
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Using IDL

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

... 16

 18

.. 19

... 27

... 30

31

... 35
Contents
Chapter 1:
Overview .. 15
About IDL ...

Typographical Conventions...

Reporting Problems...

Part I: The IDL Development Environment

Chapter 2:
Running IDL ... 25
Starting IDL ..

Quitting IDL ..

Environment Variables Used by IDL..

Input to IDL ..
Using IDL 3

4

.. 39

. 40

.. 42

 43

47

.. 48

... 51

.. 52

. 53

... 54

. 59

.. 62

.. 64

.. 79

.. 81

. 93

. 96

101

 104

 105

 120

2

32

134

39

 142

49
Special Characters..

Executive Commands...

Printing Graphics...

Preparing and Running Programs..

Issuing Operating System Commands...

Batch Execution...

Startup File..

Non-interactive IDL...

SAVE and RESTORE...

Journaling..

Chapter 3:
The IDL for Windows Interface ... 57
The Main IDL Window ..

IDLDE Windows ...

The Menu Items...

Keyboard Shortcuts..

Customizing IDL ...

Using the IDL Editor..

Windows IDL Differences..

Chapter 4:
The IDL for Motif Interface .. 99
The Main IDL Window ...

IDLDE Windows ...

The Menu Items...

Keyboard Shortcuts..

Using Preferences to Customize IDLDE... 12

Using Resources to Customize IDL... 1

Command Line Options...

Modifying the Control Panel... 1

Action Routines...

Modifying the Macros Menu... 1
Contents Using IDL

5

150

151

154

156

. 158

 170

78

. 184

85

89

95

01

. 206

 207

10

14

15

17

9

20
Using External Editors...

Using the IDL Editor...

Chapter 5:
The IDL for Macintosh Interface .. 153
The Main IDL Windows..

IDL Document Windows...

The Menus..

Customizing IDL ...

Macintosh IDL Differences... 1

Part II: Reading and Writing Data

Chapter 6:
IDL Macros for Importing Data ... 183
Overview...

Using Macros to Import Image Files... 1

Using Macros to Import ASCII Files... 1

Using Macros to Import Binary Files.. 1

Using Macros to Import HDF Files... 2

Chapter 7:
Reading and Writing Images .. 205
Overview...

List of Commands..

Accessing Image Files Using Dialogs... 2

Accessing General Image File Formats... 2

Accessing Specific Image File Formats... 2

Accessing Files Using Dialogs.. 2

Accessing Files With Compound Widgets.. 21

Advanced File Input/Output.. 2
Using IDL Contents

6

. 222

23

28

. 230

231

35

. 240

 241

 242

. 244

45

46

55

 257

 260

. 264

 268

270

72

274

275
Chapter 8:
Reading and Writing ASCII Data .. 221
Overview...

Reading an ASCII Data File.. 2

Advanced File Input/Output.. 2

Chapter 9:
Reading and Writing Binary Data ... 229
Overview...

Reading a Binary Data File..

Advanced File Input/Output.. 2

Part III: Using Direct Graphics

Chapter 10:
Graphics ... 239
Overview...

IDL Direct Graphics..

IDL Object Graphics..

Chapter 11:
Direct Graphics Plotting ... 243
Overview...

Plotting Keyword Parameters.. 2

Direct Graphics Coordinate Systems... 2

Annotation – The XYOUTS Procedure... 2

Plotting Symbols..

Polygon Filling ..

Tick Marks ..

Logarithmic Scaling...

Multiple Plots on a Page..

Specifying the Location of the Plot... 2

Plotting Missing Data..

Using the AXIS Procedure...
Contents Using IDL

7

77

. 280

. 281

87

91

295

99

09

 315

318

. 321

. 324

325

27

28

29

331

332

340

45

348

50

. 352

. 354
Using the CURSOR Procedure.. 2

Chapter 12:
Plotting Multi-Dimensional Arrays .. 279
Overview...

Contour Plots..

Overlaying Images and Contour Plots... 2

Additional Contour Options... 2

The SURFACE Procedure...

Three-Dimensional Graphics... 2

Three-Dimensional Transformations... 3

Shaded Surfaces...

Volume Visualization..

References...

Chapter 13:
Map Projections .. 323
Overview...

The MAP_SET Procedure...

The MAP_GRID Procedure... 3

The MAP_CONTINENTS Procedure... 3

Graphics Techniques for Mapping... 3

Map Projections Described..

Azimuthal Projections..

Cylindrical Projections...

Pseudocylindrical Projections.. 3

Putting Data on Maps...

High-Resolution Continent Outlines... 3

References...

Chapter 14:
Image Display Routines .. 353
Overview...
Using IDL Contents

8

.. 355

 356

. 357

61

. 363

 370

74

. 375

. 378

. 379

82

383

384

386

 391

.. 395

 396

397

399

. 400

01

 402

03

407

09

13

. 414
Images..

Imaging Routines...

Image Display...

Reading from the Display Device.. 3

Color Tables..

True-Color Displays...

Controlling the Device Cursor... 3

References...

Chapter 15:
Signal Processing ... 377
Overview...

Digital Signals...

Signal Analysis Transforms... 3

The Fourier Transform...

Interpreting FFT Results..

Displaying FFT Results...

Using Windows..

Aliasing ..

FFT Usage Details...

The Hilbert Transform...

The Wavelet Transform...

Convolution ..

Correlation and Covariance... 4

Digital Filtering ..

Finite Impulse Response (FIR) Filters... 4

FIR Filter Implementation...

Infinite Impulse Response Filters.. 4

Routines for Signal Processing.. 4

References...
Contents Using IDL

9

17

18

 420

 423

427

29

435

 437

. 440

 445

 452

. 454

. 456

459

462

. 469

. 476

78

80

83

 485

 486

487

 489

 490

 491
Chapter 16:
Mathematics .. 415
IDL’s Numerical Recipes Functions.. 4

Accuracy & Floating-Point Operations... 4

Arrays and Matrices...

Correlation Analysis..

Curve and Surface Fitting..

Eigenvalues and Eigenvectors... 4

Gridding and Interpolation...

Hypothesis Testing...

Integration...

Linear Systems...

Nonlinear Equations...

Optimization ...

Sparse Arrays..

Time-Series Analysis...

Multivariate Analysis...

References...

Part IV: Object Graphics

Chapter 17:
Object Graphics .. 475
Overview...

Direct versus Object Graphics... 4

How to Use Object Graphics... 4

Overview of Object Graphics Classes... 4

Container Objects...

Structure Objects..

Atomic Graphic Objects..

Composite Objects...

Attribute Objects..

Helper Objects...
Using IDL Contents

10

 492

 493

 494

96

. 498

.. 499

. 500

.. 501

.. 502

503

04

505

507

. 510

. 512

. 514

. 516

. 518

521

524

 527

0

. 532

533
Destination Objects..

File Format Objects..

Properties of Objects..

Undocumented Graphic Object Classes... 4

Chapter 18:
The Graphics Object Hierarchy .. 497
Overview...

Scenes..

Viewgroups...

Views ...

Models..

Atomic Graphic Objects..

Attribute and Helper Objects... 5

The Rendering Process..

Simple Plot Example...

Chapter 19:
Transformations ... 509
Overview...

Viewport ...

Projection..

Eye Position..

View Volume ..

Model Transformations..

Coordinate Conversion..

A Simple Example...

Virtual Trackball and 3D Transformations.. 53

Chapter 20:
Working with Color .. 531
Overview...

Color and Digital Data...
Contents Using IDL

11

534

 535

36

.. 537

. 538

40

. 544

. 545

 548

 549

 551

 555

. 558

. 559

. 566

 572

 575

 580

. 581

 585

 588

 594
Indexed Color Model...

RGB Color Model..

Color and Destination Objects... 5

Palettes...

Using Color...

How IDL Interprets Color Values.. 5

Chapter 21:
Using Attributes and Helpers ... 543
Overview...

Font Objects..

Palette Objects...

Pattern Objects...

Symbol Objects..

Tessellator Objects...

Chapter 22:
Working with Axes and Text ... 557
Overview...

Axis Objects..

Text Objects..

Chapter 23:
Working with Plots and Graphs ... 571
Contour Objects...

Polygon Objects...

Polyline Objects...

Plot Objects...

Legend Objects..

A Plotting Routine...

Chapter 24:
Working with Surfaces .. 593
Surface Objects..
Using IDL Contents

12

. 599

02

. 604

 608

610

 614

616

622

. 623

 625

. 626

627

. 630

 631

634

. 636

. 638

 639

 640

 643
Light Objects...

An Interactive Surface Example.. 6

Chapter 25:
Working with Images ... 603
Image Objects...

Colorbar Objects..

Saving an Image to a File...

Chapter 26:
Working with Volumes ... 613
Volume Objects...

Volume Object Attributes..

Chapter 27:
Selecting Objects .. 621
Selection and Data Picking..

Selection..

A Selection Example..

Data Picking..

A Data Picking Example..

Chapter 28:
Using Destination Objects .. 629
Overview...

Window Objects...

Using Window Objects..

Instancing..

Buffer Objects...

Clipboard Objects..

Printer Objects...

VRML Objects...
Contents Using IDL

13

6

. 650

51

654

55

56

 657

.. 658
Chapter 29:
Subclassing from Object Graphics ... 645
Creating Composite Classes or Subclasses.. 64

Chapter 30:
Performance Tuning Object Graphics 649
Overview...

Polygon Mesh Optimization.. 6

Normal Computations..

Retained Graphics and Expose Events.. 6

Improving Redraw Performance.. 6

Back-face Culling..

Lighting ..

Index ... 659
Using IDL Contents

14
Contents Using IDL

Chapter 1:

Overview
t
This chapter includes information about IDL, the IDL documentation set, and how to contac
Research Systems technical support. The following topics are covered in this chapter:
About IDL . 16
Typographical Conventions. 18

Reporting Problems. 19
Using IDL 15

16 Chapter 1: Overview

g in

n be
 and

 and

ns

ta

,

About IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programmin
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages ca
accomplished in hours. You can explore data interactively using IDL commands
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and hands-on interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computatio
immediately.

• Support for OpenGL-based hardware accelerated graphics.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom da
format. Support is provided for

• common image standards: BMP, GEO TIFF, GIF, Interfile, JPEG, PICT
PNG, PPM, SRF, TIFF, X11 Bitmap, and XWD.

• scientific data formats: CDF, HDF, and NetCDF.

• other data formats: ASCII, Binary, DICOM, DXF, WAV, and XDR.

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (UNIX, VMS,
Microsoft Windows, and Macintosh systems) with little or no modification.
About IDL Using IDL

Chapter 1: Overview 17

d
ll
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to ad
specialized functionality. Alternatively, C and FORTRAN programs can ca
IDL routines as a subroutine library or display engine.
Using IDL About IDL

18 Chapter 1: Overview

tion

R
like

r
 like

t

ments

ray

nd

pt:
Typographical Conventions

The following typographical conventions are used throughout the IDL documenta
set:

• UPPER CASE type
IDL functions and procedures, and their keywords are displayed in UPPE
CASE type. For example, the calling sequence for an IDL procedure looks
this:

CONTOUR,Z [, X, Y]

• Mixed Case type
IDL object class and method names are displayed in Mixed Case type. Fo
example, the calling sequence to create an object and call a method looks
this:

object = OBJ_NEW('IDLgrPlot')
object -> GetProperty, ALL=properties

• Italic type
Arguments to IDL procedures and functions — data or variables you mus
provide — are displayed in italic type. In the above example,Z, X, andYare all
arguments.

• Square brackets ([])
Square brackets used in calling sequences indicate that the enclosed argu
are optional. Do not type the brackets. In the above CONTOUR example,X
andY are optional arguments. Square brackets are also used to specify ar
elements.

• Courier type
In examples or program listings, things that you must enter at the comma
line or in a file are displayed incourier type. Results or data that IDL
displays on your computer screen are shown incourier bold type. An
example might direct you to enter the following at the IDL command prom

array = INDGEN(5)
PRINT, array

In this case, the results are shown like this:

 0 1 2 3 4
Typographical Conventions Using IDL

Chapter 1: Overview 19

m

ing

e of

tem,
you

ion,
 the
 5.3
er a
Reporting Problems

We strive to make IDL as reliable and bug free as possible. However, no progra
with the size and complexity of IDL is perfect, and bugs do surface. When you
encounter a problem with IDL, the manner in which you report it has a large bear
on how well and quickly we can fix it.

Bugs which are reported and verified in one release are corrected in a following
release. Therelnotes.txt file accompanying each release includes information
about new features in that release, bug fixes, and known problems which may b
help.

This section is intended to help you report problems in a way which helps us to
address the problem rapidly.

Background Information

Sometimes, a bug only occurs when running on a certain machine, operating sys
or graphics device. For these reasons, we need to know the following facts when
report a bug:

• Your IDL installation number.

• The version of IDL you are running.

• The type of machine it is running on.

• The operating system version it is running under.

• The type and version of your windowing system.

• The graphics device, if the problem involves graphics.

The installation number is assigned by us when you purchase IDL. The IDL vers
site number, and type of machine are printed when IDL is started. For example,
following startup announcement appears indicating you are running IDL version
under Sun Solaris on an Intel x86 workstation at installation number xxxxx-x, und
floating license located on a particular license manager.

IDL. Version 5.3 (sunos x86). (c) 1999, Research Systems, Inc.
Installation number: xxxxx-x
Licensed for use by: RSI IDL Floating License (license manager)

Under UNIX, the version of the operating system can usually be found in the file
/etc/motd . It is also printed when the machine boots. In any event, your system
administrator should know this information.
Using IDL Reporting Problems

20 Chapter 1: Overview

he
 know

ine
ht

e
rash
ical
rted

rompt,
like

amic
ute

g on
eled
Under VMS, the DCL statement:

write sys$output f$getsyi("version")

will give you the operating system version.

Under Windows, selectAbout from theHelp menu in theWindows Explorer.

On the Macintosh, selectAbout this Macintosh from the apple menu.

Double Check

Before reporting a problem, you should always ask yourself, “Is it really a bug?”
Sometimes, it is a simple matter of misinterpreting what is supposed to happen.
Double check with the manual or a local expert.

If you cannot determine what should happen in a given situation by consulting t
reference manual, the manual needs to be improved on that topic. Please let us
if you feel that the manual was vague or unclear on a subject.

It is often obvious whether something is a bug or not. If IDL crashes, it is a genu
bug. If however, it draws a plot differently than you would expect or desire, it mig
be a bug, but it is certainly less obvious. Another question to ask is whether the
problem lies within IDL, or with the system running IDL. Is your system properly
configured with enough virtual memory and sufficient operating system quotas?
Does the system seem stable and is everything else working normally?

Describing The Problem

When describing the problem, it is important to use precise language. Terms lik
crashes, blows up, and fails are vague and open to interpretation. Does it really c
IDL and leave you looking at an operating system prompt? This is how RSI techn
support personnel interpret a problem report of a crash. If the behavior being repo
refers to an unexpected error message being issued before returning another p
then describing it as a crash becomes misleading. What is really meant by a term
“fails?”

It is also important to separate concrete facts from conjecture about underlying
causes. For example, a statement such as “IDL dumps core when allocating dyn
memory” is not nearly as useful as this statement, “IDL dumps core when I exec
the following statements. I think it might be trying to get dynamic memory.” The
second version tells us exactly what happened. The opinion about what was goin
when the problem surfaced is also useful to us, but it helps to have it clearly lab
as such.
Reporting Problems Using IDL

Chapter 1: Overview 21

t
elp
pen.

ce of
ns
ed it

L
y it is
 the

d

ll
stop

lved

ur

he
der
d

ts
Reproducibility

Intermittent bugs are by far the hardest kind to fix. In general, if we can’t make i
happen on our machine, we can’t fix it. It is therefore far more likely that we can h
you if you can tell us a sequence of IDL statements that cause the problem to hap
Naturally, there are degrees of reproducibility. Situations where a certain sequen
statements causes the bug 1 time in 3 tries are fairly likely to be fixable. Situatio
where the bug happens once every few months and no one is sure what trigger
are almost hopeless.

Simplify the Problem

When reporting a bug, it is important to give us the shortest possible series of ID
statements that cause it. The longer and more intricate an example, the less likel
that we can help. Sometimes a single statement triggers the bug. Often though,
problem surfaces when writing a larger system of inter-related procedures and
functions. Such a situation must be simplified before we can tackle it. Take the
following steps to simplify your problem:

• Copy the procedure and function files that are involved to a scratch secon
copy. Never modify your only copy!

• Eliminate everything not involved in demonstrating the bug. Don’t do this a
at once. Instead, do it in a series of slow careful steps. Between each step,
and run IDL on the result to ensure that the bug still appears.

• If a simplification causes the bug to disappear, restore the statements invo
and look for other things to eliminate.

• If the problem does not involve file Input/Output, strive to eliminate all file I/O
statements. Use IDL routines to generate a dummy data set, rather than
including your own data. If your bug report does not involve I/O, it will be
much easier for us to reproduce. If you have to provide us with a copy of yo
data, things become more complicated.

On the other hand, if the bug involves file Input/Output, attempt to determine if t
problem only happens with a certain file, or with any data. If you are running un
VMS, check the file organization using the DCL DIRECTORY/FULL command, an
include this information in your report.

The end result of such simplification should be a small number of IDL statemen
that demonstrate the problem.
Using IDL Reporting Problems

22 Chapter 1: Overview

L.

ing

y

y
ide

en
we
ow

uire
Call
Bugs with Dynamic Loading

Under some operating systems, the CALL_EXTERNAL and LINKIMAGE system
routines allow you to dynamically load routines written in other languages into ID
This is a very powerful technique for extending IDL, but it is considerably more
difficult than simply writing IDL statements. At this level, the programmer is
underneath the user level shell of IDL and is not protected from small programm
errors that can corrupt data, give incorrect results, or even crash IDL. In such
situations, the burden of proving that a bug is within IDL and not the dynamicall
loaded code is entirely the programmer’s.

Although it is certainly true that a bug in this situation can be within IDL, it is ver
important that you exhaust all other possibilities before reporting a bug. If you dec
that you need to report a bug, the comments above on simplifying things are ev
more important than usual. If you send us a small example that tickles the bug,
can respond quickly with a correction or advice. Otherwise, we may not even kn
where to begin.

Sending Data with Your Bug Report

If the statements required to reproduce the bug are more than a few lines or req
data files, we will need you to send them to us on magnetic media or via e-mail.
us for details.

Contact Us

To report a problem, contact us at the following addresses.

Mail

Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Telephone

(303) 786-9900
(303) 786-9909 (Fax)
(303) 413-3920 (IDL technical support direct line)

Electronic Mail

support@rsinc.com
Reporting Problems Using IDL

Part I: The IDL
Development
Environment

Chapter 2:

Running IDL
The following topics are covered in this chapter:
1

4

Starting IDL . 27
Quitting IDL . 30
Environment Variables Used by IDL 31
Input to IDL . 35
Special Characters. 39
Executive Commands 40
Printing Graphics . 42

Preparing and Running Programs 43
Issuing Operating System Commands. 47
Batch Execution. 48
Startup File. 5
Non-interactive IDL. 52
SAVE and RESTORE 53
Journaling. 5
Using IDL 25

26 Chapter 2: Running IDL

IDL
r

de.
This chapter explains IDL special characters, executive commands, the various
commands you can enter in response to the IDL prompt, how to prepare and run
programs, how to set up IDL to work with your terminal or workstation, and othe
general information about IDL.

Installation and licensing instructions for IDL can be found in your installation gui
Using IDL

Chapter 2: Running IDL 27

g
ce,

he

es
e

ent

e

ith
n

Starting IDL

To run IDL under UNIX or VMS in command-line mode, enter idl at the operatin
system prompt. To run the IDL Development Environment graphical user interfa
enter idlde at the UNIX prompt, or idl/de at the VMS prompt. To run IDL under
Windows or the Macintosh OS, double-click on the IDL icon. For a description of t
IDL graphical user interface, seeChapter 4, “The IDL for Motif Interface”, Chapter
3, “The IDL for Windows Interface”, orChapter 5, “The IDL for Macintosh
Interface”.

When IDL is ready to accept a command, it displays the IDL> prompt. If IDL do
not start, take the following action depending upon the operating system you ar
running:

• UNIX: Be sure that yourPATH environment variable includes the directory
that contains IDL. You can find other recommended settings for environm
variables at the end of this chapter.

• VMS: See your system manager (or the IDL installation instructions) for th
proper commands to include in yourLOGIN.COM file.

• Windows: Be sure that the path listed in thePropertiesdialog for the IDL icon
(this is found under theFile menu in the Program Manager in Windows NT
3.51, or by right-clicking on the IDL shortcut icon in Windows 95 and
Windows NT 4.0) accurately reflects the location of the IDL executable file
idlde.exe .

Startup Switches Accepted by IDL

You can alter some IDL behaviors by supplying command line switches along w
the IDL command. Different switches are available on different platforms. IDL ca
also be started in noninteractive mode by specifying the name of a batch file at
startup time. See“Non-interactive IDL” on page 52 for details.

• UNIX: The UNIX version of IDL accepts the following command line
switches:

-rt= file

Start IDL with a runtime license. The file argument should be an IDL.sav
file. If no file is specified, IDL attempts to run a file named runtime.sav . If
you are creating IDL runtime applications, consult theBuilding IDL
Applcations.
Using IDL Starting IDL

28 Chapter 2: Running IDL

n

 -

le.
re

 is

n
e

n.
-w

Start IDL with the graphical user interface. This is the same as enteringidlde
at the command prompt.

-autow

Start IDL with the graphical user interface if possible, otherwise start IDL i
command-line mode.

-nw

Run IDL in command-line mode no matter what. Note that specifying idlde
nw at the command line will start IDL in command line mode.

SeeChapter 4, “The IDL for Motif Interface” for additional command line
options for the graphical user interface.

• VMS: The VMS version of IDL accepts the following command line
qualifiers:

/RUNTIME=file

Start IDL with a runtime license. The file argument should be an IDL .sav fi
If no file is specified, IDL attempts to run a file named runtime.sav. If you a
developing IDL runtime applications, consult theBuilding IDL Applcations.

/DE

Start IDL with the graphical user interface.

/[NO]WINDOW

Start IDL with the graphical user interface (same as /DE). If the NO prefix
included, IDL starts in command-line mode.

/[NO]AUTOWINDOW

Start IDL with the graphical user interface if possible, otherwise start IDL i
command-line mode. If the NO prefix is included, IDL starts in command-lin
mode.

/ARRAY_MEMORY

Adjust the amount of memory allocated for IDL arrays. See
“IDL_ARRAY_MEMORY_SIZE” on page 33 for a more detailed descriptio

SeeChapter 4, “The IDL for Motif Interface” for additional command line
options for the graphical user interface.
Starting IDL Using IDL

Chapter 2: Running IDL 29
• Windows: The Windows version of IDL does not accept command-line
switches.

• Macintosh: The Macintosh version of IDL does not accept command-line
switches.
Using IDL Starting IDL

30 Chapter 2: Running IDL

e

Quitting IDL

To quit IDL, enter the EXIT command at the IDL prompt. If you are running Via th
IDL Development Environment (IDLDE), you can exit by selecting theExit option
from theFile menu.
Quitting IDL Using IDL

Chapter 2: Running IDL 31

ical
og of

ified
iable.
that

lso

ice.

this
Environment Variables Used by IDL

When IDL starts, it checks the values of certain environment variables (called log
names under VMS) and/or preference settings specified in the Preferences dial
the IDLDE. Whether IDL uses the environment variable or Preferences setting
depends on the platform:

• On Motif, the environment variable supersedes the value specified in the
Preferences dialog. The Preferences value is used only if no environment
variable is specified.

• On Windows and Macintosh platforms, any startup value that can be spec
via the Preferences dialog supersedes the corresponding environment var
Therefore, setting environment variables that correspond to startup values
can be specified in the Preferences dialog has no effect.

The aspects of IDL’s behavior that are controlled by environment variables can a
be controlled by setting IDL system variables in a startup script.

Environment Variables — All Platforms

IDL_DEVICE

Set this environment variable equal to the name of the default IDL graphics dev
Setting this value is the same as setting the value of the IDL system variable
!D.NAME. Note that the concept of a graphics device applies only to IDL Direct
Graphics; IDL Object Graphics do not use the current graphics device.

IDL_DIR

Set this environment variable equal to the path to the main IDL directory. Setting
value is the same as setting the value of the IDL system variable !DIR.

IDL_DLM_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL dynamically loadable modules. The corresponding IDL system
variable is !DLM_PATH. Due to the nature of DLMs, the value of !DLM_PATH
cannot be changed. See“!DLM_PATH” in Appendix D of theIDL Reference Guide.
For information on expanding IDL_DLM_PATH, see“Path Expansion” on page 34.
Using IDL Environment Variables Used by IDL

32 Chapter 2: Running IDL

to

e

g

 a

les.
nd

ns. Set
ify

 be

ed
Note
On Windows, using the IDL_DLM_PATH environment variable is the only way
specify the path to DLMs.

IDL_HELP_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL help files. Setting this value is the same as setting the value of th
IDL system variable !HELP_PATH. For information on expanding
IDL_HELP_PATH, see“Path Expansion” on page 34.

IDL_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL library (.pro and.sav) files. Setting this value is the same as settin
the value of the IDL system variable !PATH. For information on expanding
IDL_PATH, see“Path Expansion” on page 34.

IDL_STARTUP

Set this environment variable equal to the path to an IDL batch file that contains
series of IDL statements which are executed each time IDL is run. See“Startup File”
on page 51 for further details.

IDL_TMPDIR

IDL, and code written in the IDL language, sometimes need to create temporary fi
The location where these files should be created is highly system-dependent, a
local user conventions are often different from standard practice. By default, IDL
selects a reasonable location based on operating system and vendor conventio
the IDL_TMPDIR environment variable to override this choice and explicitly spec
the location for temporary files.

The GETENV system function handles IDL_TMPDIR as a special case, and can
used by code written in IDL to obtain the temporary file location. SeeGETENV in
theIDL Reference Guide.

Environment Variables — UNIX

The following environment variables are used by IDL for UNIX.

DISPLAY

IDL uses the DISPLAY environment variable to choose which X display will be us
to display graphics.
Environment Variables Used by IDL Using IDL

Chapter 2: Running IDL 33

le
de.

e to

ys
nded

rated

line

up

the

lues
nd
TERM

As with any X Windows program, IDL uses the standard UNIX environment variab
TERM to determine the type of terminal in use when IDL is in command-line mo

LM_LICENSE_FILE

IDL’s FlexLM-based license manager uses the value of this environment variabl
determine where to search for valid license files. Consult the license manager
documentation for details.

Logical Names — VMS

The following logical name is used only by IDL for VMS.

IDL_ARRAY_MEMORY_SIZE

You can control both the initial size of the memory block allocated to hold IDL arra
and the amount of memory allocated when the array memory block must be exte
dynamically. You can control the memory allocation in two ways:

1. If a logical named IDL_ARRAY_MEMORY_SIZE exists when IDL starts,
IDL uses its value to determine the initial and extend sizes. If the logical
contains a single number, it is taken as the extend size. Two numbers sepa
by whitespace are taken as the extend and initial sizes, in that order. For
example, to set the extend size to 1024 pages, you could put the following
into yourLOGIN.COM file:

$ DEFINE IDL_ARRAY_MEMORY_SIZE 1024

To also make the initial size be 2048 pages:

$ DEFINE IDL_ARRAY_MEMORY_SIZE "1024 2048"

2. Use the ARRAY_MEMORY qualifier to specify these same values at start
time. As above, to set the extend size to 1024 pages:

$ IDL/ARRAY_MEMORY=(EXTEND=1024)

To set the initial size to 2048 as well:

$ IDL/ARRAY_MEMORY=(INITIAL=2048, EXTEND=1024)

The choice of qualifier or logical depends on the application. Values specified via
ARRAY_MEMORY qualifier take precedence over those specified by the logical
name. Neither are required; IDL will provide defaults. The ability to set these va
is provided for those with a deep understanding of VMS memory management a
special requirements that the defaults don’t satisfy.
Using IDL Environment Variables Used by IDL

34 Chapter 2: Running IDL

 are
:

to

de
Path Expansion

The IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables
support two special notations that cause IDL to expand the variables when they
translated at startup time. These notations simplify the setting of these variables

• Using “+” — When IDL translates the IDL_PATH, IDL_DLM_PATH, or
IDL_HELP_PATH environment variables, it looks for a leading + on each
directory, and if it is present, IDL searches the directory and all of its
subdirectories for files of the appropriate type for the path. Any directory
containing such files is added to the path. For more information, see
EXPAND_PATH in theIDL Reference Guide.

• Using “<IDL_DEFAULT>” — When IDL gets the value of the IDL_PATH,
IDL_DLM_PATH, and IDL_HELP_PATH environment variables, it replaces
any instances of the string<IDL_DEFAULT> with the default value IDL would
have assumed for the environment variable if it were not defined. Hence,
pre-pend your directory to IDL’s default location in !DLM_PATH (under
UNIX):

% setenv IDL_DLM_PATH "/your/path/here:<IDL_DEFAULT>"

To append it to the end:

% setenv IDL_DLM_PATH "<IDL_DEFAULT>:/your/path/here"

This substitution allows you to set up your paths without having to hard-co
IDL’s defaults into your startup scripts.
Environment Variables Used by IDL Using IDL

Chapter 2: Running IDL 35

hat
e
 the

alled,

en a

elect
Input to IDL

Commands that are entered at the IDL prompt are usually interpreted as IDL
statements to be executed. Other interpretations include executive commands t
control execution and compilation of programs, shell commands, etc. Input to th
IDL prompt is interpreted according to the first character of the line, as shown in
following table.

Command Recall and Line Editing

IDL saves the last 20 command lines entered. These command lines can be rec
edited, and re-entered. The up-arrow key (↑) on the keypad recalls the previous
command you entered to IDL. Pressing it again recalls the previous line, etc. Wh
command is recalled, it is displayed at the IDL prompt and can be edited and/or
entered.

Note
You can change the number of lines to be recalled in the IDLDE Preferences. S
File → Preferences... and adjust the number under theGeneral option.

First Character Action

. Executive command

? Help inquiry

$ Command to be sent to operating system (UNIX,
VMS, Windows)

@ Batch file initiation.

Up arrow key Recall/edit previous command

Ctrl+D Under UNIX, exits IDL, closes all files, and returns
to operating system.

Ctrl+Z Under UNIX, suspends IDL. Under VMS and
Windows, exits IDL, closes all files, and returns to
operating system.

All others IDL statement

Table 2-1: Interpretation of the First Character in an IDL Command
Using IDL Input to IDL

36 Chapter 2: Running IDL

the
The line-editing abilities and the keys that activate them differ somewhat between
different operating systems. The table below lists the edit functions and the
corresponding keys.

Function UNIX VMS Windows Macintosh

Move cursor to start
of line

Ctrl+A Home Ctrl+A,
Home

Move cursor to end
of line

Ctrl+E Ctrl+E,
Ctrl+W

End Ctrl+E, End

Move cursor left one
character

Left arrow Ctrl+D, Left
arrow

Left arrow Left arrow

Move cursor right
one character

Right arrow Ctrl+F,
Right arrow

Right arrow Right arrow

Move cursor left one
word

Ctrl+B, (R13
on Sun
Keyboard)

Ctrl+left
arrow

Ctrl+B

Move cursor right
one word

Ctrl+F, (R15
on Sun
Keyboard)

Ctrl+right
arrow

Ctrl+F

Delete from current
to start of line

Ctrl+U Ctrl+U,
Ctrl+X,
Ctrl+Delete

Delete from current
to end of line

Ctrl+Delete

Delete entire line Ctrl+U

Delete current
character

Ctrl+X Delete Ctrl+X,
Right-Delete

Delete previous
character

Ctrl+H,
Backspace,
Delete

Backspace,
Delete

Backspace Ctrl+H,
Delete

Delete previous
word

Ctrl+W,
ESC-
Delete

Ctrl+W

Table 2-2: Command Recall and Line Editing Keys
Input to IDL Using IDL

Chapter 2: Running IDL 37

UT

ing

for
t
ent
The command recall feature is enabled by setting the system variable !EDIT_INP
to a non-zero value (the default is 1) and is disabled by setting it to 0. See
“!EDIT_INPUT” in Appendix D of theIDL Reference Guide for details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by sett
!EDIT_INPUT equal to a number other than one. (in the IDL Development
Environment, you can set this value in the Preferences dialog as well.) In order
the change to take effect, IDL must be able to process the assignment statemen
before providing a command prompt. This means that you must put the assignm
statement in the IDL startup file. (See“Startup File”on page 51 for more information
on startup files.)

For example, placing the line

!EDIT_INPUT = 50

Generate IDL
keyboard interrupt

Ctrl+C Ctrl+C Ctrl+break Command
+period

Move back one line
in recall buffer

Ctrl+N, Up
arrow

Ctrl+B,

Up arrow

Up arrow Ctrl+N, Up
arrow

Move forward one
line in recall buffer

Down arrow Down arrow Down arrow Down arrow

Redraw current line Ctrl+R Ctrl+R

Overstrike/Insert ESC-I Ctrl+A

EOF if current line
is empty, else EOL

Ctrl+D

Search recall buffer
for text

^-text PF1-text ^-text

Insert the character
at the current
Executive
Commands position

any
character

any
character

any character any
character

Function UNIX VMS Windows Macintosh

Table 2-2: Command Recall and Line Editing Keys
Using IDL Input to IDL

38 Chapter 2: Running IDL

ll
in your IDL startup file changes the number of lines saved in the command reca
buffer to 50.
Input to IDL Using IDL

Chapter 2: Running IDL 39
Special Characters

The following table lists characters with special interpretations and states their
functions in IDL. See“Special Characters” in Appendix E of theIDL Reference
Guide for in-depth descriptions of the way IDL interprets these characters.

UNIX VMS Windows Macintosh Function

! ! ! ! First character, system variable
names

' ' ' ' Delimit string constants or
indicate part of octal or hex
constant

; ; ; ; Begin comment field

$ $ $ $ Continue current command on
the next line, or issue operating
system command if entered on a
line by itself.

" " " " Delimit string constants or
precede octal constants

. . . . Indicate constant is floating point
or start executive command

& & & & Separate multiple statements on
one line

: : : : End label identifiers

* * * * Array subscript range

@ @ @ @ Include file/Execute IDL batch
file

? ? ? ? Online help

Control-C Control-C Control-break Command-. Interrupt

Control-D Control-Z Control-Z Command-Q Exit

Control-\ Control-Y Abort

Table 2-3: Special Characters
Using IDL Special Characters

40 Chapter 2: Running IDL

tart
ust

se
.

he

e

t

Executive Commands

IDL executive commands compile programs, continue stopped programs, and s
previously compiled programs. All of these commands begin with a period and m
be entered in response to the IDL prompt. Commands can be entered in either
uppercase or lowercase and can be abbreviated. Under UNIX, filenames are ca
sensitive, while with VMS, Windows, and the Macintosh either case can be used
Note that comments (prefaced by the semicolon character in IDL code) are not
allowed within executive commands. Executive commands are summarized in t
table below. See theIDL Reference Guide for in-depth descriptions of these
commands.

Command Action

.COMPILE Compiles text from files or keyboard without
executing

.CONTINUE Continues execution of a stopped program

.EDIT Opens files in editor windows of the IDLDE
(Windows and Motif only)

.FULL_RESET_SESSION Does everything .RESET_SESSION does, plus
additional reset tasks such as unloading sharabl
libraries

.GO Executes previously compiled main program from
beginning

.OUT Continues program execution until the current
routine returns

.RESET_SESSION Resets much of the state of an IDL session withou
requiring the user to exit and restart the IDL
session

.RETURN Continues execution until encountering a
RETURN statement

Table 2-4: Executive Commands
Executive Commands Using IDL

Chapter 2: Running IDL 41

r

ps

s

.RNEW Erases main program variables and then .RUN

.RUN Compiles and possibly executes text from files o
keyboard

.SKIP Skips over the next statement and then single ste

.STEP Executes a single statement (abbreviated as .S)

.STEPOVER Executes a single statement if the statement doe
not call a

routine (abbreviated as .SO)

.TRACE Similar to .CONTINUE, but displays each line of
code before execution

Command Action

Table 2-4: Executive Commands
Using IDL Executive Commands

42 Chapter 2: Running IDL

to
s
s;

ke
age

tion
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Window
and Macintosh platforms, IDL uses the operating system’s built-in printing facilitie
on UNIX and VMS platforms, IDL uses the Xprinter print manager from Bristol
Technology.

Use the DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Note
IDL does not support tiling or printing multi-page documents.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to ma
PRINTER your current device. Issue IDL commands as normal to create the im
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. See“IDL
Graphics Devices” in Appendix B of theIDL Reference Guide for details.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destina
for your Draw operations. SeeChapter 28, “Printer Objects” for information about
printer objects and their use.
Printing Graphics Using IDL

Chapter 2: Running IDL 43

ram
red
L

han a
ot

ning
me

 to
via

They
alled
main

ed

e

Preparing and Running Programs

To enter a short program or procedure from the keyboard, simply type.RUN or
.RNEW. When the final END statement is encountered, execution of the main prog
will begin if there was an END statement and if no errors were found. If you ente
only functions or procedures or if the main program you entered had an error, ID
will display the IDL prompt to show that a program is not running.

Usually, any text editor can be used to prepare programs or procedures of more t
few lines. The GUI front-ends for IDL include built-in text editors, but these need n
be used if you prefer to use your own text editor or word processor. Files contai
IDL programs, procedures, and functions are assumed to have the extension na
.pro . Once the program has been entered into a file from an editor, run IDL and
compile one or more program files using.RUN or .RNEW.

