file and for a listing of
TrueType fonts distributed with IDL. Note that you must include the TT_FONT
keyword to indicate that the font specified is a TrueType font. For example, the
following sets the font to the font to the TrueType font Helvetica Bold Italic:

DEVICE, SET_FONT='Helvetica-BoldItalic', /TT_FONT

Note
You can append additional TrueType fonts to thettfont.map file if desired; on
Macintosh and Windows platforms, additional fonts can also be added via the
normal font installation procedures for your system. Research Systems canno
guarantee that TrueType fonts you add will be satisfactorily tessellated or displa
See“About TrueType Fonts” on page 2235 for details.

Using Hardware Fonts

Because device fonts are specified differently on different platforms, the syntax o
fontname string depends on which platform you are using.

UNIX and VMS

Usually, the window system provides a directory of font files that can be used by
applications. List the contents of that directory to find the fonts available on you
IDL Reference Guide Keywords Accepted by the IDL Devices

2118 Appendix B: IDL Graphics Devices

e
ake

ly,
d,
 size.
system. The size of the font selected also affects the size of vector drawn text. X
Windows users can use thexlsfonts command to list available X Windows fonts.

On some machines, fonts are kept in subdirectories of/usr/lib/X11/fonts .

For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT=" font*modifier 1*modifier 2*...modifier n"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string isnot case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY

• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE

• For font angle: ITALIC

• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. Th
following commands tell IDL to use hardware fonts, change the font, and then m
a simple plot:

!P.FONT = 0
DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
PLOT, FINDGEN(10), TITLE = "IDL Plot"

This feature is compatible with TrueType and Adobe Type Manager (and, possib
other type scaling programs for Windows). If you have TrueType or ATM installe
the TrueType or PostScript outline fonts are used so that text looks good at any

Macintosh

The SET_FONT keyword should be set to a string with the following form:
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2119

nd
re

 a
hics

e

DEVICE, SET_FONT=" font * modifier 1* modifier 2*... modifier n"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string isnot case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: BOLD

• For font angle: ITALIC

• For font width: CONDENSED, EXTENDED

• For outlined text: OUTLINE, SHADOW

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font size, in points.

For example, if you have Garamond installed, you could select 24-point Garamo
italic as the font to use in plotting. The following commands tell IDL to use hardwa
fonts, change the font, and then make a simple plot:

IDL> !P.FONT = 0
IDL> DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
IDL> PLOT, FINDGEN(10), TITLE = "IDL Plot"

SET_GRAPHICS_FUNCTION

(MAC, WIN, X, Z)

Most window systems allow applications to specify the graphics function. This is
logical function which specifies how the source pixel values generated by a grap
operation are combined with the pixel values already present on the screen. Th
complete list of possible values is given in the following table:

Logical Function Code Definition

GXclear 0 0

GXand 1 source AND destination

GXandReverse 2 source AND (NOT destination)

GXcopy 3 source

GXandInverted 4 (NOT source) AND destination

GXnoop 5 destination

Table B-5: Graphic Function Codes
IDL Reference Guide Keywords Accepted by the IDL Devices

2120 Appendix B: IDL Graphics Devices

ms.

he Z-
g

The default graphics function is GXcopy, which causes new pixels to completely
overwrite any previous pixels. Not all functions are available on all window syste

For example, the following code segment inverts the bottom bit in the rectangle
defined by its diagonal corners (x0, y 0) and (x1, y1):

; Set graphics function to exclusive or (GXor), and save the
; old function:
DEVICE, GET_GRAPHICS_FUNCTION = oldg, SET_GRAPHICS_FUNCTION = 6
; Use POLYFILL to select the area to be inverted. The source
; pixel value is 1:
POLYFILL, [[x0,y0], [x0,y1], [x1,y1], [x1,y0]], $

/DEVICE, COLOR=1
; Restore the previous graphics function:
DEVICE, SET_GRAPHICS_FUNCTION=oldg

SET_RESOLUTION

(Z)

Set this keyword to a two-element vector that specifies the width and height of t
buffers. The default size is 640 by 480. If this size is not the same as the existin
buffers, the current buffers are destroyed and the device is reinitialized.

GXxor 6 source XOR destination

GXor 7 source OR destination

GXnor 8 (NOT source) AND (NOT destination)

GXequiv 9 (NOT source) XOR destination

GXinvert 10 (NOT destination)

GXorReverse 11 source OR (NOT destination)

GXcopyInverted 12 (NOT source)

GXorInverted 13 (NOT source) OR destination

GXnand 14 (NOT source) OR (NOT destination)

GXset 15 1

Logical Function Code Definition

Table B-5: Graphic Function Codes
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2121

ord

he
 is
SET_STRING

(TEK)

The string used to place the terminal into the graphics mode from the normal
interactive terminal mode. If the 4100 series mode switch is set, using the keyw
TEK4100, the default graphic mode setting string is<ESC>%!0, which selects the
Tektronix code mode.

SET_TRANSLATION

(X)

This keyword can be used to allow multiple, simultaneous IDL sessions to use t
same colors from a shared colormap. Use this keyword before the X connection
established (i.e., before a window is created), IDL will use the shared color map
without allocating any additional colors, and will not load a grayscale ramp as is
usually done when the X server starts up. The following example shows two
cooperating IDL processes sharing the same colormap:

Execute the following commands in the first IDL session:

WINDOW, GET_X_ID = a
DEVICE, TRANSLATION = t
OPENW, 1, 'junk.dat'
WRITEU, 1, a, !D.N_COLORS, t[0:!D.N_COLORS-1]
CLOSE, 1
LOADCT, 3

Execute the following commands in the second IDL session:

OPENR, 1, 'junk.dat'
a=0L
n=0L
READU,1, a, n
t = BYTARR(n)
READU, 1, t
CLOSE, 1
DEVICE, SET_TRANSLATION = t
WINDOW, COLORS=n, SET_X_ID=a
TV, DIST(256)

SET_WRITE_MASK

(X, Z)

Sets the write mask to the specified value. For ann-bit system, the write mask can
range from 0 to 2n-1.
IDL Reference Guide Keywords Accepted by the IDL Devices

2122 Appendix B: IDL Graphics Devices

ffect
tail in

ffect
tail in

t.
ost
end.

DL

The
l

STATIC_COLOR

(X)

Use this keyword to select the X Windows StaticColor visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has e
only if no windows have been created. Visual classes are discussed in more de
“X Windows Visuals” on page 2164

STATIC_GRAY

(X)

Use this keyword to select the X Windows StaticGray visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has e
only if no windows have been created. Visual classes are discussed in more de
“X Windows Visuals” on page 2164

SYMBOL

(PS)

Set this keyword to select the Symbol PostScript font.

TEK4014

(TEK)

Set this keyword to specify that coordinates are to be output with full 12-bit
resolution. If this keyword is not present or is zero, 10-bit coordinates are outpu
Normally, IDL sends 10-bit coordinates. 12-bit coordinates are compatible with m
terminals, even those without the full resolution, but require more characters to s

Note
The 4014 and the 4100 modes can be used together. The coordinate system I
uses for the Tektronix is 0 to 4095 in the X direction and 0 to 3120 in the Y
direction, even when not in the 4014 mode. In the 10-bit case the internal
coordinates are divided by 4 prior to output.

TEK4100

(TEK)

Set this keyword to indicate that the terminal is a 4100 or 4200 series terminal.
use of color, ANSI and Tektronix mode switching, hardware line styles, and pixe
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2123

put

d.

 or

one

ich
n the
the

.
pixel
output with the TV procedure is supported with these terminals. Also, text is out
differently.

TEXT

(CGM)

Set this keyword to set the encoding type for the CGM output file to text.

THRESHOLD

(LJ, MAC, PCL, X)

Set this keyword to select the threshold algorithm—the simplest dithering metho
The value of this keyword is the threshold to be used. This algorithm simply
compares each pixel against the given threshold, usually 128. If the pixel equals
exceeds the threshold the display pixel is set to white, otherwise it is black.

Macintosh Only

Set this keyword to use the Macintosh’s default thresholding. Values greater than
cause the keyword to be set but are otherwise ignored.

TIMES

(PS)

Set this keyword to select the Times-Roman PostScript font.

TRANSLATION

(MAC, WIN, X)

As discussed in“Shared Colormaps” on page 2167, using the shared colormap
(normally recommended) causes IDL to translate between IDL color indices (wh
always start with zero and are contiguous) and the pixel values actually present i
display. The TRANSLATION keyword specifies the name of a variable to receive
translation vector. To read the translation table, use the command:

DEVICE, TRANSLATION=TRANSARR

where TRANSARR is a named variable into which the translation array is stored
The result is a 256-element byte vector. Element zero of the vector contains the
value allocated for the first color in the IDL colormap, and so forth.
IDL Reference Guide Keywords Accepted by the IDL Devices

2124 Appendix B: IDL Graphics Devices

s
ue of

nts
ws

an

time
o
 has

t we
Microsoft Windows Only

This keyword is accepted by the WIN device, for compatibility with the X Window
driver, but simply returns a 256-element vector where each element has the val
its subscript (0 to 255).

TRUE_COLOR

(MAC, PRINTER, X)

Use this keyword to select TrueColor visuals. The value of the keyword represe
the number of bits per pixel to be used. This keyword has effect only if no windo
have been created. Visual classes are discussed in more detail in“X Windows
Visuals” on page 2164. If the current device is PRINTER, the printer is placed in
RGB or true-color mode if the value of the TRUE_COLOR keyword is greater th
zero (the number of bits per pixel specified is ignored.)

Macintosh Only

For best results, set TRUE_COLOR equal to 24 after setting the Color Depth to
Millions from the Monitors Control Panel in the Apple menu.

TT_FONT

(MAC, PRINTER, WIN, X, Z)

Set this keyword to indicate that the font set via theSET_FONT keyword (either to
set the fontname or to retrieve fontnames in conjunction with the
GET_FONTNAMES or GET_FONTNUM keywords) should be treated as a
TrueType font.

TTY

(REGIS, TEK)

Set this keyword to specify that output should be sent to the terminal at the same
that it is being sent to a file due to the FILENAME or PLOT_TO keywords. A zer
value causes output to go only to the file. If no output file is in use, this keyword
no effect.

USER_FONT

(PS)

This keyword is now obsolete and has been replaced by theSET_FONT keyword.
Code that uses the USER_FONT keyword will continue to function as before, bu
suggest that all new code use SET_FONT.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2125

t for

d by

ice

ould

ting
VT240, VT241

(REGIS)

Set this keyword to configure the REGIS device for VT240 series terminals.

VT340, VT341

(REGIS)

Set this keyword to configure the REGIS device for VT340 series terminals.

WINDOW_STATE

(WIN)

Set this keyword to a named variable that returns an array containing one elemen
each possible window. Array elementi contains a 1 if windowi is open, otherwise it
contains a 0.

XOFFSET

(HP, LJ, PCL, PRINTER, PS)

Specifies the X position, on the page, of the lower left corner of output generate
IDL. XOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 2133

PostScript Only

SCALE does not affect the value of XOFFSET.

XON_XOFF

(HP)

If present and non-zero, XON_XOFF causes each output page to start with dev
control commands that instruct the plotter to obey xon/xoff (^S/^Q) style flow
control. Specifying a value of zero stops the issuing of such commands. You sh
only use this keyword before any output has been generated.

Such handshaking is the default. To turn it off, use the command

DEVICE, XON_XOFF=0

Often, it is not necessary to tell the plotter to obey flow control because the prin
facilities on the system handle such details for you, but it is usually harmless.
IDL Reference Guide Keywords Accepted by the IDL Devices

2126 Appendix B: IDL Graphics Devices

s,

d by

ft)

rs,
XSIZE

(HP, LJ, PCL, PRINTER, PS)

Specifies the width of output generated by IDL. XSIZE is specified in centimeter
unless INCHES is specified.

PostScript Only

SCALE modifies the value of XSIZE. Hence, the following statement:

DEVICE,/INCHES,XSIZE=7.0,SCALE_FACTOR=0.5

results in a real width of 3.5 inches.

YOFFSET

(HP, LJ, PCL, PRINTER, PS)

Specifies the Y position, on the page, of the lower left corner of output generate
IDL. YOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 2133

Note
The corner of the page from which the Y offset is measured (lower or upper le
differs on various devices. Read the device specific information in the following
sections to determine how this is handled for your device.

PostScript Only

SCALE does not affect the value of YOFFSET.

YSIZE

(HP, LJ, PCL, PRINTER, PS)

Specifies the height of output generated by IDL. YSIZE is specified in centimete
unless INCHES is specified.

PostScript Only

SCALE modifies the value of YSIZE. Hence, the following statement:

DEVICE,/INCHES,YSIZE=5.0,SCALE_FACTOR=0.5

results in a real width of 2.5 inches.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix B: IDL Graphics Devices 2127

o be

ith
abled,
LJ250 Only

Changing the size, depth, or orientation of the output causes the current page t
sent to the file. The effect is identical to calling the ERASE procedure.

ZAPFCHANCERY

(PS)

Set this keyword to select the ITC Zapf Chancery PostScript font.

ZAPFDINGBATS

(PS)

Set this keyword to select the ITC Zapf Dingbats PostScript font.

Z_BUFFERING

(Z)

This keyword enables and disables the Z-buffering. If this keyword is specified w
a zero value, the driver operates as a standard 2D device, the Z-buffering is dis
and the Z-buffer (if any) is deallocated. Setting this keyword to one (the default
value), enables the Z-buffering.

To disable Z-buffering enter:

DEVICE, Z_BUFFERING = 0
IDL Reference Guide Keywords Accepted by the IDL Devices

2128 Appendix B: IDL Graphics Devices

.
ystem

d/or
ows
s a

des
his

ow
rrent
o
t

g the

e the

 keep
e to
Window Systems

The different window systems supported by IDL have many features in common
This section describes those features. See the individual descriptions of each s
later in this chapter for additional information about each one.

IDL utilizes the window system by creating and using one or more largely
independent windows, each of which can be used for the display of graphics an
images. One color map table is shared among all these windows. Multiple wind
can be active simultaneously. Windows are referenced using their index which i
non-negative integer.

“Dithering” or halftoning techniques are used to display images with multiple sha
of gray on monochrome displays—displays that can only display white or black. T
topic is discussed in“Image Display On Monochrome Devices” on page 2130.

Graphic and image output is always directed to the current window. When a wind
system is selected as the current IDL graphics device, the index number of the cu
window is found in the !D.WINDOW system variable. This variable contains -1 if n
window is open or selected. The WSET procedure is used to change the curren
window. WSHOW hides, displays, and iconifies windows. WDELETE deletes a
window.

The WINDOW procedure creates a new window with a given index. If a window
already exists with the same index, it is first deleted. The size, position, title, and
number of colors, may also be specified. If you access the display before creatin
first window, IDL automatically creates a window with an index number of 0 and
with the default attributes.

Backing Store

One of the features that distinguishes various window systems is how they handl
issue of backing store. When part of a window that was previously not visible is
exposed, there are two basic approaches that a window system can take. Some
track of the current contents of all windows and automatically repair any damag
their visible regions (retained windows). This saved information is known as the
backing store. Others simply report the damage to the program that created the
Window Systems IDL Reference Guide

Appendix B: IDL Graphics Devices 2129

more
his
es

ore,
s

 for

ll
elp,

ing

 for
d

n
tion
y
the

re
window and leave repairing the visible region to the program (non-retained
windows).

There are convincing arguments for and against both approaches. It is generally
convenient for IDL if the window system handles this problem automatically, but t
often comes at a performance penalty. The actual cost of retained windows vari
between systems and depends partially on the application.

The X Window system does not by default keep track of window contents. Theref
when a window on the display is obscured by another window, the contents of it
obscured portion is lost. Re-exposing the window causes the X server to fill the
missing data with the default background color for that window, and request the
application to redraw the missing data. Applications can request a backing store
their windows, but servers are not required to provide it. Many X servers do not
provide backing store, and even those that do cannot necessarily provide it for a
requesting windows. Therefore, requesting backing store from the server might h
but there is no certainty.

The IDL window system drivers allow you to control the issue of backing store us
the RETAIN keyword to the DEVICE and WINDOW procedures. Using it with
DEVICE allows you to set the default action for all windows, while using it with
WINDOW lets you override the default for the new window. The possible values
this keyword are summarized under“Backing Store”on page 2128, and are describe
below:

• Setting the RETAIN keyword to 0 specifies that no backing store is kept. I
this case, exposing a previously obscured window leaves the missing por
of the window blank. Although this behavior can be inconvenient, it usuall
has the highest performance because there is no need to keep a copy of
window contents.

• Setting the RETAIN keyword to 1 causes IDL to request that a backing sto
be maintained. If the window system decides to accept the request, it will
automatically repair the missing portions when the window is exposed. X

Value Description

0 No backing store.

1 Request the server or window system to perform backing store.

2 Make IDL perform backing store.

Table B-6: Allowed Values for the RETAIN Keyword
IDL Reference Guide Window Systems

2130 Appendix B: IDL Graphics Devices

g on

ow
p

e

air
s.
uld

king

 the

s of

els at
a

eir
s.
Windows may or may not provide backing store when requested, dependin
the capabilities of the server and the resources available to it.

• Setting the RETAIN keyword to 2 specifies that IDL should keep a backing
store for the window itself, and repair any window damage when the wind
system requests it. This option exists for X Windows. In this case, a pixma
(off-screen display memory) the same size as the window is created at th
same time the window is created, and all graphics operations sent to the
window are also sent to the pixmap. When the server requests IDL to rep
freshly exposed windows, this pixmap is used to fill in the missing content
Pixmaps are a precious resource in the X server, so backing pixmaps sho
only be requested for windows with contents that must absolutely be
preserved.

If the type of backing store to use is not explicitly specified using the RETAIN
keyword, IDL assumes option 1 and requests the window system to keep a bac
store.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
results. For example, data may be improperly read from the window even when
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These type
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 1330.

Image Display On Monochrome Devices

Images are automatically dithered when sent to some monochrome devices.
Dithering is a technique which increases the number of apparent brightness lev
the expense of spatial resolution. Images with 256 gray levels are displayed on
display with only two colors, black and white, using halftoning techniques.
PostScript handles dithering directly. IDL supports dithering for other devices if th
DEVICE procedures accept the FLOYD, ORDERED, or THRESHOLD keyword
Window Systems IDL Reference Guide

Appendix B: IDL Graphics Devices 2131

file

 file
For
he

 is

 that

ce, as
Printing Graphics Output Files

For printer and plotter devices (e.g., PCL, PostScript, and HP-GL), IDL creates a
containing output commands. This file can be sent to the printer via the normal
methods provided by the local operating system. When attempting to output the
before exiting IDL, the user must be sure that the graphics output file is complete.
example, the following IDL commands (executed under UNIX) will not produce t
desired result:

SET_PLOT,'PS'
PLOT,x,y
SPAWN,'lpr idl.ps'

These commands fail because the attempt to print the file is premature—the file
still open within IDL and is not yet complete.

The following lines of code are an IDL procedure called OUTPUT_PLOT which
closes the current graphics file and sends it to the printer. This routine assumes
the graphics output file is namedidl.xxx , wherexxx represents the name of the
graphics driver. For example, PostScript output file is assumed to beidl.ps . It also
assumes that the graphics output to be printed is from the current graphics devi
selected with SET_PLOT.

; Close the current graphics file, and print it. If the
; New_file parameter is present, rename the file to the given
; name so it won’t be overwritten:
Pro OUTPUT_PLOT, New_file
; Close current graphics file:
DEVICE,/CLOSE
; Build the default output file name by using the idl name for
; the current device (!D.NAME):
file = 'idl.' + STRLOWCASE(!D.NAME)
; Build shell commands to send file to the printer.
; You will probably have to change this command in accordance
; with local usage:
cmd = 'lpr ' + file
; Concatenate rename command if new file specified:
IF N_ELEMENTS(New_file) GT 0 THEN $

cmd = cmd + '; mv' + file + ' ' + New_file
; Issue shell commands to print/rename file:
SPAWN, cmd
END

The call to DEVICE causes IDL to finish the file and close it, which makes it
available for printing.
IDL Reference Guide Printing Graphics Output Files

2132 Appendix B: IDL Graphics Devices

, it

e.

he
The
he
the

n
ust
rol
on

ut

such
e

ct of

e
d in

send
Setting Up The Printer

In order for IDL generated output files to work properly with printers and plotters
is necessary for the device to be configured properly. This usually involves
configuring both the device hardware and the operating system printing softwar
When setting up your system, keep the following points in mind:

• The device and computer must use some form of flow control to prevent t
computer from sending data faster than the printing device can handle it.
most common form of flow control is known as XON/XOFF, and involves t
sending of Control-S (off) and Control-Q (on) characters from the device to
printer to manage the flow of data.

Many printers have a large buffer into which they store incoming data they
haven’t yet processed. This reduces the need to invoke flow control. Whe
testing your configuration to ensure flow control is actually enabled, you m
be sure to print a document long enough to fill any such buffer, or flow cont
may never occur, giving a false impression that the setup is correct. A comm
source of problems stem from attempting to print long IDL generated outp
files without proper flow control.

• Some devices (such as PCL) require an eight-bit data path, while others (
as PostScript) do not. For devices that do, it is important to ensure that th
printer port and system printing software provide such a connection.

If you are having problems printing on a PostScript printer, theehandler.ps
file provided in theps subdirectory of thefonts subdirectory of the
resource subdirectory of the IDL distribution can help you to debug your
problem. Sending this file to your PostScript Printer causes it to print any
subsequent errors it encounters on a sheet of paper and eject it. The effe
this file lasts until the printer is reset.

Setting Up Printers Under UNIX

Printers are configured in the/etc/printcap file. This file describes to the system
which printers are connected to it, the characteristics of each printer, and how th
printer port should be configured. Managing the printcap file is usually discusse
the system management documentation supplied with the system by the
manufacturer.

Setting Up Printers Under VMS

Printer queue configuration under VMS is a large topic. However, it is often
sufficient to set the printer port up properly using the DCL_SET_TERMINAL
command, and set up a printer queue using the standard printer form. Users can
Printing Graphics Output Files IDL Reference Guide

Appendix B: IDL Graphics Devices 2133

ry
d

 for
er to

pt

e
iver
 or

es.

tly
is is
eight-bit data to such a printer using the DCL PRINT/PASSALL command (On ve
small systems, it is even possible to dispense with the printer queue entirely an
simply use the COPY command to send data to the printer port directly).

However, much more sophisticated arrangements are possible including the
definition of specialized printer forms, placing printers on the local area network
use by more than one machine, and so forth. For information on these topics, ref
the relevant VMS documentation.

Positioning Graphics Output

The difference between the XOFFSET and YOFFSET keywords to the DEVICE
procedure, and the higher level plot positioning keywords and system variables
(discussed inAppendix C, “Graphics Keywords”andUsing IDL, Chapter 11, “Direct
Graphics Plotting”) can lead to confusion. A common misunderstanding is to attem
to use the DEVICE procedure “offset” and “size” keywords multiple times in an
attempt to produce multiple plots on a single output page.

The DEVICE keywords are intended to specify the size and position of the entir
output area on the page, not to move the plotting region for multiple plots. The dr
does not monitor their values continuously, but only when initializing a new page
ejecting the current one.

The proper way to produce multiple plots is to use the high level positioning abiliti
The !P.MULTI, !P.POSITION, and !P.REGION system variables can be used to
position individual plots on the page. The plotting routines also accept the
POSITION, MARGIN and REGION keywords.

Image Background Color

Graphical output that is displayed with a black background on a monitor frequen
look better if the background is changed to white when printed on white paper. Th
easily done with the statement:

a(WHERE(a EQ 0B)) = 255B
IDL Reference Guide Printing Graphics Output Files

2134 Appendix B: IDL Graphics Devices

t file
es

d

te

olor
color
r

oes

he
The CGM Device

Device Keywords Accepted by the CGM Device:

BINARY, CLOSE_FILE, COLORS, ENCODING, FILENAME, NCAR,
SET_CHARACTER_SIZE, TEXT

The CGM, Computer Graphics Metafile, standard describes a device independen
format used for the exchange of graphic information. The IDL CGM driver produc
CGM files encoded in one of three methods:Text , Binary or NCAR Binary . To direct
graphics output to a CGM file, issue the command:

SET_PLOT,'CGM'

This causes IDL to use the CGM driver for producing graphical output. Once the
CGM driver is selected, the DEVICE procedure controls its actions, as describe
below. TypingHELP, /DEVICE displays the current state of the CGM driver. The
CGM driver defaults to the binary encoding using 256 colors.

Abilities and Limitations

This section describes details specific to IDL’s CGM implementation:

• IDL uses the CGM default integer encoding for graphic primitives. Coordina
values range from 0 to 32767. It is advisable to use the values stored in
!D.X_SIZE and !D.Y_SIZE instead of assuming a fixed coordinate range.

• Color information is output with a resolution of 8 bits (color indices and
intensity values range from 0 to 255).

• The definition of background color in the CGM standard is somewhat
ambiguous. According to the standard, color index 0 and the background c
are the same. Because background color is specified in the metafile as a
value (RGB triple), not an index, it is possible to have the background colo
not correspond with the color value of index 0.

• The CGM BACKGROUND_COLOUR attribute is explicitly set by IDL only
during an erase operation: changing the value of the color map at index 0 d
not cause IDL to generate a BACKGROUND_COLOUR attribute until the
next ERASE occurs. An ERASE command sets the background color to t
value in the color map at index 0. The commandERASE, INDEX (where
INDEX is not 0) generates the message “Value of background color is
out of allowed range. ” For consistent results, modify the color table
before any graphics are output.
The CGM Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2135

By

nd
• The CGM standard uses scalable (variable size) pixels for raster images.
default, the TV and TVSCL procedures output images, regardless of size,
using the entire graphics output area. To output an image smaller than the
graphics output area, specify the XSIZE and YSIZE keywords with the TV a
TVSCL procedures. For example:

; Select the CGM driver:
SET_PLOT, 'CGM'
; Create a 64 x 64 element array:
X = DIST(64)
; Display the image (fills entire screen):
TVSCL, X
; Now display 4 images on the screen:
ERASE
XS = !D.X_SIZE / 2 ; Size of each image, X dimension
YS = !D.Y_SIZE / 2 ; Size of each image, Y dimension
TVSCL, X, 0, XSIZE=XS, YSIZE=YS ; Upper left
TVSCL, X, 1, XSIZE=XS, YSIZE=YS ; Upper right
TVSCL, X, 2, XSIZE=XS, YSIZE=YS; Lower left
TVSCL, X, 3, XSIZE=XS, YSIZE=YS; Lower right
IDL Reference Guide The CGM Device

2136 Appendix B: IDL Graphics Devices

 to

n in
The HP-GL Device

Device Keywords Accepted by the HP-GL Device:

CLOSE_FILE, EJECT, FILENAME, INCHES, LANDSCAPE, OUTPUT,
PLOTTER_ON_OFF, POLYFILL, PORTRAIT, SET_CHARACTER_SIZE,
XOFFSET, XON_XOFF, XSIZE, YOFFSET, YSIZE

HP-GL (Hewlett-Packard Graphics Language) is a plotter control language used
produce graphics on a wide family of pen plotters. To use HP-GL as the current
graphics device, issue the IDL command:

SET_PLOT,'HP'

This causes IDL to use HP-GL for producing graphical output. Once the HP-GL
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the HP-GL driver are show
the following table. Use the statement:

HELP, /DEVICE

to view the current state of the HP-GL driver.

Feature Value

File idl.hp

Orientation Portrait

Erase No action

Polygon filling Software

Turn plotter logically on/off No

Specify xon/xoff flow control Yes

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Table B-7: Default HP-GL Driver Settings
The HP-GL Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2137

rs,

ead,

n

cters,
d
e to

t of
HP-

n in
s:
Abilities And Limitations

IDL is able to produce a wide variety of graphical output using HP-GL. The
following is a list of what is and is not supported:

• All types of vector graphics can be generated, including line plots, contou
surfaces, etc.

• HP-GL plotters can draw lines in different colors selected from the pen
carousel. It should be noted that color tables are not used with HP-GL. Inst
each color index refers directly to one of the pens in the carousel.

• Some HP-GL plotters can do polygon filling in hardware. Others can rely o
the software polygon filling provided by IDL.

• It is possible to generate graphics using the hardware generated text chara
although such characters do not give much improvement over the standar
vector fonts. To use hardware characters, set the !P.FONT system variabl
zero, or set the FONT keyword to the plotting routines to zero.

• Since HP-GL is designed to drive pen plotters, it does not support the outpu
raster images. Therefore the TV and TVSCL procedures do not work with
GL.

• Since pen plotters are not interactive devices, they cannot support such
operations as cursors and windows.

HP-GL Linestyles

The LINESTYLE graphics keyword allows specifying any of 6 linestyles. HP-GL
does not support all of these linestyles, and styles 3 and 4 differ from the definitio
Appendix C, “Graphics Keywords”. The following table summarizes the difference

Index Normal Line Style HP-GL Line Style

0 Solid same

1 Dotted same

2 Dashed same

3 Dash Dot Relative size of dash and dot are different.

4 Dash Dot Dot Dot Dash Dot Dot

Table B-8: Linestyles for the HP-GL Device
IDL Reference Guide The HP-GL Device

2138 Appendix B: IDL Graphics Devices
5 Long Dashes same

Index Normal Line Style HP-GL Line Style

Table B-8: Linestyles for the HP-GL Device
The HP-GL Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2139

se

rint
ities
, the
lt

put.
The LJ Device

Device Keywords Accepted by the LJ Device:

CLOSE_FILE, DEPTH, FILENAME, FLOYD, INCHES, LANDSCAPE,
ORDERED, PIXELS, PORTRAIT, RESOLUTION, SET_CHARACTER_SIZE,
THRESHOLD, XOFFSET, XSIZE, YOFFSET, YSIZE

The LJ250 and LJ252 are color printers sold by Digital Equipment Corporation
(DEC). To direct graphics output to a picture description file compatible with the
printers, issue the command:

SET_PLOT, 'LJ'

This causes IDL to use the LJ driver for producing graphical output. To actually p
the generated graphics, send the file to the printer using the normal printing facil
supplied by the operating system. Once the LJ driver is enabled via SET_PLOT
DEVICE procedure is used to control its actions, as described below. The defau
settings for the LJ driver are given in the following table. Use theHELP, /DEVICE
command to view the current font, file, and other options currently set for LJ out

Feature Value

File idl.lj

Mode Portrait

Dither method Floyd-Steinberg

Resolution 180 dpi

Number of planes 1 (monochrome)

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table B-9: Default LJ Driver Settings
IDL Reference Guide The LJ Device

2140 Appendix B: IDL Graphics Devices

d
e

ics.

ng.

he
ing
In

sest
d

re is
LJ Driver Strengths

The LJ250 produces color graphics at a low cost. It is capable of producing goo
quality monochrome output, and is also good at color vector graphics and simpl
color imaging using a small number of predefined solid colors.

LJ Driver Limitations

The LJ250 is intended to be used as a low cost printer for business color graph
Although it can be used to print color images, it is limited in its ability to produce
satisfactory images of the sort commonly encountered in science and engineeri
These limitations make it a poor choice for such work.

• Although color is specified via the usual RGB triples using the TVLCT
procedure, the LJ250 is only capable of generating a fixed set of colors. T
number of possible colors depends on the resolution in use. When produc
180 dpi graphics, only the colors given in the following table are possible.
90 dpi mode, 256 colors are available.

If a color is specified that the printer cannot produce, it substitutes the clo
color it can. However, the results of such substitutions can give unexpecte
results. The fixed set of possible colors means that the LOADCT procedu
of limited use with the LJ250. It also means that it is difficult to produce
satisfactory grayscale images.

Color Red Value Green Value Blue Value

Black 10 10 10

Yellow 227 212 33

Magenta 135 13 64

Cyan 5 56 163

Red 135 20 36

Green 8 66 56

Blue 10 10 74

White 229 224 217

Table B-10: LJ250 Colors Available at 180 dpi
The LJ Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2141

CE
on
put.

0,

ller
en

nter

 dpi
ble

e as

y 2
ake

lors
m 1

hin

age.

ese
e
olor
• The number of simultaneous colors possible on an output page is limited.
Although images are specified in 8-bit bytes, the number of significant bits
used ranges from 1 to 4 (as specified via the DEPTH keyword to the DEVI
procedure), allowing from 2 to 16 colors. Coupled with the above limitation
the colors that are possible, it is difficult to produce high quality image out

LJ Suggestions

The following suggestions are intended to help you get the most out of the LJ25
taking its limitations into account:

• Use monochrome output when possible. This results in considerably sma
output files, and provides most of the abilities the LJ250 handles well. Wh
producing monochrome output, the LJ250 driver dithers images. This can
often produce more satisfying gray scale output than possible using the pri
in color mode.

• The table under“LJ Driver Limitations” above gives the RGB values to use
when specifying colors at 180 dpi. To make more colors available, use 90
resolution. The RGB values for the possible colors at 90 dpi are given in Ta
7-6 of theLJ250/LJ252 Companion Color Printer Programmer Reference

Manual . You can cause the printer to display the complete 256 color palett
follows: With the power off, press and hold the READY and DEC/PCL
switches while momentarily pressing the power switch. Wait approximatel
seconds and release the READY and DEC/PCL switches. The printer will t
a few minutes to print all 256 colors. The complete display fits on a single
page.

Use the table in the programmers manual with this display to select the co
to use. Note that the RGB values in the programmers manual are scaled fro
to 100, while IDL scales such values from 0 to 255. Therefore, multiply the
values obtained from the manual by 2.55 to properly scale them for use wit
IDL.

• Unlike most devices, IDL does not initialize the LJ250 color map to a gray
scale ramp because the printer cannot produce a satisfactory gray scale im
Instead, the default palettes given in Table 7-5 of theLJ250/LJ252 Companion

Color Printer Programmer Reference Manual are used. If you modify the
color map, the LJLCT procedure can be used to reset the color table to th
defaults. LJLCT examines the !D.N_COLORS system variable to determin
the number of output planes in use, and then loads the appropriate default c
map.
IDL Reference Guide The LJ Device

2142 Appendix B: IDL Graphics Devices

on

• When producing images, stick to images with small amounts of detail and

large sections of uniform color. Complicated images do not reproduce well
this printer.
The LJ Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2143
The Macintosh Display Device

Device Keywords Accepted by the MAC Device:

BYPASS_TRANSLATION, COPY, CURSOR_ORIGINAL,
CURSOR_STANDARD, DECOMPOSED, FLOYD, FONT,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE,
GET_WINDOW_POSITION, ORDERED, PSEUDO_COLOR, RETAIN,
SET_CHARACTER_SIZE, SET_GRAPHICS_FUNCTION, THRESHOLD,
TRANSLATION, TRUE_COLOR

The Macintosh version of IDL uses the “MAC” device by default. This device is
similar toThe X Windows Device. The “MAC” device is only available in IDL for
Macintosh.

To set plotting to the Macintosh device, use the command:

SET_PLOT, 'MAC'
IDL Reference Guide The Macintosh Display Device

2144 Appendix B: IDL Graphics Devices
The Null Display Device

Device Keywords Accepted by the Null Device:

No keywords are accepted by the DEVICE procedure when the NULL device is
selected.

To suppress graphics output entirely, use the null device:

SET_PLOT, 'NULL'
The Null Display Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2145

ters

CL

 the

ize,
The PCL Device

Device Keywords Accepted by the PCL Device:

CLOSE_FILE, COLOR, FILENAME, FLOYD, INCHES, LANDSCAPE,
OPTIMIZE, ORDERED, PIXELS, PORTRAIT, RESOLUTION,
SET_CHARACTER_SIZE, SET_COLORMAP, THRESHOLD, XOFFSET, XSIZE,
YOFFSET, YSIZE

PCL (Printer Control Language) is used by Hewlett-Packard laser and ink jet prin
to produce graphics output. To direct graphics output to a PCL file, issue the
command:

SET_PLOT,'PCL'

This causes IDL to use the PCL driver for producing graphical output. Once the P
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the PCL driver are listed in
following table:

The PCL device draws into a memory buffer of the specified size (or the default s
if the XSIZE and YSIZE keywords to DEVICE are not specified). Anything drawn
outside this buffer will be silently discarded.

Feature Value

File idl.pcl

Mode Portrait

Optimization level 0 (None)

Dither method Floyd-Steinberg

Resolution 300 dpi

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table B-11: Default PCL Driver Settings
IDL Reference Guide The PCL Device

2146 Appendix B: IDL Graphics Devices

te
cted,
r.

g the
s

T or
If

line
The
Note
Unlike monitors where white is the most visible color, PCL writes black on whi
paper. Setting the output color index to 0, the default when PCL output is sele
writes in black. A color index of 255 writes white which is invisible on white pape

Color tables are not used with PCL unless the color mode has been enabled usin
COLOR keyword to the DEVICE procedure. For images, color dithering produce
realistic color image output even though PCL printers only produce eight output
colors. In most cases, simply choosing an appropriate color table (using LOADC
XLOADCT), or creating a color table from an image (via TVLCT) will work fine.
you need finer control over the colors used, see theSET_COLORMAP keyword for
additional information. For vector graphics, only eight colors are supported—no
dithering is implemented. Any RGB component that is not zero is treated as 255.
correct RGB definitions for each color are shown in the following table. Use the
HELP, /DEVICE command to view the current options for PCL output.

Color Red Value Green Value Blue Value

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Cyan 0 255 255

Magenta 255 0 255

Yellow 255 255 0

Black 0 0 0

White 255 255 255

Table B-12: PCL RGB Color Definitions
The PCL Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2147

To

he

e the
t

The Printer Device

Device Keywords Accepted by the PRINTER Device:

CLOSE_DOCUMENT, GET_CURRENT_FONT, GET_FONTNAMES,
GET_FONTNUM, INDEX_COLOR, PORTRAIT, SCALE_FACTOR,
SET_CHARACTER_SIZE, TRUE_COLOR, XOFFSET, XSIZE, YOFFSET,
YSIZE

The PRINTER device allows IDL Direct Graphics to be output to a system printer.
direct graphics output to a printer, issue the command:

SET_PLOT, 'printer'

This causes IDL to use a printer driver to produce graphical output. By default, t
default system printer is used for output. Use the DIALOG_PRINTERSETUP
function to define the printing parameters for the printer device. Use the
DIALOG_PRINTJOB function to control the print job itself.

Note that the printer device is an IDL Direct Graphics device. Like other Direct
Graphics devices, you must change to the new device and then issue the IDL
commands that send output to that device. With the printer device, you must us
CLOSE_DOCUMENT keyword to the DEVICE routine to actually initiate the prin
job and make something come out of your printer.
IDL Reference Guide The Printer Device

2148 Appendix B: IDL Graphics Devices

ge
ity
n be
ue

the

ing
The PostScript Device

Device Keywords Accepted by the PS Device:

AVANTGARDE, BITS_PER_PIXEL, BKMAN , BOLD, BOOK, CLOSE_FILE,
COLOR, COURIER, DEMI, ENCAPSULATED, FILENAME, FONT_INDEX,
FONT_SIZE, HELVETICA, INCHES, ISOLATIN1, ITALIC , LANDSCAPE,
LIGHT, MEDIUM, NARROW, OBLIQUE, OUTPUT, PALATINO, PORTRAIT,
PREVIEW, SCALE_FACTOR, SCHOOLBOOK, SET_CHARACTER_SIZE,
SET_FONT, SYMBOL, TIMES, TT_FONT, XOFFSET, XSIZE, YOFFSET,
YSIZE, ZAPFCHANCERY, ZAPFDINGBATS

PostScript is a programming language designed to convey a description of a pa
containing text and graphics. Many laser printers and high-resolution, high-qual
photo typesetters support PostScript. Color output or direct color separations ca
produced with color PostScript. To direct graphics output to a PostScript file, iss
the command:

SET_PLOT, 'PS'

This causes IDL to use the PostScript driver for producing graphical output. Once
PostScript driver is enabled via SET_PLOT, the DEVICE procedure is used to
control its actions, as described below. The default settings are given in the follow
table:

Feature Value

File idl.ps

Mode Portrait, non-encapsulated, no color

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Scale factor 1.0

Font size 12 points

Font Helvetica
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2149

n
tput

as

t

r

uded

de in
 in

. As
lack
load
Note
Unlike monitors where white is the most visible color, PostScript writes black o
white paper. Setting the output color index to 0, the default when PostScript ou
is selected, writes black. A color index of 255 writes white which is invisible on
white paper. Color tables are not used with PostScript unless the color mode h
been enabled using the DEVICE procedure. See“Color Images” on page 2150

To obtain adequate resolution, the device coordinate system used for PostScrip
output is expressed in units of 0.001 centimeter (i.e., 1000 pixels/cm).

Use theHELP, /DEVICE call to view the current font, file, and other options set fo
PostScript output.

Using PostScript Fonts

Information necessary for rendering a set of 35 standard PostScript fonts are incl
with IDL. (The standard 35 fonts are the fonts found on the Apple Laserwriter II
PostScript printer; the same fonts are found on almost any PostScript printer ma
the time since the LaserWriter II appeared.) Use of PostScript fonts is discussed
detail in“About Device Fonts” on page 2240.

Color PostScript

If you have a color PostScript device you can enable the use of color with the
statement:

DEVICE, /COLOR

Enabling color also enables the color tables. Text and graphic color indices are
translated to RGB by dividing the red, green and blue color table values by 255
with most display devices, color indices range from 0 to 255. Zero is normally b
and white is normally represented by an index of 255. For example, to create and
a color table with four elements, black, red, green and blue:

TVLCT, [0,255,0,0], [0,0,255,0], [0,0,0,255]

Bits / Image Pixel 4

Feature Value

Table B-13: Default PostScript Driver Settings
IDL Reference Guide The PostScript Device

2150 Appendix B: IDL Graphics Devices

n,

olor
ich
le
tion

mns
hen

s
t an
his

e

 a
ree

array
that

ence
nd
Drawing text or graphics with a color index of 0 results in black, 1 in red, 2 in gree
and 3 in blue.

Color Images

As with black and white PostScript, images may be output with 1, 2, 4, or 8 bits,
yielding 1, 2, 16, or 256 possible colors. In addition, images are either pseudo-c
or true-color. A pseudo-color image is a two dimensional image, each pixel of wh
is used to index the color table, thereby obtaining an RGB value for each possib
pixel value. Pseudo-color images are similar to those displayed using the worksta
monitor.

Note: in the case of pseudo-color images of fewer than 8 bits, the number of colu
in the image should be an exact multiple of the number of pixels per byte (i.e., w
displaying 4 bit images the number of columns should be even, and 2 bit image
should have a column size that is a multiple of 4). If the image column size is no
exact multiple, extra pixels with a value of 255 are output at the end of each row. T
causes no problems if the color white is loaded into the last color table entry,
otherwise a stripe of the last (index number 255) color is drawn to the right of th
image.

True-Color Images

A true-color image consists of an array with three dimensions, one of which has
size of three, containing the three color components. It may be considered as th
two dimensional images, one each for the red, green and blue components. For
example a true-colorn by m element image can be ordered in three ways: pixel
interleaved (3,n, m), row interleaved (n, 3,m), or image interleaved (n, m, 3). By
convention the first color is always red, the second green, and the last is blue.

True-color images are also routed through the color tables. The red color table
contains the intensity translation table for the red image, and so forth. Assuming
the color tables have been loaded with the vectorsR, G, andB, a pixel with a color
value of (r , g, b) is displayed with a color of (Rr, Gg, Bb). As with other devices, a
color table value of 255 represents maximum intensity, while 0 indicates an abs
of the color. To pass the RGB pixel values without change, load the red, green a
blue color tables with a ramp with a slope of 1.0:

TVLCT, INDGEN(256), INDGEN(256), INDGEN(256)

or with the LOADCT procedure:

; Load standard black/white table:
LOADCT, 0
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2151

age
. A

rd

is is

rds
ts

d
Y”
o

Use the TRUE keyword to the TV and TVSCL procedures to indicate that the im
is a true-color image and to specify the dimension over which color is interleaved
value of 1 specifies pixel interleaving, 2 is row interleaving, and 3 is image
interleaving. The following example writes a 24-bit image, interleaved over the 3
dimension, to a PostScript file:

SET_PLOT, 'PS'
;Set the PostScript device to *8* bits per color, not 24:
DEVICE, FILE='24bit.ps', /COLOR, BITS=8
TV, [[[r]], [[g]], [[b]]], TRUE=3
DEVICE, /CLOSE
; Return plotting to Macintosh windows:
SET_PLOT, 'mac'

Image Background Color

Images that are displayed with a black background on a monitor frequently look
better if the background is changed to white when displayed with PostScript. Th
easily done with the statement:

a(WHERE(a EQ 0B)) = 255B

PostScript Positioning

Using the XOFFSET and YOFFSET Keywords

Often, IDL users are confused by the use of the XOFFSET and YOFFSET keywo
to the PostScript DEVICE routine. These keywords control the position of IDL plo
on the page. XOFFSET specifies the “X” position of the lower left corner of the
output generated by IDL. This offset is always taken relative to the lower left-han
corner of the page when viewed in portrait orientation. YOFFSET specifies the “
position of the lower left corner of the output generated by IDL. This offset is als
taken relative to the lower left-hand corner of the page when viewed in portrait
orientation.
IDL Reference Guide The PostScript Device

2152 Appendix B: IDL Graphics Devices

he
the
age
Y

he

ape
The following figure shows how the XOFFSET and YOFFSET keywords are
interpreted

The page on the left shows an IDL plot printed in “portrait” orientation. Note that t
X and Y offsets work just as we expect them to—increasing the XOFFSET moves
plot to the right and increasing the YOFFSET moves the plot up the page. The p
on the right shows an IDL plot printed in “landscape” orientation. Here, the X and
offsets are still taken relative to the same points even though the orientation of t
plot has changed. This happens because IDL moves the origin of the plotbefore

rotating the PostScript coordinate system 270 degrees clockwise for the landsc
plot.

Note
The XOFFSET and YOFFSET keywords have no effect when you generate
ENCAPSULATED PostScript output.

Figure B-1: This diagram shows how the XOFFSET and YOFFSET keywords
are interpreted by the PostScript device in the Portrait (left) and Landscape

(right) modes. Note that the landscape plot uses the same origin for determining
the effect of the XOFFSET and YOFFSET keywords, but that the output is

rotated 270 degrees clockwise

XOFFSET

Y
O

F
F

S
E

T

X
O

F
F

S
E

T

YOFFSET

Portrait Plot
Landscape Plot
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2153

sed

at it
is
image.

ting

V’ed
n
.
mes
ears

nce
e

an X
Encapsulated PostScript Output

Another form of PostScript output is Encapsulated PostScript. This is the format u
to import PostScript files into page layout and desktop publishing programs. An
Encapsulated PostScript (EPS) file is similar to a regular PostScript file except th
contains only one page of PostScript output contained in a “bounding box” that
used to tell other programs about the size and aspect ratio of the encapsulated

Most of the time, output from IDL to an EPS file is properly scaled into the EPS
bounding box because commands such as PLOT take full advantage of the plot
area made available to them. Sometimes, however, the default bounding box is
inappropriate for the image being displayed.

As an example, suppose you have an image that is narrow and tall that, when T
to an IDL window, fills only a small portion of the plotting window. Similarly, whe
output to an EPS file, this image will only fill a small portion of the bounding box
When the resulting EPS file is brought into a desktop publishing program, it beco
very hard to properly scale the image since the aspect ratio of the bounding box b
no relation to the aspect ratio of the image itself.

To solve this problem, use the XSIZE and YSIZE keywords to the DEVICE
procedure to make the bounding box just large enough to contain the image. Si
IDL uses a resolution of 1000 dots per centimeter with the PostScript device, th
correct XSIZE and YSIZE (in centimeters) can be computed as:

• XSIZE = Width of image in pixels/1000.0 pixels per cm

• YSIZE = Height of image in pixels/1000.0 pixels per cm

The following IDL procedure demonstrates this technique. This procedure reads
Windows Dump file and writes it back out as a properly-sized, 8-bit-color
Encapsulated PostScript file:

PRO XWDTOEPS, filename
; Read the XWD file. Pixel intensity information is stored
; in the variable 'array'. Values to reconstruct the color
; table are stored in 'r', 'g', and 'b':
array = READ_XWD(filename, r, g, b)
; Reconstruct the color table:
TVLCT, r,g,b
; Display the image in an IDL window:
TV, array
; Find the size of the picture. The width of the picture
; (in pixels) is stored in s[1]. The height of the picture
; is stored in s[2]:
s = SIZE(array)

; Take the 'xwd' (for X Windows Dump) extension off of
IDL Reference Guide The PostScript Device

2154 Appendix B: IDL Graphics Devices

able

ake

the
hird
; the old filename and replace it with 'eps':
fl = STRLEN(filename)
filename = STRMID(filename, 0, fl-4)
filename = filename + '.eps'
PRINT, 'Making file: ', filename
PRINT, s
; Set the plotting device to PostScript:
SET_PLOT, 'ps'
; Use the DEVICE procedure to make the output encapsulated,
; 8 bits, color, and only as wide and high as it needs to
; be to contain the XWD image:
DEVICE, /ENCAPSUL, BITS_PER_PIXEL=8, /COLOR, $

FILENAME=filename, XSIZE=S[1]/1000., $
YSIZE=S[2]/1000.

; Write the image to the file:
TV, array
; Close the file:
DEVICE, /CLOSE
; Return plotting to X Windows:
SET_PLOT, 'x'
END

Multiple Plots on the Same Page

To put multiple plots on the same PostScript page, use the !P.MULTI system vari
(described in more detail in“!P System Variable” on page 2207). !P.MULTI is a 5-
element integer array that controls the number of rows and columns of plots to m
on a page or in a graphics window.

The first element of !P.MULTI is a counter that reports how many plots remain on
page. The second element of !P.MULTI is the number of columns per page. The t
element is the number of rows per page.

For example, the following lines of code create a PostScript file,multi.ps , with 6
different plots arranged as 2 columns and 3 rows:

; Set plotting to PostScript:
SET_PLOT, 'PS'
; Set the filename:
DEVICE, FILENAME='multi.ps'
; Make IDL’s plotting area hold 2 columns and 3 rows of plots:
!P.MULTI = [0, 2, 3]
; Create a simple dataset:
A = FINDGEN(10)
; Make 6 different plots:
PLOT, A
PLOT, SIN(A)
PLOT, COS(A)
PLOT, TAN(A)
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2155
PLOT, TANH(A)
PLOT, SINH(A)
; Close the file:
DEVICE, /CLOSE
; Return plotting to Windows:
SET_PLOT, 'win'
; Reset plotting to 1 plot per page:
!P.MULTI = 0

The resulting file produces a set of plots as shown in the following figure:

Importing IDL Plots into Other Documents

This section shows how to generate IDL PostScript graphics so that they can be
inserted into other documents. It also provides several examples of how the
PostScript graphics device is used. Simply omit the ENCAPSULATED keyword

Figure B-2: Multiple plots on a single page produced by setting the !P.MULTI
system variable.
IDL Reference Guide The PostScript Device

2156 Appendix B: IDL Graphics Devices

y.
ther
use
from the calls to DEVICE if you wish to produce plots that can be printed directl
The following figure is an encapsulated PostScript file suitable for inclusion in o
documents. The figure was produced with the following IDL statements. Note the
of the ENCAPSULATED keyword in the call to DEVICE:

; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic1.ps'
x = FINDGEN(200)
; Plot the sine wave:
PLOT, 10000 * SIN(x/5) / EXP(x/100), $

LINESTYLE = 2, TITLE = 'IDL PostScript Plot', $
XTITLE = 'Point Number', YTITLE='Y Axis Title', $
FONT = 0

; Add the cosine:
OPLOT, 10000 * COS(x/5) / EXP(x/100), LINESTYLE = 4
; Annotate the plot:
XYOUTS, 100, -6000, 'Sine', FONT = 0
OPLOT, [120, 180], [-6000, -6000], LINESTYLE = 2
XYOUTS, 100, -8000, 'Cosine', FONT = 0
OPLOT, [120, 180], [-8000, -8000], LINESTYLE = 4

Figure B-3: Sample PostScript plot using Helvetica font.
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2157

ee-
The following figure is a more complicated plot. It demonstrates some of the thr
dimensional plotting capabilities of IDL. It was produced with the following IDL
statements:

; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic2.ps'
; Access the data:
OPENR, 1, !DIR+'/images/abnorm.dat'
aa = ASSOC(1, BYTARR(64, 64))
; Get a smoothed version:
a = SMOOTH(aa[0], 3)
; Generate the surface:
SURFACE, a, /SAVE, ZAXIS = 1, XSTYLE = 1, YSTYLE = 1
; Add the contour:
CONTOUR, a, /T3D, /NOERASE, ZVALUE = 1, $

XSTYLE = 1, YSTYLE = 1, C_LINESTYLE = [0,1,2], $
TITLE = 'IDL PostScript Plot'

CLOSE, 1

The following figure illustrates polygon filling. It was produced with the following
IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic3.ps'

Figure B-4: Three-Dimensional Plot with Vector-Drawn Characters
IDL Reference Guide The PostScript Device

2158 Appendix B: IDL Graphics Devices

age
mage
x = FINDGEN(200)
; Upper sine wave:
a = 10000 * sin(x / 5) / exp(x / 100)
PLOT, a, /NODATA, TITLE = 'IDL PostScript Plot', $

XTITLE='Point Number', YTITLE='Y Axis Title', $
FONT = 0

; Vector of X vertices for polygon filling. Note that the
; ROTATE(V,2) function call returns the vector V in reverse order:
C = [X, ROTATE(X, 2)]
; Vector of Y vertices for polygon filling:
D = [A, ROTATE(A-2000, 2)]
; Fill the region using an intensity of about 75% white:
POLYFILL, C, D, COLOR=192

The following figure illustrates IDL PostScript images. In this case, the same im
is reproduced four times. In each case, a different number of bits are used per i
pixel. It was produced with the following IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic4.ps'
; Open image file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
; Variable to hold image:
a = BYTARR(192, 192, /NOZERO)
; Input the image:

Figure B-5: Polygon Filling Example
The PostScript Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2159
READU, 1, a
; Done with the file:
CLOSE, 1
; Add a color table ramp to the bottom of the image:
A[0,0] = BYTSCL(INDGEN(192))#REPLICATE(1,16)
; Output the image four times:
FOR i = 0,3 DO BEGIN

;Use 1, 2, 4, and 8 bits per pixel:
DEVICE, BITS_PER_PIXEL=2^i
; Output using TV with position numbers 0, 1, 2, and 3:
TV, a, i, XSIZE=2.5, YSIZE=2.5, /INCHES

ENDFOR

Figure B-6: 1, 2, 4, and 8-bit PostScript Images
IDL Reference Guide The PostScript Device

2160 Appendix B: IDL Graphics Devices

ies

are

.
L

e

el.

he
The Regis Terminal Device

Device Keywords Accepted by the REGIS Device:

AVERAGE_LINES, CLOSE_FILE, FILENAME, PLOTTER_ON_OFF,
SET_CHARACTER_SIZE, TTY, VT240, VT241, VT340, VT341

IDL provides Regis graphics output for the DEC VT240, VT330, and VT340 ser
of terminals. To output graphics to such terminals, issue the IDL command:

SET_PLOT, 'REGIS'

This causes IDL to use the Regis driver for producing graphical output.