Format of Program Files

There are essentially four types of code units in files containing IDL statements:

Procedure

A self-contained code unit with a unique name that is called by other code units
perform a desired function. The calling code unit and the procedure communicate
passed arguments.

Function

A self-contained code unit similar to a procedure. The only difference is that a
function returns a value and can therefore be used in expressions.

Main Program

A series of statements that are not preceded by a procedure or function heading.
do, however, require an END statement. Since there is no heading, it cannot be c
from other routines and cannot be passed in arguments. When IDL encounters a
program as the result of a.RUN executive command, it compiles it into the special
program named$MAIN$ and immediately executes it. Afterwards, it can be execut
again by using the.GO executive command.

Include File

A file to be included in other files. The statements contained in an include file ar
textually inserted into the including file. See“Batch Execution” on page 48. A file
can contain any combination of functions, procedures, and/or include files. For
Using IDL Preparing and Running Programs

44 Chapter 2: Running IDL

t be

es
en

me

ame

L
ed)

 the
r

ing

and
a

nit
s of
example, a file might contain three procedures and two functions and also migh
included in another file.

SeeChapter 14, “Programming in IDL”in theBuilding IDL Applicationsmanual for
more information on creating programs in IDL.

Executing Program Files

Automatic Execution

When a file is specified by typing only the filename at the IDL prompt, IDL search
the current directory for filename.pro (where filename is the file specified) and th
for filename.sav. If no file is found in the current directory, IDL searches in the sa
way in each directory specified by !PATH. If a file is found, IDL automatically
compiles the contents and executes any functions or procedures that have the s
name as the file specified (excluding the suffix).

Explicit Execution

When a file is specified with the .RUN, .RNEW, .COMPILE, or @ commands, ID
searches the current directory for filename.pro (where filename is the file specifi
and then for filename. If no file is found in the current directory, IDL searches in
same way in each directory specified by !PATH. If a file is found, IDL compiles o
runs the file as specified by the executive command used.

Warning
If the current directory contains a subdirectory with the same name asfilename ,
IDL will consider the file to have been found and stop searching. To avoid this
problem, specify the extension (.pro or .sav , usually) when entering the run,
compile, or batch file command.

The details of how !PATH is initialized and used differ between the various operat
systems, although the overall concept is the same. See“!PATH” in Appendix D of the
IDL Reference Guide for more information.

Interrupting Program Execution

Programs that are running can be manually stopped by typing Control-C (UNIX
VMS), Control-Break (Windows) or Command-. (Macintosh). This action is called
keyboard interrupt. A message indicating the statement number and program u
being executed is issued on the terminal acknowledging the interrupt. The value
variables can be examined, statements can be entered from the keyboard, and
Preparing and Running Programs Using IDL

Chapter 2: Running IDL 45

e

h
ill

the

time
.

 an

e
f the

re
le to

d

variables can be changed. The program can be resumed by typing the executiv
command .CONTINUE to resume or .S to execute the next statement and stop.

Variable Context After Interruption

The variable context after a keyboard interrupt is that of the program unit in whic
the interrupt occurred. By typing the statement RETURN, the program context w
revert to the next higher calling level. The RETALL command returns control to
main program level. If any doubt arises as to which program unit in which the
interrupt occurred, the HELP procedure can be used to determine the program
context. IDL checks after each statement to see if an interrupt has been typed.
Execution does not stop until the statement that was active finishes; thus, a long
can elapse from the time the interrupt is typed to the time the program interrupts

Aborting IDL

If you find it necessary to abort IDL rather than exiting cleanly using the EXIT
command, do one of the following:

• UNIX: As with any UNIX process, IDL can be aborted by typing
Control+\.This is a very abrupt exit—all variables are lost, and the state of
open files will be uncertain. Thus, although it can be used to exit of IDL in
emergency, its use should be avoided.

Note
After aborting IDL by using Control+\, you may find that your terminal is left in th
wrong state. You can restore your terminal to the correct state by issuing one o
following UNIX commands:

% reset

or

% stty echo -cbreak

• VMS: As with any VMS program, IDL can be aborted by typing Control+Y.
Aborting IDL with Control+Y should only be used as an emergency measu
since all the variables are lost and some output may disappear. It is possib
resume IDL by typing the DCL command:

$ CONTINUE

However, if any DCL command that causes VMS to run a new program is issue
prior to the CONTINUE command, the IDL session will be irreversibly lost.
Using IDL Preparing and Running Programs

46 Chapter 2: Running IDL
• Windows and Macintosh: There is no abort character for either IDL for
Windows or IDL for Macintosh.
Preparing and Running Programs Using IDL

Chapter 2: Running IDL 47

 the
hell

be
,
WN.
$,

mand
n
the
and

at
Issuing Operating System Commands

UNIX and VMS operating system commands can be sent to a subprocess for
execution by entering the command preceded by the character $ in response to
IDL prompt. Under Windows, the $ can be used to enter a DOS or Command S
command at the IDL prompt.

The SPAWN procedure has the same effect and is more flexible because it can
used within an IDL program while $ can only be entered interactively. In addition
the standard output of the command can be saved in an IDL string array by SPA
Hence, $ can be thought of as an interactive-only abbreviation for SPAWN. Unlike
SPAWN can also be used on the Macintosh.

IDL creates and runs a process to execute the command and waits for the com
to finish before issuing another IDL prompt. All of the variables, procedures, ope
files, etc., are saved while the command is executing. (Under UNIX, essentially
same result is obtained using Control-Z to suspend IDL.) Output from the comm
issued is handled different ways under different operating systems:

• UNIX: Output from the command is directed to the window in which IDL is
running. Other windows may be created as well.

• VMS: Output from the command is directed to the window in which IDL is
running. Other windows may be created as well.

• Windows: A new MS-DOS window is opened to display the output. Note th
the window is destroyed as soon as the command finishes.

• Macintosh: The selected Macintosh application starts up as if it had been
opened from the Finder.
Using IDL Issuing Operating System Commands

48 Chapter 2: Running IDL

 and
m

g to
e
ffect

e in
le
 the

he
th
in

e

Batch Execution

IDL can be run in the non-interactive mode (the batch mode) by entering the
character @ followed by the name of a file containing IDL executive commands
statements. All executive commands and IDL statements that normally come fro
the keyboard are read from the specified file.

Batch execution can be terminated before the end of the file, with control returnin
the interactive mode without exiting IDL, by calling the STOP procedure from th
batch file. Calling the EXIT procedure from the batch procedure has the usual e
of terminating IDL.

To enter batch mode from the interactive mode, enter:

@filename

at the IDL prompt. (Note that the @ symbol must be the first character on the lin
order for it to be interpreted properly.) IDL reads commands from the specified fi
until the end of the file is reached. Batch files can be nested by simply prefacing
name of the new batch file with the @ character. As stated above, the current
directory and then all directories in the !PATH system variable are searched (if t
file was not found in the current directory). The filename can also include full pa
specifications (e.g., when the batch file resides in a directory that isn’t included
!PATH).

IDL only searches the !PATH directories for.sav and.pro files. There are two
ways to get IDL to execute your batch/include file:

1. Add the directory with your batch file to !PATH, and make sure it has a.pro
extension (e.g. "mybatch.pro ")

2. Make the directory with your batch files the working directory, either by
launching IDL from there, or using the CD routine

The only way to execute a simple ascii batch/include file which does not have a.pro
extension is if:

1. It is in the working directory

2. You supply the full path specification

Interpretation of Batch Statements

Each line of the batch file is interpreted exactly as if it was entered from the
keyboard. In the batch mode, IDL compiles and executes each statement befor
Batch Execution Using IDL

Chapter 2: Running IDL 49

iled
gle

cuted

 with

ntax

e $

d

reading the next statement. This differs from the interpretation of programs comp
using .RNEW or .RUN, in which all statements in a program are compiled as a sin
unit and then executed.

Labels are illegal in the batch mode because each statement is compiled and exe
independently.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

;This will not work in batch mode.
FOR I = 1, 10 DO BEGIN

A = X[I]
...
...

ENDFOR

In the batch mode, IDL compiles and executes each line separately, causing sy
errors in the above example because no matching ENDFOR is found on the line
containing the BEGIN statement when the line is compiled. The above example
could be made to work by writing the block of statements as a single line using th
(continuation) and & (multiple commands on a single line) characters.

Batch Examples

An example of an IDL executive command line that initiates batch execution:

@myfile

This command causes the file myfile.pro to be used for statement and comman
input. If this file is not in the current directory, the search path, !PATH is also
searched.

 An example of the contents of a batch file follows:

;Run program A:
.RUN proga
;Run program B:
.RUN progb
;Print results:
PRINT, AVALUE, BVALUE
;Close unit 3:
CLOSE, 3
<eof>
Using IDL Batch Execution

50 Chapter 2: Running IDL

its
atch
The batch file should not contain complete program units. Complete program un
should be compiled and run by using the .RUN and .RNEW commands in the b
files, as illustrated above.
Batch Execution Using IDL

Chapter 2: Running IDL 51

are

r

t

al

he

t in
esent
Startup File

The startup file is an IDL batch file that contains a series of IDL statements which
executed each time IDL is run. Common uses are to compile frequently used
procedures or functions, customize default settings, load data, and perform othe
useful operations. It contains IDL statements that are individually compiled and
executed in the same manner as batch file execution.

• UNIX: To make IDL execute a startup file under UNIX, set the environmen
variable IDL_STARTUP to the name of the file to be executed. If
IDL_STARTUP is not defined, a startup file is not executed.

• VMS: To make IDL execute a startup file under VMS, assign the VMS logic
name IDL_STARTUP to the name of the file to be executed. If
IDL_STARTUP is not defined, a startup file is not executed.

• Windows: To make IDL execute a startup file under Windows, specify the
name of the startup file in theStartup dialog, found underPreferences in the
IDL for WindowsFile menu.

• Macintosh: To make IDL execute a startup file on the Macintosh, specify t
name of the startup file in theIDL Startup Settings dialog, found under
Preferences in the IDL for MacintoshEdit menu.

The procedure search path, !PATH, is used when searching for the file if it is no
the current directory. Startup command files are executed before the batch file pr
in the initial command line, if any.
Using IDL Startup File

52 Chapter 2: Running IDL

and

ure
 use

verts
Non-interactive IDL

Under UNIX and VMS, IDL can be run entirely in the non-interactive mode by
including the name of a file containing batch mode commands in the shell comm
used to invoke IDL. When the end of the file is reached, control reverts to the
interactive mode and input is accepted from the keyboard. Call the EXIT proced
from the file to cause IDL to return to the operating system if you do not want to
IDL in the interactive mode. The operating system command:

idl startup

runs IDL. IDL then executes in batch mode the text in the file startup.pro and re
to the interactive mode if a call to EXIT is not present in the file.
Non-interactive IDL Using IDL

Chapter 2: Running IDL 53

tate
later

n. A

am
the

d to
nient

he
ent to
olor

dat.

ard
ccur.

s
ile
SAVE and RESTORE

The SAVE and RESTORE procedures combine to provide the ability to save the s
of variables, system variables, and procedures and functions to restore them at a
time. This ability to checkpoint a session and then recover it later can be very
convenient. SAVE/RESTORE files can be used for many purposes.

Save files can be used to recover variables that are used from session to sessio
startup file can be set up to execute the RESTORE command every time IDL is
started. (See“Startup File” on page 51 for details on startup files.)

Save files can be used to distribute IDL code in binary format. If you have a progr
or programs you wish to distribute, but do not want other to be able to view or edit
source code, use a save file.

The state of an IDL session can be saved quickly and easily, and can be restore
the same point. This feature allows you to stop work, and later resume at a conve
time.

Data can be conveniently stored in SAVE/RESTORE files, relieving the user of t
need to remember the dimensions of arrays and other details. It is very conveni
store images this way. For instance, if the three variables R, G, and B hold the c
table vectors, and the variable I holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.dat', R, G, B, I

will save everything required to display the image properly in a file named image.
At a later date, the simple command,

RESTORE, 'image.dat'

will recover the four variables from the file.

Long iterative jobs can save their partial results in SAVE/RESTORE format to gu
against losing data if some unexpected event such as a machine crash should o

Note
Save files that contain IDL procedures, functions, and programs are not alway
portable between different versions of IDL. In this case, you will need to recomp
and then save the files in the current version of IDL.
Using IDL SAVE and RESTORE

54 Chapter 2: Running IDL

pt
e to
ent.

n

, a

any

 is
the
es
the
le
s if

,
to

ent
sion
put
Journaling

Journaling provides a record of an interactive session by saving in a file all text
entered from the terminal in response to a prompt. All text entered to the IDL prom
is entered directly into the file, and any text entered from the terminal in respons
any other input request (such as with the READ procedure) is entered as a comm
The result is a file that contains a complete description of the IDL session.

JOURNAL has the form:

JOURNAL[, Argument]

whereArgument is either a filename (if journaling is not currently in progress) or a
expression to be written to the file (if journaling is active).

The first call to JOURNAL starts the logging process. If no argument is supplied
journal file namedidlsave.pro is started.

Warning
Under all operating systems except VMS, creating a new journal file will cause
existing file with the same name to be lost. Supply a filename argument to
JOURNAL to avoid destroying desired files.

When journaling is not in progress, the value of the system variable !JOURNAL
zero. When the journal file is opened, the value of this system variable is set to
number of the logical file unit on which the file is opened. This allows IDL routin
to check if journaling is active. You can send any arbitrary data to this file using
normal IDL output routines. In addition, calling JOURNAL with an argument whi
journaling is in progress results in the argument being written to the journal file a
the PRINT procedure had been used. In other words, the statement,

JOURNAL,

is equivalent to

PRINTF, !JOURNAL, Argument

with one significant difference—the JOURNAL statement is not logged to the file
only its output; while the PRINTF statement will be logged to the file in addition
its output.

Journaling ends when the JOURNAL procedure is called again without an argum
or when IDL is exited. The resulting file serves as a record of the interactive ses
that went on while journaling was active. It can be used later as an IDL batch in
Journaling Using IDL

Chapter 2: Running IDL 55

amed

ition,
ment
file to repeat the session, and it can be edited with any text editor if changes are
necessary.

As an example, consider the following IDL statements:

;Start journaling to file demo.pro:
JOURNAL, 'demo.pro'
;Prompt for input:
PRINT, 'Enter a number:'
;Read the user response into variable Z:
READ, Z
;Send an IDL comment to the journal file using JOURNAL:
JOURNAL, '; This was inserted with JOURNAL.'
;Send another comment using PRINTF:
PRINTF, !JOURNAL, '; This was inserted with PRINTF.'
;End journaling:
JOURNAL

If these statements are executed by a user named Doug on a Sun workstation n
quixote, the resulting journal filedemo.pro will look like the following:

; IDL Version 5.3 (sunos sparc)
; Journal File for doug@quixote
; Working directory: /home/doug/IDL
; Date: Mon Sept 9 14:38:24 1999

PRINT, 'Enter a number:'
;Enter a number:
READ, Z
; 87
; This was inserted with JOURNAL.
; This was inserted with PRINTF.
PRINTF, !JOURNAL, '; This was inserted with PRINTF.'

Note that the input data to the READ statement is shown as a comment. In add
the statement to insert the text using JOURNAL does not appear, while the state
using PRINTF does appear.
Using IDL Journaling

56 Chapter 2: Running IDL
Journaling Using IDL

Chapter 3:

The IDL for
Windows Interface

The following topics are covered in this chapter:
The Main IDL Window. 59
IDLDE Windows. 62
The Menu Items . 64
Keyboard Shortcuts. 79

Customizing IDL . 81
Using the IDL Editor. 93
Windows IDL Differences. 96
Using IDL 57

58 Chapter 3: The IDL for Windows Interface
IDL for Windows has a convenient multiple-document interface called the IDL
Development Environment (IDLDE) that includes built-in editing and debugging
tools. This chapter describes the IDLDE.

See“Environment Variables Used by IDL” on page 31 for additional details on the
IDL environment.
Using IDL

Chapter 3: The IDL for Windows Interface 59

he

ill
you
u
 the
E

 an
The Main IDL Window

When you start IDL, the main IDL window appears (shown in the figure below). T
seven sections of this window are described below.

Docking/Undocking

Four sections of the IDLDE can be moved within and unanchored from the main
IDLDE window: theTool Bar, Output Log, Variable Watch Window, and
Command Input Line . Click on the border and drag the left mouse button. You w
notice the outline of the section you have chosen moving with your mouse. When
are satisfied with a location, let go of the mouse button to dock the window. If yo
move this outline so that it overlaps an edge of the window space being used by
IDLDE, the section will be docked to the nearest available side of the main IDLD
window. TheTool Bar, Output Log, Variable Watch Window, andCommand
Input Line will remain between theMenu Bar and theStatus Bar when docked.
They can be docked in any order against an edge. If the outline doesn’t overlap
edge, the section will float on the desktop. If you hold down the [Ctrl] key, the

Figure 3-1: The IDL Development Environment for Windows

Menu Bar

Tool Bar

Status Bar

Output Log

Variable Watch
Window

Command

Projects Window

Multiple
Document
Panel

Input Line
Using IDL The Main IDL Window

60 Chapter 3: The IDL for Windows Interface

 of

able
em

r is

of
be

d.

 on

lt

Log
sections will float on the desktop instead of docking to the nearest available side
the IDLDE.

Menu Bar

The menu bar, located at the top of the main IDL window, has features which en
you to control various IDLDE features. When you select an option from a menu it
in the IDLDE, theStatus Bar displays a brief description.

Tool Bars

You can choose any combination of three tool bars:Standard, Run & Debug, and
Macros. To change the toolbars displayed, use theWindows menu to access the
Toolbar pulldown menu and select or de-select any combination of the three
toolbars. In addition, when you open a GUIBuilder window, its associated toolba
displayed.

When you position the mouse pointer over aToolbar button, theStatus Bardisplays
a brief description. If you click on aToolbar button which represents an IDL
command, the IDL command issued is displayed in theOutput Log.

Project Window

IDL Project Window allows you to manage, compile, run, and create distributions
all the files needed to develop an IDL application. All of your application files can
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. For further information on the Projects Window, refer toChapter
2, “Creating IDL Projects” in theBuilding IDL Applcations manual.

Multiple Document Panel

The top section of the main IDL window is where IDL Editor windows are displaye
TheMultiple Document Panel can be sized or made invisible by moving the
separator at the top of the Output Log or the Variable Watch Window, depending
your IDLDE Preferences setup.

Output Log

Output from IDL is displayed in the Output Log window, which appears by defau
when IDLDE is first started. The Output Log area can be sized by moving the
separator attached to the top of the Output Log. You can hide/display the Output
by clicking theOutput Log toggle item in theWindows menu, by pressing
[Ctrl+L], or by changing theLayout tab fromPreferencesin theFile Menu. If you
The Main IDL Window Using IDL

Chapter 3: The IDL for Windows Interface 61

u

s
e

f 20

with
click the right mouse button while positioned over the Output Log, a popup men
appears allowing you to move to a specified error. Clear the contents of theOutput
Log, or copy selected contents.

Variable Watch Window

TheVariable Watch Window appears by default when you start the IDLDE. It keep
track of variables as they appear and change during program execution. Size th
Variable Watch Window by moving the separator attached to the top. You can
hide/display the Variable Watch Window by clicking theVariable Watch toggle item
in the Windows menu, by pressing [Ctrl+A], or by changing theLayout tab from
Preferences in theFile Menu. For more information about theVariable Watch
Window, see“The Variable Watch Window” in Chapter 19 ofBuilding IDL
Applcations.

Command Input Line

The Command Input Line is a single IDL prompt where you can enter IDL
commands. The text output by IDL commands is displayed in theOutput Log
window. The Command Input Line can be made invisible by clicking theCommand
Input toggle item in theWindows menu, by pressing [Ctrl+I] or by changing the
Layout tab from Preferences in theFile menu.

If you click the right mouse button while positioned over theCommand Input Line ,
a popup menu appears displaying the command history, with a maximum buffer o
entries. If you enter HELP, /RETURN at theCommand Input Line , you will see the
same results, except that you can specify the number of lines in the recall buffer
theGeneral Preferences tab from theFile menu.

You can also open and compile files from the Command Input Line. See“Open...
[Ctrl+O]” on page 64 and“Compile filename.pro [Ctrl+F5]” on page 70 for more
information.

Status Bar

When you position the mouse pointer over aToolbar button or select an option from
a menu in IDLDE, theStatus Bar displays a brief description. TheStatus Bar can
be made invisible by clicking theStatus Bar toggle item in theWindows menu or by
changing theLayout tab fromPreferences in theFile menu.
Using IDL The Main IDL Window

62 Chapter 3: The IDL for Windows Interface

L

s)

ted

an

iate

up

s if

,
ed.

ou
event-
the
IDLDE Windows

Three types of windows can be created within the IDLDE: IDL Editor windows, ID
GUIBuilder windows, and IDL Graphics windows.

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text file
from within IDL. Any number ofEditor windows can exist simultaneously.

No Editor windows are open when IDL is first started. Editor windows can be crea
by selectingNew thenFile from theFile menu, or by selectingOpen from theFile
menu. You can also open windows using the toolbar buttons. When you minimize
Editor window, a Windows title bar with the name of the file appears in theMultiple
Document Panel.

You can access different files from the Windows menu by clicking on the appropr
numbered file. See“Using the IDL Editor” on page 93 for more information on the
IDL Editor.

If you click the right mouse button while positioned over an editor window, a pop
menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging command
IDL is running a program.

If a program error or breakpoint is encountered, IDLDE displays the relevant file
opening it if necessary. The line at which the breakpoint or error occurred is mark
SeeChapter 19, “Debugging an IDL Program”in Building IDL Applcations, for more
on IDL’s debugging commands.

IDL GUIBuilder Windows

IDL GUIBuilder windows allow you to interactively create user interfaces. Then, y
can generate the IDL code that defines the interface and the code to contain the
handling routines. You can modify the code, compile, and run the application in
IDLDE.

You can have any number of GUIBuilder windows open simultaneously.

To open a GUIBuilder window, you can selectNew thenGUI from theFile menu, or
you can selectOpen from theFile menu. You can also open GUIBuilder windows
using the toolbar buttons.
IDLDE Windows Using IDL

Chapter 3: The IDL for Windows Interface 63

e

the

me
ent

d

When you minimize a GUIBuilder window, a Windows title bar with the name of th
file appears in theMultiple Document Panel.

For information about the IDL GUIBuilder, seeChapter 17, “Using the
IDL GUIBuilder” in theBuilding IDL Applcations book.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display data.

You can copy the contents of a Graphics window—Direct or Object—directly to
operating system clipboard in a bitmap format using Ctrl-C.

When an IDL Graphics window is minimized (iconized), the icon displays the na
of the IDL window. This icon appears on the desktop, not in the Multiple Docum
Panel, as with an iconized Editor window.

Warning
If the backing store is not set when a window is iconized, it will not be refreshe
upon return. For more information about setting the backing store for graphics
windows, see“Graphics Preferences” on page 85.
Using IDL IDLDE Windows

64 Chapter 3: The IDL for Windows Interface

 the

d.

ach

ter

d in
e

The Menu Items

Six menus (File, Edit, Search, Run, Macros, Window, Help) allow you to control
operation of IDLDE. These menus are described below.

File Menu

The File menu accesses and manipulates files.

New

From this option you can selectEditor [Ctrl+N] or GUI . If you select Editor, a new
IDL Editor window is opened. If you select GUI, a new IDL GUIBuilder is opene
Each window is titled Untitledn or UntitledPrcn until saved with another name, n
being the numerical order of the new window opened.

For information about the IDL GUIBuilder, seeChapter 17, “Using the
IDL GUIBuilder” in theBuilding IDL Applcations book.

Open... [C TRL+O]

Select this option to open a text file or a GUIBuilder*.prc portable resource file for
editing. TheOpen dialog appears. Select the file you want to open and clickOpen.
You can select a continuous range of files by holding down the Shift key after
selecting the first file. You can also select multiple separated files by selecting e
file while holding down the Control key. A new IDL Editor window is created to
contain each text file.

You can also open text files from the Command Input Line. To open text files, en
the following at the IDL prompt:

.EDIT file1 [file2 ... filen]

where file is the name of the text file you want to open. If the path is not specifie
the Path Preferences from the File menu, you must enter the full path for file. Se
.EDIT in theIDL Reference Guide for more information.

Close

Select this option to close the currently-selected IDL Editor window. If you have
made changes in an IDL Editor window, you are asked if you want to save the
changes before closing the window.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 65

the
w.

yet

hat
ing

d

Open Project...

Select this option to open a new IDL Project. TheOpen dialog appears. Select the
project you want to open and clickOpen.

Save Project

Select this option to save the current IDL Project. If the Project has not yet been
saved, you are prompted for a filename with theSave As dialog.

Save Project As...

Select this option to save the current IDL Project to a specified filename. TheSave
As dialog appears.

Close Project

Select this option to close the current IDL Project. If you have made changes in to
project, you are asked if you want to save the changes before closing the windo

Save [Ctrl+S]

Select this option to save the contents of an IDL Editor window. If the file has not
been saved, you are prompted for a filename with theSave As dialog.

Note
Changes made to a previously-compiled routine are not available to IDL until t
routine is re-compiled. Executing the routine without first saving and re-compil
simply re-runs the previously-compiled version, without incorporating recent
changes.
Select theCompile option in theRun menu to return to the main program level an
re-compile the routine. SelectCompile from Memory in theRun menu to save
and compile recent changes to a temporary file.

Save As...

Select this option to save the contents of an IDL Editor window to a specified
filename. TheSave As dialog appears.

Revert to Saved

Select this option to reload the last saved version of the document.

Warning
Unsaved changes are lost without warning.
Using IDL The Menu Items

66 Chapter 3: The IDL for Windows Interface

ns.

the

 last
. To

hich
Generate .pro

Select this option to generate source code files from GUIBuilder interface definitio
When you generate code for the first time, all options open theSave Asdialog so that
you can select a location and specify a filename. The following are generated:

• The widget definition code to a*.pro file.

• The event-handler callback code to a*_eventcb.pro file.

For information about the IDL GUIBuilder generated code, see“Generating Files”in
Chapter 17 inBuilding IDL Applcations.

Print... [C TRL+P]

Select this option to print the contents of the currently-selected window to the
currently-active printer. ThePrint dialog appears. Use the Printers icon in the
Microsoft Windows Control Panel (found in the Main program group) to change
currently-selected printer.

Print Setup...

Select this option to change the printer and printing options.

Recent Files

Select this option to view or open recently opened files. This menu item lists the
ten opened files, and it includes both text and GUIBuilder portable resource files
open a file on this list, select it.

To change the maximum number of files displayed from ten to another number,
modify the Current User on Local Machine setting in the registry in the following
resource location:IDL\IDLDE\RecentFiles\NumRecentFiles .

Recent Projects

Select this option to view or open recently opened project files.

Preferences...

Select this option to display a dialog box containing seven tab selections with w
you can customize your interaction with the IDLDE environment. The seven
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 67

more

cond

d

s

r

categories are: General, Layout, Graphics, Editor, Startup, Fonts and Path. For
information about the Preferences, see“Customizing IDL” on page 81.

Exit [C TRL+Q]

Select this option to exit IDL.

Edit Menu

Undo [C TRL+Z]

Select this option to undo previous editing actions. Multiple undo operations are
supported; the first reverses the most recent operation, the next reverses the se

Tab Description

General This tab allows you to specify how the IDLDE begins and
ends, to control the number of lines in the recall buffer and the
Output Log, and to designate how the files should be opene
and read.

Layout This tab allows you to specify the location and size of the
main window on the screen. You can also designate which
components of the IDLDE will be visible.

Graphics This tab allows you to set the layout of the graphics window
and to specify the backing store.

Editor This tab allows you to customize the built-in IDL editor and
also offers several compiling options.

Startup This tab allows you to specify the main directory, the working
directory, and the startup file.

Fonts This tab allows you to specify different fonts, styles, and size
for the Editor, Command Input Line and Output Log.

Path This tab allows you to specify the IDL Files Search Path. You
entries are appended to the system variable !PATH.

Exit Select this option to exit IDL for Windows. All IDL Editor
windows are closed before exiting. If text in an Editor
window has changed, you are prompted to save it before
exiting.

Table 3-1: Preference Dialog Tabs
Using IDL The Menu Items

68 Chapter 3: The IDL for Windows Interface

not

ons

r

ut

aced

set
most recent operation, etc. If the most recent action is irreversible, this option will
be accessible.

Redo [C TRL+Y]

Select this option to redo previously undone editing actions. Multiple redo operati
are supported; the first redo reverses the most recent undo, etc.

Cut [C TRL+X]

Select this option to remove currently-selected text from an IDL Editor window o
the Command Input Line to the Windows clipboard.

Copy [C TRL+C]

Select this option to copy the currently-selected text in an IDL Editor window, Outp
Log window, or Command Input Line to the clipboard.Copy also allows you to copy
graphics from an IDL graphics window or draw widget to the clipboard.

Paste [C TRL+V]

Select this option to paste the contents of the Windows clipboard at the current
insertion point. The insertion point can only be placed in an IDL Editor window.

Delete [D EL]

Select this option to delete the currently-selected text. The deleted text is not pl
on the clipboard.

Select All

Use this option to highlight the entire contents of an IDL Editor window.

Clear All [C TRL+DEL]

Use this option to clear the entire contents of an IDL Editor window.

Clear Log

Use this option to clear the entire contents of the Output Log.

Properties

Select this option to open the GUIBuilder Properties dialog, which you can use to
the attribute and event properties for a widget.

For information on the Properties dialog, see“Using the Properties Dialog” in
Chapter 17 inBuilding IDL Applcations.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 69

fine

ck
try

).

r

t.
he
Menu

Select this option to open the GUIBuilder Menu Editor, which you can use to de
menus for top-level base widgets and button widgets.

For information on the Menu Editor, see“Using the Menu Editor” in Chapter 17 in
Building IDL Applcations.

Search Menu

Find... [C TRL+F]

Select this option to find text in an IDL Editor window or windows. TheSearch
dialog appears.

Enter the text to find in the field markedSearch for: or choose an entry from the
pulldown list of recent search terms. To replace the found text with new text, che
theReplace withcheckbox. Enter the replacement text in the field or choose an en
from the pulldown list of recent replacement terms.

Click Find next to highlight the search text in your file. ClickReplaceto replace the
selected text.

Check theCase sensitive checkbox to match the case of the text you enter. Check
Whole words only to match only entire words (the default is to match sub-strings
To replace all instances of the search text, check theReplace all checkbox and click
Replace. SelectForward from cursor or Backward from cursor to specify the
direction in which you would like to begin the search, orEntire file to search from
the beginning of the file.

By default, the search will take place in the currently-selected window. Choose a
different file orAll Windows from the pulldown list markedSearch in file to search
other windows.

Find Again [F3]

Select this option to repeat the previous Find.

Find Selection [C TRL+E]

Select this option to find the next occurrence of the selected text in an IDL Edito
window.

Replace... [C TRL+H]

Select this option to find text in an IDL Editor window and replace it with new tex
TheReplace dialog box appears. The Replace dialog has the same controls as t
Using IDL The Menu Items

70 Chapter 3: The IDL for Windows Interface

em
ave

n
 the
gging

the

or
th is
Search dialog, described above in the Find item. By default, theReplace with
checkbox is checked.

Replace Again [S HIFT+F3]

Select this option to repeat the previous Replace.

Go To Line... [C TRL+G]

Select this option to jump directly to the specified line number in an IDL Editor
window. TheGo To Line dialog appears.

Go To Definition [C TRL+D]

Use this option to go to and mark with a current line indicator (blue arrow) the
procedure or function call of the item next to which the cursor is positioned. The it
must be either user-defined or a procedure or function written in IDL, and must h
been compiled during the current IDLDE session.

Run Menu

Run Menu items are enabled when an IDL program is loaded into an IDL Editor
window and compiled. If you click the right mouse button while positioned over a
editor window, a popup menu appears allowing you to quickly access several of
most convenient commands. The popup menu changes to display common debu
commands if IDL is running a program. SeeChapter 19, “Debugging an IDL
Program” in theBuilding IDL Applcations for more information.

Compile filename.pro [CTRL+F5]

Select this option to compile a.pro file. The currently-selected file is only
recognized as an IDL procedure or function if suffixed with.pro. Selecting this
option is the same as entering.COMPILE at the Command Input Line, with the
appropriate Editor window selected in the Multiple Document Panel.

You can also compile files from the Command Input Line. Enter the following at
IDL prompt:

.COMPILE file1 [file2 ... filen]

wherefile is the name of the file you want to open. IDL opens your files in edit
windows and compiles the procedures and functions contained therein. If the pa
not specified in thePath Preferences from theFile menu, you must enter the full
path for file.

See.COMPILE in theIDL Reference Guide for a more detailed explanation.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 71

e as

e

ut

, the

re
or
Compile filename.pro from Memory [C TRL+F6]

Select this option to compile a.pro file from the last-saved version of the file,
without saving or implementing recent changes. Selecting this option is the sam
entering.COMPILE -f at the Command Input Line. See.COMPILE in theIDL
Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open*.pro files.

Run filename [SHIFT+F5]

Select this option to execute the file calledfilename contained in the currently-
active editor window. Selecting this option is the same as entering the procedur
name at the Command Input Line or using the .GO executive command at the
Command Input Line. If the file is interrupted while running, selecting this option
resumes execution; it is the same as entering .CONTINUE at the Command Inp
Line. For more information, see.CONTINUE and.GO in theIDL Reference Guide.

Warning
In order for theRun option to reflect the correct procedure name in theRun menu,
the .pro filename must be the same as the main procedure name. For example
file namedsquish.pro must include:

pro squish

Resolve Dependencies

Select this option to iteratively compile all un-compiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
enteringRESOLVE_ALL, /QUIET at the Command Input Line. The QUIET keyword
suppresses informational messages. SeeRESOLVE_ALL in theIDL Reference
Guide for a more detailed explanation.

Profile

Select this option to access theProfile dialog. The IDL Code Profiler allows you to
analyze the performance of your applications. You can identify which modules a
used most frequently, and which modules take up the greatest amount of time.F
more information about the IDL Code Profiler, see“The IDL Code Profiler” in
Chapter 19 ofBuilding IDL Applcations.
Using IDL The Menu Items

72 Chapter 3: The IDL for Windows Interface

ng.

t of

s

rent-

re
Test GUI [C TRL+T]

Select this option to test the GUI interface in a GUIBuilder window. This option
allows you to see how the interface you have designed will look when it is runni

To exit test mode:

Press theEsc key.

or

Click the closeX in the upper-right corner of the application window of
the running test application.

Break [C TRL+BREAK]

Select this option to interrupt program execution. IDL inserts a marker to the lef
the line at which program execution was interrupted.

Stop [C TRL+R]

Select this option to reset the IDL environment. Selecting this item is the same a
entering the following at the Command Input Line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

SeeRETALL, WIDGET_CONTROL, CLOSE, orHEAP_GC in theIDL Reference
Guide for more detailed explanations.

Reset [C TRL+ALT+T]

Select this option to reset the IDL environment. This option executes
.RESET_SESSION. See theIDL Reference Guide for more information.

Step Into [F8]

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement being stepped into calls
another IDL procedure or function, statements from that procedure or function a
executed in order by successiveStep commands. Selecting this item is the same as
entering.STEP at the IDL Command Input Line. See.STEP in theIDL Reference
Guide for a more detailed explanation.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 73

rent-
alls
re

e as

cting

 as

ere

o the
ne-
Step Over [F10]

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement which is stepped over c
another IDL procedure or function, statements from that procedure or function a
executed to the end without interactive capability. Selecting this item is the sam
entering.STEPOVER at the IDL Command Input Line. See.STEPOVER in theIDL
Reference Guide for a more detailed explanation.

Step Out [C TRL+F8]

Select this option to continue processing until the current program returns. Sele
this item is the same as entering.OUT at the IDL Command Input Line. See.OUT in
theIDL Reference Guide for a more detailed explanation.

Trace...

Select this option to access theTrace Executiondialog. You can modify the interval
between successive .STEP or .STEPOVER commands, depending on whetherStep
into routines or Step over routines is checked. The current-line indicator points to
program lines as they are executed. Selecting this item at full speed is the same
entering.TRACE at the IDL command prompt. See.TRACE in theIDL Reference
Guide for a more detailed explanation.

Run to Cursor [F7]

Select this option to execute statements in the current program up to the line wh
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. SeeBREAKPOINT in theIDL Reference Guide for a
more detailed explanation.

Run to Return [C TRL+F7]

Select this option to execute statements in the current procedure or function up t
line where the return is positioned. Selecting this item is the same as setting a o
time breakpoint at a specific line. See.RETURN in theIDL Reference Guide for a
more detailed explanation.

Set Breakpoint [F9]

Select this option to set a breakpoint on the current line.

See“Debugging an IDL Program” in Chapter 19 of theBuilding IDL Applications
manual for a more detailed explanation.
Using IDL The Menu Items

74 Chapter 3: The IDL for Windows Interface
Disable Breakpoint

Select this option to access disable a breakpoint in the current line.

See“Debugging an IDL Program” in Chapter 19 of theBuilding IDL Applications
manual for a more detailed explanation.

Edit Breakpoint...

Select this option to access theEdit Breakpoint dialog.

See“Debugging an IDL Program” in Chapter 19 of theBuilding IDL Applications
manual for a more detailed explanation.

Up Stack [C TRL+Up]

Select this option to move up the call stack by one.

Down Stack [C TRL+Down]

Select this option to move down the call stack by one.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as enteringHELP, /TRACEBACK at the IDL
Command Input Line. SeeHELP in theIDL Reference Guide for a more detailed
explanation.

Project Menu

Add/Remove Files...

Select this option to add or remove files from the current project. For more
information, see“Creating IDL Projects” in Chapter 2 of theBuilding IDL
Applications manual.

Options...

Select this option to change the options for a project. TheProject Options dialog
displays. For more information, see“Creating IDL Projects” in Chapter 2 of the
Building IDL Applications manual.

Compile

Select this option to compile files in a project. You can choose eitherAll Files to
compile all the source files in a project orModified Files to compile only the files
that have been modified since the last compile.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 75

s

t in

in

s

Build

Select this option to build your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Run

Select this option to run the application defined by your project.

Export

Select this option to export your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Macros Menu

Edit...

Select this item to access theEdit Macros dialog. Macros which have already been
defined are listed in theMacros: field. To edit a macro, click on the macro to acces
its characteristics and clickOK when your adjustments are complete.

To add a macro, clickAdd..., which will access theAdd Macro dialog. Enter the
name of the new macro in the given field and clickOK . Enter the IDL command to
be executed by the new macro in theIDL Command: field. Enter the menu item
name, the full path to the toolbar bitmap file, the tooltip text, and the status bar tex
the appropriate fields. Select the accelerator by specifying the key in theKey: field
and then optionally clicking on any combination ofCtrl , Alt andShift.

Note
Bitmap files for toolbar buttons must be 16 pixels by 16 pixels, and must conta
256 colors or fewer.

To remove a macro, clickRemove. To change the position of a macro in theMacro
menu and on theMacro Toolbar, click on the macro to highlight it and click on
eitherMove Up or Move Down.

Print Var

Select this option to print the selected variable. Selecting this item is the same a
enteringPRINT, x at the IDL Command Input Line, wherex is the selected variable.
Using IDL The Menu Items

76 Chapter 3: The IDL for Windows Interface

the
Help On Var

Select this option to list attributes of the selected variable. Selecting this item is
same as enteringHELP, x, /STRUCTURE at the IDL Command Input Line, wherex
is the selected variable.

Import Image

Select this option to import an image file into IDL. For more information, see“Using
Macros to Import Image Files” on page 185.

Import ASCII

Select this option to import an ASCII file into IDL. For more information, see“Using
Macros to Import ASCII Files” on page 189.

Import Binary

Select this option to import a binary file into IDL. For more information, see“Using
Macros to Import Binary Files” on page 195.

Import HDF

Select this option to import an HDF file into IDL. For more information, see“Using
Macros to Import HDF Files” on page 201.

Demo

Select this option to access IDL’s Demo application.

Window Menu

Next [F6]

Select this option to shift IDL’s focus to the next numbered editor window.

Previous [S HIFT+F6]

Select this option to shift IDL’s focus to the previous numbered editor window.

Cascade

Select this option to cascade all the IDLEditor windows within the main window.

Tile Horizontally

Select this option to tile all the IDLEditor windows on top of one another within the
main window.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 77

wo
Tile Vertically

Select this option to tile all the IDLEditor windows side-by-side within the main
window.

Arrange Icons

Select this option to arrange all minimizedEditor or Graphics windows.

Close All

Select this option to close all IDLEditor windows. If the text within an IDLEditor
window has changed, you are asked if you want to save the file before closing.

Command Input [C TRL+I]

If this menu item has a check mark by it, the IDLCommand Input Line is visible in
the main IDL window. If this item does not have a check mark next to it, the IDL
command input line is not visible. Click on this menu item to toggle between the t
states.

Output Log [C TRL+L]

If this menu item has a check mark by it, theOutput Log is visible in the main IDL
window. If this item does not have a check mark next to it, theMultiple Document
Panel is maximized in the main IDL window. Click on this menu item to toggle
between the two states.

Variable Watch [C TRL+A]

If this menu item has a check mark by it, theVariable Watch Window is visible in
the main IDL window. If this item does not have a check mark net to it, theVariable
Watch Window is not visible. Click on this menu item to toggle between the two
states.

Project

If this menu item has a check mark by it, theProject Window is visible in the main
IDL window. If this item does not have a check mark net to it, theProject Window is
not visible. Click on this menu item to toggle between the two states.

Toolbars

Select this option to access a pulldown menu with the three Windows toolbars:
Standard, Run & Debug, andMacros. If a toolbar has a check mark by it, it is
visible below the Menu bar items.
Using IDL The Menu Items

78 Chapter 3: The IDL for Windows Interface
Status Bar

If this menu item has a check mark by it, theStatus bar is visible at the very bottom
of the Main IDL window.

Numbered Windows

The numbered menu items at the bottom of theWindow menu display open files.
Select any of these menu items to make that window the current window.

Help Menu

Contents...[C TRL+F1]

Select this menu item to display the IDLOnline Help Viewer.

Find Topic... [F1]

Select this menu item to display theSearch dialog for IDL Online Help.

Help on the IDL Dev Env...

Select this menu item to display this chapter ofUsing IDL.

Help on the IDL Language...

Select this menu item to display information on the IDL language.

Help on Help...

Select this menu item to learn about how to use Help.

About IDL...

Select this option to display information on the IDL version in use.
The Menu Items Using IDL

Chapter 3: The IDL for Windows Interface 79

g on
te
us
Keyboard Shortcuts

Most of the menu options can be accessed from the keyboard instead of clickin
the menus. The following table lists all of the available keyboard equivalents. No
that these equivalents are also shown to the right of each menu item in the men
themselves.

Keyboard
Shortcut Function

Ctrl+A Toggle Variable Watch Window

Ctrl+C Copy selection to clipboard

Ctrl+D Go to definition

Ctrl+E Find highlighted selection

Ctrl+F Start Find dialog

Ctrl+G Start Go To Line dialog

Ctrl+H Start Replace dialog

Ctrl+I Toggle Command Input Line

Ctrl+L Toggle Output Log

Ctrl+N Open new file

Ctrl+O Open file

Ctrl+P Print currently-active file

Ctrl+Q Exit IDL

Ctrl+R Stop the IDL environment

Ctrl+Alt+T Resets the IDL environment

Ctrl+S Save currently-active file

Ctrl+V Paste selection from clipboard at
insertion point

Ctrl+X Cut selection to clipboard

Ctrl+Y Redo last undo

Table 3-2: Keyboard Shortcuts, Windows IDLDE
Using IDL Keyboard Shortcuts

80 Chapter 3: The IDL for Windows Interface
Ctrl+Z Undo previous editing action

Ctrl+Break Interrupt execution

Ctrl+Del Clear current Editor window

Ctrl+F1 Start Contents of Online Help

Ctrl+F5 Compile currently-selected file

Ctrl+F7 Execute file to return

Ctrl+F8 Continue processing until program
returns: .OUT

Ctrl+Up arrow Move up call stack

Ctrl+Down arrow Move down call stack

Delete Delete selection

F1 Start Find Topic in Online Help

F3 Repeat last Find entry

F5 Run / Continue stopped program:
.CONTINUE

F6‘ Display next-numbered Editor window

F7 Execute file to cursor

F8 Execute a single statement: .STEP

F9 Toggle breakpoint

F10 Execute a single statement:
.STEPOVER

Shift+F3 Repeat last Replace entry

Shift+F5 Execute currently-selected file

Shift+F6 Display previously-numbered Editor
window

Keyboard
Shortcut Function

Table 3-2: Keyboard Shortcuts, Windows IDLDE
Keyboard Shortcuts Using IDL

Chapter 3: The IDL for Windows Interface 81

s.

ies

LDE
ut

ings
Customizing IDL

Various defaults for IDL can be customized using the IDLPreferences dialog box.
SelectPreferencesfrom the IDLFile menu to display a cascading list of preference
TheIDLDE Preferences dialog box contains seven tab selections with which you
can customize your interaction with the IDLDE environment. The seven categor
are: General, Layout, Graphics, Editor, Startup, Fonts, and Path.

Click Reset to restore the settings to the values from the start of the current IDL
session.

General Preferences

The General tab in the Preferences dialog box allows you to specify how the ID
begins and ends, to control the number of lines in the recall buffer and the Outp
Log, and to designate how the files should be opened and read.

Program

You can specify how IDL handles starting up and exiting. Click on the following
checkboxes to apply or disable the options:

• Show Splash Screen — Select this option to show IDL’s splash screen on
startup.

• Save Settings on Exit — Select this option to save all the preferences sett
from the current IDL session to be applied to future IDL sessions.

• Confirm Exit

• Users share preferences and macros
Using IDL Customizing IDL

82 Chapter 3: The IDL for Windows Interface

t of
and

nt of
ich
e.

are
u
o

If this checkbox is selected, all users are able to use and edit the same se
preferences and macros. If it is not checked, each user has their own set
will not be able to affect other users’ preferences and macros.

Log and Command Windows

The performance of IDL can depend upon the number of saved lines. The amou
memory required for greater numbers of saved lines can affect the speed at wh
IDL runs. Click in the field next to each description and enter your adjusted valu

• Number of lines saved in the recall

This field controls the maximum number of lines saved in the recall buffer.
There are three ways to access the contents of the recall buffer, all of which
limited by this field. After locating the cursor in the Command Input Line, yo
can press your up arrow key to scroll through your last entries.You can als

Figure 3-2: General Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 83

ur

g

ng

the

g

idth
rner
enterHELP, /RECALL in the Command Input Line or click on your right
mouse button while positioned over the Command Input Line to display yo
entries up to the limit specified by the recall buffer. The default is 20.

• Number of lines to display in the log

This field controls the minimum number of lines retained by the Output Lo
window. The default is 1000 lines.

• Number of log lines to delete at limit

This field controls the number of lines to delete at a time until the limit is
reached again. The default is 100.

Files

You can change the way in which IDL handles opening files. Click on the followi
checkboxes to apply or disable the options:

• Change Directory on Open

Select this checkbox to change the working directory upon opening a file to
opened file’s directory.

• Open Files Read Only

• Clip long filenames

Select this checkbox to truncate filenames so that they conform to the
Windows 8.3 filename format. By default, a file is opened without changin
the filename. See!WARN in theIDL Reference Guide for more information.

Layout Preferences

Main window

By default the size of the window is 1/4 of the screen size (i.e., 1/2 the screen w
and 1/2 the screen height). The window is positioned such that the lower-left co
of the window is at the lower-left corner of the screen. Click onDefault Layout to
use these settings.

To change the layout, click onSpecify Layout, which allows you to adjust the
positioning of the window with theLeft andTop fields and to adjust the size of the
window with theWidth andHeight fields.

• Left
Using IDL Customizing IDL

84 Chapter 3: The IDL for Windows Interface

t.

the
The horizontal location of the upper-left corner of the main IDL window (in
pixels) relative to the left side of the screen. The default is 0.

• Top

The vertical location of the upper-left corner of the main IDL window (in
pixels) relative to the top of the screen. The default is 1/2 the screen heigh

• Width

The width of the main IDL window in pixels. The default is 1/2 the screen
width. The value in this entry reflects the current width of the main IDL
window.

• Height

The height of the main IDL window in pixels. The default is 1/2 the screen
height. The value in this entry reflects the current height of the main IDL
window.

Click onRemember Layout to apply the settings to future IDL sessions.

Show Window

By default, all the listed options are checked, signifying that they are all visible in
IDLDE main window. Click on the checkboxes to show or hide the sections.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 85

 in

n.

e,

they
For more information about the above window sections, see“The Main IDL
Window” on page 59.

Graphics Preferences

This tab allows you to control the layout and size of the open Graphics windows
the Main Document Panel and also to control the backing store applied to all
Graphics windows.

Window layout

All open Graphics windows can be arranged in either a tiled or cascading fashio

• Tile

The Tile option arranges all Graphics windows on the desktop side-by-sid
without any overlap.

• Cascade

The Cascade option arranges all Graphics windows on the desktop so that
overlap.

• Width

Figure 3-3: Layout Preferences Dialog
Using IDL Customizing IDL

86 Chapter 3: The IDL for Windows Interface

of

.

This field specifies the width of IDL graphics windows, in pixels. The default
is 1/2 of the total screen width.

• Height

This field specifies theheight of IDL graphics windows, in pixels. Thedefault
is 1/2 of the total screen height.

• Use 1/4 the screen size

Click this check box to fill in theHeight and Width fields with 1/2 of the
height and width of your display.

Backing Store

When backing store is enabled, a copy of each Graphics window is kept in memory.
The copy of the window is used to refresh the window when it has been covered and
uncovered. IDL’s performance increases for no backing store, since the amount
memory required to save files can affect the speed at which IDL will run.

See “Backing Store” in Appendix B of the IDL Reference Guide for more information

• None (direct-draw), RETAIN = 0

Figure 3-4: and Graphics Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 87

he

ers

ot
t and
peed

n

L

Click None to disable backing store. This option does not keep a copy of t
window, allowing the highest performance in terms of speed.

• System buffered, RETAIN = 1

Click this option to request backing store from the Windows server. This
option is the default.

• Bitmap buffered, RETAIN = 2

Click this option (the default) to have IDL maintain backing store. Most us
should keep this value set to 2.

True Type Fonts

Enter the number of TrueType characters to save triangulation information for.
Saving the triangulation information for TrueType characters means that IDL will n
have to calculate the polygons to draw the next time a character of the same fon
size is rendered. Larger values will use more memory but can increase drawing s
if multiple fonts are used. The default is 256.

Default object graphics renderer

• Hardware (Open GL)

• Software

See“Window Objects” in Chapter 28 for information about the differences betwee
the two rendering systems.

Editor Preferences

This tab allows you to control the appearance and performance of the built-in ID
Editor, and also to set the way in which IDL compiles files.
Using IDL Customizing IDL

88 Chapter 3: The IDL for Windows Interface

up

tion
he
.

e

For more information, see“Using the IDL Editor” on page 93.

Startup Preferences

This tab allows you to control the location of the main IDL directory and any start
file to be run.

IDL Main Directory

This field shows where the main IDL directory is located. The default is the loca
you specified when you installed IDL. There is no reason to change this entry. T
location of the home IDL directory is shown primarily for informational purposes
Click Browse next to theHome directory: field to access theSelect Directory
dialog.

Working Directory

This field allows you to set the initial working directory for future IDL sessions. Th
General Preferences tab contains an option, described in“Change Directory on
Open” on page 83, which also affects the Working Directory.

Figure 3-5: Editor Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 89

lly
n of

p

Startup file

Use this field to specify the name of an IDL batch file to be executed automatica
each time IDL is run. The startup file specifies the startup path for the next sessio
the IDLDE. Your entries are appended to the system variable !PATH. ClickBrowse
next to theStartup file: field to access theSelect File dialog.

For example, to execute the commands in a batch file namedMYBATCH.PRO, located
in theC:\DATA directory, use:

C:\DATA\MYBATCH.PRO

Note
Startup files are executed one statement at a time. It is not possible to define
program modules (procedures, functions, or main-level programs) in the startu
file.

See“Startup File” in Chapter 2 for more information.

Figure 3-6: Startup Preferences Dialog
Using IDL Customizing IDL

90 Chapter 3: The IDL for Windows Interface

e

lp

s,
by
Fonts Preferences

This tab allows you to specify individual font descriptions for the Editor window, th
Command Input Line and the Output Log.

Path Preferences

This tab allows you to control where IDL looks for procedures, functions, and he
files.

Search Path

This field tells IDL where to look for procedures and functions. The search path
specifies a list of directories to search.

• Subdirectory checkboxes

To specify a directory tree that includes all of that directory’s subdirectorie
add a check to the box in front of the entry. Clicking on a checked box, there
un-checking it, specifies that the subdirectories of the directory will not be
searched.

• Add

Figure 3-7: Font Preferences Dialog
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 91

s are

e

ely
To add a path to the Search Path, click onAdd to start theSelect Directory
dialog. The new path is inserted before a selected path. If none of the path
selected, the new path is appended to the end of the list.

• Remove

Click onRemove to delete the selected path.

• Expand

Click onExpand to list a selected path’s subdirectories directly beneath th
path. The expanded path is then un-selected and any newly listed
subdirectories are selected so you can cancel the expansion by immediat
clicking “Remove”. The initial path and any expanded subdirectories are
automatically unchecked to prevent subdirectory searching.

• Move Up andMove Down

You can move the selected path up or down through the list by clicking on
Move Up or Move Down. You can scroll through the list by pressing the up
and down arrows on your keyboard after selecting one of the paths.

The default path is the IDL directory and all of its subdirectories. See
“Executing Program Files” in Chapter 2 for more information.

Figure 3-8: Path Preferences Dialog
Using IDL Customizing IDL

92 Chapter 3: The IDL for Windows Interface

file

o

ply
Message-of-the-Day File

A message-of-the-day file can be used to display the contents of an ASCII text
each time IDL is run. To create a message-of the-day file for IDL for Windows,
simply name the desired text fileMOTD.TXT or WIN32.TXT and place it in theMOTD
subdirectory of theHELP subdirectory of the main IDL directory.

Note
The MOTD file is simply an ASCII text file—not an IDL program or batch file. T
execute a series of IDL commands, select a startup file as described in“Startup
File” in Chapter 2.

If you don’t wish to see the message-of-the-day file each time you start IDL, sim
remove or rename theWIN32.TXT or MOTD.TXT file.
Customizing IDL Using IDL

Chapter 3: The IDL for Windows Interface 93

ft
ng
nd

r tab
Using the IDL Editor

The IDL Editor is a programmer’s-style editor—if you indent a line using the Tab
key, the following lines will be indented as well. Use the Shift-Tab key to move le
one tab stop. You can move the cursor position within an IDL Editor window usi
either the mouse or the keyboard. For example, holding down the Control key a
clicking the left mouse button moves the cursor to the end of a text line; so does
pressing the “End” key. To change the way the tabs are configured, see the Edito
from Preferences in the File menu.

IDL Editor window key definitions are listed in the following table.

Key Action

←→↑↓ Move cursor left or right one character, up or
down one line

Ctrl+← Move left one word

Ctrl+→ Move right one word

Ctrl+] Find matching(, { , or [character

Ctrl+K Delete word to the right of the cursor

Ctrl+U Make selected text (or the character to the right
of the cursor) lower-case

Ctrl+Y Redo last undone action

Ctrl+Z Undo last action

Ctrl+Home Move to beginning of file

Ctrl+End Move to end of file

Ctrl+Shift+U Make selected text (or the character to the right
of the cursor) upper-case

Ctrl+Shift+Y Cut Selection (or line containing cursor) to
clipboard

End Move to end of current line

Home Move to beginning of current line

Table 3-3: IDL Editor window key definitions
Using IDL Using the IDL Editor

94 Chapter 3: The IDL for Windows Interface

text.
Text Selection Modes

IDL Editor windows provide three ways of selecting text.

• Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just as if you were reading the

• Line mode selects full lines of text.

Page Down Move to next screen

Page Up Move to previous screen

Shift+Tab Move cursor one tab-stop left

Tab Indent text lines one tab-stop right

Figure 3-9: A selected stream of text.

Figure 3-10: Text selection using Line Mode.

Key Action

Table 3-3: IDL Editor window key definitions
Using the IDL Editor Using IDL

Chapter 3: The IDL for Windows Interface 95

xt in

ned

ected

he

d-
• Column mode selects text from one screen column to the next. Selecting te
column mode is similar to drawing a rectangle around the text you wish to
select.

Switch between the three modes by clicking the right mouse button while positio
over an Editor window. Select theSelection Modeoption to access a pulldown menu
with the three text selection modes. The option with a check mark by it is the
currently selected text selection mode. If you have text already selected, the sel
area will change to reflect the new mode.

Chromacoded Editor

IDL Editor windows support chromacoding—different types of IDL statements
appear in different colors. By default, the IDL Editor uses chroma-coding. The
Editor tab fromPreferences in theFile menu displays the colors used for different
words recognized by IDL. Change the Foreground color to change the color of t
word itself. Highlight the word by specifying the Background color.

Turning Chromacoding Off

By default, the IDL Editor uses chromacoding. Set the editor to simple black-an
white by unselecting theEnable chroma-coding (colored syntax) checkbox in the
IDL Editor Preferences tab from theFile menu.

Figure 3-11: Column Mode text selection.
Using IDL Using the IDL Editor

96 Chapter 3: The IDL for Windows Interface

s.

 pixel
s

at

d

here
ry or

ed by
s, if a
ons,

ted
Windows IDL Differences

The Windows version of IDL implements most of the functionality of other version
There are a number of differences, however, as described below.

A Note about Microsoft Windows Displays

We recommend that you use a graphics driver that provides at least 800 by 600
resolution with 256 colors. This mode is supported by most VGA (Video Graphic
Array) cards that have 512K of memory. VGA cards with 1 Megabyte of memory
support 1024 by 768 pixel resolution with 256 colors.

Note
EGA (Enhanced Graphics Adapter) cards provide only 16 colors no matter wh
resolution they support.

Getting Information About Your Graphics Device

Under Windows 95 and Windows NT 4.0, click on
My Computer–>Control Panel–>Display–>Settings and click theDevice Type
button to access the device information.

Using a Two-Button Mouse with IDL

IDL supports the use of mice with up to three buttons. However, many mice use
with Microsoft Windows systems have only two buttons.Control+left mouse
button simulates a middle mouse-button press.

File Manipulation

Reading and Writing Files

Under Windows, a file is read or written as an uninterpreted stream of bytes —t
is no record structure at the operating system level. Files are processed as bina
text. Binary files are processed using no translation of characters. Text files are
processed by translating the characters that terminate a line. Lines are terminat
the character sequence CR LF (carriage return, line feed). During read operation
CR character precedes a LF character, the CR is removed. During write operati
all LF characters are prepended with a CR character.

Text files transferred to or from other operating systems may need to be transla
before they will work properly with IDL. The ASSOC, READU, and WRITEU
Windows IDL Differences Using IDL

Chapter 3: The IDL for Windows Interface 97

es

 file
erly
ed.

in any
ve.
 are

mes

the
nd

le
 that

tion
e
 and

l

routines operate in binary mode. The PRINT, PRINTF, READ, and READF routin
operate in text mode. SeeOPENin theIDL Reference Guidefor details on explicitly
opening files in text or binary mode.

Note
It is possible, although not recommended, to create a file where portions of the
are written in binary mode and other portions are written in text mode. To prop
port such a file to other operating systems, special processing would be requir

Filenames

Under Windows 95/98 and Windows NT, long filenames are supported by IDL.
Names can be up to 255 characters long including extensions. Names can conta
uppercase or lowercase characters (including spaces) except those shown abo
Windows 95/98 and Windows NT preserve the case of filenames, but the names
not case sensitive (that is, FileName is the same as filename).

While the names of IDL Library files have been truncated to 8 characters, the na
of the actual routines remain unchanged.

Save/Restore Files

SAVE/RESTORE files generated with the Windows version of IDL are saved in
XDR format. This format allows data files saved under UNIX, VMS, Windows, a
MacOS systems to be easily exchanged.

Positioning File Pointers

Under Windows, the current file pointer can be positioned arbitrarily. Moving the fi
pointer to a position beyond the current end-of-file causes the file to grow out to
point. Under Windows, the file is padded with arbitrary data.

Running IDL with Fewer than 256 Colors

We recommend that you use a graphics card and driver that support high-resolu
and 256 colors. Support for fewer than 256 colors is provided mostly for portabl
computers. Portables often have LCD displays that can display only between 16
64 shades of gray.

If your graphics card and Windows driver support fewer than 256 colors, IDL wil
run but the results may not be acceptable.
Using IDL Windows IDL Differences

98 Chapter 3: The IDL for Windows Interface

e.
nds,
ws
e of

is

DL

r,
The Windows Palette

Windows reserves the first 20 colors out of all the available colors for its own us
These colors are the ones used for title bars, window frames, window backgrou
scroll bars, etc. If your graphics driver supports fewer than 20 colors, any windo
application that you run, including IDL, must use those reserved colors. This typ
color map is called a static color map. IDL can still display graphics, but when it
requests a color, Windows supplies the closest available system color. Often, th
color choice is not very close to the one you want.

If your driver supports more than 20 colors, the quality of graphics output from I
improves. Any colors beyond the 20 that Windows needs to reserve can be
customized by IDL to be the exact color requested. If you have a 256 color drive
IDL has (by default) 236 colors to work with.

You can display the Windows system colors by opening
My Computer–>Control Panel–>Display–>Settings and click theColor Palette
dropdown list. For Win95 and NT 4.0, click on theAppearance tab and select the
Color dropdown list to show the 20 colors reserved by Windows.
Windows IDL Differences Using IDL

Chapter 4:

The IDL for Motif
Interface

The following topics are covered in this chapter:
The Main IDL Window. 101
IDLDE Windows. 104
The Menu Items . 105
Keyboard Shortcuts. 120
Using Preferences to Customize IDLDE . 122
Using Resources to Customize IDL 132

Command Line Options. 134
Modifying the Control Panel. 139
Action Routines. 142
Modifying the Macros Menu. 149
Using External Editors. 150
Using the IDL Editor. 151
Using IDL 99

100 Chapter 4: The IDL for Motif Interface

s.
e
er,
IDL for UNIX and VMS platforms can be used with one of two different interface
Starting IDL with the commandidl begins a traditional IDL session using a simpl
tty (text) command line interface. If you are running the X Window system, howev
IDL can also be started with the commandidlde (or idl/de under VMS), which
invokes a convenient multiple-document interface called the IDL Development
Environment (IDLDE). This chapter describes the IDLDE.

See“Starting IDL” on page 27 and“Environment Variables Used by IDL” on
page 31 for details on running IDL with its command-line interface.
Using IDL

Chapter 4: The IDL for Motif Interface 101
The Main IDL Window

The following figure shows the default appearance of the IDLDE window. The eight
sections of this window are described below.

Menu Bar

The menu bar, located at the top of the main IDLDE window, is used to control
various IDLDE features.

Figure 4-1: The Main IDL Window

Menu Bar

Tool Bars

Project
Window

Multiple
Document
Window

Output Log

Variable Watch
Window

Command Input
Line

Status Bar

Control Panel
Buttons
Using IDL The Main IDL Window

102 Chapter 4: The IDL for Motif Interface

r is

r
By

of
be
Tool Bars

You can choose any combination of three tool bars:Standard, Run & Debug, and
Macros. To change the toolbars displayed, use theWindow menu to access the
Toolbar pulldown menu and select or de-select any combination of the three
toolbars. In addition, when you open a GUIBuilder window, its associated toolba
displayed.

When you position the mouse pointer over aToolbar button, theStatus Bardisplays
a brief description. If you click on aToolbar button which represents an IDL
command, the IDL command issued is displayed in theOutput Log.

Control Panel Buttons

The Control Panel buttons issue IDL commands for the currently-selected Edito
window when pressed. The IDL command issued is displayed in the Output Log.
default, there are three different toolbars; see“Tool Bar” on page 119 for more
information. The buttons displayed as well as the commands they issue are
completely configurable (see“Modifying the Control Panel” on page 139). When
you position the mouse pointer over aControl Panel Button, theStatus Bar
displays a brief description. TheControl Panel Buttonscan be made invisible by
selectingWindow–>Configure–>Hide Control.

Project Window

IDL Project Window allows you to manage, compile, run, and create distributions
all the files needed to develop an IDL application. All of your application files can
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. TheProject Window can be made invisible by selecting
Window–>Configure–>Hide Project. For further information on the Projects
Window, refer toBuilding IDL Applcations.

Multiple Document Window

The top-right section of the main IDL window is where one or more IDLEditor
windows are displayed. TheMultiple Document Window can be made invisible by
selectingWindow–>Configure–>Hide View.

Output Log

Output from IDL is displayed in theOutput Log window, which appears by default
when IDLDE is first started. The Output Log area can be sized by moving thesash
located above the Output Log scroll bar and can be made invisible (as can the
The Main IDL Window Using IDL

Chapter 4: The IDL for Motif Interface 103

.

s

f 20

the
Command Input Line) by selectingWindow–>Configure–>Hide Log. If you click
the right mouse button while positioned over theOutput Log , a popup menu appears
allowing you to move to a specified error or clear the contents of the Output Log

Variable Watch Window

TheVariable Watch Window appears by default when you start the IDLDE. It keep
track of variables as they appear and change during program execution. TheVariable
Watch Window can be made invisible by selectingWindow–>Configure–>Hide
Variable Watch. For more information about the Variable Watch Window, see“The
Variable Watch Window” in Chapter 19 ofBuilding IDL Applcations.

Command Input Line

TheCommand Input Line is a single IDL prompt where you can enter IDL
commands. The text output by IDL commands is displayed in the Output Log
window. TheCommand Input Line can be made invisible by selecting
Window–>Configure–>Hide Command.

If you click the right mouse button while positioned over theCommand Input Line ,
a popup menu appears displaying the command history, with a maximum buffer o
entries. You can specify the number of lines in the recall buffer with theGeneral
Preferencestab from theFile menu. If you enterHELP, /RECALL_COMMANDSat the
Command Input Line, you will see the same results, except that the number of
saved lines are changed by specifying the environment variable !EDIT_INPUT in
IDL startup file.

You can also open and compile files from theCommand Input Line. See“Open
[Ctrl+O]” on page 105 and“Compile filename.pro [Ctrl+F5]” on page 111 for more
information.

Status Bar

When you position the mouse pointer over aControl Panel button or select an
option from a menu item in IDLDE, theStatus Bardisplays a brief description. The
Status Bar can be made invisible by selectingWindow–>Configure–>Hide Status.
Using IDL The Main IDL Window

104 Chapter 4: The IDL for Motif Interface

nd

s)
r

to

up

s if

,
ed.

s

IDLDE Windows

Two types of windows can be created and manipulated with IDLDE: IDL Editor, a
IDL Graphics windows.

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text file
from within IDL. Any number of Editor windows can exist simultaneously. No Edito
windows are open when IDL is first started. Editor windows can be created by
selectingFile–>New or File–>Open.

TheMultiple Windows/Single Window toggle option under theWindow menu
allows you to either display one file at a time inside the IDLDE main window, or
work with multiple Editor windows outside the main window. See“Using the IDL
Editor” on page 151 for more information on the IDL Editor.

If you click the right mouse button while positioned over an editor window, a pop
menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging command
IDL is running a program.

If a program error or breakpoint is encountered, IDLDE displays the relevant file
opening it if necessary. The line at which the breakpoint or error occurred is mark
SeeChapter 19, “Debugging an IDL Program”in Building IDL Applcationsfor more
on IDL’s debugging commands.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display data.

When an IDL Graphics window is minimized (iconized), the icon for that window
consists of the X motif icon titled with the name of the IDL window iconized. Thi
icon appears on the desktop, not in the Multiple Document Panel.

Warning
If a window is iconized, it will not be refreshed upon return if system or IDL
backing store is not enabled.
IDLDE Windows Using IDL

Chapter 4: The IDL for Motif Interface 105

ause
ch

ed
t

ou

DL

he
The Menu Items

Seven menus (File, Edit, Search, Run, Macros, Window, and Help) allow you to
control the operation of the IDLDE. These menus are described below. You can c
each menu to float on the desktop by clicking on the dotted line at the top of ea
menu listing. Each menu becomes a tear-off.

Keyboard accelerators are shown in square brackets.

File Menu

New [CTRL+N]

Select this option to create a new, empty IDL Editor window. Each window is titl
Untitled until saved. This option is also accessible by clicking the New Documen
button from the Toolbar (first button).

Open [C TRL+O]

Select this option to open a text file for editing. TheOpen dialog appears. Use the
filter to search a specific directory. To open a file, either double-click on the file y
want to open or type the file name in theSelection field and clickOK . If the
Multiple Windows option is in effect, a new IDL Editor window is created outside
the main window to contain each text file. If theSingle Window option is in effect,
the new file is displayed and all others are listed in theWindow menu.

You can also open files from the Command Input Line. Enter the following at the I
prompt:

.EDIT file 1 [file 2 ... file n]

wherefile is the name of the file you want to open. If the path is not specified in t
Paths Preference from theFile menu, you must enter the full path for file. See
.EDIT in theIDL Reference Guide for more information.

Close

Select this option to close the currently-selected IDL Editor window. If you have
made changes in an IDL Editor window, you are asked if you want to save the
changes before closing the window.

Open Project...

Select this option to open a new IDL Project. TheOpen dialog appears. Select the
project you want to open and clickOpen.
Using IDL The Menu Items

106 Chapter 4: The IDL for Motif Interface

the
w.

yet

hat
Save Project

Select this option to save the current IDL Project. If the Project has not yet been
saved, you are prompted for a filename with theSave As dialog.

Save Project As...

Select this option to save the current IDL Project to a specified filename. TheSave
As dialog appears.

Close Project

Select this option to close the current IDL Project. If you have made changes in to
project, you are asked if you want to save the changes before closing the windo

Save [CTRL+S]

Select this option to save the contents of an IDL Editor window. If the file has not
been saved, you are prompted for a filename with theSave As dialog.

Note
Changes made to a previously-compiled routine are not available to IDL until t
routine is re-compiled. Executing the routine without saving and re-compiling
simply re-runs the previously-compiled version, without incorporating recent
changes.
SelectRun–>Compile to return to the main program level and re-compile the
routine. SelectRun–>Compile from Memory to compile the last-saved version of
the file without saving or implementing recent changes.

Save As... [C TRL+W]

Select this option to save the contents of an IDL Editor window to a specified
filename. TheSave Asfile selection dialog box appears.

Revert to Saved

Select this option to reload the last saved version of the document.

Warning
Unsaved changes are lost without warning.

Print... [C TRL+P]

Select this option to print the contents of the currently-selected window to the
currently-active printer. ThePrint dialog appears.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 107

alog

 last

h

e

Print Setup

Select this option to change the printer and printing options. The Printer Setup di
appears. For further information on Printer Setup, selectHelp–>Printer Help in the
IDL Online Help.

Recent Files

Select this option to view or open recently opened files. This menu item lists the
ten opened files. To open a file on this list, select it.

To change the maximum number of files displayed from ten to another number,
modify theidlde.numRecentFiles resource in your resource file called.idlde ,
which is located in your home directory.

Recent Projects

Select this option to view or open recently opened project files.

Preferences

Select this option to display a dialog box containing five tab selections with whic
you can customize your interaction with the IDLDE environment.

Tab Description

General This tab allows you to set the look of the IDLDE interface.

Layout This tab allows you to specify the location and size of the
main window on the screen. You can also designate the
appearance of the IDLDE’s components.

Graphics This tab allows you to specify graphics window dimensions
and also to select how to handle IDL’s backing store.

Edit This tab allows you to specify how to compile files in IDL.

Startup This tab allows you to specify IDL’s main directory, working
directory, and the startup file. The startup file specifies the
startup path of IDLDE for the next session. It is also possibl
to disable the use of the startup file.

Fonts This tab allows you to specify the fonts used in document
windows.

Table 4-1: Preference Dialog Tabs
Using IDL The Menu Items

108 Chapter 4: The IDL for Motif Interface

.
fore

cond
not

ons

o

e

rtion

aced

r

Exit [C TRL+Q]

Select this option to exit IDLDE. All IDL Editor windows are closed before exiting
If text in an Editor window has changed, you are asked if you want to save it be
exiting.

Edit Menu

Undo [A LT+Z]

Select this option to undo previous editing actions. Multiple undo operations are
supported; the first reverses the most recent operation, the next reverses the se
most recent operation, etc. If the most recent action is irreversible, this option will
be accessible.

Redo [A LT+Y]

Select this option to redo previously undone editing actions. Multiple redo operati
are supported; the first reverses the most recent undo, etc.

Cut [A LT+X]

Select this option to remove currently-selected text from an IDL Editor window t
the Motif clipboard.

Copy [A LT+C]

Select this option to copy currently-selected text from an IDL Editor window to th
Motif clipboard.

Paste [A LT+V]

Select this option to paste the contents of the Motif clipboard at the current inse
point. The insertion point can only be placed in an IDL Editor window.

Delete [D EL]

Select this option to delete the currently-selected text. The deleted text is not pl
on the clipboard.

Paths This tab allows you to specify the IDL Files Search Path. You
entries are appended to the system variable !PATH.

Tab Description

Table 4-1: Preference Dialog Tabs
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 109

nts

r

to
s a

les
d

Select All

Use this option to select all of the text in an IDL Editor window. The entire conte
of the window are highlighted.

Clear All

Use this option to erase all of the contents in the current IDL Editor window.

Clear Log [C TRL+Y]

Use this option to erase the contents of the Output Log window.

Search Menu

Find... [A LT+F]

Select this option to find text in the currently-active IDL Editor window. The
Find/Replace dialog appears. The attributes available for theFind dialog are
described below:

• Find: — Enter text to search for in this field.

• Case Sensitive or Non-sensitive — Specify if the search should reflect the
case of the text entered in theFind field.

• Search Forward or Backward — Specify the direction in which you would
like to begin the search.

• Start at: Top, Current or Bottom — Specify where to begin the search. Fo
Top and Bottom, the Search automatically moves Forward or Backward,
respectively. After a word is found, the Search begins at Current.

• Whole words only: — Select this check box so that the search applies only
the entire designated word, instead of finding the word within other words a
sub-string.

• Files: — You can specify an open file in which to search or that all open fi
be searched. By default, the search will take place in the currently-selecte
window. You can also create aTear-off from the pulldown menu (click on the
dashed line at the top), which remains open as long as theFind/Replacedialog
is open.

To replace text, use theReplace dialog [Alt+R].

Find Again [A LT+G]

Select this option to repeat the most recent text search.
Using IDL The Menu Items

110 Chapter 4: The IDL for Motif Interface

og.

t.