Defaults for Regis Devices

The default setting for Regis output is: VT340, 16 colors, 4 bits per pixel.

Regis Limitations

• Four colors are available with VT240 and VT241 terminals, sixteen colors
available with the VT330 and VT340.

• Thick lines are emulated by filling polygons. There may be a difference in
linestyle appearance between thick and normal lines.

• Image output is slow and is of poor quality, especially on the VT240 series
The VT240 is only able to write pixels on even numbered screen lines. ID
offers two methods of writing images to the 240:

• Even and odd pairs of rows are averaged and written to the screen. Ann, m

image will occupyn columns andm screen rows. If this method is selected,
graphics and image coordinates coincide. This method is the default
(AVERAGE_LINES = 1). Routines that rely on a uniform graphics and imag
coordinate system, such as SHADE_SURF, work only in this mode.

• Each line of the image is written to the screen, displaying every image pix
An n, m image occupies 2m lines on the screen. (AVERAGE_LINES = 0).
Graphics and image coordinates coincide only at the lower left corner of t
image.

• Pixel values cannot be read back from the terminal, rendering the TVRD
function inoperable.
The Regis Terminal Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2161

als
ng

the
trol

ries
; all

e with

our

t-up
of the
t is

nd

als,
ts.

s.
The Tektronix Device

Device Keywords Accepted by the REGIS Device:

CLOSE_FILE, COLORS, FILENAME, GIN_CHARS, PLOT_TO,
RESET_STRING, SET_CHARACTER_SIZE, SET_STRING, TEK4014, TEK4100,
TTY

The Tektronix 4000 (4010, 4014, etc.), 4100 and 4200 series of graphics termin
(and the multitude of terminals and microcomputers that emulate them) are amo
the most common graphics devices available. To use IDL graphics with such
terminals, issue the command:

SET_PLOT,'TEK'

This causes IDL to use the Tektronix driver for producing graphical output. Once
Tektronix driver is enabled via SET_PLOT, the DEVICE procedure is used to con
its actions, and to configure IDL for the specific features of your terminal. If you
never call the DEVICE procedure, IDL assumes a plain vanilla Tektronix 4000 se
compatible terminal. The 4200 series is upwardly compatible with the 4100 series
references to the 4100 series also include the 4200 series. To set up IDL for us
a 4100 series compatible terminal withn colors, enter the following commands:

SET_PLOT, 'TEK'
DEVICE, /TEK4100, COLORS = n

The number of colors should be set to 2B where B is the number of bit planes in y
terminal. If you use a Tektronix compatible terminal that requires calling the
DEVICE procedure for configuration, you should probably create and use a star
procedure the calls the DEVICE procedure, as described in Chapter 2. Because
tremendous variation among the requirements and abilities of these terminals, i
crucial that you configure IDL properly for your terminal. In particular, the mode
switching character sequences, set by the keyword parameters SET_STRING a
RESET_STRING must be set correctly.

The DEVICE Procedure For Tektronix Terminals

The default setting for Tektronix output is: 10-bit coordinates, 4000 series termin
and no use of color. The DEVICE keywords can be used to modify these defaul

Tektronix Limitations

• The line drawing procedures work with all models. Line style and color
capabilities vary greatly among terminal models and/or emulation program
IDL Reference Guide The Tektronix Device

2162 Appendix B: IDL Graphics Devices

r
ries

tem.
 X.
0

ure

ixel
tion.
ns,
ot

k
e
ns,

g

phic

 of

CRS
• Color and the display of images (albeit very slowly and frequently of a poo
quality because of the small number of colors) is usable only with 4100 se
terminals. Hardware polygon fill and thick lines do not work with the 4000
series.

• The image coordinate system does not match the graphics coordinate sys
The graphics coordinates range from 0 to 3071 in Y, and from 0 to 4095 in
Image coordinates vary according to terminal model. A typical range is from
to 479 in Y, and 0 to 639 in X. Because of this, the SHADE_SURF proced
does not work with Tektronix terminals.

Warning
Not all 4100 series terminals are capable of displaying images—the Tektronix p
operations option is required. Many terminal emulators do not emulate this op
The Tektronix commands used to output images are: RU, begin pixel operatio
RS, set pixel viewport, and RP, raster write. If your terminal or emulator does n
accept these commands, you will not be able to display images.

• The Tektronix graphics protocol does not allow the specification of line
thickness. Lines with a thickness more than 1.0 are drawn using polygon
filling in the case of 4100 series terminals. With 4000 series terminals, thic
lines are emulated by drawing multiple thin lines. This scheme will produc
artifacts on some Tektronix emulating devices because of differing resolutio
normal line thicknesses and inexact coordinate conversions.

Tektronix Device Limitations

Usage of Tektronix and Tektronix-compatible terminals with IDL has the followin
limitations:

• Image coordinates do not match the coordinates used by the rest of the gra
procedures. This is because no two models of Tektronix terminals are
compatible. The graphics procedures utilize the default coordinate system
1024 by 780, or 4096 by 3120 in the 12-bit mode. The size of the pixel
memory and coordinate system vary widely between models. ThePosition
parameter of the TV and TVSCL procedures does not work.

• The cursor can not be positioned from the computer meaning that the TV
procedure cannot be used with the Tektronix driver.

• Pixel values may not be read back from the terminal, rendering the TVRD
function inoperable.
The Tektronix Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2163
The Microsoft Windows Device

Device Keywords Accepted by the WIN Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR,
CURSOR_ORIGINAL, CURSOR_STANDARD, DECOMPOSED, FONT,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE,
GET_WINDOW_POSITION, PRINT_FILE, RETAIN, SET_CHARACTER_SIZE,
SET_GRAPHICS_FUNCTION, TRANSLATION, WINDOW_STATE

The Microsoft Windows version of IDL uses the “WIN” device by default. This
device is similar to the X Windows device described below. The “WIN” device is
only available in IDL for Windows.

To set plotting to the Microsoft Windows device, use the command:

SET_PLOT, 'WIN'
IDL Reference Guide The Microsoft Windows Device

2164 Appendix B: IDL Graphics Devices

ch of

 the
text

the
ame
.

nce
l its

lor
The X Windows Device

Device Keywords Accepted by the X Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR, CURSOR_IMAGE,
CURSOR_MASK, CURSOR_ORIGINAL, CURSOR_STANDARD,
CURSOR_XY, DECOMPOSED, DIRECT_COLOR, FLOYD, FONT,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE, GET_VISUAL_NAME,
GET_WINDOW_POSITION, GET_WRITE_MASK, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE,
SET_GRAPHICS_FUNCTION, SET_TRANSLATION, SET_WRITE_MASK,
STATIC_COLOR, STATIC_GRAY, THRESHOLD, TRUE_COLOR, TTY,
WINDOW_STATE

X Windows is a network-based windowing system developed by MIT’s project
Athena. IDL uses the X System (often referred to simply as “X”), to provide an
environment in which the user can create one or more independent windows, ea
which can be used for the display of graphics and/or images.

In the X system, there are two basic cooperating processes:clients andservers. A
server consists of a display, keyboard, and pointer (such as a mouse) as well as
software that controls them. Client processes (such as IDL) display graphics and
on the screen of a server by sending X protocol requests across the network to
server. Although in the most common case, the server and client reside on the s
machine, this network based design allows much more elaborate configurations

To use X Windows as the current graphics device, issue the IDL command:

SET_PLOT, 'X'

This causes IDL to use the X Window System for producing graphical output. O
the X driver is enabled via SET_PLOT, the DEVICE procedure is used to contro
actions, as described below.

Use the statement:

HELP, /DEVICE

to view the current state of the X Windows driver.

X Windows Visuals

Visuals specify how the hardware deals with color. The X Window server (your
display) may provide colors or only gray scale (black and white), or both. The co
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2165

ly).

e

ree
es of

tiple
bit-
ide

ow

r,
tables may be changeable from within IDL (read-write), or may be fixed (read-on
The value of each pixel value may be mapped to any color (Un-decomposed
Colormap), or certain bits of each pixel are dedicated to the red, green, and blu
primary colors (Decomposed Colormap).

There are six X Windows visual classes—read-write and read-only visuals for th
types of displays: Gray Scale, Pseudo Color, and Decomposed Color. The nam
the visuals are shown in the following table:

IDL supports all six types of visuals, although not at all possible depths. UNIX X
Window System users can use the commandxdpyinfo to determine which visuals
are supported by their systems.

Each X Window server has a default visual class. Many servers may provide mul
visual classes. For example, a server with display hardware that supports an 8-
deep, un-decomposed, writable color map (PseudoColor), may also easily prov
StaticColor, StaticGray, and GrayScale visuals.

You can select the visual used by IDL using the DEVICE procedure before a wind
is created, or by including the resourceidl.gr_visual in your X defaults file, as
explained in“Setting the X Window Defaults” on page 2171.

How IDL Selects a Visual Class

When opening the display, IDL asks the display for the following visuals, in orde
until a supported visual class is found:

1. DirectColor, 24-bit

2. TrueColor, 24-bit

Visual Name Writable Description

StaticGray no Gray scale

GrayScale yes Gray scale

StaticColor no Undecomposed color

PseudoColor yes Undecomposed color

TrueColor no Decomposed color

DirectColor yes Decomposed color

Table B-14: X Windows Visual Classes
IDL Reference Guide The X Windows Device

2166 Appendix B: IDL Graphics Devices

ed
g a

d

e X
or
it
ther

ed,

ame
e

IDL
ed
ow
ne.

er
e

3. PseudoColor, 8-bit, then 4-bit

4. StaticColor, 8-bit, then 4-bit

5. GrayScale, any depth

6. StaticGray, any depth

You can override this behavior by using the DEVICE routine to specify the desir
visual class and depth before you create a window. For example, if you are usin
display that supports both the DirectColor, 24-bit-deep visual, and an 8-bit-deep
PseudoColor visual, IDL will select the 24-bit-deep DirectColor visual. To instea
use PseudoColor, issue the following command before creating a window:

DEVICE, PSEUDO_COLOR = 8

The colormap/visual class combination is chosen when IDL first connects with th
Window server. Note that if you connect with the X server by creating a window
using the DEVICE keyword to the HELP procedure, the visual class will be set;
then cannot be changed until IDL is restarted. If you wish to use a visual class o
than the default, be sure to set it with a call to the DEVICE procedurebeforecreating
windows or otherwise connecting with the X Window server.

Windows are created in two ways:

1. Using the WINDOW procedure. WINDOW allows you to explicitly control
many aspects of how the window is created.

2. If no windows exist and a graphics operation requiring a window is execut
IDL implicitly creates window 0 with the default characteristics.

Once the visual class is selected, all subsequently-created windows share the s
class and colormap. The number of simultaneous colors available is stored in th
system variable !D.N_COLORS. The visual class and number of colors, once
initialized, cannot be changed without first exiting IDL.

How IDL Obtains a Colormap

IDL chooses the type of colormap in the following manner:

• By default, the shared colormap is used whenever possible (i.e., whenever
is using the default visual for the system). All available colors from the shar
colormap are allocated for use by IDL. This is what happens when no wind
currently exists and a graphics operation causes IDL to implicitly create o

• If the number of colors to use is explicitly specified using the COLORS
keyword with the WINDOW procedure, IDL attempts to allocate the numb
of colors specified from the shared colormap using the default visual of th
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2167

t

l but

es
ted.

f

.

e
en
 a

f

le

n
e

nd

he

dow
 of
screen. If there aren’t enough colors available, a private colormap with tha
number of colors is used instead.

• Specifying a negative value for the COLORS keyword to the WINDOW
procedure causes IDL to attempt to use the shared colormap, allocating al
the specified number of colors. For example:

WINDOW, COLORS = -8

allocates all but 8 of the currently available colors. This allows other
applications that might need their own colors to run in tandem with IDL.

• If a visual type and depth is specified, via the DEVICE procedure, which do
not match the default visual of the screen, a new, private, colormap is crea

Using Color Under X

Colormaps define the mapping from color index to screen color. Two attributes o
colormaps are important to the IDL user: they may beprivate or shared; and they
may bestatic or writable. These different types of colormaps are described below

Shared Colormaps

The window manager creates a colormap when it is started. This is known as th
default colormap, and can be shared by most applications using the display. Wh
each application requires a colormap entry (i.e., a mapping from a color index to
color), it allocates one from this shared table. Advantages and disadvantages o
shared colormaps include:

• Using the shared colormap ensures that all applications share the availab
colors without conflict. A given application will not change a color that is
allocated to a different application. In the case of IDL it means that IDL ca
change the colors it has allocated without changing the colors in use by th
window manager or other applications.

• The window system interface routines must translate between the actual a
allocated pixel values, significantly slowing the transfer of images.

• The shared colormap might not have enough colors available to perform t
desired operations with IDL.

• The number of available colors in the shared colormap depends on the win
manager in use and the demands of other applications. Thus, the number
available colors can vary.
IDL Reference Guide The X Windows Device

2168 Appendix B: IDL Graphics Devices

nd

lay
aps,

ives
 its

g

sing

e

the

by
and
es,
he

f IDL

ap
lor

ard
16

 of
ly
• The allocated colors in a shared colormap do not generally start at zero a
they are not necessarily contiguous. This makes it difficult to use the write
mask for certain operations.

Private Colormaps

An application can create its own private color map. Most hardware can only disp
a single colormap at a time, so these private colormaps are called virtual color m
and only one at a time is actually in use and visible. When the window manager g
the color focus to a window with a private colormap, the X window system loads
virtual colormap into the hardware colormap.

• Every color index supported by the hardware is available to IDL, improvin
the quality of images.

• Allocated colors always start at zero and are contiguous. This simplifies u
the write mask.

• No translation between internal pixel values and the values required by th
server is required, making the transfer of images more efficient.

• When the IDL colormap is loaded, other applications are displayed using
wrong colors. Furthermore, colors from the shared colormap are usually
allocated from the lower end of the map first. These are the colors allocated
the window manager for such things as window borders, the color of text,
so forth. Since most IDL colormaps have very dark colors in the lower entri
the end effect with the IDL colormap loaded is that the non-IDL portions of t
screen go blank.

Static Colormaps

As mentioned above, the contents of static colormaps are determined outside o
and cannot be changed. When using a static colormap, the TVLCT procedure
simulates writable colormaps by finding the closest RGB color entry in the colorm
to the requested color. The colormap translation table is then set to map IDL co
indices to those of the closest colors in the colormap.

The colors present in the colormap may, and probably will,not match the requested
colors exactly. For example, with a typical static color map, loading the IDL stand
color table number 0, which consists of 256 intensities of gray, results in only 8 or
distinct intensities.

With static colormaps, loading a new color table does not affect the appearance
previously written objects. The internal translation tables are modified, which on
affects objects that are subsequently written.
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2169

rom
ero
or

 the
roth

olor

able

copy
is
ed
g a
lly

r
the
Color Translation

As mentioned above, colors from the shared colormap do not necessarily start f
index zero, and are not necessarily contiguous. IDL preserves the illusion of a z
based contiguous colormap by maintaining a translation table between user col
indices, which range from 0 to !D.TABLE_SIZE, and the actual pixel values
allocated from the X server. Normally, the user need not be concerned with this
translation table, but it is available using the statement:

DEVICE, TRANSLATION=T

This statement stores the current translation table, a 256 element byte vector, in
variable T. Element zero of the vector contains the value pixel allocated for the ze
color in the IDL colormap, and so forth. In the case of a private colormap, each
element of the translation vector contains it’s own index value, because private
colormaps start at zero and are contiguous.

The translation table may be bypassed, allowing direct access to the display’s c
indices, by setting the BYPASS_TRANSLATION keyword in the DEVICE
procedure.

DEVICE, /BYPASS_TRANSLATION

Translation can be reestablished by setting the keyword to zero:

DEVICE, BYPASS_TRANSLATION=0

When a private or static (read-only) color table is initialized, the bypass flag is
cleared. It is set when initializing a shared color table.

Using Pixmaps

X Windows can direct graphics towindows or pixmaps. Windows are the usual
windows that appear on the screen and contain graphics. Pixmaps are invisible
graphics memory contained in the server. Drawing to a window produces a view
result, while drawing to a pixmap simply updates the pixmap memory.

Pixmaps are useful because it is possible to write graphics to a pixmap and then
the contents of the pixmap to a window where it can be viewed. Furthermore, th
copy operation is very fast because it happens entirely within the server. Provid
enough pixmap memory is available, this technique works very well for animatin
series of images by placing the images into pixmap memory and then sequentia
copying them to a visible window.

To create a pixmap, use the PIXMAP keyword with the WINDOW procedure. Fo
example, to create a square pixmap with 128 pixels per side as IDL window 1, use
command:
IDL Reference Guide The X Windows Device

2170 Appendix B: IDL Graphics Devices

some

y. It

ses
WINDOW, 1, /PIXMAP, XSIZE=128, YSIZE=128

Once they are created, pixmaps are treated just like normal windows, although
operations (WSHOW for instance) don’t do anything useful when applied to a
pixmap.

The following procedure shows how animation can be done using pixmap memor
uses a series of 15 heart images taken from the fileabnorm.dat . This file is supplied
with all IDL distributions in thedata subdirectory of the imagesexamples of the
main IDL directory. It creates a pixmap and writes the heart images to it. It then u
the COPY keyword of the DEVICE procedure to copy the images to a visible
window. Pressing any key causes the display process to halt:

; Animate heart series:
PRO animate_heart
; Open the file containing the images:
OPENR, u, FILEPATH('abnorm.dat', SUBDIR = ['examples','data']), $

/GET_LUN
; Associate a file variable with the file. Each heart image
; is 64x64 pixels:
frame = ASSOC(u, BYTARR(64,64))
; Window pixwin is a pixmap which is 4 images tall and 4
; images wide. The images will be placed in this pixmap:
WINDOW, pixwin, /PIXMAP, XSIZE = 512, YSIZE = 512, /FREE
; Write each image to the pixmap. SMOOTH is used to improve
; the appearance of each image and REBIN is used to
; enlarge/shrink each image to the final display size:
FOR i=0, 15-1 DO TV, REBIN(SMOOTH(frame[i],3), 128, 128),i
; Close the image file and free the file unit:
FREE_LUN, u
; Window win is a visible window. It will be used to display
; the animated heart cycle:
WINDOW, win, XSIZE = 128, YSIZE=128, TITLE='Heart', /FREE
; Current frame number:
i = 0L
; Display frames until any key is pressed:
WHILE GET_KBRD(0) EQ '' DO BEGIN
; Compute x and y locations of pixmap image’s lower left corner:

x = (i mod 4) * 128 & y = 384 - (i/4) * 128
; Copy the next image from the pixmap to the visible window:
DEVICE, COPY = [x, y, 128, 128, 0, 0, pixwin]
; Keep track of total frame count:
i = (i + 1) MOD 15
ENDWHILE
END
The X Windows Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2171

 the

rces

s,
Animation sequences with more and/or larger images can be made. See the
documentation for the XANIMATE procedure, which is a more generalized
embodiment of the above procedure.

Note: Some X Windows servers will refuse to create a pixmap that is larger than
physical screen in either dimension.

Setting the X Window Defaults

You can set the initial default value of the following parameters by setting resou
in the file.Xdefault s (UNIX), orDECW$SM_GENERAL.DAT (VMS) in your home
directory as follows:

For example, to set the default visual to PseudoColor, and to allocate 100 color
insert the following lines in your defaults file:

idl.gr_visual: PseudoColor
idl.colors: 100

Resource Name Description

idl.colors The number of colors used by IDL.

idl.gr_depth The depth, in bits, of the visual used by IDL.

idl.retain The default setting for theretain parameter: 0=none,
1= by server, 2=by IDL.

idl.gr_visual The type of visual: StaticGray, GrayScale, StaticColor,
PseudoColor, TrueColor, or DirectColor.

idl.olh_text_width The width for the online help window.

idl.olh_text_height The height for the online help window.

Table B-15: IDL/ X Window Defaults
IDL Reference Guide The X Windows Device

2172 Appendix B: IDL Graphics Devices

ffer

ver
 this

n
aud
d

 that
the

h at
el is
is
 Z-

s in

 be
evice.

ions.
The Z-Buffer Device

Device Keywords Accepted by the Z Device:

CLOSE, GET_GRAPHICS_FUNCTION, GET_WRITE_MASK,
SET_CHARACTER_SIZE, SET_COLORS, SET_GRAPHICS_FUNCTION,
SET_RESOLUTION, Z_BUFFERING

The IDL Z-buffer device is a pseudo device that draws 2D or 3D graphics in a bu
contained in memory. This driver implements the classic Z buffer algorithm for
hidden surface removal. Although primarily used for 3D graphics, the Z-buffer dri
can be used to create 2D objects in a frame buffer in memory. The resolution of
device can be set by the user.

All of the IDL plotting and graphics routines work with the Z-buffer device driver. I
addition, the POLYFILL procedure has a few keyword parameters, allowing Gour
shading and warping images over 3D polygons, that are only effective when use
with the Z-buffer.

When used for 3D graphics, two buffers are present: an 8-bit-deep frame buffer
contains the picture; and a 16-bit-deep Z-buffer of the same resolution, containing
z-value of the visible surface of each pixel. The Z-buffer is initialized to the dept
the back of the viewing volume. When objects are drawn, the z-value of each pix
compared with the value at the same location in the Z-buffer, and if the z-value
greater (closer to the viewer), the new pixel is written in the frame buffer and the
buffer is updated with the new z-value.

The Z-buffer device is a “pseudo device” in that drawing commands update buffer
memory rather than sending commands to a physical device or file. The TVRD
function reads the contents of either buffer to an IDL array. This array may then
further processed, written to a file, or output to a raster-based graphics output d

The Z-buffer driver can be used for 2D graphics by disabling the depth computat

To use the Z-buffer as the current graphics device, issue the IDL command:

SET_PLOT, 'Z'

Once the Z-buffer driver is enabled the DEVICE procedure is used to control its
actions, as described below.

Use the statement:

HELP, /DEVICE
The Z-Buffer Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2173

the

The
. The
e
fer.

d the

-

r

,

to view the current state of the Z-buffer driver and the amount of memory used for
buffers.

Reading and Writing Buffers

The contents of both buffers are directly accessed by the TV and TVRD routines.
frame buffer that contains the picture is 8 bits deep and is accessed as channel 0
Z depth buffer contains 16 bit integers and is accessed as channel 1. Always us
CHANNEL=1 and set the keyword WORDS when reading or writing the depth buf

The normal procedure is to set the graphics device to “Z”, draw the objects, rea
frame buffer, and then select another graphics device and write the image. For
example, to create an image with the Z-buffer driver and then display it on an X
Window display:

; Select Z-buffer device:
SET_PLOT,'Z'
; Write objects to the frame buffer using normal graphics
; routines, e.g. PLOT, SURFACE, POLYFILL
...
; Read back the entire frame buffer:
a=TVRD()
; Select X Windows:
SET_PLOT,'X'
; Display the contents of the frame buffer:
TV, a

To read the depth values in the Z-buffer, use the command:

a = TVRD(CHANNEL=1, /WORDS)

To write the depth values, use the command:

TV, a, /WORDS, CHANNEL=1

The TV, TVSCL, and TVRD routines write or read pixels directly to a rectangula
area of the designated buffer without affecting the other buffer.

Z-Axis Scaling

The values in the depth buffer are short integers, scaled from -32765 to +32765
corresponding to normalized Z-coordinate values of 0.0 to 1.0.

Polyfill Procedure

The following POLYFILL keywords are active only with the Z-buffer device:
IMAGE_COORDINATES, IMAGE_INTERPOLATE, and TRANSPARENT. These
IDL Reference Guide The Z-Buffer Device

2174 Appendix B: IDL Graphics Devices

er

d,

of
for

s

parameters allow images, specified via the PATTERN keyword, to be warped ov
2D and 3D polygons.

The IMAGE_COORDINATES keyword contains a 2 byNarray containing the image
space coordinates that correspond to each of theN vertices of the polygon. The
IMAGE_INTERPOLATE keyword indicates that bilinear interpolation is to be use
rather than the default nearest neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency. For Gouraud shading
polygons, the COLOR keyword can contain an array specifying the color index
each polygon vertex.

Examples Using the Z-Buffer

This example forms a Bessel function, draws its shaded surface and overlays it
contour, using the Z-buffer as shown in the following figure.The final output is
directed to PostScript.

; Select the Z-buffer:
SET_PLOT, 'Z'
n = 50 ; Size of array for Bessel
; Make the Bessel function:
a = BESELJ(SHIFT(DIST(n), n/2, n/2)/2, 0)
; Draw the surface, label axes in black, background in white:
SHADE_SURF, a, /SAVE, COLOR=1, BACKGROUND=255
nlev = 8 ; Number of contour levels
; Make the Contour at normalized Z=.6:
CONTOUR, a, /OVERPLOT, ZVALUE=.6, /T3D, $

LEVELS=FINDGEN(nlev)*1.5/nlev-.5, COLOR=1
; Read image:
b=TVRD()
; Select PostScript output:
SET_PLOT, 'PS'
; Output the image:
TV, b
; Close the new PostScript file:
DEVICE, /CLOSE
The Z-Buffer Device IDL Reference Guide

Appendix B: IDL Graphics Devices 2175

The
 The
 the
The following example warps an image to a cube as shown in the figure below.
lower two quadrants of the image are warped to the front two faces of the cube.
upper-right quadrant is warped to the top face of the cube. The image is held in
arraya, with dimensionsnx by ny. The image is then output to PostScript as in the
previous example.

; Select the Z-buffer:
SET_PLOT, 'Z'
; Make a white background for final output to PostScript:
ERASE, 255
; Establish 3D scaling as (0,1) cube:
SCALE3, XRANGE=[0,1], YRANGE=[0,1], ZRANGE=[0,1]
; Define vertices of cube. Vertices 0-3 are bottom, 4-7 are top:
verts = [[0,0,0], [1,0,0], [1,1,0], [0,1,0], $

[0,0,1], [1,0,1], [1,1,1], [0,1,1]]
; Fill lower left face:
POLYFILL, verts[*, [3,0,4,7]], /T3D, PATTERN=a, $

IMAGE_COORD=[[0,0], [nx/2,0], [nx/2,ny/2], [0,ny/2]]
; Fill lower right face:
POLYFILL, verts[*, [0,1,5,4]], /T3D, PATTERN=a, $

IMAGE_COORD=[[nx/2,0], [nx-1,0], $
[nx-1,ny/2], [nx/2,ny/2]]

; Fill top face:

Figure B-7: Combined Shaded Surface and Contour Plot
IDL Reference Guide The Z-Buffer Device

2176 Appendix B: IDL Graphics Devices
POLYFILL, verts[*, [4,5,6,7]], /T3D, PATTERN=a, $
IMAGE_COORD = [[nx/2,ny/2], [nx-1,ny/2], $
[nx-1,ny-1], [nx/2,ny-1]]

; Draw edges of cube in black:
PLOTS, verts[*, [0,4]], /T3D, COLOR=0
; Edges of top face:
PLOTS, verts[*, [4,5,6,7,4]], /T3D, COLOR=0

Figure B-8: Image Warped to a Cube Using the Z-Buffer
The Z-Buffer Device IDL Reference Guide

Appendix C:

Graphics Keywords
d

f
e
ics

wed

r
e

The IDL Direct Graphics routines, CURSOR, ERASE, PLOTS, POLYFILL, TV (an
TVSCL), TVCRS, TVRD, and XYOUTS, and the plotting procedures, AXIS,
CONTOUR, PLOT, OPLOT, SHADE_SURF, and SURFACE, accept a number o
common keywords. Therefore, instead of describing each keyword along with th
description of each routine, this section contains a brief summary of each graph
keyword. Routine-specific keywords are documented in the description of the
routine.

The graphics keywords are described below. The name of each keyword is follo
by a list of routines that accept that keyword. Keywords that have a direct
correspondence to fields in a system variable (usually !P) are also indicated.

The keywords that control the plot axes are prefixed with the character ‘X’, ‘Y’, o
‘Z’ depending on the axis in question. These keywords correspond to fields in th
axis system variables: !X, !Y, and !Z, and are described in more detail in“Graphics
System Variables” on page 2204 The axis keywords are shown in the form
[XYZ]NAME. For example, [XYZ]CHARSIZE refers to the three keywords
XCHARSIZE, YCHARSIZE, and ZCHARSIZE, which control the size of the
characters annotating the three axes.
IDL Reference Guide 2177

2178 Appendix C: Graphics Keywords

d

 or
 a

:

 the

This
The system variable fields that control this are !X.CHARSIZE, !Y.CHARSIZE, an
!Z.CHARSIZE.

BACKGROUND

Accepted by:CONTOUR, PLOT, SURFACE. System variable equivalent:
!P.BACKGROUND.

The background color index to which all pixels are set when erasing the screen
page. The default is 0 (black). Not all devices support erasing the background to
specified color index.

For example, to produce a black plot with a white background on a color display

PLOT, Y, BACKGROUND = 255, COLOR = 0

CHANNEL

Accepted by:ERASE, TV, TVRD. System variable equivalent: !P.CHANNEL.

This keyword specifies the memory channel for the operation. This parameter is
ignored on display systems that have only one memory channel. When using a
“decomposed” display system, the red channel is 1, the green channel is 2, and
blue channel is 3. Channel 0 indicates all channels. If omitted, !P.CHANNEL
contains the default channel value.

Note
CONTOUR, PLOT, SHADE_SURF, and SURFACE also accept the CHANNEL
keyword, but simply pass it to ERASE.

CHARSIZE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARSIZE.

The overall character size for the annotation when Hershey fonts are selected.
keyword does not apply when hardware (i.e. PostScript) fonts are selected. A
CHARSIZE of 1.0 is normal. The size of the annotation on the axes may be set,
relative to CHARSIZE, withxCHARSIZE, wherex is X, Y, or Z. The main title is
written with a character size of 1.25 times this parameter.
IDL Reference Guide

Appendix C: Graphics Keywords 2179

fonts
 are

. The

are
 is

g

ped
[XYZ]CHARSIZE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalents: ![XYZ].CHARSIZE.

The size of the characters used to annotate the axis and its title when Hershey
are selected. This keyword does not apply when hardware (i.e. PostScript) fonts
selected. This field is a scale factor applied to the global scale factor set by
!P.CHARSIZE or the keyword CHARSIZE.

CHARTHICK

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARTHICK.

An integer value specifying the line thickness of the vector drawn font
characters.This keyword has no effect when used with the hardware drawn fonts
default value is 1.

CLIP

Accepted by:AXIS, CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS. System variable equivalent:
!P.CLIP.

The coordinates of a rectangle used to clip the graphics output. The rectangle is
specified as a vector of the form [X0, Y0, X1, Y1], giving coordinates of the lower left
and upper right corners, respectively. The default clipping rectangle is the plot
window, the area enclosed within the axes of the most recent plot. Coordinates
specified in data units unless an overriding coordinate unit specification keyword
present (i.e., NORMAL or DEVICE).

Note
The default is not to clip the output of PLOTS and XYOUTS. To enable clippin
include the keyword parameter NOCLIP = 0. With PLOTS, POLYFILL, and
XYOUTS, this keyword controls the clipping of vectors and vector-drawn text.

For example, to draw a vector using normalized coordinates with its contents clip
within a rectangle covering the upper left quadrant of the display:

PLOTS, X, Y, CLIP=[0.,.5,.5,1.0], /NORM, NOCLIP=0
IDL Reference Guide

2180 Appendix C: Graphics Keywords

ice
 for

lied
TA if

lied
ATA

nd
the
COLOR

Accepted by:AXIS, CONTOUR, DRAW_ROI, ERASE, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS. System variable equivalent:
!P.COLOR.

The color index of the data, text, line, or solid polygon fill to be drawn. If this
keyword is omitted, !P.COLOR specifies the color index.

When used with the PLOTS, POLYFILL, or XYOUTS procedure, this keyword
parameter can be set to a vector to specify multiple color indices.

Gouraud shading of polygons is performed with the Z-buffer graphics output dev
and POLYFILL procedure when COLOR contains an array of color indices, one
each vertex.

DATA

Accepted by:AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supp
are specified in the data coordinate system. The default coordinate system is DA
no other coordinate-system specifications are present.

DEVICE

AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supp
are specified in the device coordinate system. The default coordinate system is D
if no other coordinate-system specifications are present.

For example, the following code displays an image contained in the variable A a
then draws a contour plot of pixels [100:499, 100:399] over the correct section of
image:

;Display the image.
TV,A

;Draw the contour plot, specify the coordinates of the plot, in
;device coordinates, do not erase, set the X and Y axis styles to
;EXACT.
CONTOUR, A[100:499, 100:399], $

POS = [100,100, 499,399], /DEVICE, $
IDL Reference Guide

Appendix C: Graphics Keywords 2181

-1 to
equal
) to

 of
/NOERASE, XSTYLE=1, YSTYLE=1

Note that in the above example, the keyword specification/DEVICE is equivalent to
DEVICE = 1 .

FONT

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.FONT.

An integer that specifies the graphics text font system to use. Set FONT equal to
selects the Hershey character fonts, which are drawn using vectors. Set FONT
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one
select the TrueType font system. SeeAppendix G, “Fonts”for a complete description
of IDL’s font systems.

[XYZ]GRIDSTYLE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE

The index of the linestyle to be used for plot tickmarks and grids (i.e., when
[XYZ]TICKLEN is set to 1.0). SeeLINESTYLE for a list of linestyles.

LINESTYLE

Accepted by:DRAW_ROI, OPLOT, PLOT, PLOTS, SURFACE. System variable
equivalent: !P.LINESTYLE.

This keyword indicates the line style used to draw lines; it indicates the line style
the lines used to connect the data points. This keyword should be set to the
appropriate index for the desired linestyle as described in the following table.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot Dot

5 Long Dashes

Table C-1: IDL Linestyles
IDL Reference Guide

2182 Appendix C: Graphics Keywords

s of
X
ncy

ned

r

ing
ter

ints
[XYZ]MARGIN

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MARGIN.

A 2-element array specifying the margin on the left (bottom) and right (top) side
the plot window, in units of character size. Default margins are 10 and 3 for the
axis, and 4 and 2 for the Y axis. The ZMARGIN keyword is present for consiste
and is currently ignored.

[XYZ]MINOR

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MINOR.

The number of minor tick marks.

NOCLIP

Accepted by:AXIS, CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS. System variable equivalent:
!P.NOCLIP.

Set this keyword to suppress clipping of the plot. The clipping rectangle is contai
in !P.CLIP. By default, the plot is clipped within the plotting window.

Note
The default value is clipping-disabled for PLOTS, POLYFILL, and XYOUTS. Fo
all other routines, the default is to enable clipping.

With PLOTS, POLYFILL, and XYOUTS, this keyword controls the clipping of
vectors and vector-drawn text. The default is to disable clipping, so to enable clipp
include the parameter NOCLIP = 0. To explicitly disable clipping set this parame
to one.

NODATA

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

If this keyword is set, only the axes, titles, and annotation are drawn. No data po
are plotted.

For example, to draw an empty set of axes between some given values:
IDL Reference Guide

Appendix C: Graphics Keywords 2183

rased,

lied
he
re

line
s

ing
in
n if

on,

on is
PLOT, [XMIN, XMAX],[YMIN, YMAX], /NODATA

NOERASE

Accepted by:AXIS, CONTOUR, PLOT, SURFACE. System variable equivalent:
!P.NOERASE.

Specifies that the screen or page is not to be erased. By default, the screen is e
or a new page is begun, before a plot is produced.

NORMAL

Accepted by:AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supp
are specified in the normalized coordinate system, and range from 0.0 to 1.0. T
default coordinate system is DATA if no other coordinate-system specifications a
present.

ORIENTATION

Accepted by:DRAW_ROI, POLYFILL, XYOUTS.

Specifies the counterclockwise angle in degrees from horizontal of the text base
and the lines used to fill polygons.When used with the POLYFILL procedure, thi
keyword forces the “linestyle” type of fill, rather than solid or patterned fill.

POSITION

Accepted by:CONTOUR, MAP_SET, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.POSITION.

Allows direct specification of the plot window. POSITION is a 4-element vector
giving, in order, the coordinates [(X0, Y0), (X1, Y1)], of the lower left and upper right
corners of the data window. Coordinates are expressed in normalized units rang
from 0.0 to 1.0, unless the DEVICE keyword is present, in which case they are
actual device units. The value of POSITION is never specified in data units, eve
the DATA keyword is present.

When setting the position of the window, be sure to allow space for the annotati
which resides outside the window. IDL outputs the message “% Warning: Plot
truncated.” if the plot region is larger than the screen or page size. The plot regi
the rectangle enclosing the plot window and the annotation.
IDL Reference Guide

2184 Appendix C: Graphics Keywords

r
st

tion

n

ord,
w to
the
When plotting in three dimensions, the POSITION keyword is a 6-element vecto
with the first four elements describing, as above, the XY position, and with the la
two elements giving the minimum and maximum Z coordinates. The Z specifica
is always in normalized coordinate units.

When making more than one plot per page it is more convenient to set !P.MULTI
than to manipulate the position of the plot directly with the POSITION keyword.

For example, the following statement produces a contour plot with data plotted i
only the upper left quarter of the screen:

CONTOUR, Z, POS=[0., 0.5, 0.5, 1.0]

Because no space on the left or top edges was allowed for the axes or their
annotation, the above described warning message results.

PSYM

Accepted by:DRAW_ROI, OPLOT, PLOT, PLOTS. System variable equivalent:
!P.PSYM.

The symbol used to mark each data point. Normally, PSYM is 0, data points are
connected by lines, and no symbols are drawn to mark the points. Set this keyw
or the system variable !P.PSYM, to the symbol index as shown in the table belo
mark data points with symbols. The keyword SYMSIZE is used to set the size of
symbols.

PSYM
Value Plotting Symbol

1 Plus sign (+)

2 Asterisk (*)

3 Period (.)

4 Diamond

5 Triangle

6 Square

7 X

8 User-defined. SeeUSERSYM procedure.

Table C-2: Values for the PSYM Keyword
IDL Reference Guide

Appendix C: Graphics Keywords 2185

at
lots

hed

axis
Negative values of PSYM cause the symbol designated by PSYM to be plotted
each point with solid lines connecting the symbols. For example, a value of -5 p
triangles at each data point and connects the points with lines.

The following IDL code plots an array using points, and then overplots the smoot
array, connecting the points with lines:

;Plot using points.
PLOT, A, PSYM=3

;Overplot smoothed data.
OPLOT, SMOOTH(A,7)

[XYZ]RANGE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].RANGE.

The desired data range of the axis, a 2-element vector. The first element is the
minimum, and the second is the maximum. IDL will frequently round this range.
This override can be defeated using the [XYZ]STYLE keywords.

[XYZ]STYLE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].STYLE.

9 Undefined

10 Histogram mode. Horizontal and vertical lines connect the
plotted points, as opposed to the normal method of
connecting points with straight lines.

PSYM
Value Plotting Symbol

Table C-2: Values for the PSYM Keyword
IDL Reference Guide

2186 Appendix C: Graphics Keywords

and

lues
esses

xis.

1.0

be

)

This keyword allows specification of axis options such as rounding of tick values
selection of a box axis. Each option is described in the following table:

Note that this keyword is set bitwise, so multiple effects can be set by adding va
together. For example, to make an X axis that is both exact (value 1) and suppr
the box style (setting 8), set the XAXIS keyword to1+8 , or 9.

SUBTITLE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.SUBTITLE.

A text string to be used as a subtitle for the plot. Subtitles appear below the X a

SYMSIZE

Accepted by:DRAW_ROI, OPLOT, PLOT, PLOTS.

Specifies the size of the symbols drawn when PSYM is set. The default size of
produces symbols approximately the same size as a character.

T3D

Accepted by:AXIS, CONTOUR, DRAW_ROI, MAP_SET, OPLOT, PLOT,
PLOTS, POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS. System
variable equivalent: !P.T3D.

Set this keyword to indicate that the generalized transformation matrix in !P.T is to
used. If not present, the user-supplied coordinates are simply scaled to screen
coordinates. See the examples in the description of the SAVE keyword.

Value Description

1 Force exact axis range.

2 Extend axis range.

4 Suppress entire axis

8 Suppress box style axis (i.e., draw axis on only one side of plot

16 Inhibit setting the Y axis minimum value to 0 (Y axis only)

Table C-3: Values for the [XYZ]STYLE Keyword
IDL Reference Guide

Appendix C: Graphics Keywords 2187

n a

. A

that

 is
Note
Since T3D uses the transformation matrix in !P.T, it is important that !P.T contai
valid transformation matrix. This can be achieved in several ways:

• Use the SAVE keyword to save the transformation matrix from an earlier
graphics operation.

• Establish a transformation matrix using the T3D, SURFR, or, SCALE3
procedures.

• Set the value of !P.T directly.

THICK

Accepted by:AXIS, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE. System variable equivalent: !P.THICK.

Indicates the line thickness. THICK overrides the setting of !P.THICK.

[XYZ]THICK

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].THICK.

This keyword controls the thickness of the lines forming the axis and tick marks
value of 1.0 is the default.

[XYZ]TICKFORMAT

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKFORMAT.

Set this keyword to a format string or a string containing the name of a function
returns a string to be used to format the axis tick marklabels.

If the argument to the TICKFORMAT keyword does not begin with the an open
parenthesis, “(“, the string is interpreted as the name of a function. The function
called with three parameters:Axis, Index, andValue where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis.

• Index is the tick mark index which starts at 0.

• Value is the default tick mark value (a floating-point number).
IDL Reference Guide

2188 Appendix C: Graphics Keywords

te

ters,
s:

cified
ith

ize.

.

s)
Used with theLABEL_DATE function, this keyword can easily create axes with da
labels.

For example, to display the X axis tick values using a format of F6.2 (six charac
with 2 places after the decimal point), use the XTICKFORMAT keyword as follow

PLOT, X, Y, XTICKFORMAT='(F6.2)'

To display the Y tick values using the “dollars and cents” format $dddd.dd, use:

PLOT, X, Y, YTICKFORMAT='("$", F7.2)'

For more complicated tick label formatting, labels can be created by a user-spe
function that returns a string. For example, to annotate ticks along a time axis w
the format HH:MM:SS, you could use the following function:

FUNCTION YTICKS, axis, index, value
hour = LONG(value)/3600
minute = LONG(value-3600 * hour) / 60
sec = value mod 60
RETURN, STRING(hour, minute, sec, $

FORMAT="(i2.2, ':', i2.2, ':', i2.2)")
END

Then use the call:

PLOT, T, YTICKFORMAT='YTICKS'

TICKLEN

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TICKLEN.

Controls the length of the axis tick marks, expressed as a fraction of the window s
The default value is 0.02. TICKLEN of 1.0 produces a grid, while a negative
TICKLEN makes tick marks that extend outside the window, rather than inwards

For example, to produce outward-going tick marks of the normal length:

PLOT, X, Y, TICKLEN = -0.02

To provide a new default tick length, set !P.TICKLEN.

[XYZ]TICKLEN

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKLEN.

This keyword controls the lengths of tick marks (expressed in normal coordinate
for the individual axes. This keyword, if nonzero, overrides the global tick length
IDL Reference Guide

Appendix C: Graphics Keywords 2189

k.

the

ted
ks.

IDL
specified in !P.TICKLEN, and/or the TICKLEN keyword parameter, which is
expressed in terms of the window size.

[XYZ]TICKNAME

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKNAME.

A string array of up to 30 elements that controls the annotation of each tick mar

[XYZ]TICKS

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKS.

The number of major tickintervals to draw for the axis. If this keyword is omitted,
IDL selects from three to six tick intervals. Setting this field ton, wheren > 1,
produces exactlyn tick intervals, andn+1 tick marks. Setting this field equal to 1
suppresses tick marks.

[XYZ]TICKV

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKV.

The data values for each tick mark, an array of up to 30 elements. Note: to specify
number of ticks and their values exactly, set [XYZ]TICKS =n and
[XYZ]TICKV = n + 1, wheren > 1.

[XYZ]TICK_GET

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

A named variable in which to return the values of the tick marks for the designa
axis. The result is a floating-point array with the same number of elements as tic

For example, to retrieve in the variable V the values of the tick marks selected by
for the Y axis:

PLOT, X, Y, YTICK_GET = V

TITLE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TITLE.
IDL Reference Guide

2190 Appendix C: Graphics Keywords

 title

and

t a Z

se
ot
Produces a main title centered above the plot window. The text size of this main
is larger than the other text by a factor of 1.25. For example:

PLOT, X, Y, TITLE = 'Final Results'

[XYZ]TITLE

Accepted by:AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TITLE.

A string that contains a title for the specified axis.

ZVALUE

Accepted by:AXIS, CONTOUR, MAP_SET, OPLOT, PLOT, SHADE_SURF,
SURFACE.

Sets the Z coordinate, in normalized coordinates in the range of 0 to 1, of the axis
data output from PLOT, OPLOT, and CONTOUR.

This keyword has effect only if !P.T3D is set and the three-dimensional to two-
dimensional transformation is stored in !P.T. If ZVALUE is not specified,
CONTOUR will output each contour at its Z coordinate, and the axes and title a
coordinate of 0.0.

Z

Accepted by:PLOTS, POLYFILL, TV, TVCRS, XYOUTS.

Provides the Z coordinate if a Z parameter is not present in the call. This is of u
only if the three-dimensional transformation is in effect (i.e., the T3D keyword is n
set).
IDL Reference Guide

Appendix D:

System Variables
The following topics are included in this appendix:
9
04
What Are System Variables? 2192
Constant System Variables. 2193
ErrorHandlingandInformationalSystemVariables
2195

IDL Environment System Variables 219
Graphics System Variables 22
IDL Reference Guide 2191

2192 Appendix D: System Variables

ram

to

When
e, if

SV
What Are System Variables?

System variables are a special class of predefined variables available to all prog
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes,
return error status, etc.

System variables have a predefined type and structure that cannot be changed.
an expression is stored into a system variable, it is converted to the variable typ
necessary and possible. Certain system variables areread only, and their values
cannot be changed. The user can define new system variables with the DEFSY
procedure.
What Are System Variables? IDL Reference Guide

Appendix D: System Variables 2193

by
, the

 to

ions
s
them

to

int
Constant System Variables

The following system variables contain pre-defined constants or values for use
IDL routines. System variables can be used just like other variables. For example
command:

PRINT, ACOS(A) * !RADEG

converts a result expressed in radians to one expressed in degrees.

!DPI

A read-only variable containing the double-precision value of pi (π).

!DTOR

A read-only variable containing the floating-point value used to convert degrees
radians (π/180 ≅ 0.01745).

!MAP

An array variable containing the information needed to effect coordinate convers
between points of latitude and longitude and map coordinates. The values in thi
array are established by the MAP_SET procedure; the user should not change
directly.

!PI

A read-only variable containing the single-precision value of pi (π).

!RADEG

A read-only variable containing the floating-point value used to convert radians
degrees (180/π ≅ 57.2958).

!VALUES

A read-only variable containing the IEEE single- and double-precision floating-po
valuesInfinity andNaN (Not A Number). !VALUES is a structure variable with the
following fields:

** Structure !VALUES, 4 tags, length=24:
F_INFINITY FLOAT Infinity
F_NAN FLOAT NaN
IDL Reference Guide Constant System Variables

2194 Appendix D: System Variables
D_INFINITY DOUBLE Infinity
D_NAN DOUBLE NaN

whereInfinity is the value Infinity andNaN is the value Not A Number. (For more
information on these special floating-point values, see“Special Floating-Point
Values” in Chapter 15 ofBuilding IDL Applcations.)
Constant System Variables IDL Reference Guide

Appendix D: System Variables 2195

curs

n as

ed

’s
Error Handling and Informational System
Variables

The following system variables are either set by IDL when an error condition oc
or used by IDL when displaying information about errors.

!ERR

This system variable is now obsolete and has been replaced by the!ERROR_STATE
system variable. Code that uses the !ERR system variable will continue to functio
before, but all new code should use !ERROR_STATE.CODE.

!ERROR_STATE

A structure variable which contains the status of the last error message.
!ERROR_STATE includes the following fields:

** Structure !ERROR_STATE, 7tags, length=52:
NAME STRING 'M_SUCCESS'
BLOCK STRING 'IDL_MBLK_CORE'
CODE LONG 0
SYS_CODE LONG Array[2]
MSG STRING ''
SYS_MSG STRING ''
MSG_PREFIX STRING '%'

• NAME: A read-only string variable containing the error name of the IDL-
generated component of the last error message.

• BLOCK: A read-only string variable containing the name of the message
block for the last error message’s IDL-generated component.

• See theExternal Development Guide for more information about blocks.

• CODE: A long-integer variable containing the error code of the last error’s
IDL-generated component.

• SYS_CODE: A long-integer variable containing the error code of the last
error’s operating system-generated component, if it exists.

• MSG: A read-only string variable containing the text of the last IDL-generat
error message.

• SYS_MSG: A read-only string variable containing the text of the last error
operating system-generated component, if it exists.
IDL Reference Guide Error Handling and Informational System Variables

2196 Appendix D: System Variables

and

s

tion

re:

 see

to

at
• MSG_PREFIX: A string variable containing the prefix string used for error
messages.

This system variable replaces !ERROR, !ERR_STRING, !MSG_PREFIX,
!SYSERR_STRING, and !SYSERROR, and includes two new fields: error name
block name. For a more detailed explanation of !ERROR_STATE, see“Error
Handling” in Chapter 15 ofBuilding IDL Applcations.

!ERROR

This keyword is now obsolete and has been replaced by the!ERROR_STATE system
variable. Code that uses the !ERROR system variable will continue to function a
before, but we suggest that all new code use !ERROR_STATE.NAME.

!ERR_STRING

This keyword is now obsolete and has been replaced by the!ERROR_STATE system
variable. Code that uses the !ERR_STRING system variable will continue to func
as before, but we suggest that all new code use !ERROR_STATE.MSG.