,

of

d

w.

w,
nient
s if
Find Selection [A LT+I]

Select this option to find the next occurrence of the currently selected text.

Enter Selection [A LT+T]

Select this option to enter selected text in the Find field of the Find/Replace dial

Replace... [A LT+R]

Select this option to find text in an IDL Editor window and replace it with new tex
TheFind/Replace dialog appears. See“Find... [Alt+F]” on page 109 for a
description of most of the attributes for theReplace dialog; the differing attributes
available for the Replace dialog are described below:

• Replace: — To replace an occurrence of the text specified in the Find field
enter the replacement text in this field. ClickReplaceto change the found text.
Click Replace & Find to change the found text and find the next occurrence
the text specified. You can only clickReplace or Replace & Find if a word
has been found, i.e. if it is highlighted in the relevant Editor window.

• Replace all:— Click this check box to specify that all occurrences of the wor
in theFind field be replaced by the word in theReplace field. ClickReplace
to change all the words in the specified file(s).

Replace & Find [A LT+P]

Select this option to repeat the most recent search-and-replace operation.

Go To Line [C TRL+G]

Use this option to jump directly to a specified line number in an IDL Editor windo
TheGo To Line dialog box appears. Enter the line number in theGoto Line: field.

Go To Definition [C TRL+T]

Use this option to display the definition of the currently selected procedure or
function, which must have been compiled during the current IDLDE session.

Run Menu

Run Menu items are enabled when an IDL program is loaded into an IDL Editor
window. If you click the right mouse button while positioned over an editor windo
a popup menu appears allowing you to quickly access several of the most conve
commands. The popup menu changes to display common debugging command
IDL is running a program. SeeChapter 19, “Debugging an IDL Program”in Building
IDL Applcations for more detailed information.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 111

the

or
th is

e as

e at

, the
Compile filename.pro [CTRL+F5]

Select this option to compilefilename.pro . The currently selected file is only
recognized as an IDL procedure or function if suffixed with .pro. Selecting this
option is the same as entering.COMPILE at theCommand Input Line, with the
appropriate Editor window selected in the Multiple Document Panel.

You can also compile files from the Command Input Line. Enter the following at
IDL prompt:

.COMPILE file 1 [file 2 ... file n]

wherefile is the name of the file you want to open. IDL opens your files in Edit
windows and compiles the procedures and functions contained therein. If the pa
not specified in thePaths Preference from theFile menu, you must enter the full
path for file.

See.COMPILE in theIDL Reference Guide for more detail.

Compile from Memory filename.pro [CTRL+F6]

Select this option to compilefilename.pro from the last saved version of the file,
without saving or implementing recent changes. Selecting this option is the sam
entering.COMPILE -f at theCommand Input Line. See.COMPILE in theIDL
Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open*.pro files.

Run filename [F5]

Select this option to execute the file,filename , contained in the currently active
Editor window. Selecting this option is the same as entering the procedure nam
the Command Input Line or using the.GO executive command at theCommand
Input Line . If the file is interrupted while running, selecting this option resumes
execution; it is the same as entering.CONTINUE at theCommand Input Line. For
more information, see.CONTINUE and.GO in theIDL Reference Guide.

Note
In order for theRun option to reflect the correct procedure name in theRun menu,
the .pro filename must be the same as the main procedure name. For example
file namedsquish.pro must include:pro squish .
Using IDL The Menu Items

112 Chapter 4: The IDL for Motif Interface

re
For

t of

s

rent

re
Resolve Dependencies [A LT+F5]

Select this option to iteratively compile all uncompiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
enteringRESOLVE_ALL, /QUIET at theCommand Input Line. The QUIET
keyword suppresses informational messages. SeeRESOLVE_ALL in theIDL
Reference Guide for a more detailed explanation.

Profile

Select this option to access theProfile dialog. TheIDL Code Profiler allows you to
analyze the performance of your applications. You can identify which modules a
used most frequently, and which modules take up the greatest amount of time.
more information about the IDL Code Profiler, seeChapter 19, “The IDL Code
Profiler” in Building IDL Applcations.

Break [C TRL+C]

Select this option to interrupt program execution. IDL inserts a marker to the lef
the line at which program execution was interrupted.

Stop [C TRL+R]

Select this option to reset the IDL environment. Selecting this item is the same a
entering the following at the Command Input Line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

SeeRETALL, WIDGET_CONTROL, CLOSE, orHEAP_GC, all contained in the
IDL Reference Guide, for more detailed explanations.

Reset [C TRL+T]

Select this option to reset the IDL environment. This option executes
.RESET_SESSION. See theIDL Reference Guide for more information.

Step Into [F8]

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement being stepped into calls
another IDL procedure or function, statements from that procedure or function a
executed in order by successiveStep commands. Selecting this item is the same as
entering.STEP at the IDLCommand Input Line. See.STEP of theIDL Reference
Guide for a more detailed explanation.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 113

rent

re
e as

cting

en

ere

o the
ne-

e

Step Over [F10]

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement being stepped over calls
another IDL procedure or function, statements from that procedure or function a
executed to the end without interactive capability. Selecting this item is the sam
entering.STEPOVERat the IDLCommand Input Line . See.STEPOVERin theIDL
Reference Guide for a more detailed explanation.

Step Out [C TRL+F8]

Select this option to continue processing until the current program returns. Sele
this item is the same as entering.OUT at the IDLCommand Input Line. See.OUT
in theIDL Reference Guide for a more detailed explanation.

Trace ...

Select this option to access the Trace dialog. You can modify the interval betwe
successive .STEP or .STEPOVER commands, depending on whether theStep Over
option is enabled. The current-line indicator points to program lines as they are
executed. Selecting this item at full speed is the same as entering.TRACE at the IDL
command prompt. See.TRACE in theIDL Reference Guide for a more detailed
explanation.

Run to Cursor [F7]

Select this option to execute statements in the current program up to the line wh
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. SeeBREAKPOINT in theIDL Reference Guide for a
more detailed explanation.

Run to Return [C TRL+F7]

Select this option to execute statements in the current procedure or function up t
line where the return is positioned. Selecting this item is the same as setting a o
time breakpoint at a specific line. See.RETURN in theIDL Reference Guide for a
more detailed explanation.

Set Breakpoint [F9]

Select this option to set a breakpoint on the current line. Selecting this item is th
same as entering the following at the IDLCommand Input Line:

BREAKPOINT, ['file',] index

where’file’ is the file in which to set a breakpoint, andindex designates the line
number at which the breakpoint is set.
Using IDL The Menu Items

114 Chapter 4: The IDL for Motif Interface

it a
 and
ne.

upt
t
ld

ition
SeeBREAKPOINT in theIDL Reference Guide for a more detailed explanation.

Disable Breakpoint

Select this option to access disable a breakpoint in the current line.

See“Debugging an IDL Program” in Chapter 19 of theBuilding IDL Applications
manual for a more detailed explanation.

Edit Breakpoint

Select this option to access theEdit Breakpoint dialog to set a complex breakpoint.
Complex breakpoints may function only once, or may function only after being h
specified number of times. Selecting this item is the same as setting the AFTER
ONCE keywords for the BREAKPOINT procedure at the IDL Command Input Li

Enter the source file in which to set a breakpoint in theFile field. The default field is
the one in which the cursor is positioned. ClickFile ..., at the bottom of the dialog, to
search through available directories. Enter the line number at which to place the
breakpoint in theLine field. The default is the line at which the cursor is currently
positioned. You can specify how many times the line must be hit in order to interr
execution. ClickOnce to interrupt execution after encountering the line for the firs
time or clickBreak After and enter the number of hits after which execution shou
be interrupted into the given field. Click onCondition to specify an expression that
will be evaluated each time the breakpoint is encountered. If and when the cond
is true, program execution is interrupted.

SeeBREAKPOINT in theIDL Reference Guide for a more detailed explanation.

Up Stack [C TRL+Up]

Select this option to move up the call stack by one.

Down Stack [C TRL+Down]

Select this option to move down the current call stack by one.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as enteringHELP, /TRACEBACK at the IDL
Command Input Line. SeeHELP in theIDL Reference Guide for a more detailed
explanation.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 115

an

lled

he
nu or
Project Menu

Add/Remove Files...

Select this option to add or remove files from the current project. For more
information, see“Creating IDL Projects” in Chapter 2 of theBuilding IDL
Applications manual.

Options...

Select this option to change the options for a project. TheProject Options dialog
displays. For more information, see“Creating IDL Projects” in Chapter 2 of the
Building IDL Applications manual.

Compile

Select this option to compile files in a project. You can choose eitherAll Files to
compile all the source files in a project orModified Files to compile only the files
that have been modified since the last compile.

Build

Select this option to build your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Run

Select this option to run the application defined by your project.

Export

Select this option to export your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Macros Menu

Macros allow you to access frequently used IDL commands from a menu. You c
add your own macros to the macros menu by editing your.idlde resource file. See
“Modifying the Macros Menu” on page 149 for more information. The following
macros are installed by default. (UNIX syntax is shown; similar macros are insta
under OpenVMS.)

Edit...

Select this option to access theEdit Macros dialog. TheEdit Macros dialog is a
convenient GUI with which you can modify existing macros or create new ones. T
macros can be applied as either a menu item or a toolbar button. Click on a me
Using IDL The Menu Items

116 Chapter 4: The IDL for Motif Interface

ro,
olbar

s

the

ting
toolbar macro to view its attributes. You can specify different attributes for a mac
some of which are required. You can also rearrange the order of the menu or to
macros with the up and down arrows located at the bottom of theMacro Attributes
section.

Print Variable

Select this option to print the selected variable. Selecting this item is the same a
enteringPRINT, x at the IDL Command Input Line, wherex is the selected variable.

Help On Variable

Select this option to list attributes of the selected variable. Selecting this item is
same as enteringHELP, x, /STRUCTURES at the IDLCommand Input Line,
wherex is the selected variable.

Import Image

Select this option to import an image file into IDL. For more information, see“Using
Macros to Import Image Files” on page 185.

Import Ascii

Select this option to import an ASCII file into IDL. For more information, see“Using
Macros to Import ASCII Files” on page 189.

Import Binary

Select this option to import a binary file into IDL. For more information, see“Using
Macros to Import Binary Files” on page 195.

Import HDF

Select this option to import an HDF file into IDL. For more information, see“Using
Macros to Import HDF Files” on page 201.

IDL Demo

Select this option to start the IDL Demo application.

File in XEmacs

Select this option to edit the currently selected file with the XEmacs editor. Selec
this item is the same as typing the following command at the IDL> prompt:

SPAWN,'xemacs +index file &'

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 117

acs
L

L

r.

cs
L

is
File in running XEmacs

Select this option to edit the currently selected file with a currently-running XEm
editor. Selecting this item is the same as typing the following command at the ID>
prompt:

SPAWN, 'gnuclient +index file &'

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.

File in Emacs (X Window)

Select this option to edit the currently selected file with the Emacs (X Window)
editor. Selecting this item is the same as typing the following command at the ID>
prompt:

SPAWN, 'emacs +index file &'

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.

File in Emacs (Xterm)

Select this option to edit the currently selected file with the Emacs (Xterm) edito
Selecting this item is the same as typing the following command at the IDL>
prompt:

SPAWN, 'xterm -e emacs -nw +index file &'

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.

File in running Emacs

Select this option to edit the currently selected file with a currently running Ema
editor. Selecting this item is the same as typing the following command at the ID>
prompt:

SPAWN, 'emacsclient +index file &'

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.

File in vi (Xterm)

Select this option to edit the currently selected file with the vi editor. Selecting th
item is the same as typing the following command at the IDL> prompt:

SPAWN, 'xterm -e vi +index file &'
Using IDL The Menu Items

118 Chapter 4: The IDL for Motif Interface

on.

e

wherefile is the full pathname of the file to be edited andindex is the line number
at which the cursor is positioned.

Window Menu

Read Only

Select this option to enable or disable editing of the currently selected window. A
filled square next to the item indicates Read-Only status.

Next [F11]

Select this option to shift IDL’s focus to the next numbered editor window.

Previous [A LT+F11]

Select this option to shift IDL’s focus to the previous numbered editor window.

Cascade

Select this option to arrange all open windows in a staggered, overlapping fashi

Tile

Select this option to arrange all open windows in a non-overlapping fashion.

Close All

Select this option to close all open files. If a file has not yet been saved, you are
prompted to save the changes.

Configure

Select this option to access a pulldown menu which alters the appearance of th
IDLDE. Select each toggle option to hide or show each component. For more
information about each component, see“The Main IDL Window” on page 101.

• Hide Control (Show Control)

• Hide View (Show View)

• Hide Log (Show Log)

• Hide Variable Watch (Show Variable Watch)

• Hide Command (Show Command)

• Hide Status (Show Status)

• Hide Project (Show Project)
The Menu Items Using IDL

Chapter 4: The IDL for Motif Interface 119

ting

y of

ht
Tool Bar

Select this option to access a pulldown menu with the three Windows toolbars:Hide
Standard Tools (Show Standard Tools),Hide Run & Debug Tools (Show Run &
Debug Tools), andHide Macros (Show Macros).

Multiple Windows (Single Window)

Select this option to toggle between two available window arrangements. Selec
Multiple Windows opens windows outside the IDLDE interface. By default, all
windows are staggered. SelectingSingle Window displays the most recent window
within the main window and lists the others as menu items in theWindow menu.

Open Windows

The menu items at the bottom of the Window menu display open files. Select an
these menu items to make that window the current window. If theSingle Window
menu item is active, the selected file will be displayed in the main window. If the
Multiple Windows menu item is active, the selected item’s window will be broug
to the foreground.

Help Menu

Help on IDL...

Select this option to display the IDL Online Help Viewer.

Find Topic...

Select this option to access the Search dialog for IDL Online Help.

Help on IDE...

Select this option to display this chapter of Using IDL.

Help on Help

Select this option to learn about how to use Help.

About IDL

Select this option to display information on the IDL version in use.
Using IDL The Menu Items

120 Chapter 4: The IDL for Motif Interface

cting

item
Keyboard Shortcuts

Many of the menu options can be accessed from the keyboard as well as by sele
from the menus. The following table below lists all of the available keyboard
equivalents. Note that these equivalents are also shown to the right of each menu
in the menus themselves.

Keyboard Shortcut Function

Alt+C Copy selected text

Alt+F Find

Alt+G Find Again

Alt+I Find Selection

Alt+P Replace and Find

Alt+R Replace

Alt+T Enter Selection

Alt+V Paste

Alt+X Cut selected text

Alt+Y Redo

Alt+Z Undo

Alt+F5 Resolve dependencies

Alt+F11 Previous numbered editor window

Ctrl+C Interrupt program execution / Break

Ctrl+G Go To Line

Ctrl+N New editor window

Ctrl+O Open IDL Editor window

Ctrl+P Print contents of editor window

Ctrl+Q Exit IDL

Ctrl+R Reset

Table 4-2: Keyboard Shortcuts
Keyboard Shortcuts Using IDL

Chapter 4: The IDL for Motif Interface 121
Ctrl+S Save contents of editor window

Ctrl+T Go To Definition

Ctrl+W Save contents of editor window to another
file name

Ctrl+Y Erase contents of Output Log

Ctrl+F5 Compile program in current window

Ctrl+F6 Compile program from memory

Ctrl+F7 Run to Return

Ctrl+F8 Step Out

Ctrl+↑ (Up arrow) Up stack

Ctrl+↓ (Down arrow) Down stack

Delete Deletes selection

F5 Run

F6 Continue stopped program in current
window

F7 Run to cursor

F8 Step Into

F9 Set/Clear Breakpoint

F10 Step Over

F11 Next numbered editor window

Keyboard Shortcut Function

Table 4-2: Keyboard Shortcuts
Using IDL Keyboard Shortcuts

122 Chapter 4: The IDL for Motif Interface

out

re:

the

ion
r

s

Using Preferences to Customize IDLDE

The IDLDE can be customized in two ways. By editing the resource files or by
selectingPreferences from the IDLFile menu. TheControl Panel buttons and the
Menu items are two common areas of customization. For further information ab
editing resource files, see“Using Resources to Customize IDL” on page 132.

The IDL Preferences dialog box contains five tab selections with which you can
customize your interaction with the IDLDE environment. The seven categories a
General, Layout, Graphics, Edit, Startup, Fonts, and Paths.

Note
It is important to understand the distinctions in application that occur throughout
Preferences Dialog, as described in the table below.

Button Effect

OK Changes are applied to the current session and the Preferences
dialog is dismissed.

Apply Changes are applied to the current session but not saved. The
Preferences dialog remains visible.

Save Changes are applied to the current session and saved. If the opt
has an asterisk next to it, you must save and restart the IDLDE fo
the change to take effect.

Cancel Any unapplied changes are ignored and the Preferences dialog i
dismissed.

Table 4-3: Application Button Distinctions
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 123

e

nt of
ich
ue.

y
is
General Preferences

Program

You can specify how IDL handles starting up and exiting. Click on the following
check boxes to apply or disable the options:

• Show Splash Screen — Select this option to show IDL’s splash screen on
startup. IDL must be restarted for this option to take effect.

• Save Preferences on Exit — Select this option to save all the settings—as
specified in the seven Preference tabs—from the current IDL session to b
applied to future IDL sessions.

• Confirm Exit

Log and Command Window

The performance of IDL can depend upon the number of saved lines. The amou
memory required for greater numbers of saved lines can affect the speed at wh
IDL will run. Click in the field next to each description and enter your adjusted val

• Lines to Save— This field controls the minimum number of lines retained b
the Output Log window. The default is 500 lines. IDL must be restarted for th
option to take effect.

Figure 4-2: The General Preferences and Layout Preferences dialogs
Using IDL Using Preferences to Customize IDLDE

124 Chapter 4: The IDL for Motif Interface

or

tents

l

ed

idth
rner

w

• Delete on limit — This field controls the number of lines to delete at a time
until the limit is reached again. The default is 125. IDL must be restarted f
this option to take effect.

• Lines saved in the recall buffer:— This field controls the maximum number
of lines saved in the recall buffer. There are three ways to access the con
of the recall buffer, all of which are limited by this field. After locating the
cursor in theCommand Input Line , you can press your up arrow key to scrol
through your last entries.You can also enterHELP, /RECALL in the
Command Input Line or click on your right mouse button while positioned
over the Command Input Line to display your entries up to the limit specifi
by the recall buffer. The default is 20.

Files

You can specify how files are opened within the IDLDE:

• Change Directory on Open— Click on this check box to change the working
directory to the directory of the most recently opened file.

• Open Files Read Only — Click on this check box to open files so that they
are not writable.

Layout Preferences

This tab allows you to control the look of the main IDL window.

Main window

By default the size of the window is 1/4 of the screen size (i.e., 1/2 the screen w
and 1/2 the screen height). The window is positioned such that the upper-left co
of the window is at the upper-left corner of the screen. Click onDefault to use these
settings.

To change the layout, click onSpecify, which allows you to adjust the positioning of
the window with theLeft andTop fields and to adjust the size of the window with the
Width andHeight fields.

• Left — The horizontal location of the upper-left corner of the main IDL
window (in pixels) relative to the left side of the screen. The default is 75.

• Top — The vertical location of the upper-left corner of the main IDL windo
(in pixels) relative to the top of the screen. The default is 25.
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 125

e
L

e
in

the

n
e
r
, un-

in
• Width — The width of the main IDL window in pixels. The default is 1/2 th
screen width. The value in this entry reflects the current width of the main ID
window.

• Height — The height of the main IDL window in pixels. The default is 1/2 th
screen height. The value in this entry reflects the current height of the ma
IDL window.

Click Remember to apply the settings to future IDL sessions. This option—as
indicated by the asterisk beforeMain Window— is unavailable until IDL has been
restarted.

Windows

These options are also contained in theWindow menu of the IDLDE. The difference
between theWindows section of theLayout Preferences and theWindow menu is
that any changes to the Preferences are applies to future IDL sessions.

• Editor Layout — Click onMultiple to display open Editor windows
separately from the main IDLDE window. The Editor Layout is listed as
Multiple Windows/Single Window in theWindow menu.

• Hide — Click on any of the sections of the IDLDE window to hide them from
view. If the check box is marked, the section is hidden. By default, none of
sections are hidden. The Hide options are found in the pulldown menu
accessed with theConfigure option from theWindow menu.

• Separate — Click on the available sections to separate them from the mai
IDLDE window. If the check box is marked, the section can be found on th
desktop in a separate window. If you dismiss a window, the Hide option fo
that section, as described above, is enabled. To view a dismissed window
hide it and clickOK or Apply.

Note
If the Multiple Windows option is enabled, the choice to hide or view the Editor
windows is not available.

Control Panel

You can specify how you would like to display the Control Panel buttons:

• Hide Tools — Click on any of the available toolbars:Standard,
Run&Debug, andUser to change their visibility. If a box is checked (it will
appear darker), the toolbar with which it is associated is hidden on the ma
IDLDE window.
Using IDL Using Preferences to Customize IDLDE

126 Chapter 4: The IDL for Motif Interface

e
, as

he

 By
ble

ce of

lt

t

• Number of Rows— Enter the number of rows to use in displaying any visibl
toolbars. You can select from 1 to 3 rows. If the window has been separated
described inSeparate above, number entered is reflected in the separated
window.

• Vertical — If the Control Window has been separated, you can specify if t
Toolbars should be displayed horizontally or vertically. If theVertical check
box is marked, the toolbars are displayed vertically in a separate window.
default, separated toolbars are displayed horizontally. This option is availa
only when the Control Panel has been separated.

Graphics Preferences

Windows Size

This section of the Graphics Preferences tab allows you to specify the appearan
an IDL graphics window.

• Default Width — The width of IDL graphics windows, in pixels. The defau
is 1/4 of the total screen width.

• Default Height — The height of IDL graphics windows, in pixels. The defaul
is 1/4 of the total screen height.

Figure 4-3: The Graphics Preferences and Edit Preferences dialogs
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 127

et
e

ory.
 and

 of

he

ers

me
ase

r

• Use 1/4 the screen size— If this box is checked, the Graphics windows are s
to 1/2 the screen size in both width and height. If this box is unchecked, th
Graphics windows are sized according to content.

Backing Store

When backing store is enabled, a copy of each Graphics window is kept in mem
The copy of the window is used to refresh the window when it has been covered
uncovered. IDL’s performance increases for no backing store, since the amount
memory required to save files can affect the speed at which IDL will run.

SeeAppendix B, “Backing Store” of theIDL Reference Guide for more information.

• None, RETAIN = 0

Click None to disable backing store. This option does not keep a copy of t
window, allowing the highest performance in terms of speed.

• System, RETAIN = 1

Click this option to request backing store from the server.

• Pixmap, RETAIN = 2

Click this option (the default) to have IDL maintain backing store. Most us
should keep this value set to 2.

Graphics Attributes

• Size of TrueType Font Cache (in glyphs) — Enter the number of TrueType
characters whose triangulation information will be saved. Saving the
triangulation information for TrueType characters means that IDL will not
have to calculate the polygons to draw the next time a character of the sa
font and size is rendered. Larger values will use more memory but can incre
drawing speed if multiple fonts are used. The default is 256.

• Object Graphics Renderer— Select eitherHardware Rendering (OpenGL)
or Software Rendering. SeeChapter 28, “Window Objects” for information
about the differences between the two rendering systems.

Edit Preferences

This tab allows you to set the way in which IDL displays information in the Edito
window and compiles files. By default, IDLDE asks if you would like to save
changes. You can also set IDLDE to make a backup copy of the source file.
Using IDL Using Preferences to Customize IDLDE

128 Chapter 4: The IDL for Motif Interface

d

d-

ou
 IDL
ny
IDL Editor windows support chromacoding—different types of IDL statements
appear in different colors. By default, the IDL Editor uses chroma-coding. TheEdit
tab fromPreferences in theFile menu displays the colors used for different words
recognized by IDL. Change the Foreground color to change the color of the wor
itself. Highlight the word by specifying the Background color.

By default, the IDL Editor uses chromacoding. Set the editor to simple black-an
white by deselecting theEnable Edit check box in theIDL Edit Preferences tab
from theFile menu.

Startup Preferences

This tab allows you to specify the location of a file to be run when IDLDE starts.

Select IDL Main Dir ...

Click on this button to start theSelect IDL Main Dir dialog, which shows you where
the main IDL directory is located. The default is the location you specified when y
installed IDL. There is no reason to change this entry. The location of the home
directory is shown primarily for informational purposes. You must restart IDL for a
changes to take effect.

Figure 4-4: The Startup Preferences dialog
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 129

le,

up
Select Working Directory

Click on this button to start theSelect Working Directory dialog. You can specify
the initial working directory for future IDL sessions. TheGeneral Preferences tab
contains a “Change Directory on Open” option, described under“Files” on page 124,
which also affects the working directory.

Select Startup File

Click on this button to start theSelect Startup Filedialog. You can specify the name
of an IDL batch file to be executed automatically each time IDL is run. For examp
to execute the commands in a batch file namedMYBATCH.PRO, located in the
/home/user directory, use:

/home/user/MYBATCH.PRO

Disable the use of the startup file by selecting theDon’t Use Startup File button.

Warning
Startup files are executed one statement at a time. It is not possible to define
program modules, (procedures, functions, or main-level programs) in the start
file. See“Startup File” on page 51 for more information.
Using IDL Using Preferences to Customize IDLDE

130 Chapter 4: The IDL for Motif Interface

w.

ies
Font Preferences

This tab allows you to control which fonts are to be used for the main IDL windo
Click on any of the following buttons to specify the relevant font:

• Default — dialog boxes

• Menubar — menu items

• Control — the Control Panel

• Edit — editor windows

• Log — the Output Log

• Command — the Command Input Line

Path Preferences

This tab allows you to control where IDL looks for procedures and functions. Entr
into the IDLFiles Search Path are appended to the system variable !PATH.

Note
You must restart IDLDE for changes to take effect.

Figure 4-5: The Font Preferences and Paths Preferences dialogs
Using Preferences to Customize IDLDE Using IDL

Chapter 4: The IDL for Motif Interface 131

ore
th,

hat
ing

n
w
 to

r

to the

tories

cked
IDL Files Search Path

This field tells IDL where to look for procedures and functions.

Select one of the paths by clicking on it; it becomes highlighted. You can select m
than one path at a time by clicking once with your left mouse button on the first pa
and dragging the mouse down to the last path you want to select.

• Subdirectory check boxes — To specify a directory tree that includes all of t
directory’s subdirectories, click on the check box to the left of a path, plac
anx in front of the entry.

• Up and Down Arrow buttons — You can move the selected path up or dow
through the list by clicking on the up or down buttons located directly belo
the IDL Files Search Path list. A second click on a selected path causes it
become outlined, but not selected. You can also scroll through the list by
pressing the up and down arrows on your keyboard after either selecting o
outlining one of the paths.

• Insert... — To add a path to the IDLFiles Search Path list, click onInsert...
to start theSelect Path dialog. The new path is inserted before the first
selected path. If none of the paths are selected, the new path is appended
end of the list.

• Remove — Click onRemove to delete the selected path.

• Expand — Click onExpand to list a selected path’s subdirectories directly
beneath the path. The expanded path is then deselected and any subdirec
are selected so you can cancel the expansion by immediately clickingRemove.
The initial path and any expanded subdirectories are automatically unche
to prevent subdirectory searching.

See“Executing Program Files” in Chapter 2 for more information.
Using IDL Using Preferences to Customize IDLDE

132 Chapter 4: The IDL for Motif Interface

ass
nce
lass
ll text
f

nce
ng
ods.

s a
 skip
 is
ion.
f

rce

d
d

Using Resources to Customize IDL

X Resources in Brief

The component widgets of an X Window application each have two names, a cl
name that identifies its type (e.g., XmText for the Motif text widget) and an insta
name (e.g., command, the name of the IDLDE command input text widget). The c
name can be used to set resources for an entire class of widgets (e.g., to make a
widgets have a black background) while the instance name is used for control o
individual widgets (e.g., set the IDLDE command input window font without
affecting other widgets).

Applications consist of a tree of widgets, each having a class name and an insta
name. To specify a resource for a given widget, list the names of the widgets lyi
between the top widget and the target widget from left to right, separated by peri
In a moderately complicated widget hierarchy, only some of the widgets are of
interest; there are intervening widgets that serve uninteresting purposes (such a
base that holds other widgets). A star (*) character can be used as a wildcard to
such widgets. Another fact to keep in mind is that a given resource specification
interpreted as broadly as possible to apply to any widget matching that descript
This allows a very small set of resource specifications to affect a large number o
widgets.

Editing Resource Files

There are two resource files used to customize IDLDE. An installation-wide resou
file calledIdl is located in$IDL_DIR/resource/X11/lib/app-defaults , and
a user resource file called.idlde is located in your home directory.

Modifying the globalIdl resource file effects an installation-wide customization.
Changes to theIdl file will be lost with a new installation.

The user resource file,.idlde , customizes individual versions of IDLDE and is
divided into two sections. The first section contains user-defined customization
resources. You can place comments starting with “!” or “!!” in the first section of
.idlde . When newer versions of.idlde are written, system comments are prefixe
with “!!!”. The second section of.idlde is used to store preferences; it is modifie
when preferences are saved and shouldn’t be modified externally.
Using Resources to Customize IDL Using IDL

Chapter 4: The IDL for Motif Interface 133

r use

. If
red
that
hing

us,
the

ill

se

ou
Reserving Colors

When IDL starts, it attempts to secure entries in the shared system color map fo
when drawing graphics. If the entryIdl.colors exists in theIdl resource file, IDL
will attempt to allocate the number of colors specified from the shared colormap
for some reason it cannot allocate the requested number of colors from the sha
colormap, IDL will create a private colormap. Using a private colormap ensures
IDL has the number of colormap entries necessary, but can lead to colormap flas
when the cursor or window focus moves between IDL and other applications.

One way to avoid creating a private colormap for IDL is to set theIdl.colors
resource equal to a negative number. This causes IDL to try to use the shared
colormap, allocating all but the specified number of colors. For example:

Idl.colors = -10

instructs IDL to allocate all but 10 of the currently available colors for its use. Th
if there are a total of 220 colors not yet reserved by other applications (such as
windowing system), IDL will allocate 210 colors from the shared colormap.

The IDLDE application itself uses between 10-15 colors. On startup, the IDLDE w
attempt to use colors in the shared colormap, but will reserve colors for itself if
appropriate matching colors in the shared colormap are not found. As a result,
running IDL with the IDLDE may use more colors than running IDL with the tty
(plain command line) interface.

If you experience colormap flashing when using the IDLDE, but not when you u
the plain tty interface, try adjusting the number of colors used by the IDLDE
interactively, using the-colors startup flag. For example,

idlde -colors -15

starts the IDLDE and allocates all but 15 of the currently available colors. When y
find an appropriate number of colors to reserve, you can set theidlde.colors
resource in theIdl resource file or in your personal.idlde file accordingly.
Using IDL Using Resources to Customize IDL

134 Chapter 4: The IDL for Motif Interface

ags
files

p. If
tead.

:

er
Command Line Options

IDLDE can also be customized from the command line using the command line fl
described below. Command line flags are given precedence over global resource
(Idl) and user resource files (.idlde). For more information about resources, see
“Using Resources to Customize IDL” on page 132. Under VMS, command line
switches are preceded by a / rather than a -.

Example

Type the following at the operating system command line to start IDLDE using
separate main-level windows to display files:

; On UNIX:
idlde -multi
; or on VMS:
IDLDE/MULTI

The available command line flags follow:

-e file [-e file 1 -e file 2...]
/EDIT=(file [, file 1, file 2...])

Opens specified files at startup.

-colors n
/COLORS=n

If specified, IDL attempts to allocate n colors specified from the shared colorma
there aren’t enough colors available, a private colormap with n colors is used ins

Specifying a negative value for the colors flag causes IDL to attempt to use the
shared colormap, allocating all but the specified number of colors. For example

idlde -colors -15

allocates all but 15 of the currently available colors for the IDLDE. This allows oth
applications that might need their own colors to run in tandem with IDL.

The related resource isidlde.colors .

-nocommand

/NOCOMMAND

Hides the Output Log window and Command Input Line at startup. The related
resource isIdl*idlde*hideCommand: True .
Command Line Options Using IDL

Chapter 4: The IDL for Motif Interface 135

e is

 is
-command

/COMMAND

Displays Log window and Command Input window at startup. The related resourc
Idl*idlde*hideCommand: False .

-nocontrol

/NOCONTROL

Hides the Control panel buttons at startup. The related resource is
Idl*idlde*hideControl: True .

-control

/CONTROL

Displays the Control Panel buttons at startup. The related resource is
Idl*idlde*hideControl: False .

-nolog

/NOLOG

Hides the Output Log at startup. The related resource is
Idl*idlde*hideLog: True .

-log

/LOG

Displays the Output Log at startup. The related resource is
Idl*idlde*hideLog: False .

-nostartup

/NOSTARTUP

Does not execute startup file on startup (including IDL_STARTUP). The related
resource isIdl*idlde.noStartupFile: True .

-startup

/STARTUP

Executes startup file on startup (including IDL_STARTUP). The related resource
Idl*idlde.noStartupFile: False .
Using IDL Command Line Options

136 Chapter 4: The IDL for Motif Interface

he

e

file.
-startupfile "file"

/STARTUPFILE="file"

Executesfile at startup (overrides IDL_STARTUP environment variable). If
startupfile is not specified, the environment variable IDL_STARTUP is used as t
startup file (if defined). The related resource isIdl*idlde.startupFile: file
wherefile is the full path name of the startup file.

-nostatus

/NOSTATUS

Hides the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: True .

-status

/STATUS

Displays the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: False .

-path "path"

/PATH="path"

Appendpath to the IDL path (defined using IDL_PATH environment variable). Th
related resource isIdl*idlde.path: path wherepath is the full path to be
appended.

-quiet

/QUIET

Inhibits display of the IDL startup announcement and message of the day (motd)

-readonly

/READONLY

Opens files as read-only. The related resource isIdl*idlde.readOnly: True .

-readwrite

/READWRITE

Open files as read-writeable. The related resource is
Idl*idlde.readOnly: False .
Command Line Options Using IDL

Chapter 4: The IDL for Motif Interface 137

e

he

ted

ult

de.

e to
-single

/SINGLE

Displays files in a single window, which is a child of the main IDLDE window. Th
related resource isIdl*idlde*multiWindowEdit: False .

-multi

/MULTI

Displays files in multiple windows, each one in a separate main level window. T
related resource isIdl*idlde*multiWindowEdit: True .

-view

/VIEW

Displays the Multiple Document Panel in single window mode at startup. The rela
resource isIdl*idlde*hideView: False .

-noview

/NOVIEW

Hides the Multiple Document Panel at startup. The related resource is
Idl*idlde*hideView: True .

-title "Title"

/TITLE="Title"

UseTitle as the title of the main IDLDE window. The related resource is
idlde.title .

/VAX_FLOAT

This option is available only in IDL for VMS. Set this qualifier to change the defa
value of the VAX_FLOAT keyword of the CALL_EXTERNAL and OPEN
procedures to be TRUE. Starting IDL with this qualifier allows old code that is
written to assume IDL reads and writes VAX format floating-point numbers to
continue reading and writing that format without requiring changes to the IDL co
There are three caveats:

1. Internally, IDL is still using IEEE floating-point numbers.

2. This option should be used as a transitional aid prior to converting the cod
work with IEEE math. It is not a good long term strategy to use IDL in this
mode.
Using IDL Command Line Options

138 Chapter 4: The IDL for Motif Interface

to
3. There is no such support for LINKIMAGE routines, which must be rebuilt
use the IEEE floating-point standard.

You can also change this default at run-time using theVAX_FLOAT function in the
IDL Reference Guide.

Note
You should read the warnings on this topic found in theOPEN and
CALL_EXTERNAL routines in theIDL Reference Guide.
Command Line Options Using IDL

Chapter 4: The IDL for Motif Interface 139

s

e,

ce

ar
Modifying the Control Panel

TheControl Panel, with the resource name control, is located below theMenu bar.
The Control Panel bar is a RowColumn widget containing buttons which serve a
shortcuts for common commands.

You can modify the existing Control Panel with either the idlButtonsUser resourc
or, for the Macros toolbar only, by clickingEdit in theMacros menu.

The idlButtonsUser resource supplies each button’s resource name. The resour
name details button attributes, such as its label or pixmap, its associated IDL
command, and its status bar message.

To add a Control Panel button, make the following modifications to the.idlde file:

• Add a new name to theidlButtonsUser list. The buttons are created in the
order specified.

• Add labelString or labelPixmap resources. These resources define the
button text or image.

• Add anidlCommand resource. This is the text of the IDL command to
execute.

• Add astatusString resources. This is the text that appears in the Status B
when the cursor is positioned over the new button.

Bitmaps for Control Panel Buttons

Bitmaps for control panel buttons must conform to the following:

1. The bitmap must be in either XBM (X11 bitmap file) or XPM (X11 system
pixmap file) format, with the file extension.xbm or .xpm .