!EXCEPT

An integer variable that controls when IDL checks for invalid mathematical
computations (exceptions), such as division by zero. The three allowed values a

For more information on invalid mathematical computations and error reporting,
“Math Errors” in Chapter 15 ofBuilding IDL Applcations.

The value of !EXCEPT is used by the CHECK_MATH function to determine when
return errors. See“CHECK_MATH” on page 159 for details.

Value Description

0 Never report exceptions.

1 Report exceptions when the interpreter is returning to an
interactive prompt (the default).

2 Report exceptions at the end of each IDL statement. Note th
this slows IDL by roughly 5% compared to setting
!EXCEPT=1.

Table D-1: EXCEPT Values
Error Handling and Informational System Variables IDL Reference Guide

Appendix D: System Variables 2197

e

tion
X.

n as
Note
In versions of IDL up to and including IDL 4.0.1, the default exception handling
was functionally identical to setting !EXCEPT=2.

!MOUSE

A structure variable that contains the status from the last cursor read operation.
!MOUSE has the following fields:

** Structure !MOUSE, 4 tags, length=16:
X LONG 511
Y LONG 252
BUTTON LONG 4
TIME LONG 1428829775

• X and Y: Contain the location (in device coordinates) of the cursor when th
mouse button was pressed.

• BUTTON: Contains

• - 1 (one) if the left mouse button was pressed,

• - 2 (two) if the middle mouse button was pressed

• - 4 (four) if the right mouse button was pressed.

• TIME: Contains the number of milliseconds since a base time.

See“CURSOR” on page 246 for details on reading the cursor position.

!MSG_PREFIX

This keyword is now obsolete and has been replaced by the!ERROR_STATE system
variable. Code that uses the !MSG_PREFIX system variable will continue to func
as before, but we suggest that all new code use !ERROR_STATE.MSG_PREFI

!SYSERROR

This keyword is now obsolete and has been replaced by the!ERROR_STATE system
variable. Code that uses the !SYSERROR system variable will continue to functio
before, but we suggest that all new code use !ERROR_STATE.SYS_CODE.
IDL Reference Guide Error Handling and Informational System Variables

2198 Appendix D: System Variables

log

 of

f the
ters
IDL
x into
s

 to

l to
!SYSERR_STRING

This keyword is now obsolete and has been replaced by the!ERROR_STATE system
variable. Code that uses the !SYSERR_STRING system variable will continue to
function as before, but we suggest that all new code use !ERROR_STATE.SYS_MSG.

!WARN

A structure variable that causes IDL to print warnings to the console or command
when obsolete IDL features are found at compile time. !WARN has the following
fields:

** Structure !WARN, 3 tags, length=3:
OBS_ROUTINES BYTE 0
OBS_SYSVARS BYTE 0
PARENS BYTE 0
TRUNCATED_FILENAME BYTE 0

Setting each of the four fields to 1 (one) generates a warning for a different type
obsolete code. If the OBS_ROUTINES field is set equal to one, IDL generates
warnings when it encounters references to obsolete internal or library routines. I
OBS_SYSVARS field is set equal to one, IDL generates warnings when it encoun
references to obsolete system variables. If the PARENS field is set equal to one,
generates warnings when it encounters a use of parentheses to specify an inde
an array. If the TRUNCATED_FILENAME field is set equal to one, IDL generate
warnings whenever a file can only be found by truncating its full name.

Warning
IDL version 5.1 is the last version of IDL that will support DOS 8.3 filename
limitations. All future IDL releases will not truncate filenames. You can use
!WARN.TRUNCATE_FILENAME to locate and rename truncated filenames.
Please rename the file upon being warned that a filename has been truncated
avoid future problems.

No warnings are generated when the fields of the !WARN structure are set equa
zero (the default).
Error Handling and Informational System Variables IDL Reference Guide

Appendix D: System Variables 2199

Ls,

d
to

 a

ing

 to
tem
 it

to a
ual

f

L

IDL Environment System Variables

The following system variables contain information about IDL’s configuration.

!DIR

A string variable containing the path to the main IDL directory.

!DLM_PATH

Significant portions of IDL’s built in functionality are packaged in the form of
Dynamically Loadable Modules (DLMs). DLMs correspond to Macintosh code
fragments, UNIX sharable libraries, VMS sharable executables, or Windows DL
depending on the operating system in use. At startup, IDL searches for DLM
definition files (which end in the .dlm suffix) and makes note of the routines supplie
by each DLM. If such are routine is called, IDL loads the DLM that supplies it in
memory. To see a list of the DLMs that IDL knows about, useHELP, /DLM_PATH (see
“HELP” on page 523 for more information).

!DLM_PATH is initialized from the environment variable IDL_DLM_PATH at
startup. If the IDL_DLM_PATH environment variable is not defined, IDL supplies
default that contains the directory in the IDL distribution where the RSI supplied
DLMs reside. This initialization is similar to that performed for IDL_PATH, (see
“!PATH” on page 2200), including recursive path expansion denoted with a lead
“+”. Once !DLM_PATH is expanded, IDL uses it as the list of places to look for
DLM definition files.

Since all DLM searching happens once at startup time, it would be meaningless
change the value of !DLM_PATH afterwards. For this reason, it is a read-only sys
variable and cannot be assigned to. The value of !DLM_PATH is useful because
shows you where IDL looked for DLMs when it started.

!EDIT_INPUT

An integer variable indicating whether keyboard line editing is enabled (when set
non-zero value) or disabled (when set to zero). By default, !EDIT_INPUT is set eq
to one, and line editing is enabled.

By default, IDL saves the last 20 command lines. You can change the number o
command lines saved in the recall buffer by setting !EDIT_INPUT equal to the
number of lines you would like to save. In order for the change to take effect, ID
must be able to process the assignment statement before providing a command
IDL Reference Guide IDL Environment System Variables

2200 Appendix D: System Variables

tup

ces

ed

 tty
 A
me.

d

e

, the

 the
prompt. This means that you must put the assignment statement in the IDL star
file. (See“Startup File” in Chapter 2 ofUsing IDL for more information on startup
files.)

!HELP_PATH

A string variable listing the directories IDL will search for online help files. The
default is thehelp subdirectory of the main IDL directory. The default can be
changed by setting the IDL_HELP_PATH environment variable or logical name
under UNIX or VMS, by specifying the desired help path in the IDL Path Preferen
dialog under Microsoft Windows, or by manually setting the variable at the IDL
command prompt under the Macintosh OS.

!JOURNAL

A read-only long-integer variable containing the logical unit number of the file us
for journal output.

!MORE

An integer variable indicating whether IDL should paginate help output sent to a
device. Setting !MORE to zero (0) prevents IDL from paginating the output text.
non-zero value (the default) causes IDL to display output text one screen at a ti

!PATH

A string variable listing the directories IDL will search for libraries, include files, an
executive commands.

UNIX

!PATH is a colon-separated list of directories, similar in concept to the PATH
environment variable which UNIX uses to locate commands.

!PATH is initialized from the environment variable IDL_PATH when IDL starts. Not
that directories that do not contain at least one.pro or .sav file will not be
included in !PATH, even if they are specified by the IDL_PATH environment
variable. This initial value can be changed, as desired, once in IDL. For example
following statement adds the directory/usr2/project/idl_files to the
beginning of the search path:

!path = '/usr2/project/idl_files:' + !path

To specify a directory tree that includes all of that directory’s subdirectories, use
EXPAND_PATH function.
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2201

IDL
is

r

re

be

 the

 are
t is

tory

.

 a
:

Each user can assign IDL_PATH to a series of directories that are searched for
programs, procedures, functions, and “include” files. It is convenient to set up th
variable in your~/. cshrc :

setenv IDL_PATH ~/idl_lib:/usr/local/rsi/idl/lib
or ~/.profile :
IDL_PATH=~/idl_lib:/usr/local/rsi/idl/lib ; export IDL_PATH

This causes IDL to search for programs first in the current directory, then in you
idl/lib directory, and then in the system-wide directory/usr/local/rsi/
idl/lib .

If IDL_PATH is not defined, IDL initializes !PATH to the default value+/usr/
local/rsi/idl . Note that the current directory is always searched before
consulting !PATH.

VMS

!PATH is a comma-separated list of directories and text libraries. Text libraries a
distinguished by prepending a “@” character to their name.

!PATH is initialized from the logical name IDL_PATH when IDL starts. Note that
directories that do not contain at least one.pro or .sav file will not be included in
!PATH, even if they are specified by the IDL_PATH logical. This initial value can
changed once in IDL as desired. For example, the following statement adds the
directoryDISKA:[PROJECTLIB] to the beginning of the search path:

path = 'diska:[projectlib],' + !path

To specify a directory tree that includes all of that directory’s subdirectories, use
EXPAND_PATH function.

Each user can assign IDL_PATH to a series of directories and text libraries that
searched in order for IDL programs, procedures, functions, and “include” files. I
convenient to set up this variable in yourLOGIN.COM file. For example,

DEFINE IDL_PATH "DISKA:[USER.IDLLIB],@IDL_DIR:[LIB]USERLIB.TLB"

causes IDL to search for programs first in the current directory, then in the direc
DISKA:[USER.IDLLIB] , and finally in the library of routines written in IDL and
included in the standard IDL distribution, which is supplied as a VMS text library
Note that the current directory is always searched before consulting !PATH.

The logical IDL_PATH also can be defined as a multi-valued logical name (e.g.,
search list logical). Therefore, the above example also can be written as follows

DEFINE IDL_PATH DISKA:[USER.IDLLIB],"@IDL_DIR:[LIB]USERLIB.TLB"
IDL Reference Guide IDL Environment System Variables

2202 Appendix D: System Variables

s
n to

e

e

s by

lue

 the

DL
tain

ring
ile

ers.

 the

e

IDL simply takes the various translations and concatenates them together into a
comma-separated list. Note that the quotes around the second translation in thi
example are necessary to keep DCL from seeing the “@” character as an invitatio
execute a command file.

Windows

!PATH is a semicolon-separated list of directories, similar in concept to the PATH
environment variable DOS uses to locate commands. !PATH is initialized from th
saved IDL for Windows preferences data, or from a DOS environment variable
IDL_PATH, when IDL starts. Note that directories that do not contain at least on
. pro or . sav file will not be included in !PATH, even if they are specified by the
preferences data or the IDL_PATH environment variable. Change the path setting
adding to or altering the list of directories in the “Path” dialog, found under the
“Preferences” selection of the IDL for Windows File menu, or by changing the va
of !PATH from the IDL command prompt.

To specify a directory tree that includes all of that directory’s subdirectories, use
EXPAND_PATH function.

Macintosh

!PATH is a comma-separated list of folders. !PATH is initialized from the saved I
for Macintosh preferences data when IDL starts. Note that folders that do not con
at least one.pro or .sav file will not be included in !PATH, even if they are
specified by the preferences data. Change the path settings by adding to or alte
the list of directories in the “Search Path” dialog, found in the IDL for Macintosh F
menu, or by changing the value of !PATH from the IDL command prompt.

Use the following syntax is used to specify Macintosh path locations:

• Filenames are specified as a colon-separated list of drive names and fold

• Folder and file names can contain spaces and/or commas.

Thus, the filemyprogram.pro , located in the folder namedPrograms which
resides on the drive namedMacintosh HD would be specified:

'Macintosh HD:Programs:myprogram.pro'

To specify a directory tree that includes all of that directory’s subdirectories, use
EXPAND_PATH function.

A Note on Order within !PATH

IDL ensures only that all directories containing IDL files are placed in !PATH. Th
order in which they appear is completely unspecified, and does not necessarily
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 2203

L to

me.
rk

u
the
ny
ath

ut.

ted

g

s in
ies
n
re:
correspond to any specific order (such as top-down alphabetized). This allows ID
construct the path in the fastest possible way and speeds startup. This is only a
problem if two subdirectories in such a hierarchy contain a file with the same na
Such hierarchies usually are a collection of cooperative routines designed to wo
together, so such duplication is rare.

If the order in which “+” expands directories is a problem for your application, yo
should add the directories to the path explicitly and not use “+”. Only the order of
files within a given “+” entry are determined by IDL. It never reorders !PATH in a
other way. You can therefore obtain any search order you desire by writing the p
explicitly.

!PROMPT

A string variable containing the text string used by IDL to prompt the user for inp
The default isIDL>.

!QUIET

A long-integer variable indicating whether informational messages should be prin
(0) or suppressed (nonzero). By default, !QUIET is set to zero.

!VERSION

A structure variable containing information about the version of IDL in use. The
structure is defined as follows:

{!VERSION, ARCH:'', OS:'', OS_FAMILY:'', RELEASE:'',
BUILD_DATE:''}

The ARCH field reports the type of CPU. The OS field reports the name of the
operating system, and the OS_FAMILY field reports the general type of operatin
system. The RELEASE field reports the IDL version number. The BUILD_DATE
field reports the date the IDL executable was compiled, in the format dictated by
ANSI C for the__DATE__ macro.

In the unlikely event that you need to differentiate between different IDL version
your code, use !VERSION.OS_FAMILY. At present, four operating system famil
are supported: MacOS, UNIX, VMS, Windows. If for some reason you need eve
more detail, use !VERSION.OS. Operating system names used in the OS field a
A/UX, AIX, DG/UX, HP-UX, IRIX, MacOS, OSF, RISC/os, sunos, vms, Win32.
IDL Reference Guide IDL Environment System Variables

2204 Appendix D: System Variables

se
and

g
an
ple.

s to
IN

ents

ical
Graphics System Variables

The following system variables control various IDL Direct Graphics functions. The
system variables are structures that contain many tags. For example, the comm

!P.TITLE = 'Cross Section'

sets the default plot title.

Many of the functions of the graphics keywords described inAppendix C, “Graphics
Keywords”, are also controlled by the system variables !P, !X, !Y, and !Z.

You can change the default style of plots, fonts, etc., by setting the correspondin
field in the appropriate system variable. Also, some effects that persist longer th
one call are controlled only by system variables. The field !P.MULTI is one exam

!C System Variable

The cursor system variable. Currently, the only function of this system variable i
contain the subscript of the largest or smallest element found by the MAX and M
functions. That information is better obtained through the optional output argum
to those routines. !C is included only for compatibility with old versions of IDL.

!D System Variable

This system variable is a structure that contains information about the current
graphics output device (or window, on a windowing system). Fields, in alphabet
order, are:

FILL_DIST

The line interval, in device coordinates, required to obtain a solid fill.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2205

s a

 the

.

re
FLAGS

A longword of flags that provide information about the current device. Each bit i
flag encoded as shown in the following table.

To test whether a particular bit is set on your system, use an IDL command like
following:

IF (!D.FLAGS AND value) NE 0 THEN PRINT, 'Bit is set.'

Bit Value Function

0 1 Device has scalable pixel size (e.g., PostScript).

1 2 Device can output text at an arbitrary angle using hardware

2 4 Device can control line thickness with hardware.

3 8 Device can display images.

4 16 Device supports color.

5 32 Device supports polygon filling with hardware.

6 64 Device hardware characters are monospace.

7 128 Device can read pixels (i.e., it supports TVRD).

8 256 Device supports windows.

9 512 Device prints black on a white background (e.g., printers a
plotters).

10 1024 Device hasno hardware characters.

11 2048 Device does line-fill style polygon filling in hardware.

12 4096 Device will apply Hershey-style embedded formatting
commands to device fonts.

13 8192 Device is a pen plotter.

14 16384 Device can transfer 16-bit pixels.

15 32768 Device supports Kanji characters.

16 65536 Device supports widgets.

17 131072 Device has Z-buffer.

Table D-2: !D.FLAGS Bit Definitions
IDL Reference Guide Graphics System Variables

2206 Appendix D: System Variables

e, to

d is

 (0,
his

is
e

en
to

he

racter
nly
t.)
where value is the value associated with the bit you wish to examine. For exampl
check whether the device supports color, use:

IF (!D.FLAGS AND 16) NE 0 THEN PRINT, 'Bit is set.'

N_COLORS

The number of allowed color values. In the case of devices with windows, this fiel
set after the window system is initialized. For a monochrome system,
!D.N_COLORS is 2. For TrueColor displays, !D.N_COLORS is 2^24-1 (roughly
16.7 million colors).

NAME

A string containing the name of the device.

ORIGIN

A two-element integer array containing the current pan/scroll offset. An offset of
0) is normal. Positive offsets shift the display memory to the right and upwards. T
field has relevance only with devices with hardware pan and scroll abilities.

TABLE_SIZE

The number of color table indices.

UNIT

The logical number of the file open for output by the current graphics device. Th
field only has meaning for devices that write to a file if the file is accessible to th
user from IDL, and is 0 if no file is open.

For example, the PostScript driver fills this field with the unit number of the file op
for PostScript output. In the case of Tektronix output to a file, !D.UNIT may be set
either + or – the logical unit number.

WINDOW

The index of the currently open window. This field is set to -1 if no window is
currently open. This field is used only with devices that support windows.

X_CH_SIZE, Y_CH_SIZE

The width and height of the rectangle that encloses the “average” character in t
current font, in device units (usually pixels).

These values describe the size of the rectangle that contains the “average” cha
in the current font. (It is not important what the “average” character is; it is used o
to calculate a scaling factor that will be applied to all of the characters in the fon
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2207

els),

d by
xed;
g
cing

se,
ed.

.

an

his
tor

row
es

,

The first element specifies the width of the rectangle in device units (usually pix
and the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determine
thewidth of the rectangle. The aspect ratio of the “average” character remains fi
the character is scaled so that its width is the value of X_CH_SIZE. The resultin
scale factor is then applied to all of the characters in the font. The amount of spa
between lines is determined explicitly by the value of Y_CH_SIZE.

For device fonts, the character size is fixed. When the device font system is in u
the value of X_CH_SIZE is silently ignored, and only the Y_CH_SIZE value is us

X_PX_CM, Y_PX_CM

The approximate number of pixels per centimeter in the X and Y directions.

X_SIZE, Y_SIZE

The total size of the display or window in the X and Y directions, in device units

X_VSIZE, Y_VSIZE

The size of the visible area of the display or window. This area can be smaller th
the total size fields.

ZOOM

This field contains the current X and Y zoom factors for the display or window. T
field has relevance only with devices equipped with hardware zoom. A zoom fac
of [1, 1] is normal.

!ORDER System Variable

Controls the direction of image transfers when using the TV, TVSCL, and TVRD
procedures. If !ORDER is 0, images are transferred from bottom to top, i.e. the
with a 0 subscript is written on the bottom. Setting !ORDER to 1, transfers imag
from top to bottom.

!P System Variable

The main plotting system variable structure. All fields, except !P.MULTI, have a
directly corresponding keyword parameter in the plot procedures: PLOT, OPLOT
CONTOUR, and SURFACE. Fields, in alphabetical order, are:
IDL Reference Guide Graphics System Variables

2208 Appendix D: System Variables

t to

ics

is
rmal

n
cters

In
, the

w

-1 to
equal
) to
BACKGROUND

The background color index. When erasing the screen or page, all pixels are se
this color. The default value is 0. Not all devices support this feature.

CHANNEL

The default source or destination channel. This field has meaning only on graph
devices that contain multiple display channels, and is device dependent. It may
contain either a channel mask or index.

CHARSIZE

The overall character size of all annotation when Hershey fonts are selected. Th
field has no meaning when hardware (i.e. PostScript) fonts are selected. 1.0 is no
size.

CHARTHICK

An integer specifying the thickness of the lines used to draw the characters whe
using the vector drawn fonts. This field has no effect on the appearance of chara
drawn with the hardware fonts. Normal thickness is 1.

CLIP

The device coordinates of the clipping window, a 6-element vector of the form [(x0,
y0, z0), (x1, y1, z1)], specifying two opposite corners of the volume to be displayed.
the case of two-dimensional displays, the Z coordinates can be omitted. Normally
clipping window coordinates are implicitly set by PLOT, CONTOUR,
SHADE_SURF, and SURFACE to correspond to the plot window. You may also
manually set !P.CLIP if you want to specify a different rectangular clipping windo
or if the clipping coordinates have not yet been set in the current IDL session.

COLOR

The default color index.

FONT

An integer that specifies the graphics text font system to use. Set FONT equal to
selects the Hershey character fonts, which are drawn using vectors. Set FONT
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one
select the TrueType font system. SeeAppendix G, “Fonts”, for a complete
description of IDL’s font systems.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2209

s a

ger

is
left

 Y

,

LINESTYLE

The default style of the lines used to connect points. A line style index of 0 yield
solid line. See“LINESTYLE” on page 2181 for a description of the linestyles.

MULTI

!P.MULTI allows making multiple plots on a page or screen. It is a 5-element inte
array defined as follows:

!P.MULTI[0] contains the number of plots remaining on the page. If !P.MULTI[0]
less than or equal to 0, the page is cleared, the next plot is placed in the upper
hand corner, and !P.MULTI[0] is reset to the number of plots per page.

Setting !P.MULTI[0] to a value greater than zero can be used to manually set the
plotting area to a specific row and column. For example, to plot in the lower left
corner of a window of two rows and two columns, set !P.MULTI as follows:

!P.MULTI=[2,2,2]
PLOT, X, Y

!P.MULTI[1] is the number of plot columns per page. If this value is less than or
equal to 0, one is assumed. If more than two plots are ganged in either the X or
direction, the character size is halved.

!P.MULTI[2] is the number of rows of plots per page. If this value is less than or
equal to 0, one is assumed.

!P.MULTI[3] contains the number of plots stacked in the Z dimension.

!P.MULTI[4] is 0 to make plots from left to right (column major), and top to bottom
and is 1 to make plots from top to bottom, left to right (row major).

Note
If !P.MULTI[0] is zero, an erase will occur before the current plot is displayed
(unless the /NOERASE keyword is set). This is true no matter whether
!P.POSITION and/or !P.REGION are set.

For example, to gang two plots across the page:

!P.MULTI = [0, 2, 0, 0, 0]
PLOT, X0, Y0 ;Make left plot.
PLOT, X1, Y1 ;Right plot.

To gang two plots vertically:

!P.MULTI = [0, 0, 2, 0, 0]
PLOT, X0, Y0 ;Make top plot.
IDL Reference Guide Graphics System Variables

2210 Appendix D: System Variables

ur

nd

st

T
 in
PLOT, X1, Y1 ;Bottom plot.

To make four plots per page, two across and two up and down:

!P.MULTI = [0, 2, 2, 0, 0]

and then call plot four times.

To reset !P.MULTI back to the normal one plot per page:

!P.MULTI = 0

NOCLIP

A field which, if set, inhibits the clipping of the graphic vectors and vector-drawn
text. By default, most routines clip to the plotting window, with the exception of
PLOTS and XYOUTS. !P.CLIP contains the clipping rectangle.

NOERASE

Set this field to a non-zero value to inhibit erasing the screen before plotting.

NSUM

The number of adjacent points to average to obtain a plotted point.

POSITION

Specifies the normalized coordinates of the rectangular plot window. This is a fo
element floating point vector (x0, y0, x1, y1), where (x0, y0) is the origin, and (x1, y1) is
the upper right corner.

!P.POSITION determines the plotting window ifx0 does not equalx1, and the
POSITION keyword is not present. If set, it overrides the effect of the MARGIN a
!P.MULTI variables and keywords.

Note
If !P.POSITION (or the POSITION keyword) or !P.REGION is set, all but the fir
element of !P.MULTI are ignored.

PSYM

The default plotting symbol index. Each point drawn by PLOT, PLOTS, and OPLO
is marked with a symbol if this field is non-zero. The possible symbols are given
“PSYM” on page 2184.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2211

ng

he
id

.0).
arks

tical
REGION

A four element vector that specifies the normalized coordinates of the rectangle
enclosing the plot region, which includes the plot data window and its surroundi
annotation area. It is in the same form as !P.POSITION, (x0, y0, x1, y1), where (x0, y0)
is the origin, and (x1, y1) is the upper right corner. It is ignored if !P.REGION[0] is
equal to !P.REGION[2].

Note
!P.POSITION (or the POSITION keyword) takes precedence over !P.REGION.

SUBTITLE

The plot subtitle, placed under the X axis label.

T

Contains the homogeneous 4 x 4 transformation matrix.

T3D

Enables the three-dimensional to two-dimensional transformation contained in t
homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T must contain a val
transformation matrix.

THICK

The thickness of the lines connecting points. 1.0 is normal.

TITLE

The main plot title.

TICKLEN

The length of the tick marks, expressed as a fraction of the plot size (from 0.0 to 1
The default is 0.02. A value of 0.5 makes a grid. Negative values make the tick m
point outward.

!X, !Y, !Z System Variables

The system variables !X, !Y, and !Z, are structures of type AXIS, that affect the
appearance and scaling of the three axes. The fields for !X, !Y, and !Z have iden
fields with identical meanings and usage. In addition, almost all fields have
corresponding keyword parameters, with identical function, but with temporary
IDL Reference Guide Graphics System Variables

2212 Appendix D: System Variables

:

field,

fonts
re
le,
 of

,

effect. For example, to suppress the minor tick marks on the X axis using the !X
system variable, you could use the command:

!X.MINOR = -1

To suppress the tick marks for just one call to plot, you could use the command

PLOT, X, Y, XMINOR = -1

The name of the keyword parameter is simply the name of the system variable
prefixed with the letter X, Y, or Z.

The fields for these system variables, in alphabetical order are:

CHARSIZE

The size of the characters used to annotate the axis and its title when Hershey
are selected. This field has no meaning when hardware (i.e. PostScript) fonts a
selected. This field is a scale factor applied to the global scale factor. For examp
setting !P.CHARSIZE to 2.0, and !X.CHARSIZE to 0.5 results in a character size
1.0 for the X axis.

CRANGE

The output axis range. Setting this variable has no effect; set ![XYZ].RANGE to
change the range. ![XYZ].CRANGE[0]) always contains the minimum axis value
and ![XYZ].CRANGE[1] contains the maximum axis value of the last plot before
extending the axes.

Note
If the axis is logarithmic, the CRANGE field reports the log (base 10) of the
minimum and maximum axis values.

Example 1:

;Create a 10-element array.
a = INDGEN(10)

;Plot the straight line.
PLOT, a

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

IDL prints:

0.00000 10.0000
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2213

s of
ea

],

he
then

r

ess

p)

t

Example 2

;Plot a with logarithmic scaling on the X axis.
PLOT, a, /XLOG

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

The axis is scaled from 10-12 to 102.IDL prints:

-12.0000 2.00000

GRIDSTYLE

The index of the linestyle to be used for tick marks and grids. See“LINESTYLE” on
page 2181 for a description of the linestyles

MARGIN

A 2-element array specifying the margin on the left (bottom) and right (top) side
the plot window, in units of character size. The plot window is the rectangular ar
that contains the plot data, i.e. the area enclosed by the axes.

The default values for !X.MARGIN are [10, 3] yielding a 10-character wide left
margin and a 3-character wide right margin. The values for !Y.MARGIN are [4, 2
for a 4-character high bottom margin and a 2-character high top margin. While
specifying !Z.MARGIN will not cause an error, Z margins are currently ignored.

When calculating the size and position of the plot window, IDL first determines t
plot region, the area enclosing the window plus the axis annotation and titles. It
subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

MINOR

The number of minor tick marks. If !X.MINOR is 0, the default, the number of mino
ticks is automatically determined from the tick mark increment. You can force a
given number of minor ticks by setting this field to the desired number. To suppr
minor tick marks, set !X.MINOR to -1.

OMARGIN

A 2-element array specifying the “outer” margin on the left (bottom) and right (to
sides of a multi-plot window, in units of character size. A multi-plot window is
created by setting the !P.MULTI system variable field. OMARGIN controls the
amount of space around the entire plot area, including individual plot margins se
IDL Reference Guide Graphics System Variables

2214 Appendix D: System Variables

s
s. It

, and

(see
ld

. Set

ge of

W,
y. To
with !X.MARGIN and !Y.MARGIN. The default values for !X.OMARGIN and
!Y.OMARGIN are [0, 0].

When calculating the size and position of the individual plots, IDL first determine
the plot region, the area enclosing the window plus the axis annotation and title
then subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

RANGE

The input axis range, a 2-element vector. The first element is the axis minimum
the second is the maximum. Set this field, or use the corresponding keyword
parameter, to specify the data range to plot. If axis end point rounding is selected
STYLE above), the final axis range may not be equal to this input range. The fie
!X.CRANGE contains the axis range used for the plot before extending the axes
both elements equal to 0 for automatic axis ranges:

!X.RANGE = 0

For example, to force the X axis to run from 5.5 to 8.3:

!X.RANGE = [5.5, 8.3]
PLOT, X, Y

Alternatively, by using keywords:

PLOT, X, Y, XRANGE=[5.5, 8.3]

Note that even though the range was set to (5.5, 8.3), the resulting plot has a ran
(5.5, 8.5), because axis rounding is the default.

REGION

Contains the normalized coordinates of the region. This field is similar to WINDO
in that it is set by the graphics procedures and is a 2-element floating point arra
change the default plotting region, set !P.REGION.

S

The scaling factors for converting between data coordinates and normalized
coordinates (a 2-element array). The formula for conversion from data (Xd) to
normalized (Xn) coordinates isXn = S1Xd + S0

If logarithmic scaling is in effect, substitute log10(Xd) for Xd.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2215

n

xact,
 bit

by
e 1)

h

The CONVERT_COORD function can be used to convert between coordinate
systems. The user should save and restore these fields when switching betwee
windows or devices with different sizes and/or scaling.

STYLE

The style of the axis encoded as bits in a longword. The axis style can be set to e
extended, none, or no box using this field. The following table lists the axis style
values:

Note that this system variable field is set bitwise, so multiple effects can be set
adding values together. For example, to make an X axis that is both exact (valu
and suppresses the box style (setting 8), set the !X.STYLE system variable to1+8 , or
9.

For example, to set the Y axis style to exact using the !Y system variable:

!Y.STYLE = 1

or by using a keyword parameter:

PLOT, X, Y, YSTYLE = 1

THICK

The thickness of the axis line. 1.0 is normal.

Bit Value Function

0 1 Exact. By default, the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in eac
direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its annotation are not
drawn.

3 8 No box. Normally, PLOT and CONTOUR draw a box-style
axis with the data window surrounded by axes.

4 16 Inhibits setting the Y axis minimum value to zero when the
data are all greater than 0. The keyword YNOZERO sets this
bit temporarily.

Table D-3: Axis Style Bit Values
IDL Reference Guide Graphics System Variables

2216 Appendix D: System Variables

xes.

ts of
ull
he

ek:

e

can
k
s in
TICKFORMAT

Set this field to a format string or a string containing the name of a function that
returns a string to be used to format the axis tick marklabels.

See the“[XYZ]TICKFORMAT” on page 2187 for more information.

TICKLEN

The lengths of tick marks (expressed in normal coordinates) for the individual a

TICKNAME

The annotation for each tick. A string array of up to 30 elements. Setting elemen
this array allows direct specification of the tick label. If this element contains a n
string, the default value, IDL annotates the thick with its numeric value. Setting t
element to a 1-blank string suppresses the tick annotation.

For example, to produce a plot with an abscissa labeled with the days of the we

;Set up X axis tick labels.
!X.TICKNAME = ['SUN', 'MON', 'TUE', 'WED', $

'THU', 'FRI', 'SAT']

;Use six tick intervals, requiring seven tick labels.
!X.TICKS = 6

;Plot the data, this assumes that Y contains 7 elements.
PLOT, Y

The same plot can be produced, using keyword parameters, with:

;Set fields, as above, only temporarily.
PLOT, Y, XTICKN = ['SUN', 'MON', 'TUE', 'WED',$

'THU', 'FRI', 'SAT'], XTICKS = 6

TICKS

The number of major tick intervals to draw for the axis. If !X.TICKS is set to 0, th
default, IDL will select from three to six tick intervals. Setting this field ton, wheren
> 1, produces exactlyn tick intervals, andn+1 tick marks. Setting this field equal to 1
suppresses tick marks.

TICKV

An array of up to 30 elements containing the data values for each tick mark. You
directly specify the location of each tick by setting !X.TICKS to the number of tic
marks (the number of intervals plus 1) and storing the data values of the tick mark
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 2217

w.
its
ing
!X.TICKV. If, as is true by default, !X.TICKV[0] is equal to !X.TICKV[1], IDL
automatically determines the value of the tick marks.

TITLE

A string containing the axis title.

TYPE

The type of axis, 0 for linear, 1 for logarithmic.

WINDOW

Contains the normalized coordinates of the axis end points, the plot data windo
This field is set by PLOT, CONTOUR, SHADE_SURF, and SURFACE. Changing
value has no effect. A 2-element floating point array. To change the default plott
window, set !P.POSITION. The keyword parameter POSITION sets the plot data
window on a per call basis.
IDL Reference Guide Graphics System Variables

2218 Appendix D: System Variables
Graphics System Variables IDL Reference Guide

Appendix E:

Special Characters
e
ions
table.
Within the IDL environment, a number of characters have special meanings. Th
following table lists characters with special interpretations and states their funct
in IDL. These characters are discussed further in the descriptions following the

UNIX VMS Windows Macintosh Function

! ! ! ! First character of system
variable names

' ' ' ' Delimit string constants or
indicate part of octal or hex
constant

; ; ; ; Begin comment field

Table E-1: Special Characters
IDL Reference Guide 2219

2220 Appendix E: Special Characters
$ $ $ $ Continue current command
on the next line, or issue
operating system command
if entered on a line by itself.

" " " " Delimit string constants or
precede octal constants

. . . . Indicate constant is floating
point or start executive
command

& & & & Separate multiple
statements on one line

: : : : End label identifiers

* * * * Array subscript range, or
pointer dereference if in
front of a valid pointer

@ @ @ @ Include file/Execute IDL
batch file

? ? ? ? Online help

Control-C Control-C Control-Break Command-. Interrupt

Control-D Control-Z Alt-F4 Command-
Q

Exit

Control-\ Control-Y First character of system
variable names

UNIX VMS Windows Macintosh Function

Table E-1: Special Characters
IDL Reference Guide

Appendix E: Special Characters 2221

r
on,

tant.

d on
al

st of

tion
,

limits

f

For
Exclamation Point (!)

The exclamation point is the first character of names of IDL system-defined
variables. System variables are predefined scalar variables of a fixed type. Thei
purpose is to override defaults for system procedures, to return status informati
and to control the action of IDL.

Apostrophe (')

The apostrophe delimits string literals and indicates part of an octal or hex cons

Semicolon (;)

The semicolon is the first character of the optional comment field of an IDL
statement. All text on a line following a semicolon is ignored by IDL. A line can
consist of a comment only or both a valid statement and a comment.

Dollar Sign ($)

The dollar sign at the end of a line indicates that the current statement is continue
the following line. The dollar sign character can appear anywhere a space is leg
except within a string constant or between a function name and the first open
parenthesis. Any number of continuation lines are allowed.

When the $ character is entered as the first character after the IDL prompt, the re
the line is sent to the operating system as a command. If $ is the only character
present, an interactive subprocess is started. Under UNIX and VMS, IDL execu
suspends until the new shell process terminates. Note that in IDL for Macintosh
there must be no space between the $ character and the full path name of the
application being started.

Quotation Mark (")

The quotation mark precedes octal numbers, which are always integers, and de
string constants. Example: "100B is a byte constant equal to 64 base 10 and "Don’t
drink the water " is a string constant.

Period (.)

The period or decimal point indicates in a numeric constant that the number is o
floating-point or double-precision type. Example: 1.0 is a floating-point number.
Also, in response to the IDL prompt, the period begins an executive command.
example,
IDL Reference Guide

2222 Appendix E: Special Characters

g
lled

line

A.

e,
nt,

.

.run myfile

causes IDL to compile the filemyfile.pro. If myfile.pro contains a main program, the
program also will be executed. In addition, the period precedes the name of a ta
when referring to a field within a structure. For example, a reference to a tag ca
NAME in a structure stored in the variable A is A.NAME.

Ampersand (&)

The ampersand separates multiple statements on one line. Statements can be
combined until the maximum line length is reached. For example, the following
contains two statements:

I = 1 & PRINT, 'value:', I

Colon (:)

The colon ends label identifiers. Labels can only be referenced by GOTO and
ON_ERROR statements. The following line contains a statement with the label
LOOP1.

LOOP1: X = 2.5

The colon also separates the starting and ending subscripts in subscript range
specifiers. For example, A(3:6) designates elements three to six of the variable

Asterisk (*)

The asterisk represents one of the following, depending on context:

1. Multiplication (3 * 3).

2. An ending subscript range equal to the size of the dimension. For exampl
A[3:*] represents all elements of the vector A from A[3] to the last eleme
while B[*, 3] represents all elements of row four of matrix B.

3. A pointer dereference operation. For example, ifptr is a valid pointer (created
via the PTR_NEW function), then*ptr is the value held by the heap variable
thatptr points to. For more information on IDL pointers, seeChapter 11,
“Pointers” in Building IDL Applcations.

At Sign (@)

The “at” sign is used both as an include character and to signal batch execution
IDL Reference Guide

Appendix E: Special Characters 2223

t of

e

@ as an Include Character

The “at” sign at the beginning of a line causes the IDL compiler to substitute the
contentsof thefilewhosenameappearsafter the @for the line. If the full path name
is not specified after the @ symbol, IDL searches the current directory and a lis
known locations where procedures are kept.

• UNIX : IDL searches for thefile in the list of directories (asestablished by the
environment variable IDL_PATH) stored in the system variable !PATH.

• VMS: IDL searchesthe list of directories(but not text libraries) established by
the logical name IDL_PATH and stored in the system variable !PATH for the
file.

• Windows: IDL searches for the file in the list of directories stored in the
system variable !PATH (specified in the “Preferences” dialog of the File
menu).

• Macintosh: IDL searches for the file in the list of directories stored in the
system variable !PATH (specified in the “Search Path” dialog of the Edit
menu).

For example, the line

@doit

when included in afile, causesthefiledoit.pro to becompiled in itsplace. (Thesuffix
.pro is the default for IDL program files.) When the end of the file is reached,
compilation resumes at the line after the @.

@ to Signal Bat ch Processing

When IDL is running in interactive mode, a line beginning with the character @ is
entered in response to the IDL prompt and the file is opened for batch input. Se
“Batch Execution” in Chapter 2 of Using IDL for details.

Question Mark (?)

The question mark invokes the IDL on-line help facility when entered at the IDL
prompt (Command Input Line). See the Getting Started with IDL manual
for more information.

Cont rol-C / Cont rol-Break / Command-.

This is the interrupt character, and depends on the operating system in use:
IDL Reference Guide

2224 Appendix E: Special Characters

k

ion.

o
tion.
rn
DL
ny
IX
ly
.

xit
. If
en

is

 we
MS,
UNIX: Typing the interrupt character—Control-C (UNIX and VMS), Control-Brea
(Windows), or Command-. (Command-period) (Macintosh)—generates an IDL
keyboard interrupt. See“Interrupting Program Execution”in Chapter 2 ofUsing IDL
for more information.

VMS: Under VMS, Control-C is always the interrupt character. However, under
UNIX, the interrupt character can be changed by the user outside of IDL. This is
rarely done. So for the purposes of this manual, we assume the default convent

Control-D / Control-Z / Alt-F4 / Command-Q

This is the exit character, and depends on the operating system in use:

• UNIX: Under UNIX, entering Control-D as the first character causes IDL t
exit back to the operating system. The EXIT procedure has the same func
If Control-D is not the first character, it simply ends the input line as if a retu
had been entered. Note that you can normally use Control-Z to suspend I
and return you to the shell process without exiting IDL. After completing a
shell commands, type fg to return IDL to the foreground. Although the UN
suspend character can be changed by the user outside of IDL, this is rare
done. For the purposes of this manual, we assume the default convention

• VMS: Under VMS, entering Control-Z as the first character causes IDL to e
back to the operating system. The EXIT procedure has the same function
Control-Z is not the first character, it ends the input line as if a return had be
entered. This input line is executed, then IDL exits.

• Windows: Under Windows, entering Alt-F4 at any point causes IDL to exit
back to Windows. The EXIT procedure has the same function.

• Macintosh: Control-Z has no special meaning on the Macintosh. Enter
Command-Q to exit IDL.

Control-\ / Control-Y

This is the abort character, and depends on the operating system in use:

• UNIX: Control-\ is normally the UNIX quit character. Typing the quit
character causes IDL to be killed instantly (just like any UNIX process). It
best to avoid this type of exit. Although the UNIX quit character can be
changed by the user, this is rarely done. For the purposes of this manual,
assume the default convention. Control-\ has no special meaning under V
Windows, or the Macintosh.
IDL Reference Guide

Appendix E: Special Characters 2225

it.

ill
any
• VMS: Under VMS, typing Control-Y, the quit character, causes IDL to be
killed instantly (just like any VMS process). It is best to avoid this type of ex
See“Aborting IDL” in Chapter 2 ofUsing IDL. If you enter the DCL
command CONTINUE immediately after aborting the IDL session, VMS w
resume the session as if you had never aborted it. However, if you execute
command that causes a program to run, your IDL session will be lost.

Control-Y has no special meaning under UNIX, Windows, or the Macintosh.
IDL Reference Guide

2226 Appendix E: Special Characters
IDL Reference Guide

Appendix F:

Reserved Words
he
an
ting

he
Variables, user-written procedures, and user-written functions should not have t
same names as IDL functions or procedures. Re-using names of IDL routines c
lead to syntax errors or to “hiding” variables. In addition, certain words represen
IDL language constructs are strictly forbidden—using any of thesereserved wordsas
a variable, procedure, or function name will cause an immediate syntax error. T
following table lists all of the reserved words in IDL.

AND BEGIN CASE COMMON DO

ELSE END ENDCASE ENDELSE ENDFOR

ENDIF ENDREP ENDWHILE EQ FOR

FUNCTION GE GOTO GT IF

INHERITS LE LT MOD NE

NOT OF ON_IOERROR OR PRO

REPEAT THEN UNTIL WHILE XOR
IDL Reference Guide 2227

2228 Appendix F: Reserved Words
IDL Reference Guide

Appendix G:

Fonts
The following topics are covered in this appendix:
47
49
3

58
61
Overview . 2230
Fonts in IDL Direct vs. Object Graphics . 2231
About Vector Fonts 2232
About TrueType Fonts 2235
About Device Fonts 2240

Choosing a Font Type 22
Embedded Formatting Commands 22
Formatting Command Examples 225
TrueType Font Samples 22
Vector Font Samples 22
IDL Reference Guide 2229

2230 Appendix G: Fonts

hey
er
d

ed

,
ve
d
e
ort

vice-
ice.
Overview

IDL uses three font systems for writing characters on the graphics device: Hers
(vector) fonts, TrueType (outline) fonts, and device (hardware) fonts. This chapt
describes each of the three types of fonts, discusses when to use each type, an
explains how to use fonts when creating graphical output in IDL.

 Vector-drawn fonts, also referred to asHershey fonts, are drawn as lines. They are
device-independent (within the limits of device resolution). All vector fonts includ
with IDL are guaranteed to be available in any IDL installation. See“About Vector
Fonts” on page 2232 for additional details.

TrueType fonts, also referred to here asoutline fonts, are drawn as character outlines
which are filled when displayed. They are largely device-independent, but do ha
some device-dependent characteristics. Four TrueType font families are include
with IDL; these fonts should display in a similar way on any IDL platform. TrueTyp
font support for IDL Object Graphics was introduced in IDL version 5.0 and supp
in IDL Direct Graphics was introduced in IDL version 5.1. See“About TrueType
Fonts” on page 2235 for additional details.

Device fonts, also referred to ashardware fonts, rely on character-display hardware
or software built in to a specific display device. Device fonts, necessarily, are de
dependent and differ from platform to platform and display device to display dev
See“About Device Fonts” on page 2240 for additional details.
Overview IDL Reference Guide

Appendix G: Fonts 2231

tor

is
uld
ed.
ce

L
r

via a

rd

ou
Fonts in IDL Direct vs. Object Graphics

This volume deals almost exclusively with IDL Direct Graphics. However, the vec
and TrueType font systems described here are also available in the IDL Object
Graphics system, described inUsing IDL.

IDL Direct Graphics

When generating characters for Direct Graphics plots, IDL uses the font system
specified by the value of the system variable !P.FONT. The normal default for th
variable is -1, which specifies that the built-in, vector-drawn (Hershey) fonts sho
be used. Setting !P.FONT equal to 1 specifies that TrueType fonts should be us
Setting !P.FONT equal to zero specifies that fonts supplied by the graphics devi
should be used.

The setting of the IDL system variable !P.FONT can be overridden for a single ID
Direct Graphics routine (AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, o
XYOUTS) by setting the FONT keyword equal to -1, 0, or 1.

Once a font system has been selected, an individual font can be chosen either
formatting command embedded in a text string as described in“Embedded
Formatting Commands”on page 2249, or by setting the value of the FONT keywo
to the DEVICE routine (see“FONT” on page 2103).

IDL Object Graphics

IDL Object Graphics can use the vector and TrueType font systems. SeeUsing IDL
for more information on using fonts with Object Graphics. Any TrueType fonts y
add to your IDL installation as described in“About TrueType Fonts” on page 2235
will also be available to the Object Graphics system.
IDL Reference Guide Fonts in IDL Direct vs. Object Graphics

2232 Appendix G: Fonts

d can
nt
ts

een

e
rd

 to

ont
re

ld
About Vector Fonts

The vector fonts used by IDL were digitized by Dr. A.V. Hershey of the Naval
Weapons Laboratory. Characters in the vector fonts are stored as equations, an
be scaled and rotated in three dimensions. They are drawn as lines on the curre
graphics device, and are displayed quickly and efficiently by IDL. The vector fon
are built into IDL itself, and are always available.

All the available fonts are illustrated in“Vector Font Samples” on page 2261. The
default vector font (Font 3, Simplex Roman) is in effect if no font changes have b
made.

Using Vector Fonts

To use the vector font system with IDL Direct Graphics, either set the value of th
IDL system variable !P.FONT equal to -1 (negative one), or set the FONT keywo
of one of the Direct Graphics routines equal to -1. The vector font system is the
default font system for IDL.

Once the vector font system is selected, use an embedded formatting command
select a vector font (or fonts) for each string. (See“Embedded Formatting
Commands”on page 2249 for details on embedded formatting commands.) The f
selected “sticks” from string to string; that is, if you change fonts in one string, futu
strings will use the new font until you change it again or exit IDL.

For example, to use the Duplex Roman vector font for the title of a plot, you wou
use a command that looks like this:

PLOT, mydata, TITLE=”!5Title of my plot”

ConsultUsing IDL for details on using the vector font system with IDL Object
Graphics.

Specifying Font Size

To specify the size of a vector font, use theSET_CHARACTER_SIZE keyword to
the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
About Vector Fonts IDL Reference Guide

Appendix G: Fonts 2233

age”
e
sed
e

 so

the
ate

he
one
:

en

me
element vector as its argument. The first element specifies the width of the “aver
character in the font (in pixels) and calculates a scaling factor that determines th
height of the characters. (It is not important what the “average” character is; it is u
only to calculate a scaling factor that will be applied to all of the characters in th
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font,
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on
widths of individual characters in the font. The width value is used only to calcul
the appropriate scaling factor for the font.

For example, the following IDL commands display the word “Hello There” on the
screen, in letters based on an “average” character that is 70 pixels wide, with 90
pixels between lines:

DEVICE, SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use theCHARSIZEkeyword to the graphics routines or theCHARSIZE
field of the !P System Variable to change the size of characters to a multiple of t
size of the currently-selected character size. For example, to create characters
half the size of the current character size, you could use the following command

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note
Changing the CHARSIZE adjusts both the character size and the space betwe
lines.

ISO Latin 1 Encoding

The default font (Font 3, Simplex Roman) follows the ISO Latin 1 Encoding sche
and contains many international characters. The illustration of this font under“Vector
Font Samples” on page 2261 can be used to find the octal codes for the special
characters.
IDL Reference Guide About Vector Fonts

2234 Appendix G: Fonts

in it.
305.

y
tely
For example, suppose you want to display some text with an Angstrom symbol
Looking at the chart of font 3, we see that the Angstrom symbol has octal code
Non-printable characters can be represented in IDL using octal or hexadecimal
notation and the STRING function (see“Representing Non-Printable Characters” in
Chapter 5 ofBuilding IDL Applcations for details). So the Angstrom can be printed
by inserting aSTRING("305B) character in our text string as follows:

XYOUTS,.1, .5, 'Here is an Angstrom symbol: ' + STRING("305B), $
/NORM, CHARSIZE=3

Customizing the Vector Fonts

TheEFONT procedure is a widget application that allows you to edit the Hershe
fonts and save the results. Use this routine to add special characters or comple
new, custom fonts to the Hershey fonts.
About Vector Fonts IDL Reference Guide

Appendix G: Fonts 2235

e

ject,
e
.
ns

ans
nt

d by

oint

f the
About TrueType Fonts

Beginning with version 5.2, five TrueType font families are included with IDL. Th
fonts included are:

When TrueType fonts are rendered on an IDL graphics device or destination ob
the font outlines are first scaled to the proper size. After scaling, IDL converts th
character outline information to a set of polygons using a triangulation algorithm
When text in a TrueType font is displayed, IDL is actually drawing a set of polygo
calculated from the font information. This process has two side effects:

1. Computation time is used to triangulate and create the polygons. This me
that you may notice a slight delay the first time you use text in a particular fo
and size. Once the polygons have been created, the information is cache
IDL and there is no need to re-triangulate each time text is displayed.
Subsequent uses of the same font and size happen quickly.

2. Because the TrueType font outlines are converted into polygons, you may
notice some chunkiness in the displayed characters, especially at small p
sizes. The smoothness of the characters will vary with the quality of the
TrueType font you are using, the point size, and the general smoothness o
font outlines.

Font Family Italic Bold BoldItalic

Courier Courier Italic Courier Bold Courier Bold Italic

Helvetica Helvetica Italic Helvetica Bold Helvetica Bold Italic

Monospace Symbol

Times Times Italic Times Bold Times Bold Italic

Symbol

Table G-1: TrueType font names
IDL Reference Guide About TrueType Fonts

2236 Appendix G: Fonts

the
of

is a
es

t:

age”
e
sed
e

 so

the
ate
Using TrueType Fonts

To use the TrueType font system with IDL Direct Graphics, either set the value of
IDL system variable !P.FONT equal to 1 (one), or set the FONT keyword to on one
the Direct Graphics routines equal to 1.

Once the TrueType font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. The value of the SET_FONT keyword
font name string. The font name is the name by which IDL knows the font; the nam
of the TrueType fonts included with IDL are listed under“About TrueType Fonts”on
page 2235. Finally, specify the TT_FONT keyword in the call to the DEVICE
procedure. For example, to use Helvetica Bold Italic, use the following statemen

DEVICE, SET_FONT='Helvetica Bold Italic', /TT_FONT

To use Times Roman Regular:

DEVICE, SET_FONT='Times', /TT_FONT

IDL’s default TrueType font is 12 point Helvetica regular.

Specifying Font Size

To specify the size of a TrueType font, use theSET_CHARACTER_SIZE keyword
to the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
element vector as its argument. The first element specifies the width of the “aver
character in the font (in pixels) and calculates a scaling factor that determines th
height of the characters. (It is not important what the “average” character is; it is u
only to calculate a scaling factor that will be applied to all of the characters in th
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font,
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on
widths of individual characters in the font. The width value is used only to calcul
the appropriate scaling factor for the font.
About TrueType Fonts IDL Reference Guide

Appendix G: Fonts 2237

ixels

he
one
:

e

in a
 use
ee

tabs).

S

e
s

ype
For example, the following IDL commands display the word “Hello There” on the
screen in Helvetica Bold, in letters based on an “average” character that is 70 p
wide, with 90 pixels between lines:

DEVICE, FONT='Helvetica Bold', /TT_FONT,
SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use theCHARSIZEkeyword to the graphics routines or theCHARSIZE
field of the !P System Variable to change the size of characters to a multiple of t
size of the currently-selected character size. For example, to create characters
half the size of the current character size, you could use the following command

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note that changing the CHARSIZE adjusts both the character size and the spac
between lines.

Using Embedded Formatting Commands

Embedded formatting commands allow you to position text and change fonts with
single line of text. A subset of the embedded formatting commands available for
with the vector fonts are also available when using the TrueType font system. S
“Embedded Formatting Commands” on page 2249 for a list of in-line formatting
commands.

IDL TrueType Font Resource Files

The TrueType font system relies on a resource file namedttfont.map , located in
theresource/fonts/tt subdirectory of the IDL directory. The format of the
ttfont.map file is:

FontName FileName DirectGraphicsScale ObjectGraphicsScale

where the fields in each row must be separated by white space (spaces and/or
The fields contain the following information

TheFontname field contains the name that would be used for the SET_FONT
keywords to the DEVICE routine.

TheFilename field contains the name of the TrueType font file. On UNIX and VM
platforms, IDL will search for the file specified in theFileName field in the current
directory (that is, in theresource/fonts/tt subdirectory of the IDL directory) if a
bare filename is provided, or it will look for the file in the location specified by th
fully-qualified file name if a complete path is provided. Because different platform
use different path-specification syntax, we recommend that you place any TrueT
IDL Reference Guide About TrueType Fonts

2238 Appendix G: Fonts

try
list,

n
ics
l

tor
on of

ctor
e

that

n
ics

s to
ct).

the

s,

tions
he
font files you wish to add to thettfont.map file in theresource/fonts/tt
subdirectory of the IDL directory. On Macintosh and Windows platforms, this en
may be '*', in which case the font will be loaded from the operating system font
but that the following two scale entries will be honored.

TheDirectGraphicsScale field contains a correction factor that will be applied whe
choosing a scale factor for the glyphs prior to being rendered on a Direct Graph
device. If you want the tallest character in the font to fit exactly within the vertica
dimension of the device’s current character size (as set via the
SET_CHARACTER_SIZE keyword to the DEVICE procedure), set the scale fac
equal to 1.0. Change the scale factor to a smaller number to scale a smaller porti
the tallest character into the character size.

For example, suppose the tallest character in your font is “Å”. Setting the scale fa
to 1.0 will scale this character to fit the current character size, and then apply th
same scaling to all characters in the font. As a result, the letter “M” will fill only
approximately 85% of the full height of the character size. To scale the font such
the height of the “M” fills the vertical dimension of the character size, you would
include the value 0.85 in the scale field of thettfont.map file.

TheObjectGraphicsScalefield contains a correction factor that will be applied whe
choosing a scale factor for the glyphs prior to being rendered on a Direct Graph
device. (This field works just like theDirectGraphicsScale field.) This scale factor
should be set to 1.0 if the maximum ascent among all glyphs within a given font i
fit exactly within the font size (as set via the SIZE property to the IDLgrFont obje

Adding Your Own Fonts

To add a your own font to the list of fonts known to IDL, use a text editor to edit
ttfont.map file, adding theFontName, FileName, DirectGraphicsScale, and
ObjectGraphicsScale fields for your font. You will need to restart IDL for the
changes to thettfont.map file to take effect. On Windows and Macintosh system
you can use fonts that are not mentioned in thettfont.map file, as long as they are
installed in the Fonts control panel or Font folder, as described below.

Warning
If you choose to modify thettfont.map file, be sure to keep a backup copy of the
original file so you can restore the defaults if necessary. Note also that applica
that use text may appear different on different platforms if the scale entries in t
ttfont.map file have been altered.
About TrueType Fonts IDL Reference Guide

Appendix G: Fonts 2239

ed

e

Where IDL Searches for Fonts

The TrueType font files included with IDL are located in theresource/fonts/tt
subdirectory of the IDL directory. When attempting to resolve a font name (specifi
via the FONT keyword to the DEVICE procedure), IDL will look in the
ttfont.map file first. If it fails to find the specified font file in thettfont.map
file, it will search for the font file in the following locations:

UNIX and VMS

No further search will be performed. If the specified font is not included in the
ttfont.map file, IDL will substitute Helvetica.

Microsoft Windows

If the specified font is not included in thettfont.map file, IDL will search the list
of fonts installed in the system (the fonts installed in the Font control panel). If th
specified font is not found, IDL will substitute Helvetica.

Macintosh

If the specified font is not included in thettfont.map file, IDL will search the list
of fonts installed in the system (the fonts installed 1in the Fonts subfolder of the
System folder). If the specified font is not found, IDL will substitute Helvetica.
IDL Reference Guide About TrueType Fonts

2240 Appendix G: Fonts

the
 in
ted

are

ided

ters
nts
vice
rce

ts
cters
cial
 any

t

hich
About Device Fonts

Device, or hardware, fonts are fonts that are provided directly by your system’s
hardware or by software other than IDL. In past releases of IDL, we have used
term “hardware fonts” extensively to discuss these types of fonts. This is because
the early days of IDL, computer displays were either text-only terminals or dedica
graphics display devices such as plotters or Tektronix graphics terminals. These
graphics displays generally came with a set of fonts built-in; when IDL asked the
device to display characters in a built-in font, it was making a request to the hardw
to display those characters.

As computer displays have become more sophisticated, the concept of fonts prov
“by the hardware” has expanded to include fonts provided by the computer’s
operating system, or by font-management software. For example, many compu
now use font management software like Adobe Type Manager to manage the fo
made available by the operating system to all applications. We use the term “de
font” to refer to a font that is available to one of IDL’s graphics devices from a sou
other than IDL itself. (In this case, a “graphics device” can be either a Direct
Graphics device as specified by the DEVICE routine or an Object Graphics
“destination” such as a window or a printer.) While device fonts may include fon
only available because a particular piece of hardware knows how to draw chara
in that font (a pen plotter is an example of a device that may still have its own spe
fonts), in most cases device fonts are fonts supplied by the operating system to
application that may want to use them.

Which Device Fonts Are Available?

To determine which device fonts are available on your system and the exact fon
strings to specify for each, use theGET_FONTNAMES keyword to the DEVICE
procedure. You can also use an operating system specific method to determine w
fonts are available:

UNIX and VMS

On most systems, thexlsfonts utility displays a list of fonts available to the
operating system.
About Device Fonts IDL Reference Guide

Appendix G: Fonts 2241

 also
 Type

der.
h as

he
one

 all
r

n

Microsoft Windows

Fonts available to the system are displayed in the Fonts control panel. You may
have other fonts available if you use font-management software such as Adobe
Manager.

Macintosh

Fonts available to the system are displayed in the Fonts folder in the System fol
You may also have other fonts available if you use font-management software suc
Adobe Type Manager.

Using Device Fonts

To use the Device font system with IDL Direct Graphics, either set the value of t
IDL system variable !P.FONT equal to 0 (zero), or set the FONT keyword to on
of the Direct Graphics routines equal to 0.

Once the Device font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. Because device fonts are specified
differently on different platforms, the syntax of thefontnamestring depends on which
platform you are using.

UNIX and VMS

Usually, the window system provides a directory of font files that can be used by
applications. List the contents of that directory to find the fonts available on you
system. The size of the font selected also affects the size of vector drawn text. O
some machines, fonts are kept in subdirectories of/usr/lib/X11/fonts . You can
use thexlsfonts command to list available X Windows fonts.

For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT=" font*modifier 1*modifier 2*...modifier n"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string isnot case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY
IDL Reference Guide About Device Fonts

2242 Appendix G: Fonts

e
ake

ly,
d,
 size.

nd
re
• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE

• For font angle: ITALIC

• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. Th
following commands tell IDL to use hardware fonts, change the font, and then m
a simple plot:

!P.FONT = 0
DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
PLOT, FINDGEN(10), TITLE = "IDL Plot"

This feature is compatible with TrueType and Adobe Type Manager (and, possib
other type scaling programs for Windows). If you have TrueType or ATM installe
the TrueType or PostScript outline fonts are used so that text looks good at any

Macintosh

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT=" font * modifier 1* modifier 2*... modifier n"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string isnot case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: BOLD

• For font angle: ITALIC

• For font width: CONDENSED, EXTENDED

• For outlined text: OUTLINE, SHADOW

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font size, in points.

For example, if you have Garamond installed, you could select 24-point Garamo
italic as the font to use in plotting. The following commands tell IDL to use hardwa
fonts, change the font, and then make a simple plot:
About Device Fonts IDL Reference Guide

Appendix G: Fonts 2243

e is

e 35
ed
nt
IDL> !P.FONT = 0
IDL> DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
IDL> PLOT, FINDGEN(10), TITLE = "IDL Plot"

Fonts and the PostScript Device

A special set of device fonts are available when the current Direct Graphics devic
PS (PostScript). IDL includes font metric information for 35 standard PostScript
fonts, and can create PostScript language files that include text in these fonts. (Th
fonts known to IDL are listed in the following table; they the standard fonts includ
in memory in the vast majority of modern PostScript printers.) The PostScript fo
metric files (*.afm files) are located in theresource/fonts/ps subdirectory of
the IDL directory.

AvantGarde-Book Helvetica-Narrow-Oblique

AvantGarde-BookOblique Helvetica-Oblique

AvantGarde-Demi NewCenturySchlbk-Bold

AvantGarde-DemiOblique NewCenturySchlbk-BoldItalic

Bookman-Demi NewCenturySchlbk-Italic

Bookman-DemiItalic NewCenturySchlbk-Roman

Bookman-Light Palatino-Bold

Bookman-LightItalic Palatino-BoldItalic

Courier Palatino-Italic

Courier-Bold Palatino-Roman

Courier-BoldOblique Symbol

Courier-Oblique Times-Bold

Helvetica Times-BoldItalic

Helvetica-Bold Times-Italic

Helvetica-BoldOblique Times-Roman

Helvetica-Narrow ZapfChancery-MediumItalic

Helvetica-Narrow-Bold ZapfDingats

Helvetica-Narrow-BoldOblique

Table G-2: Names of Supported PostScript Fonts
IDL Reference Guide About Device Fonts

2244 Appendix G: Fonts

at

ple

til

in
Using PostScript Fonts

To use a PostScript font in your Direct Graphics output, you must first specify th
IDL use the device font system, they switch to thePSdevice, then choose a font using
the SET_FONT keyword to the DEVICE procedure.

The following IDL commands choose the correct font system, set the graphics
device, select the font Palatino Roman, open a PostScript file to print to, plot a sim
data set, and close the PostScript file:

!P.FONT = 0
SET_PLOT, 'PS'
DEVICE, SET_FONT = 'Palatino-Roman', FILE = 'testfile.ps'
PLOT, INDGEN(10), TITLE = 'My Palatino Title'
DEVICE, /CLOSE

Note
Subsequent PostScript output will continue to use the font Palatino Roman un
you explicitly change the font again, or exit IDL.

You can also specify PostScript fonts using a set of keywords to the DEVICE
procedure. The keyword combinations for the fonts included with IDL are listed
the following table.

PostScript Font DEVICE Keywords

Courier /COURIER

Courier Bold /COURIER, /BOLD

Courier Oblique /COURIER, /OBLIQUE

Courier Bold Oblique /COURIER, /BOLD, /OBLIQUE

Helvetica /HELVETICA

Helvetica Bold /HELVETICA, /BOLD

Helvetica Oblique /HELVETICA, /OBLIQUE

Helvetica Bold Oblique /HELVETICA, /BOLD, /OBLIQUE

Helvetica Narrow /HELVETICA, /NARROW

Helvetica Narrow Bold /HELVETICA, /NARROW, /BOLD

Table G-3: The Standard 35 PostScript Fonts
About Device Fonts IDL Reference Guide

Appendix G: Fonts 2245
Helvetica Narrow Oblique /HELVETICA, /NARROW, /OBLIQUE

Helvetica Narrow Bold Oblique /HELVETICA, /NARROW, /BOLD,
/OBLIQUE

ITC Avant Garde Gothic Book /AVANTGARDE, /BOOK

ITC Avant Garde Gothic Book
Oblique

/AVANTGARDE, /BOOK, /OBLIQUE

ITC Avant Garde Gothic Demi /AVANTGARDE, /DEMI

ITC Avant Garde Gothic Demi
Oblique

/AVANTGARDE, /DEMI, /OBLIQUE

ITC Bookman Demi /BKMAN, /DEMI

ITC Bookman Demi Italic /BKMAN, /DEMI, /ITALIC

ITC Bookman Light /BKMAN, /LIGHT

ITC Bookman Light Italic /BKMAN, /LIGHT, /ITALIC

ITC Zapf Chancery Medium Italic /ZAPFCHANCERY, /MEDIUM, /ITALIC

ITC Zapf Dingbats /ZAPFDINGBATS

New Century Schoolbook /SCHOOLBOOK

New Century Schoolbook Bold /SCHOOLBOOK, /BOLD

New Century Schoolbook Italic /SCHOOLBOOK, /ITALIC

New Century Schoolbook Bold Italic /SCHOOLBOOK, /BOLD, /ITALIC

Palatino /PALATINO

Palatino Bold /PALATINO, /BOLD

Palatino Italic /PALATINO, /ITALIC

Palatino Bold Italic /PALATINO, /BOLD, /ITALIC

Symbol /SYMBOL

Times /TIMES

Times Bold /TIMES, /BOLD

PostScript Font DEVICE Keywords

Table G-3: The Standard 35 PostScript Fonts
IDL Reference Guide About Device Fonts

2246 Appendix G: Fonts

 of

e

cript

ve
For example to use the PostScript font Palatino Bold Italic, you could use either
the following DEVICE commands:

DEVICE, SET_FONT = 'Palatino*Bold*Italic'
DEVICE, /PALATINO, /BOLD, /ITALIC

Changing the PostScript Font Assigned to an Index

You can change the PostScript font assigned to a given font index using the
FONT_INDEX keyword to the DEVICE procedure. Font indices and their use ar
discussed in“Embedded Formatting Commands” on page 2249.

Changing the font index assigned to a font can be useful when changing PostS
fonts in the middle of a text string. For example, the following statements map
Palatino Bold Italic to font index 4, and then output text using that font and the
Symbol font:

; Map the font selected by !4 to be PalatinoBoldItalic:
DEVICE, /PALATINO, /BOLD, /ITALIC, FONT_INDEX=4
; Output "Alpha :" in PalatinoBoldItalic followed by an
; Alpha character:
XYOUTS, .3, .5, /NORMAL, "!4Alpha: !9a", FONT=0, SIZE=5.0

Adding Your Own PostScript Fonts

Because the 35 PostScript fonts included with IDL are built in to a PostScript
printer’s memory, the IDL distribution includes only the font metric files, which
provide positioning information. In addition, the.afm files used by IDL are specially
processed to provide the information in a format IDL expects.

You can add your own PostScript fonts to the list of fonts known to IDL if you ha
access to the PostScript font file (usually namedfont .pfb) to load into your printer
and to thefont .afm file supplied by Adobe. You can convert the standard.afm file
into a file IDL understands using the IDL routinePSAFM. Consult the file
README.TXT in theresource/fonts/ps subdirectory of the IDL directory for
details on adding PostScript fonts to your system.

Times Italic /TIMES, /ITALIC

Times Bold Italic /TIMES, /ITALIC, /BOLD

PostScript Font DEVICE Keywords

Table G-3: The Standard 35 PostScript Fonts
About Device Fonts IDL Reference Guide

Appendix G: Fonts 2247

fonts

e
tion
to
cre
.

o the

very
DL.

an
s

 to

 The
Choosing a Font Type

Some of the issues involved in choosing between vector, TrueType, and device
are explained below.

Appearance

Vector-drawn characters are of medium quality, suitable for most uses. TrueTyp
characters are of relatively high quality, although at some point sizes the triangula
process (described in“About TrueType Fonts”on page 2235) may cause characters
appear slightly jagged. The appearance of device characters varies from medio
(characters found in many graphics terminals) to publication quality (PostScript)

Three-Dimensional Transformations

Vector or TrueType fonts should always be used with three-dimensional
transformations. Both vector and TrueType characters pass through the same
transformations as the rest of the plot, yielding a better looking plot. See“Three-
Dimensional Graphics” in Chapter 12 ofUsing IDL for an example of vector-drawn
characters with three-dimensional graphics. Device characters are not subject t
three-dimensional transforms.

Portability

The vector-drawn fonts work using any graphics device and look the same on e
device (within the limitations of device resolution) on any system supported by I

TrueType fonts are available only on theX, WIN, MAC, PRINTER, PS, andZ Direct
Graphics devices, and in IDL’s Object Graphics system. If you use only the fonts
supplied with IDL, TrueType fonts also look the same on every supported device
(again within the limits of the device resolution). If you use TrueType fonts other th
those supplied with IDL, your font may not be installed on the system which run
your program. In this case, IDL will substitute a known font for the missing font.

The appearance, size, and availability of device fonts varies greatly from device
device. Many, if not most, of the positioning and font changing commands
recognized by the vector-drawing routines are ignored when using device fonts.
exception to this rule is the Direct GraphicsPS device; if you use one of the
PostScript fonts supported by IDL, the PostScript output from thePS device will be
identical between platforms.
IDL Reference Guide Choosing a Font Type

2248 Appendix G: Fonts

 or

sults
ains

e

such

tor

o it is
t font

pe
Computational Time

Device fonts are generally rendered the most quickly, since the hardware device
operating system handles all computations and caching.

It takes more computer time to draw characters with line vectors and generally re
in more input/output. However, this is not an important issue unless the plot cont
a large number of characters or the transmission link to the device is very slow.

The initial triangulation step used when displaying TrueType fonts for the first tim
can be computationally expensive. However, since the font shapes are cached,
subsequent uses of the same font are relatively speedy.

Flexibility

Vector-drawn fonts provide a great deal of flexibility. There are many different
typefaces available, as shown in the tables at the end of this chapter. In addition,
fonts can be arbitrarily scaled, rotated, and transformed.

TrueType fonts support fewer embedded formatting commands than do the vec
fonts, and cannot be scaled, rotated, or transformed.

The abilities of hardware-generated characters differ greatly between devices s
not possible to make a blanket statement on when they should be used—the bes
to use depends on the available hardware. In general, however, the vector or
TrueType fonts are easier to use and often provide superior results to what is
available from the hardware. See the discussion of the device you are using in
Appendix B, “IDL Graphics Devices” for details on the hardware-generated
characters provided by that device.

Print Quality

For producing publication-quality output, we recommend using either the TrueTy
font system or the Direct Graphics PS device and one of the PostScript fonts
supported by IDL.
Choosing a Font Type IDL Reference Guide

Appendix G: Fonts 2249

nd

ecial
y the

o use
ice,

se

font
ark
Embedded Formatting Commands

When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. The method used is similar to that developed by Grandle a
Nystrom (1980). Embedded formatting commands are always introduced by the
exclamation mark, (!). (The string “!! ” is used to produce a literal exclamation
mark.)

Note
Embedded formatting commands prefaced by the exclamation mark have no sp
significance for hardware-generated characters unless the ability is provided b
particular device in use. The IDL PostScript device driver accepts many of the
standard embedded formatting commands, and is described here. If you wish t
hardware fonts with IDL Direct Graphics devices other than the PostScript dev
consult the description of the device inAppendix B, “IDL Graphics Devices”
before trying to use these commands with hardware characters.

You can determine whether embedded formatting commands are available for u
with device fonts on your current graphics device by inspecting bit 12 of theFlags
field of the!D System Variable. Use the IDL statement:

IF (!D.FLAGS AND 4096) NE 0 THEN PRINT, 'Bit is set.'

to determine whether bit 12 of theFlags field is set for the current graphics device.

Changing Fonts within a String

You can change fonts one or more times within a text string using the embedded
commands shown in the table below. The character following the exclamation m
can be either upper or lower case.

Examples of commands used to change fonts in mid-string are included in
“Formatting Command Examples” on page 2253.
IDL Reference Guide Embedded Formatting Commands

2250 Appendix G: Fonts
Font
Command Select Vector Font Select TrueType

Font
Select

PostScript Font

!3 Simplex Roman (default) Helvetica Helvetica

!4 Simplex Greek Helvetica Bold Helvetica Bold

!5 Duplex Roman Helvetica Italic Helvetica Narrow

!6 Complex Roman Helvetica Bold
Italic

Helvetica Narrow
Bold Oblique

!7 Complex Greek Times Times Roman

!8 Complex Italic Times Italic Times Bold Italic

!9 Math/special characters Symbol Symbol

!M Math/special characters
(change effective for one
character only)

Symbol Symbol

!10 Special characters Symbol * Zapf Dingbats

!11(!G) Gothic English Courier Courier

!12(!W) Simplex Script Courier Italic Courier Oblique

!13 Complex Script Courier Bold Palatino

!14 Gothic Italian Courier Bold Italic Palatino Italic

!15 Gothic German Times Bold Palatino Bold

!16 Cyrillic Times Bold Italic Palatino Bold
Italic

!17 Triplex Roman Helvetica * Avant Garde Book

!18 Triplex Italic Helvetica * New Century
Schoolbook

!19 Helvetica * New Century
Schoolbook Bold

!20 Miscellaneous Helvetica * Undefined User
Font

Table G-4: Embedded Font Selection Commands
Embedded Formatting Commands IDL Reference Guide

Appendix G: Fonts 2251

ze

e

Positioning Commands

The positioning and other font-manipulation commands are described in the
following table. Examples of commands used to position text are included in
“Formatting Command Examples” on page 2253.

!X Revert to the entry font Revert to the entry
font

Revert to the entry
font

* The font assigned to this index may be replaced in a future release of IDL.

Positioning
Commands Action

!A Shift above the division line .

!B Shift below the division line .

!C “Carriage return,” begins a new line of text. Shift back to the
starting position and down one line.

!D Shift down to the first level subscript and decrease the
character size by a factor of 0.62.

!E Shift up to the exponent level and decrease the character si
by a factor of 0.44.

!I Shift down to the index level and decrease the character siz
by a factor of 0.44.

!L Shift down to the second level subscript. Decrease the
character size by a factor of 0.62.

!N Shift back to the normal level and original character size.

!R Restore position. The current position is set from the top of
the saved positions stack.

Table G-5: Vector-Drawn Positioning and Miscellaneous Commands

Font
Command Select Vector Font Select TrueType

Font
Select

PostScript Font

Table G-4: Embedded Font Selection Commands
IDL Reference Guide Embedded Formatting Commands

2252 Appendix G: Fonts

e

a

e

!S Save position. The current position is saved on the top of th
saved positions stack.

!U Shift to upper subscript level. Decrease the character size by
factor of 0.62.

!X Return to the entry font.

!Z(u0,u1,...,un) Display one or more character glyphs according to their
unicode value. Eachui within the parentheses will be
interpreted as a 16-bit hexadecimal unicode value. If more
than one unicode value is to be included, the values should b
separated by commas.

!! Display the ! symbol.

Positioning
Commands Action

Table G-5: Vector-Drawn Positioning and Miscellaneous Commands
Embedded Formatting Commands IDL Reference Guide

Appendix G: Fonts 2253

f the
.

ingle
Formatting Command Examples

The figure below illustrates the relative positions and effects on character size o
level commands. In this figure, the letters “!N ” are normal level and size characters

The positioning shown was created with the following command:

XYOUTS, 0.1, 0.3, $
'!LLower!S!EExponent!R!IIndex!N Normal!S!EExp!R!IInd!N!S!U Up
!R!D Down!N!S!A Above!R!B Below'

Note that the string argument to the XYOUTS procedure must be entered on a s
line rather than the two lines shown above.

Figure G-1: Positioning commands with vector fonts (top) and TrueType fonts
(bottom).
IDL Reference Guide Formatting Command Examples

2254 Appendix G: Fonts

eate

. The
A Complex Equation

Embedded positioning commands and the vector font system can be used to cr
the integral shown below:

The command string used to produce the integral is:

XYOUTS, 0, .2, $
'!MI!S!A!E!8x!R!B!Ip!N !7q!Ii!N!8U!S!E2!R!Ii!Ndx', $

SIZE = 3, /NORMAL

Remember that the case of the letter in an embedded command is not important
string may be broken down into the following components:

!MI

Changes to the math set and draws the integral sign, uppercase I.

!S

Saves the current position on the position stack.

!A!E!8x

Shifts above the division line and to the exponent level, switches to the Complex
Italic font (Font 8), and draws the “x.”

Figure G-2: An integral created with the vector fonts.
Formatting Command Examples IDL Reference Guide

Appendix G: Fonts 2255

low

ont

ore

.

d in
r
t 6)
!R!B!Ip

Restores the position to the position immediately after the integral sign, shifts be
the division line to the index level, and draws the “p.”

!N !7q

Returns to the normal level, advances one space, shifts to the Complex Greek f
(Font 7), and draws the Greek letter rho, which is designated by “q” in this set.

!Ii!N

Shifts to the index level and draws the “i ” at the index level. Returns to the normal
level.

!8U

Shifts to the Complex Italic font (Font 8) and outputs the upper case “U.”

!S!E2

Saves the position and draws the exponent “2.”

!R!Ii

Restores the position and draws the index “i .”

!N dx

Returns to the normal level and outputs “dx .”

Note
The equation shown inFigure G-2 could not be created so simply using the
TrueType font system, because the large integral symbol is broken into two or m
characters in the TrueType fonts.

Vector-Drawn Font Example

IDL uses vector-drawn font when the value of the system variable !P.FONT is -1
This is the default condition. Initially, all characters are drawn using the Simplex
Roman font (Font 3). When plotting, font changing commands may be embedde
the title strings keyword arguments (XTITLE, YTITLE, and TITLE) to select othe
fonts. For example, the following statement uses the Complex Roman font (Fon
for thex-axis title:

PLOT, X, XTITLE = '!6X Axis Title'
IDL Reference Guide Formatting Command Examples

2256 Appendix G: Fonts

 an
This font remains in effect until explicitly changed. The order in which the
annotations are drawn is main title, x -axis numbers, x -axis title, y -axis numbers,
and y -axis title. Strings to be output also may contain embedded information
selecting subscripting, superscripting, plus other features that facilitate equation
formatting.

The following statements were used to produce the figure below. They serve as
example of a plot using vector-drawn characters and of equation formatting.

; Define an array:
X = FLTARR(128)
; Make a step function:
X[30:40] = 1.0
;Take FFT and magnitude:
X = ABS(FFT(X, 1))
; Produce a log-linear plot. Use the Triplex Roman font for the
; x title (!17), Duplex Roman for the y title (!5), and Triplex
; Italic for the main title (!18). The position keyword is used to
; shrink the plotting window:
PLOT, X[0:64], /YLOG, XTITLE = '!17Frequency', $

YTITLE = '!5Power', $
TITLE = '!18Example of Vector Drawn Plot', $
POSITION = [.2, .2, .9, .6]

SS = '!6F(s) = (2!4p)!e-1/2!n !mi!s!a!e!m $
!r!b!i ' + '-!m $

Figure G-3: Example of a Vector-drawn Plot.
Formatting Command Examples IDL Reference Guide

Appendix G: Fonts 2257
; String to produce equation:
!nF(x)e !e-i2!4p!3xs!ndx'

XYOUTS, 0.1, .75, SS, SIZE = 3, $
; Output string over plot. The NOCLIP keyword is needed because
; the previous plot caused the clipping region to shrink:

/NORMAL, /NOCLIP
IDL Reference Guide Formatting Command Examples

2258 Appendix G: Fonts

 of

ber
For
1.
TrueType Font Samples

The following figures show roman versions of the four TrueType font families
included with IDL. The character sets for the bold, italic, and bold italic versions
these fonts are the same as the roman versions.

The SHOWFONT command was used to create these figures. For example, to
display the following figure on the screen, you would the command:

SHOWFONT, 'Helvetica', 'Helvetica', /TT_FONT

For more information, see“SHOWFONT” on page 1137.

Note
The following font charts are numbered in octal notation. To read the octal num
of a character, add the column index (along the top) to ten times the row index.
example, the capital letter “A” is octal 101, and the copyright symbol is octal 25
TrueType Font Samples IDL Reference Guide

Appendix G: Fonts 2259
IDL Reference Guide TrueType Font Samples

2260 Appendix G: Fonts
TrueType Font Samples IDL Reference Guide

Appendix G: Fonts 2261

y the

ber
For
Vector Font Samples

The following figures show samples of various vector-drawn fonts. The
SHOWFONT command was used to create these figures. For example, to displa
following figure on the screen, you would the command:

SHOWFONT, 3, 'Simplex Roman'

To output this figure to a postscript file, you would use the following commands:

SET_PLOT, 'PS'
SHOWFONT, 3, 'Simplex Roman'
DEVICE, /CLOSE

For more information, see“SHOWFONT” on page 1137.

Note
The following font charts are numbered in octal notation. To read the octal num
of a character, add the column index (along the top) to ten times the row index.
example, the capital letter “A” is octal 101, and the “$” symbol is octal 44.
IDL Reference Guide Vector Font Samples

2262 Appendix G: Fonts
Vector Font Samples IDL Reference Guide

Appendix G: Fonts 2263
IDL Reference Guide Vector Font Samples

2264 Appendix G: Fonts
Vector Font Samples IDL Reference Guide

Appendix G: Fonts 2265
IDL Reference Guide Vector Font Samples

2266 Appendix G: Fonts
Vector Font Samples IDL Reference Guide

Appendix G: Fonts 2267
IDL Reference Guide Vector Font Samples

2268 Appendix G: Fonts
Vector Font Samples IDL Reference Guide

Appendix G: Fonts 2269
IDL Reference Guide Vector Font Samples

2270 Appendix G: Fonts
Vector Font Samples IDL Reference Guide

Appendix H:

Obsolete Routines
The following topics are covered in this appendix:
6
7
83
What Are Obsolete Routines? 2272
Routines Obsoleted in IDL 5.3 2273
Routines Obsoleted in IDL 5.2 2274
Routines Obsoleted in IDL 5.1 2275

Routines Obsoleted in IDL 5.0 227
Routines Obsoleted in IDL 4.0 or Earlier . 227
Obsolete System Variables 22
IDL Reference Guide 2271

2272 Appendix H: Obsolete Routines

ses,
h

ith
e

What Are Obsolete Routines?

To improve the overall quality and functionality of IDL, Research Systems, Inc.
occasionally replaces existing routines with new, improved routines. In many ca
existing routines are improved without changing their existing behavior—throug
improvements of the underlying algorithms, for example, or by adding keyword
functionality. In some cases, however, the improved methods are incompatible w
the old. In these situations, we consider the routines that we have replaced to b
obsolete. Routines that have become obsolete are listed later in this chapter.
What Are Obsolete Routines? IDL Reference Guide

Appendix H: Obsolete Routines 2273

DL
le
Routines Obsoleted in IDL 5.3

The following routines were present in IDL Version 5.2 but became obsolete in I
Version 5.3. Documentation for these routines can be found in the online help fi
obsolete.hlp .

Routine Replaced by .pro File?

HDF_DFSD_*
Routines

HDF_SD_* Routines

RSTRPOS STRPOS, /REVERSE_SEARCH rstrpos.pro

STR_SEP STRSPLIT for single character
delimiters

STRSPLIT, /REGEX for longer
delimiters

str_sep.pro

Table H-1: Routines Obsoleted in IDL 5.3
IDL Reference Guide Routines Obsoleted in IDL 5.3

2274 Appendix H: Obsolete Routines

DL
le
Routines Obsoleted in IDL 5.2

The following routines were present in IDL Version 5.1 but became obsolete in I
Version 5.2. Documentation for these routines can be found in the online help fi
obsolete.hlp .

Routine Replaced by .pro File?

DEMO_MODE LMGR demo_mode.pro

Table H-2: Routines Obsoleted in IDL 5.2
Routines Obsoleted in IDL 5.2 IDL Reference Guide

Appendix H: Obsolete Routines 2275

DL
le
Routines Obsoleted in IDL 5.1

The following routines were present in IDL Version 5.0 but became obsolete in I
Version 5.1. Documentation for these routines can be found in the online help fi
obsolete.hlp .

Routine Replaced by .pro File?

SLICER SLICER3 slicer3.pro

Table H-3: Routines Obsoleted in IDL 5.1
IDL Reference Guide Routines Obsoleted in IDL 5.1

2276 Appendix H: Obsolete Routines

DL
le
Routines Obsoleted in IDL 5.0

The following routines were present in IDL Version 4.0 but became obsolete in I
Version 5.0. Documentation for these routines can be found in the online help fi
obsolete.hlp .

Routine Replaced by .pro File?

DDE Routines n/a

GETHELP OUTPUT keyword toHELP

HANDLE_CREATE PTR_NEW

HANDLE_FREE PTR_FREE

HANDLE_INFO PTR_VALID

HANDLE_MOVE n/a

HANDLE_VALUE dereference operator

INP, INPW, OUTP, OUTPW n/a

PICKFILE DIALOG_PICKFILE

old RPC API new RPC API

.SIZE Executive Command No longer needed

TIFF_DUMP n/a

TIFF_READ READ_TIFF

TIFF_WRITE WRITE_TIFF

WIDED n/a

WIDGET_MESSAGE DIALOG_MESSAGE

Table H-4: Routines Obsoleted in IDL 5.0
Routines Obsoleted in IDL 5.0 IDL Reference Guide

Appendix H: Obsolete Routines 2277

e

Routines Obsoleted in IDL 4.0 or Earlier

The following routines became obsolete in IDL version 4.0 or earlier. If a.pro file
for the routine exits, it is located in theobsolete subdirectory of thelib directory
of the IDL distribution. You can read the documentation header of a routine in th
obsolete directory either by opening the.pro file or using the DOC_LIBRARY
routine.

Note
The following routines are not documented in the online help.

Routine Replaced by .pro File?

ADDSYSVAR DEFSYSV addsysvar.pro

ADJCT XPALETTE adjct.pro

ANOVA KW_TEST anova.pro

ANOVA_UNEQUAL KW_TEST anova_uneqal.pro

BETAI IBETA betai.pro

C_EDIT XPALETTE c_edit.pro

CALL_VMS CALL_EXTERNAL

CHI_SQR CHISQR_CVF chi_sqr.pro

CHI_SQR1 CHISQR_PDF chi_sqr1.pro

COLOR_EDIT XPALETTE color_edit.pro

CONTINGENT CTI_TEST contingent.pro

CORREL_MATRIX CORRELATE correl_matrix.pro

COSINES n/a cosines.pro

CW_BSELECTOR WIDGET_DROPLIST cw_bselector.pro

CW_LOADSTATE NO_COPY keyword to
WIDGET_CONTROL

cw_loadstate.pro

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2278 Appendix H: Obsolete Routines
CW_SAVESTATE NO_COPY keyword to
WIDGET_CONTROL

cw_savestate.pro

DIFFEQ_23 RK4 diffeq_23.pro

DIFFEQ_45 RK4 diffeq_23.pro

DISP_TEXT XYOUTS disp_text.pro

EIGEN_II EIGENVEC eigen_ii.pro

EQUAL_VARIANCE FV_TEST equal_variance.pro

F_TEST F_CVF f_test.pro

F_TEST1 F_PDF f_test1.pro

FILLCONTOUR FILL keyword to
CONTOUR

fillcontour.pro

FORRD READU

FORRD_KEY READU

FORWRT WRITEU

FRIEDMAN KW_TEST friedman.pro

GAUSS GAUSS_CVF gauss.pro

GOODFIT XSQ_TEST goodfit.pro

HELP_VM MEMORY keyword to
HELP

help_vm.pro

HSV_TO_R COLOR_CONVERT hsv_to_r.pro

JOIN CLUSTER join.pro

KMEANS CLUSTER kmeans.pro

KRUSKAL_WALLIS KW_TEST kruskal_wallis.pro

LATLON n/a latlon.pro

LEGO LEGO keyword to
SURFACE

lego.pro

LISTREP n/a listrep.pro

Routine Replaced by .pro File?

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix H: Obsolete Routines 2279
LISTWISE n/a listwise.pro

LN03 n/a ln03.pro

LUBKSB LUSOL

LUDCMP LUDC

MAKETREE CLUSTER maketree.pro

MANN_WHITNEY RS_TEST mann_whitney.pro

MENUS WIDGET_DROPLIST, etc. menus.pro

MIPSEB_DBLFIXUP n/a mipseb_dblfixup.pro

MOVIE XINTERANIMATE movie.pro

MPROVE LUMPROVE

MULTICOMPARE Hypothesis TestingRoutines multicompare.pro

NR_BETA BETA

NR_BROYDN BROYDEN

NR_CHOLDC CHOLDC

NR_CHOLSL CHOLSOL

NR_DFPMIN DFPMIN

NR_ELMHES ELMHES nr_elmhes.pro

NR_EXPINT EXPINT

NR_FULSTR FULSTR

NR_HQR HQR nr_hqr.pro

NR_INVERT INVERT

NR_LINBCG LINBCG

NR_LUBKSB LUSOL nr_lubksb.pro

NR_LUDCMP LUDC nr_ludcmp.pro

NR_MACHAR MACHAR

Routine Replaced by .pro File?

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2280 Appendix H: Obsolete Routines
NR_MPROVE LUMPROVE

NR_NEWT NEWTON

NR_POWELL POWELL

NR_QROMB QROMB

NR_QROMO QROMO

NR_QSIMP QSIMP

NR_RK4 RK4

NR_SPLINE SPL_INIT

NR_SPLINT SPL_INTERP

NR_SPRSAB SPRSAB

NR_SPRSAX SPRSAX

NR_SPRSIN SPRSIN nr_sprsin.pro

NR_SVBKSB SVSOL nr_svbksb.pro

NR_SVD SVDC nr_svd.pro

NR_TQLI TRIQL

NR_TRED2 TRIRED

NR_TRIDAG TRISOL

NR_WTN WTN nr_wtn.pro

NR_ZROOTS FZ_ROOTS

ONLY_8BIT n/a only_8bit.pro

PALETTE XPALETTE palette.pro

PARTIAL2_COR P_CORRELATE partial2_cor.pro

PARTIAL_COR P_CORRELATE partical_cor.pro

PHASER n/a phaser.pro

PM n/a pm.pro

Routine Replaced by .pro File?

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix H: Obsolete Routines 2281
PMF n/a pmf.pro

POLYCONTOUR FILL keyword to
CONTOUR

polycontour.pro

PROMPT n/a prompt.pro

PWIDGET n/a pwidget.pro

REGRESS1 REGRESS regress1.pro

REGRESSION REGRESS regression.pro

RGB_TO_HSV COLOR_CONVERT rgb_to_hsv.pro

RM n/a rm.pro

RMF n/a rmf.pro

ROT_INT ROT rot_int.pro

RSI_GAMMAI IGAMMA rsi_gamma.pro

RUNS_TEST R_TEST runs_test.pro

SET_NATIVE_PLOT n/a set_native_plot.pro

SET_SCREEN n/a set_screen.pro

SET_VIEWPORT n/a set_viewport.pro

SET_XY n/a set_xy.pro

SIGMA MOMENT sigma.pro

SIGN_TEST S_TEST sign_test.pro

SIMPSON QSIMP or QROMB simpson.pro

SPEARMAN R_CORRELATE sprearman.pro

STDEV MOMENT stdev.pro

STEPWISE REGRESS stepwise.pro

STUDENT1_T T_PDF student1_t.pro

STUDENT_T T_CVF student_t.pro

STUDRANGE T_PDF studrange.pro

Routine Replaced by .pro File?

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

2282 Appendix H: Obsolete Routines
SURFACE_FIT SFIT surface_fit.pro

SVBKSB SVSOL

SVD SVDC

TESTCONTRAST n/a testcontrast.pro

TQLI TRIQL

TRED2 TRIRED

TRIDAG TRISOL

TVDELETE WDELETE

TVRDC CURSOR

TVSET WSET

TVSHOW WSHOW

TVWINDOW WINDOW

VMSCODE n/a vmscode.pro

WILCOXON RS_TEST wilcoxon.pro

WMENU WIDGET_DROPLIST, etc. wmenu.pro

XANIMATE XINTERANIMATE xanimate.pro

XBACKREGISTER TIMER keyword to
WIDGET_CONTROL

xbackregister.pro

XDL n/a xdl.pro

XMANAGERTOOL XMTOOL xmanagertool.pro

XMENU WIDGET_DROPLIST, etc. xmenu.pro

XPDMENU WIDGET_DROPLIST, etc. xpdmenu.pro

ZROOTS FZ_ROOTS

Routine Replaced by .pro File?

Table H-5: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix H: Obsolete Routines 2283

L

cause
ual
Obsolete System Variables

The following IDL system variables became obsolete in the change from VAX ID
(IDL version 1) to IDL version 2. While it is highly unlikely that you will find
references to these system variables in existing code, we include them here be
they are flagged when the OBS_SYSVARS field of the !WARN structure is set eq
to one. SeeAppendix D, “System Variables” in theIDL Reference Guide for
information on IDL system variables.

System Variable Replaced by

!BCOLOR BOTTOM keyword to SURFACE

!COLOR !P.COLOR

!CXMAX !X.CRANGE[1]

!CXMIN !X.CRANGE[0]

!CYMAX !Y.CRANGE[1]

!CYMIN !Y.CRANGE[0]

!FANCY No direct equivalent. Use !P.FONT and
!P.CHARSIZE

!FLIP No equivalent.

!GRID !P.TICKLEN

!HI No equivalent.

!IGNORE !P.NOCLIP

!LINETYPE !P.LINESTYLE

!LO No equivalent.

!MTITLE !P.TITLE

!NOERAS !P.NOERASE

!NORMALCONT FOLLOW keyword to CONTOUR

!NSUM !P.NSUM

!PSYM !P.PSYM

Table H-6: Obsolete System Variables
IDL Reference Guide Obsolete System Variables

2284 Appendix H: Obsolete Routines
!SC1 !P.POSITION[0] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC2 !P.POSITION[2] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[1] * !D.X_VSIZE
otherwise.

!SC3 !P.POSITION[1] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC4 !P.POSITION[3] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[1] * !D.X_VSIZE
otherwise.

!TERM DEVICE procedure.

!TYPE !X.TYPE, !X.STYLE, !Y.TYPE, !Y.STYLE,
!P.TICKLEN

!XMAX !X.RANGE[1]

!XMIN !X.RANGE[0]

!XTICKS !X.TICKS

!XTITLE !X.TITLE

!YMAX !Y.RANGE[1]

!YMIN !Y.RANGE[0]

!YTICKS !Y.TICKS

!YTITLE !Y.TITLE

System Variable Replaced by

Table H-6: Obsolete System Variables
Obsolete System Variables IDL Reference Guide

Index

Symbols
! character, 2221
!C system variable, 2204
!D system variable, 2204
!D.TABLE_SIZE system variable, 1333, 2206
!D.WINDOW system variable, 1374, 1524,
1558
!DIR system variable, 2199
!DLM_PATH system variable, 2199
!DPI system variable, 2193
!DTOR system variable, 2193
!EDIT_INPUT system variable, 2199
!ERR system variable, 1271, 1379, 2195
!ERROR_STATE system variable, 801, 802,
860, 1225, 2195

MSG, 1225
MSG_PREFIX, 802

!EXCEPT system variable, 2196
!HELP_PATH system variable, 2200
!JOURNAL system variable, 592, 2200
!MAP system variable, 2193
!MAP1 system variable, 760
!MORE system variable, 2200
!MOUSE system variable, 246, 2197
!ORDER system variable, 1322, 1330, 2207
!P system variable, 2207
!P.FONT system variable, 2231
!P.MULTI system variable, 2154
!P.T system variable, 236, 315, 1102, 1104,
1249, 1264, 2186
!P.T3D system variable, 236
!PATH system variable, 427, 2200
!PI system variable, 2193
!PROMPT system variable, 2203
!QUIET system variable, 801, 2203
IDL Reference Guide 2285

2286
!RADEG system variable, 2193
!VALUES system variable, 2193
!VERSION system variable, 2203
!WARN system variable, 2198
!X system variable, 2211
!Y system variable, 2211
!Z system variable, 2211
" character, 2221
$ character, 2221
& character, 2222
' character, 2221
* character, 2222
. character, 2221
.COMPILE command, 52
.COMPILE executive command, 52
.CONTINUE command, 53
.CONTINUE executive command, 53
.EDIT command, 54
.EDIT executive command, 54
.FULL_RESET_SESSION command, 55
.GO command, 56
.GO executive command, 56
.OUT command, 57
.OUT executive command, 57
.RESET_SESSION command, 58
.RETURN command, 60
.RETURN executive command, 60
.RNEW command, 61
.RUN command, 63
.RUN executive command, 63
.SIZE executive command, 2276
.SKIP command, 65
.SKIP executive command, 65
.STEP command, 66
.STEP executive command, 66
.STEPOVER command, 67
.STEPOVER executive command, 67
.TRACE command, 68
.TRACE executive command, 68
.Xdefaults file, 1392
: character, 2222

; character, 2221
? character, 2223
@ character, 2222

Numerics
24-bit images, 1322
2D rendering of 3D volumes, 948
3D

images
reconstructed from 2D arrays, 1053
viewing coordinate system, 236

rendering, 788
transformations, 226, 268, 315, 1102, 1104,
1249, 1264, 1358
volume slices, 1148

64-bit integer
arrays, 604, 719
data type, converting to, 722
vectors, 719

A
A_CORRELATE function, 69
ABS function, 71
absolute deviation, 813
absolute value, 71
ACOS function, 72
active command line, 1579
ADAPT_HIST_EQUAL function, 73
addition

array elements, 1286
AddPolygon method, 1983
ADDSYSVAR, see obsolete routines
adjacency list, Delaunay triangulation, 1297
ADJCT,see obsolete routines
Adobe

Font Metrics files, 952
Type Manager, 2118, 2242

Aitoff map projection, 761, 761
Index IDL Reference Guide

2287
Alber’s
equal area conic map projection, 762

aligning text, 1601
allocated memory, returning amount of, 526
ALOG function, 75
ALOG10 function, 76
AMOEBA function, 77
ampersand, 2222
analysis objects

IDLanRIOGroup, 1643
IDLanROI class, 1620

Angstrom symbol, 2234
animation

flickering images, 454
MPEG files, 830, 831, 833, 835
widget interface, 257, 1569

ANNOTATE procedure, 81
annotations

of displayed images, 81
ANOVA, see obsolete routines
ANOVA_UNEQUAL, see obsolete routines
apostrophe, 2221
AppendData method

IDLanROI, 1622
AppleScript, 394
approximating models, statistical, 185
arc-cosine, 72
architecture, current version in use, 2203
arc-sine, 89
arc-tangent, 92
ARG_PRESENT function, 83
arguments

checking existence of, 83
described, 49

arguments, described, 1609
array operators

CHOLDC, 168
CHOLSOL, 169
COND, 197
CRAMER, 232
DETERM, 363

EIGENVEC, 406
ELMHES, 408
GS_ITER, 506
HQR, 541
INVERT, 581
LU_COMPLEX, 728
LUDC, 730
LUMPROVE, 732
LUSOL, 734
NORM, 849
SVDC, 1250
SVSOL, 1257
TRIQL, 1307
TRIRED, 1309
TRISOL, 1310

arrays
changing dimensions of, 1059
creating

64-bit integer
(L64INDGEN function), 604
(LON64ARR function), 719

any type (MAKE_ARRAY function), 740
byte

(BINDGEN function), 110
(BYTARR function), 125

complex
(CINDGEN function), 171
(COMPLEXARR function), 194
(DCINDGEN function), 341
(DCOMPLEXARR function), 344

double-precision
(DBLARR function), 340
(DCINDGEN function), 341
(DCOMPLEXARR function), 344
(DINDGEN function), 390

integer
(INDGEN function), 563
(INTARR function), 573

longword
(LINDGEN function), 615
(LONARR function), 720
IDL Reference Guide Index

2288
single-precision, floating-point
(FINDGEN function), 450
(FLTARR function), 459

string
(SINDGEN function), 1140
(STRARR function), 1204

unsigned 64-bit
(ULON64ARR function), 1340

unsigned 64-bit integer
(UL64INDGEN function), 1338

unsigned integer
(UINDGEN function), 1335

unsigned longword
(ULINDGEN function), 1339
(ULONARR function), 1341

extracting sub-arrays, 432
filling with a scalar value, 1065
finding number of elements in, 842
floating-point, 450
incrementing elements, 537
interactive editing tool (XVAREDIT proce-
dure), 1599
of structures, 1065
operators,see array operators
resizing, 198, 426, 1049
returning

maximum value, 771
minimum value, 803
subscripts of non-zero elements, 1379
type, 1142

reversing indices, 1076
rotating, 1089
searching for objects, 1105, 1108
shifting elements, 1133
size, 1142
sorting, 1175
subscripts

returning non-zero elements, 1379
summing elements, 1286
transposing, 1291
unique elements of (UNIQ function), 1344

updating, 113
ARROW procedure, 85
ASCII_TEMPLATE function, 87
ASIN function, 89
ASSOC function, 90
associated variables, 90
asterisk, 2222
at sign (character), 2222
ATAN function, 92
autocorrelation, 69
autocovariance, 69
autoregressive time-series forecasting, 1314,
1316
AVANTGARDE keyword, 2094
average

mean, 813
median, 778
moving, 1171, 1318

AVERAGE_LINES keyword, 2094
axes, 1718, 2186

date labels for, 605
direction, 1725
end points, 2217
gridstyles, 1726, 2213
linear, 2217
location, 1726
logarithmic, 1727, 2217

[XYZ]LOG keywords, 94, 217, 217, 890,
1127, 1127, 1248, 1248, 1248

margins, 2213, 2213
range, 2212, 2214
range (CRANGE, EXACT, EXTEND,
RANGE), 1722
scaling, 2214
style, 2215
system variables for, 2211
thickness, 1729, 2215
thickness, (XYZ)THICK keyword, 2187
titles, 1731, 2190, 2217

axis object, 1718
AXIS procedure, 93
Index IDL Reference Guide

2289
azimuthal equidistant map projection, 762

B
background color, 2133

for graphics windows, 415
BACKGROUND keyword, 2178
BACKGROUND system variable field, 2208
background tasks, 1438
backing store, 1525, 2113, 2128

for draw widgets, 269, 1448, 1453
for zoom widgets, 336

backprojection, 1079
back-substitution, 1257
backward index list (for histograms), 535
bar charts, 96
BAR_PLOT procedure, 96
base 10 logarithm, 76
base widgets, 1383

bulletin board bases, 1400
changing title of, 1438
column, 1386
column bases, 1386
events returned by, 1403
exclusive, 1387
exclusive and non-exclusive, 1400
keyboard focus events, 1388
mapping and unmapping, 1428
nonexclusive, 1391
positioning, 1438

top-level bases, 1401
resize events, 1397
row bases, 1394
top-level, 1384

batch
processing, 2223

BEGIN...END statement, 100
benchmarks, 1283
Bernoulli distribution, 111
BESELI function, 101
BESELJ function, 102

BESELY function, 103
Bessel functions

BESELI, 101
BESELJ, 102
BESELY, 103

BETA function, 104
incomplete, 545

BETAI, see obsolete routines
big endian byte ordering, 127, 1259
bi-level images, 1280
BILINEAR function, 105
bilinear interpolation, 105, 1049
BIN_DATE function, 107
binary interpolation, 577
BINARY keyword, 2094
binary SAVE and RESTORE, 1100
BINARY_TEMPLATE function, 108
BINDGEN function, 110
binomial distribution, 111
BINOMIAL function, 111
binomial random deviates, 991, 995
bins, histogram, 535
bit shift operation, 586
bitmap

button labels, 1411, 1412, 1564
byte array, 255
files

reading (READ_BMP), 1009
writing (WRITE_BMP), 1528

labels, creating, 255
BITS_PER_PIXEL keyword, 2095
BKMAN keyword, 2095
BLAS_AXPY procedure, 113
BLK_CON function, 115
blob coloring, 607
block convolution, 115
BLOCK field, 1695
BMP files

reading (READ_BMP), 1009
writing (WRITE_BMP), 1528

BOLD keyword, 2095
IDL Reference Guide Index

2290
BOOK keyword, 2095
Bookman font, 2095
bottom margin, setting, 2213
BOX_CURSOR procedure, 117
boxcar average, 1171
BREAKPOINT procedure, 119
breakpoints

removing, 120
returning information on, 524
setting, 121

BROYDEN function, 122
Broyden’s method, 122
buffer object, 1734
buffered output, 409, 460
buffers, 460

flushing, 424
type-ahead, 491

bulletin board bases, 1400
button

groups, 272
labels, creating, 255
mouse with CURSOR procedure, 246
widgets, 1405

bitmap labels, 1411, 1412, 1564
button release events, 1408
events returned by, 1412
groups, 272
setting pointer focus, 1426
toggle, 1412

BYPASS_TRANSLATION keyword, 2095
BYTARR function, 125
byte

arrays, 110, 125
scaling values into a range of bytes, 131
swapping, 127
swapping short integers, 128
type, converting to, 126

BYTE function, 126
BYTEORDER procedure, 127
BYTSCL function, 131

C
C_CORRELATE function, 133
C_EDIT,see obsolete routines
CALDAT procedure, 136
CALENDAR procedure, 139
CALL, 411, 411
CALL_EXTERNAL function, 140
CALL_FUNCTION function, 149
CALL_METHOD, 150
CALL_PROCEDURE procedure, 151
CALL_VMS, see obsolete routines
calling

external modules from IDL, 140
IDL functions from a string, 149
IDL methods from a string, 150
IDL procedures from a string, 151
routines written in other languages, 140, 618
sequence, 48

calling sequence
function methods, 1608
procedure methods, 1608

"Cancel" button, 1418
CASE...ENDCASE statement, 152
CATCH procedure, 153
catch, C++ language, 153
CD procedure, 155
CEIL function, 157
central map projection, 762
CGM driver, 2134
changing directories, 155
CHANNEL keyword, 2178
CHANNEL system variable field, 2208
characters

character sets, 2249
newline, 1517
plotting in graphics windows, 1600
size, 1601

CHARSIZE keyword, 2178
CHARSIZE system variable field, 2208, 2212
CHARTHICK keyword, 2179
CHARTHICK system variable field, 2208
Index IDL Reference Guide