2. The bitmap must be located in one of the following directories:

Under UNIX:

• $IDL_DIR/resource/X11/lib/app_defaults

• $IDL_DIR/resource/X11/lib/app_defaults/bitmaps

• $HOME

• $HOME/bitmaps

Under VMS:

• IDL_DIR:[RESOURCE.X11.LIB.X11.APP-DEFAULTS.BITMAPS]
Using IDL Modifying the Control Panel

140 Chapter 4: The IDL for Motif Interface

of

e

G.

put
tions
• SYS$LOGIN

3. The bitmap must be defined in the resource file (Idl , .idlde), for example:

idlde*control*mybutton*labelPixmap: mybutton

Examples

• To add a button calledReset All to theControl Panel with color pixmap
stored in the fileresetall.xpm located in your home directory add the
following resources to your .idlde:

Idl*idlde*control*idlButtonsUser: resetall
Idl*idlde*control*resetall*labelPixmap: resetall.xpm
Idl*idlde*control*resetall*labelString: Reset All
Idl*idlde*control*resetall*idlCommand:\
RETALL & WIDGET_CONTROL,/RESET
Idl*idlde*control*resetall*statusString:\
Stop execution of the current code and return to\
the main programming level

• To specify a pixmap located in particular directory, specify the full file path
the pixmap file, for example:

Idl*idlde*control*resetall*labelPixmap:\
/home/user/bitmaps/resetall.xpm

• To create two rows of the Control Panel from the default of one row, set th
numColumns resource to 2:

Idl*idlde*control*numColumns: 2

• To use label (text) buttons in the Control Panel set labelType to XmSTRIN
To use icon (graphics) buttons set labelType to XmPIXMAP.

Idl*idlde*control*labelType: XmPIXMAP

Command Stream Substitutions

The idlCommand resource specifies the IDL command that is entered into the in
command stream when the respective button is clicked. You can use % substitu
to include certain types of information into the command:

% Symbol Substitution

%S The text of the current selection.

Table 4-4: Command Stream Substitutions
Modifying the Control Panel Using IDL

Chapter 4: The IDL for Motif Interface 141
%F or %P The filename associated with the current
IDL Editor.

%N The base name of the filename (without
path and suffix).

%B The base name of the filename (without
path, but with a suffix)

%L The line number with the current insertion
point.

%% Inserts “%”.

% Symbol Substitution

Table 4-4: Command Stream Substitutions
Using IDL Modifying the Control Panel

142 Chapter 4: The IDL for Motif Interface

s
ands

ands

n

from

e

Action Routines

Most Motif widgets supply action routines which can be bound to events (such a
keypress events). Action routines provided by IDL can be used to define a comm
for Control Panel buttons or menu items by using theidlAction resource.

The following action routines can be used in the same manner as the IDL comm
specified in anidlCommand resource. The syntax to add an action routine to a
control panel button is:

Idl*idlde*control*button name*idlAction: action

where button name is the name of the button and action is the name of the actio
routine.

IdlBreakpoint

UseIdlBreakpoint to control the placement of breakpoints. If no parameter is
specified, the breakpoint is set on the current line. At least one of the arguments
Table 4-4 must be set:

IdlClearLog

UseIdlClearLog to erase the contents of the Output Log.

IdlClearView

UseIdlClearView to clear the contents of the currently-active file in the Multipl
Document Panel.

Argument Action

SET Set a breakpoint on the current line.

CLEAR Clear the breakpoint on the current line.

TOGGLE Toggle (SET or CLEAR) the state of the
breakpoint on the current line.

COMPLEX Display breakpoint dialog to set a complex
breakpoint.

LIST List all currently set breakpoints

Table 4-5: Breakpoint Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 143

 be

.

IdlCommandHide

UseIdlCommandHide to hide or expose the Command Area, which includes the
Command Input Line and the Output Log. One of the following arguments must
set:Show, Hide, orToggle.

IdlCompile

UseIdlCompile to compile the file in the currently-active editor window. One of
the arguments from the following table must be set:

IdlControlHide

UseIdlControlHide to hide or expose the Control Panel. One of the following
arguments must be set:Show, Hide, orToggle.

IdlEdit

UseIdlEdit to manipulate the contents of the currently-selected editor window
One of the arguments from the following table must be set:

Argument Action

FILE Compiles the currently-active
file.

TEMPORARY Compiles the currently-active
file into a temporary file

RESOLVE Resolves all referenced and
uncompiled IDL routines

Table 4-6: Compiling Arguments

Argument Action

UNDO Undo previous editing action.

REDO Redo previously undone
action.

CUT Remove currently-selected
text to Motif clipboard.

Table 4-7: Editor Window Editing Arguments
Using IDL Action Routines

144 Chapter 4: The IDL for Motif Interface

red.
tine
IdlEditMacros

UseIdlEditMacros to display theEdit Macros dialog.

IdlExit

UseIdlExit to cause IDLDE to act as though the EXIT command has been ente
Note that this is usually tied to a menu accelerator (Ctrl-Q in this case), so this rou
is rarely called directly.

IdlFile

UseIdlFile to manipulate the currently-selected editor window. One of the
arguments in the following table must be set:

COPY Copy currently-selected text
to Motif clipboard.

PASTE Paste contents of Motif
clipboard at current insertion
point.

SELECTALL Select all of the text in the
currently-selected editor
window.

GOTODEF Display the definition of the
currently-selected procedure
or function.

GOTOLINE Move directly to the specified
line number.

Argument Action

NEW Creates a new editor window.

OPEN Opens an existing file.

Table 4-8: Editor Window Arguments

Argument Action

Table 4-7: Editor Window Editing Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 145

or

ly
IdlFileReadOnly

UseIdlFileReadOnly to specify the read/write status of the currently-active edit
window. One of the arguments from the following table must be set:

IdlFunctionKey

UseIdlFunctionKey to allow entry of an IDL command into the input command
stream. It is typically used to tie IDL commands to function keys. For example:

<Key>F5:IdlFunctionKey("print, 'F5 pressed'")\n

IdlInterrupt

UseIdlInterrupt to cause IDLDE to receive an interrupt. Note that this is usual
tied to Ctrl-C as a menu accelerator.

IdlListStack

UseIdlListStack to display the current nesting of procedures and functions
(calling stack).

SAVE Saves the contents of the
currently-selected editor
window.

PRINT Prints the contents of the
currently-selected editor
window.

Argument Action

READONLY Disable editing of the
currently-selected editor
window.

READWRITE Enables editing of the
currently-selected window.

Table 4-9: Read/Write Arguments

Argument Action

Table 4-8: Editor Window Arguments
Using IDL Action Routines

146 Chapter 4: The IDL for Motif Interface

ts

nd
e

IdlLogHide

UseIdlLogHide to hide or expose the Output Log. One of the following argumen
must be set:Show, Hide, orToggle.

IdlRecallCommand

UseIdlRecallCommand to recalls previously entered commands into the comma
widget. Either theBACK or theFORWARD argument must be specified to indicat
the direction of the recall. For example:

<Key>osfUp:IdlRecallCommand(BACK)\n

IdlReset

UseIdlReset to reset the IDL environment.

IdlRun

UseIdlRun to execute the currently-active file.

IdlSearch

UseIdlSearch to call theFind dialog for a search of the currentMultiple
Document Panel. One of the optional arguments from the following table may be
used:

Argument Action

FIND Displays a search dialog (default).

FINDAGAIN Finds the next occurrence of the
specified string.

FINDSELECTION Finds next occurrence of the current
selection.

ENTERSELECTION Enters the current selection as the
search string in the Find dialog.

REPLACE Replaces the search string, with a
specified replacement string.

REPLACEFIND Finds the next occurrence of the search
string, and replaces it with the specified
replacement string.

Table 4-10: Find Dialog Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 147
IdlStatusHide

UseIdlStatusHide to hide or expose the Status Bar. One of the following
arguments must be set:Show, Hide, orToggle.

IdlStep

UseIdlStep to control statement execution for debugging. At least one of the
arguments from the following table must be set.

IdlTrace

UseIdlTrace to display a dialog box to control program tracing.

IdlViewHide

UseIdlViewHide to hide or expose theMultiple Document Panel. One of the
following arguments must be set:Show, Hide, orToggle.

Argument Action

INTO Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are also executed in single-
statement mode.

OVER Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are run until completion,
whereupon interactive control returns.

OUT Continues execution until current routine
returns.

SKIP Skips one statement and executes following
statement.

CONTINUE Continues execution of an interrupted program.

TOCURSOR Executes file until encountering the cursor.

TORETURN Executes file until encountering the return.

Table 4-11: Debugging Arguments
Using IDL Action Routines

148 Chapter 4: The IDL for Motif Interface
IdlWindows

UseIdlWindows to manipulate the state of the Editor windows. One of the
arguments from the following table must be set:

Argument Action

CASCADE Arrange open windows in a
staggered, overlapping
fashion.

TILE Arrange all windows in a
non-overlapping fashion.

MULTI Open windows outside the
IDLDE interface.

SINGLE Display the most recent
window on the Multiple
Document Panel.

Table 4-12: Editor Window Display Arguments
Action Routines Using IDL

Chapter 4: The IDL for Motif Interface 149

s
h as
Modifying the Macros Menu

You can adjust theMacros menu. IDLDE looks for a resource namedmacrosList .
If macrosList is found, its value supplies the resource names of the additional
buttons to be added to theMacros menu. This allows system-dependent command
to be added to IDLDE, which simplifies the process of calling external editors suc
emacs or vi.

Example

To add the menu itemFile in Big Vi to theMacros menu add the following resources
to .idlde :

;Define a new menu item:
Idl*idlde*menubar*macrosMenu*macrosListUser: bigViXterm
;Assign text to the defined menu item:
Idl*idlde*menubar*macrosMenu*bigViXterm*labelString:\
File in Big Vi
;Define a procedure to call up the vi editor:
Idl*idlde*menubar*macrosMenu*bigViXterm*idlCommand:\
SPAWN,'xterm -geometry 80x50 -e vi -c %L %F &
;Assign text for the status string:
Idl*idlde*menubar*macrosMenu*bigViXterm*statusString:\
Run vi in the Big Xterm window

Modifying other resources:

You can modify other resources in your user resource file. Check theIdl resource
file for available resources.

Example

To set your own IDLDE default font:

Idl*idlde*fontList: -*-Prestige-Medium-R-*-*-*-\
110-100-100-*-*-ISO8859-1
Using IDL Modifying the Macros Menu

150 Chapter 4: The IDL for Motif Interface

nd
ated
.

cs

ase

 at

it.
o

Using External Editors

Files in Editor windows are used mainly for rudimentary editing and debugging, a
do not offer any sophisticated editing features. If you wish to use more sophistic
editing features, choose one of the external editors offered in the Macros menu

The Macros menu default items are the UNIX standard editors vi and emacs (or
XEmacs, a highly sophisticated editor from the Free Software Foundation). Ema
also supports an IDL language mode (idl-mode), which offers chroma (or font)
highlighting of the IDL language construct, and many other editing features. Ple
consult the IDL FAQ for the latest version of idl-mode (idl.el) and its method of
installation. The IDL FAQ links are available on the Research Systems Web Site
http://www.rsinc.com .

IDLDE always checks if the current file has been externally modified before using
If a file was modified with an external editor, IDLDE notifies you, and asks you t
reload the file before using it (you can also use theRevert to Savedoption from the
File menu to reload the file).
Using External Editors Using IDL

Chapter 4: The IDL for Motif Interface 151

w:
Using the IDL Editor

The IDL Editor provides a simple text file editing facility and is the default editing
environment provided at startup.

The following table lists some shortcuts for maneuvering in the IDL Editor windo

Key Action

Ctrl+A Move the cursor to beginning of the line.

Ctrl+B Move the cursor back one word.

Ctrl+D Delete the next character.

Ctrl+E Move the cursor to end of the line.

Ctrl+F Move the cursor forward one word.

Ctrl+K Delete everything in the current line to the right
of the cursor.

Ctrl+U Delete everything in the current line to the left
of the cursor.

Ctrl+V Delete the word to the left of the cursor.

Ctrl+End Move to the end of the file.

Ctrl+Home Move to the beginning of the file.

Ctrl+ → Move right one word.

Ctrl+ ← Move left one word.

End Move to the end of the current line.

Home Move to the beginning of the current line.

PgUp Move to the previous screen.

PgDn Move to the next screen.

Tab Indent text lines one tab-stop to the right.

←→↑↓ Move the cursor left or right one character, or up
or down one line.

Table 4-13: Editor Window Key Definitions
Using IDL Using the IDL Editor

152 Chapter 4: The IDL for Motif Interface
Using the IDL Editor Using IDL

Chapter 5:

The IDL for
Macintosh Interface

IDL for Macintosh includes a built-in editing and debugging environment called the IDL
Development Environment (IDLDE). This chapter describes the IDLDE.
The following topics are covered in this chapter:
The Main IDL Windows. 154
IDL Document Windows 156
The Menus . 158

Customizing IDL . 170
Macintosh IDL Differences. 178
Using IDL 153

154 Chapter 5: The IDL for Macintosh Interface

o

n

r
d in
The Main IDL Windows

When you start IDL, the IDLOutput Log, theCommand Input and theVariable
Watch Window appear.

Output Log

TheOutput Log window displays output from IDL and echoes commands input t
IDL. Only oneOutput Log window can exist at a time.

Command Input Line

TheCommand Input window is either anchored at the top or bottom of your scree
(depending on the setting in theGeneral Preferences dialog) or is free-floating and
movable like any other window. An unanchoredCommand Input window can be
moved, resized, or hidden.

TheCommand Input window contains a single IDL prompt; this is where you ente
IDL commands. The commands you type and any output from IDL are displaye
theOutput Log.

Figure 5-1: The IDL Output Log Window
The Main IDL Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 155

s
re

of
be
Variable Watch Window

TheVariable Watch Window appears by default when you start the IDLDE. It keep
track of variables as they appear and change during program execution. For mo
information about the Variable Watch Window, see“The Variable Watch Window”in
Chapter 19 ofBuilding IDL Applications.

Project Window

IDL Project Window allows you to manage, compile, run, and create distributions
all the files needed to develop an IDL application. All of your application files can
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. For further information on the Project Window, refer toBuilding
IDL Applications.

Figure 5-2: The Command Input Window

Figure 5-3: The Variable Watch Window and an IDL Project Window
Using IDL The Main IDL Windows

156 Chapter 5: The IDL for Macintosh Interface

s)

the
ther

d on
IDL Document Windows

IDL Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text file
from within IDL. Any number of Editor windows can exist simultaneously. If you
started IDL by selectingFile–>Open Recentand double-clicking on a.pro file, that
file will appear in anEditor window. Editor windows can also be created by
selectingNew or Open from theFile menu.

The line number button box at the bottom left of an IDL Editor window displays
number of the line on which the cursor is located. To relocate the cursor on ano
line, click in the box and specify the line number in theGo To Line field of the new
dialog box. Clicking the line number box is a shortcut for theGo To Line option
from theSearch menu.

Debug Windows

When IDL encounters a program error or breakpoint, and if the debugger is turne
by selectingFile–>Preferences–>General and marking theUse Debugger check
box (see“Use Debugger” on page 171), the IDL Editor window containing the

Figure 5-4: The IDL Editor Window
IDL Document Windows Using IDL

Chapter 5: The IDL for Macintosh Interface 157

dy
d
tosh

the
routine in question is brought to the front. If the file containing the error is not alrea
open, a newEditor window is opened to contain it. A current-line indicator is place
at the line at which the breakpoint or error occurred. You can use standard Macin
editing commands to edit and save the program file.

IDL Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display an image.

You can copy the contents of a Graphics window—Direct or Object—directly to
operating system clipboard in a bitmap format usingCommand-C.
Using IDL IDL Document Windows

158 Chapter 5: The IDL for Macintosh Interface

low.
ht of

of
be

alid

 last
. To

If the
The Menus

Six menus (File, Edit , Search, Run, Project, Macros, Window, andHelp) allow
you to control the operation of IDL for Macintosh. These menus are described be
Note that many menu items have Command-key equivalents displayed to the rig
the menu option.

File Menu

New

Select this option to create a new, empty IDL Editor window.

New Project...

IDL Project Window allows you to manage, compile, run, and create distributions
all the files needed to develop an IDL application. All of your application files can
organized for ease of access, and to be easier to export to other developers,
colleagues, or users. For further information on the Projects Window, refer to
Building IDL Applications.

Open

Select this option to open a text file for editing. The standardFile Selection dialog
box appears. Select the file you want to open and clickOK . A new IDL Editor
window is created to display the text file.

Open Selection

Select this option to use whatever text is selected as an argument to theOpen
command. If the selected text is not the name of a file in the current folder or a v
path, no file is opened.

Open Recent

Select this option to view or open recently opened files. This menu item lists the
ten opened files, and it includes both text and GUIBuilder portable resource files
open a file on this list, simply select it from the drop list.

Close / Hide

Select this option to close the currently-selected IDL window. If you have made
changes in the window, you are prompted to save the changes before closing it.
currently-selected window is theOutput Log, this options changes toHide Output
Log. If the currently-selected window is theVariable Watch Window, this option
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 159

y
le.

the

e the

e

t

 last
changes toHide Variable Watch Window. You can re-display a hidden window by
selectingOutput Log or Variable Watch from theWindow menu.

Save

Select this option to save the contents of an IDL Editor window. If the window is
untitled, you are prompted for a filename for the new file. If the window is alread
associated with a filename, the contents of the window are saved over the old fi

Note
Changes made to a previously-compiled program or function are not noticed by
IDL session until that file is re-compiled. Calling the routine simply re-runs the
currently-compiled version. Select theCompile option under theRun menu to re-
compile the routine before running the newly saved program.

Save As...

Select this option to save the contents of an IDL Editor window to a specified
filename. A file selection dialog box appears.

Revert to Saved

Select this option to discard any changes made in the current window and restor
last saved version of the file.

Page Setup...

Select this option to define page orientation and other print characteristics for th
currently-selected window.

Print

Select this option to print the contents of the currently-selected IDL window, tex
widget, or graphics widget to the currently-active printer.

Recent Files

Select this option to view or open recently opened files. This menu item lists the
ten opened files. To open a file on this list, select it.

Preferences

Select this menu item to display a cascading menu of preference options:General,
Graphics, Edit , Startup, Path, Syntax Coloring, Preferences Sets, andProjects.
See“Customizing IDL” on page 170 for more information.
Using IDL The Menus

160 Chapter 5: The IDL for Macintosh Interface

at

t to

n is

he

oint.

aced
Working Folder...

Select this option to modify the current folder for reading and writing files. Note th
the current folder is searched first when IDL looks for program files.

Quit

Select this option to exit IDL for Macintosh. All IDL Editor windows are closed
before exiting. If text in an Editor window has changed, you are asked if you wan
save it before exiting.

Edit Menu

Undo

Select this option to undo the most recent editing action. If the most recent actio
not undo-able, this option will be shown asCan’t Undo.

Cut

Select this option to cut the currently-selected text from an IDL Editor window or t
IDL Command Input line and place it on the clipboard.

Copy

Select this option to copy the currently-selected text in an IDL Editor window,
Output Log window, orCommand Input to the clipboard.Copy also allows you to
copy graphics from an IDL graphics window or draw widget to the clipboard.

Paste

Select this option to paste the contents of the clipboard at the current insertion p
You can paste into the IDLCommand Input and IDL Editor windows, but not the
Output Log window.

Clear

Select this option to delete the currently-selected text. The deleted text is not pl
on the clipboard.

Select All

Use this option to select all of the text in an IDL Editor orOutput Log window. The
entire contents of the window are highlighted.

Shift Left

Select this menu item to shift the selected text one tab stop to the left.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 161

ng

the
g

itor

 the

itor
Shift Right

Select this menu item to shift the selected text one tab stop to the right.

Comment Line

Select this menu item to insert a semi-colon at the beginning of the line with the
cursor in it. You can also select multiple lines to be commented out by highlighti
them and using this menu item.

Uncomment Line

Select this menu item to remove a semi-colon from the beginning of the line with
cursor in it. You can also select multiple lines to be uncommented by highlightin
them and using this menu item.

Search Menu

Find...

Select this menu item to search for a text string in the currently-selected IDL Ed
window,Output Log window, or text widget.

Find Again

Select this option to repeat the most recent text search.

Find Selection

Select this menu item to search for occurrences of the currently-selected text in
currently-selected window.

Enter Selection

Select this menu item to enter the currently-selected text into theFind dialog as the
search string. For example, you can enter the selection and then selectFind Again to
find the next occurrence.

Replace...

Select this menu item to search for a text string in the currently-selected IDL Ed
window or text widget and replace it with another text string you specify.

Replace & Find Again

Select this option to repeat the most recent search and replace operation.
Using IDL The Menus

162 Chapter 5: The IDL for Macintosh Interface

or

the

tly-

out
 to
n is
Go To Routine Definition

Select this menu item to find and display the definition of the selected IDL library
user-written routine. The routine must already be compiled.

Go To Line...

Select this option to specify a line on which to locate the cursor in the currently-
selected IDL Editor window or text widget.

You can also use the line number button box at the bottom left of an IDL Editor
window, which displays the number of the line on which the cursor is located. To
relocate the cursor on another line, click in the box and specify the line number in
Go To Line field.

Run Menu

Run menu items are enabled when an IDL program is loaded into an IDL Editor
window and compiled. SeeChapter 19, “Debugging an IDL Program” in Building
IDL Applications for more detailed information.

Note
You must have theUse Debugger option in the IDLGeneral Preferences dialog
checked for theDebug menu to appear.

Compile

Select this option to compile the current editor window from memory. The curren
selected file is only recognized as an IDL procedure or function if suffixed with
.pro . Selecting this option is the same as entering.COMPILE at theCommand
Input line, with the appropriateEditor window selected. See.COMPILEin theIDL
Reference Guide for a more detailed explanation.

Compile from Memory

Select this option to save and compile changes to the current editor window with
affecting the last-saved version of the file. The temporary file created allows you
experiment without committing changes to the permanent file. Selecting this optio
the same as entering.COMPILE -f at the Command Input Line. See.COMPILE in
theIDL Reference Guide for a more detailed explanation.

Compile All

Select this option to compile all currently open*.pro files.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 163

ow.

rom

t of

s

Run

Select this option to execute the file contained in the currently-active Editor wind
Selecting this option is the same as entering the procedure name at theCommand
Input line.

Resolve Dependencies

Select this option to iteratively compile all uncompiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
enteringRESOLVE_ALL, /QUIET at the Command Input line. The QUIET keyword
suppresses informational messages. SeeRESOLVE_ALL in theIDL Reference
Guide for a more detailed explanation.

Profile...

Select this option to start the IDLCode Profiler, which helps you analyze the
performance of your applications. See“The IDL Code Profiler” in Building IDL
Applications for more information about the Profiler.

Continue

Select this option to continue a stopped program or start a main-level program f
the beginning. Selecting this option is the same as entering .CONTINUE at the
Command Input line. See.CONTINUE in theIDL Reference Guide for a more
detailed explanation.

Break

Select this option to interrupt program execution. IDL inserts a marker to the lef
the line at which program execution was interrupted.

Clear IDL

Select this option to reset the IDL environment. Selecting this item is the same a
entering the following at theCommand Input line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

SeeRETALL, WIDGET_CONTROL, CLOSE, orHEAP_GC in theIDL Reference
Guide for more detailed explanations.
Using IDL The Menus

164 Chapter 5: The IDL for Macintosh Interface

s

rent-
alls
re

e as

rent-
lls
re

cting

m is

ere
Reset IDL

Select this option to reset the IDL environment. Selecting this item is the same a
entering the following at theCommand Input line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

SeeRETALL, WIDGET_CONTROL, CLOSE, orHEAP_GC, all contained in the
IDL Reference Guide, for more detailed explanations.

Step Over

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement which is stepped over c
another IDL procedure or function, statements from that procedure or function a
executed to the end without interactive capability. Selecting this item is the sam
entering.STEPOVER at the IDL Command Input Line. See.STEPOVER in theIDL
Reference Guide for a more detailed explanation.

Step Into

Select this option to execute a single statement in the current program. The cur
line indicator advances one statement. If the statement which is stepped into ca
another IDL procedure or function, statements from that procedure or function a
executed in order by successiveStep commands. Selecting this item is the same as
entering.STEP at the IDL Command Input line. See.STEP in theIDL Reference
Guide for a more detailed explanation.

Step Out

Select this option to continue processing until the current program returns. Sele
this item is the same as entering.OUT at the IDLCommand Input line. See.OUT in
theIDL Reference Guide for a more detailed explanation.

Trace

Select this option to point to program lines as they are executed. Selecting this ite
the same as entering.TRACE at the IDL command prompt. See.TRACE in theIDL
Reference Guide for a more detailed explanation.

Run to Cursor

Select this option to execute statements in the current program up to the line wh
the cursor is positioned. Selecting this item is the same as setting a one-time
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 165

o the
ne-

e

it a
 and

he
an
lick
st
ld
breakpoint at a specific line. SeeBREAKPOINT in theIDL Reference Guide for a
more detailed explanation.

Run to Return

Select this option to execute statements in the current procedure or function up t
line where the return is positioned. Selecting this item is the same as setting a o
time breakpoint at a specific line. See.RETURN in theIDL Reference Guide for a
more detailed explanation.

Set Breakpoint

Select this option to set a breakpoint on the current line. Selecting this item is th
same as entering the following at the IDLCommand Input line:

BREAKPOINT, ['File',] Index

whereFile is the file to set a breakpoint within, andIndex designates the line
number at which the breakpoint is set.

SeeBREAKPOINT in theIDL Reference Guide for a more detailed explanation.

Edit Breakpoint ...

Select this option to access theEdit Breakpoint dialog to set a complex breakpoint.
Complex breakpoints may function only once, or may function only after being h
specified number of times. Selecting this item is the same as setting the AFTER
ONCE keywords for the BREAKPOINT procedure at the IDLCommand Input line.

Enter the source file in which to set a breakpoint in theFile: field. The default file is
the one in which the cursor is positioned. ClickChoose File ... to search through
available directories. Enter the line number at which to place the breakpoint in t
Line: field. The default is the line at which the cursor is currently positioned. You c
also specify how many times the line must be hit in order to interrupt execution. C
One-Time Breakpoint to interrupt execution after encountering the line for the fir
time or clickBreak After: and enter the number of hits after which execution shou
be interrupted into the given field.

SeeBREAKPOINT in theIDL Reference Guide for a more detailed explanation.

Clear All Breakpoints

Select this option to clear all breakpoints.
Using IDL The Menus

166 Chapter 5: The IDL for Macintosh Interface

he

e

List Breakpoints

Select this option to list all breakpoints currently set, in all compiled programs.
Selecting this item is the same as enteringHELP, /BREAKPOINTS at the IDL
Command Input line.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting this item is the same as entering HELP, /TRACEBACK at the IDL
Command Input line. SeeHELP in theIDL Reference Guide for a more detailed
explanation.

Project Menu

Add Window

Select this menu item to add the current file in theEditor window to the current
project.

Add Files...

Selecting this option brings up theAdd Files To Project dialog box from which you
can select files to add to the current project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Remove Selected Items

When an item in theProject window has been selected, it may be removed from t
project by using this option from theProject menu. For more information, see
“Creating IDL Projects” in Chapter 2 of theBuilding IDL Applications manual.

Project Options...

Select this option to change the options for a project. TheProject Options dialog
displays. For more information, see“Creating IDL Projects” in Chapter 2 of the
Building IDL Applications manual.

Compile/Compile Modified Files

Select this option to compile files in a project. You can choose eitherAll Files, to
compile all the source files in a project; or by holding down theOption key chose
Compile Modified Files to compile only the files that have been modified since th
last compile.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 167

s

Build

Select this option to build your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Run

Select this option to run the application defined by your project.

Export...

Select this option to export your project. For more information, see“Creating IDL
Projects” in Chapter 2 of theBuilding IDL Applications manual.

Macros Menu

Edit Macros...

Select this item to access theEdit Macros dialog. Macros which have already been
defined are listed in theMacros: field. To edit a macro, click on the macro to acces
its characteristics and clickSAVE when your adjustments are complete.

Import Image

Select this option to import an image file into IDL. For more information, see“Using
Macros to Import Image Files” on page 185.

Import Ascii

Select this option to import an ASCII file into IDL. For more information, see“Using
Macros to Import ASCII Files” on page 189.

Import Binary

Select this option to import a binary file into IDL. For more information, see“Using
Macros to Import Binary Files” on page 195.

Import HDF

Select this option to import an HDF file into IDL. For more information, see“Using
Macros to Import HDF Files” on page 201.

Window Menu

Stagger

Select this option to stagger all theOutput Log and IDL Editor windows on the
desktop.
Using IDL The Menus

168 Chapter 5: The IDL for Macintosh Interface

t

Tile

Select this option to tile all theOutput Log and IDL Editor windows side-by-side on
the desktop.

Command Input Anchored

Select this option to anchor or unanchor theCommand Input window pane. If the
window is anchored, a check will appear next to this menu item.

Command Input

Select this menu item to give theCommand Input window the input focus.

Output Log

Select this menu item to bring theOutput Log to the front.

Variable Watch

Select this option to give theVariable Watch Window the input focus.

Macro Editor

Select this option to bring theMacro Editor to the front.

Profile

Select this option to bring theProfile dialog to the front. See“The IDL Code
Profiler” in Building IDL Applications for more information about the Profiler.

Profile Results

Select this option to bring the Profile Report dialog to the front. See“The IDL Code
Profiler” in Building IDL Applications for more information about the Profiler.

Breakpoints

Select this option to bring theEdit Breakpoint window to the front.

Open Editor Windows

If any files and/or projects are currently open, they are listed at the bottom of the
Window menu. Select any of these menu items to make that window the curren
window and give it the input focus.

Help Menu

TheHelp menu is located at the far right of the menu bar.
The Menus Using IDL

Chapter 5: The IDL for Macintosh Interface 169

out

ed
About Balloon Help...

IDL for Macintosh supports balloon help. Select this menu item to learn more ab
balloon help.

Show Balloons

SelectShow Balloons to activate help balloons. This menu item changes toHide
Balloons when balloons are enabled.

IDL Online Help

Select this menu item to display the IDL Online Help Viewer.

Help on Selection

Select this menu item to display the help topic in IDL Online Help for the highlight
item TheIndex dialog appears if the topic is ambiguous or does not exist.
Using IDL The Menus

170 Chapter 5: The IDL for Macintosh Interface

s.

ct
Customizing IDL

Various defaults for IDL can be customized using the IDLPreferences dialog box.
SelectPreferencesfrom the IDLFile menu to display a cascading list of preference

Select an item from the list to display aPreferences dialog box. Enter new values
and click onOK to use the preferences in the current IDL session. Select theSave
Settings on Exit option (a checkmark appears by the item the next time you sele
Preferences) to save the preferences for use with future IDL sessions.

General Preferences

These preferences control the general appearance and behavior of IDL.

Figure 5-5: General Preferences Dialog and Graphics Preferences Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 171

e
chor

used

ur
lack
Lines to Save in Log Window

Enter the number of lines you wish to save in the IDL Output Log window. By
default, 200 lines are saved.

Anchor Command Window

Use this option to select whether you want the IDL Command Input window to b
anchored at the top or bottom of your screen when it is anchored. You can unan
the Command Input window by uncheckingCommand Input Anchored in the
Window menu.

Default Text Formats

These three buttons allow you to set the default font, font size, and tab size to be
in:

• IDL Editor windows,

• Text and List widgets,

• Buttons, menus, titles, and other widget objects.

Note
To set the text formats for the current window only, selectFormat from theEdit
Preferences option.

Use Debugger

If this box is checked, theDebug menu appears in the menu bar and the IDL for
Macintosh debugger automatically opens an edit window containing the program
module in question when an error occurs in an IDL program.

Graphics Window Settings

These preferences control defaults for IDL graphics windows.

Number of Colors Used

The number of colors allocated for IDL graphics windows. The default is 220. If yo
display supports 256 colors, a maximum of 254 colors can be reserved for IDL (b
and white are reserved for the System).
Using IDL Customizing IDL

172 Chapter 5: The IDL for Macintosh Interface

en

en

d to

,

our

rts

r.
n 8-
Default Window Width

The width of IDL graphics windows, in pixels. The default is 1/4 of the total scre
width.

Default Window Height

The height of IDL graphics windows, in pixels. The default is 1/4 of the total scre
height.

Backing Store

This field controls the default for how IDL handles backing store. When backing
store is enabled, IDL keeps a copy of each window in memory. This data is use
refresh the window when it has been covered and uncovered.

Change this field toNone to disable backing store. Set this field toPixmap (the
default) to have IDL maintain backing store.

See“Backing Store” of Building IDL Applications for more information.

Startup Depth

This popup menu allows you to specify the color pixel depth you wish to work in
regardless of the actual depth of your monitor. All operations (saving, printing,
copying to the clipboard, etc.) will be carried out in the depth you select, even if y
monitor does not support that depth.

For example, if you wish to work with 24-bit images but your computer only suppo
8-bit video, select24-bit from theStartup Depth menu. (If you do not selectDither
to Lower Depth Screens, images will not be displayed properly on your monitor.)
Similarly, if you wish to use 8-bit, pseudo-color video even though your machine
supports 24-bit true-color, choose8-bit. Select the screen depth to match the pixel
depth IDL works with to your monitor.

Note
This setting takes effect when IDL is restarted.

Dither to Lower Depth Screens

Check this box to display high pixel-depth images on a lower pixel-depth monito
Floyd-Steinberg dithering is used to display, for example, true-color images on a
bit-deep screen. This setting takes effect immediately when you clickOK—you need
not close and restart IDL.
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 173

that
he
ease

fonts
Size of TrueType Font Cache (in Glyphs)

Enter the number of TrueType characters to for which to save triangulation
information. Saving the triangulation information for TrueType characters means
IDL will not have to calculate the polygons to draw the next time a character of t
same font and size is rendered. Larger values will use more memory but can incr
drawing speed if multiple fonts are used. The default is 256.

Object Graphics Renderer

Select eitherHardware Rending (Open GL) orSoftware Rendering. See“Window
Objects” in Chapter 28 for information about the differences between the two
rendering systems.

Hardware Font

Click on this button to bring up theGraphics Hardware Font dialog, which allows
you to specify the font, font size, and style to be used when hardware fonts are
specified for use in IDL graphics windows.

Note
The !P.FONT system variable field must be set equal to zero to use hardware
rather than the default vector fonts.

Edit Preferences

These preferences control the look of the IDL windows.

Figure 5-6: Edit Preferences Dialog
Using IDL Customizing IDL

174 Chapter 5: The IDL for Macintosh Interface

ea to

rtup

ons
Window Format

The current window—active window,Command Input, orOutput Log—is
reflected in this dialog. You can set the font, the font size, and the tab size. The ar
the right of the pull-down menus shows an example of the settings.

Auto Indent

Check this box to activate auto-indentation as applicable in the current window.

Startup Settings

These preferences control the location of the IDL Home Folder and the IDL Sta
File.

Select IDL Main Dir...

The IDL Main Dir is the folder in which IDL was installed. It only needs to be
changed if the executable is moved somewhere else (e.g., to a special applicati
folder). Clicking on this button displays a dialog for selecting the folder. The IDL
main directory is displayed below.

Select Startup File

Click this button to specify the name of an IDL batch file to be executed
automatically each time IDL is run. The startup file is displayed below.

Figure 5-7: Startup Settings Dialog and Path Specification Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 175

up

y a
ick

k on

s
d,
Note
Startup files are executed one statement at a time. It is not possible to define
program modules, (procedures, functions, or main-level programs) in the start
file.

Use No Startup File

Click this button to not have a startup file executed.

Path Specifications

This dialog specifies where IDL will look for procedures and functions. To specif
folder that includes all of that folder’s subfolders, select the entry in the list and cl
theSearch Subfoldersbutton. A+ will be shown in front of the path, indicating that
the folder is to be searched recursively. To change the path specification list, clic
eitherAdd or Remove.

The default path is the IDL folder and all of its subfolders.

Syntax Coloring

This dialog specifies if IDL should use syntax coloring within open editor window
and in theCommand Input line. To change the color associated with a context wor
click on the color box next to each type of word. To disable syntax coloring
altogether, un-check theUse Syntax Coloringcheck box. To disable syntax coloring
Using IDL Customizing IDL

176 Chapter 5: The IDL for Macintosh Interface

an

 will
ory

n

only within theCommand Input line, un-check theUse Syntax Coloring on
Command Line check box.

Setting IDL’s Memory Partition

Running large IDL programs or displaying large images may require more RAM th
is automatically allocated for IDL by the installation program.

In general, the more memory you allocate for IDL, the faster complex programs
run. Of course, you must balance the size of IDL’s memory partition with the mem
requirements of other applications you use.

To change the memory allocation, first exit IDL. Using theFinder, click on theIDL
icon. SelectGet Info from the Macintosh systemFile menu to bring up the file
information dialog. In theMemory Requirements section of the file information
dialog is a field that readsPreferred Size:. Change the value in this field to reflect
the amount of memory you wish to allocate to IDL, in kilobytes. Close theIDL Info
window when you are finished. When you restart IDL, the new memory allocatio
will be in effect.

Figure 5-8: Syntax Coloring Dialog
Customizing IDL Using IDL

Chapter 5: The IDL for Macintosh Interface 177

e

ply
Message-of-the-Day File

A message-of-the-day file can be used to display the contents of an ASCII text fil
each time IDL is run. To create a message-of the-day file for IDL for Macintosh,
simply name the desired text fileMOTD.txt or MacOS.txt and place it in themotd
folder in thehelp folder in the main IDL folder. Note that the MOTD file is simply an
ASCII text file – not an IDL program or batch file. To execute a series of IDL
commands, select a startup file as described under“Startup Settings”.

If you don’t wish to see the message-of-the-day file each time you start IDL, sim
remove or rename theMacOS.txt or MOTD.txt file.
Using IDL Customizing IDL

178 Chapter 5: The IDL for Macintosh Interface

reted

e
s a

t of
Macintosh IDL Differences

The Macintosh version of IDL implements most of the functionality of other IDL
versions. There are a number of differences, however, as described below.