2291
CHEBYSHEV function, 158
CHECK_MATH function, 159
CHI_SQR,see obsolete routines
CHI_SQR1,see obsolete routines
children, of widgets, 1466
CHISQR_CVF function, 165
CHISQR_PDF function, 166
Chi-square distribution, 165, 166
Chi-square error statistic, minimizing, 616
Chi-square goodness-of-fit test, 244, 1595
CHOLDC procedure, 168
Cholesky decomposition, 168, 169
CHOLSOL function, 169
CINDGEN function, 171
CIR_3PNT procedure, 172
class, 1689
clearing breakpoints, 120
CLIP keyword, 2179
CLIP system variable field, 2208
clipboard object, 1754
clipping window, 2208
clock, system, 1260
CLOSE keyword, 2096
CLOSE procedure, 174
CLOSE_DOCUMENT keyword, 2096
CLOSE_FILE keyword, 2096
closing

(image processing) function, 389
files

open file units, 174
graphics output files, 2096

CLUST_WTS function, 175
cluster

analysis, 175, 177
weights, 175

CLUSTER function, 177
CMY color system, 331
coastlines, 743
colon (character), 2222
COLOR field, 1696
COLOR keyword, 2096, 2180

COLOR system variable field, 2208
color tables

colors1.tbl file, 716, 811
creating and modifying with XPALETTE,
1589
for LJ device, 703
gamma correction, 479
histogram equalization, 510
histogram equalizing, 509
HLS (Hue, Lightness, Saturation), 539
HSV (Hue, Saturation, Value), 543
LHB (Lightness, Hue, Brightness), 953
loading, 1326
loading into variables (GET keyword), 1327
loading predefined, 716, 1574
maximum indices for draw widgets, 1444
modifying predefined colortable files, 811
setting maximum number of indices, 1524
stretching, 1214
Tektronix 4115, 1273
wrapping (MULTI procedure), 841

COLOR_CONVERT procedure, 179
COLOR_EDIT,see obsolete routines
COLOR_QUAN function, 181
colorbar object, 1769
colors

background, 415, 2133, 2178, 2208
converting between color systems, 179
default index, 2208
gamma correction (GAMMA_CT), 479
indices, 277, 280, 331, 2100
luminance of (CT_LUMINANCE function),
242
maximum number available, 1333
maximum number for draw widgets, 1444
quantization, 181
reducing number in an image, 1058
resources, for widgets, 1393
setting maximum number of indices, 1524
shared colormap, 2121
systems, 331, 1326
IDL Reference Guide Index

2292
COLORS keyword, 2096
column bases, 1386
combination, 440
COMFIT function, 185
command input buffer, displaying, 527
command recall

buffer, 1052
commands

displaying previously-executed, 527
executive

.COMPILE, 52

.CONTINUE, 53

.EDIT, 54

.GO, 56

.OUT, 57

.RETURN, 60

.RUN, 63

.SIZE, 2276

.SKIP, 65

.STEP, 66

.STEPOVER, 67

.TRACE, 68
COMMON statement, 188
COMPILE executive command,seecommands
COMPILE_OPT statement, 189
compiling functions and procedures, 1068,
1070

displaying, 528
complex

arrays, creating, 171, 194, 341, 344
arrays, rounding, 195
conjugate, 201
data type, 192, 342
numbers

returning imaginary part of, 562
returning real part of, 455
returning the magnitude of, 71

polynomials, 476
COMPLEX function, 192
COMPLEXARR function, 194
COMPLEXROUND function, 195

compound widgets
CW_ANIMATE, 257
CW_ARCBALL, 268
CW_BGROUP, 272
CW_CLR_INDEX, 277
CW_COLORSEL, 280
CW_DEFROI, 282
CW_DICE, 286
CW_FIELD, 288
CW_FILESEL, 292
CW_FORM, 294
CW_FSLIDER, 302
CW_LIGHT_EDITOR, 306
CW_LIGHT_EDITOR_GET, 310
CW_LIGHT_EDITOR_SET, 313
CW_ORIENT, 315
CW_PALETTE_EDITOR, 317
CW_PALETTE_EDITOR_GET, 323
CW_PALETTE_EDITOR_SET, 324
CW_PDMENU, 325
CW_RGBSLIDER, 331
CW_ZOOM, 335

compression, JPEG, 1017, 1533
COMPUTE_MESH_NORMALS function,
196
ComputeBounds method, 2022
Computed Tomography, 1079
ComputeDimensions method, 1771, 1818
ComputeGeometry method

IDLanROI, 1625
ComputeMask method

IDLanROI, 1627
IDLanROIGroup, 1647

ComputeMesh method
IDLanROIGroup, 1650

Computer Graphics Metafile, 2134
concave polygons, 1982
COND function, 197
condition number, 197
CONGRID function, 198, 1049
CONJ function, 201
Index IDL Reference Guide

2293
conjugate, complex, 201
CONSTRAINED_MIN procedure, 202
container object, 1611
ContainsPoints method

IDLanROI, 1630
IDLanROIGroup, 1652

context number, 861
continental boundaries, 743
contingency table, 244
CONTINGENT,see obsolete routines
CONTINUE executive command,see com-
mands
contour object, 1781
contour plots, 208

overlaying with images, 558
polar, 906
with images and surface plots, 1135

CONTOUR procedure, 208
contrast, gamma correction, 479
control characters

alt-F4, 2224
command-period, 2223
command-q, 2224
control-\, 2224
control-break, 2223
control-C, 2223
control-D, 2224
control-Y, 2224
control-Z, 2224

convergence criterion, 847
CONVERT_COORD function, 220
converting

colors between color systems, 179
coordinate systems, 220

converting expressions
between host and network byte ordering, 127
to 64-bit integer type, 722
to byte type, 126
to complex type, 192, 342
to double-precision type, 399
to integer type, 452

to longword type, 721
to single-precision floating-point type, 455
to string type, 1216
to unsigned 64-bit integer type, 1343
to unsigned integer type, 1336
to unsigned longword type, 1342

convex polygons, 1982
CONVOL function, 222
convolution, 115, 222
COORD2TO3 function, 226
coordinates

3D transformations, 226, 268, 315, 1102,
1104, 1249, 1264, 1358
clipping, 2179
converting

2D to 3D, 226
between coordinate systems, 253
map coordinates, 760
systems, 220

defining 3D systems, 236
device, 2180
normal, 2183

COPY keyword, 2097, 2097
copying pixels from one window to another,
2097
correction, gamma, 479
CORREL_MATRIX,see obsolete routines
CORRELATE function, 228
correlation analysis

correlation/covariance matrix, 228
Kendall’s tau rank, 986
lagged autocorrelation, 69
lagged crosscorrelation, 133
multiple, 736
partial, 879
Pearson’s correlation, 228
Spearman’s rho rank, 986

correlation coefficient
CORRELATE, 228
Kendalls’s, 986
M_CORRELATE, 736
IDL Reference Guide Index

2294
multiple, 736
P_CORRELATE, 879
partial, 879
Pearson, 228
R_CORRELATE, 986
rank, 986
Spearman’s, 986

COS function, 230, 230
COSH function, 231
cosine, 230

hyperbolic, 231
inverse, 72

COSINES,see obsolete routines
count accumulation, 537
Count method, 1614
country boundaries, 743
COURIER keyword, 2097
CRAMER function, 232
Cramer’s rule, 232
CRANGE system variable field, 2212
CREATE_STRUCT function, 234
CREATE_VIEW procedure, 236
creating

realizing widgets, 1430
system variables, 356
windows, 1524

cross correlation, 133
cross covariance, 133
CROSSP function, 239
CRVLENGTH function, 240
CT_LUMINANCE function, 242
CTI_TEST function, 244
cubic convolution interpolation, 578, 912
cubic spline interpolation, 1184, 1186
current IDL session, returning information on,
523
current working directory, 155
cursor

box, 117
changing appearance, 2098
displaying, 1324

graphics on Tektronix terminals, 2106
hiding, 1325
hourglass, 1426
positioning, 1324
reading position of, 1000
returning events from draw widgets, 1446
setting to crosshair, 2097
specifying pattern, 2097
type, 2097

CURSOR procedure, 246
and Tektronix terminals, 2106

CURSOR_CROSSHAIR keyword, 2097
CURSOR_IMAGE keyword, 2097
CURSOR_STANDARD keyword, 2098
CURSOR_XY keyword, 2099
curve fitting, 185

COMFIT, 185
CRVLENGTH, 240
CURVEFIT, 249
GAUSS2DFIT, 483
GAUSSFIT, 486
LADFIT, 609
LINFIT, 616
LMFIT, 706
MIN_CURVE_SURF, 804
POLY_FIT, 916
POLYFITW, 924
REGRESS, 1061
SFIT, 1122
SVDFIT, 1252

CURVEFIT function, 249
cutoff value

Chi-square distribution, 165
F distribution, 438
Gaussian distribution, 480
T distribution, 1262

CV_COORD function, 253
CVTTOBM function, 255
CW_ANIMATE function, 257
CW_ANIMATE_GETP procedure, 262
CW_ANIMATE_LOAD procedure, 264
Index IDL Reference Guide

2295
CW_ANIMATE_RUN procedure, 266
CW_ARCBALL function, 268
CW_BGROUP function, 272
CW_BSELECTOR,see obsolete routines
CW_CLR_INDEX function, 277
CW_COLORSEL function, 280
CW_DEFROI function, 282
CW_DICE function, 286
CW_FIELD function, 288
CW_FILESEL function, 292
CW_FORM function, 294
CW_FSLIDER function, 302
CW_LIGHT_EDITOR function, 306
CW_LIGHT_EDITOR_GET procedure, 310
CW_LIGHT_EDITOR_SET procedure, 313
CW_LOADSTATE,see obsolete routines
CW_ORIENT function, 315
CW_PALETTE_EDITOR function, 317
CW_PALETTE_EDITOR_GET procedure,
323
CW_PALETTE_EDITOR_SET procedure,
324
CW_PDMENU function, 325, 1408
CW_RGBSLIDER function, 331
CW_SAVESTATE,see obsolete routines
CW_TMPL procedure, 334
CW_ZOOM function, 335
cylindrical coordinates, 253
cylindrical equidistant map projection, 762

D
data coordinates

converting to other types, 221
data entry

field widget, 288
DATA keyword, 2180
date

converting calendar to Julian, 593
converting from string to binary, 107
converting Julian to calendar, 136

displaying calendars, 139
labeling axes with, 605
returning current, 1260

Daubechies wavelet filter, 1560
Davidon-Fletcher-Powell minimization, 368
day, returning current, 1260
DBLARR function, 340
DCINDGEN function, 341
DCL interpreter symbols

defining, 1115
deleting, 358

DCOMPLEX function, 342
DCOMPLEXARR function, 344
DDE routines,see obsolete routines
deallocated memory, returning amount of, 526
debugging, 119

PROFILER procedure, 944
DECOMPOSED keyword, 2099
decomposition

Cholesky, 168, 169
LU, 730, 734
singular value, 1250, 1258

default button, 1419
default font, 1997
default visual class, 2165
DEFINE_KEY procedure, 345
defining

command or help path, 427
keys, 345
region of interest, 354
system variables, 356

DEFROI function, 354
DEFSYSV procedure, 356
Delaunay triangulation, 1297
DELETE_SYMBOL procedure, 358
deleting

DCL interpreter symbols, 358
variables, 360
windows, 1374

DELLOG procedure, 359
DELVAR procedure, 360
IDL Reference Guide Index

2296
DEMI keyword, 2100
DEMO_MODE,see obsolete routines
density function, 535, 536
DERIV function, 361
DERIVSIG function, 362
de-sensitizing widgets, 1431
destroying

widgets, 1420
windows, 1374

DETERM function, 363
determinant of a square matrix, 363
deviation, mean absolute, 776
device

backing store, 2128
CGM, 2134
coordinates

converting to other types, 221
display channels, 2208
flags, 2205
font, 2103
for graphics output, 2088
graphics

output, 2088
height, 2126
HP-GL, 2136
LJ, 2139
Macintosh (MAC), 2143
Microsoft Windows (WIN), 2163
monochrome, 2130
name of, 2206
Null, 2144
number of color table indices, 2206
number of colors, 2206
offset, 2125, 2126
PCL, 2145
PostScript, 2148
Printer, 2147
Regis terminals, 2160
resolution of, 2207
size of display, 2207
Tektronix, 2161

width, 2126
X Windows, 2164
Z-buffer, 2172

Device fonts, 2230
DEVICE keyword, 2180
DEVICE procedure, 365, 2088
DFPMIN procedure, 368
DIALOG_MESSAGE function, 371
DIALOG_PICKFILE function, 374
DIALOG_PRINTERSETUP function, 377
DIALOG_PRINTJOB function, 378
DIALOG_READ_IMAGE function, 380
DIALOG_WRITE_IMAGE function, 382
dialogs

message dialog box, 371
modal, 371

dice widget, 286
dicer, 1148
DIFFEQ_23,see obsolete routines
DIFFEQ_45,see obsolete routines
differentiation, CONVOL function, 222
digital dissolve effect, 391
DIGITAL_FILTER function, 384
DILATE function, 386
dilation operator, 386
DINDGEN function, 390
Direct Graphics

font use, 2231
DIRECT_COLOR keyword, 2101
DirectColor visuals, 2099
direction

light source for shaded surface plots, 1113
directories

changing, 155
main directory system variable, 2199
popping, 932
printing, 940
pushing, 960

DISP_TEXT,see obsolete routines
displaying images, 1320

flickering, 454
Index IDL Reference Guide

2297
true-color, 1322
with intensity scaling, 1333

displaying text
ASCII files, 1566
in a graphics window, 1600

displays
size, 2207

DISSOLVE procedure, 391
DIST function, 392
dithering, 2128, 2130

Floyd-Steinberg, 2103
ordered, 2109
threshold, 2123

DLM_LOAD procedure, 393
DO_APPLE_SCRIPT procedure, 394
DOC_LIBRARY procedure, 396
documentation headers, extracting, 396
dollar sign, 2221
Doppler frequency, 1360
DOUBLE function, 399
double-clicks, 1489
double-precision

arrays, creating, 340, 390
type, converting to, 399

drag events
for floating-point slider widgets, 303
for RGB slider widgets, 332
for slider widgets, 1491, 1498
in draw widgets, 1421, 1446

draw widgets, 1443
backing store, 1453
changing size, 1421, 1422
events

determining if set, 1467, 1467, 1467, 1467
returned by, 1452
returning, 1421

motion events, 1446
obtaining window number of, 1450
returning events, 1421, 1421, 1421, 1421
viewport, position, 1424, 1432

DRAW_ROI procedure, 400

drawing
arrows, 85
continents, 743
lines (PLOTS procedure), 899
objects (ANNOTATE procedure), 81

droplist widgets, 1454
events returned by, 1459
returning

current selection, 1467
number of elements, 1467

setting, 1432
DXF object, 1689
DXF_TYPE field, 1696
dynamic memory, returning amount in use, 526
dynamically loaded modules, keyword, 524

E
earth, interpolating irregularly-sampled data
over, 1297
edge detection, CONVOL function, 222
edge enhancement

ROBERTS function, 1085
SOBEL function, 1173

EDIT executive command,see commands
EFONT procedure, 402
EIGEN_II, see obsolete routines
EIGENQL function, 403
eigenvalues, 403, 406, 408, 541, 1307
EIGENVEC function, 406
eigenvectors, 403, 406, 1307
EJECT keyword, 2101
elements, number of, 842
ELMHES function, 408
EMPTY procedure, 409
emptying

file buffers, 460
graphics buffers, 409

ENABLE_SYSRTN procedure, 410
ENCAPSULATED keyword, 2102
encapsulated PostScript, 2153
IDL Reference Guide Index

2298
ENCODING keyword, 2102
end-of-file, 412, 1375
environment variables

adding or changing, 1116
returning, 497
returning value of, 496
setting, 498
UNIX, 497

EOF function, 412
EPS machine-specific parameter, 739
EPSI files, 2112
EPSNEG machine-specific parameter, 739
EQUAL_VARIANCE, see obsolete routines
equivalence strings, 1312, 1313
Erase method, 1738, 2056
ERASE procedure, 415
erasing IDL windows, 415
ERODE function, 417
erosion operator, morphologic, 417
ERRORF function, 420
errors

error bars, 421, 878, 898
error function (ERRORF), 420
handling

CATCH procedure, 153
ON_ERROR procedure, 859
ON_IOERROR procedure, 860
OPEN procedure, 865

messages
generating (MESSAGE procedure), 801
modal widget dialog, 371
returning text of, 1225

placing error status in variable, 865
ERRPLOT procedure, 421
Euclidean norm, 849
events

basic structure returned by all widgets, 1463
button release, 1408
clearing, 1418
processing, 1462
returned by

button widgets, 1412
draw widgets, 1452
droplist widgets, 1459
list widgets, 1489
slider widgets, 1497
text widgets, 1521
top-level base widgets, 1403

returning
base resize events, 1397
handler procedure name, 1468
keyboard focus events, 1388, 1503, 1516

sending to widgets, 1431
top-level base kill events, 1397

example files
surf_track.pro, 2085

exclamation point, 2221, 2249
EXECUTE, 411
EXECUTE function, 149, 150, 151, 423
EXIT procedure, 424
exiting IDL, 424
EXP function, 425
EXPAND procedure, 426
EXPAND_PATH function, 427
EXPINT function, 430
exponential

integral, 430
natural, 425
random deviates, 991, 995

expressions
returning information on, 523

external
sharable object, 140

EXTRAC function, 432
EXTRACT_SLICE function, 434
EXTRUSION field, 1696

F
F distribution, 438, 439
F_CVF function, 438
F_PDF function, 439
Index IDL Reference Guide

2299
F_TEST,see obsolete routines
F_TEST1,see obsolete routines
FACTORIAL function, 440
Fast Fourier transform, 442
FFT function, 442
field

plots, 457, 896
widget, 288

file units
allocating, 493
returning information about, 524
See also logical unit numbers
setting file position pointer, 904

FILENAME keyword, 2103
FILEPATH function, 446
files

closing, 174, 464, 2096
displaying ASCII, 1566
end-of-file, 1375
filenames, 2103
finding, 374, 448
finding in IDL distribution, 446
freeing logical unit numbers, 464
Macintosh path, 2202
opening, 863
pointer position, 466

POINT_LUN procedure, 904
printing to, 937
reading

ASCII data, 1004
binary data from, 1047
data, 1001
unformatted binary data, 1047

returning information on open, 523
selecting, 374
size of, 466
skipping records, 1147
special functions (IOCTL function), 583
updating records (REWRITE keyword),
1557
with indexed organization, 1003

writing formatted output, 937
writing unformatted binary data, 1556

FILL_DIST system variable field, 2204
FILLCONTOUR,see obsolete routines
filling

plotting symbols, 1346
polygons, 918, 922

filtering
convolution, 115
digital, 384
digital filters, 384
filenames, 374
frequency domain, 442
Hanning windows, 511
histogram equalization, 533
Lee filter algorithm, 611
mean, 1171
median, 778
morphologic dilation, 386
morphologic erosion, 417
Roberts, 1085
Sobel, 1173

FINDFILE function, 448
FINDGEN function, 450
finding files, 374
finite

numbers, 451
FINITE function, 451
FIX function, 452
FLAGS system variable field, 2205
FLICK procedure, 454
FLOAT function, 455
floating-point

arithmetic, 738
arrays, 450, 459
converting type to, 455
mantissa, 738
native format, 127
precision, 739
slider widgets, 302
XDR format, 127
IDL Reference Guide Index

2300
FLOOR function, 456
flow

control, 2125
field, plotting, 457, 1354

FLOW3 procedure, 457
FLOYD keyword, 2103
FLTARR function, 459
FLUSH procedure, 460
focus events, 1388, 1427, 1469, 1503, 1516
folders, Macintosh, 2202
FONT keyword, 2103, 2181
font object, 1795

modifiers, 1798
FONT system variable field, 2208
FONT_INDEX keyword, 2104
FONT_SIZE keyword, 2104
fonts

character sets, 2249
default for widgets, 1419
device, 2230
Direct Graphics, 2231
displaying vector fonts, 1137
displaying X Windows fonts, 1568
editing, 402
examples of TrueType fonts, 2258
examples of vector fonts, 2261
finding current X windows font, 2104
finding names of, 2104
finding number of, 2104
hardware, 2230
Hershey, 2230
Object Graphics, 2231
outline, 2230
positioning commands, 2251
PostScript, 951
TrueType, 2118, 2230, 2242
vector, 2230

FOR statement, 100, 461
formal parameters, 49, 1609
FORMAT_AXIS_VALUES function, 462
forms, creating, 294

FORRD,see obsolete routines
FORRD_KEY,see obsolete routines
Fortran file formats, 866
forward difference, 1315
FORWARD_FUNCTION statement, 463
FORWRT proceduresee WRITEU
FORWRT,see obsolete routines
four-dimensional displays, 926
Fourier transform, 442
FREE_LUN procedure, 174, 464
FRIEDMAN, see obsolete routines
FSTAT function, 465
FSTAT structure, 465
FULSTR function, 468
FUNCT procedure, 470
function keys

defining, 345, 352
for different keyboards, 1119
returning definitions, 523, 525

function methods
calling sequence for, 1608

functions
calling sequence for, 49
compiled, 1092
displaying compiled, 528

FUNTION statement, 471
FV_TEST function, 472
FX_ROOT function, 474
FZ_ROOTS function, 476

G
gamma correction, 479
GAMMA function, 478
gamma function

incomplete, 556
logarithm of, 713

gamma random deviates, 991, 995
GAMMA_CT procedure, 479
garbage collection, 521
GAUSS,see obsolete routines
Index IDL Reference Guide

2301
GAUSS_CVF function, 480
GAUSS_PDF function, 481
GAUSS2DFIT function, 483
GAUSSFIT function, 486
Gaussian

distribution, 480, 481
elimination method, 581
integral, 489
iterated quadrature, 565, 568
two-dimensional fit, 483

GAUSSINT function, 489
Gauss-Krueger map projection, 763
Gauss-Seidel iteration, 506
general perspective map projection, 763
general triangles, 1982
Get method, 1615
GET_CURRENT_FONT keyword, 2104
GET_DECOMPOSED keyword, 2104
GET_DRIVE_LIST function, 490
GET_FONTNAMES keyword, 2104
GET_FONTNUM keyword, 2104
GET_GRAPHICS_FUNCTION keyword,
2105
GET_KBRD function, 491
GET_LUN procedure, 174, 464, 493
GET_SCREEN_SIZE function, 494
GET_SCREEN_SIZE keyword, 2105
GET_SYMBOL function, 495
GET_VISUAL_DEPTH keyword, 2105
GET_VISUAL_NAME keyword, 2105
GET_WINDOW_POSITION keyword, 2106
GET_WRITE_MASK keyword, 2106
GetByName method, 1843, 1954, 2004, 2015
GetContents method, 1692
GetDeviceInfo method

IDLgrBuffer, 1740
IDLgrClipboard, 1759
IDLgrVRML , 2042
IDLgrWiindow, 2058

GetEntity method, 1695
GETENV function, 496, 497

GetFontnames method, 1742, 1761, 1924,
2044, 2060
GETHELP,see obsolete routines
GetPalette method, 1706
GetRGB method, 1865
GetTextDimensions method, 1744, 1763,
1927, 2046, 2063
GIF files

reading, 1012
writing, 1530

GIN_CHARS keyword, 2106
gnomic map projection, 762
gnomonic map projection, 762
GO executive command,see commands
GOODFIT,see obsolete routines
GOTO statement, 499
Gouraud shading, 1113
graphics

cursor positioning, 246
devices, 2088

DEVICE procedure, 365
erasing, 415
returning information about current, 524
setting, 1111

functions
getting, 2105
setting, 2119

image file formats
BMP, 1009, 1528
GIF, 1012, 1530
Interfile, 1016
JPEG, 1017, 1533
NRIF, 1536
PICT, 1021, 1538
SRF, 1028, 1543
TIFF, 1033, 1547
X11 bitmap, 1042
XWD, 1044

keywords (collected), 2177
GRAPHICS_TIMES procedure, 1283
IDL Reference Guide Index

2302
grid
across a plot (TICKLEN keyword), 2188

GRID_TPS function, 500
GRID3 function, 503
gridding, 1300

spherical, 1182, 1297, 1300
GRIDSTYLE system variable field, 2213
growth trends, 185
GS_ITER function, 506
guard digits, 739

H
H_EQ_CT procedure, 509
H_EQ_INT procedure, 510
halftoning, 2128
halting program execution, 1203
Hammer-Aitoff map projection, 762, 762
HANDLE_CREATE,see obsolete routines
HANDLE_FREE,see obsolete routines
HANDLE_INFO, see obsolete routines
HANDLE_MOVE, see obsolete routines
HANDLE_VALUE, see obsolete routines
HANNING function, 511
hardware fonts, 2230
HDF_BROWSER function, 513
HDF_READ function, 517
heap variables

creating, 956
destroying, 955
garbage collection, 521

HEAP_GC procedure, 521
help

ONLINE_HELP procedure, 861
HELP procedure, 523
HELP_VM, see obsolete routines
HELVETICA keyword, 2106
Hershey fonts, 2230
Hershey, Dr. A. V., 2232
Hessenberg array or matrix, 408, 541

Hewlett-Packard Graphics Language,see HP-
GL
hiding cursor, 1325
HILBERT function, 530
HIST_2D function, 531
HIST_EQUAL function, 533
histogram

equalization
H_EQ_CT function, 509
interactive (H_EQ_INT function), 510

plotting mode, 2185
HISTOGRAM function, 535
HLS color system, 179, 331, 1326
HLS procedure, 539
hourglass cursor

(for widgets), 1426
saving, 1462

Householder
method, 1309
reductions, 403

HP-GL
driver, 2136
files, 2131

HQR function, 541
HSV color system, 179, 331, 1326
HSV procedure, 543
HSV_TO_R, see obsolete routines
HTML, 808
hyperbolic

cosine, 231
sine, 1141
tangent, 1270

HyperText Markup Language, 808
hypothesis testing

Chi-square model validation, 1595
contingency test for independence, 244
F-variances test, 472
Kruskal-Wallis H-test, 601
Lomb frequency test, 714
Mann-Whitney U-test, 1095
median delta test, 773
Index IDL Reference Guide

2303
normality test, 472, 1284
runs test for randomness, 988
sign test, 1097
t-means test, 1284
Wilcoxon rank-sum test, 1095

I
I/O, see input/output
IBETA function, 545
IBETA machine-specific parameter, 738
Iconify method, 2065
iconifying

widgets, 1426
windows, 1559

icons, editing, 1564
IDENTITY function, 547
IDL

for Macintosh, 2143
for Windows, 2163

IDL_Container
Add method, 1612
class, 1611
Cleanup method, 1613
Count method, 1614
Get method, 1615
Init method, 1616, 1707
IsContained method, 1617
Move method, 1618
Remove method, 1619

IDLanROI
AppendData method, 1622
Cleanup method, 1624
ComputeGeometry method, 1625
ComputeMask method, 1627
ContainsPoints method, 1630
GetProperty method, 1632
Init method, 1634
RemoveData method, 1636
ReplaceData method, 1637
Rotate method, 1639

Scale method, 1640
SetProperty method, 1641
Translate method, 1642

IDLanROI object class, 1620
IDLanROIGroup

Add method, 1645
Cleanup method, 1646
ComputeMask method, 1647
ComputeMesh method, 1650
ContainsPoints method, 1652
GetProperty method, 1654
Init method, 1656
Rotate method, 1657
Scale method, 1658
Translate method, 1659

IDLanROIGroup object class, 1643
IDLffDICOM

Cleanup method, 1666
DumpElements method, 1667
GetChildren method, 1668
GetDescription method, 1670
GetElement method, 1672
GetGroup method, 1674
GetLength method, 1676
GetParent method, 1677
GetPreamble method, 1678
GetReference method, 1679
GetValue method, 1681
GetVR method, 1684
Init method, 1686
Read method, 1687
Reset method, 1688

IDLffDICOM object, 1660
IDLffDXF , 1689

Cleanup method, 1691
GetContents method, 1692
GetEntity method, 1695
GetPalette method, 1706
Init method, 1707
PutEntity method, 1708
Read method, 1709
IDL Reference Guide Index

2304
RemoveEntity method, 1710
Reset method, 1711
SetPalette method, 1712
Write method, 1713

IDLffLanguageCat
class, 1714
IsValid method, 1715
Query method, 1716
SetCatalog method, 1717

IDLgrAxis
class, 1718
Cleanup method, 1719
GetCTM method, 1720
GetProperty method, 1722
Init method, 1724
SetProperty method, 1733

IDLgrBuffer
Cleanup method, 1736
Draw method, 1737
Erase method, 1738
GetDeviceInfo method, 1740
GetFontnames method, 1742, 1761, 1924,
2044
GetProperty method, 1743
GetTextDimensions method, 1744
Init method, 1745
Pickdata method, 1748
Read method, 1750
Select method, 1751
SetProperty method, 1753

IDLgrBuffer class, 1734
IDLgrClipboard

Cleanup method, 1755
Draw method, 1756
GetContiguousPixels method, 1758
GetDeviceInfo method, 1759
GetProperty method, 1762
GetTextDimensions method, 1763
Init method, 1765

IDLgrClipboard object, 1754

IDLgrColorbar
class, 1769
Cleanup method, 1770
ComputeDimensions method, 1771
GetProperty method, 1772
Init method, 1774
SetProperty method, 1780

IDLgrColorbar object, 1769
IDLgrContour

Cleanup method, 1782
GetCTM method, 1783
GetProperty method, 1785
Init method, 1787
SetProperty method, 1794

IDLgrContour object, 1781
IDLgrFont

class, 1795
Cleanup method, 1796
GetProperty method, 1797
Init method, 1798
SetProperty method, 1800

IDLgrImage
class, 1801
Cleanup method, 1803
GetCTM method, 1804
GetProperty method, 1806
Init method, 1808
SetProperty method, 1814

IDLgrLegend
Cleanup method, 1817
ComputeDimensions method, 1818
GetProperty method, 1819
Init method, 1821
SetProperty method, 1827

IDLgrLight
class, 1828
Cleanup method, 1829
GetCTM method, 1830
GetProperty method, 1832
Init method, 1833
SetProperty method, 1837
Index IDL Reference Guide

2305
IDLgrModel
Add method, 1840
class, 1838
Cleanup method, 1841
Draw method, 1842
GetByName method, 1843
GetCTM method, 1844
GetProperty method, 1846
Init method, 1847
Reset method, 1849
Rotate method, 1850
Scale method, 1851
SetProperty method, 1852
Translate method, 1853

IDLgrMPEG
Cleanup method, 1855
GetProperty method, 1856
Init method, 1857
Put method, 1860
Save method, 1861
SetProperty method, 1862

IDLgrMPEG object, 1854
IDLgrPalette

class, 1863
Cleanup method, 1864
GetProperty method, 1866
GetRGB method, 1865
Init method, 1867
LoadCT method, 1869
NearestColor method, 1870
SetProperty method, 1872
SetRGB method, 1871

IDLgrPattern
class, 1873
Cleanup method, 1874
GetProperty method, 1875
Init method, 1876
SetProperty method, 1878

IDLgrPlot
class, 1879
Cleanup method, 1880

GetCTM method, 1881
GetProperty method, 1883
Init method, 1885
SetProperty method, 1891

IDLgrPolygon
class, 1892
Cleanup method, 1893
GetCTM method, 1894
GetProperty method, 1896
Init method, 1898
SetProperty method, 1906

IDLgrPolyline
class, 1907
Cleanup method, 1908
GetCTM method, 1909
GetProperty method, 1911
Init method, 1913
SetProperty method, 1918

IDLgrPrinter
class, 1919
Cleanup method, 1921
Draw method, 1922
GetContiguousPixels method, 1923
GetProperty method, 1925
GetTextDimensions method, 1927
Init method, 1929
NewDocument method, 1933
NewPage method, 1934
SetProperty method, 1935

IDLgrROI
Cleanup method, 1938
GetProperty method, 1939
Init methodI, 1940
PickVertex method, 1944
SetProperty method, 1945

IDLgrROI object class, 1936
IDLgrROIGroup

Add method, 1947
Cleanup method, 1948
Init method, 1949
PickRegion method, 1950
IDL Reference Guide Index

2306
IDLgrROIGroup object class, 1946
IDLgrScene

Add method, 1952
class, 1951
Cleanup method, 1953
GetByName method, 1954
GetProperty method, 1955
Init method, 1956
SetProperty method, 1958

IDLgrSurface
class, 1959
Cleanup method, 1960
GetCTM method, 1961
GetProperty method, 1963
Init method, 1965
SetProperty method, 1974

IDLgrSymbol
class, 1975
Cleanup method, 1976
GetProperty method, 1977
Init method, 1978
SetProperty method, 1981

IDLgrTessellator
AddPolygon method, 1983
class, 1982
Cleanup method, 1985
Init method, 1986
Reset method, 1987
Tessellate method, 1988

IDLgrText
class, 1989
Cleanup method, 1990
GetCTM method, 1991
GetProperty method, 1993
Init method, 1995
SetProperty method, 2000

IDLgrView
Add method, 2002, 2003
class, 2001
GetByName method, 2004
GetProperty method, 2005

Init method, 2006
SetProperty method, 2010

IDLgrViewgroup
Add method, 2013
Cleanup method, 2014
GetByName method, 2015
GetProperty method, 2016
Init method, 2017
SetProperty method, 2019

IDLgrViewgroup object, 2011
IDLgrVolume

class, 2020
Cleanup method, 2021
ComputeBounds method, 2022
GetCTM method, 2023
GetProperty method, 2025
Init method, 2027
PickVoxel method, 2035
SetProperty method, 2036

IDLgrVRML
Draw method, 2041
GetDeviceInfo method, 2042
GetProperty method, 2045
GetTextDimensions method, 2046
Init method, 2048
SetProperty method, 2051

IDLgrVRML object, 2037
IDLgrWindow

class, 2052
Cleanup method, 2054
Draw method, 2055
Erase method, 2056
GetContiguousPixels method, 1739, 2057
GetDeviceInfo method, 2058
GetFontnames method, 2060
GetProperty method, 2061
GetTextDimensions method, 2063
Iconify method, 2065
Init method, 2066
maximum size, 2052
Pickdata method, 2071
Index IDL Reference Guide

2307
Read method, 2073
Select method, 2074
SetCurrentCursor method, 2076
SetProperty method, 2078
Show method, 2079

IEXP machine-specific parameter, 739
IF...THEN...ELSE statement, 555
IGAMMA function, 556
image object, 1801
IMAGE_CONT procedure, 558
IMAGE_STATISTICS procedure, 559
images, 1801

annotating, 81
bi-level, 1280
color channel, 1810
copying areas, 2097
defining region of interest, 354
displaying, 335, 454, 1167, 1320, 1324,
1326, 1329, 1333
displaying with intensity scaling, 1333
dissolve effect, 391
JPEG, 1017
magnified, 1603, 1605
monochrome, 2130
MPEG files, 830, 831, 833, 835
profiling, 942, 946
reading from display, 1329
region labeling, 607
Roberts edge enhancement, 1085
rotating, 1089
searching for objects, 1105
sharing data, 1812
smoothing, 1171
Sobel edge enhancement, 1173
thinning, 1280
transfer direction, 2207
true-color, 1330
warping, 911
warping to maps, 750, 754
with surface and contour plots, 1135
zooming, 335

IMAGINARY function, 562
imaginary part of complex numbers, 562
INCHES keyword, 2107
incomplete

beta function, 545
gamma function, 556

incrementing array elements, 537
INDEX_COLOR keyword, 2107
INDGEN function, 563
Infinity norm, 849
INP, see obsolete routines
input/output

associated variables, 90
bitmap files, 1009
BMP files, 1528
closing files, 174
emptying buffers, 409, 460
end of file mark, 1375
errors, 860
formatted, 937
GIF files, 1012, 1530
Interfile files, 1016
JPEG files, 1017, 1533
NRIF files, 1536
opening files, 863
PGM files, 1025, 1541
PICT files, 1021, 1538
PPM files, 1025, 1541
reading

ASCII files, 1004
formatted data, 1001
formatted data from a string, 1045
from a prompt, 1002
from tape unit, 1271
unformatted binary data, 1047

SRF files, 1028, 1543
TIFF files, 1033, 1547
updating records (REWRITE keyword),
1557
wave files, 1040, 1554
IDL Reference Guide Index

2308
writing
to tape unit, 1272
unformatted binary data, 1556

X11 Bitmaps, 1042
XWD files, 1044

INT_2D function, 565
INT_3D function, 568
INT_TABULATED function, 571
INTARR function, 573
integer, 452

arrays, 563, 573
data type, converting to, 452

integration
INT_2D, 565
INT_3D, 568
INT_TABULATED, 571
QROMB, 961
QROMO, 963
QSIMP, 966
RK4, 1083
tabulated functions, 571
univariate functions, 961, 963, 966

Interfile files
reading, 1016

INTERPOL function, 574
INTERPOLATE function, 577
interpolation, 577

bilinear, 105, 1049
cubic convolution, 578, 912
cubic spline, 1184, 1188, 1190
irregularly-gridded data, 1300
irregularly-sampled data over earth, 1297
KRIG2D, 596
MIN_CURVE_SURF, 804
of irregularly-gridded data, 596, 804
POLAR_SURFACE, 908
quintic, 1302
spherical, 1182
SPL_INIT, 1184
SPL_INTERP, 1186

interpreter symbols, DCL
defining, 1115
deleting, 358
returning values, 495

invalid widget ID’s, 1461
inverse

cosine, 72
of a complex array or matrix, 728
sine, 89
subspace iteration, 406
tangent, 92

INVERT function, 581
IOCTL function, 583
IRND machine-specific parameter, 739
irregularly-gridded data, 1297, 1300
IsContained method, 1617
ISHFT function, 586
ISO Latin 1 encoding, 2233
ISOCONTOUR procedure, 587
ISOLATIN1 keyword, 2107
ISOSURFACE procedure, 590
isosurfaces, displaying, 1130
IT machine-specific parameter, 738
ITALIC keyword, 2107
iterative

biconjugate gradient, 612
Gaussian quadrature, 565, 568
improvement of a solution, 732

J
JFIF,see JPEG
JOIN,see obsolete routines
JOURNAL procedure, 592
JPEG files

reading, 1017
writing, 1533

JULDAY function, 593
Julian date

converting from calendar, 593
converting to calendar, 136
Index IDL Reference Guide

2309
K
Kendall’s tau rank correlation, 986
kernel, convolving an array with, 222
keyboard

defining keys, 345
focus events, 1388, 1427, 1469, 1503, 1516
numeric keypads, 1121
returning characters from, 491

keys, defining for different keyboards, 1119
KEYWORD_SET function, 595
keywords

arguments,checking existence of, 83
described, 49, 1609
graphics, 2177
identifying as set, 595
meaning of slash character, 1609
searching, 861
setting, 1609

KMEANS, see obsolete routines
KRIG2D function, 596
kriging, 596
KRUSKAL_WALLIS, see obsolete routines
Kruskal-Wallis H-Test, 601
kurtosis, 600, 813
KURTOSIS function, 600
KW_TEST function, 601

L
L64INDGEN function, 604
label widgets, 1477
LABEL_DATE function, 605
LABEL_REGION function, 607
labeling regions, 607
LADFIT function, 609
lagged

autocorrelation, 70
cross correlation, 134

Laguerre’s method, 476

Lambert’s conformal conic map projection,
762
Lambert’s equal-area map projection, 762
LANDSCAPE keyword, 2107
landscape orientation, 2151

for IDL plots (LANDSCAPE keyword),
2107

laser printers, 2148
LATLON, see obsolete routines
LAYER field, 1696
least absolute deviation, 609
least squares fit, 249, 486, 916, 924, 1252
LEEFILT function, 611
LEGO,see obsolete routines
length of strings, 1220
LIGHT keyword, 2108
light object, 1828
light source, 1828

shading, 1113
LINBCG function, 612
LINDGEN function, 615
line

drawing
method for contours, 208
PLOTS procedure, 899

editing
enabling and disabling, 2199

interval, 2204
styles, 2181

linear
interpolation, 577
linear-log plots, 890
regression, 1061

linear algebra
CHOLDC, 168
CHOLSOL, 169
COND, 197
CRAMER, 232
DETERM, 363
EIGENVEC, 406
ELMHES, 408
IDL Reference Guide Index

2310
GS_ITER, 506
HQR, 541
INVERT, 581
LINBCG, 612, 612
LU_COMPLEX, 728
LUDC, 730
LUMPROVE, 732
LUSOL, 734
NORM, 849
SVDC, 1250
SVSOL, 1257
TRIQL, 1307
TRIRED, 1309
TRISOL, 1310

LINESTYLE field, 1696
LINESTYLE keyword, 2181
LINESTYLE system variable field, 2209
linestyles, table of, 2181
LINFIT function, 616
LINKIMAGE procedure, 140, 618
list widgets, 1483

determining
currently selected element

LIST_SELECT keyword, 1470
topmost element

LIST_TOP keyword, 1470
double-clicks, 1489
events returned by, 1489
number, 1470, 1470
selecting multiple items, 1469, 1485
setting, 1432, 1433

LISTREP,see obsolete routines
LISTWISE,see obsolete routines
little endian byte ordering, 1259
LIVE_CONTOUR procedure, 626
LIVE_CONTROL procedure, 634
LIVE_DESTROY procedure, 637
LIVE_EXPORT procedure, 639
LIVE_IMAGE procedure, 642
LIVE_INFO procedure, 649
LIVE_LINE procedure, 660

LIVE_LOAD procedure, 664
LIVE_OPLOT procedure, 665
LIVE_PLOT procedure, 670
LIVE_PRINT procedure, 678
LIVE_RECT procedure, 680
LIVE_STYLE function, 684
LIVE_SURFACE procedure, 691
LIVE_TEXT procedure, 699
LJ device

color tables for, 703
LJ driver, 2139
LJLCT procedure, 703
LL_ARC_DISTANCE function, 704
LMFIT function, 706
LMGR function, 710
LN03, see obsolete routines
LNGAMMA function, 713
LNP_TEST function, 714
LoadCT method, 1869
LOADCT procedure, 716
loading color tables, 1326
LOCALE_GET function, 718
logarithm

base 10, 76
natural, 75
of the gamma function, 713

logarithmic
axes, [XYZ]LOG keywords, 94, 217, 217,
890, 1127, 1127, 1248, 1248, 1248

logging an IDL session, 592
logical names (VMS)

defining, 1117
deleting, 359
searching tables, 1312

logical unit numbers
!D system variable field, 2206
allocating, 493
for journal file, 2200
freeing, 464
FSTAT function, 465
getting, 866
Index IDL Reference Guide

2311
obtaining status information, 465
returning information about, 524
setting file position pointer, 904

log-linear plots, 94, 217, 217, 890, 1127, 1127,
1248, 1248, 1248
Lomb Normalized Periodogram, 714
LON64ARR function, 719
LONARR function, 720
LONG function, 721
LONG64 function, 722
longjmp, C language, 153
longword

arrays, 615, 720, 1340
data type, converting to, 721
unsigned arrays, 1339

lossy compression, 1017, 1533
lower margin, setting, 2213
lowercase, converting strings to, 1221
LSODE function, 723
LU decomposition, 728, 730, 734
LU_COMPLEX function, 728
LUBKSB, see obsolete routines
LUDC procedure, 730
LUDCMP, see obsolete routines
luminance, 242
LUMPROVE function, 732
LUN’s (logical unit numbers), 464
LUSOL function, 734

M
M_CORRELATE function, 736
MACHAR function, 738
MACHEP machine-specific parameter, 739
machine-specific parameters, 738
Macintosh

display device (MAC), 2088, 2143
path specification, 2202

magnifying arrays, 1049
magnitude

of a complex number, 71

magnitude-based ranks, 998
MAKE_ARRAY function, 740
MAKETREE, see obsolete routines
MANN_WHITNEY, see obsolete routines
Mann-Whitney U-Test, 1095
map projections, 760

Aitoff , 761
Alber’s equal area conic, 762
azimuthal equidistant, 762
cylindrical equidistant, 762
drawing boundaries over, 743
drawing continent boundaries, 764
drawing parallels and meridians, 746
gnomonic (central, gnomic), 762
Hammer-Aitoff, 762
Lambert’s conformal conic, 762
Lambert’s equal area, 762
Mercator, 762
Miller , 763
Mollweide, 763
orthographic, 763
satellite, 763
sinusoidal, 763
stereographic, 763
Transverse Mercator (UTM), 763
warping images to maps, 750, 754

MAP_CONTINENTS procedure, 743
MAP_GRID procedure, 746
MAP_IMAGE function, 750
MAP_PATCH function, 754
MAP_PROJ_INFO procedure, 758
MAP_SET procedure, 760
mapping widgets, 1389
MARGIN system variable field, 2213
margins, setting, 2213, 2213
marquee selector, 117
matrix operators

CHOLDC, 168
CHOLSOL, 169
COND, 197
CRAMER, 232
IDL Reference Guide Index

2312
DETERM, 363
EIGENVEC, 406
ELMHES, 408
GS_ITER, 506
HQR, 541
INVERT, 581
LU_COMPLEX, 728
LUDC, 730
LUMPROVE, 732
LUSOL, 734
NORM, 849
SVDC, 1250
SVSOL, 1257
TRIQL, 1307
TRIRED, 1309
TRISOL, 1310
See also sparse arrays

MAX function, 771
MAXEXP machine-specific parameter, 739
maximum size of drawable, 2052
maximum value

for slider widgets, 1493
of an array, 771

MD_TEST function, 773
mean

absolute deviation, 776
MOMENT function, 813
of distribution, 601

MEAN function, 775
MEANABSDEV function, 776
median

Median Delta Test, 773
MOMENT function, 813
smoothing, 778

MEDIAN function, 778
MEDIUM keyword, 2108
memory

conserving by using temporary variables,
1274
dynamic memory in use, 526

menu bars, 1384, 1389

menus
menu bars, 1384, 1389
pulldown, 1408

MENUS,see obsolete routines
Mercator map projection, 762
meridians, drawing, 746, 765
mesh plots, 1244
MESH_CLIP function, 780
MESH_DECIMATE function, 782
MESH_ISSOLID function, 784
MESH_MERGE function, 785
MESH_NUMTRIANGLES function, 787
MESH_OBJ procedure, 788
MESH_SMOOTH function, 794
MESH_SURFACEAREA function, 796
MESH_VALIDATE function, 798
MESH_VOLUME function, 800
message dialogs, 371
MESSAGE procedure, 801
messages,suppressing informational, 2203
Microsoft Windows display device (WIN),
2088, 2163
Miller map projection, 763
MIN function, 803
MIN_CURVE_SURF function, 208, 804
MINEXP machine-specific parameter, 739
minimization, 368, 933
minimum curvature surface, 804
minimum value

for slider widgets (MINIMUM keyword),
1493
of an array, 803

MINOR system variable field, 2213
MIPSEB_DBLFIXUP,see obsolete routines
missing data

in CONTOUR plots, 214, 214
in irregular grids, 1294, 1302
in map projections, 752, 752
in plots, 875, 876, 889, 889, 1126, 1126,
1246, 1246
in reconstructed images, 1055
Index IDL Reference Guide

2313
in rotated images, 1087
in velocity fields, 1357
in warped images, 913

MK_HTML_HELP procedure, 808
model object, 1838
MODIFYCT procedure, 811
modules

compiled, 528
dynamically loaded, 524

Mollweide map projection, 763
MOMENT function, 813
MORPH_CLOSE function, 816
MORPH_DISTANCE function, 818
MORPH_GRADIENT function, 821
MORPH_HITORMISS function, 823
MORPH_OPEN function, 825
MORPH_THIN function, 827
MORPH_TOPHAT function, 828
morphology

dilation operator, 386
erosion operator, 417

Mosaic, 808
mouse

double-clicks, 1489
reading position of, 1000
reading position with the CURSOR proce-
dure, 246
returning events from draw widgets, 1446

Move method, 1618
MOVIE, see obsolete routines
movies

MPEG, 830, 831, 833, 835
moving averages, 1171, 1318
MPEG object, 1854
MPEG_CLOSE procedure, 830
MPEG_OPEN function, 831
MPEG_PUT procedure, 833
MPEG_SAVE procedure, 835
MPROVE,see obsolete routines
MSG_CAT_CLOSE procedure, 836
MSG_CAT_COMPILE procedure, 837

MSG_CAT_OPEN function, 839
Müller’s method, 474
MULTI procedure, 841
MULTI system variable field, 2209
MULTICOMPARE, see obsolete routines
multiple correlation coefficient, 736
multiple plots on a page, 2209
multivariate analysis

contingency table, 244
Kruskal-Wallis H-test, 601
multiple correlation, 736
partial correlation, 879

multivariate functions
CTI_TEST, 244
KW_TEST, 601
M_CORRELATE, 736
P_CORRELATE, 879

N
N_COLORS system variable field, 2206
N_ELEMENTS function, 842
N_PARAMS function, 843
N_TAGS function, 844
NAME system variable field, 2206
named

variables, 49, 49
named variables, 1609
names

of structure tags, 1267
NARROW keyword, 2108
native format (floating-point values), 127
natural exponential function, 425
natural logarithm, 75
NCAR binary encoding, 2108, 2108
NCAR keyword, 2108
NCAR Raster Interchange Format files, writ-
ing, 1536
NearestColor method, 1870
NEGEP machine-specific parameter, 739
nesting of procedures and functions, 523, 528
IDL Reference Guide Index

2314
Netscape, 808
new page, 415
NewDocument method, 1933
newline character, 1517
NewPage method, 1934
NEWTON function, 846
Newton’s method, 571, 846
NGRD machine-specific parameter, 739
NOCLIP keyword, 2182
NOCLIP system variable field, 2210
NODATA keyword, 2182
NOERASE keyword, 2183
NOERASE system variable field, 2210
noise, filtering, 778
nonlinear equations

BROYDEN, 122
CONSTRAINED_MIN, 202
FX_ROOT, 474
FZ_ROOTS, 476
NEWTON, 846

nonparametric tests
LNP_TEST, 714
MD_TEST, 773
R_TEST, 988
RS_TEST, 1095
S_TEST, 1097
XSQ_TEST, 1595

NORM function, 849
normal

coordinates
converting to other types, 221

distribution (Gaussian), 480, 481
random deviates, 995

NORMAL keyword, 2183
normally-distributed random numbers, 990
NR_BETA,see obsolete routines
NR_BROYDN,see obsolete routines
NR_CHOLDC,see obsolete routines
NR_CHOLSL,see obsolete routines
NR_DFPMIN,see obsolete routines
NR_ELMHES,see obsolete routines

NR_EXPINT,see obsolete routines
NR_FULSTR,see obsolete routines
NR_HQR,see obsolete routines
NR_INVERT,see obsolete routines
NR_LINBCG,see obsolete routines
NR_LUBKSB,see obsolete routines
NR_LUDCMP,see obsolete routines
NR_MACHAR, see obsolete routines
NR_MPROVE,see obsolete routines
NR_NEWT,see obsolete routines
NR_POWELL,see obsolete routines
NR_QROMB,see obsolete routines
NR_QROMO,see obsolete routines
NR_QSIMP,see obsolete routines
NR_RK4,see obsolete routines
NR_SPLINE,see obsolete routines
NR_SPLINT,see obsolete routines
NR_SPRSAB,see obsolete routines
NR_SPRSAX,see obsolete routines
NR_SPRSIN,see obsolete routines
NR_SVBKSB,see obsolete routines
NR_SVD,see obsolete routines
NR_TQLI, see obsolete routines
NR_TRED2,see obsolete routines
NR_TRIDAG,see obsolete routines
NR_WTN,see obsolete routines
NR_ZROOTS,see obsolete routines
NRIF

files, writing, 1536
NSUM system variable field, 2210
Null display device (NULL), 2144
number of array elements, 842
numbers, random, 990, 994
numeric keypads, 1121
numerical integration, 966

O
OBJ_CLASS function, 851
OBJ_DESTROY procedure, 852
OBJ_ISA function, 853
Index IDL Reference Guide