Using the Macintosh Mouse with IDL

IDL supports the use of mice with up to three buttons. However, the Macintosh
mouse has only one button. When pressed, the Macintosh mouse button is interp
by IDL as theleft mouse button. Hold down theOption key while pressing the
mouse button to simulate amiddle mouse button press. Hold down theCommand
key while pressing the mouse button to simulate a right mouse button press.

Specifying Paths

Many IDL commands accept a partially- or fully-qualified filename (i.e., a filenam
and the directory path to that file) as an argument. However, the Macintosh use
graphical representation of file folders instead of a directory tree. To solve this
problem, the following syntax is used to specify the location of files and folders:

• Partially- or fully-qualified filenames are specified as a colon-separated lis
drive names and folders.

• Folder and file names can contain spaces and/or commas.

For example, the string to specify the fully-qualified filename of the file
myprogram.pro , located in the folder namedPrograms which resides on the drive
namedMacintosh HD would be:

'Macintosh HD:Programs:myprogram.pro'

• Partially-qualified filenames—filenames specified relative to the current
directory—begin with: (the colon character). For example, to specify the

Mouse Button Key sequence for Macintosh

left mouse button press

middle Option key+mouse button press

right Command key+mouse button press

Table 5-1: Key Sequences for a Macintosh Mouse
Macintosh IDL Differences Using IDL

Chapter 5: The IDL for Macintosh Interface 179

er

m

own
nly
filename ofmyprogram.pro , located in the folder test, which is located in the
current working folder (whatever that may be), use the following string:

':test:myprogram.pro'

Operating System Commands

Changing the Current Working Directory

To change the current working directory, specify a valid Macintosh path to a fold
(as described in“Specifying Paths” on page 178) with the IDLCD command. For
example, to change the current directory (folder) to the folderPrograms , which
resides on a disk calledMacintosh HD , enter the command:

IDL> CD, 'Macintosh HD:Programs:'

Other Macintosh operations can change the current directory as well:

• Opening a file with theOpen command or by double-clicking on it in the
Finder changes the current directory to the folder where that file resides.

• Saving a file with theSave As command changes the current directory to the
folder where the saved file resides.

• Choosing a new folder using theWorking Folder command in theFile menu.

Note
The IDL routine DIALOG_PICKFILE does not change the current directory.

File Manipulation

Compiling Programs

Because Macintosh filenames allow spaces, the .RUN, .RNEW, and .COMPILE
executive commands cannot be used to compile multiple programs with a single
command.

For example, on most IDL platforms, the following line compiles three IDL progra
files namedtest , demo, andprogram :

IDL> .RUN test demo program

However, since Macintosh filenames can have spaces in them, the filenames sh
above would be interpreted as a single filename. In IDL for Macintosh, you can o
specify one filename per .RUN command. For example:

IDL> .RUN Macintosh HD:Programs:test
Using IDL Macintosh IDL Differences

180 Chapter 5: The IDL for Macintosh Interface

the
nd

file.

rom
Save/Restore Files

SAVE/RESTORE files generated with the Macintosh version of IDL are saved in
XDR format. This format allows data files saved under UNIX, VMS, Macintosh a
DOS systems to be easily exchanged.

Logical Unit Numbers

The three special file units, 0, –1, and –2, are tied tostdin (theCommand Input
line), stdout (theOutput Log) andstderr (theOutput Log), respectively.

Positioning File Pointers

Under Macintosh, the current file pointer cannot be positioned past the end of the

Math Error Handling

Integer divide by zero is always trapped. Integer overflow and underflow are not
detected. Improper floating-point operations are trapped.

Macintosh-Specific File Information

When a file is saved on the Macintosh, it is assigned a file type. Text files saved f
IDL are assigned the typeTEXT. Binary files saved from IDL are assigned the type
BIN .

Note
The type code is always four characters long, so theBIN type code includes an
ASCII space character at the end.
Macintosh IDL Differences Using IDL

Part II: Reading
and Writing Data

Chapter 6:

IDL Macros for
Importing Data

This chapter describes the following topics.
Overview . 184
Using Macros to Import Image Files 185
Using Macros to Import ASCII Files 189

Using Macros to Import Binary Files 195
Using Macros to Import HDF Files. 201
Using IDL 183

184 Chapter 6: IDL Macros for Importing Data

his
ary,
Overview

In IDL 5.3, new macros have been added to ease the importing of data into IDL. T
chapter introduces these macros and describes how to import image, ASCII, bin
and Scientific Data Format (SDF) files. These macros are available through the
Macros menu and also through new IDLTool Bar buttons.

Figure 6-1: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Import ASCII File Import Binary File

Import HDF
File

Import Image
File
Overview Using IDL

Chapter 6: IDL Macros for Importing Data 185

the
e

ugh
in

E.
Using Macros to Import Image Files

To import an image file into IDL, complete the following steps:

1. Select theImport Image File tool bar button. TheSelect Image File dialog
displays.

2. Select a file to import. For example, select the
rsi-directory /examples/muscle.jpg file wherersi-directory is the
installation directory for IDL.

You can now see a preview of this image as well as other information about
file in the lower section of the Select Image File dialog. You can change th
preview toColor, Grayscale, orNo Preview. If the image file had more than
one actual image, you can see them using the arrow buttons to scroll thro
the images. You can only read in one image of a multi-image file. The image
the preview is the image that will be read.

3. Click Open.

4. The file has been opened into a structure variable named MUSCLE_IMAG

Figure 6-2: Select Image File Dialog
Using IDL Using Macros to Import Image Files

186 Chapter 6: IDL Macros for Importing Data

 the

. If
d

u

Images opened with theImport Image File macro are stored in structure variables
which are namedfilename_IMAGE wherefilename is the name of the file you
opened without the extension. So, the file we just opened (muscle.jpg) is now in
structure variable named MUSCLE_IMAGE. The file is a structure as follows:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your image isn-by-m the palette is usually present and
the R, G, and B color table vectors mentioned above will contain values
your image is 3-by-n-by-m, the palette will not be present and the R,G, an
B color table vectors will not contain any values.

• IMAGE_INDEX — The index of the image of the file. The default is 0,
the first image in the file. If there are multiple images in the file that yo
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.

• PIXEL_TYPE — The IDLType Code of the image pixel format. Valid
types are:

PIXEL_TYPE returned Data Types

1 Byte

2 Integer

3 Longword Integer

4 Floating Point

5 Double-precision Floating Point

12 Unsigned Integer

13 Unsigned Longword Integer

Table 6-1: Values for PIXEL_TYPE in the Structure
Using Macros to Import Image Files Using IDL

Chapter 6: IDL Macros for Importing Data 187

 the
• TYPE — The image type. Valid return values are:

BMP, GIF, JPEG, PNG, PPM, SRF, TIFF, DICOM

The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

TV, MUSCLE_IMAGE.IMAGE

14 64-bit Integer

15 Unsigned 64-bit Integer

Figure 6-3: Variable Watch Window Showing MUSCLE_IMAGE Structure

PIXEL_TYPE returned Data Types

Table 6-1: Values for PIXEL_TYPE in the Structure
Using IDL Using Macros to Import Image Files

188 Chapter 6: IDL Macros for Importing Data
This displays the following:

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 6-4: MUSCLE_IMAGE.IMAGE
Using Macros to Import Image Files Using IDL

Chapter 6: IDL Macros for Importing Data 189

r

ce,

in
Using Macros to Import ASCII Files

To import an ASCII file into IDL, complete the following steps:

1. Select theImport ASCII File tool bar button. TheSelect an ASCII file to
read dialog displays.

2. Select a file to import. For example, select the
rsi-directory /examples/ascii.txt file wherersi-directory is the
installation directory for IDL. ClickOpen.

3. In theDefine Data Type/Range dialog, you specify information about your
file. The first few lines of the file are displayed to help you find the
information you need to specify.

First, select the type of field which best describes your data. You can eithe
chooseFixed Width which specifies that the data is aligned in columns, or
Delimited which specifies that the data is separated by commas, whitespa
etc. In this example, the data is delimited by commas so we’ll select the
Delimited radio button.

Next, enter a character or string that is used to comment lines within the file
theComment String to Ignore: field. In this example, if we read the first few

Figure 6-5: Select an ASCII file to read Dialog
Using IDL Using Macros to Import ASCII Files

190 Chapter 6: IDL Macros for Importing Data

r the

he
lines of this file, it defines the % character as the comment character. Ente
% sign in theComment String to Ignore: field.

Next, enter the line number in which the data starts in theData Starts at Line:
field. In this example, the data starts on line 6 so we’ll enter that value in t
field.

Click Next.

4. In theDefine Delimiter/Fieldsdialog, we’ll specify the information about the
actual data in the file.

First, we’ll enter the number of columns or fields in theNumber of Fields Per
Line: field. In this example, there are 7 fields.

Next, we’ll enter the how the data is delimited. You can chooseWhite Space,
Comma, Colon, Semicolon, Tab, orOther. If you specifyOther, you must
then enter the characters in the field. In this example, we’ll selectComma
since the data is delimited by commas.

Figure 6-6: Define Data Type/Range Dialog
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 191

f

g.

In
 –
Click Next.

5. In theField Specificationdialog, we’ll enter information about the contents o
each column or field in the data.

First, select the first field in the data in the box in the upper left of the dialo
Enter the name of the field in theName field and the type of data represented
in theType field. In this example we’ll specifyLongitude andFloating for
the fields. Continue naming all the fields in the data using this procedure.
this example, we’ll use Latitude – Floating; Elevation – Long; Temperature
Long; DewPoint – Long; WindSpeed – Long; WindDir – Long for the other
field pairs.

You can also group some or all of the fields into one field by using theGroup
or Group All buttons. In this example, there is no need to group any of the
fields.

Figure 6-7: Define Delimiter/Fields Dialog
Using IDL Using Macros to Import ASCII Files

192 Chapter 6: IDL Macros for Importing Data

dard

the
ld
Next, select the value to assign missing data. You can select the IEEE stan
for NaN or a custom value. In this example, we’ll chooseIEEE NaN.

6. Click Finish.

ASCII files opened with theImport ASCII File macro are stored in structure
variables which are namedfilename_ASCII wherefilename is the name of the file
you opened without the extension. So, the file we just opened (ascii.txt) is now in
structure variable named ASCII_ASCII. The variable is a structure with each fie
name being an element of the structure.

Figure 6-8: Field Specification Dialog
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 193

 the
The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field, enter the following:

Print, ASCII_ASCII.LONGITUDE

IDL prints:

-156.950 -116.967 -104.255 -114.522 -106.942
-94.7500 -73.6063 -117.176 -116.093 -106.372
-93.2237 -109.635 -76.0225 -93.1535 -118.721

If you want to plot Temperature, enter the following:

PLOT, ASCII_ASCII.TEMPERATURE

Figure 6-9: Variable Watch Window Showing ASCII_ASCII Structure
Using IDL Using Macros to Import ASCII Files

194 Chapter 6: IDL Macros for Importing Data
The following figure results.

Figure 6-10: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files Using IDL

Chapter 6: IDL Macros for Importing Data 195

ike

 or
ibly
les,
not

y
ions
Using Macros to Import Binary Files

Sometimes, data is stored in files as arrays of bytes instead of a known format l
JPEG or TIFF. These files are referred to as binary files.

Note
TheImport Binary File macro is intended for use in loading raw binary data from
files into IDL. Such data is comprised of bits that are meaningful — as integers
floating-point numbers for example — with no special processing (except poss
byte-order swapping) required. Commercial spreadsheet or word processing fi
for example, are binary but they are not raw in the above sense, and thus are
good candidates for use with this macro.

Also note that theImport Binary File macro is intended for use in loading data
from files the contents of which you have some knowledge about. To effectivel
read data with this macro, you must be able to supply literal values or express
that specify the type and location of the data in the file you wish to read.

To import a binary file into IDL, complete the following steps:

1. Select theImport Binary File tool bar button. TheSelect a binary file to
read dialog displays.

Figure 6-11: Select a binary file to read Dialog
Using IDL Using Macros to Import Binary Files

196 Chapter 6: IDL Macros for Importing Data

are
es

nt

red

t

d as
s a
2. Select a file to import. For example, select the
rsi-directory /examples/surface.dat file wherersi-directory is the
installation directory for IDL. ClickOpen.

3. In theBinary Template dialog box, specify information about your file.

First, enter the name of the template you are going to create in theTemplate
name: field. For this example, “marbellstemplate” is used.

Next, select the byte order in the file in theFile’s byte ordering: pull-down
menu. The choices are:

• Native — The type of storage method that is native to the machine you
currently running. Little Endian for Intel microprocessor-based machin
and Big Endian for Motorola microprocessor-based machines. No byte
swapping will be performed.

• Little Endian — A method of storing numbers so that the least significa
byte appears first in the number. For example, given the hexadecimal
number A02B, the little endian method specifies the number to be sto
as 2BA0. Specify this if the original file was created on a machine that
uses an Intel microprocessor.

• Big Endian — A method of storing numbers so that the most significan
byte appears first in the number. For example, given the hexadecimal
number A02B, the big endian method specifies the number to be store
A02B. Specify this if the original file was created on a machine that use
Motorola microprocessor.

Figure 6-12: The Binary Template dialog
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 197

ple

he

e:

his

.

es

any

a

ot

in
The filesurface.dat was created on a machine that uses an Intel
microprocessor. For this example, selectLittle Endian for the byte order.

4. Now we are ready to enter the field values for the file. You can have multi
fields within a binary file. Click theNew Field... button in the lower-left
corner of theBinary Template dialog box.

In theNew Field dialog (shown at the end of these example steps), enter t
name of the field in theField name: text box. In this example, enter “A” as the
field name.

Next, you need to specify where in the file to start reading. The options ar

• Offset — Specifies the byte offset or where to begin reading the file. T
is always a decimal integer unless theAllow an expression for the offset
checkbox is checked. The> symbol specifies to offset forward from a byte
position, the< symbol specifies to offset backward from a byte position

• From beginning of file — Specifies to start reading this field starting with
the first byte of the file plus anyOffset specified.

• From initial position in file/From end of previous field — This field
changes depending upon if this is the first field or any other field besid
the first. If this is the first field you are defining, this option specifies to
read from the beginning of the file plus anyOffset specified. If this is not
the first field, this option changes toFrom end of previous field and
specifies to begin reading the field where the previous field ended plus
Offset specified.

• Allow an expression for the Offset — If this is checked, you can enter
any valid IDL expression in theOffset field. You can use any previously
defined field in the expression.

In this example, since this is the first field in the file and we don’t have any
header information in the file, specifyFrom the beginning of filewithout any
offset.

Next, select whether or not you want this field to be returned to IDL when
file is read. For example, you may have a section of your binary file that
contains header information. If you create a field for this section, you do n
want it returned to IDL. In this case, you would not selectReturned in the
result. You must specify at least one field to be returned to IDL. In this
example, we want to return the field we’re creating so we’ll check the box
the upper-right corner markedReturned in the result.
Using IDL Using Macros to Import Binary Files

198 Chapter 6: IDL Macros for Importing Data

ou

alar.

ple,

f
 two-

rder
-by-
Next, you need to specify whether or not you want to verify any of the data y
are returning in theVerified equal to field. This field is only available if the
field is a scalar. This can be any valid IDL expression that evaluates to a sc
For this example, we won’t verify any of the data.

Next, you need to specify the type of data that is in this field. In this exam
the data is integer type data so select the Integer (16 bits) at theType pull-
down menu. The valid values forType are:

• Byte (unsigned 8-bits)

• Integer (16-bits)

• Long (32-bits)

• Long64 (64 bits)

• Float (32 bits)

• Double-Precision (64-bits)

• Unsigned Integer (16 bits)

• Unsigned Long (32-bits)

• Unsigned Long64 (64-bits)

• Complex (real-imaginary pair of floats)

• Double-Precision Complex (pair of doubles)

Next, specify the number of dimensions contained in the data in theNumber
of dimensions:pull-down menu. This will activate a corresponding number o
boxes in the dimensions section of the dialog. In this example, the data is
dimensional.

Finally, enter the size of each dimension in the field. If you select theAllow
expressions for dimension sizes check box, you enter any valid IDL
expression that returns the size of the dimension. You can also choose to
reverse the order of the data by selecting theReverse check box for each
dimension. This can be useful when image data is returned in the reverse o
and appears upside down. In this example, the data is contained in a 350
450 array, so enter 350 for the size of the1st dimensionand 450 for the size of
the2nd dimension in the text fields markedSize:.

Click OK .
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 199

ure
5. You can now see the information that you entered in theBinary Template
dialog. If you need to enter more fields, select theNew Field button. Repeat
the steps until you have entered all the fields in the binary file.

In this example, there is only one field. ClickOK .

Binary files opened with theImport Binary File macro are stored in structure
variables which are namedfilename_BINARY wherefilename is the name of the file
you opened without the extension. So, the file we just opened (surface.dat) is
now in the structure variable named SURFACE_BINARY. The variable is a struct
with each field name being an element of the structure.

Figure 6-13: Modifying fields in Binary Template
Using IDL Using Macros to Import Binary Files

200 Chapter 6: IDL Macros for Importing Data

 the
The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name

For example, display the image by entering:

TVSCL, SURFACE_BINARY.A

Figure 6-14: Variable Watch Window Showing MARBELLS_BINARY Structure

Figure 6-15: Surface.dat displayed using TVSCL
Using Macros to Import Binary Files Using IDL

Chapter 6: IDL Macros for Importing Data 201

L,

e

o

Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into ID
complete the following steps:

1. Select theImport HDF File tool bar button. TheSelect a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. ClickOpen.

3. TheHDF Browser window is displayed (shown at the end of these exampl
steps). In theHDF Browser window, select the data in the file you want to
import into IDL.

In theDisplay pull-down menu, select the type of file you are reading. The tw
options are:

• HDF/NETCDF

• HDF-EOS

Figure 6-16: Select a valid HDF, NETCDF or HDF-EOS file Dialog
Using IDL Using Macros to Import HDF Files

202 Chapter 6: IDL Macros for Importing Data

ibe
.

ws

ed.
Next, select the type of data you want to import. The following tables descr
the options available for the two display choices from the pull-down menu

Once you have selected the type of data, information is displayed that sho
the different elements of data available in the file you are opening. For
example, if it is an image file, you will see the names of the images display
Select the item to import.

If you have selected an image, 2D data set, or 3-by-n-by-m data set from the
pull-down menu, you can click on thePreview button to view the image. If

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

Table 6-2: Menu Options for HDF/NetCDF Data Types

Menu Selection Description

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Table 6-3: Menu Options for HDF-EOS Data Types
Using Macros to Import HDF Files Using IDL

Chapter 6: IDL Macros for Importing Data 203

 on
e

t the

ted

es
you have selected a data item that can be plotted in two dimensions, click
thePreview button to view a 2D plot of the data (the default); or click on th
Preview Surface radio button to display a surface plot; click on thePreview
Contour radio button to display a contour plot; or click on thePreview Show3
radio button for an image, surface, and contour display. You can also selec
Fit to Window check box to fit the image to the window.

Next, if you want the data or metadata item you are previewing to be impor
into IDL, select theRead check box to extract the current data or metadata
item from the HDF file.

Next, specify a name for the extracted data or metadata item.

Note
TheRead check box must be selected for the item to be extracted. Default nam
are generated for all data items, but may be changed at any time by the user.

Figure 6-17: HDF Browser Window
Using IDL Using Macros to Import HDF Files

204 Chapter 6: IDL Macros for Importing Data

t to

ith

 the

and
al

ee
4. Continue selecting to read and name the data or metadata items you wan
import into IDL.

5. Click OK .

HDF, NETCDF, or HDF-EOS files read with theImport Binary File macro are
stored in structure variables which are namedfilename_DF wherefilename is the
name of the file you opened without the extension. The variable is a structure w
each data or metadata name being an element of the structure.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf
you named the elements IMAGE1 and IMAGE2, you could access each individu
data element using the following:

HYDROGEN_DF.IMAGE1

HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

TV, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, s
theScientific Data Formats manual.
Using Macros to Import HDF Files Using IDL

Chapter 7:

Reading and Writing
Images
ands
This chapter provides an introduction to reading and writing image data using the latest comm
and user interfaces found in IDL 5.3.
Overview . 206
List of Commands. 207
Accessing Image Files Using Dialogs . . . 210
Accessing General Image File Formats . . 214

Accessing Specific Image File Formats. . . 215
Accessing Files Using Dialogs 217
Accessing Files With Compound Widgets 219
Advanced File Input/Output 220
Using IDL 205

206 Chapter 7: Reading and Writing Images
Overview

This chapter introduces routines for reading and writing image data. These IDL
routines provide access to specialized functionality in the case of more specific
applications.
Overview Using IDL

Chapter 7: Reading and Writing Images 207
List of Commands

Compound Widgets and Dialogs

Images (Generalized)

Images (Specific Formats)

CW_FILESEL A compound widget for file selection.

DIALOG_PICKFILE Allows the user to interactively pick a file, or
multiple files, using the platform's own native
graphical file-selection dialog.

DIALOG_READ_IMAGE A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE A graphical user interface used for writing
image files.

QUERY_IMAGE Reads the header of a file and determines if it is
recognized as an image file.

READ_IMAGE Reads the image contents of a file and returns the
image in an IDL variable.

WRITE_IMAGE Writes an image and its color table vectors, if any, to a
file of a specified type.

QUERY_BMP Obtains information about a BMP image file without
having to read the image.

QUERY_DICOM Tests a file for compatibility with READ_DICOM and
returns an optional structure containing information
about images in the DICOM file.

QUERY_GIF Obtains information about a GIF image file without
having to read the image.

QUERY_JPEG Obtains information about a JPEG image file without
having to read the image.
Using IDL List of Commands

208 Chapter 7: Reading and Writing Images

.

d

e

QUERY_PICT Obtains information about a PICT image file without
having to read the image.

QUERY_PNG Obtains information about a PNG image file without
having to read the image.

QUERY_PPM Obtains information about a PPM image file without
having to read the image.

QUERY_SRF Obtains information about a SRF image file without
having to read the image.

QUERY_TIFF Obtains information about a TIFF image file without
having to read the image.

READ_BMP Reads a Microsoft Windows Version 3 device
independent bitmap image (.bmp) and returns a byte
array containing the image.

READ_DICOM Reads an image from a DICOM file along with any
associated color table.

READ_GIF Reads the contents of a GIF format image file and
returns the image and color table vectors (if present)

READ_INTERFILE Reads image data stored in Interfile (v3.3) format an
returns a 3D array.

READ_JPEG Reads JPEG (Joint Photographic Experts Group)
format compressed images from files or memory.

READ_PICT Reads the contents of a PICT (version 2) format image
file and returns the image and color table vectors (if
present).

READ_PNG Reads the image contents of a Portable Network
Graphics (PNG) image file.

READ_PPM Reads the contents of a PGM (gray scale) or PPM
(portable pixmap for color) format image file and
returns the image in the form of a 2D byte array (for
gray scale images) or a (3,n, m) byte array (for true-
color images).

READ_SRF Reads the contents of a Sun rasterfile and returns th
image and color table vectors (if present).
List of Commands Using IDL

Chapter 7: Reading and Writing Images 209
READ_TIFF Reads multi channel image TIFF format files and
returns the image and color table vectors.

READ_X11_BITMAP Reads bitmaps stored in the X Windows X11 bitmap
format.

READ_XWD Reads the contents of a file created by thexwd (X
Windows Dump) command and returns the image and
color table vectors.

WRITE_BMP Writes an image and its color table vectors to a
Microsoft Windows Version 3 device independent
bitmap file (.bmp).

WRITE_GIF Writes an image and its color table vectors to a
Graphics Interchange Format (GIF) image file.

WRITE_JPEG Writes compressed images to a JPEG (Joint
Photographic Experts Group) file which is a
standardized compression method for full-color and
gray-scale images.

WRITE_NRIF Writes an image and its color table vectors to an
NCAR Raster Interchange Format (NRIF) rasterfile.

WRITE_PICT Writes and image and its color table vectors to a PICT
(version 2) format image file.

WRITE_PNG Writes a 2D or 3D IDL variable into a Portable
Network Graphics (PNG) image file.

WRITE_PPM Writes an image to a PPM (true-color) or PGM (gray-
scale) image file.

WRITE_SRF Writes an image and its color table vectors to a Sun
Raster File (SRF) image file.

WRITE_TIFF Writes an image and its color table vectors to a Tagged
Image Format (TIFF) image file.
Using IDL List of Commands

210 Chapter 7: Reading and Writing Images

or
are
lso
the
Accessing Image Files Using Dialogs

Selecting an Image File

The DIALOG_READ_IMAGE function is a graphical user interface which is used f
reading image files. This interface simplifies the use of IDL image file I/O. Users
able to preview images with a quick and simple browsing mechanism which will a
report important information about the image file. The user has the option to view
image in color, grayscale or no preview.

Result = DIALOG_READ_IMAGE()

Figure 7-1: Select Image File
Accessing Image Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 211
Button Function

Open Opens the selected image file.

Cancel Cancels the current image selection.

Arrow Keys Pages through multiple images in the file.

Table 7-1: Save Image File Buttons
Using IDL Accessing Image Files Using Dialogs

212 Chapter 7: Reading and Writing Images

d
O.
Saving an Image File

The DIALOG_WRITE_IMAGE function is a graphical user interface which is use
for writing/saving image files. This interface simplifies the use of IDL image file I/

Result = DIALOG_WRITE_IMAGE(’hubbel.tif’)

Figure 7-2: Save Image File

Button Function

Save Saves the image file.

Cancel Cancels the save function.

Options Brings up a dialog box of image format save options.

Table 7-2: Save Image File Dialog Buttons
Accessing Image Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 213
Figure 7-3: Image Options
Using IDL Accessing Image Files Using Dialogs

214 Chapter 7: Reading and Writing Images

 if it
ing
has

age

 of
s.
Accessing General Image File Formats

Querying an Image File

The QUERY_IMAGE function reads the header of an image file and determines
is recognized as an image file. If it is an image file, an optional structure contain
the information about the image is returned. The Info structure for all image types
the following fields:

Reading an Image File

The READ_IMAGE function reads the image contents of a file and returns the im
in an IDL variable.

Writing an Image File

The WRITE_IMAGE function writes an image and its color table vectors to a file
a specified type. The WRITE_IMAGE function can write most types of image file

Tag Definition

CHANNELS Long

DIMENSIONS One-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Table 7-3: Info Structure for Images
Accessing General Image File Formats Using IDL

Chapter 7: Reading and Writing Images 215

mat
nto

t
type,
ent

se
s (if
Accessing Specific Image File Formats

QUERY_* Routines

IDL has added a consistent set of query routines to the existing IDL image file for
API to allow users to obtain information about files without having to read them i
memory.

All of the QUERY_ routines return a status, which determines if the file is
appropriate to use the corresponding READ_ routine. In addition, these routines
return an anonymous structure containing all of the available information for tha
image format, such as the image dimensions, number of samples per pixel, pixel
palette info, and the number of images in the file. The following is a list of the curr
QUERY_ routines:

READ_* Routines

IDL includes a number of routines for reading standard graphics file formats.The
routines read the image file format and returns the image and color table vector
present). The following is a list of the current READ_ routines:

QUERY_BMP QUERY_PNG

QUERY_DICOM QUERY_PPM

QUERY_GIF QUERY_SRF

QUERY_JPEG QUERY_TIFF

QUERY_PICT

READ_BMP READ_PNG

READ_DICOM READ_PPM

READ_GIF READ_SRF

READ_JPEG READ_TIFF

READ_PICT
Using IDL Accessing Specific Image File Formats

216 Chapter 7: Reading and Writing Images

at
WRITE_* Routines

IDL has added a consistent set of write routines to the existing IDL image file form
functions to allow users to write an image and its color table vectors to a file of a
specified type. The following is a list of the current WRITE_ routines:

WRITE_BMP WRITE_PNG

WRITE_DICOM WRITE_PPM

WRITE_GIF WRITE_SRF

WRITE_JPEG WRITE_TIFF

WRITE_PICT
Accessing Specific Image File Formats Using IDL

Chapter 7: Reading and Writing Images 217

the

gs
Accessing Files Using Dialogs

File Selection

The DIALOG_PICKFILE function allows the user to interactively pick a file using
the platform’s own native graphical file selection dialog. The user can also enter
name of the file.

Directory Selection

The DIRECTORY keyword allows the user to select a directory rather than a file
name with the DIALOG_PICKFILE function. SeeDIALOG_PICKFILE in theIDL
Reference Guide for details.

Result = DIALOG_PICKFILE()

Multiple File Selection

The MULTIPLE_FILES keyword allows multiple file selection in the dialog. When
this keyword is set, the user can select multiple files using the platform-specific
selection method and DIALOG_PICKFILE can return a string or an array of strin
that contains the full path name of the selected file or files.

Figure 7-4: DIALOG_PICKFILE
Using IDL Accessing Files Using Dialogs

218 Chapter 7: Reading and Writing Images
Result = DIALOG_PICKFILE(,/ MULTIPLE_FILES =)

Figure 7-5: MULTIPLE_FILES Selection
Accessing Files Using Dialogs Using IDL

Chapter 7: Reading and Writing Images 219

hion
o

Accessing Files With Compound Widgets

Selecting a File

The CW_FILESEL is a compound widget which can be used in a component fas
as well as adding multiple file filter selection. An example of a calling sequence t
display the file selection menu is as follows:

pro cw_filesel_show
a=widget_base()
b=cw_filesel(a)
widget_control,a,/realize
xmanager,'a',a
end

Figure 7-6: CW_FILESEL
Using IDL Accessing Files With Compound Widgets

220 Chapter 7: Reading and Writing Images
Advanced File Input/Output

Advanced file I/O capabilities are described in detail in theBuilding IDL Applcations
manual.
Advanced File Input/Output Using IDL

Chapter 8:

Reading and Writing
ASCII Data

This chapter provides an introduction to reading and writing ASCII data using the latest
commands and user interfaces found in IDL 5.3.
Overview . 222
Reading an ASCII Data File. 223

Advanced File Input/Output 228
Using IDL 221

222 Chapter 8: Reading and Writing ASCII Data

at
nt in
s

Overview

IDL recognizes two types of ASCII data files, a free format file and an explicit form
file. A free format file uses commas or tabs and spaces to distinguish each eleme
the file. An explicit format file distinguishes elements according to the command
specified in a format statement.
Overview Using IDL

Chapter 8: Reading and Writing ASCII Data 223

CII
ata
DS

L.
 to
is
d
 by
e for

. IDL

on
Reading an ASCII Data File

Most ASCII files are free format files. IDL uses three commands for reading AS
data files, READ, READF, and READS. The READ command reads free format d
from standard input, the READF reads free format data from a file, and the REA
reads free format data from a string variable.

Using the ASCII_TEMPLATE Function

The ASCII_TEMPLATE function generates a template defining an ASCII file
format. In this example, two routines are used to input an ASCII data file into ID
The first routine, ASCII_TEMPLATE, is a widget program which allows the user
describe the data organization of the file. This routine creates a template which
used to read the data file, according to the template specifications, by the secon
routine called READ_ASCII. The template is an IDL variable that can be reused
other files with the same organization. The following example creates a templat
an ASCII file using the ASCII_TEMPLATE function.

template = ascii_template()

This command assigns the description of the data to a variable named template
will display a dialog box which prompts the user to select a file.

Note
If a filename is specified in the parentheses after the ASCII_TEMPLATE functi
this screen will not appear.
Using IDL Reading an ASCII Data File

224 Chapter 8: Reading and Writing ASCII Data
Once a file has been selected, IDL displays the first of three pages of the
ASCII_TEMPLATE dialog form.

Figure 8-1: File Selection Dialog Box
Reading an ASCII Data File Using IDL

Chapter 8: Reading and Writing ASCII Data 225

eir
The first page displays a representative sample of lines from the data file with th
numbers on the left. Select the field type that best describes the data. Click theNext
button on the bottom-right corner of the screen to move to the next page.

Figure 8-2: ASCII Template - Define Data Type / Range
Using IDL Reading an ASCII Data File

226 Chapter 8: Reading and Writing ASCII Data

d the
The second page displays the number of fields per line which is listed as three an
white space is selected for the data delimiter. Click theNext button on the bottom
right corner of the screen to move to the next page.

Figure 8-3: ASCII Template - Define Delimiter / Fields
Reading an ASCII Data File Using IDL

Chapter 8: Reading and Writing ASCII Data 227

r data
e

 be
The third page displays the columns in the data set which can be named and thei
type specified. Name the fields by typing in the name text at the upper right of th
form. Click theFinish button on the bottom-right corner of the screen.

The result is an IDL structure variable that describes the data in the file and can
used as input to the READ_ASCII command.

Figure 8-4: ASCII Template - Field Specification
Using IDL Reading an ASCII Data File

228 Chapter 8: Reading and Writing ASCII Data
Advanced File Input/Output

Advanced file I/O capabilities are described in detail in theBuilding IDL
Applications manual.
Advanced File Input/Output Using IDL

Chapter 9:

Reading and Writing
Binary Data
ands
This chapter provides an introduction to reading and writing binary data using the latest comm
and user interfaces found in IDL 5.3.
Overview . 230
Reading a Binary Data File. 231

Advanced File Input/Output 235
Using IDL 229

230 Chapter 9: Reading and Writing Binary Data

am of
Overview

Binary data or binary data files are more compact than ASCII data files and are
frequently used for large data files. Binary data files are stored as one long stre
bytes in a file.
Overview Using IDL

Chapter 9: Reading and Writing Binary Data 231

d the
any

e. A
 way.

e
nd

ing

ber
.

te

ola

ned

urned

 be
must
Reading a Binary Data File

To read binary data files, define the variables, open the file for reading, and rea
bytes into those variables with the READU command. Each variable reads as m
bytes out of the file as required by the specified data type and organizational
structure.

Using the BINARY_TEMPLATE Function

A binary template serves as a description of the format of the data in a binary fil
single template can be re-used for all binary files that are organized in the same
The template specifies user defined fields and file byte order.

The byte order in the file is selected using theBinary Template dialog using the
File’s byte ordering: pull-down menu. The choices are:

• Native — The type of storage method that is native to the machine you ar
currently running. Little Endian for Intel microprocessor-based machines a
Big Endian for Motorola microprocessor-based machines. No byte swapp
will be performed.

• Little Endian — A method of storing numbers so that the least significant
byte appears first in the number. For example, given the hexadecimal num
A02B, the little endian method specifies the number to be stored as 2BA0
Specify this if the original file was created on a machine that uses an Intel
microprocessor.

• Big Endian — A method of storing numbers so that the most significant by
appears first in the number. For example, given the hexadecimal number
A02B, the big endian method specifies the number to be stored as A02B.
Specify this if the original file was created on a machine that uses a Motor
microprocessor.

Each field has a name and an offset. Offsets can be expressed in IDL syntax
expressions, including hex-literal values or expressions involving previously defi
fields. When READ_BINARY is called with a template, the resulting fields are
assigned values as the target file is processed. Template-specified fields are ret
in an anonymous structure from a call to READ_BINARY.

Fields can also be read but not returned from READ_BINARY. These fields can
used in expressions when defining other fields, or used to specify values which
be matched for the read to be valid (Verify fields). A field offset can be either
absolute or relative.
Using IDL Reading a Binary Data File

232 Chapter 9: Reading and Writing Binary Data

file

ter

 has

eded.
x. If
sion.
An absolute offset specifies a fixed location (in bytes) from the beginning of the
(or the initial file position for an externally opened file).

A relative offset specifies a position relative to the current file position pointer af
the previous field (if any) is read. Relative offsets are shown in the
BINARY_TEMPLATE user interface with a preceding> or < character, to indicate a
positive (>) or negative (<) byte offset.

The following example creates a template for a binary file using the
BINARY_TEMPLATE function. The following command invokes the binary
template dialog.

Result = BINARY_TEMPLATE (filename)

The binary template dialog box appears and a template for reading a binary file
now been generated. In theTemplate Name field, enter the name of the new
template.

Note
The template name is optional, this field can be left blank.

Fields are read in the order in which they are listed in the main dialog for
BINARY_TEMPLATE with offsets being added to the current file position pointer
before each field is read.Offsets may be specified via expressions or literals. The
user checks a checkbox to allow the input of expressions, if an expression is ne
Literals are unsigned decimal integers. Expressions can be any legal IDL synta
the user desires to enter a hex value, they can do so by entering it as an expres

Figure 9-1: Binary Template
Reading a Binary Data File Using IDL

Chapter 9: Reading and Writing Binary Data 233

via
ia an
fers
nt,
rsion

to 8

 the

ed in
Also, an expression may use any previously read field as a variable in an IDL
expression.

TheType of each Template-specified field is selected from a droplist or specified
an expression which yields an IDL type code (the type code is also generated v
expression which can be a function of any previously read fields). The droplist of
the following IDL types: byte, integer, long, float, double, complex, dcomplex, ui
ulong, long64 and ulong64. Strings are read as an array of bytes for later conve
to type STRING.

The number of dimensions of a field can be set via a droplist of values 0 (scalar)
(which is the maximum number of dimensions that an IDL variable can have.)
Alternately, the size of each dimension can be an expression, which would allow
dimensions of a field to be determined at file-read time.

Any of the first three dimensions of array data can also be specified to be revers
order. AVerify field can be any valid IDL expression. Only scalar fields can be
verified. This template can be saved to disk for later access, used to guide
READ_BINARY or passed back to BINARY_TEMPLATE for further editing.

Figure 9-2: Binary Template - New Field
Using IDL Reading a Binary Data File

234 Chapter 9: Reading and Writing Binary Data

plate

lds
fine

 a

ng
The field name can be any name the user chooses. It does not have to be the tem
name. TheNumber of Dimensions is a pull-down menu. In the two boxes marked
Size, enter the size of the array. Specify the type of data in theType field.

Fields can define themselves in terms of other fields using IDL expressions. Fie
need not be returned to the user at READ_BINARY time, but can be used to de
other fields. Scalar fields can also be labeled asVerify . All comparisons in a
verification are based on equality. If a sample data file is given in the call to
BINARY_TEMPLATE, verified fields are read from the sample data file and
checked against their specified verify value. When READ_BINARY is called with
template specifying that fields be verified, READ_BINARY reports an error if a
verification fails.

Templates must have at least one field markedyes for return from READ_BINARY.
The value for aVerify field can be entered as an expression in IDL syntax, includi
hex literal values or expressions involving previously defined fields.

Result = READ_BINARY("surface.dat", t=template)

Figure 9-3: Binary Template - Modify Field
Reading a Binary Data File Using IDL

Chapter 9: Reading and Writing Binary Data 235
Advanced File Input/Output

Advanced file I/O capabilities are described in detail in theBuilding IDL
Applications manual.
Using IDL Advanced File Input/Output

236 Chapter 9: Reading and Writing Binary Data
Advanced File Input/Output Using IDL

Part III: Using
Direct Graphics

Chapter 10:

Graphics
The following topics are covered in this chapter:
Overview . 240
IDL Direct Graphics. 241

IDL Object Graphics 242
Using IDL 239

240 Chapter 10: Graphics

t

 on
rs’
Overview

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direc
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly
the current graphics device. Object Graphics use an object-oriented programme
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmer’s choosing.
Overview Using IDL

Chapter 10: Graphics 241

th

ice

e
n

 a
ic.

tine
IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are already familiar wi
IDL Direct Graphics. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays,MAC for Macintosh displays,PS for
PostScript files, etc.). You switch between graphics devices using the
SET_PLOT command, and control the features of the current graphics dev
using theDEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands lik
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly o
the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on
different device, you must re-issue the IDL commands to create the graph

• When you add a new item to an existing direct-mode graphic (using a rou
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.
Using IDL IDL Direct Graphics

242 Chapter 10: Graphics

n be
ted.

ted
es,
in,

nds
; this

y
of

l

us

ich

hile

t to

e
ient
p—

ve if
IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphics in addition to
Direct Graphics. The salient features of Object Graphics are:

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object ca
displayed on any physical device for which a destination object can be crea

• Object graphics are object-oriented. Graphic objects are meant to be crea
and re-used; you may create a set of graphic objects, modify their attribut
draw them to a window on your computer screen, modify their attributes aga
then draw them to a printer device without reissuing all of the IDL comma
used to create the objects. Graphics objects also encapsulate functionality
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies man
operations not needed when drawing Direct Graphics, including calculation
normal vectors for lines and surfaces, lighting considerations, and genera
object overhead. As a result, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogo
image in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, wh
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. W
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenien
build a program offline than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for th
programmer to be cognizant of memory issues and memory leakage. Effic
design—remembering to destroy unused object references and cleaning u
will avert most problems, but even the best designs can be memory-intensi
large numbers of graphic objects (or large datasets) are involved.
IDL Object Graphics Using IDL

Chapter 11:

Direct Graphics
Plotting

The following topics are covered in this chapter:
Overview . 244
Plotting Keyword Parameters 245
Direct Graphics Coordinate Systems 246
Annotation – The XYOUTS Procedure . . 255
Plotting Symbols. 257
Polygon Filling . 260
Tick Marks . 264

Logarithmic Scaling. 268
Multiple Plots on a Page 270
Specifying the Location of the Plot. 272
Plotting Missing Data 274
Using the AXIS Procedure 275
Using the CURSOR Procedure 277
Using IDL 243

244 Chapter 11: Direct Graphics Plotting

t
.

tain

tted
s,

ics.

l of
tory

e
 See
Overview

IDL includes several routines that can be used to display data in a variety of plo
formats, including generalx versusy, contour, mesh surface, and perspective plots
The routines allow users to display information in a manner that can be easily
understood during data analysis.

Optional keyword parameters and system variables enable users to change cer
specifications of the routines, such as scaling, style, and colors, for custom or
specialized plots.

This chapter provides examples of scientific graphics in which one variable is plo
as a function of another. The routines for the display of functions of two variable
CONTOUR, SHADE_SURF, and SURFACE, are explained in detail in“Plotting
Multi-Dimensional Arrays” in Chapter 12.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graph

Some of the example code used in this chapter is part of the IDL distribution. Al
the files mentioned are located in the doc subdirectory of the examples subdirec
of the main IDL directory. By default, this directory is part of IDL’s path; if you hav
not changed your path, you will be able to run the examples as described here.
!PATH in theIDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 11: Direct Graphics Plotting 245

t

L.
r

bles
hat

that

-
o

.

h

, for
 the

y

Plotting Keyword Parameters

The IDL plotting procedures are designed to produce acceptable results for mos
applications with a minimum amount of effort. The large number of keyword
parameters, described in theIDL Reference Guide, in combination with plotting and
graphic system variables, allow users to customize the graphics produced by ID
Most of these keyword parameters pertain to advanced programming. The majo
keyword parameters are described and illustrated by example in this chapter.

Correspondence with System Variables

Many of the keyword parameters correspond directly to fields in the system varia
!P, !X, !Y, or !Z. When specifying a keyword parameter name and value in a call t
value affects only the current call, the corresponding system-variable field is not
changed. Changing the value of a system-variable field changes the default for
particular parameter and remains in effect until explicitly changed. The system
variables involving graphics and their corresponding keywords are detailed in
“System Variables” in Appendix D of theIDL Reference Guide.

Example—The COLOR Keyword Parameter

The keyword parameter COLOR corresponds to the field COLOR of the system
variable structure !P and is referenced as !P.COLOR. To set the color of a plot t
color-index 12, use the following statement:

PLOT, X, Y, COLOR = 12

Future plots are not affected and are drawn with color index !P.COLOR, which is
normally set to the number of available colors minus one.

The interpretation of the color index varies among the devices supported by IDL
With color video displays, this index selects a color (normally a red, green, blue
(RGB) triple stored in a device table). You can control the color selected by eac
color index with the TVLCT procedure which loads the device color tables.

Other devices have a fixed color associated with each color index. With plotters
example, the correspondence between colors and color index is established by
order of the pens in the carousel.

To change the default color of future plots, use a statement such as:

! P.COLOR = 12

which sets the default color to color-index 12. You can override this default at an
time by including the COLOR keyword in the graphic routine call.
Using IDL Plotting Keyword Parameters

246 Chapter 11: Direct Graphics Plotting

nded
tem
mic.
ribed

g
rner

 !D as

 the

lt.

d by

tem
m

Direct Graphics Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bou
by the plot axes, with a range identical to the range of the plotted data. The sys
can have two or three dimensions and can be linear, logarithmic, or semi-logarith
The mechanisms of converting from one coordinate system to another are desc
below. See“CONVERT_COORD Function” on page 247.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plottin
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left co
to (Vx –1,Vy –1) at the upper-right corner.Vx andVy are the number of columns and
rows addressed by the device. These numbers are stored in the system variable
!D.X_SIZE and !D.Y_SIZE.

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of
three axes.

Almost all of the IDL graphics procedures accept parameters in any of these
coordinate systems. Most procedures use the data coordinate system by defau
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be use
including one of the keyword parameters /DATA, /DEVICE, or /NORMAL in the
call.

Two-Dimensional Coordinate Conversion

The system variables !D, !P, !X, !Y, and !Z contain the information necessary to
convert from one coordinate system to another. The relevant fields of these sys
variables are explained below, and formulae are given for conversions to and fro
each coordinate system. SeeChapter 12, “Plotting Multi-Dimensional Arrays” for a
discussion of three-dimensional coordinates.
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 247

ea

ions

e

e

In the following discussion,D is a data coordinate,N is a normalized coordinate, and
R is a raw device coordinate.

The fields !D.X_VSIZE and !D.Y_VSIZE always contain the size of the visible ar
of the currently selected display or drawing surface. LetVx andVy represent these two
sizes.

The field !X.S is a two-element array that contains the parameters of the linear
equation, converting data coordinates to normalized coordinates. !X.S[0] is the
intercept, and !X.S[1] is the slope. !X.TYPE is 0 for a linearx-axis and 1 for a
logarithmicx-axis. They- andz-axes are handled in the same manner, using the
system variables !Y and !Z.

Also, letDx be the data coordinate,Nx the normalized coordinate,Rx the device
coordinate,Vx the device X size (in device coordinates), andXi = !X.Si (the scaling
parameter).

With the above variables defined, the linear two-dimensional coordinate convers
for thex coordinate can be written as follows:

They- andz-axis coordinates are converted in exactly the same manner, with the
exception that there is noz device coordinate and that logarithmicz-axes are not
permitted.

CONVERT_COORD Function

The CONVERT_COORD function provides a convenient means of computing th
above transformations. It can convert coordinates to and from any of the above
systems. The keywords DATA, DEVICE, or NORMAL specify the input system. Th

Coordinate
Conversion Linear Logarithmic

Data to normal

Data to device

Normal to device

Normal to data

Device to data

Device to normal

Table 11-1: Equations for X-axis Coordinate Conversion

Nx X0 X1Dx+= Nx X0 X1 Dxlog+=

Rx Vx X0 X1Dx+()= Rx Vx X0 X1 Dxlog+()=

Rx NxVx= Rx NxVx=

Dx Nx X0–() X1⁄= Dx 10 Nx X0–() X1⁄=

Dx Rx Vx⁄ X0–() X1⁄= Dx 10 Rx Vx⁄ X0–() X1⁄=

Nx Rx Vx⁄= Nx Rx Vx⁄=
Using IDL Direct Graphics Coordinate Systems

248 Chapter 11: Direct Graphics Plotting

g,

lmon
7,
 the

, by

wn
output coordinate system is specified by one of the keywords TO_DATA,
TO_DEVICE, or TO_NORMAL. For example, to convert the endpoints of a line
from data coordinates (0, 1) to (5, 7) to device coordinates, use the following
statement:

D = CONVERT_COORD([0, 5], [1, 7], /DATA, /TO_DEVICE)

On completion, the variableD is a (3, 2) vector, containing thex, y, andzcoordinates
of the two endpoints.

X Versus Y Plots—PLOT and OPLOT

This section illustrates the use of the basicx versusy plotting routines, PLOT and
OPLOT. PLOT produces linear-linear plots by default, and can produce linear-lo
log-linear, or log-log plots with the addition of the XLOG and YLOG keywords.

Data used in these examples are from a fictitious study of Pacific Northwest Sa
fisheries. In the example, we suppose that data were collected in the years 196
1970, and from 1975 to 1983. The following IDL statements create and initialize
variables SOCKEYE, COHO, CHINOOK, and HUMPBACK, which contain
fictitious fish population counts, in thousands, for the 11 observations:

SOCKEYE=[463, 459, 437, 433, 431, 433, 431, 428, 430, 431, 430]
COHO=[468, 461, 431, 430, 427, 425, 423, 420, 418, 421, 420]
CHINOOK=[514, 509, 495, 497, 497, 494, 493, 491, 492, 493, 493]
HUMPBACK=[467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]
;Constructs a vector in which each element contains
;the year of the sample:
YEAR = [1967, 1970, INDGEN(9) + 1975]

If you prefer not to enter the data by hand, run the batch fileplot01 with the
following command at the IDL prompt:

@plot01

See“Running the Example Code” on page 244 if IDL does not find the batch file.

The following IDL commands create a plot of the population of Sockeye salmon
year:

PLOT, YEAR, SOCKEYE, $
TITLE='Sockeye Population', XTITLE='Year', $
YTITLE='Fish (thousands)'

The PLOT procedure, which produces anx versusy plot on a new set of axes,
requires one or two parameters: a vector ofy values or a vector ofx values followed
by a vector ofy values. The first attempt at making a plot produces the figure sho
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 249

o 463,
lt,

hat
this

sing
below. Note that the three titles, defined by the keywords TITLE, XTITLE, and
YTITLE, are optional.

Axis Scaling

The fluctuations in the data are hard to see because the scores range from 428 t
and the plot’sy-axis is scaled from 0 to 500. Two factors cause this effect. By defau
IDL sets the minimumy-axis value of linear plots to zero if they data are all positive.
The maximum axis value is automatically set by IDL from the maximumy data
value. In addition, IDL attempts to produce from three to six tick-mark intervals t
are in increments of an integer power of 10 times 2, 2.5, 5, or 10. In this example,
rounding effect causes the maximum axis value to be 500, rather than 463.

The YNOZERO keyword parameter inhibits setting they-axis minimum to zero
when given positive, nonzero data. The figure below illustrates the data plotted u

Figure 11-1: Initial Population Plot
Using IDL Direct Graphics Coordinate Systems

250 Chapter 11: Direct Graphics Plotting

with

lines
this keyword. They-axis now ranges from 420 to 470, and IDL creates tick-mark
intervals of 10.

;Define variables:
@plot01
PLOT, YEAR, SOCKEYE, /YNOZERO, $

TITLE='Sockeye Population', XTITLE='Year', $
YTITLE='Fish (thousands)'

Multiline Titles

The graph-text positioning command !C, starts a new line of text output. Titles
containing more than one line of text are easily produced by separating each line
this positioning command.

In the above example, the main title could have been displayed on two centered
by changing the keyword parameter TITLE to the following statement:

TITLE = 'Sockeye!CPopulation'

Figure 11-2: Properly Scaled Plot
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 251

IN

ctor

nge
To

e

 and
Note
When using multiple line titles you may find that the default margins are
inadequate, causing the titles to run off the page. In this case, set the [XY]MARG
keywords or increase the values of !X.MARGIN or !Y.MARGIN.

Range Keyword

The range of thex, y, orz axes can be explicitly specified with the [XYZ] RANGE
keyword parameter. The argument of the keyword parameter is a two-element ve
containing the minimum and maximum axis values.

As explained above, IDL attempts to produce even tick intervals, and the axis ra
selected by IDL may be slightly larger than that given with the RANGE keyword.
obtain the exact specified interval, set the axis style parameter to one (YSTYLE = 1).

The effect of the YNOZERO keyword is identical to that obtained by including th
keyword parameterYRANGE = [MIN(Y), MAX(Y)] in the call to PLOT. You can
make /YNOZERO the default in subsequent plots by setting bit 4 of !Y.STYLE to
one (!Y.STYLE = 16).

SeeSTYLE in theIDL Reference Guide for details on the STYLE field of the axis
system variables !X, !Y, and !Z. Briefly: Other bits in the STYLE field extend the
axes by providing a margin around the data, suppress the axis and its notation,
suppress the box-style axes by drawing only left and bottom axes.
Using IDL Direct Graphics Coordinate Systems

252 Chapter 11: Direct Graphics Plotting

ve

ese
For example, to constrain the x-axis to the years 1975 to 1983, the keyword
parameterXRANGE = [1975, 1983] is included in the call to PLOT. The following
figure illustrates the result.

Note that thex-axis actually extends from 1974 to 1984, as IDL elected to make fi
tick-mark intervals, each spanning two years. If, as explained above, thex-axis style
is set to one, the plot will exactly span the given range. The call combining all th
options is as follows:

;Define variables:
@plot01
PLOT, YEAR, SOCKEYE, /YNOZERO, $

TITLE='Sockeye Population', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1975, 1983], /XSTYLE

Note
The keyword parameter syntax/XSTYLE is synonymous with the expression
XSTYLE = 1 . Setting a keyword parameter to 1 is often referred to as simply
setting the keyword.

Figure 11-3: Plot with X-Axis Range of 1975 to 1983
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 253

 call
), the
s
 !P,

 in

t the
. In
res
s
 set,

o

Overplotting

Additional data can be added to existing plots with the OPLOT procedure. Each
to PLOT establishes the plot window (the rectangular area enclosed by the axes
plot region (the box enclosing the plot window and its annotation), the axis type
(linear or log), and the scaling. This information is saved in the system variables
!X, and !Y and used by subsequent calls to OPLOT.

Frequently, the color index, line style, or line thickness parameters are changed
each call to OPLOT to distinguish the data sets. TheIDL Reference Guidecontains a
table describing the line style associated with each index.

The figure below illustrates a plot showing all four data sets. Each data set excep
first was plotted with a different line style and was produced by a call to OPLOT
this example, an (11, 4) array called ALLPTS is defined and contains all the sco
for the four categories using the array concatenation operator. Once this array i
defined, the IDL array operators and functions can be applied to the entire data
rather than explicitly referencing the particular sample.

First, we define ann-by-4 array containing all four sample vectors. (This array is als
defined by theplot01 batch file.)

Figure 11-4: Overplotting Using Different Linestyles
Using IDL Direct Graphics Coordinate Systems

254 Chapter 11: Direct Graphics Plotting
ALLPTS = [[COHO], [SOCKEYE], [HUMPBACK], [CHINOOK]]

The plot in the preceding figure was produced with the following statements:

;Define variables:
@plot01
;Plot first graph. Set the y-axis min and max
;from the min and max of all data sets. Default linestyle is 0.
PLOT, YEAR, COHO, YRANGE = [MIN(ALLPTS), MAX(ALLPTS)], $

TITLE='Salmon Populations', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1975, 1983], $
/XSTYLE

;Loop for the three remaining scores, varying the linestyle:
FOR I = 1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = I
Direct Graphics Coordinate Systems Using IDL

Chapter 11: Direct Graphics Plotting 255

t a

he
Annotation – The XYOUTS Procedure

An obvious problem with the previous figure is that each line should be labeled
showing what it depicts. The XYOUTS procedure is used to write graphic text a
given location. The call to XYOUTS to write a string starting at location (x, y) is as
follows:

XYOUTS, X, Y, STRING

SeeXYOUTS in theIDL Reference Guide for a complete list of keywords available
when adding graphic text to a plot.

The next figure illustrates one method of annotating each graph with its name. T
plot was produced exactly as was the previous figure, except that thex-axis range was
extended to the year 1990 to allow room for the titles. To accomplish this, the
keyword parameterXRANGE = [1967, 1990] was added to the call to PLOT. A
string vector, NAMES, containing the names of each sample population also is
defined.

The annotation was written using the following statements:

Figure 11-5: Example of Annotating Each Line
Using IDL Annotation – The XYOUTS Procedure

256 Chapter 11: Direct Graphics Plotting

y is

this
hen

E
our

es

vary.
is
First, we define an array containing names for each of the lines plotted. (This arra
also defined by theplot01 batch file.)

NAMES=['Coho','Sockeye','Humpback', 'Chinook']

The plot was produced with the following statements:

;Define variables:
@plot01
;Index of last point:
N1 = N_ELEMENTS(YEAR) - 1
;Plot first graph. Set the y-axis min and max
;from the min and max of all data sets. Default linestyle is 0.
PLOT, YEAR, COHO, YRANGE = [MIN(ALLPTS), MAX(ALLPTS)], $

TITLE='Salmon Populations', XTITLE = 'Year', $
YTITLE = 'Fish (thousands)', XRANGE = [1965, 1990], $
/XSTYLE

;Loop for the three remaining scores, varying the linestyle:
FOR I = 1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = I
;Append the title of each graph on the right:
FOR I = 0, 3 DO XYOUTS, 1984, ALLPTS[N1, I], NAMES[I]

Font Selection

The previous figure also illustrates the use of a PostScript font (Times-Roman, in
case) for the titles and annotations. Note that PostScript fonts can only be used w
the current graphics devices is set to PostScript.

This font was selected by first setting the default font, controlled by the system
variable !P.FONT, to the hardware-font index of zero, and then calling the DEVIC
procedure to set the Times-Roman font. To recreate the plot using this font on y
system, inspect the batch fileplot02 , located in thedoc subdirectory of the
examples subdirectory of the main IDL directory. Note that running this batch fil
creates a PostScript file namedplot.ps in your current working directory. See
“Running the Example Code” on page 244 if IDL does not find the batch file.

Warning
Because not all devices have selectable hardware fonts, default hardware fonts
Use of other PostScript fonts and their bold, italic, oblique, and other variants
described inAppendix G, “Fonts” in theIDL Reference Guide.
Annotation – The XYOUTS Procedure Using IDL

Chapter 11: Direct Graphics Plotting 257

alue

ign

h a
of

h

bols
re
of
Plotting Symbols

Each data point can be marked with a symbol and/or connected with lines. The v
of the keyword parameter PSYM selects the marker symbol, as described in theIDL
Reference Guide. For example, a value of 1 marks each data point with the plus s
(+), 2 is an asterisk (*), etc. Setting PSYM to minus the symbol number marks the
points with a symbol and connects them with lines. A value of –1 marks points wit
plus sign (+) and connects them with lines. Note also that setting PSYM to a value
10 produces histogram style plots in which a horizontal line is drawn across eacx
bin.

Frequently, when data points are plotted against the results of a fit or model, sym
are used to mark the data points while the model is plotted using a line. The figu
below illustrates this, fitting the Sockeye population values to a quadratic function
the year. The IDL function POLY_FIT is used to calculate the quadratic.

The statements used to construct the plot on the left are as follows:

;Define variables:
@plot01
;Use the LINFIT function to fit the data to a line:
coeff = LINFIT(YEAR, SOCKEYE)
;YFIT is the fitted line:
YFIT = coeff[0] + coeff[1]*YEAR
;Plot the original data points with PSYM = 4, for diamonds:

Figure 11-6: Plotting with Predefined Marker Symbols (left); User-defined
Symbols (right)
Using IDL Plotting Symbols

258 Chapter 11: Direct Graphics Plotting

 the

ta
fine

nt:

d
e of
e

am
tes
PLOT, YEAR, SOCKEYE, /YNOZERO, PSYM = 4, $
TITLE = 'Quadratic Fit', XTITLE = 'Year', $
YTITLE = 'Sockeye Population'
;Overplot the smooth curve using a plain line:
OPLOT, YEAR, YFIT

Alternatively, you can run the following batch file to create the plot:

@plot03

See“Running the Example Code” on page 244 if IDL does not find the batch file.

Defining Your Own Plotting Symbols

The USERSYM procedure allows you to define your own symbols by supplying
coordinates of the lines used to draw the symbol. The symbol you define can be
drawn using lines or it can be filled using the polygon filling operator. USERSYM
accepts two vector parameters: a vector ofx values and a vector ofy values. The
coordinate system you use to define the symbol’s shape is centered on each da
point, and each unit is approximately the size of a character. For example, to de
the simplest symbol, use a one character-wide dash centered over the data poi

USERSYM, [-.5, .5], [0, 0]

The color and line thickness used to draw the symbols are also optional keywor
parameters of USERSYM. The right half of the previous figure illustrates the us
USERSYM to define a new symbol—a filled circle. It was produced in exactly th
same manner as the example above, except with the addition of the following
statements that define the marker symbol and use it:

;Make a vector of 16 points, A[i] = 2pi/16:
A = FINDGEN(17) * (!PI*2/16.)
;Define the symbol to be a unit circle with 16 points.
;Set the filled flag:
USERSYM, COS(A), SIN(A), /FILL
;As above, but use symbol index 8 to select user-defined symbols:
PLOT, YEAR, SOCKEYE, /YNOZ, PSYM = 8,

SeeUSERSYM in theIDL Reference Guide for additional details.

Histogram Mode

Using the keyword PSYM=10 with the PLOT routines draws graphs in the histogr
mode, connecting points with vertical and horizontal lines. This next figure illustra
Plotting Symbols Using IDL

Chapter 11: Direct Graphics Plotting 259
the comparison between the distribution of the IDL normally distributed random
number function (RANDOMN) to the theoretical normal distribution.

The plot was produced by the following IDL commands:

;Two-hundred values ranging from -5 to 4.95:
X = FINDGEN(200) / 20. - 5.
;Theoretical normal distribution, scale so integral is one:
Y = 1/SQRT(2.*!PI) * EXP(-X^2/2) * (10./200)
;Approximate normal distribution with RANDOMN,
;then form the histogram.
H = HISTOGRAM(RANDOMN(SEED, 2000), $
BINSIZE = 0.4, MIN = -5., MAX = 5.)/2000.
;Plot the approximation using “histogram mode.”
PLOT,FINDGEN(26) * 0.4 - 4.8, H, PSYM = 10
;Overplot the actual distribution:
OPLOT, X, Y * 8.

Figure 11-7: Histogram Mode
Using IDL Plotting Symbols

260 Chapter 11: Direct Graphics Plotting

or

an
ed

n
um,

ith
Polygon Filling

Many scientific graphs use region filling to highlight the difference between two
more curves, to illustrate boundaries, etc. The IDL POLYFILL procedure fills the
interior of arbitrary polygons given a list of vertices. The interior of the polygon c
be filled with a solid color or with some devices, a user-defined fill pattern contain
in a rectangular array.

The figure below illustrates a simple example of polygon filling by filling the regio
under the Chinook population graph with a color index of 25 percent the maxim
then filling the region under the Sockeye population graph with 50 percent of the
maximum index. Because the Chinook populations are always higher than the
Sockeye populations, the graph appears as two distinct regions.

The program that produced this figure is shown below. It first draws a plot axis w
no data, using the NODATA keyword. The minimum and maximumy values are
directly specified with the YRANGE keyword. Because they-axis range does not
always exactly include the specified interval (see“X Versus Y Plots—PLOT and
OPLOT” on page 248), the variable MINVAL, is set to the currenty-axis minimum,

Figure 11-8: Filling Regions Using POLYFILL
Polygon Filling Using IDL

Chapter 11: Direct Graphics Plotting 261

d by

ring a

 plots

w the
!Y.CRANGE[0] . Next, the upper Chinook population region is shaded with a
polygon that contains the vertices of the Chinook samples, preceded and followe
points on thex-axis, (YEAR[0] , MINVAL), and (YEAR[n-1] , MINVAL). The polygon
for the Sockeye samples is drawn using the same method with a different color.
Finally, the XYOUTS procedure is used to annotate the two regions.

Enter the following IDL commands to create the plot:

;Define variables:
@plot01
;Draw axes, no data, set the range:
PLOT, YEAR, CHINOOK, YRANGE = [MIN(SOCKEYE), MAX(CHINOOK)], $

/NODATA, TITLE='Sockeye and Chinook Populations', $
XTITLE='Year', YTITLE='Fish (thousands)'

;Make a vector of x values for the polygon by duplicating
;the first and last points:
PXVAL = [YEAR[0], YEAR, YEAR[N1]]
;Get y value along bottom x-axis:
MINVAL = !Y.CRANGE[0]
;Make a polygon by extending the edges down to the x-axis:
POLYFILL, PXVAL, [MINVAL, CHINOOK, MINVAL], $

COL = 0.75 * !D.N_COLORS
;Same with second polygon.
POLYFILL, PXVAL, [MINVAL, SOCKEYE, MINVAL], $

COL = 0.50 * !D.N_COLORS
;Label the polygons:
XYOUTS, 1968, 430, 'SOCKEYE', SIZE=2
XYOUTS, 1968, 490, 'CHINOOK', SIZE=2

Alternatively, you can run the following batch file to create the plot:

@plot04

See“Running the Example Code” on page 244 if IDL does not find the batch file.

Bar Charts

Bar (or box) charts are used in business-style graphics and are useful in compa
small number of measurements within a few discrete data sets. Although not
designed as a tool for business graphics, IDL can produce many business-style
with little effort.

The following example produces a box-style chart showing the four salmon
populations as boxes of differing colors or shading. The commands used to dra
next figure are shown below with annotation. You do not need to type these
commands in yourself; they are collected in the filesplot05.pro , which contains
Using IDL Polygon Filling

262 Chapter 11: Direct Graphics Plotting

s of
the two procedures, andplot06 , which contains the found in thedoc subdirectory of
the examples subdirectory of the main IDL directory.

First, we define a procedure called BOX, which draws a box given the coordinate
two diagonal corners:

;Define a procedure that draws a box, using POLYFILL,
;whose corners are (X0, Y0) and (X1, Y1):
PRO BOX, X0, Y0, X1, Y1, color
;Call POLYFILL.
POLYFILL, [X0, X0, X1, X1], [Y0, Y1, Y1, Y0], COL = color
END

Next, create a procedure to draw the bar graph:

;Define a procedure that produces a bar graph
;from the population data:
PRO BARGRAPH, minval
;Define variables:
@plot01
;Width of bars in data units:
del = 1./5.
;The number of colors used in the bar graph is
;defined by the number of colors available on your system:
ncol=!D.N_COLORS/5

Figure 11-9: Bar Chart Drawn with POLYFILL
Polygon Filling Using IDL

Chapter 11: Direct Graphics Plotting 263

L

o

;Create a vector of color indices to be used in this procedure:
colors = ncol*INDGEN(4)+ncol
;Loop for each sample:
FOR iscore = 0, 3 DO BEGIN
;The y value of annotation. Vertical separation is 20 data units:
yannot = minval + 20 *(iscore+1)
;Label for each bar:
XYOUTS, 1984, yannot, names[iscore]
;Bar for annotation:
BOX, 1984, yannot - 6, 1988, yannot - 2, colors[iscore]
;The x offset of vertical bar for each sample:
xoff = iscore * del - 2 * del
;Draw vertical box for each year's sample:
FOR iyr=0, N_ELEMENTS(year)-1 DO $

BOX, year[iyr] + xoff, minval, $
year[iyr] + xoff + del, $
allpts[iyr, iscore], $
colors[iscore]

;End the FOR loop:
ENDFOR
;End the procedure.
END

Enter the following at the IDL prompt to compile these two procedures from the ID
distribution:

.run plot5.pro

To create the bar graph on your screen, enter the following commands.

;Load a color table:
LOADCT, 39

As in the previous example, the PLOT procedure is used to draw the axes and t
establish the scaling using the NODATA keyword.

PLOT, year, CHINOOK, YRANGE = [MIN(allpts),MAX(allpts)], $
TITLE = 'Salmon Populations', /NODATA, $
XRANGE = [year[0], 1990]

;Get the y value of the bottom x-axis:
minval = !Y.CRANGE[0]
;Create the bar chart:
BARGRAPH, minval

Alternatively, you can run the following batch file to create the plot:

@plot06

See“Running the Example Code” on page 244 if IDL does not find the batch file.
Using IDL Polygon Filling

264 Chapter 11: Direct Graphics Plotting

nd
ir

is

e

ess.

that

the
A
ks

a
ue.
Tick Marks

You have almost complete control of the number, style, placement, thickness, a
annotation of the tick marks. The following plotting keyword parameters and the
corresponding system variable fields affect the tick marks:

[XYZ]GRIDSTYLE

The index of the line style to be used for plot tick marks and grids (i.e., when
TICKLEN is set to 1.0). See[XYZ]GRIDSTYLE in theIDL Reference Guide for
more information.

[XYZ]MINOR

The number of minor-tick intervals. If set to zero, the default, IDL automatically
determines the number of minor ticks in each major tick-mark interval. Setting th
parameter to 1 suppresses the minor ticks, and setting it to a positive, nonzero
number,n, producesn minor-tick intervals, andn–1 minor-tick marks. See
[XYZ]MINOR in theIDL Reference Guide for more information.

[XYZ]THICK

The thickness of thex, y, or zaxes and their tick marks. This parameter is set with th
field THICK in the axes system variables, !X, !Y, and !Z (e.g., !X.THICK controls
the x-axis thickness). There are no keyword parameters affecting the axis thickn
See[XYZ]THICK in theIDL Reference Guide for more information.

[XYZ]TICKFORMAT

Set this keyword to a format string or a string containing the name of a function
returns a string to be used to format the axis tick mark labels. See
[XYZ]TICKFORMAT in theIDL Reference Guide for more information.

TICKLEN

The length of each major-tick mark, expressed as a fraction of the window size in
tick mark’s direction. The default value is 0.02. A length of 1.0 produces a grid.
value of -0.02 makes tick marks that extend away from the plot. Individual axis tic
can be controlled with the [XYZ]TICKLEN keyword. SeeTICKLEN in theIDL
Reference Guide for more information.

[XYZ]TICKNAME

A string array containing the annotation of each major-tick mark. If omitted or if
given string element contains the null string, IDL labels the tick mark with its val
Tick Marks Using IDL

Chapter 11: Direct Graphics Plotting 265

ings,

cing
ck
e

 year
To suppress the tick labels, supply a string array of one-character long, blank str
i.e.,REPLICATE(' ', N) . Null strings force IDL to number the tick mark with its
value.

Note
If there aren tick-mark intervals, there aren + 1 tick marks and labels.

See[XYZ]TICKNAME in theIDL Reference Guide for more information.

[XYZ]TICKS

The number of major tick-mark intervals. If set to zero or omitted, IDL produces
between three and six intervals. See[XYZ]TICKS in theIDL Reference Guide for
more information.

[XYZ]TICKV

The data values of each tick mark. You can directly specify these values, produ
graphs with arbitrary tick marks. If you do this, IDL scales the axis from the first ti
value to the last unless you directly specify a range. As above, be sure to provid
n + 1 tick values. See[XYZ]TICKV in theIDL Reference Guide for more
information.

Example: Specifying Tick Marks

The following figure shows a box chart illustrating the direct specification of thex-
axis tick values, number of ticks, and tick names. Building upon the previous
program, this program shows each of the four scores for the year 1967, the first
Using IDL Tick Marks

266 Chapter 11: Direct Graphics Plotting

ngle

x

ate
in our data. It uses the BOX procedure from the previous example to draw a recta
for each sample.

Using the data and variables from above, the following commands create the bo
chart:

Enter

.run plot05.pro

at the IDL prompt to compile theBOX andBARGRAPH procedures (discussed in the
previous example) from the IDL distribution. Enter the following commands to cre
the box chart:

;Define variables:
@plot01
;Tick x values, 0.2, 0.4, 0.6, 0.8:
XVAL = FINDGEN(4)/5. + .2
;Make a vector of scores from first year, corresponding to
;the name vector from above:
YVAL = [COHO[0], SOCKEYE[0], HUMPBACK[0], CHINOOK[0]]
;Make the axes with no data. Force x range to [0, 1],
;centering xval, which also contains the tick values.
;Force three tick intervals making four tick marks.
;Specify the tick names from the names vector:

Figure 11-10: Controlling Tick Marks and Their Annotation
Tick Marks Using IDL

Chapter 11: Direct Graphics Plotting 267
PLOT, XVAL, YVAL, /YNOZERO, XRANGE = [0,1], XTICKV = XVAL, $
XTICKS = 3, XTICKNAME = NAMES, /NODATA, $
TITLE = 'Salmon Populations, 1967'
;Draw the boxes, centered over the tick marks.
;!Y.CRANGE[0] is the y value of the bottom x-axis.
FOR I = 0, 3 DO BOX, XVAL[I] - .08, !Y.CRANGE[0], $
XVAL[I] + 0.08, YVAL[I], 128

Alternatively, you can run the following batch file to create the plot:

@plot07

See“Running the Example Code” on page 244 if IDL does not find the batch file.

More Tick Mark Examples

See“Multiple Plots on a Page” on page 270 for more examples of ways you can
control where axes are drawn, tick mark length, and placement.
Using IDL Tick Marks

268 Chapter 11: Direct Graphics Plotting

et

the
Logarithmic Scaling

The XLOG, YLOG, and ZLOG keywords can be used with the PLOT routine to g
any combination of linear and logarithmic axes. The OPLOT procedure uses the
same scaling and transformation as did the most recent plot.

The figure illustrates using PLOT to make a linear-log plot. It was produced with
following statements:

;Create data array:
X = FLTARR(256)
;Make a step function. Array elements 80 through 120 are set to 1:
X[80:120] = 1
;Make a filter:
FREQ = FINDGEN(256)
;Make the filter symmetrical about the value x = 128:
FREQ = FREQ < (256-FREQ)
;Second order Butterworth, cutoff frequency = 20.
FIL = 1./(1+(FREQ/20)^2)
;Plot with a logarithmic x-axis. Use exact axis range:

Figure 11-11: Example of Logarithmic Scaling
Logarithmic Scaling Using IDL

Chapter 11: Direct Graphics Plotting 269
PLOT, /YLOG, FREQ, ABS(FFT(X,1)), $
XTITLE = 'Relative Frequency', YTITLE = 'Power', $
XSTYLE = 1

;Plot graph:
OPLOT, FREQ, FIL

Alternatively, you can run the following batch file to create the plot:

@plot08

See“Running the Example Code” on page 244 if IDL does not find the batch file.
Using IDL Logarithmic Scaling

270 Chapter 11: Direct Graphics Plotting

tions
e
he
 or
2.

ing
gun.

n the

on.

top
m,

ment

gin
he

wn
Multiple Plots on a Page

Plots can be ganged on the display or page in the horizontal and/or vertical direc
using the system variable field !P.MULTI. IDL sets the plot window to produce th
given number of plots on each page and moves the window to a new sector at t
beginning of each plot. If the page is full, it is first erased. If more than two rows
columns of plots are produced, IDL decreases the character size by a factor of

!P.MULTI controls the output of multiple plots. Set !P.MULTI equal to an integer
vector in which:

• The first element of the vector contains the number of empty sectors remain
on the page. The display is erased if this field is zero when a new plot is be

• The second element of the vector contains the number of plots per page i
horizontal direction.

• The third element contains the number of plots per page in the vertical
direction.

• The fourth element contains the number of plots stacked in the Z dimensi

• The fifth element controls the order in which plots are drawn. Set the fifth
element equal to zero to make plots from left to right (column major), and
to bottom. Set the fifth element equal to one to make plots from top to botto
left to right (row major).

Omitting any of the five elements from the vector is the same as setting that ele
equal to zero.