2315
OBJ_NEW function, 854
OBJ_VALID function, 856
OBJARR function, 858
object class

IDLanROI, 1620
IDLanROIGroup, 1643
IDLgrROI, 1936
IDLgrROIGroup, 1946

objects
creating, 854

arrays, 858
destroying, 852
determining

class names, 851
subclasses, 853

Object Graphics
font use, 2231

testing existence, 856
OBLIQUE keyword, 2108
obsolete routines and system variables, 2272
OMARGIN system variable field, 2213
ON_ERROR procedure, 801, 859
ON_IOERROR procedure, 860
online help, 396, 808

calling from programs, 861
ONLINE_HELP procedure, 861
ONLY_8BIT, see obsolete routines
opacities, 1364
OPEN procedures, 863
opening files, 863, 863, 863

getting information on open files, 523
opening operation, in image processing, 388
operating system

current version in use, 2203
OPLOT procedure, 875
OPLOTERR procedure, 878
optimization

AMOEBA function, 77
CONSTRAINED_MIN, 202
DFPMIN, 368
POWELL, 933

OPTIMIZE keyword, 2109
optional parameters in user-written functions,
843
ORDERED keyword, 2109
ordinary differential equations

LSODE function, 723
ordinary differential equations, RK4, 1083
ORIENTATION keyword, 2183
ORIGIN system variable field, 2206
orthographic map projection, 763
OUT executive command,see commands
outer margins, setting, 2213
outline fonts, 2230
outlines of continents, 743
outlying data regression, 609
OUTP,see obsolete routines
output

BMP files, 1528
GIF files, 1530
JPEG files, 1533
NRIF files, 1536
PGM files, 1541
PICT files, 1538
PPM files, 1541
SRF files, 1543
TIFF files, 1547
wave files, 1554

OUTPUT keyword, 2109
overflow, integer, 739
overplotting, 875

P
P_CORRELATE function, 879
page break, 415
PALATINO keyword, 2110
palette object, 1863
PALETTE,see obsolete routines
pan offset, 2206
parallels, drawing, 746, 765
IDL Reference Guide Index

2316
parameters
finding number of, 843
formal, 49, 1609

parents, of widgets, 1471
partial correlation coefficient, 879
PARTIAL_COR,see obsolete routines
PARTIAL2_COR,see obsolete routines
PARTICLE_TRACE function, 881
path

definition string, 427
on a Macintosh, 2202

pattern object, 1873
PCL

driver, 2145
files, 2131

PCOMP function, 884
Pearson correlation coefficient, 228
period (character), 2221
permutation, 440
perspective, 1264
PGM files, 1025, 1541
phase, 92
PHASER,see obsolete routines
Pickdata method, 1748, 2071
PICKFILE, see obsolete routines
PickRegion method

IDLgrROIGroup, 1950
PickVertex method

IDLgrROI, 1944
PickVoxel method, 2035
PICT files

reading, 1021
writing, 1538

pixels
depth, 2100
reading value of, 1000

PIXELS keyword, 2110
plane of vector-drawn text, 1601
plot object, 1879
PLOT procedure, 888
PLOT_3DBOX procedure, 892

PLOT_FIELD procedure, 896
PLOT_IO,see YLOG keyword to PLOT
PLOT_OI,see XLOG keyword to PLOT
PLOT_OO,see (XY)LOG keywords to PLOT
PLOT_TO keyword, 2110
PLOTERR procedure, 898
plots

margins, 2213
outer margins, 2213

PLOTS procedure, 899
PLOTTER_ON_OFF keyword, 2110
plotting, 888

2D fields, 896
3D fields, 457
3D transformations, 226, 268, 315, 1102,
1104, 1249, 1264, 1358, 2186
axes

thickness, 2187
titles, 2190

bar plots, 96
closing files (CLOSE_FILE keyword), 2096
contour plots, 208, 558
drawing axes (AXIS procedure), 93
error bars, 421, 878, 898
filename for output (FILENAME keyword),
2103
flow field, 457
functions of 2 variables, 892
height of output, 2126
histogram, 2185
landscape orientation, 2107, 2107
line thickness, 2187, 2211
lines, 899
linestyles, 2181, 2209
logarithmic axes

linear-log, 890
log-linear, 94, 217, 217, 890, 1127, 1127,
1248, 1248, 1248

missing data, 875, 889
multiple plots on a page, 2154, 2209
output, positioning, 2133
Index IDL Reference Guide

2317

)

overplotting, 558, 875
points, 899
polar, 876, 890
portrait orientation, 2111
position of window, 2183, 2210
region, 2211
selecting a plotting device, 1111
shaded surfaces, 1124
subtitles, 2186, 2211
symbol size, 2186
symbols, 2184, 2210
text, 1600
three-dimensional lines, 900
titles, 2189, 2211
user-defined symbols, 1346
velocity field, 457
velocity fields, 1356
weather fronts, 1376
width of output, 2126
wire-mesh surfaces, 1244
without data, 2182
without erasing, 2183, 2210
XY plots, 888
Z-coordinate for, 2190, 2190

PM, see obsolete routines
PMF,see obsolete routines
PNT_LINE function, 902
POINT_LUN procedure, 904
pointers

creating, 956
creating arrays, 959
destroying, 955
testing existence, 957

Poisson random deviates, 991, 996
polar plots, 890

contours, 906
coordinates, 253, 908

POLAR_CONTOUR procedure, 906
POLAR_SURFACE function, 908
polishing of roots, 476
political boundaries, 743

POLY function, 910
POLY_2D function, 911
POLY_AREA function, 915
POLY_FIT function, 916
POLYCONTOUR,see obsolete routines
POLYFILL keyword, 2111
POLYFILL procedure, 918
POLYFILLV function, 922
POLYFITW function, 924
polygon filling, 918, 922

with HP plotters, 2111
polygon object, 1892
polyline object, 1907
polynomial warping, 911
POLYSHADE function, 926
POLYWARP procedure, 930
POPD procedure, 155, 932
PORTRAIT keyword, 2111
portrait orientation, 2151

for IDL output (PORTRAIT keyword), 2111
POSITION keyword, 2183
POSITION system variable field, 2210
positional parameters, 49, 1609

returning number of, 843
positioning

child widgets within a base, 1400
commands, 2251
cursor, 1324
graphics cursor, 246
PostScript output, 2151
top level base widgets, 1438
widget bases, 1401
windows (XPOS and YPOS keywords), 1526

PostScript
color, 2149
device, 2148
encapsulated, 2102, 2153
EPSI (Encapsulated PostScript Interchange
files, 2112
files, 2131
files with preview headers, 2112
IDL Reference Guide Index

2318
font index, 2104
fonts, 951, 2149
importing graphics into other programs, 2155
importing into another document, 2102
multiple plots on a single page, 2154
pixel bit depth, 2095
positioning output, 2151
scaling entire plot (SCALE_FACTOR key-
word), 2114
true-color images, 2150
writing 24-bit images, 1322, 2151

Powell minimization (POWELL procedure),
933
PPM files, 1025, 1541
PREVIEW keyword, 2112
PRIMES function, 936
principal components analysis, 884
PRINT procedure, 937
PRINT_FILE keyword, 2112
PRINTD procedure, 155, 940
Printer Control Language,see PCL
PRINTER device, 2147
printer object, 1919
PRINTF procedure, 937
printing, 2147

closing files (CLOSE_FILE keyword), 2096
dialog, 378
filename for output (FILENAME keyword),
2103
graphics output files, 2131
landscape orientation, 2107
printer set up, 2132
properties, 377
setup dialog, 377
to file units, 937
to standard output, 937

PRO statement, 941
probability

bivariate distributions, 533
density distribution, 535
Gaussian distribution, 489

Histogram function, 535
probability functions

binomial distribution, 111
Chi-square distribution, 165, 166
F distribution, 438, 439
Gaussian distribution, 480, 481
student’s T distribution, 1262, 1263

procedure methods
calling sequence for, 1608

procedures
call stack, returning, 524
calling

sequence for, 48
compiled, 1092
DEVICE, 2088
displaying compiled, 528
SET_PLOT, 2088

PROFILE function, 942
PROFILER procedure, 944
PROFILES procedure, 946
program

listings, 63
programming

displaying traceback information, 528
identifying keywords as set, 595
stopping programs, 1203
suspending execution of programs, 1369
traceback information, 524

PROJECT_VOL function, 948
projections

2D from 3D datasets, 948
Aitoff , 761
Albers, 762
azimuthal equidistant, 762
backprojection, 1079
cylindrical equidistant, 762
gnomonic (central, gnomic), 762
Hammer-Aitoff, 762
Lambert’s conformal conic, 762
Lambert’s equal area, 762
Mercator, 762
Index IDL Reference Guide

2319
Miller , 763
Mollweide, 763
orthographic, 763
satellite, 763
sinusoidal, 763
stereographic, 763
Transverse Mercator (UTM), 763

prompt
changing default, 2203
reading from, 1002

PROMPT,see obsolete routines
PS_SHOW_FONTS procedure, 951
PSAFM procedure, 952
PSEUDO procedure, 953
PSEUDO_COLOR keyword, 2112
pseudo-color images, converting from true-col-
or, 181
pseudo-color PostScript images, 2150
PSYM keyword, 2184
PSYM system variable field, 2210
PTR_FREE procedure, 955
PTR_NEW function, 956
PTR_VALID function, 957
PTRARR function, 959
pulldown menu, 325, 1408
PUSHD procedure, 155, 960
Put method, 1860
PutEntity method, 1708
PWIDGET,see obsolete routines

Q
QL algorithm, 1307
QL method (computing eigenvalues), 403
QROMB function, 961
QROMO function, 963
QSIMP function, 966
quantizing colors, 181
QUERY IMAGE function, 974
QUERY_* routines, 968
QUERY_BMP routine, 970

QUERY_DICOM, 971
QUERY_GIF routine, 973
QUERY_JPEG routine, 977
QUERY_PICT routine, 978
QUERY_PNG routine, 979
QUERY_PPM routine, 981
QUERY_SRF routine, 982
QUERY_TIFF routine, 983
QUERY_WAV function, 985
question mark

character, 2223
quintic interpolation, 1302
quitting IDL, 424
quotation marks, 2221

R
R_CORRELATE function, 986
R_TEST function, 988
radix, 738
Radon transform, 1079
random deviates

binomial, 991, 995
exponential, 991, 995
gamma, 991, 995
normal, 995
Poisson, 991, 996
random, 996

random numbers
normally-distributed, 990
uniformly-distributed, 994

RANDOMN function, 990
RANDOMU function, 994
RANGE system variable field, 2214
rank correlation coefficient, 986
RANKS function, 998
rank-sum test, 1095
RDPIX procedure, 1000
READ, 108
Read method, 1709, 1750, 2073
READ procedure, 1001
IDL Reference Guide Index

2320
READ_ASCII function, 1004
READ_BINARY function, 1007
READ_BMP function, 1009
READ_DICOM, 1011
READ_GIF procedure, 1012
READ_IMAGE function, 1014
READ_INTERFILE procedure, 1016
READ_JPEG procedure, 1017
READ_KEY procedure, 1002
READ_PICT procedure, 1021
READ_PNG function, 1023
READ_PPM procedure, 1025
READ_SPR function, 1027
READ_SRF procedure, 1028
READ_SYLK function, 1030
READ_TIFF function, 1033
READ_WAV function, 1039
READ_WAVE procedure, 1040
READ_X11_BITMAP procedure, 1042
READ_XWD function, 1044
READF procedure, 1001
reading

ASCII files, 1004
BMP files, 1009
current color table, 1327
cursor position, 1000
data from a string, 1045
files (OPENR procedure), 863
formatted data, 1001
from a prompt, 1002
from tapes, 1271
GIF files, 1012
images from the display, 1329
Interfile files, 1016
JPEG files, 1017
mouse position, 246
PGM files, 1025
PICT files, 1021
pixel values, 1000
PPM files, 1025
SRF files, 1028

TIFF files, 1033
unformatted binary data, 1047
wave files, 1040
X11 bitmaps, 1042
XWD files, 1044

read-only system variables, 356
READS procedure, 1045
READU procedure, 1047
real part of complex numbers, 455
realizing widgets, 1429
REBIN function, 1049
recall buffer

command, 1052
RECALL_COMMANDS function, 1052
RECON3 function, 1053
reconstructions

3D from 2D images, 1053
Tomographic, 1079

recording an interactive IDL session, 592
records

length of, 466
updating, 1557

rectangular
coordinates, 253, 908

reduce operator, 418
REDUCE_COLORS procedure, 1058
REFORM function, 1059
reformatting arrays, 1059
region

labeling, 607
of interest, 282, 354

region of interest
IDLanROI, 1620

REGION system variable field, 2211, 2214
Regis device, 2160
REGRESS function, 1061
REGRESS1,see obsolete routines
regression analysis, 1061
REGRESSION,see obsolete routines
relaxed structure assignment, 1072, 1239
release, current version in use, 2203
Index IDL Reference Guide

2321
Remove method, 1619
RemoveData method

IDLanROI, 1636
RemoveEntity method, 1710
removing breakpoints, 120
rendering

3D objects, 788
3D volumes as 2D images, 948
voxel, 1364

REPEAT...UNTIL statement, 1064
ReplaceData method

IDLanROI, 1637
REPLICATE function, 1065
REPLICATE_INPLACE procedure, 1066
reserved words, 2227
Reset method, 1711, 1849, 1987, 2083
RESET_STRING keyword, 2112
resetting widgets, 1430
resizing arrays, 198, 426, 1049
RESOLUTION, 2061
RESOLUTION keyword, 2113, 2113
RESOLVE_ALL procedure, 1068
RESOLVE_ROUTINE procedure, 1070
resource names for IDL widgets, 1392, 1409,
1448, 1456, 1480, 1486, 1494, 1518
RESTORE procedure, 1071
restoring IDL save files, 1071
RETAIN keyword, 2113
RETALL command, 1073
RETURN command, 1074
RETURN executive command,see commands
returning

subscripts of non-zero array elements, 1379
widget information, 1465

REVERSE function, 1076
reverse index list (for histograms), 535
reversing array indices, 1076
REWIND procedure, 1078
RGB color system, 179, 331, 1326
RGB_TO_HSV,see obsolete routines

RIEMANN procedure, 1079
rivers, 743
RK4 function, 1083
RM, see obsolete routines
RMF, see obsolete routines
RMS block mode, 870
Roberts edge enhancement, 1085
ROBERTS function, 1085
Romberg integration, 961, 963
roots, 474, 476
ROT function, 1086, 1089
ROT_INT,see obsolete routines
ROTATE function, 1089
Rotate method, 1850

IDLanROI, 1639
IDLanROIGroup, 1657

rotating
arrays, 1089
images, 268

by arbitrary amounts, 1086
the viewing matrix, 1264

ROUND function, 1091
rounding, 739

ceiling function, 157
floor function, 456
to nearest integer, 1091

ROUTINE_INFO function, 1092
routines

obsolete, 2272
saving as binary files, 1099

row bases, 1394
RS_TEST function, 1095
RSI_GAMMAI, see obsolete routines
RSTRPOS,see obsolete routines
RUN executive command,see commands
Runge-Kutta method, 1083
run-length encoding, 923
runs test for randomness, 988
RUNS_TEST,see obsolete routines
IDL Reference Guide Index

2322
S
S system variable field, 2214
S_TEST function, 1097
satellite map projection, 763
Save method, 1861
SAVE procedure, 1099
save/restore

binary files, 1100
files, 1071

saved commands, displaying, 527
saving

IDL routines as binary files, 1099
IDL variables, 1099
system variables, 1100
variables, 1100

scalable pixels, 2135
Scale method, 1851

IDLanROI, 1640
IDLanROIGroup, 1658

SCALE_FACTOR keyword, 2114
SCALE3 procedure, 1102
SCALE3D procedure, 1104
scaling, 1264

factors, 2214
values into range of bytes, 131

scene object, 1951
SCHOOLBOOK keyword, 2114
scripts, AppleScript, 394
scroll bars

for draw widgets, 1448
for text widgets, 1514, 1518

scroll offset, 2206
SEARCH2D function, 1105
SEARCH3D function, 1108
searching, within strings, 1229
segmentation, 607
Select method, 1751, 2074
semicolon, 2221
semi-logarithmic plots, 94, 217, 217, 890,
1127, 1127, 1248, 1248, 1248
sensitizing widgets, 1431

SET_CHARACTER_SIZE keyword, 2115
SET_COLORMAP keyword, 2115
SET_FONT keyword, 2117
SET_GRAPHICS_FUNCTION keyword,
2119
SET_NATIVE_PLOT,see obsolete routines
SET_PLOT procedure, 1111, 1111, 1111,
2088
SET_RESOLUTION keyword, 2120
SET_SCREEN,see obsolete routines
SET_SHADING procedure, 926, 1113
SET_STRING keyword, 2121
SET_SYMBOL procedure, 1115
SET_TRANSLATION keyword, 2121
SET_VIEWPORT,see obsolete routines
SET_WRITE_MASK keyword, 2121
SET_XY,see obsolete routines
SetCurrentCursor method, 2076
SETENV procedure, 498, 1116
setjmp, C language, 153
SETLOG procedure, 1117
SetPalette method, 1712
SetRGB method, 1871
setting

breakpoints, 121
keywords, 595, 1609
the current window, 1558
values, 1435

SETUP_KEYS procedure, 346, 1119
SFIT function, 1122
SHADE_SURF procedure, 1124
SHADE_SURF_IRR procedure, 1128
SHADE_VOLUME procedure, 928, 1130
shaded surfaces, 1124

changing position of light source, 1113
from polygons, 926

shading, 1113
changing position of light source, 1113
volumes, 926

shared colormap, 2121, 2123
sheet feeder, 2101
Index IDL Reference Guide

2323
shells, spawning, 1176
SHIFT function, 1133
shifting

array elements, 1133
bit, 586

short word swap, 128
Show method, 2079
SHOW3 procedure, 1135
SHOWFONT procedure, 1137
showing

images, 1320
windows, 1559

shrink operator, 418
shrinking

arrays, 1049
windows, 1559

SIGMA, see obsolete routines
sign test, 1097
SIGN_TEST,see obsolete routines
signal

filtering, 115
processing

CONVOL function, 222
significant bits, 2100
simple polygons, 1982
SIMPSON,see obsolete routines
Simpson’s rule, 966
SIN function, 1139
SINDGEN function, 1140
sine, 1139

hyperbolic, 1141
inverse, 89

single-precision
arrays, 450, 459
converting values to, 455

singular value decomposition, 1250, 1258
SINH function, 1141
sinusoidal map projection, 763
size

of arrays, 1142
SIZE executive command, 2276

SIZE function, 1142
skeletons of bi-level images, 1280
skewness, 813, 1146
SKEWNESS function, 1146
SKIP executive command,see commands
SKIPF procedure, 1147
slash character, 1609
SLICER,see obsolete routines
SLICER3 procedure, 503, 1148
SLIDE_IMAGE procedure, 1167
slider widgets, 1491

changing maximum value, 1433
changing minimum value, 1433
drag events, 1498
draggable, 1491
events returned by, 1497
floating-point, 302
maximum value, 1493
minimum value, 1493
returning minimum and maximum values,
1471

SMOOTH function, 1171
smoothing, 1171

CONVOL function, 222
median, 778
MIN_CURVE_SURF function, 208

SOBEL function, 1173
SORT function, 1175
sorting

arrays, 1175
sparse arrays

FULSTR, 468
LINBCG, 612
READ_SPR, 1027
SPRSAB, 1192
SPRSAX, 1194
WRITE_SPR, 1542

SPAWN procedure, 1176
spawning a shell process, 1176
SPEARMAN,see obsolete routines
Spearman’s rho rank correlation, 986
IDL Reference Guide Index

2324
special characters
displaying in plots, 2234

special functions
BETA, 104
IBETA, 545

SPH_4PNT procedure, 1180
SPH_SCAT function, 1182
spherical coordinates, 253
spherical gridding, 1182, 1297, 1300
spherical interpolation, 1182
spherical triangulation, 1297
SPL_INIT function, 1184
SPL_INTERP function, 1186
spline

cubic interpolation, 1184, 1188, 1190
thin-plate surface, 804

SPLINE function, 1188
SPLINE_P procedure, 1190
spreadsheet data files, 1030, 1545
SPRSAB function, 1192
SPRSAX function, 1194
SPRSIN function, 1196
SQRT function, 1199
square root, 1199
SRF files

reading, 1028
writing, 1543

stacked histogram plots (LEGO keyword),
1246
standard

deviation, 813
input, 491

standard deviation, 1202
STANDARDIZE function, 1200
standardized variables, 1200
STATIC_COLOR keyword, 2122
STATIC_GRAY keyword, 2122
statistics

approximating models, 185
fitting data

growth trends, 185

least absolute deviation regression, 609
moving averages, 1171
multiple linear regression, 1061
nonlinear least-squares regression, 249
outlying data regression, 609

kurtosis, 600
tools

absolute deviation, 813
Chi-square error, minimizing, 616
combinations, 440
contingency table, 244
cumulative sum, 1286
factorial, 440
frequency tables, 535
histogram, 535
kurtosis, 600, 813
Lomb normalized periodogram, 714
magnitude-based ranking, 998
maximum, 771
mean, 775, 813
mean absolute deviation, 776
median, 813
minimum, 803
number generators, 936, 990, 994
permutations, 440
skewness, 813, 1146
sort, 1175
standard deviation, 813, 1202
T-statistic, Student’s, 1284
variance, 813, 1350

STDDEV function, 1202
STDEV,see obsolete routines
STEP executive command,see commands
STEPOVER executive command,see com-
mands
STEPWISE,see obsolete routines
stereographic map projection, 763
STOP procedure, 1203
stopping program execution, 119, 1203
STR_SEP,see obsolete routines
STRARR function, 1204
Index IDL Reference Guide

2325
STRCMP function, 1205
STRCOMPRESS function, 1207
STREAMLINE procedure, 1208
streamlines, 1354
STREGEX function, 1210
STRETCH procedure, 1214
STRING function, 1216
strings

calling
IDL functions from, 149
IDL methods from, 150
IDL procedures from, 151

converting to lowercase, 1221
converting to uppercase, 1243
creating arrays, 1140
creating string arrays, 1204
data type, converting to, 1216
executing contents of, 423
extracting substrings from, 1227
finding substrings within, 1229
inserting strings into, 1231
length of, 1220
reading data from, 1045
removing whitespace from, 1207, 1237

STRJOIN function, 1219
STRLEN function, 1220
STRLOWCASE function, 1221
STRMATCH function, 1222
STRMESSAGE function, 1225
STRMID function, 1227
STRPOS function, 1229
STRPUT procedure, 1231
STRSPLIT function, 1233
STRTRIM function, 1237
STRUCT_ASSIGN procedure, 1239
STRUCT_HIDE procedure, 1241
structures

concatenating, 234
creating and defining, 234
creating arrays of, 1065
definition, 1239

displaying information on currently-defined,
528
FSTAT, 465
relaxed definition, 1072, 1239
returned by widgets, 1463
returning length of, 844
returning number of tags, 844
tag names, 234, 1267

structuring element, 388
STRUPCASE function, 1243
STUDENT_T,see obsolete routines
Student’s t distribution, 1262, 1263
Student’s T-statistic, 1284
STUDENT1_T,see obsolete routines
STUDRANGE,see obsolete routines
STYLE system variable field, 2215
SUBTICKLEN, 1728
SUBTITLE keyword, 2186
SUBTITLE system variable field, 2211
summation, array elements, 1286
Sun raster files

reading, 1028
writing, 1543

suppressing information messages, 2203
surf_track.pro (example file), 2085
surface fitting

SFIT, 1122
surface object, 1959
surface plots, 1597

with images and contours, 1135
SURFACE procedure, 1244

duplicating transformations, 1249
SURFACE_FIT,see obsolete routines
surfaces, shaded, 788, 1124, 1128
SURFR procedure, 1249
SVBKSB,see obsolete routines
SVD, see obsolete routines
SVDC procedure, 1250
SVDFIT function, 1252
SVSOL function, 1257
SWAP_ENDIAN function, 1259
IDL Reference Guide Index

2326
swapping the order of bytes, 127
SYLK files, 1030, 1545
SYMBOL keyword, 2122
symbol object, 1975
symbolic link files, 1030, 1545
symbols, plotting, 1346, 2184, 2210
symmetric

array or matrix, 1307, 1309
SYMSIZE keyword, 2186
system

clock, 1260
system variable fields

BACKGROUND, 2208
BLOCK, 2195
CHANNEL, 2208
CHARSIZE, 2208, 2212
CHARTHICK, 2208
CLIP, 2208
CODE, 2195
COLOR, 2208
CRANGE, 2212
FILL_DIST, 2204
FLAGS, 2205
FONT, 2208
GRIDSTYLE, 2213
LINESTYLE, 2209
MARGIN, 2213
MINOR, 2213
MSG, 2195
MSG_PREFIX, 2196
MULTI , 2209
N_COLORS, 2206
NAME, 2195, 2206
NOCLIP, 2210
NOERASE, 2210
NSUM, 2210
OMARGIN, 2213
ORIGIN, 2206
POSITION, 2210
PSYM, 2210
RANGE, 2214

REGION, 2211, 2214
S, 2214
STYLE, 2215
SUBTITLE, 2211
SYS_CODE, 2195
SYS_MSG, 2195
T, 2211
T3D, 2211
TABLE_SIZE, 2206
THICK, 2211, 2215
TICKFORMAT, 2216
TICKLEN, 2211, 2216
TICKNAME, 2216
TICKS, 2216
TICKV, 2216
TITLE, 2211, 2217
TYPE, 2217
UNIT, 2206
WINDOW, 2206, 2217
X_CH_SIZE, 2206
X_PX_CM, 2207
X_SIZE, 2207
X_VSIZE, 2207
Y_CH_SIZE, 2206
Y_PX_CM, 2207
Y_SIZE, 2207
Y_VSIZE, 2207
ZOOM, 2207

system variables, 2192
!C, 2204
!D, 2204
!D.TABLE_SIZE, 1333
!D.WINDOW, 1374, 1524, 1558
!ERR, 1271, 1379
!ERROR_STATE, 801, 802, 1225
!JOURNAL, 592
!MAP1, 760
!MOUSE, 246
!ORDER, 1322, 1330, 2207
!P, 2207
!P.MULTI, 2154
Index IDL Reference Guide

2327
!P.T, 2186
!QUIET, 801
!X, 2211
!Y, 2211
!Z, 2211
creating, 356
displaying information on currently-defined,
528
for axes, 2211
for graphics, 2204
obsolete, 2272
read-only, 356
saving, 1100

SYSTIME function, 1260

T
T system variable field, 2211
T_CVF function, 1262
T_PDF function, 1263
T3D keyword, 2186
T3D procedure, 1264
T3D system variable field, 2211
table widgets, 1499

keyboard focus events, 1503
TABLE_SIZE system variable field, 2206
TAG_NAMES function, 1267
tags, number in a structure, 844
TAN function, 1269
tangent, 1269

hyperbolic, 1270
inverse, 92

TANH function, 1270
tapes

reading from, 1271
rewinding, 1078
skipping records, 1147
writing data to, 1272
writing EOF mark, 1375

TAPRD procedure, 1271
TAPWRT procedure, 1272

TEK_COLOR procedure, 1273
TEK4014 keyword, 2122
TEK4100 keyword, 2122
Tektronix device, 2161
TEMPORARY function, 1274
temporary variables, 1274
tesselation, 1297
Tessellate method, 1988
tessellator object, 1982
test functions, 714

CTI_TEST, 244
FV_TEST, 472
KW_TEST, 601
LNP_TEST, 714
MD_TEST, 773
R_TEST, 988
RS_TEST, 1095
S_TEST, 1097
TM_TEST, 1284
XSQ_TEST, 1595

TESTCONTRAST,see obsolete routines
TETRA_CLIP function, 1275
TETRA_SURFACE function, 1277
TETRA_VOLUME function, 1278
text

aligning, 1601
character

height, 2206
size, 2208
thickness, 1601, 2208
width, 2206

displaying, 1566
font index, 2181
font selection, 2208
plane of, 1601
plotting in graphics windows, 1600
positioning, 2251
size, 2179
size of characters, 1601
widgets,seetext widgets
width of, 1601
IDL Reference Guide Index

2328
text object, 1989
text widgets, 1514

appending text to, 1418
changing selected text, 1440
converting

character offsets to column/line form, 1473
line/column positions to character offsets,
1473

determining
if all events are being returned, 1472
if text widget is editable, 1472

editable, 1515
making editable after creation, 1422

events returned by, 1417, 1514, 1521
keyboard focus events, 1516
returning

line number of top line in viewport, 1473
number of characters, 1473
offsets of text selection, 1473
selected text, 1440

setting
text selection, 1434
top line, 1434

setting keyboard focus to, 1426
suppressing newline characters, 1429

THICK keyword, 2187
THICK system variable field, 2211, 2215
THICKNESS field, 1696
thickness of characters, 1601
THIN function, 1280
thinning images, 1280
thin-plate-spline surface, 804
THREED procedure, 1282
three-dimensional

transformations
array transforms, 1358
coordinates, 226, 315
duplicating SURFACE transforms, 1249
implementing transforms, 1264
plotting, 226, 315
scaling, 1102, 1104

specifying orientation, 268
T3D keyword, 2211

THRESHOLD keyword, 2123
throw, C++ language, 153
tick marks

annotation, 2189, 2216
data values for, 2189, 2216
getting values of, 2189
intervals, 2189, 2216
length, 2188, 2211
length on individual axes, 2188, 2216
linestyles, 2181
minor, 2182, 2213
string labels for, 2216
styles, 2213
suppressing, 2189, 2216

TICKFORMAT system variable field, 2216
TICKLEN keyword, 2188
TICKLEN system variable field, 2211, 2216
TICKNAME system variable field, 2216
TICKS system variable field, 2216
TICKV system variable field, 2216
TIFF files

reading, 1033
writing, 1547

TIFF_DUMP,see obsolete routines
TIFF_READ,see obsolete routines
TIFF_WRITE,see obsolete routines
time

converting from string to binary, 107
returning current, 1260

TIME_TEST2 procedure, 1283
TIMES keyword, 2123
time-series analysis

autocorrelation, 69
autocovariance, 69
autoregressive modeling, 1314, 1316
cross correlation, 133
cross covariance, 133
forward differencing, 1315

TITLE keyword, 2189
Index IDL Reference Guide

2329
TITLE system variable field, 2211, 2217
TM_TEST function, 1284
t-means test, 1284
toggle buttons, 1412
Tomographic reconstructions, 1079
top margin, setting, 2213
top-level base, 1384
TOTAL function, 1286
TQLI, see obsolete routines
TRACE executive command,see commands
TRACE function, 1289
traceback information

displaying, 528
returning, 524

Trackball
Init method, 2081
Reset method, 2083
Update method, 2084

TrackBall object, 2080
transformation matrices, 2211
transforms

Fourier, 442
Translate method, 1853

IDLanROI, 1642
IDLanROIGroup, 1659

translation, 1264
TRANSLATION keyword, 2123
translation tables, bypassing, 2095
TRANSPOSE function, 1291
transposing arrays, 1291
Transverse Mercator map (UTM) projection,
763
TRED2,see obsolete routines
TRI_SURF function, 1293
TRIANGULATE procedure, 1297
triangulation, 1297, 1300

spherical, 1297
TRIDAG, see obsolete routines
tridiagonal array or matrix, 1307, 1309, 1310
TRIGRID function, 1300
trilinear interpolation, 577

trimming strings, 1237
TRIQL procedure, 1307
TRIRED procedure, 1309
TRISOL function, 1310
TRNLOG function, 1312
TRUE_COLOR keyword, 2124
true-color

images
converting to pseudo-color, 181
displaying, 1322
PostScript, 2150
reading, 1330

visuals, 2099
TrueType, 2118, 2242
TrueType fonts, 2230, 2258
TS_COEF function, 1314
TS_DIFF function, 1315
TS_FCAST function, 1316
TS_SMOOTH function, 1318
TT_FONT keyword, 2124
TTY keyword, 2124
TV procedure, 1320
TVCRS procedure, 1324
TVDELETE, see obsolete routines
TVLCT procedure, 1326
TVRD function, 1329
TVRDC, see obsolete routines
TVSCL procedure, 1333
TVSET,see obsolete routines
TVSHOW,see obsolete routines
TVWINDOW, see obsolete routines
two-dimensional Gaussian fit, 483
type conversion

to 64-bit integer, 722
to byte, 126
to complex, 192, 342
to double-precision, 399
to integer, 452
to longword, 721
to single-precision, floating-point, 455
to string, 1216
IDL Reference Guide Index

2330
to unsigned 64-bit integer, 1343
to unsigned integer, 1336
to unsigned longword, 1342

TYPE system variable field, 2217
type-ahead buffer, 491

U
UINDGEN function, 1335
UINT function, 1336
UINTARR function, 1337
UL64INDGEN function, 1338
ULINDGEN function, 1339
ULON64ARR function, 1340
ULONARR function, 1341
ULONG function, 1342
ULONG64 function, 1343
unformatted binary data, 1047, 1556
uniform random deviates, 996
uniformly-distributed random numbers, 994
UNIQ function, 1344
unit number, logical, 866
UNIT system variable field, 2206
UNIX

environment variables, 497
unmapping widgets, 1389
unsigned 64-bit integer

arrays, 1338
data type, converting to, 1343

unsigned arrays
longword, 1339

unsigned integer
arrays, 1335
data type, converting to, 1336

unsigned longword
arrays, 1341
data type, converting to, 1342

Update method, 2084
updating files (OPENU procedure), 863
upper margin, setting, 2213
uppercase, converting strings to, 1243

USER_FONT keyword, 2124
user-defined plotting symbols, 1346
USERSYM procedure, 1346
using external modules, 140
UTM (Transverse Mercator) map projection,
763

V
VALUE_LOCATE function, 1348
variables

associated, 90
deleting, 360
interactive editing tool (XVAREDIT proce-
dure), 1599
named, 49, 49, 1609
reading display images into (TVRD func-
tion), 1329
returning information on, 523
saving, 1100
temporary, 1274

variance, 472, 813
VARIANCE function, 1350
VAX_FLOAT function, 1351
VECTOR_FIELD procedure, 1353
vector-drawn fonts, 2230, 2261

! character, 2251
displaying, 1137
editing (EFONT procedure), 402
special characters, 2234

vectors
drawing arrowheads, 85

VEL procedure, 1354
velocity field, plotting, 457, 1354, 1356
VELOVECT procedure, 1356
VERT_T3D function, 1358
view object, 2001
viewgroup object, 2011
VMS logical name, 359
VMS logical name tables, 1312
VMS logical tables, 1313
Index IDL Reference Guide

2331
VMS text libraries, 427
VMSCODE,see obsolete routines
VOIGT function, 1360
volume object, 2020
volume slices, 1148
volumes

extracting slices, 434
rendering, 948
searching for objects, 1108
visualizing, 926, 948, 1130, 1364

volumetric reconstruction, 1053
VORONOI procedure, 1362
voxel rendering, 1364
VOXEL_PROJ function, 1364
VRML object, 2037
VT240 keyword, 2125
VT240 terminal, 2160
VT330 terminal, 2160
VT340 keyword, 2125
VT340 terminal, 2160

W
WAIT procedure, 1369
WARP_TRI function, 1370
warping

images, 911
to maps, 750, 754

polynomial, 911
using the Z-buffer, 921

WATERSHED function, 1372
Wavefront Advanced Data Visualizer, 1040,
1554
Wavefront files

reading, 1040
writing, 1554

wavelet transform, 1560
WDELETE procedure, 1374, 2128
weather fronts, plotting, 1376
WEOF procedure, 1375
WF_DRAW procedure, 1376

WHERE function, 1379
WHILE...DO statement, 1382
whitespace, removing from strings, 1207, 1237
WIDED, see obsolete routines
WIDGET_BASE function, 1383
WIDGET_BUTTON function, 1405
WIDGET_CONTROL procedure, 1414
WIDGET_DRAW function, 1443
WIDGET_DROPLIST function, 1454
WIDGET_EVENT function, 1461
WIDGET_INFO function, 1465
WIDGET_KILL_REQUEST event, 1397
WIDGET_LABEL function, 1477
WIDGET_LIST function, 1483
WIDGET_MESSAGE,see obsolete routines
WIDGET_SLIDER function, 1491
WIDGET_TABLE function, 1499
WIDGET_TEXT function, 1514
widgets

aligning (ALIGN_XXX keywords), 1384
animation, 257
annotation, 81
background tasks (TIMER keyword), 1438
base, 1383
buttons, 1405

bitmap labels, 1042
groups, 272
release events, 1408

callbacks, 1388, 1391
changing appearance of, 1392, 1409, 1448,
1456, 1480, 1486, 1494, 1518
color

index, 277, 331
resources, 1393
selection, 280

compound, 257, 268, 272, 277, 280, 282,
286, 288, 302, 315, 325, 331, 335

template for creating, 334
default font for, 1419
destroying, 1420
IDL Reference Guide Index

2332
determining if widgets are realized
(ACTIVE keyword), 1466
(REALIZED keyword), 1471

disabling and enabling screen updates (UP-
DATE keyword), 1439
draw, 1443
droplist, 1454
events, 1461

CLEAR_EVENTS keyword, 1418
exclusive buttons, 1387
field, 288
form, 294
getting user values, 1424
help buttons, 1407
hiding and showing, 1436
horizontal size, changing, 1431, 1441
iconifying, 1426
invalid IDs, 1418, 1461
label, 1477
list, 1483
main event loop for, 1576
mapping, 1389

mapping and unmapping, 1428
menu bars, 1384, 1389
message dialog box, 371
modal, 371
non-exclusive buttons, 1391
positioning, 1400, 1401, 1401
pulldown menu, 325
pulldown menus

separators, 1409
realizing, 1429
region of interest, 282
registered, 1593
registering with XMANAGER, 1576
resetting all widgets, 1430
resizing (DYNAMIC_RESIZE keyword),
1406, 1454, 1477
returning

children of, 1466
information about, 1465

name of event handler procedure, 1468
parent of, 1471
siblings of, 1471
size of (GEOMETRY keyword), 1468
tracking event status, 1474
type of, 1471, 1474
validity of, 1475

sending event to (SEND_EVENT keyword),
1431
sensitizing and de-sensitizing, 1395, 1409,
1431, 1431, 1449, 1457, 1480, 1486, 1495,
1506, 1518
setting buttons, 1432
showing and hiding, 1436
size

changing
horizontal, 1431, 1441
vertical, 1431, 1442

slider, 302, 1491
space between children, 1395
table, 1499
template for creating, 1583
text, 1514
tracking events, 1397
unmapping, 1389, 1428
values, 1424
version of implementation, 1475
vertical size, changing, 1431, 1442
viewing widgets managed by XMANAGER,
1584
XMANAGER procedure, 1461
zoom, 335

width of text, 1601
Wilcoxon Rank-Sum Test, 1095
WILCOXON, see obsolete routines
window object, 2052
window objects

maximum size, 2052
WINDOW procedure, 1524, 2128
WINDOW system variable field, 2206, 2217
WINDOW_STATE keyword, 2125
Index IDL Reference Guide

2333
windows
backing store, 1525, 2113, 2128
copying areas, 2097
copying pixels from, 2097
creating, 1524
deleting, 1374
display size, 2207
draw widgets, 1443, 1443
erasing, 415
exposing, 1559
height, 1526
hiding, 1559
iconifying, 1559
ID for draw widgets, 1450
index of currently open, 2206
number of colors, 2206
pixmaps, 1525
position of, 2106, 2210
positioning, 1526
selecting current, 1558
systems, 2128
visible area of display, 2207
width, 1526

Windows display device (WIN), 2088
wire-mesh surface plots, 1244
WMENU, see obsolete routines
World Wide Web, 808
write mask, 2106, 2121
Write method, 1713
WRITE_BMP procedure, 1528
WRITE_GIF procedure, 1530
WRITE_IMAGE procedure, 1532
WRITE_JPEG procedure, 1533
WRITE_NRIF procedure, 1536
WRITE_PICT procedure, 1538
WRITE_PNG function, 1539
WRITE_PPM procedure, 1541
WRITE_SPR procedure, 1542
WRITE_SRF procedure, 1543
WRITE_SYLK function, 1545
WRITE_TIFF procedure, 1547

WRITE_WAV procedure, 1553
WRITE_WAVE procedure, 1554
WRITEU procedure, 1556
writing

BMP files, 1528
files (OPENW procedure), 863
GIF files, 1530
JPEG files, 1533
NRIF files, 1536
PGM files, 1541
PICT files, 1538
PPM files, 1541
SRF files, 1543
TIFF files, 1547
wave files, 1554

WSET procedure, 1558, 2128
WSHOW procedure, 1559, 2128
WTN function, 1560

X
X resources

widget colors, 1393
X Windows

bitmap files, reading, 1042
Dump files, reading, 1044
fonts, 1568
resource names, 1392, 1409, 1448, 1456,
1480, 1486, 1494, 1518

X Windows device, 2164
DirectColor visual, 2101
PseudoColor visual, 2112
StaticColor visual, 2122
StaticGray visual, 2122
TrueColor visual, 2124
visuals, 2164

X_CH_SIZE system variable field, 2206
X_PX_CM system variable field, 2207
X_SIZE system variable field, 2207
X_VSIZE system variable field, 2207
XANIMATE, see obsolete routines
IDL Reference Guide Index

2334
XBACKREGISTER,see obsolete routines
XBM_EDIT procedure, 1413, 1564
XCHARSIZE keyword, 2179
XDISPLAYFILE procedure, 1566
XDL, see obsolete routines
XDR format (floating point values), 127
XFONT function, 1568
XGRIDSTYLE keyword, 2181
XINTERANIMATE procedure, 1569
XLOADCT procedure, 1574
XMANAGER procedure, 1461, 1576
XMANAGERTOOL, see obsolete routines
XMARGIN keyword, 2182
XMAX machine-specific parameter, 739
XMENU, see obsolete routines
XMIN machine-specific parameter, 739
XMINOR keyword, 2182
XMNG_TMPL procedure, 1583
XMTOOL procedure, 1584
XOBJVIEW procedure, 1585
XOFFSET keyword, 2125, 2151
XON_XOFF keyword, 2125
XPALETTE procedure, 1589
XPDMENU, see obsolete routines
XRANGE keyword, 2185
XREGISTERED function, 1593
XSIZE keyword, 2126
XSQ_TEST function, 1595
XSTYLE keyword, 2185
XSURFACE procedure, 1597
XTHICK keyword, 2187
XTICK_GET keyword, 2189
XTICKFORMAT keyword, 2187
XTICKLEN keyword, 2188
XTICKNAME keyword, 2189
XTICKS keyword, 2189
XTICKV keyword, 2189
XTITLE keyword, 2190
XVAREDIT procedure, 1599
xwd files

reading, 1044

XYOUTS procedure, 1600
See alsopositioning

Y
Y_CH_SIZE system variable field, 2206
Y_PX_CM system variable field, 2207
Y_SIZE system variable field, 2207
Y_VSIZE system variable field, 2207
YCHARSIZE keyword, 2179
YGRIDSTYLE keyword, 2181
YMARGIN keyword, 2182
YMINOR keyword, 2182
YOFFSET keyword, 2126, 2151
YRANGE keyword, 2185
YSIZE keyword, 2126
YSTYLE keyword, 2185
YTHICK keyword, 2187
YTICK_GET keyword, 2189
YTICKFORMAT keyword, 2187
YTICKLEN keyword, 2188
YTICKNAME keyword, 2189
YTICKS keyword, 2189
YTICKV keyword, 2189
YTITLE keyword, 2190

Z
Z keyword, 2190
ZAPFCHANCERY keyword, 2127
ZAPFDINGBATS keyword, 2127
Z-buffer

closing, 2096
using with POLYFILL, 919
using with POLYSHADE, 926
warping images to polygons, 921

Z-buffer device, 2172
ZCHARSIZE keyword, 2179
zeroing byte arrays, 125
ZGRIDSTYLE keyword, 2181
Index IDL Reference Guide

2335
ZMARGIN keyword, 2182
ZMINOR keyword, 2182
ZOOM procedure, 1603
ZOOM system variable field, 2207
zoom widget, 335
ZOOM_24 procedure, 1605
ZRANGE keyword, 2185
ZROOTS,see obsolete routines
ZSTYLE keyword, 2185

ZTHICK keyword, 2187
ZTICK_GET keyword, 2189
ZTICKFORMAT keyword, 2187
ZTICKLEN keyword, 2188
ZTICKNAME keyword, 2189
ZTICKS keyword, 2189
ZTICKV keyword, 2189
ZTITLE keyword, 2190
ZVALUE keyword, 2190
IDL Reference Guide Index

2336
Index IDL Reference Guide

	Online Guide
	Contents
	IDL Commands Reference
	IDL Syntax
	Elements of Syntax
	Square Brackets ([])
	Braces ({ })
	Italics

	Procedures
	Functions
	Arguments
	Named Variables

	Keywords

	.COMPILE
	.CONTINUE
	.EDIT
	.FULL_RESET_SESSION
	.GO
	.OUT
	.RESET_SESSION
	.RETURN
	.RNEW
	.RUN
	Using .RUN to Make Program Listings

	.SKIP
	.STEP
	.STEPOVER
	.TRACE
	A_CORRELATE
	X
	Lag
	COVARIANCE
	DOUBLE
	IDL Output

	ABS
	X

	ACOS
	X

	ADAPT_HIST_EQUAL
	Image
	CLIP
	NREGIONS
	TOP

	ALOG
	X

	ALOG10
	X

	AMOEBA
	Ftol
	FUNCTION_NAME
	FUNCTION_VALUE
	NCALLS
	NMAX
	P0
	SCALE
	SIMPLEX
	IDL Output

	ANNOTATE
	Using the Annotation Widget
	COLOR_INDICES
	DRAWABLE
	LOAD_FILE
	TEK_COLORS
	WINDOW

	ARG_PRESENT
	Variable

	ARROW
	X0, Y0
	X1,Y1
	DATA
	NORMALIZED
	HSIZE
	COLOR
	HTHICK
	SOLID
	THICK

	ASCII_TEMPLATE
	Filename
	BROWSE_LINES
	CANCEL
	GROUP

	ASIN
	X

	ASSOC
	Unit
	Array_Structure
	Offset
	PACKED

	ATAN
	X
	Y

	AXIS
	X, Y, and Z
	SAVE
	XAXIS
	XLOG
	YAXIS
	YLOG
	YNOZERO
	ZAXIS

	BAR_PLOT
	Values
	BACKGROUND
	BARNAMES
	BAROFFSET
	BARSPACE
	BARWIDTH
	BASELINES
	BASERANGE
	COLORS
	OUTLINE
	OVERPLOT
	ROTATE
	TITLE
	XTITLE
	YTITLE

	BEGIN...END
	BESELI
	X
	N

	BESELJ
	X
	N

	BESELY
	X
	N

	BETA
	Z, W
	DOUBLE

	BILINEAR
	P
	IX and JY

	BIN_DATE
	Ascii_Time

	BINARY_TEMPLATE
	Filename
	CANCEL
	GROUP
	N_ROWS
	TEMPLATE

	BINDGEN
	Di

	BINOMIAL
	V
	N
	P

	BLAS_AXPY
	Y
	A
	X
	D1
	Loc1
	D2
	Range

	BLK_CON
	Filter
	Signal
	B_LENGTH

	BOX_CURSOR
	Using BOX_CURSOR
	X0, Y0
	NX, NY
	INIT
	FIXED_SIZE
	MESSAGE

	BREAKPOINT
	File
	Index
	AFTER
	CLEAR
	CONDITION
	DISABLE
	ENABLE
	ONCE
	SET

	BROYDEN
	X
	Vecfunc
	CHECK
	DOUBLE
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX

	BYTARR
	Di
	NOZERO

	BYTE
	Expression
	Offset
	Di

	BYTEORDER
	Variablen
	DTOVAX
	DTOXDR
	FTOVAX
	FTOXDR
	HTONL
	HTONS
	L64SWAP
	LSWAP
	NTOHL
	NTOHS
	SSWAP
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAXTOD
	VAXTOF
	XDRTOD
	XDRTOF
	DTOGFLOAT
	GFLOATTOD
	Note On IEEE to VAX Format Conversion

	BYTSCL
	Array
	MAX
	MIN
	NAN
	TOP

	C_CORRELATE
	X
	Y
	Lag
	COVARIANCE
	DOUBLE
	IDL Output

	CALDAT
	Julian
	Month
	Day
	Year
	Hour
	Minute
	Second

	CALENDAR
	Month
	Year

	CALL_EXTERNAL
	Image
	Entry
	P0, ..., PN-1
	ALL_VALUE
	B_VALUE
	CDECL
	DEFAULT
	D_VALUE
	F_VALUE
	I_VALUE
	L64_VALUE
	PORTABLE
	RETURN_TYPE
	S_VALUE
	UI_VALUE
	UL_VALUE
	UL64_VALUE
	UNLOAD
	VALUE
	VAX_FLOAT (VMS Only)
	Note On IEEE to VAX Format Conversion
	String Parameters
	Calling Convention
	Portable
	VMS LIB$CALLG
	VMS CALL_EXTERNAL and LIB$FIND_IMAGE_SYMBOL
	Important Changes Since IDL 5.0

	CALL_FUNCTION
	Name
	Pi

	CALL_METHOD
	Name
	ObjRef
	Pi

	CALL_PROCEDURE
	Name
	Pi

	CASE...ENDCASE
	CATCH
	Variable
	CANCEL

	CD
	Directory
	CURRENT

	CDF Routines
	CEIL
	X

	CHEBYSHEV
	D
	N

	CHECK_MATH
	MASK
	NOCLEAR
	PRINT
	CHECK_MATH and !EXCEPT
	Printing Error Messages
	Testing Critical Code
	Example 1
	Example 2
	IDL Output

	CHISQR_CVF
	P
	Df

	CHISQR_PDF
	V
	Df

	CHOLDC
	A
	P
	DOUBLE

	CHOLSOL
	A
	P
	B
	DOUBLE

	CINDGEN
	Di

	CIR_3PNT
	X
	Y
	R
	X0
	Y0

	CLOSE
	Uniti
	ALL
	FILE

	CLUST_WTS
	Array
	DOUBLE
	N_CLUSTERS
	N_ITERATIONS
	VARIABLE_WTS

	CLUSTER
	Array
	Weights
	DOUBLE
	N_CLUSTERS

	COLOR_CONVERT
	I0, I1, I2
	O0, O1, O2
	HLS_RGB
	HSV_RGB
	RGB_HLS
	RGB_HSV

	COLOR_QUAN
	Using COLOR_QUAN
	Image_R, Image_G, Image_B
	Image
	Dim
	R, G, B
	COLORS
	CUBE
	DITHER
	ERROR
	GET_TRANSLATION
	MAP_ALL
	TRANSLATION

	COMFIT
	X
	Y
	A
	EXPONENTIAL
	GEOMETRIC
	GOMPERTZ
	HYPERBOLIC
	LOGISTIC
	LOGSQUARE
	SIGMA
	WEIGHTS
	YFIT

	COMMON
	COMPILE_OPT
	optn

	COMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di

	COMPLEXARR
	Di
	NOZERO

	COMPLEXROUND
	Input

	COMPUTE_MESH_NORMALS
	fVerts
	iConn

	COND
	A
	DOUBLE

	CONGRID
	Array
	X
	Y
	Z
	CUBIC
	INTERP
	MINUS_ONE

	CONJ
	X

	CONSTRAINED_MIN
	X
	Xbnd
	Gbnd
	Nobj
	Gcomp
	Inform
	EPSTOP
	LIMSER
	MAXIMIZE
	NSTOP
	REPORT
	TITLE

	CONTOUR
	Smoothing Contours
	Z
	X
	Y
	C_ANNOTATION
	Example
	C_CHARSIZE
	C_CHARTHICK
	C_COLORS
	Example
	C_LABELS
	Example
	C_LINESTYLE
	Example
	C_ORIENTATION
	C_SPACING
	C_THICK
	CELL_FILL
	CLOSED
	DOWNHILL
	FILL
	FOLLOW
	IRREGULAR
	ISOTROPIC
	LEVELS
	Example
	MAX_VALUE
	MIN_VALUE
	NLEVELS
	OVERPLOT
	PATH_DATA_COORDS
	PATH_FILENAME
	PATH_INFO
	PATH_XY
	TRIANGULATION
	XLOG
	YLOG
	ZAXIS

	CONVERT_COORD
	X
	Y
	Z
	DATA
	DEVICE
	NORMAL
	T3D
	TO_DATA
	TO_DEVICE
	TO_NORMAL

	CONVOL
	Using CONVOL
	Array
	Kernel
	Scale_Factor
	CENTER
	EDGE_WRAP
	EDGE_TRUNCATE

	COORD2TO3
	Mx, My
	Dim
	D0
	PTI

	CORRELATE
	X
	Y
	COVARIANCE
	DOUBLE

	COS
	X

	COSH
	X

	CRAMER
	A
	B
	DOUBLE
	ZERO

	CREATE_STRUCT
	Tags
	Values
	Name

	CREATE_VIEW
	AX
	AY
	AZ
	PERSP
	RADIANS
	WINX
	WINY
	XMAX
	XMIN
	YMAX
	YMIN
	ZFAC
	ZMAX
	ZMIN
	ZOOM

	CROSSP
	V1, V2

	CRVLENGTH
	X
	Y
	DOUBLE

	CT_LUMINANCE
	R
	G
	B
	BRIGHT
	DARK
	READ_TABLES

	CTI_TEST
	Obfreq
	COEFF
	CORRECTED
	CRAMV
	DF
	EXFREQ
	RESIDUAL

	CURSOR
	Using CURSOR with Draw Widgets
	Using CURSOR with the TEK Device
	X
	Y
	Wait
	CHANGE
	DATA
	DOWN
	DEVICE
	NORMAL
	NOWAIT
	UP
	WAIT

	CURVEFIT
	X
	Y
	Weights
	A
	Sigma
	CHISQ
	FUNCTION_NAME
	ITER
	ITMAX
	NODERIVATIVE
	TOL

	CV_COORD
	DEGREES
	FROM_CYLIN
	FROM_POLAR
	FROM_RECT
	FROM_SPHERE
	TO_CYLIN
	TO_POLAR
	TO_RECT
	TO_SPHERE

	CVTTOBM
	Array
	THRESHOLD

	CW_ANIMATE
	Using CW_ANIMATE
	Parent
	Sizex
	Sizey
	Nframes
	NO_KILL
	OPEN_FUNC
	PIXMAPS
	TRACK
	UNAME
	UVALUE

	CW_ANIMATE_GETP
	Widget
	Pixmaps
	KILL_ANYWAY

	CW_ANIMATE_LOAD
	Widget
	CYCLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	XOFFSET
	YOFFSET
	Example

	CW_ANIMATE_RUN
	Widget
	Rate
	NFRAMES
	STOP

	CW_ARCBALL
	Using CW_ARCBALL
	Parent
	COLORS
	FRAME
	LABEL
	RETAIN
	SIZE
	UPDATE
	UNAME
	UVALUE
	VALUE

	CW_BGROUP
	Parent
	Names
	BUTTON_UVALUE
	COLUMN
	EVENT_FUNCT
	EXCLUSIVE
	FONT
	FRAME
	IDS
	LABEL_LEFT
	LABEL_TOP
	MAP
	NONEXCLUSIVE
	NO_RELEASE
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	ROW
	SCROLL
	SET_VALUE
	SPACE
	UNAME
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE

	CW_CLR_INDEX
	Parent
	COLOR_VALUES
	EVENT_FUNCT
	FRAME
	LABEL
	NCOLORS
	START_COLOR
	UNAME
	UVALUE
	XSIZE
	YSIZE

	CW_COLORSEL
	Using CW_COLORSEL
	Parent
	FRAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET

	CW_DEFROI
	Draw
	IMAGE_SIZE
	OFFSET
	ORDER
	RESTORE
	ZOOM

	CW_DICE
	Parent
	TUMBLE_CNT
	TUMBLE_PERIOD
	UNAME
	UVALUE

	CW_FIELD
	Parent
	ALL_EVENTS
	COLUMN
	FIELDFONT
	FLOATING
	FONT
	FRAME
	INTEGER
	LONG
	NOEDIT
	RETURN_EVENTS
	ROW
	STRING
	TITLE
	UNAME
	UVALUE
	VALUE
	XSIZE
	YSIZE

	CW_FILESEL
	Parent
	FILENAME
	FILTER
	FIX_FILTER
	FRAME
	IMAGE_FILTER
	MULTIPLE
	PATH
	UNAME
	UVALUE

	CW_FORM
	Using CW_FORM
	Parent
	Desc
	Depth
	Item
	Initial value
	Keywords
	COLUMN
	IDS
	NO_RELEASE
	TITLE
	UNAME
	UVALUE

	CW_FSLIDER
	Using CW_FSLIDER
	Parent
	DRAG
	EDIT
	FORMAT
	FRAME
	MAXIMUM
	MINIMUM
	SCROLL
	SUPPRESS_VALUE
	TITLE
	UNAME
	UVALUE
	VALUE
	VERTICAL
	XSIZE
	YSIZE

	CW_LIGHT_EDITOR
	Parent
	DIRECTION_DISABLED
	DRAG_ EVENTS
	FRAME
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	UNAME
	UVALUE
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE
	GET_VALUE
	SET_VALUE

	CW_LIGHT_EDITOR_GET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_LIGHT_EDITOR_SET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_ORIENT
	Parent
	AX
	AZ
	FRAME
	TITLE
	UNAME
	UVALUE
	XSIZE
	YSIZE

	CW_PALETTE_EDITOR
	Reference Color bar
	Palette Colorbar
	Channel and Histogram Display
	Color Space
	Editing Mode
	Channel Display and Edit
	Zoom
	Scrolling of the Palette Window
	Parent
	DATA
	FRAME
	HISTOGRAM
	HORIZONTAL
	SELECTION
	UNAME
	UVALUE
	XSIZE
	YSIZE
	Selection Moved
	Palette Edited
	GET_VALUE
	SET_VALUE

	CW_PALETTE_EDITOR_GET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PALETTE_EDITOR_SET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PDMENU
	Parent
	Desc
	DELIMITER
	FONT
	HELP
	IDS
	MBAR
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	RETURN_FULL_NAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET

	CW_RGBSLIDER
	Using CW_RGBSLIDER
	Parent
	CMY
	COLOR_INDEX
	DRAG
	FRAME
	HSV
	HLS
	LENGTH
	RGB
	UNAME
	UVALUE
	VERTICAL

	CW_TMPL
	Parent
	UNAME
	UVALUE

	CW_ZOOM
	Using CW_ZOOM
	Parent
	FRAME
	MAX
	MIN
	RETAIN
	SAMPLE
	SCALE
	TRACK
	UNAME
	UVALUE
	XSIZE
	X_SCROLL_SIZE
	X_ZSIZE
	YSIZE
	Y_SCROLL_SIZE
	Y_ZSIZE

	DBLARR
	Di
	NOZERO

	DCINDGEN
	Di

	DCOMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di

	DCOMPLEXARR
	Di
	NOZERO

	DEFINE_KEY
	Key
	Value
	MATCH_PREVIOUS
	NOECHO
	TERMINATE
	BACK_CHARACTER
	BACK_WORD
	CONTROL
	DELETE_CHARACTER
	DELETE_CURRENT
	DELETE_EOL
	DELETE_LINE
	DELETE_WORD
	END_OF_LINE
	END_OF_FILE
	ENTER_LINE
	ESCAPE
	FORWARD_CHARACTER
	FORWARD_WORD
	INSERT_OVERSTRIKE_TOGGLE
	NEXT_LINE
	PREVIOUS_LINE
	RECALL
	Example
	REDRAW
	START_OF_LINE
	Defining New Function Keys
	Example

	DEFROI
	Using DEFROI
	Sx, Sy
	Xverts, Yverts
	NOREGION
	NOFILL
	RESTORE
	X0, Y0
	ZOOM

	DEFSYSV
	Name
	Value
	Read_Only
	EXISTS

	DELETE_SYMBOL
	Name
	TYPE

	DELLOG
	Lognam
	TABLE

	DELVAR
	Vi

	DERIV
	X
	Y

	DERIVSIG
	X
	Y
	Sigx
	Sigy

	DETERM
	A
	CHECK
	DOUBLE
	ZERO

	DEVICE
	DFPMIN
	X
	Gtol
	Fmin
	Func
	Dfunc
	DOUBLE
	EPS
	ITER
	ITMAX
	STEPMAX
	TOLX
	IDL Output

	DIALOG_MESSAGE
	Message_Text
	CANCEL
	DEFAULT_CANCEL
	DEFAULT_NO
	DIALOG_PARENT
	DISPLAY_NAME
	ERROR
	INFORMATION
	QUESTION
	RESOURCE_NAME
	TITLE

	DIALOG_PICKFILE
	DIALOG_PARENT
	DIRECTORY
	DISPLAY_NAME
	FILE
	FILTER
	FIX_FILTER
	GET_PATH
	GROUP
	MULTIPLE_FILES
	MUST_EXIST
	PATH
	READ
	TITLE
	WRITE

	DIALOG_PRINTERSETUP
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_PRINTJOB
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_READ_IMAGE
	Filename
	BLUE
	DIALOG_PARENT
	FILE
	FILTER
	FIX_FILTER
	GREEN
	IMAGE
	PATH
	QUERY
	RED
	TITLE

	DIALOG_WRITE_IMAGE
	Image
	R, G, B (optional)
	DIALOG_PARENT
	FILENAME
	FIX_TYPE
	NOWRITE
	OPTIONS
	PATH
	TITLE
	TYPE

	DIGITAL_FILTER
	Flow
	Fhigh
	A
	Nterms

	DILATE
	Image
	Structure
	X0, Y0, Z0
	BACKGROUND
	CONSTRAINED
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Using DILATE
	Openings and Closings

	DINDGEN
	Di

	DISSOLVE
	Image
	DELAY
	ORDER
	SIZ
	X0, Y0

	DIST
	N
	M

	DLM_LOAD
	DLMNameStrn
	IDL Output

	DO_APPLE_SCRIPT
	Script
	AS_STRING
	RESULT

	DOC_LIBRARY
	Name
	PRINT
	DIRECTORY
	MULTI
	FILE
	PATH
	OUTPUTS

	DOUBLE
	Expression
	Offset
	Di

	DRAW_ROI
	oROI
	LINE_FILL
	SPACING

	EFONT
	Init_Font
	BLOCK
	GROUP

	EIGENQL
	A
	ABSOLUTE
	ASCENDING
	DOUBLE
	EIGENVECTORS
	OVERWRITE
	RESIDUAL
	IDL Output

	EIGENVEC
	A
	EVAL
	DOUBLE
	ITMAX
	RESIDUAL
	IDL Output

	ELMHES
	A
	COLUMN
	DOUBLE
	NO_BALANCE

	EMPTY
	ENABLE_SYSRTN
	Routines
	DISABLE
	EXCLUSIVE
	FUNCTIONS
	Special Cases

	EOF
	Unit
	Using EOF with VMS Files

	EOS_* Routines
	ERASE
	Background_Color
	CHANNEL
	COLOR

	ERODE
	Image
	Structure
	X0, Y0, Z0
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Using ERODE

	ERRORF
	X

	ERRPLOT
	X
	Low
	High
	WIDTH

	EXECUTE
	String
	QuietCompile

	EXIT
	NO_CONFIRM
	STATUS

	EXP
	Expression

	EXPAND
	A
	Nx
	Ny
	Result
	FILLVAL
	MAXVAL

	EXPAND_PATH
	The Path Definition String
	A Note on Order within !PATH
	String
	ARRAY
	COUNT

	EXPINT
	N
	X
	DOUBLE
	EPS
	ITMAX

	EXTRAC
	Array
	Ci
	Si

	EXTRACT_SLICE
	PlaneNormal
	Xvec
	Vol
	Xsize
	Ysize
	Xcenter
	Ycenter
	Zcenter
	Xrot
	Yrot
	Zrot
	ANISOTROPY
	OUT_VAL
	RADIANS
	SAMPLE
	VERTICES

	F_CVF
	P
	Dfn
	Dfd

	F_PDF
	V
	Dfn
	Dfd

	FACTORIAL
	N
	STIRLING

	FFT
	Array
	Direction
	DOUBLE
	INVERSE
	OVERWRITE
	Running Time

	FILEPATH
	Filename
	ROOT_DIR
	SUBDIRECTORY
	TERMINAL
	TMP

	FINDFILE
	File_Specification
	COUNT

	FINDGEN
	Di

	FINITE
	X
	INFINITY
	NAN

	FIX
	Expression
	Offset
	Dimi
	PRINT
	TYPE

	FLICK
	A
	B
	Rate

	FLOAT
	Expression
	Offset
	Di

	FLOOR
	X

	FLOW3
	Vx, Vy, Vz
	ARROWSIZE
	BLOB
	LEN
	NSTEPS
	NVECS
	SX, SY, SZ

	FLTARR
	Di
	NOZERO

	FLUSH
	Uniti

	FOR
	FORMAT_AXIS_VALUES
	Values
	IDL Output

	FORWARD_FUNCTION
	FREE_LUN
	Uniti

	FSTAT
	Unit
	Fields of the FSTAT Structure

	FULSTR
	A
	IDL Output

	FUNCT
	X
	A
	F
	Pder

	FUNCTION
	FV_TEST
	X
	Y
	IDL Output

	FX_ROOT
	X
	Func
	DOUBLE
	ITMAX
	STOP
	TOL

	FZ_ROOTS
	C
	DOUBLE
	EPS
	NO_POLISH

	GAMMA
	X

	GAMMA_CT
	Gamma
	CURRENT
	INTENSITY

	GAUSS_CVF
	P

	GAUSS_PDF
	V
	Example 1
	Example 2
	Example 3

	GAUSS2DFIT
	Procedure Used and Other Notes
	Z
	A
	X
	Y
	NEGATIVE
	TILT

	GAUSSFIT
	X
	Y
	A
	ESTIMATES
	NTERMS
	NTERMS=6
	NTERMS=5
	NTERMS=4
	NTERMS=3

	GAUSSINT
	X

	GET_DRIVE_LIST
	GET_KBRD
	Wait

	GET_LUN
	Unit

	GET_SCREEN_SIZE
	Display_name (X Only)
	DISPLAY_NAME (X Only)
	RESOLUTION

	GET_SYMBOL
	Name
	TYPE

	GETENV
	Name
	Environment Variables Under VMS
	Special Handling of the IDL_TMPDIR Environment Variable
	The UNIX Environment
	GETENV
	SETENV

	GOTO
	GRID_TPS
	Xp
	Yp
	Values
	COEFFICIENTS
	DELTA
	NGRID
	START

	GRID3
	X, Y, Z and F
	Gx, Gy, and Gz
	DELTA
	DTOL
	GRID
	NGRID
	START

	GS_ITER
	A
	B
	CHECK
	LAMBDA
	MAX_ITER
	TOL
	X_0

	H_EQ_CT
	Image

	H_EQ_INT
	Using the H_EQ_INT Interface
	Image

	HANNING
	N1
	N2
	ALPHA

	HDF_* Routines
	HDF_BROWSER
	Filename
	CANCEL
	GROUP
	PREFIX
	Graphical User Interface Menu Options
	Pulldown Menu
	Preview Button
	Read Checkbox
	Extract As

	HDF_READ
	Filename
	DFR8
	DF24
	PREFIX
	TEMPLATE
	Graphical User Interface Menu Options
	Pulldown Menu
	Preview Button
	Read Checkbox
	Extract As

	HEAP_GC
	OBJ
	PTR
	VERBOSE

	HELP
	Expression(s)
	ALL_KEYS
	BREAKPOINTS
	BRIEF
	CALLS
	DEVICE
	DLM
	FILES
	FULL
	FUNCTIONS
	HEAP_VARIABLES
	KEYS
	LAST_MESSAGE
	MEMORY
	MESSAGES
	NAMES
	OBJECTS
	OUTPUT
	PROCEDURES
	RECALL_COMMANDS
	ROUTINES
	SOURCE_FILES
	STRUCTURES
	SYSTEM_VARIABLES
	TRACEBACK

	HILBERT
	X
	D

	HIST_2D
	V1, V2
	BIN1
	BIN2
	MAX1
	MAX2
	MIN1
	MIN2

	HIST_EQUAL
	A
	BINSIZE
	MINV
	MAXV
	TOP

	HISTOGRAM
	Array
	BINSIZE
	INPUT
	MAX
	MIN
	NAN
	OMAX
	OMIN
	REVERSE_INDICES

	HLS
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	HQR
	A
	COLUMN
	DOUBLE

	HSV
	Vlo
	Vhi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	IBETA
	A
	B
	X
	IDL Output

	IDENTITY
	N
	DOUBLE

	IDL_Container Object Class
	IDLanROI Object Class
	IDLanROIGroup Object Class
	IDLffDICOM Object Class
	IDLffDXF Object Class
	IDLffLanguageCat Object Class
	IDLgr* Object Classes
	IF...THEN...ELSE
	IGAMMA
	A
	X
	METHOD

	IMAGE_CONT
	A
	ASPECT
	INTERP
	WINDOW_SCALE

	IMAGE_STATISTICS
	Data
	COUNT
	DATA_SUM
	LABELED
	LUT
	MASK
	MAXIMUM
	MEAN
	MINIMUM
	STDDEV
	SUM_OF_SQUARES
	VARIANCE
	VECTOR
	WEIGHT_SUM
	WEIGHTED

	IMAGINARY
	Complex_Expression

	INDGEN
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DOUBLE
	FLOAT
	L64
	LONG
	STRING
	TYPE
	UINT
	UL64
	ULONG

	INT_2D
	Fxy
	AB_Limits
	PQ_Limits
	Pts
	DOUBLE
	ORDER
	Example 1
	Example 2

	INT_3D
	Fxyz
	AB_Limits
	PQ_Limits
	UV_Limits
	Pts
	DOUBLE

	INT_TABULATED
	X
	F
	SORT

	INTARR
	Di
	NOZERO

	INTERPOL
	V
	N
	X
	U
	LSQUADRATIC
	QUADRATIC
	SPLINE

	INTERPOLATE
	P
	X, Y, Z
	CUBIC
	GRID
	MISSING

	INVERT
	Array
	Status
	DOUBLE
	IDL Output

	IOCTL
	File_Unit
	Request
	Arg
	BY_VALUE
	MT_OFFLINE
	MT_REWIND
	MT_SKIP_FILE
	MT_SKIP_RECORD
	MT_WEOF
	SUPPRESS_ERROR

	ISHFT
	P1
	P2

	ISOCONTOUR
	Values
	Outconn
	Outverts
	AUXDATA_IN
	AUXDATA_OUT
	C_VALUE
	FILL
	GEOMX
	GEOMY
	GEOMZ
	LEVEL_VALUES
	N_LEVELS
	OUTCONN_INDICES
	POLYGONS

	ISOSURFACE
	Data
	Value
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	TETRAHEDRA

	JOURNAL
	Arg

	JULDAY
	Month
	Day
	Year
	Hour
	Minute
	Second

	KEYWORD_SET
	Expression

	KRIG2D
	Z, X, Y
	EXPONENTIAL
	SPHERICAL
	A
	C0
	C1
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	GS
	BOUNDS
	NX
	NY

	KURTOSIS
	X
	DOUBLE
	NAN

	KW_TEST
	X
	DF
	MISSING

	L64INDGEN
	Di

	LABEL_DATE
	DATE_FORMAT
	MONTHS

	LABEL_REGION
	Data
	ALL_NEIGHBORS
	EIGHT
	ULONG
	Example 1
	Example 2

	LADFIT
	X
	Y
	ABSDEV
	DOUBLE
	IDL Output

	LEEFILT
	A
	N
	Sig
	EXACT

	LINBCG
	A
	B
	X
	DOUBLE
	ITOL
	TOL
	ITER
	ITMAX
	IDL Output

	LINDGEN
	Di

	LINFIT
	X
	Y
	CHISQ
	DOUBLE
	PROB
	SDEV
	SIGMA
	IDL Output

	LINKIMAGE
	Name
	Image
	Type
	Entry
	DEFAULT
	DEVICE
	FUNCT
	KEYWORDS
	MAX_ARGS
	MIN_ARGS
	VMS LINKIMAGE and LIB$FIND_IMAGE_SYMBOL
	Specifying The Library Name
	Linking To The IDL Executable

	LIVE_Tools
	LIVE_CONTOUR
	Zn
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	[XY]INDEPENDENT
	[XY]LOG
	[XY]RANGE
	[XY]_TICKNAME

	LIVE_CONTROL
	Name
	DIALOG
	ERROR
	NO_DRAW
	PROPERTIES
	UPDATE_DATA
	WINDOW_IN

	LIVE_DESTROY
	Name
	ENVIRONMENT
	ERROR
	NO_DRAW
	PURGE
	WINDOW_IN

	LIVE_EXPORT
	APPEND
	COMPRESSION (TIFF)
	DIALOG
	DIMENSIONS
	ERROR
	FILENAME
	ORDER (JPEG, TIFF)
	PROGRESSIVE (JPEG)
	QUALITY (JPEG, VRML)
	RESOLUTION
	TYPE
	UNITS
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_IMAGE
	Image
	BLUE
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	GREEN
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	RED
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN

	LIVE_INFO
	Name
	ERROR
	PROPERTIES
	WINDOW_IN
	Structure Tables for LIVE_INFO and LIVE CONTROL
	Color Names
	Line Annotations
	Rectangle Annotations
	Text Annotations
	Axes
	Colorbars
	Contours
	Images
	Legends
	Surfaces
	Entire Visualizations
	Windows

	LIVE_LINE
	ARROW_ANGLE
	ARROW_END
	ARROW_SIZE
	ARROW_START
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_LOAD
	LIVE_OPLOT
	YVector
	ERROR
	INDEPENDENT
	NAME
	NEW_AXES
	NO_DRAW
	REFERENCE_OUT
	REPLACE
	SUBTYPE
	VISUALIZATION_IN
	WINDOW_IN
	[XY]_TICKNAME
	[XY]AXIS_IN

	LIVE_PLOT
	YVector
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	HISTOGRAM
	INDEPENDENT
	INDEXED_COLOR
	INSTANCING
	LINE
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	POLAR
	REFERENCE_OUT
	RENDERER
	REPLACE
	SCATTER
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	[XY]LOG
	[XY]RANGE
	[XY]_TICKNAME

	LIVE_PRINT
	DIALOG
	ERROR
	SETUP
	WINDOW_IN

	LIVE_RECT
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_STYLE
	Type
	BASE_STYLE
	COLORBAR_PROPERTIES
	GRAPHIC_PROPERTIES
	Plots
	Images
	Contours
	Surfaces
	GROUP
	LEGEND_PROPERTIES
	NAME
	SAVE
	VISUALIZATION_PROPERTIES
	[XYZ]AXIS_PROPERTIES

	LIVE_SURFACE
	Data
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	[XY]INDEPENDENT
	[XY]LOG
	[XY]RANGE
	[XY]_TICKNAME

	LIVE_TEXT
	Text
	ALIGNMENT
	COLOR
	DIALOG
	ENABLE_FORMATTING
	ERROR
	FONTNAME
	FONTSIZE
	HIDE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	TEXTANGLE
	VISUALIZATION_IN
	WINDOW_IN

	LJLCT
	LL_ARC_DISTANCE
	Lon_lat0
	Arc_Dist
	Az
	DEGREES

	LMFIT
	X
	Y
	A
	ALPHA
	CHISQ
	CONVERGENCE
	COVAR
	DOUBLE
	FITA
	FUNCTION_NAME
	ITER
	ITMAX
	ITMIN
	SIGMA
	TOL
	WEIGHTS

	LMGR
	CLIENTSERVER
	DEMO
	EMBEDDED
	EXPIRE_DATE
	FORCE_DEMO
	INSTALL_NUM
	LMHOSTID
	RUNTIME
	SITE_NOTICE
	STUDENT
	TRIAL

	LNGAMMA
	X

	LNP_TEST
	X
	Y
	HIFAC
	JMAX
	OFAC
	WK1
	WK2

	LOADCT
	Table
	BOTTOM
	FILE
	GET_NAMES
	NCOLORS
	SILENT

	LOCALE_GET
	LON64ARR
	Di
	NOZERO

	LONARR
	Di
	NOZERO

	LONG
	Expression
	Offset
	Di

	LONG64
	Expression
	Offset
	Di

	LSODE
	Y
	X
	H
	Derivs
	Status
	ATOL
	RTOL
	IDL Output

	LU_COMPLEX
	A
	B
	DOUBLE
	INVERSE
	SPARSE
	IDL Output

	LUDC
	A
	Index
	COLUMN
	DOUBLE
	INTERCHANGES

	LUMPROVE
	A
	Alud
	Index
	B
	X
	COLUMN
	DOUBLE
	IDL Output

	LUSOL
	A
	Index
	B
	COLUMN
	DOUBLE
	IDL Output

	M_CORRELATE
	X
	Y
	IDL Output

	MACHAR
	DOUBLE
	MACHAR Fields

	MAKE_ARRAY
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	L64
	INDEX
	INT
	LONG
	NOZERO
	OBJ
	PTR
	SIZE
	STRING
	TYPE
	UINT
	UL64
	ULONG
	VALUE

	MAP_CONTINENTS
	COASTS
	COLOR
	COUNTRIES
	FILL_CONTINENTS
	HIRES
	MLINESTYLE
	MLINETHICK
	ORIENTATION
	RIVERS
	SPACING
	USA

	MAP_GRID
	BOX_AXES
	CHARSIZE
	CLIP_TEXT
	COLOR
	GLINESTYLE
	GLINETHICK
	LABEL
	LATALIGN
	LATDEL
	LATLAB
	LATNAMES
	LATS
	LONALIGN
	LONDEL
	LONLAB
	LONNAMES
	LONS
	ORIENTATION

	MAP_IMAGE
	Image
	Startx
	Starty
	Xsize
	Ysize
	LATMIN
	LATMAX
	LONMIN
	LONMAX
	BILINEAR
	COMPRESS
	SCALE
	MAX_VALUE
	MIN_VALUE
	MISSING

	MAP_PATCH
	Image_Orig
	Lons
	Lats
	LAT0
	LAT1
	LON0
	LON1
	MAX_VALUE
	MISSING
	TRIANGULATE
	XSIZE
	XSTART
	YSIZE
	YSTART

	MAP_PROJ_INFO
	Iproj
	AZIMUTHAL
	CIRCLE
	CURRENT
	CYLINDRICAL
	LL_LIMITS
	NAME
	PROJ_NAMES
	UV_LIMITS
	UV_RANGE

	MAP_SET
	P0lat
	P0lon
	Rot
	AITOFF
	ALBERS
	AZIMUTHAL
	CONIC
	CYLINDRICAL
	GOODESHOMOLOSINE
	GNOMIC
	HAMMER
	LAMBERT
	MERCATOR
	MILLER
	MOLLWEIDE
	ORTHOGRAPHIC
	ROBINSON
	SATELLITE
	SINUSOIDAL
	STEREOGRAPHIC
	TRANSVERSE_MERCATOR
	ADVANCE
	CHARSIZE
	CLIP
	COLOR
	CONTINENTS
	CON_COLOR
	E_CONTINENTS
	E_GRID
	E_HORIZON
	Example
	GLINESTYLE
	GLINETHICK
	GRID
	HIRES
	HORIZON
	LABEL
	LATALIGN
	LATLAB
	LATDEL
	LONALIGN
	LONDEL
	LONLAB
	MLINESTYLE
	MLINETHICK
	NOBORDER
	NOERASE
	TITLE
	USA
	XMARGIN
	YMARGIN
	CENTRAL_AZIMUTH
	ELLIPSOID
	ISOTROPIC
	LIMIT
	ROBINSON
	SAT_P
	SCALE
	STANDARD_PARALLELS

	MAX
	Array
	Max_Subscript
	MIN
	NAN
	Example 1
	IDL Output
	Example 2
	IDL Output

	MD_TEST
	X
	ABOVE
	BELOW
	MDC
	IDL Output

	MEAN
	X
	DOUBLE
	NAN
	IDL Output

	MEANABSDEV
	X
	DOUBLE
	MEDIAN
	NAN
	IDL Output

	MEDIAN
	Array
	Width
	EVEN
	IDL Output

	MESH_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	MESH_DECIMATE
	Verts
	Conn
	Connout
	PERCENT_VERTICES
	PERCENT_POLYGONS
	VERTICES

	MESH_ISSOLID
	Conn

	MESH_MERGE
	Verts
	Conn
	Verts1
	Conn1
	COMBINE_VERTICES
	TOLERANCE

	MESH_NUMTRIANGLES
	Conn

	MESH_OBJ
	Type
	Vertex_List
	Polygon_List
	Array1
	Array2
	DEGREES
	P1 - P5

	MESH_SMOOTH
	Verts
	Conn
	ITERATIONS
	FIXED_VERTICES
	FIXED_EDGE_VERTICES
	LAMBDA

	MESH_SURFACEAREA
	Verts
	Conn
	AUXDATA
	MOMENT

	MESH_VALIDATE
	Verts
	Conn
	COMBINE_VERTICES
	PACK_VERTICES
	REMOVE_NAN
	TOLERANCE

	MESH_VOLUME
	Verts
	Conn
	SIGNED

	MESSAGE
	Text
	CONTINUE
	INFORMATIONAL
	IOERROR
	NONAME
	NOPREFIX
	NOPRINT
	RESET
	TRACEBACK

	MIN
	Array
	Min_Subscript
	MAX
	NAN

	MIN_CURVE_SURF
	Z, X, Y
	DOUBLE
	TPS
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	GS
	BOUNDS
	NX
	NY
	XOUT
	YOUT
	XPOUT/YPOUT

	MK_HTML_HELP
	Sources
	Filename
	STRICT
	TITLE
	VERBOSE

	MODIFYCT
	Itab
	Name
	R
	G
	B
	FILE

	MOMENT
	X
	DOUBLE
	MDEV
	NAN
	SDEV
	IDL Output

	MORPH_CLOSE
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_DISTANCE
	Data
	BACKGROUND
	NEIGHBOR_SAMPLING
	Default Two Dimensional Example
	Chessboard Two-Dimensional Example
	City Block Two-Dimensional Example:
	Actual Distance Two-Dimensional Example
	NO_COPY

	MORPH_GRADIENT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_HITORMISS
	Image
	HitStructure
	MissStructure

	MORPH_OPEN
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_THIN
	Image
	HitStructure
	MissStructure

	MORPH_TOPHAT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MPEG_CLOSE
	mpegID

	MPEG_OPEN
	Dimensions
	FILENAME

	MPEG_PUT
	mpegID
	COLOR
	FRAME
	IMAGE
	ORDER
	WINDOW

	MPEG_SAVE
	mpegID
	FILENAME

	MSG_CAT_CLOSE
	object

	MSG_CAT_COMPILE
	input
	output
	LOCALE_ALIAS
	MBCS

	MSG_CAT_OPEN
	application
	DEFAULT_FILENAME
	FILENAME
	FOUND
	LOCALE
	PATH
	SUB_QUERY

	MULTI
	N

	N_ELEMENTS
	Expression
	Example 1
	Example 2

	N_PARAMS
	N_TAGS
	Expression
	LENGTH

	NCDF_* Routines
	NEWTON
	X
	Vecfunc
	CHECK
	DOUBLE
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX
	IDL Output

	NORM
	A
	DOUBLE
	IDL Output

	OBJ_CLASS
	Arg
	COUNT
	SUPERCLASS

	OBJ_DESTROY
	ObjRef
	Arg1…Argn

	OBJ_ISA
	ObjectInstance
	ClassName

	OBJ_NEW
	ObjectClassName
	Arg1…Argn

	OBJ_VALID
	Arg
	CAST
	COUNT
	IDL Output

	OBJARR
	Di
	NOZERO

	ON_ERROR
	N

	ON_IOERROR
	ONLINE_HELP
	Topic
	BOOK
	CONTEXT
	FULL_PATH
	QUIT

	OPEN
	Unit
	File
	Record_Length
	APPEND
	BUFSIZE
	COMPRESS
	DELETE
	ERROR
	F77_UNFORMATTED
	GET_LUN
	MORE
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAX_FLOAT
	WIDTH
	XDR
	MACCREATOR
	MACTYPE
	BINARY
	NOAUTOMODE
	NOSTDIO
	BLOCK
	DEFAULT
	EXTENDSIZE
	FIXED
	FORTRAN
	INITIALSIZE
	KEYED
	LIST
	NONE
	PRINT
	SEGMENTED
	SHARED
	STREAM
	SUBMIT
	SUPERSEDE
	TRUNCATE_ON_CLOSE
	UDF_BLOCK
	VARIABLE
	Note On IEEE to VAX Format Conversion

	OPLOT
	X
	Y
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK

	OPLOTERR
	X
	Y
	Err
	Psym

	P_CORRELATE
	X
	Y
	C
	IDL Output

	PARTICLE_TRACE
	Data
	Seeds
	Verts
	Conn
	Normals
	ANISOTROPY
	INTEGRATION
	SEED_NORMAL
	TOLERANCE
	MAX_ITERATIONS
	MAX_STEPSIZE
	UNIFORM

	PCOMP
	A
	COEFFICIENTS
	COVARIANCE
	DOUBLE
	EIGENVALUES
	NVARIABLES
	STANDARDIZE
	VARIANCES
	IDL Output

	PLOT
	X
	Y
	ISOTROPIC
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK
	XLOG
	YNOZERO
	YLOG

	PLOT_3DBOX
	X
	Y
	Z
	GRIDSTYLE
	PSYM
	SOLID_WALLS
	XY_PLANE
	XYSTYLE
	XZ_PLANE
	XZSTYLE
	YZ_PLANE
	YZSTYLE

	PLOT_FIELD
	U
	V
	ASPECT
	LENGTH
	N
	TITLE
	IDL Output

	PLOTERR
	X
	Y
	Err
	TYPE
	PSYM

	PLOTS
	X
	Y
	Z
	CONTINUE

	PNT_LINE
	P0
	L0
	L1
	Pl
	INTERVAL
	IDL Output

	POINT_LUN
	Unit
	Position
	Use Of POINT_LUN On Compressed Files

	POLAR_CONTOUR
	Z
	Theta
	R
	SHOW_TRIANGULATION

	POLAR_SURFACE
	Z
	R
	Theta
	GRID
	SPACING
	BOUNDS
	QUINTIC
	MISSING

	POLY
	X
	C

	POLY_2D
	Array
	P and Q
	Interp
	Dimx
	Dimy
	CUBIC
	MISSING

	POLY_AREA
	X
	Y
	SIGNED

	POLY_FIT
	X
	Y
	NDegree
	Yfit
	Yband
	Sigma
	Corrm
	DOUBLE
	IDL Output

	POLYFILL
	Fill Methods
	X
	Y
	Z
	FILL_PATTERN
	IMAGE_COORD
	IMAGE_INTERP
	LINE_FILL
	PATTERN
	SPACING
	TRANSPARENT (Z-Buffer output only)

	POLYFILLV
	X
	Y
	Sx
	Sy
	Run_Length

	POLYFITW
	X
	Y
	Weights
	NDegree
	Yfit
	Yband
	Sigma
	Corrm

	POLYSHADE
	Vertices
	X, Y, Z
	Polygons
	DATA
	NORMAL
	POLY_SHADES
	SHADES
	T3D
	TOP
	XSIZE
	YSIZE

	POLYWARP
	Xi, Yi
	Xo, Yo
	Degree
	Kx
	Ky

	POPD
	POWELL
	P
	Xi
	Ftol
	Fmin
	Func
	DOUBLE
	ITER
	ITMAX
	IDL Output

	PRIMES
	K
	IDL Output

	PRINT/PRINTF
	Unit
	Expri
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	STDIO_NON_FINITE
	REWRITE
	Format Compatibility

	PRINTD
	PRO
	argumentn

	PROFILE
	Image
	XX
	YY
	NOMARK
	XSTART
	YSTART

	PROFILER
	Module
	CLEAR
	OUTPUT
	REPORT
	RESET
	SYSTEM
	IDL Output

	PROFILES
	Using PROFILES
	Image
	ORDER
	SX
	SY
	WSIZE

	PROJECT_VOL
	Vol
	X_Sample
	Y_Sample
	Z_Sample
	DEPTH_Q
	OPAQUE
	TRANS

	PS_SHOW_FONTS
	NOLATIN

	PSAFM
	Input_Filename
	Output_Filename

	PSEUDO
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	PTR_FREE
	Pi

	PTR_NEW
	InitExpr
	ALLOCATE_HEAP
	NO_COPY

	PTR_VALID
	Arg
	CAST
	COUNT

	PTRARR
	Di
	ALLOCATE_HEAP
	NOZERO

	PUSHD
	Dir

	QROMB
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K

	QROMO
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K
	MIDEXP
	MIDINF
	MIDPNT
	MIDSQL
	MIDSQU

	QSIMP
	Func
	A
	B
	DOUBLE
	EPS
	JMAX

	QUERY_* Routines
	QUERY_BMP
	Filename
	Info

	QUERY_DICOM
	Filename
	Info
	IMAGE_INDEX

	QUERY_GIF
	Filename
	Info

	QUERY_IMAGE
	Filename
	Info
	CHANNELS
	DIMENSIONS
	HAS_PALETTE
	IMAGE_INDEX
	NUM_IMAGES
	PIXEL_TYPE
	SUPPORTED_READ
	SUPPORTED_WRITE
	TYPE

	QUERY_JPEG
	Filename
	Info

	QUERY_PICT
	Filename
	Info

	QUERY_PNG
	Filename
	Info

	QUERY_PPM
	Filename
	Info
	MAXVAL

	QUERY_SRF
	Filename
	Info

	QUERY_TIFF
	Filename
	Info
	IMAGE_INDEX

	QUERY_WAV
	Filename
	Info

	R_CORRELATE
	X
	Y
	D
	KENDALL
	PROBD
	ZD
	IDL Output

	R_TEST
	X
	N0
	N1
	R

	RANDOMN
	Seed
	Di
	BINOMIAL
	GAMMA
	NORMAL
	POISSON
	UNIFORM

	RANDOMU
	Seed
	Di
	BINOMIAL
	GAMMA
	NORMAL
	POISSON
	UNIFORM

	RANKS
	X
	IDL Output

	RDPIX
	Using RDPIX
	Image
	X0, Y0

	READ/READF
	Prompt
	Unit
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PROMPT
	KEY_ID
	KEY_MATCH
	KEY_VALUE
	Format Compatibility

	READ_ASCII
	Filename
	COMMENT_SYMBOL
	COUNT
	DATA_START
	DELIMITER
	HEADER
	MISSING_VALUE
	NUM_RECORDS
	RECORD_START
	TEMPLATE
	VERBOSE

	READ_BINARY
	Filename
	FileUnit
	DATA_DIMS
	DATA_START
	DATA_TYPE
	ENDIAN
	TEMPLATE

	READ_BMP
	Filename
	R, G, B
	Ihdr
	RGB

	READ_DICOM
	Filename
	Red, Green, Blue
	IMAGE_INDEX

	READ_GIF
	Filename
	Image
	R, G, B
	CLOSE
	MULTIPLE

	READ_IMAGE
	Filename
	Red
	Green
	Blue
	ALLOWED_FORMATS
	FORMAT
	IMAGE_INDEX

	READ_INTERFILE
	File
	Data

	READ_JPEG
	Filename
	Image
	Colortable
	BUFFER
	Example
	COLORS
	DITHER
	GRAYSCALE
	ORDER
	TRUE
	TWO_PASS_QUANTIZE
	UNIT

	READ_PICT
	Filename
	Image
	R, G, B

	READ_PNG
	Filename
	R, G, B
	VERBOSE
	TRANSPARENT

	READ_PPM
	Filename
	Image
	MAXVAL

	READ_SPR
	Filename

	READ_SRF
	Filename
	Image
	R, G, B

	READ_SYLK
	File
	ARRAY
	COLMAJOR
	NCOLS
	NROWS
	STARTCOL
	STARTROW
	USEDOUBLES
	USELONGS

	READ_TIFF
	Filename
	R, G, B
	GEOTIFF
	IMAGE_INDEX
	ORDER
	PLANARCONFIG
	SUB_RECT [x, y, width, height]
	UNSIGNED
	VERBOSE

	READ_WAV
	Filename
	Rate

	READ_WAVE
	File
	Variables
	Names
	Dimensions
	MESHNAMES

	READ_X11_BITMAP
	File
	Bitmap
	X
	Y
	EXPAND_TO_BYTES

	READ_XWD
	Filename
	R, G, B

	READS
	Input
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS

	READU
	Unit
	Vari
	TRANSFER_COUNT
	KEY_ID
	KEY_MATCH
	KEY_VALUE

	REBIN
	Array
	Di
	SAMPLE
	Rules Used by REBIN
	Endpoint Effects When Expanding

	RECALL_COMMANDS
	RECON3
	Using RECON3
	Images
	Obj_Rot
	Obj_Pos
	Focal
	Dist
	Vol_Pos
	Img_Ref
	Img_Mag
	Vol_Size
	MISSING
	MODE

	REDUCE_COLORS
	Image
	Values

	REFORM
	Array
	Di
	OVERWRITE

	REGRESS
	X
	Y
	Weights
	Yfit
	Const
	Sigma
	Ftest
	R
	Rmul
	Chisq
	Status
	RELATIVE_WEIGHT

	REPEAT...UNTIL
	REPLICATE
	Value
	Di

	REPLICATE_INPLACE
	X
	Value
	D1
	Loc1
	D2
	Range

	RESOLVE_ALL
	CONTINUE_ON_ERROR
	QUIET

	RESOLVE_ROUTINE
	Name
	EITHER
	IS_FUNCTION
	NO_RECOMPILE

	RESTORE
	Note to VMS Users
	Filename
	FILENAME
	RELAXED_STRUCTURE_ASSIGNMENT
	RESTORED_OBJECTS
	VERBOSE

	RETALL
	RETURN
	Return_value

	REVERSE
	Array
	Subscript_Index
	IDL Output

	REWIND
	Unit

	RIEMANN
	P
	A
	Theta
	BACKPROJECT
	BILINEAR
	CENTER
	COR
	CUBIC
	D
	ROW

	RK4
	Y
	Dydx
	X
	H
	Derivs
	DOUBLE
	IDL Output

	ROBERTS
	Image

	ROT
	A
	ANGLE
	MAG
	X0
	Y0
	INTERP
	CUBIC
	MISSING
	PIVOT

	ROTATE
	Array
	Direction

	ROUND
	X

	ROUTINE_INFO
	Routine
	DISABLED
	ENABLED
	FUNCTIONS
	PARAMETERS
	SOURCE
	SYSTEM
	UNRESOLVED
	VARIABLES

	RS_TEST
	X
	Y
	UX
	UY
	IDL Output

	S_TEST
	X
	Y
	ZDIFF
	IDL Output

	SAVE
	Varn
	ALL
	COMM
	COMPRESS
	FILENAME
	ROUTINES
	SYSTEM_VARIABLES
	VARIABLES
	VERBOSE

	SCALE3
	XRANGE
	YRANGE
	ZRANGE
	AX
	AZ

	SCALE3D
	SEARCH2D
	Array
	Xpos
	Ypos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SEARCH3D
	Array
	Xpos
	Ypos
	Zpos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SET_PLOT
	Device
	COPY
	INTERPOLATE

	SET_SHADING
	GOURAUD
	LIGHT
	REJECT
	VALUES

	SET_SYMBOL
	Name
	Value
	TYPE

	SETENV
	Environment_Expression

	SETLOG
	Lognam
	Value
	CONCEALED
	CONFINE
	NO_ALIAS
	TABLE
	TERMINAL

	SETUP_KEYS
	ANSI
	EIGHTBIT
	SUN
	VT200
	HP9000
	IBM
	MIPS
	SGI
	APP_KEYPAD
	NUM_KEYPAD

	SFIT
	Data
	Degree
	KX
	IDL Output

	SHADE_SURF
	Restrictions
	Z
	X
	Y
	AX
	AZ
	IMAGE
	MAX_VALUE
	MIN_VALUE
	PIXELS
	SAVE
	SHADES
	XLOG
	YLOG

	SHADE_SURF_IRR
	Z
	X
	Y
	AX
	AZ
	IMAGE
	PLIST
	T3D

	SHADE_VOLUME
	Volume
	Value
	Vertex
	Poly
	LOW
	SHADES
	VERBOSE
	XRANGE
	YRANGE
	ZRANGE

	SHIFT
	Array
	Si
	IDL Output

	SHOW3
	Image
	X
	Y
	INTERP
	E_CONTOUR
	E_SURFACE
	SSCALE

	SHOWFONT
	Font
	Name
	ENCAPSULATED
	TT_FONT

	SIN
	X

	SINDGEN
	Di

	SINH
	X

	SIZE
	IDL Type Codes
	Expression
	DIMENSIONS
	FILE_LUN
	N_DIMENSIONS
	N_ELEMENTS
	STRUCTURE
	TNAME
	TYPE

	SKEWNESS
	X
	DOUBLE
	NAN
	IDL Output

	SKIPF
	Unit
	Files
	Records
	R

	SLICER3
	hData3D
	DATA_NAMES
	DETACH
	GROUP
	MODAL
	The SLICER3 Graphical User Interface
	File Menu
	Load
	Save/Save Subset
	Save/Save Tiff Image
	Quit
	Tools Menu
	Erase
	Delete/...
	Colors/Reset Colors
	Colors/Differential Shading
	Colors/Slice/Block
	Colors/Surface
	Colors/Projection
	Options
	Main Draw Window
	Data Pulldown Menu
	Mode Pulldown Menu
	Slice Mode
	Draw Radio Button
	Expose Radio Button
	Orthogonal Radio Button
	X/Y/Z Radio Buttons
	Oblique Radio Button
	Normal Radio Button
	Center Radio Button
	Display Button
	Block Mode
	Add
	Subtract
	Display Button
	Surface Mode
	Low
	High
	Shading pulldown menu
	Display Button
	Projection Mode
	Max
	Avg
	Low
	Med
	High
	Depth Queue % Slider
	Display Button
	Threshold Mode
	Min
	Max
	Transp.
	Profile Mode
	Orthogonal
	Oblique
	Probe Mode
	X
	Y
	Z
	View Mode
	Display
	1st Rotation
	2nd Rotation
	Zoom % Slider
	Z % Slider

	Operational Details

	SLIDE_IMAGE
	Image
	BLOCK
	CONGRID
	FULL_WINDOW
	GROUP
	ORDER
	REGISTER
	RETAIN
	SLIDE_WINDOW
	SHOW_FULL
	TITLE
	TOP_ID
	XSIZE
	XVISIBLE
	YSIZE
	YVISIBLE

	SMOOTH
	Array
	Width
	EDGE_TRUNCATE
	NAN

	SOBEL
	Image

	SORT
	Array
	IDL Output

	SPAWN
	Command
	Result
	COUNT
	PID
	MACCREATOR
	NOSHELL
	NOTTYRESET
	SH
	UNIT
	NOCLISYM
	NOLOGNAM
	NOTIFY
	NOWAIT

	SPH_4PNT
	X, Y, Z
	Xc, Yc, Zc
	R
	IDL Output

	SPH_SCAT
	Lon
	Lat
	F
	BOUNDS
	BOUT
	GOUT
	GS
	NLON
	NLAT

	SPL_INIT
	X
	Y
	DOUBLE
	YP0
	YPN_1
	Example 1
	Example 2

	SPL_INTERP
	X
	Y
	Y2
	X2
	DOUBLE
	IDL Output

	SPLINE
	X
	Y
	T
	Sigma

	SPLINE_P
	X
	Y
	Xr
	Yr
	INTERVAL
	TAN0
	TAN1

	SPRSAB
	A, B
	DOUBLE
	THRESH
	IDL Output

	SPRSAX
	A
	X
	DOUBLE
	IDL Output

	SPRSIN
	A
	Columns
	Rows
	Values
	N
	COLUMN
	DOUBLE
	THRESH
	Example1
	Example2

	SQRT
	X

	STANDARDIZE
	A
	DOUBLE
	IDL Output

	STDDEV
	X
	DOUBLE
	NAN
	IDL Output

	STOP
	Expri

	STRARR
	Di

	STRCMP
	String1, String2
	N
	FOLD_CASE
	IDL Output

	STRCOMPRESS
	String
	REMOVE_ALL
	IDL Output

	STREAMLINE
	Verts
	Conn
	Normals
	Outverts
	Outconn
	ANISOTROPY
	SIZE
	PROFILE

	STREGEX
	StringExpression
	RegularExpression
	BOOLEAN
	EXTRACT
	FOLD_CASE
	LENGTH
	SUBEXPR
	Example 1
	Example 2

	STRETCH
	Low
	High
	Gamma
	CHOP

	STRING
	Expressionn
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PRINT
	Differences Between STRING and PRINT

	STRJOIN
	String
	Delimiter
	SINGLE
	IDL Output

	STRLEN
	Expression

	STRLOWCASE
	String

	STRMATCH
	String
	SearchString
	FOLD_CASE
	Example 1
	Example 2
	Example 3
	Example 4

	STRMESSAGE
	Err
	BLOCK
	CODE
	NAME

	STRMID
	Expression
	First_Character
	Length
	REVERSE_OFFSET

	STRPOS
	Expression
	Search_String
	Pos
	REVERSE_OFFSET
	REVERSE_SEARCH
	Example 1
	Example 2

	STRPUT
	Destination
	Source
	Position

	STRSPLIT
	String
	Pattern
	ESCAPE
	EXTRACT
	FOLD_CASE
	LENGTH
	PRESERVE_NULL
	REGEX
	Example 1
	IDL Output
	Example 2
	IDL Output
	Example 3
	IDL Output

	STRTRIM
	String
	Flag

	STRUCT_ASSIGN
	Source
	Destination
	NOZERO
	VERBOSE
	IDL Output

	STRUCT_HIDE
	Arg1, ..., Argn

	STRUPCASE
	String

	SURFACE
	Restrictions
	Z
	X
	Y
	AX
	AZ
	BOTTOM
	HORIZONTAL
	LEGO
	LOWER_ONLY
	MAX_VALUE
	MIN_VALUE
	SAVE
	SHADES
	SKIRT
	UPPER_ONLY
	XLOG
	YLOG
	ZAXIS
	ZLOG

	SURFR
	AX
	AZ

	SVDC
	A
	W
	U
	V
	COLUMN
	DOUBLE

	SVDFIT
	X
	Y
	M
	A
	CHISQ
	COVAR
	DOUBLE
	FUNCTION_NAME
	LEGENDRE
	SIGMA
	SINGULAR
	VARIANCE
	WEIGHTS
	YFIT
	IDL Output

	SVSOL
	U
	W
	V
	B
	COLUMN
	DOUBLE

	SWAP_ENDIAN
	Variable

	SYSTIME
	Arg
	JULIAN
	SECONDS

	T_CVF
	P
	Df

	T_PDF
	V
	Df

	T3D
	OBLIQUE
	PERSPECTIVE
	RESET
	ROTATE
	SCALE
	TRANSLATE
	XYEXCH
	XZEXCH
	YZEXCH

	TAG_NAMES
	Expression
	STRUCTURE_NAME

	TAN
	X

	TANH
	X

	TAPRD
	Unit
	Array
	Byte_Reverse

	TAPWRT
	Unit
	Array
	Byte_Reverse

	TEK_COLOR
	Start_Index
	Colors

	TEMPORARY
	Variable

	TETRA_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	TETRA_SURFACE
	Verts
	Connin

	TETRA_VOLUME
	Verts
	Conn
	AUXDATA
	MOMENT

	THIN
	Image
	NEIGHBOR_COUNT
	PRUNE

	THREED
	A
	Sp
	TITLE
	XTITLE
	YTITLE

	TIME_TEST2
	Filename

	TM_TEST
	X
	Y
	PAIRED
	UNEQUAL
	IDL Output

	TOTAL
	Array
	Dimension
	CUMULATIVE
	DOUBLE
	NAN
	Example 1
	IDL Output
	Example 2
	IDL Output

	TRACE
	A
	DOUBLE
	IDL Output

	TrackBall Object
	TRANSPOSE
	Array
	P
	Example 1
	IDL Output
	Example 2
	IDL Output

	TRI_SURF
	X, Y, Z
	EXTRAPOLATE
	LINEAR
	MISSING
	Input Grid Description:
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	Output Grid Description:
	GS
	BOUNDS
	NX
	NY
	Example 1
	Example 2

	TRIANGULATE
	X
	Y
	Triangles
	B
	CONNECTIVITY
	DEGREES
	FVALUE
	REPEATS
	SPHERE

	TRIGRID
	X, Y, Z
	F
	Triangles
	GS
	Limits
	DEGREES
	EXTRAPOLATE
	INPUT
	MAX_VALUE
	MIN_VALUE
	MISSING
	NX
	NY
	QUINTIC
	SPHERE
	XGRID
	YGRID
	Example 1
	Example 2
	Example 3

	TRIQL
	D
	E
	A
	DOUBLE
	IDL Output

	TRIRED
	A
	D
	E
	DOUBLE

	TRISOL
	A
	B
	C
	R
	DOUBLE
	IDL Output

	TRNLOG
	Lognam
	Value
	ACMODE
	FULL_TRANSLATION
	ISSUE_ERROR
	RESULT_ACMODE
	RESULT_TABLE
	TABLE

	TS_COEF
	X
	P
	MSE
	IDL Output

	TS_DIFF
	X
	K
	DOUBLE
	IDL Output

	TS_FCAST
	X
	P
	Nvalues
	BACKCAST
	DOUBLE
	IDL Output

	TS_SMOOTH
	X
	Nvalues
	BACKWARD
	DOUBLE
	FORWARD
	ORDER
	IDL Output

	TV
	Image
	X, Y
	Position
	Channel
	CENTIMETERS
	CHANNEL
	INCHES
	ORDER
	TRUE
	WORDS
	XSIZE
	YSIZE

	TVCRS
	ON_OFF
	X
	Y
	CENTIMETERS
	INCHES
	HIDE_CURSOR

	TVLCT
	R, G, B Color System
	H, L, S Color System
	H, S, V Color System
	Start
	GET
	HLS
	HSV

	TVRD
	Important Note about TVRD and Backing Store
	X0
	Y0
	Nx
	Ny
	Channel
	CHANNEL
	ORDER
	TRUE
	WORDS
	Unexpected Results Using TVRD with X Windows

	TVSCL
	Image
	X, Y
	Position
	Channel
	NAN
	TOP

	UINDGEN
	Di

	UINT
	Expression
	Offset
	Di

	UINTARR
	Di
	NOZERO

	UL64INDGEN
	Di

	ULINDGEN
	Di

	ULON64ARR
	Di
	NOZERO

	ULONARR
	Di
	NOZERO

	ULONG
	Expression
	Offset
	Di

	ULONG64
	Expression
	Offset
	Di

	UNIQ
	Array
	Index

	USERSYM
	X, Y
	COLOR
	FILL
	THICK

	VALUE_LOCATE
	Vector
	Value

	VARIANCE
	X
	DOUBLE
	NAN

	VAX_FLOAT
	Default
	FILE_UNIT

	VECTOR_FIELD
	Field
	Outverts
	Outconn
	ANISOTROPY
	SCALE
	VERTICES

	VEL
	U
	V
	LENGTH
	NSTEPS
	NVECS
	TITLE
	XMAX

	VELOVECT
	U
	V
	X
	Y
	COLOR
	DOTS
	LENGTH
	MISSING

	VERT_T3D
	Vertex_List
	MATRIX
	NO_COPY
	NO_DIVIDE
	SAVE_DIVIDE

	VOIGT
	A
	U

	VORONOI
	X
	Y
	I0
	C
	Xp, Yp
	Rect

	VOXEL_PROJ
	V
	RGBO
	BACKGROUND
	CUTTING_PLANE
	INTERPOLATE
	MAXIMUM_INTENSITY
	STEP
	XSIZE
	YSIZE
	ZBUFFER
	ZPIXELS
	Example 1
	Example 2
	Example 3

	WAIT
	Seconds

	WARP_TRI
	Xo, Yo
	Xi, Yi
	Image
	OUTPUT_SIZE
	QUINTIC
	EXTRAPOLATE

	WATERSHED
	Image
	CONNECTIVITY
	Example

	WDELETE
	Window_Index

	WEOF
	Unit

	WF_DRAW
	X, Y
	COLD
	COLOR
	CONVERGENCE
	DATA
	DEVICE
	FRONT_TYPE
	INTERVAL
	NORM
	OCCLUDED
	PSYM
	STATIONARY
	SYM_HT
	SYM_LEN
	THICK
	WARM

	WHERE
	Array_Expression
	Count
	When WHERE Returns -1
	Example 1
	IDL Output
	Example 2
	IDL Output

	WHILE...DO
	WIDGET_BASE
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	APP_MBAR
	BASE_ALIGN_BOTTOM
	BASE_ALIGN_CENTER
	BASE_ALIGN_LEFT
	BASE_ALIGN_RIGHT
	BASE_ALIGN_TOP
	COLUMN
	Column Width
	Horizontal Size of Widgets
	Vertical Placement
	DISPLAY_NAME
	EVENT_FUNC
	EVENT_PRO
	EXCLUSIVE
	FLOATING
	FRAME
	FUNC_GET_VALUE
	GRID_LAYOUT
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MAP
	MBAR
	MODAL
	NO_COPY
	NONEXCLUSIVE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	Example
	Note on Specifying Color Resources
	RNAME_MBAR
	ROW
	Row Height
	Vertical Size of Widgets
	Horizontal Placement
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SPACE
	TITLE
	TLB_FRAME_ATTR
	TLB_KILL_REQUEST_EVENTS
	TLB_SIZE_EVENTS
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Exclusive And Non-Exclusive Bases
	Positioning Child Widgets Within a Base
	Positioning Top-Level Bases
	Iconizing, Layering, and Destroying Groups of Top-Level Bases
	Iconization and Mapping
	Motif
	Windows
	Macintosh
	Layering
	Motif
	Windows and Macintosh
	Destruction

	Events
	Resize Events
	Keyboard Focus Events
	Kill Request Events

	WIDGET_BUTTON
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	BITMAP
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	HELP
	KILL_NOTIFY
	MENU
	NO_COPY
	NO_RELEASE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	SEPARATOR
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Exclusive And Non-Exclusive Bases
	Events Returned by Button Widgets
	Bitmap Button Labels

	WIDGET_CONTROL
	Widget_ID
	ALIGNMENT
	ALL_TABLE_EVENTS
	ALL_TEXT_EVENTS
	AM_PM
	APPEND
	BAD_ID
	CANCEL_BUTTON
	CLEAR_EVENTS
	COLUMN_LABELS
	COLUMN_WIDTHS
	DAYS_OF_WEEK
	DEFAULT_BUTTON
	DEFAULT_FONT
	DELAY_DESTROY
	DELETE_COLUMNS
	DELETE_ROWS
	DESTROY
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DRAW_XSIZE
	DRAW_YSIZE
	DYNAMIC_RESIZE
	EDITABLE
	EDIT_CELL
	EVENT_FUNC
	EVENT_PRO
	FORMAT
	FUNC_GET_VALUE
	GET_DRAW_VIEW
	GET_UVALUE
	GET_VALUE
	GROUP_LEADER
	HOURGLASS
	ICONIFY
	INPUT_FOCUS
	INSERT_COLUMNS
	INSERT_ROWS
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MANAGED
	MAP
	MONTHS
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	REALIZE
	RESET
	ROW_LABELS
	ROW_HEIGHTS
	SCR_XSIZE
	SCR_YSIZE
	SEND_EVENT
	SENSITIVE
	SET_BUTTON
	SET_DRAW_VIEW
	SET_DROPLIST_SELECT
	SET_LIST_SELECT
	SET_LIST_TOP
	SET_SLIDER_MAX
	SET_SLIDER_MIN
	SET_TABLE_SELECT
	SET_TABLE_VIEW
	SET_TEXT_SELECT
	SET_TEXT_TOP_LINE
	SET_UNAME
	SET_UVALUE
	SET_VALUE
	SHOW
	TABLE_XSIZE
	TABLE_YSIZE
	TIMER
	TLB_GET_OFFSET
	TLB_GET_SIZE
	TLB_KILL_REQUEST_EVENTS
	TLB_SET_TITLE
	TLB_SET_XOFFSET
	TLB_SET_YOFFSET
	TRACKING_EVENTS
	UNITS
	UPDATE
	USE_TABLE_SELECT
	USE_TEXT_SELECT
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_DRAW
	Parent
	APP_SCROLL
	BUTTON_EVENTS
	COLOR_MODEL
	COLORS
	EVENT_FUNC
	EVENT_PRO
	EXPOSE_EVENTS
	FRAME
	FUNC_GET_VALUE
	GRAPHICS_LEVEL
	GROUP_LEADER
	KILL_NOTIFY
	MOTION_EVENTS
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RENDERER
	RESOURCE_NAME
	RETAIN
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	VIEWPORT_EVENTS
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Draw Widgets
	Backing Store

	WIDGET_DROPLIST
	Parent
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TITLE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Droplist Widgets

	WIDGET_EVENT
	Widget_ID
	BAD_ID
	NOWAIT
	SAVE_HOURGLASS
	YIELD_TO_TTY
	Event Processing
	Events
	ID
	TOP
	HANDLER

	WIDGET_INFO
	Widget_ID
	ACTIVE
	CHILD
	COLUMN_WIDTHS
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DROPLIST_NUMBER
	DROPLIST_SELECT
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FIND_BY_UNAME
	GEOMETRY
	KBRD_FOCUS_EVENTS
	LIST_MULTIPLE
	LIST_NUMBER
	LIST_NUM_VISIBLE
	LIST_SELECT
	LIST_TOP
	MANAGED
	MODAL
	NAME
	PARENT
	REALIZED
	ROW_HEIGHTS
	SIBLING
	SLIDER_MIN_MAX
	TABLE_ALL_EVENTS
	TABLE_EDITABLE
	TABLE_EDIT_CELL
	TABLE_SELECT
	TABLE_VIEW
	TEXT_ALL_EVENTS
	TEXT_EDITABLE
	TEXT_NUMBER
	TEXT_OFFSET_TO_XY
	TEXT_SELECT
	TEXT_TOP_LINE
	TEXT_XY_TO_OFFSET
	TLB_KILL_REQUEST_EVENTS
	TRACKING_EVENTS
	TYPE
	UNAME
	UNITS
	UPDATE
	USE_TABLE_SELECT
	VALID_ID
	VERSION

	WIDGET_LABEL
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	DYNAMIC_RESIZE
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Label Widgets

	WIDGET_LIST
	Parent
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	Motif
	Windows
	Macintosh
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by List Widgets

	WIDGET_SLIDER
	Parent
	DRAG
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MAXIMUM
	MINIMUM
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SUPPRESS_VALUE
	TRACKING_EVENTS
	TITLE
	UNAME
	UNITS
	UVALUE
	VALUE
	VERTICAL
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Slider Widget Events
	Known Implementation Problems

	WIDGET_TABLE
	Note on Table Sizing
	Parent
	ALIGNMENT
	ALL_EVENTS
	AM_PM
	COLUMN_LABELS
	COLUMN_MAJOR
	COLUMN_WIDTHS
	DAYS_OF_WEEK
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FORMAT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MONTHS
	NO_COPY
	NO_HEADERS
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESIZEABLE_COLUMNS
	RESIZEABLE_ROWS
	RESOURCE_NAME
	ROW_HEIGHTS
	ROW_LABELS
	ROW_MAJOR
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE

	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Widget Events Returned by Table Widgets
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Text Selection (TYPE = 3)
	Cell Selection (TYPE = 4)
	Row Height Changed (TYPE = 6)
	Column Width Changed (TYPE = 7)
	Invalid Data (TYPE = 8)
	Keyboard Focus Events

	WIDGET_TEXT
	Parent
	ALL_EVENTS
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	WRAP
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL
	Keywords to WIDGET_INFO
	Text Widget Events
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Selection (TYPE = 3)
	Keyboard Focus Events

	WINDOW
	Window_Index
	COLORS
	FREE
	PIXMAP
	RETAIN
	TITLE
	XPOS
	YPOS
	XSIZE
	YSIZE

	WRITE_BMP
	Filename
	Image
	R, G, B
	FOUR_BIT
	IHDR
	HEADER_DEFINE

	WRITE_GIF
	Filename
	Image
	R, G, B
	CLOSE
	MULTIPLE

	WRITE_IMAGE
	Filename
	Format
	Data
	Red
	Green
	Blue
	APPEND

	WRITE_JPEG
	Filename
	Image
	ORDER
	PROGRESSIVE
	QUALITY
	TRUE
	UNIT

	WRITE_NRIF
	File
	Image
	R, G, B

	WRITE_PICT
	Filename
	Image
	R, G, B

	WRITE_PNG
	Filename
	Image
	R, G, B
	VERBOSE
	TRANSPARENT

	WRITE_PPM
	Filename
	Image
	ASCII

	WRITE_SPR
	AS
	Filename

	WRITE_SRF
	Filename
	Image
	R, G, B
	ORDER
	WRITE_32

	WRITE_SYLK
	File
	Data
	STARTCOL
	STARTROW

	WRITE_TIFF
	Filename
	Image
	Order
	APPEND
	COMPRESSION
	FLOAT
	GEOTIFF
	LONG
	PLANARCONFIG
	RED, GREEN, BLUE
	SHORT
	VERBOSE
	XRESOL
	YRESOL
	Example 1
	Example 2
	Example 3

	WRITE_WAV
	Filename
	Data
	Rate

	WRITE_WAVE
	File
	Array
	BIN
	DATANAME
	MESHNAME
	NOMESHDEF
	VECTOR

	WRITEU
	Unit
	Expri
	TRANSFER_COUNT
	REWRITE

	WSET
	Window_Index

	WSHOW
	Window_Index
	Show
	ICONIC

	WTN
	A
	Coef
	COLUMN
	DOUBLE
	INVERSE
	OVERWRITE
	IDL Output

	XBM_EDIT
	BLOCK
	FILENAME
	GROUP
	XSIZE
	YSIZE

	XDISPLAYFILE
	Filename
	BLOCK
	FONT
	GROUP
	HEIGHT
	MODAL
	TEXT
	TITLE
	WIDTH

	XFONT
	GROUP
	PRESERVE

	XINTERANIMATE
	Using XINTERANIMATE
	Rate
	SET
	CYCLE
	MPEG_FILENAME
	MPEG_OPEN
	NO_BLOCK
	SHOWLOAD
	TRACK
	TITLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	CLOSE
	GROUP
	KEEP_PIXMAPS
	MPEG_CLOSE
	XOFFSET
	YOFFSET

	XLOADCT
	BLOCK
	BOTTOM
	FILE
	GROUP
	MODAL
	NCOLORS
	SILENT
	UPDATECALLBACK
	UPDATECBDATA
	USE_CURRENT

	XMANAGER
	Name
	ID
	BACKGROUND
	CATCH
	CLEANUP
	EVENT_HANDLER
	GROUP_LEADER
	JUST_REG
	NO_BLOCK
	Warning
	A Note About Blocking in XMANAGER
	JUST_REG vs. NO_BLOCK
	Blocking vs. Non-blocking Applications

	XMNG_TMPL
	BLOCK
	GROUP

	XMTOOL
	BLOCK
	GROUP

	XOBJVIEW
	Obj
	BLOCK
	GROUP
	STATIONARY
	XSIZE
	YSIZE
	Using XOBJVIEW
	The XOBJVIEW Toolbar
	Example 1
	Example 2

	XPALETTE
	BLOCK
	GROUP
	UPDATECALLBACK
	UPDATECBDATA
	Using the XPALETTE Interface
	Plots on Left Side of Interface
	Status Region
	Control Panel
	Color System Control
	Right Side Color Spectrum Display

	A Note about the Colors Used in the Interface

	XREGISTERED
	Name
	NOSHOW

	XSQ_TEST
	Obfreq
	Exfreq
	EXCELL
	OBCELL
	RESIDUAL
	IDL Output

	XSURFACE
	Data
	BLOCK
	GROUP

	XVAREDIT
	Var
	NAME
	GROUP
	X_SCROLL_SIZE
	Y_SCROLL_SIZE

	XYOUTS
	X, Y
	String
	ALIGNMENT
	CHARSIZE
	CHARTHICK
	TEXT_AXES
	WIDTH
	Scaled Hardware Fonts

	ZOOM
	Using ZOOM
	Using ZOOM with Draw Widgets
	CONTINUOUS
	FACT
	INTERP
	KEEP
	NEW_WINDOW
	XSIZE
	YSIZE
	ZOOM_WINDOW

	ZOOM_24
	Using ZOOM_24
	Using ZOOM_24 with Draw Widgets
	FACT
	RIGHT
	XSIZE
	YSIZE

	IDL Object Class & Method Reference
	Using this Appendix
	Syntax
	Procedure Methods
	Function Methods

	Arguments
	Named Variables
	Keywords
	Setting Keywords

	Creating Objects from the Graphics Class Library

	IDL_Container
	Intrinsic Methods
	IDL_Container::Add
	Object
	POSITION

	IDL_Container::Cleanup
	IDL_Container::Count
	IDL_Container::Get
	ALL
	COUNT
	ISA
	POSITION

	IDL_Container::Init
	IDL_Container::IsContained
	Object
	POSITION

	IDL_Container::Move
	Source
	Destination

	IDL_Container::Remove
	Child_object
	ALL
	POSITION

	IDLanROI
	Intrinsic Methods
	IDLanROI::AppendData
	X
	Y
	Z
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Cleanup
	IDLanROI::ComputeGeometry
	Result
	AREA
	CENTROID
	PERIMETER
	SPATIAL_OFFSET
	SPATIAL_SCALE

	IDLanROI::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROI::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROI::GetProperty
	ALL
	ROI_XRANGE
	ROI_YRANGE
	ROI_ZRANGE

	IDLanROI::Init
	X
	Y
	Z
	BLOCK_SIZE (Get, Set)
	DATA (Get, Set)
	INTERIOR (Get, Set)
	TYPE (Get)

	IDLanROI::RemoveData
	COUNT
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::ReplaceData
	X
	Y
	Z
	FINISH
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Rotate
	Axis
	Angle
	CENTER

	IDLanROI::Scale
	Sx
	Sy
	Sz

	IDLanROI::SetProperty
	IDLanROI::Translate
	Tx
	Ty
	Tz

	IDLanROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLanROIGroup::Add
	ROI

	IDLanROIGroup::Cleanup
	IDLanROIGroup::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROIGroup::ComputeMesh
	Result
	Vertices
	Conn
	CAPPED
	SURFACE_AREA

	IDLanROIGroup::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROIGroup::GetProperty
	ALL
	ROIGROUP_XRANGE
	ROIGROUP_YRANGE
	ROIGROUP_ZRANGE

	IDLanROIGroup::Init
	IDLanROIGroup::Rotate
	Axis
	Angle
	CENTER

	IDLanROIGroup::Scale
	Sx
	Sy
	Sz

	IDLanROIGroup::Translate
	Tx
	Ty
	Tz

	IDLffDICOM
	IDL 5.3 DICOM v3.0 Conformance Summary
	Introduction
	Reading of DICOM Part 10 files
	Encapsulated Transfer Syntaxes Supported
	Encapsulated Transfer Syntaxes NOT Supported
	Encapsulated SOP Classes Supported
	Handling of odd length data elements
	Handling of undefined VRs
	Handling of retired and private data elements

	IDLffDICOM::Cleanup
	IDLffDICOM::DumpElements
	Filename

	IDLffDICOM::GetChildren
	Reference

	IDLffDICOM::GetDescription
	Group
	Element
	REFERENCE

	IDLffDICOM::GetElement
	Group
	Element
	REFERENCE

	IDLffDICOM::GetGroup
	Group
	Element
	REFERENCE

	IDLffDICOM::GetLength
	Group
	Element
	REFERENCE

	IDLffDICOM::GetParent
	ReferenceList

	IDLffDICOM::GetPreamble
	IDLffDICOM::GetReference
	Group
	Element
	DESCRIPTION
	VR

	IDLffDICOM::GetValue
	Group
	Element
	REFERENCE
	NO_COPY

	IDLffDICOM::GetVR
	Group
	Element
	REFERENCE

	IDLffDICOM::Init
	Filename
	VERBOSE

	IDLffDICOM::Read
	Filename
	ENDIAN

	IDLffDICOM::Reset

	IDLffDXF
	Intrinsic Methods
	IDLffDXF::Cleanup
	IDLffDXF::GetContents
	Filter
	BLOCK
	COUNT
	LAYER

	IDLffDXF::GetEntity
	Type
	BLOCK
	INDEX
	LAYER

	Fields Common to all Structures
	BLOCK
	COLOR
	EXTRUSION
	LAYER
	LINESTYLE
	THICKNESS
	DXF_TYPE

	Structure Formats
	Structure IDL_DXF_ELLIPSE
	Structure IDL_DXF_POLYGON
	Structure IDL_DXF_POLYLINE
	Structure IDL_DXF_POINT
	Structure IDL_DXF_SPLINE
	Structure IDL_DXF_TXT
	Structure IDL_DXF_XLINE
	Structure IDL_DXF_INSERT
	Structure IDL_DXF_BLOCK
	Structure IDL_DXF_LAYER

	IDLffDXF::GetPalette
	Red
	Green
	Blue

	IDLffDXF::Init
	Filename

	IDLffDXF::PutEntity
	Data

	IDLffDXF::Read
	Filename

	IDLffDXF::RemoveEntity
	Type
	INDEX

	IDLffDXF::Reset
	IDLffDXF::SetPalette
	Red
	Green
	Blue

	IDLffDXF::Write
	Filename

	IDLffLanguageCat
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	key
	DEFAULT_STRING

	IDLffLanguageCat::SetCatalog
	application
	FILENAME
	LOCALE
	PATH

	IDLgrAxis
	Intrinsic Methods
	IDLgrAxis::Cleanup
	IDLgrAxis::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrAxis::GetProperty
	ALL
	CRANGE
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrAxis::Init
	Direction
	AM_PM (Get, Set)
	COLOR (Get, Set)
	DAYS_OF_WEEK (Get, Set)
	DIRECTION (Get, Set)
	EXACT (Get, Set)
	EXTEND (Get, Set)
	GRIDSTYLE (Get, Set)
	HIDE (Get, Set)
	LOCATION (Get, Set)
	LOG (Get, Set)
	MAJOR (Get, Set)
	MINOR (Get, Set)
	MONTHS (Get, Set)
	NAME (Get, Set)
	NOTEXT (Get, Set)
	PALETTE
	RANGE (Get, Set)
	SUBTICKLEN (Get, Set)
	TEXTALIGNMENTS (Get, Set)
	TEXTBASELINE (Get, Set)
	TEXTPOS (Get, Set)
	TEXTUPDIR (Get,�Set)
	THICK (Get, Set)
	TICKDIR (Get, Set)
	TICKFORMAT (Get, Set)
	TICKFRMTDATA (Get, Set)
	TICKLEN (Get, Set)
	TICKTEXT (Get, Set)
	TICKVALUES (Get, Set)
	TITLE (Get, Set)
	USE_TEXT_COLOR (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrAxis::SetProperty

	IDLgrBuffer
	Intrinsic Methods
	IDLgrBuffer::Cleanup
	IDLgrBuffer::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrBuffer::Erase
	COLOR

	IDLgrBuffer::GetContiguousPixels
	IDLgrBuffer::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrBuffer::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrBuffer::GetProperty
	ALL
	IMAGE_DATA
	SCREEN_DIMENSIONS
	ZBUFFER_DATA

	IDLgrBuffer::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrBuffer::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrBuffer::PickData
	View
	Object
	Location
	XYZLocation
	PATH

	IDLgrBuffer::Read
	IDLgrBuffer::Select
	Picture
	XY
	DIMENSIONS
	UNITS

	IDLgrBuffer::SetProperty

	IDLgrClipboard
	Intrinsic Methods
	IDLgrClipboard::Cleanup
	IDLgrClipboard::Draw
	Picture
	FILENAME
	POSTSCRIPT
	VECTOR

	IDLgrClipboard::GetContiguousPixels
	IDLgrClipboard::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrClipboard::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrClipboard::GetProperty
	ALL
	SCREEN_DIMENSIONS

	IDLgrClipboard::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrClipboard::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrClipboard::SetProperty

	IDLgrColorbar
	Intrinsic Methods
	Inherited Methods
	IDLgrColorbar::Cleanup
	IDLgrColorbar::ComputeDimensions
	DestinationObject
	PATH

	IDLgrColorbar::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrColorbar::Init
	aRed
	aGreen
	aBlue
	BLUE_VALUES (Get, Set)
	COLOR (Get, Set)
	DIMENSIONS (Get, Set)
	GREEN_VALUES (Get, Set)
	HIDE (Get, Set)
	MAJOR (Get, Set)
	MINOR (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	RED_VALUES (Get, Set)
	SHOW_AXIS (Get, Set)
	SHOW_OUTLINE (Get, Set)
	SUBTICKLEN (Get, Set)
	THICK (Get, Set)
	THREED (Get)
	TICKFORMAT (Get, Set)
	TICKFRMTDATA (Get, Set)
	TICKLEN (Get, Set)
	TICKTEXT (Get, Set)
	TICKVALUES (Get, Set)
	TITLE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrColorbar::SetProperty

	IDLgrContour
	Intrinsic Methods
	IDLgrContour::Cleanup
	IDLgrContour::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrContour::GetProperty
	ALL
	GEOM
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrContour::Init
	Values
	ANISOTROPY (Get, Set)
	C_COLOR (Get, Set)
	C_FILL_PATTERN (Get, Set)
	C_LINESTYLE (Get, Set)
	C_THICK (Get, Set)
	C_VALUE (Get, Set)
	COLOR (Get, Set)
	DATA_VALUES (Get, Set)
	DOWNHILL (Get, Set)
	FILL (Get, Set)
	GEOMX (Set)
	GEOMY (Set)
	GEOMZ (Set)
	HIDE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	N_LEVELS (Get, Set)
	PALETTE
	PLANAR (Get, Set)
	POLYGONS (Get, Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	TICKINTERVAL (Get, Set)
	TICKLEN (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrContour::SetProperty

	IDLgrFont
	Intrinsic Methods
	IDLgrFont::Cleanup
	IDLgrFont::GetProperty
	ALL

	IDLgrFont::Init
	Fontname
	NAME (Get, Set)
	SIZE (Get, Set)
	SUBSTITUTE (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)

	IDLgrFont::SetProperty

	IDLgrImage
	Intrinsic Methods
	IDLgrImage::Cleanup
	IDLgrImage::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrImage::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrImage::Init
	ImageData
	BLEND_FUNCTION (Get, Set)
	CHANNEL (Get, Set)
	DATA (Get, Set)
	DIMENSIONS (Get, Set)
	GREYSCALE (Get, Set)
	HIDE (Get, Set)
	INTERLEAVE (Get, Set)
	INTERPOLATE (Get, Set)
	LOCATION (Get, Set)
	NAME (Get, Set)
	NO_COPY (Get, Set)
	ORDER (Get, Set)
	PALETTE (Get, Set)
	RESET_DATA (Set)
	SHARE_DATA (Set)
	SUB_RECT (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrImage::SetProperty

	IDLgrLegend
	Intrinsic Methods
	Inherited Methods
	IDLgrLegend::Cleanup
	IDLgrLegend::ComputeDimensions
	DestinationObject
	PATH

	IDLgrLegend::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrLegend::Init
	aItemNames
	BORDER_GAP (Get, Set)
	COLUMNS (Get, Set)
	FILL_COLOR (Get, Set)
	FONT (Get, Set)
	GAP (Get, Set)
	GLYPH_WIDTH (Get, Set)
	HIDE (Get, Set)
	ITEM_COLOR (Get, Set)
	ITEM_LINESTYLE (Get, Set)
	ITEM_NAME (Get, Set)
	ITEM_OBJECT (Get, Set)
	ITEM_THICK (Get, Set)
	ITEM_TYPE (Get, Set)
	NAME (Get, Set)
	OUTLINE_COLOR (Get, Set)
	OUTLINE_THICK (Get, Set)
	SHOW_FILL (Get, Set)
	SHOW_OUTLINE (Get, Set)
	TEXT_COLOR (Get, Set)
	TITLE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrLegend::SetProperty
	RECOMPUTE

	IDLgrLight
	Intrinsic Methods
	IDLgrLight::Cleanup
	IDLgrLight::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrLight::GetProperty
	ALL
	PARENT

	IDLgrLight::Init
	ATTENUATION (Get, Set)
	COLOR (Get, Set)
	CONEANGLE (Get, Set)
	DIRECTION (Get, Set)
	FOCUS (Get, Set)
	HIDE (Get, Set)
	INTENSITY (Get, Set)
	LOCATION (Get, Set)
	NAME (Get, Set)
	TYPE (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrLight::SetProperty

	IDLgrModel
	Intrinsic Methods
	Inherited Methods
	IDLgrModel::Add
	Object
	ALIAS
	POSITION

	IDLgrModel::Cleanup
	IDLgrModel::Draw
	Destination
	Picture

	IDLgrModel::GetByName
	Name

	IDLgrModel::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrModel::GetProperty
	ALL
	PARENT

	IDLgrModel::Init
	HIDE (Get, Set)
	LIGHTING (Get, Set)
	NAME (Get, Set)
	SELECT_TARGET (Get, Set)
	TRANSFORM (Get, Set)
	UVALUE (Get, Set)

	IDLgrModel::Reset
	IDLgrModel::Rotate
	Axis
	Angle
	PREMULTIPLY

	IDLgrModel::Scale
	Sx, Sy, Sz
	PREMULTIPLY

	IDLgrModel::SetProperty
	IDLgrModel::Translate
	Tx, Ty, Tz
	PREMULTIPLY

	IDLgrMPEG
	Subclasses
	Intrinsic Methods

	IDLgrMPEG::Cleanup
	IDLgrMPEG::GetProperty
	ALL

	IDLgrMPEG::Init
	DIMENSIONS (Get, Set)
	FILENAME (Get, Set)
	FORMAT (Get, Set)
	FRAME_RATE (Get, Set)
	INTERLACED (Get, Set)
	SCALE (Get, Set)
	STATISTICS (Get, Set)
	TEMP_DIRECTORY

	IDLgrMPEG::Put
	Image
	Frame

	IDLgrMPEG::Save
	CREATOR_TYPE
	FILENAME

	IDLgrMPEG::SetProperty

	IDLgrPalette
	Intrinsic Methods
	IDLgrPalette::Cleanup
	IDLgrPalette::GetRGB
	Index

	IDLgrPalette::GetProperty
	ALL
	N_COLORS

	IDLgrPalette::Init
	aRed
	aGreen
	aBlue
	BLUE_VALUES (Get, Set)
	BOTTOM_STRETCH (Get, Set)
	GAMMA (Get, Set)
	GREEN_VALUES (Get, Set)
	NAME (Get, Set)
	RED_VALUES (Get, Set)
	TOP_STRETCH (Get, Set)
	UVALUE (Get, Set)

	IDLgrPalette::LoadCT
	TableNum
	FILE

	IDLgrPalette::NearestColor
	Red
	Green
	Blue

	IDLgrPalette::SetRGB
	Index
	Red
	Green
	Blue

	IDLgrPalette::SetProperty

	IDLgrPattern
	Intrinsic Methods
	IDLgrPattern::Cleanup
	IDLgrPattern::GetProperty
	ALL

	IDLgrPattern::Init
	Style
	ORIENTATION (Get, Set)
	NAME (Get, Set)
	PATTERN (Get, Set)
	SPACING (Get, Set)
	STYLE (Get, Set)
	THICK
	UVALUE (Get, Set)

	IDLgrPattern:SetProperty

	IDLgrPlot
	Intrinsic Methods
	IDLgrPlot::Cleanup
	IDLgrPlot::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPlot::GetProperty
	ALL
	DATA
	PARENT
	ZRANGE

	IDLgrPlot::Init
	X
	Y
	COLOR (Get, Set)
	DATAX (Set)
	DATAY (Set)
	HIDE (Get, Set)
	HISTOGRAM (Get, Set)
	LINESTYLE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	NSUM (Get, Set)
	PALETTE (Get, Set)
	POLAR (Get, Set)
	RESET_DATA (Set)
	SHARE_DATA (Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	USE_ZVALUE
	UVALUE (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	XRANGE (Get, Set)
	YCOORD_CONV (Get, Set)
	YRANGE (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZVALUE (Get, Set)

	IDLgrPlot::SetProperty

	IDLgrPolygon
	Intrinsic Methods
	IDLgrPolygon::Cleanup
	IDLgrPolygon::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolygon::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrPolygon::Init
	X
	Y
	Z
	BOTTOM (Get, Set)
	COLOR (Get, Set)
	DATA (Get, Set)
	FILL_PATTERN (Get, Set)
	HIDDEN_LINES
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	NORMALS (Get, Set)
	PALETTE
	POLYGONS (Get, Set)
	REJECT (Get, Set)
	RESET_DATA (Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	STYLE (Get, Set)
	TEXTURE_COORD (Get, Set)
	TEXTURE_INTERP (Get, Set)
	TEXTURE_MAP (Get, Set)
	THICK (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrPolygon::SetProperty

	IDLgrPolyline
	Subclasses
	Intrinsic Methods

	IDLgrPolyline::Cleanup
	IDLgrPolyline::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolyline::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrPolyline::Init
	X
	Y
	Z
	COLOR (Get, Set)
	DATA (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	POLYLINES (Get, Set)
	RESET_DATA (Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrPolyline::SetProperty

	IDLgrPrinter
	Intrinsic Methods
	IDLgrPrinter::Cleanup
	IDLgrPrinter::Draw
	Picture
	VECTOR

	IDLgrPrinter::GetContiguousPixels
	IDLgrPrinter::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrPrinter::GetProperty
	ALL
	DIMENSIONS
	NAME
	RESOLUTION

	IDLgrPrinter::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrPrinter::Init
	COLOR_MODEL (Get)
	GRAPHICS_TREE (Get, Set)
	LANDSCAPE (Get, Set)
	N_COLORS (Get)
	N_COPIES (Get, Set)
	PALETTE (Get, Set)
	PRINT_QUALITY (Get, Set)
	QUALITY (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrPrinter::NewDocument
	IDLgrPrinter::NewPage
	IDLgrPrinter::SetProperty

	IDLgrROI
	Intrinsic Methods
	Inherited Methods
	IDLgrROI::Cleanup
	IDLgrROI::GetProperty
	ALL

	IDLgrROI::Init
	X
	Y
	Z
	COLOR (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	STYLE (Get, Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrROI::PickVertex
	Result
	Dest
	View
	Point
	PATH

	IDLgrROI::SetProperty

	IDLgrROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLgrROIGroup::Add
	ROI

	IDLgrROIGroup::Cleanup
	IDLgrROIGroup::Init
	IDLgrROIGroup::PickRegion
	Result
	Dest
	View
	Point
	PATH

	IDLgrScene
	Intrinsic Methods
	Inherited Methods
	IDLgrScene::Add
	View
	POSITION

	IDLgrScene::Cleanup
	IDLgrScene::GetByName
	Name

	IDLgrScene::GetProperty
	ALL

	IDLgrScene::Init
	HIDE
	COLOR (Get, Set)
	NAME
	TRANSPARENT (Get, Set)
	UVALUE (Get, Set)

	IDLgrScene::SetProperty

	IDLgrSurface
	Intrinsic Methods
	IDLgrSurface::Cleanup
	IDLgrSurface::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrSurface::GetProperty
	ALL
	DATA
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrSurface::Init
	Z
	X
	Y
	BOTTOM (Get, Set)
	COLOR (Get, Set)
	DATAX (Set)
	DATAY (Set)
	DATAZ (Set)
	EXTENDED_LEGO (Get, Set)
	HIDDEN_LINES (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	MAX_VALUE (Get, Set)
	MIN_VALUE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	RESET_DATA (Set)
	SHADE_RANGE (Get, Set)
	SHADING (Get, Set)
	SHARE_DATA (Set)
	SHOW_SKIRT (Get, Set)
	SKIRT (Get, Set)
	STYLE (Get, Set)
	TEXTURE_COORD (Get, Set)
	TEXTURE_INTERP (Get, Set)
	TEXTURE_MAP (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	USE_TRIANGLES (Get, Set)
	VERT_COLORS (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrSurface::SetProperty

	IDLgrSymbol
	Intrinsic Methods
	IDLgrSymbol::Cleanup
	IDLgrSymbol::GetProperty
	ALL

	IDLgrSymbol::Init
	Data
	COLOR (Get, Set)
	DATA (Get, Set)
	NAME (Get, Set)
	SIZE (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)

	IDLgrSymbol::SetProperty

	IDLgrTessellator
	Intrinsic Methods
	IDLgrTessellator::AddPolygon
	X
	Y
	Z
	POLYGON (Get, Set)
	INTERIOR

	IDLgrTessellator::Cleanup
	IDLgrTessellator::Init
	IDLgrTessellator::Reset
	IDLgrTessellator::Tessellate
	Vertices
	Poly
	QUIET

	IDLgrText
	Intrinsic Methods
	PALETTE
	IDLgrText::Cleanup
	IDLgrText::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrText::GetProperty
	ALL
	PARENT
	XRANGE
	YRANGE
	ZRANGE

	IDLgrText::Init
	String
	ALIGNMENT (Get, Set)
	BASELINE (Get, Set)
	CHAR_DIMENSIONS (Get, Set)
	COLOR (Get, Set)
	ENABLE_FORMATTING (Get, Set)
	FONT (Get, Set)
	HIDE (Get, Set)
	LOCATIONS (Get, Set)
	NAME (Get, Set)
	ONGLASS (Get, Set)
	PALETTE (Get, Set)
	RECOMPUTE_DIMENSIONS (Get, Set)
	STRINGS (Get, Set)
	UPDIR (Get, Set)
	UVALUE (Get, Set)
	VERTICAL_ALIGNMENT (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrText::SetProperty

	IDLgrView
	Intrinsic Methods
	Inherited Methods
	IDLgrView::Add
	Model
	POSITION

	IDLgrView::Cleanup
	IDLgrView::GetByName
	Name

	IDLgrView::GetProperty
	ALL
	PARENT

	IDLgrView::Init
	COLOR (Get, Set)
	DEPTH_CUE (Get, Set)
	DIMENSIONS (Get, Set)
	EYE (Get, Set)
	LOCATION (Get, Set)
	PROJECTION (Get, Set)
	TRANSPARENT (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)
	VIEWPLANE_RECT (Get, Set)
	ZCLIP (Get, Set)

	IDLgrView::SetProperty

	IDLgrViewgroup
	Intrinsic Methods
	Inherited Methods
	IDLgrViewgroup::Add
	Object
	POSITION

	IDLgrViewgroup::Cleanup
	IDLgrViewgroup::GetByName
	Name

	IDLgrViewgroup::GetProperty
	ALL
	PARENT

	IDLgrViewgroup::Init
	HIDE (Get, Set)
	NAME (Get, Set)
	UVALUE (Get, Set)

	IDLgrViewgroup::SetProperty

	IDLgrVolume
	Intrinsic Methods
	IDLgrVolume::Cleanup
	IDLgrVolume::ComputeBounds
	OPACITY
	RESET
	VOLUMES

	IDLgrVolume::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrVolume::GetProperty
	ALL
	PARENT
	VALID_DATA
	XRANGE
	YRANGE
	ZRANGE

	IDLgrVolume::Init
	vol0
	vol1
	vol2
	vol3
	AMBIENT (Get, Set)
	BOUNDS (Get, Set)
	COMPOSITE_FUNCTION (Get, Set)
	CUTTING_PLANES (Get, Set)
	DATA0 (Get, Set)
	DATA1 (Get, Set)
	DATA2 (Get, Set)
	DATA3 (Get, Set)
	DEPTH_CUE (Get, Set)
	HIDE (Get, Set)
	HINTS (Get, Set)
	INTERPOLATE (Get, Set)
	LIGHTING_MODEL (Get, Set)
	NAME (Get, Set)
	NO_COPY (Get, Set)
	OPACITY_TABLE0 (Get, Set)
	OPACITY_TABLE1 (Get, Set)
	RENDER_STEP (Get, Set)
	RGB_TABLE0 (Get, Set)
	RGB_TABLE1 (Get, Set)
	TWO_SIDED (Get, Set)
	UVALUE (Get, Set)
	VOLUME_SELECT (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZBUFFER (Get, Set)
	ZCOORD_CONV (Get, Set)
	ZERO_OPACITY_SKIP (Get, Set)

	IDLgrVolume::PickVoxel
	Win
	View
	Point
	PATH

	IDLgrVolume::SetProperty

	IDLgrVRML
	IDLgrImage objects
	IDLgrPolygon and IDLgrSurface objects
	IDLgrLight objects
	IDLgrText objects
	IDLgrViewgroup, IDLgrScene, IDLgrVolume objects
	IDLgrPalette objects
	IDLgrPattern objects
	IDLgrFont, IDLgrSymbol objects
	IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and IDLgrPlot objects
	IDLgrView objects
	Destination objects
	Intrinsic Methods
	IDLgrVRML::Cleanup
	IDLgrVRML::Draw
	Picture

	IDLgrVRML::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrVRML::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrVRML::GetProperty
	ALL
	SCREEN_DIMENSIONS

	IDLgrVRML::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrVRML::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	FILENAME (Get, Set)
	GRAPHICS_TREE (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RESOLUTION (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)
	WORLDINFO
	WOLRDTITLE

	IDLgrVRML::SetProperty

	IDLgrWindow
	Intrinsic Methods
	IDLgrWindow::Cleanup
	IDLgrWindow::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrWindow::Erase
	COLOR

	IDLgrWindow::GetContiguousPixels
	IDLgrWindow::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrWindow::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrWindow::GetProperty
	ALL
	IMAGE_DATA
	RESOLUTION
	SCREEN_DIMENSIONS
	ZBUFFER_DATA

	IDLgrWindow::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrWindow::Iconify
	IconFlag

	IDLgrWindow::Init
	COLOR_MODEL (Get)
	DIMENSIONS (Get, Set)
	DISPLAY_NAME (Get) [X Only]
	GRAPHICS_TREE (Get, Set)
	LOCATION (Get, Set)
	N_COLORS (Get)
	PALETTE (Get, Set)
	QUALITY (Get, Set)
	RENDERER (Get)
	RETAIN (Get)
	TITLE (Get, Set)
	UNITS (Get, Set)
	UVALUE (Get, Set)

	IDLgrWindow::Pickdata
	View
	Object
	Location
	XYZLocation
	PATH

	IDLgrWindow::Read
	IDLgrWindow::Select
	Picture
	XY
	DIMENSIONS
	UNITS

	IDLgrWindow::SetCurrentCursor
	CursorName
	IMAGE [X and Macintosh Only]
	MASK [X and Macintosh Only]
	HOTSPOT [X and Macintosh Only]
	STANDARD [X Only]

	IDLgrWindow::SetProperty
	IDLgrWindow::Show
	Position

	TrackBall
	Intrinsic Methods
	TrackBall::Init
	Center
	Radius
	AXIS
	CONSTRAIN
	MOUSE

	Trackball::Reset
	Center
	Radius
	AXIS
	CONSTRAIN
	MOUSE

	TrackBall::Update
	sEvent
	MOUSE
	TRANSFORM
	TRANSLATE

	IDL Graphics Devices
	Supported Devices
	Keywords Accepted by the IDL Devices
	AVANTGARDE
	AVERAGE_LINES
	BINARY
	BITS_PER_PIXEL
	BKMAN
	BOLD
	BOOK
	BYPASS_TRANSLATION
	CLOSE
	CLOSE_DOCUMENT
	CLOSE_FILE
	COLOR
	COLORS
	For Tektronix Terminals Only
	COPY
	COURIER
	CURSOR_CROSSHAIR
	CURSOR_IMAGE
	CURSOR_MASK
	CURSOR_ORIGINAL
	CURSOR_STANDARD
	For X Windows
	For Microsoft Windows
	For Macintosh
	CURSOR_XY
	DECOMPOSED
	DEMI
	DEPTH
	DIRECT_COLOR
	EJECT
	ENCAPSULATED
	ENCODING
	FILENAME
	HP-GL Only
	FLOYD
	FONT
	FONT_INDEX
	FONT_SIZE
	GET_CURRENT_FONT
	GET_DECOMPOSED
	GET_FONTNAMES
	GET_FONTNUM
	GET_GRAPHICS_FUNCTION
	GET_SCREEN_SIZE
	GET_VISUAL_DEPTH
	GET_VISUAL_NAME
	GET_WINDOW_POSITION
	GET_WRITE_MASK
	GIN_CHARS
	GLYPH_CACHE
	HELVETICA
	INCHES
	INDEX_COLOR
	ISOLATIN1
	ITALIC
	LANDSCAPE
	LIGHT
	MEDIUM
	NARROW
	NCAR
	The NCAR Binary Encoding
	OBLIQUE
	OPTIMIZE
	ORDERED
	Macintosh Only
	OUTPUT
	PALATINO
	PIXELS
	PLOT_TO
	PLOTTER_ON_OFF
	POLYFILL
	PORTRAIT
	PREVIEW
	PRINT_FILE
	PSEUDO_COLOR
	Macintosh Only
	RESET_STRING
	RESOLUTION
	PCL Only
	LJ250 Only
	RETAIN
	Microsoft Windows Only
	A Note on Reading Data from Windows
	SCALE_FACTOR
	SCHOOLBOOK
	SET_CHARACTER_SIZE
	SET_COLORMAP
	SET_COLORS
	SET_FONT
	Note on the FONT Keyword
	Using TrueType Fonts
	Using Hardware Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh
	SET_GRAPHICS_FUNCTION
	SET_RESOLUTION
	SET_STRING
	SET_TRANSLATION
	SET_WRITE_MASK
	STATIC_COLOR
	STATIC_GRAY
	SYMBOL
	TEK4014
	TEK4100
	TEXT
	THRESHOLD
	Macintosh Only
	TIMES
	TRANSLATION
	Microsoft Windows Only
	TRUE_COLOR
	Macintosh Only
	TT_FONT
	TTY
	USER_FONT
	VT240, VT241
	VT340, VT341
	WINDOW_STATE
	XOFFSET
	PostScript Only
	XON_XOFF
	XSIZE
	PostScript Only
	YOFFSET
	PostScript Only
	YSIZE
	PostScript Only
	LJ250 Only
	ZAPFCHANCERY
	ZAPFDINGBATS
	Z_BUFFERING

	Window Systems
	Backing Store
	A Note on Reading Data from Windows

	Image Display On Monochrome Devices

	Printing Graphics Output Files
	Setting Up The Printer
	Setting Up Printers Under UNIX
	Setting Up Printers Under VMS

	Positioning Graphics Output
	Image Background Color

	The CGM Device
	Device Keywords Accepted by the CGM Device:
	Abilities and Limitations

	The HP-GL Device
	Device Keywords Accepted by the HP-GL Device:
	Abilities And Limitations
	HP-GL Linestyles

	The LJ Device
	Device Keywords Accepted by the LJ Device:
	LJ Driver Strengths
	LJ Driver Limitations
	LJ Suggestions

	The Macintosh Display Device
	Device Keywords Accepted by the MAC Device:

	The Null Display Device
	Device Keywords Accepted by the Null Device:

	The PCL Device
	Device Keywords Accepted by the PCL Device:

	The Printer Device
	Device Keywords Accepted by the PRINTER Device:

	The PostScript Device
	Device Keywords Accepted by the PS Device:
	Using PostScript Fonts
	Color PostScript
	Color Images
	True-Color Images
	Image Background Color

	PostScript Positioning
	Using the XOFFSET and YOFFSET Keywords
	Encapsulated PostScript Output
	Multiple Plots on the Same Page

	Importing IDL Plots into Other Documents

	The Regis Terminal Device
	Device Keywords Accepted by the REGIS Device:
	Defaults for Regis Devices
	Regis Limitations

	The Tektronix Device
	Device Keywords Accepted by the REGIS Device:
	The DEVICE Procedure For Tektronix Terminals
	Tektronix Limitations
	Tektronix Device Limitations

	The Microsoft Windows Device
	Device Keywords Accepted by the WIN Device:

	The X Windows Device
	Device Keywords Accepted by the X Device:
	X Windows Visuals
	How IDL Selects a Visual Class
	How IDL Obtains a Colormap

	Using Color Under X
	Shared Colormaps
	Private Colormaps
	Static Colormaps
	Color Translation

	Using Pixmaps
	Setting the X Window Defaults

	The Z-Buffer Device
	Device Keywords Accepted by the Z Device:
	Reading and Writing Buffers
	Z-Axis Scaling
	Polyfill Procedure
	Examples Using the Z-Buffer

	Graphics Keywords
	BACKGROUND
	CHANNEL
	CHARSIZE
	[XYZ]CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	DATA
	DEVICE
	FONT
	[XYZ]GRIDSTYLE
	LINESTYLE
	[XYZ]MARGIN
	[XYZ]MINOR
	NOCLIP
	NODATA
	NOERASE
	NORMAL
	ORIENTATION
	POSITION
	PSYM
	[XYZ]RANGE
	[XYZ]STYLE
	SUBTITLE
	SYMSIZE
	T3D
	THICK
	[XYZ]THICK
	[XYZ]TICKFORMAT
	TICKLEN
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKS
	[XYZ]TICKV
	[XYZ]TICK_GET
	TITLE
	[XYZ]TITLE
	ZVALUE
	Z

	System Variables
	What Are System Variables?
	Constant System Variables
	!DPI
	!DTOR
	!MAP
	!PI
	!RADEG
	!VALUES

	Error Handling and Informational System Variables
	!ERR
	!ERROR_STATE
	!ERROR
	!ERR_STRING
	!EXCEPT
	!MOUSE
	!MSG_PREFIX
	!SYSERROR
	!SYSERR_STRING
	!WARN

	IDL Environment System Variables
	!DIR
	!DLM_PATH
	!EDIT_INPUT
	!HELP_PATH
	!JOURNAL
	!MORE
	!PATH
	UNIX
	VMS
	Windows
	Macintosh
	A Note on Order within !PATH

	!PROMPT
	!QUIET
	!VERSION

	Graphics System Variables
	!C System Variable
	!D System Variable
	FILL_DIST
	FLAGS
	N_COLORS
	NAME
	ORIGIN
	TABLE_SIZE
	UNIT
	WINDOW
	X_CH_SIZE, Y_CH_SIZE
	X_PX_CM, Y_PX_CM
	X_SIZE, Y_SIZE
	X_VSIZE, Y_VSIZE
	ZOOM

	!ORDER System Variable
	!P System Variable
	BACKGROUND
	CHANNEL
	CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	FONT
	LINESTYLE
	MULTI
	NOCLIP
	NOERASE
	NSUM
	POSITION
	PSYM
	REGION
	SUBTITLE
	T
	T3D
	THICK
	TITLE
	TICKLEN

	!X, !Y, !Z System Variables
	CHARSIZE
	CRANGE
	GRIDSTYLE
	MARGIN
	MINOR
	OMARGIN
	RANGE
	REGION
	S
	STYLE
	THICK
	TICKFORMAT
	TICKLEN
	TICKNAME
	TICKS
	TICKV
	TITLE
	TYPE
	WINDOW

	Special Characters
	Exclamation Point (!)
	Apostrophe (')
	Semicolon (;)
	Dollar Sign ($)
	Quotation Mark (")
	Period (.)
	Ampersand (&)
	Colon (:)
	Asterisk (*)
	At Sign (@)
	@ as an Include Character
	@ to Signal Batch Processing

	Question Mark (?)
	Control-C / Control-Break / Command-.
	Control-D / Control-Z / Alt-F4 / Command-Q
	Control-\ / Control-Y

	Reserved Words
	Fonts
	Overview
	Fonts in IDL Direct vs. Object Graphics
	IDL Direct Graphics
	IDL Object Graphics

	About Vector Fonts
	Using Vector Fonts
	Specifying Font Size
	ISO Latin 1 Encoding
	Customizing the Vector Fonts

	About TrueType Fonts
	Using TrueType Fonts
	Specifying Font Size
	Using Embedded Formatting Commands
	IDL TrueType Font Resource Files
	Adding Your Own Fonts
	Where IDL Searches for Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh

	About Device Fonts
	Which Device Fonts Are Available?
	UNIX and VMS
	Microsoft Windows
	Macintosh

	Using Device Fonts
	UNIX and VMS
	Microsoft Windows
	Macintosh

	Fonts and the PostScript Device
	Using PostScript Fonts
	Changing the PostScript Font Assigned to an Index
	Adding Your Own PostScript Fonts

	Choosing a Font Type
	Appearance
	Three-Dimensional Transformations
	Portability
	Computational Time
	Flexibility
	Print Quality

	Embedded Formatting Commands
	Changing Fonts within a String
	Positioning Commands

	Formatting Command Examples
	A Complex Equation
	!MI
	!S
	!A!E!8x
	!R!B!Ip
	!N !7q
	!Ii!N
	!8U
	!S!E2
	!R!Ii
	!N dx

	Vector-Drawn Font Example

	TrueType Font Samples
	Vector Font Samples

	Obsolete Routines
	What Are Obsolete Routines?
	Routines Obsoleted in IDL 5.3
	Routines Obsoleted in IDL 5.2
	Routines Obsoleted in IDL 5.1
	Routines Obsoleted in IDL 5.0
	Routines Obsoleted in IDL 4.0 or Earlier
	Obsolete System Variables

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