For example, to set up IDL to stack two plots vertically on each page, use the
following statement:

!P.MULTI = [0, 1, 2]

Note that the first element, !P.MULTI (0), is set to zero to cause the next plot to be
a new page. To make four plots per page with two columns and two rows, use t
following statement:

!P.MULTI = [0, 2, 2]

To reset to the default of one plot per page, set the value of !P.MULTI to 0, as sho
in the following statement:

!P.MULTI = 0
Multiple Plots on a Page Using IDL

Chapter 11: Direct Graphics Plotting 271

y

d
y,

re
This figure shows four plots in a single window. For details, inspect the batch file
plot09 in thedoc subdirectory of theexamples subdirectory of the main IDL
directory. Note the following features of the plots in the figure:

1. The plot in the upper left has grid-style tick marks. This is accomplished b
setting the TICKLEN keyword equal to 1.0

2. The plot in the upper right has outward-facing tick marks. This is
accomplished by setting the TICKLEN keyword to a negative value.

3. The plot in the lower left corner has different axes on left and right, top an
bottom. This is accomplished by drawing the top and right axes separatel
using the AXIS procedure.

4. The plot in the lower right uses no default axes at all. The centered axes a
drawn with calls to the AXIS procedure.

Figure 11-12: Multiple Plots Per Page, Various Tick Marks, and Multiple Axes
Using IDL Multiple Plots on a Page

272 Chapter 11: Direct Graphics Plotting

 The

e
s and

ts:
Specifying the Location of the Plot

The plot-data window is the region of the page or screen enclosed by the axes.
plot region is the box enclosing the plot-data window and the titles and tick
annotation.

The figure illustrates the relationship of the plot-data window, plot region, and th
entire device area. These areas are determined by the following system variable
keyword parameters, in order of decreasing precedence:

POSITION

The POSITION keyword is accepted by the CONTOUR, MAP_SET, PLOT,
SHADE_SURF, and SURFACE routines. Its value is a four-element vector (six
elements for three-dimensional plots) containing the position of the axis endpoin
[x0, y0, x1, y1]. Coordinates are specified in normalized coordinates or in device
coordinates if the DEVICE keyword is present.

Figure 11-13: The Plot-Data Window, Plot Region, and Device Area
Relationship
Specifying the Location of the Plot Using IDL

Chapter 11: Direct Graphics Plotting 273

lue

 as

a 2-
e
lt
!P.POSITION

!P.POSITION is the system variable equivalent of the POSITION keyword. Its va
is a four-element vector in the same form as above containing the normalized
coordinates of the plot-data window. !P.POSITION is ignored ifx0 is equal tox1, (that
is, if !P.POSITION[0] EQ !P.POSITION[2]), which is the default.

!P.REGION

The !P.REGION system variable is another four-element vector in the same form
above containing the normalized coordinates of the plot region, the rectangle
enclosing the plot-data window and annotation. It is ignored if !P.REGION [0] is
equal to !P.REGION[2].

!P.MULTI

!P.MULTI controls the number of plots per page. It is described in“Multiple Plots on
a Page” on page 270.

[XYZ]MARGIN

The [XYZ]MARGIN keywords are accepted by the AXIS, CONTOUR, PLOT,
SHADE_SURF, and SURFACE routines. The value of each of these keywords is
element array specifying the margin on the left and right sides (XMARGIN) or th
top and bottom (YMARGIN) of the plot window, in units of character size. Defau
margins are 10 and 3 for thex-axis, and 4 and 2 for they-axis. The ZMARGIN
keyword is present for consistency and is currently ignored.

![XYZ]MARGIN

![XYZ]MARGIN are the system variable equivalents of the [XYZ]MARGIN
keywords.
Using IDL Specifying the Location of the Plot

274 Chapter 11: Direct Graphics Plotting

 than

a

n

E

on
Plotting Missing Data

The MAX_VALUE and MIN_VALUE keywords to PLOT can be used to create
missing data plots wherein bad data values are not plotted. Data values greater
the value of the MAX_VALUE keyword or less than the value of the MIN_VALUE
keyword are treated as missing and are not plotted. The following code creates
dataset with bad data values and plots it with and without these keywords:

;Make a 100-element array where each element is
;set equal to its index:
A = FINDGEN(100)
;Set 20 random point in the array equal to 400.
;This simulates ”bad” data values above the range
;of the ”real” data.
A(RANDOMU(SEED, 20)*100)=400
;Set 20 random point in the array equal to -10.
;This simulates ”bad” data values below the range
;of the ”real” data.
A(RANDOMU(SEED, 20)*100)=-10
;Plot the dataset with the bad values. Looks pretty bad!
PLOT, A
;Plot the dataset, but don’t plot any value over 101.
;The resulting plot looks better, but still shows spurious values:
PLOT, A, MAX_VALUE=101
;This time leave out both high and low spurious values.
;The resulting plot more accurately reflects the ”real” data:
PLOT, A, MAX_VALUE=101, MIN_VALUE=0

The following plotting routines allow you to set maximum and minimum values i
this manner:CONTOUR, PLOT, SHADE_SURF, SURFACE.

In addition to the maximum and minimum values specified with the MAX_VALU
and MIN_VALUE keywords, these plotting routines treat the IEEE floating-point
value NaN (Not A Number) as missing data automatically. (For more information
NaN, see“Special Floating-Point Values” in Building IDL Applcations.)
Plotting Missing Data Using IDL

Chapter 11: Direct Graphics Plotting 275

g
ed to

 the
IS,
s
t axis
 the

lished
is

te
The

.

T
e

Using the AXIS Procedure

The AXIS procedure draws and annotates an axis. It optionally saves the scalin
established by the axis for use by subsequent graphics procedures. It can be us
add additional axes to plots or to draw axes at a specified position.

The AXIS procedure accepts the set of plotting keyword parameters that govern
scaling and appearance of the axes. Additionally, the keyword parameters XAX
YAXIS, and ZAXIS specify the orientation and position (if no position coordinate
are present) of the axis. The value of these parameters are 0 for the bottom or lef
and 1 for the top or right. The tick marks and their annotation extend away from
plot window. For example, specifyYAXIS = 1 to draw ay-axis on the right of the
window.

The optional keyword parameter SAVE saves the data-scaling parameters estab
for the axis in the appropriate axis system variable, !X, !Y, or !Z. The call to AXIS
as follows:

AXIS[[, X, Y], Z]

whereX, Y, and optionallyZ specify the coordinates of the axis. Any of the coordina
systems can be used by including the appropriate coordinate keyword in the call.
coordinate corresponding to the axis direction is ignored. When specifying anx-axis,
thex-coordinate parameter is ignored, but must be present if there is ay coordinate.

Example: The AXIS Procedure

The bottom left plot ofFigure 11-12 illustrates using AXIS to draw axes with a
different scale, opposite the mainx- andy-axes. The plot is produced using PLOT
with the bottom and left axes annotated and scaled in units of days and degrees
Fahrenheit. The XMARGIN and YMARGIN keyword parameters are specified to
allow additional room around the plot window for the new axes. The keyword
parameters XSTYLE = 8 and YSTYLE = 8 inhibit drawing the top and right axes

Next, the AXIS procedure is called to draw the top, XAXIS = 1, axis, labeled in
months. Eleven tick intervals with 12 tick marks are drawn. Thex value of each
monthly tick mark is the day of the year that is approximately the middle of the
month. Tick-mark names come from the MONTH string array.

The righty-axis, YAXIS = 1, is drawn in the same manner. The newy-axis range is
set by converting the originaly-axis minimum and maximum values, saved by PLO
in !Y.CRANGE, from Fahrenheit to Celsius, using the formula C = 5(F-32)/9. Th
Using IDL Using the AXIS Procedure

276 Chapter 11: Direct Graphics Plotting

er to

e plot

,

, but
keyword parameterYSTYLE = 1 forces they-axis range to match the given range
exactly. The program is as follows:

;Plot the data, omit right and top axes:
PLOT, DAY, TEMP, /YNOZERO, $
SUBTITLE = 'Denver Average Temperature', $
XTITLE = 'Day of Year', $
YTITLE = 'Degrees Fahrenheit', $
XSTYLE=8, YSTYLE=8, XMARGIN=[8, 8], YMARGIN=[4, 4]
;Draw the top x-axis, supplying labels, etc.
;Make the characters smaller so they will fit:
AXIS, XAXIS=1, XTICKS=11, XTICKV=DAY, XTICKN=MONTH, $
XTITLE='Month', XCHARSIZE = 0.7
;Draw the right y-axis. Scale the current y-axis minimum
;values from Fahrenheit to Celsius and make them
;the new min and max values. Set YSTYLE=1 to make axis exact.
AXIS, YAXIS=1, YRANGE = (!Y.CRANGE-32)*5./9., YSTYLE = 1, $
YTITLE = 'Degrees Celsius'

The code above is included in the batch fileplot09 in thedoc subdirectory of the
examples subdirectory of the main IDL directory.

Using AXIS with Polar Plots

If the POLAR keyword parameter is set, the IDL PLOT procedure converts its
coordinates from polar to Cartesian coordinates when plotting. The first paramet
plot is the radius,R, and the second is the angleθ (expressed in radians). Polar plots
are produced using the standard axis and label styles, with box axes enclosing th
area.

The bottom right plot inFigure 11-12 illustrates using AXIS to draw centered axes
dividing the plot window into the four quadrants centered about the origin. This
method uses PLOT to plot the polar data and to establish the coordinate scaling
suppresses the axes. Next, two calls to AXIS add thex- andy-axes, drawn through
data coordinate (0, 0):

;Make a radius vector:
R = FINDGEN(100)
;Make a vector:
THETA = R/5
;Plot the data, suppressing the axes by setting their styles to 4:
PLOT, R, THETA, SUBTITLE='Polar Plot', XSTY=4, YSTY=4, /POLAR
AXIS, 0, 0, XAX=0
;Draw the x and y axes through (0, 0):
AXIS, 0, 0, YAX=0

The code above is included in the batch fileplot09 in thedoc subdirectory of the
examples subdirectory of the main IDL directory.
Using the AXIS Procedure Using IDL

Chapter 11: Direct Graphics Plotting 277

 the
aits

type

 the
of

 the

ed in

line
Using the CURSOR Procedure

The CURSOR procedure reads the position of the interactive graphics cursor of
current graphics device. It enables the graphic cursor on the device, optionally w
for the user to move it and/or press a locator button to terminate the operation (or
a character if the device has no buttons), and then reports the cursor position.

Note, however, that CURSOR should not be used with draw widgets, created by
WIDGET_DRAW function. If you need to find the position of the mouse or status
mouse buttons in a draw widget, set the BUTTON_EVENTS and
MOTION_EVENTS keywords to WIDGET_DRAW, then examine the events
returned by your draw widget. SeeWIDGET_DRAWin theIDL Reference Guidefor
more information.

The CURSOR procedure is called as follows:

CURSOR, X, Y [, WAIT]

where x andy are the named variables that receive the cursor position. Normally,
position is reported in data coordinates, but the DATA, DEVICE, and NORMAL
keywords can be used to explicitly specify the coordinate system.

SeeCURSOR in theIDL Reference Guide for details.

When CURSOR returns, thebutton field of the system variable !MOUSE is set to
the button status. Each mouse button is assigned a bit in thebutton field. Bit 0 is the
leftmost button (value = 1), bit 1 is the middle button (value = 2), and bit 3 is the
rightmost button (value= 4) for the typical three-button mouse. See!MOUSE in the
IDL Reference Guide for details.

Simple Interactive Examples

The following two programs demonstrate simple applications of the interactive
graphics cursor and the CURSOR procedure. The code for both routines is locat
the fileplot10.pro , located in thedoc subdirectory of theexamples subdirectory
of the main IDL directory. You can also create either routine at the IDL command
by starting with the.RUN command and entering each line individually.

The first routine is a simple drawing program. Straight lines are connected to
positions marked with the left or middle mouse buttons until the right button is
pressed.

PRO DRAW
;Start with a blank screen.
ERASE
Using IDL Using the CURSOR Procedure

278 Chapter 11: Direct Graphics Plotting

ition

ith

nd
e to
;Get the initial point in normalized coordinates:
CURSOR, X, Y, /NORMAL, /DOWN
;Repeat until the right button is pressed. Get the second point.
;Draw the line. Make the current second point be the new first.
WHILE (!MOUSE.button NE 4) DO BEGIN
CURSOR, X1, Y1, /NORM, /DOWN
PLOTS,[X,X1], [Y,Y1], /NORMAL
X = X1 & Y = Y1
ENDWHILE
END

The second simple procedure can be used to label plots using the cursor to pos
the text:

;Text is the string to be written on the screen:
PRO LABEL, TEXT
;Ask the user to mark the position.
PRINT, 'Use the mouse to mark the text position:'
;Get the cursor position after pressing any button:
CURSOR, X, Y, /NORMAL, /DOWN
;Write the text at the specified position.
;The NOCLIP keyword is used to ensure that
;the text will appear even if it is outside
;the plotting region.
XYOUTS, X, Y, TEXT, /NORMAL, /NOCLIP
END

To place annotation on a device with an interactive pointer, call this procedure w
the command:

ANNOTATE, 'Text for label'

Next, move the pointer device (mouse, cursor, or joystick) to the desired spot, a
press the locator button. Consider how you might augment the LABEL procedur
allow you to specify the size and font of the annotation text.
Using the CURSOR Procedure Using IDL

Chapter 12:

Plotting Multi-
Dimensional Arrays

The following topics are covered in this chapter:
1

Overview . 280
Contour Plots . 281
Overlaying Images and Contour Plots . . . 287
Additional Contour Options 291
The SURFACE Procedure. 295

Three-Dimensional Graphics. 299
Three-Dimensional Transformations. 309
Shaded Surfaces. 315
Volume Visualization. 318
References . 32
Using IDL 279

280 Chapter 12: Plotting Multi-Dimensional Arrays

nal
d
es,

ny

ics.
l of

e
 See
Overview

This chapter describes the facilities for drawing representations of two-dimensio
arrays. The two intrinsic procedures for the display of arrays are CONTOUR an
SURFACE. Procedures for displaying two-dimensional arrays in the form of imag
using color or grayscale pixels, are discussed inChapter 14, “Image Display
Routines”.

CONTOUR and SURFACE both use line graphics to depict the value of a two-
dimensional array. As its name implies, CONTOUR draws contour plots.

SURFACE depicts the surface created by interpreting each element value as an
elevation. These three-dimensional, wire-mesh surface plots can have almost a
rotation about thex- andz-axes (the dataz-axis must project parallel to the device’sy-
axis).

Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter. Almost all of the information concerning coordinate
systems, keyword parameters, and system variables discussed inChapter 11, “Direct
Graphics Plotting”, apply to CONTOUR and SURFACE as well.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graph
Some of the example code used in this chapter is part of the IDL distribution. Al
the files mentioned are located in thedoc subdirectory of theexamples subdirectory
of the main IDL directory. By default, this directory is part of IDL’s path; if you hav
not changed your path, you will be able to run the examples as described here.
“!PATH” in Appendix D of theIDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 281

r
nal

R
 an
as

me

e

e

Contour Plots

The CONTOUR procedure draws contour plots from data stored in a rectangula
array. In its simplest form, CONTOUR makes a contour plot given a two-dimensio
array ofz values. In more complicated forms, CONTOUR accepts, in addition toz,
arrays containing thex andy locations of each column, row, or point, plus many
keyword parameters. In more sophisticated applications, the output of CONTOU
can be projected from three dimensions to two dimensions, superimposed over
image, or combined with the output of SURFACE. The basic call to CONTOUR is
follows:

CONTOUR, Z

whereZ is a two-dimensional array. This call labels thex- andy-axes with the
subscript along each dimension. For example, when contouring a 10× 20 array, thex-
axis ranges from 0 to 9, and they-axis ranges from 0 to 19.

You can explicitly specify thex andy locations of each cell as follows:

CONTOUR, Z, X, Y

where theX andYarrays can be either vectors or two-dimensional arrays of the sa
size asZ. If they are vectors, the elementzi,j has a coordinate location of (xi, yj).
Otherwise, if thex andy arrays are two-dimensional, the elementzi,j has the location
(xi,j, yi,j). Thus, vectors should be used if thex location ofzi,j does not depend uponj
and they location ofzi,j does not depend uponi.

Dimensions must be compatible. In the one-dimensional case,X must have a
dimension equal to the number of columns inZ, andY must have a dimension equal
to the number of rows inZ. In the two- dimensional case, all three arrays must hav
the same dimensions.

IDL uses linear interpolation to determine thex andy locations of the contour lines
that pass between grid elements. The cells must be regular in that thex andy arrays
must be monotonic over rows and columns, respectively. The lines describing th
quadrilateral enclosing each cell and whose vertices are (xi,j, yi,j), (xi+1,j, yi+1,j),
(xi+1,j+1, yi+1,j+1), and (xi,j+1, yi,j+1) must intersect only at the four corners and the
quadrilateral must not contain other nodes.

SeeCONTOUR in theIDL Reference Guide for a complete list of CONTOUR’s
parameters and keywords.
Using IDL Contour Plots

282 Chapter 12: Plotting Multi-Dimensional Arrays

ring
f the

tours
ient
ling

hed
ires
rds

ct
nd

 to
tates
ion

s,
r
ctly
tion
Contouring Methods

In order to provide a wide range of options, CONTOUR uses one of two contou
algorithms. The algorithm used depends on the keywords specified, and is one o
two following methods.

Cell Drawing

The first algorithm, used by default, examines each array cell and draws all con
emanating from that cell before proceeding to the next cell. This method is effic
in terms of computer resources, but does not allow options such as contour labe
or smoothing.

Contour Following

The second method searches for each contour line, then follows the line until it
reaches a boundary or closes. This method gives better looking results with das
linestyles and allows contour labeling and bi-cubic spline interpolation, but requ
more computer time. The contour following method is used if any of these keywo
are specified: C_ANNOTATION, C_CHARSIZE, C_LABELS, CLOSED,
FOLLOW, PATH_FILENAME, or DOWNHILL.

Note
Due to their differing algorithms, these two methods will often draw slightly
different, yet correct, contour maps for the same data. This difference is a dire
result of the fact that there is often more than one valid way to draw contours a
should not be a cause for concern.

Example: Maroon Bells Peaks

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used
illustrate the CONTOUR procedure. The data set was obtained from a United S
Geological Survey Digital Elevation Model tape. This data provides terrain elevat
data over a 7.5-minute square (approximately 11× 13.7 kilometers at the latitude of
Maroon Bells), with 30-meter sampling.

The data are contained in a 360× 460 array A, sampled in 30-meter square interval
measured in Universal Transverse Mercator (UTM) coordinates. The rectangula
array is not completely filled with data because the 7.5-minute square is not perfe
oriented to the UTM grid system. Missing data are represented as zeroes. Eleva
measurements range from 2658 to 4241 meters or from 8720 to 13,914 feet.
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 283

ry
 at

form):

tory
in the

;

rs,

in
The Maroon Bells data is used in a number of examples in this chapter, and is
included in an IDL SAVE file in the data subdirectory of the examples subdirecto
of the main IDL directory. To restore the save file, issue the following commands
the IDL prompt (change the path separator characters as necessary for your plat

CD, !DIR+'/examples/data'
RESTORE, 'marbells.dat'

The batch file cntour01, located in the doc subdirectory of the examples subdirec
of the main IDL directory, restores this data and defines several variables used
examples in this chapter.

This command creates an IDL variable named elev that contains the 360 x 460
integer array.

The figure below is the result of applying the CONTOUR procedure to the data,
using the default settings:

CONTOUR, elev

A number of problems are apparent with this simple contour plot.

• IDL selected six contour levels, by default, for the elevation from 0 to 4241
that’s roughly 4241divided into 7 intervals or approximately 605 meters in
elevation between contour levels. The levels are 605, 1250, ..., 3635 mete
even though the range of valid data is from 2658 to 4241 meters. This is
because the missing data values of 0 were considered when selecting the
intervals. It is generally more appropriate to select contour levels only with
the range of valid data.

Figure 12-1: Simple Contour Plot of Maroon Bells
Using IDL Contour Plots

284 Chapter 12: Plotting Multi-Dimensional Arrays

 of

0,
.

ata

en
by a

d with
25

l
d

and
 of
th

N

• The vertical contours along the left edge are an invalid artifact due to
contouring missing data and should not be present.

• For most display systems and for contour intervals of approximately 200
meters, the data has too many samples in thex-y direction. This oversampling
has two adverse effects: the contours appear jagged, and a large number
short vectors are produced.

• The axes are labeled by point number, but should be in UTM coordinates.

• It is difficult to visualize the terrain and to discern maxima from minima
because each contour is drawn with the same type of line.

The above problems are readily solved using the following simple techniques:

• Specify the contour levels directly using the LEVELS keyword parameter.
Selecting contour intervals of 250 meters, at elevation levels of [2750, 300
3250, 3500, 3750, 4000], results in six levels within the range of valid data

• Change the missing data value to a value well above the maximum valid d
value, then use the MAX_VALUE keyword parameter to exclude missing
points. In this example, we set missing data values to one million with the
following statement:

elev(WHERE(elev EQ 0)) = 1.0E6

• Use the REBIN function to decrease the sampling inx andy by a factor of 5:

new = REBIN(elev, 360/5, 460/5)

This smooths the contours, because the call to REBIN averages 52=25 bins wh
resampling. The number of vectors transmitted to the display also are decreased
factor of approximately 25. The variable B is now a 72× 92 array.

Care is taken in the second step to ensure that the missing data are not confuse
valid data after REBIN is applied. As in this example, REBIN averages bins of 52=
elements, the missing data value must be set to a value of at least 25 times the
maximum valid data value. After applying REBIN, any cell with a missing origina
data point will have a value of at least 106/25 = 40000, well over the largest vali
data value of approximately 4,500.

Thex andy vectors are constructed containing the UTM coordinates for each row
column. From the USGS data tape, the UTM coordinate of the lower-left corner
the array is (326,850: 4,318,500) meters. As the data spacing is 30 meters in bo
directions, thex andy vectors, in kilometers, are easily formed using the FINDGE
function, as shown in the example below.
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 285

 a
n,

our.
Contour levels at each multiple of 500 meters (every other level) are drawn with
solid linestyle, while levels that fall between are drawn with a dotted line. In additio
the 4000-meter contour is drawn with a triple thick line, emphasizing the top cont

The result of these improvements is shown in the figure below.

This figure was produced with the following IDL statements:

;Restore variables:
@cntour01
;Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
;REBIN down to a 72 x 92 matrix:
new = REBIN(elev, 360/5, 460/5)
;Make the x and y vectors specifying the position
;of each column and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92)
;Make the plot, specifying the contour levels,
;missing data value, linestyles, etc.
;Set the STYLE keywords to 1, obtaining exact axes.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX_VALUE = 5000, $
C_LINESTYLE = [1, 0], $
C_THICK = [1, 1, 1, 1, 1, 3], $
TITLE = 'Maroon Bells Region', $

Figure 12-2: Improved Contour Plot
Using IDL Contour Plots

286 Chapter 12: Plotting Multi-Dimensional Arrays
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)'

If you prefer not to enter the code by hand, run the batch file cntour02 with the
following command at the IDL prompt:

@cntour02

See“Running the Example Code” on page 280 if IDL does not find the batch file.

The figure below illustrates the data displayed as a grayscale image. Higher
elevations are white. This image demonstrates that contour plots do not always
provide the best qualitative visualization of many two-dimensional data sets.

Figure 12-3: Maroon Bells Data Displayed as an Image
Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 287

 the
e

n be

evice
of a
to fit
to

se
lays
plot
Overlaying Images and Contour Plots

Superimposing an image and its contour plot combines the best of both worlds:
image allows easy visualization and the contour lines provide a semi-quantitativ
display. The programs presented in the rest of this section are for advanced
computing only.

A combined contour and image display, such as that discussed in this section, ca
created with the IMAGE_CONT procedure. The following material is intended to
illustrate the ways in which images and graphics can be combined using IDL.

The technique used to overlay plots and images depends on whether or not the d
is able to represent pixels of variable size, as does PostScript, or if it has pixels
fixed size. If the device does not have scalable pixels, the image must be resized
within the plotting area if it is not already of a size suitable for viewing. This leads
three separate cases that are illustrated in the following examples.

Overlaying with Scalable Pixels

Certain devices, notably PostScript, can display pixels of varying sizes. With the
devices, it is easy to set the size and position of an image so that it exactly over
the plot window. In creating the next figure, the actual dimensions of the contour
Using IDL Overlaying Images and Contour Plots

288 Chapter 12: Plotting Multi-Dimensional Arrays

UR

hat
the
ct

e to
window (contained in the !X.WINDOW and !Y.WINDOW system variables) were
used to calculate the new size of the image.

Note
In order to do this successfully, you must establish the size of the plot window
before scaling the image. This means that you must make a call to CONTOUR
before displaying the image, to set the window size, and another call to CONTO
after displaying the image, to draw the contour lines on top of the image data.

Inspect the batch filecntour03 located in thedoc subdirectory of theexamples
subdirectory of the main IDL directory to see how the figure was created. Note t
the aspect ratio of the image was changed to fit that of the plot window. To retain
original image aspect ratio, the plot window must be resized to an identical aspe
ratio using the POSITION keyword parameter.

Overlaying with Fixed Pixels

If the pixel size is fixed (as is true on most displays), we can either resize the imag
fit the plotting window or size the plotting window to fit the image dimensions.

Figure 12-4: Overlay of Image and Contour Plots
Overlaying Images and Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 289

nal

rlays
Method 1: Scale the Image to Fit the Display

We can use the CONGRID function to create an image of the same size as the
plotting window. The REBIN function also can be used to resample the original
image if the plot window dimensions are an integer multiple or factor of the origi
image dimensions. REBIN is always faster than CONGRID. The following IDL
procedure creates an image of the same size as the window, displays it, then ove
the contour plot.

;Restore variables:
@cntour01
;Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
;REBIN down to a 72 x 92 matrix.
new = REBIN(elev, 360/5, 460/5)
;Scale image intensities:
image = BYTSCL(elev, MIN=2658, MAX=4241)
;Before displaying the image, use the CONTOUR command
;to create the appropriate plot window.
;The plot window must be created before re-sizing
;the image data.
;Use the NODATA keyword to inhibit actually drawing
;the contour plot.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

MAX_VALUE = 5000, XSTYLE = 1, YSTYLE = 1, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NODATA

;Get size of plot window in device pixels.
PX = !X.WINDOW * !D.X_VSIZE
PY = !Y.WINDOW * !D.Y_VSIZE
;Desired size of image in pixels.
SX = PX[1] - PX[0] + 1
SY = PY[1] - PY[0] + 1
;Display the image with its lower-left corner at
;the origin of the plot window and with its size
;scaled to fit the plot window.
TVSCL, CONGRID(image, SX, SY), PX[0], PY[0])
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

MAX_VALUE = 5000, XSTYLE = 1, YSTYLE = 1, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NOERASE

;Write the contours over the image, being sure
;to use the exact axis styles so that the contours
;fill the plot window. Inhibit erasing.
Using IDL Overlaying Images and Contour Plots

290 Chapter 12: Plotting Multi-Dimensional Arrays

ient
ays
ving

eters
If you prefer not to enter the code by hand, run the batch filecntour04 with the
following command at the IDL prompt:

@cntour04

See“Running the Example Code” on page 280 if IDL does not find the batch file.

Method 2: Scale the Display to Fit the Image

If the image is already close to the proper display size, it is simpler and more effic
to change the plot window size to that of the image. The following procedure displ
the image at the window origin, then sets the plot window to the image size, lea
its origin unchanged.

;Restore variables:
@cntour01
;Set missing data points to a large value:
elev (WHERE (elev EQ 0)) = 1E6
;REBIN down to a 72 x 92 matrix.
new = REBIN(elev, 360/5, 460/5)
;Scale image intensities.
image = BYTSCL(elev, MIN=2658, MAX=4241)
;Get size of plot window in device pixels.
PX = !X.WINDOW * !D.X_VSIZE
PY = !Y.WINDOW * !D.Y_VSIZE
;Get the size of the image.
SZ = SIZE(image)
;Display the image with its lower-left corner
;at the origin of the plot window.
TVSCL, image, PX[0], PY[0]
;Write the contours over the image, being sure to use
;the exact axis styles so that the contours fill the plot
;window. Inhibit erasing.
CONTOUR, new, X, Y, XSTYLE = 1, YSTYLE = 1, $

POSITION = [PX[0], PY[0], PX[0]+SZ[1]-1, PY[0]+SZ[2]-1], $
LEVELS = 2750 + FINDGEN(6) * 250., MAX_VALUE = 5000, $
TITLE = 'Maroon Bells Region', $
SUBTITLE = '250 meter contours', $
XTITLE = 'UTM Coordinates (KM)', /NOERASE, /DEVICE

If you prefer not to enter the code by hand, run the batch file cntour05 with the
following command at the IDL prompt:

@cntour05

See“Running the Example Code” on page 280 if IDL does not find the batch file.

Of course, these procedures can be customized by using other keyword param
with the CONTOUR procedure.
Overlaying Images and Contour Plots Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 291

ons

he

ient
our
ur is
Additional Contour Options

In addition to the abilities of CONTOUR demonstrated above, there are several
options that depend upon the use of the contour following algorithm. These opti
are as follows:

Labeling Contours

The C_ANNOTATION, C_CHARSIZE, and C_LABELS keywords are used to
control contour labeling. Using them, possibly in conjunction with the LEVELS
keyword, it is possible to specify which contours should be labeled, the size of t
labels, and the actual labels that should be used.

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
statement:

SEED = 20 & DATA = RANDOMU(SEED, 6, 6)

To label contours using the defaults for label size and contours to label, it is suffic
to select the FOLLOW keyword. In this case, CONTOUR labels every other cont
using the default label size (three-fourths of the plot axis label size). Each conto
labeled with its value.

The preceding figure was produced using the following statement:

Figure 12-5: Simple Labeled Contour Plot
Using IDL Additional Contour Options

292 Chapter 12: Plotting Multi-Dimensional Arrays

r
e
ple,
ant

e

ces
CONTOUR, /FOLLOW, DATA

The C_CHARSIZE keyword is used to specify the size of the characters used fo
labeling in the same manner that SIZE is used to control plot axis label size. Th
C_LABELS keyword can be used to select the contours to be labeled. For exam
suppose that we want to contour the variable DATA at 0.2, 0.5, and 0.8, and we w
all three levels labeled. In addition, we wish to make each label larger, and use
hardware fonts. This can be accomplished with the statement below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C_LABELS=[1, 1, 1], $
C_CHARSIZE = 1.25, DATA, FONT = 0

The result is the plot on the left in the figure below.

Finally, it is possible to specify the text to be used for the contour labels using th
C_ANNOTATION keyword, as shown in the statements below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C_LABELS=[1, 1, 1], $
C_ANNOTATION = ["Low", "Medium", "High"], DATA, FONT=0

The result is the plot on the right in the figure below.

Smoothing Contours

The MIN_CURVE_SURF function can be used to smoothly interpolate both
regularly and irregularly sampled surfaces before contouring. This function repla

Figure 12-6: Label Size and Levels Specified (left), Explicitly Specified Labels
(right)
Additional Contour Options Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 293

r
e

h

nd
ther.

o

the older SPLINE keyword to CONTOUR, which was inaccurate and is no longe
supported. MIN_CURVE_SURF interpolates the entire surface to a relatively fin
grid before drawing the contours.

SeeCONTOUR in theIDL Reference Guide for an example using the
MIN_CURVE_SURF function. See alsoMIN_CURVE_SURF in theIDL Reference
Guide for further details.

The following short example shows the difference between a smoothed and an
unsmoothed contour plot:

;Create a simple dataset:
data = RANDOMU(seed, 7, 7)
;Plot the unsmoothed data:
CONTOUR, data
;Plot the smoothed data:
CONTOUR, MIN_CURVE_SURF(data)

Filling Contours

Set the FILL keyword to produce a filled contour plot. The contours are filled wit
solid or line-filled polygons. For solid polygons, use the C_COLOR keyword to
specify the color index of the polygons for each contour level. For line fills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the backgrou
color before the fill lines are drawn, to avoid superimposing one pattern over ano

The FILL keyword replaces the use of the PATH_FILENAME keyword and
POLYFILL procedure from previous versions of IDL. Setting the FILL keyword als
closes any open contours before filling.

The following example illustrates various filled contour plot options.

;Create a simple, random dataset for contouring:
data = RANDOMU(seed, 7, 7)
;Create a basic, solid-color, filled CONTOUR plot
;with 6 evenly-spaced levels.
CONTOUR, data, NLEVELS=6, /FILL
;Overplot contour outlines:
CONTOUR, data, NLEVELS=6, /NOERASE

Instead of solid colors, contours can be filled with lines:

;Create a vector of orientations for the fill lines:
ANGLES = [0, 45, -45]
;Create a vector of colors to use:
Using IDL Additional Contour Options

294 Chapter 12: Plotting Multi-Dimensional Arrays

trol

ach
ake
C = [70, 120, 200, 255]
;Create contours filled with lines.
CONTOUR, data, NLEVELS=10, C_ORIENT=ANGLES, C_COLORS=C
;Overplot contour outlines:
CONTOUR, data, NLEVELS=10, /NOERASE

There are many other controls for filled contour plots. The C_COLORS,
C_LINESTYLE, C_SPACING, and C_THICK keywords can also be used to con
the type of fill. For more information seeCONTOUR in theIDL Reference Guide.

Indicating Direction of Grade

Setting the DOWNHILL keyword creates short, perpendicular tick marks along e
contour that point in the downhill (decreasing elevation) direction. These marks m
the direction of the grade readily apparent. For example:

CONTOUR, data, /DOWNHILL
Additional Contour Options Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 295

ter
y

can
s of
The SURFACE Procedure

The SURFACE procedure draws wire mesh representations of functions ofx andy,
just as CONTOUR draws their contours. Parameters to SURFACE are similar to
CONTOUR. SURFACE accepts a two-dimensional array ofz (elevation) values, and
optionallyx andy parameters indicating the location of eachz element.

Note
The grid defined by thex andy parameters must be regular, or nearly regular, or
errors in hidden line removal will result. Also, the rotation must project the dataz-
axis so that it is parallel to the drawing surface’sy-axis or errors in hidden line
removal will result.

SURFACE projects the three-dimensional array of points into two dimensions af
rotating about thez- and then thex-axes. Each point is connected to its neighbors b
lines. Hidden lines are suppressed. The rotation about thex- andz-axes can be
specified with keywords or a complete three-dimensional transformation matrix
be stored in the field !P.T for use by SURFACE. Details concerning the mechanic
three-dimensional projection and rotation are covered in the next section.
Using IDL The SURFACE Procedure

296 Chapter 12: Plotting Multi-Dimensional Arrays

a
The following IDL code illustrates the most basic call to SURFACE. It produces
two-dimensional Gaussian function, then calls SURFACE to produce the figure
below.

;Create a 40 by 40 array in which each element is
;equal to the Euclidean distance from the center:
Z = SHIFT(DIST(40), 20, 20)
;Make Gaussian with a 1/e width of 10:
Z = EXP(-(Z/10)^2)
;Call SURFACE to display plot:
SURFACE, Z

In the example above, the DIST function creates an (n, n) array in which each
element is set to its Euclidean distance from the origin.

SURFACE Keyword Parameters

In addition to the standard graphics keyword parameters, SURFACE accepts a
number of unique keyword parameters. SeeSURFACE in theIDL Reference Guide
for details.

Figure 12-7: Simple SURFACE Plot of a Gaussian
The SURFACE Procedure Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 297

t is
is not

s:

e

Example

The figures below illustrate the application of the SURFACE procedure to the
Maroon Bells data used in the first section of this chapter. As with CONTOUR, i
often useful to reduce the number of individual data values, so that the surface
obscured by excessive detail.

The left illustration in the figure above was produced by the following statement

;Restore variables.
@cntour01
;Resize the original data into a 72 x 92 array, setting
;all data values which are less than 2650 (the lowest
;elevation we wish to show) to 2650.
surf = REBIN(elev > 2650, 360/5, 460/5)
;Display the surface, drawing a skirt down to 2650 meters:
SURFACE, surf, X, Y, SKIRT = 2650

Alternatively, run the batch filesurf01 with the following command at the IDL
prompt:

@surf01

See“Running the Example Code” on page 280 if IDL does not find the batch file.

The right illustration in the figure shows the Maroon Peaks area looking from the
back row to the front row (north to the south) of the Maroon Peaks area. This
perspective on the data is created by setting the angle of rotation around thez-axis to
210 degrees (settingAZ = 210), and increasing the azimuth from the default 30
degrees to 45 (settingAX= 45). Also, only the horizontal lines are drawn because th
/HORIZONTAL keyword is present in the following call:

Figure 12-8: Maroon Bells Surface Plots
Using IDL The SURFACE Procedure

298 Chapter 12: Plotting Multi-Dimensional Arrays

fect
 Y
SURFACE, surf, X, Y, SKIRT = 2650, /HORIZ, AZ = 210, AX = 45

Because the axes are rotated 210 degrees about the originalz-axis, the annotation is
reversed and thex-axis is behind and obscured by the surface. This undesirable ef
can be eliminated by reversing the minimum and maximum values of the X and
ranges used when drawing the surface:

;As above, but reverse the data rather than the axes:
SURFACE, surf, X, Y, SKIRT = 2650, /HORIZONTAL, AX = 45, $

YRANGE = [MAX(Y), MIN(Y)], XRANGE=[MAX(X), MIN(X)]
The SURFACE Procedure Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 299

se

al

this

ector

ssed
e is
ons.
am

he
oses

 to
Three-Dimensional Graphics

Points inxyz space are expressed by vectors of homogeneous coordinates. The
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometric
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (1982). The reader is urged to consult
book for a detailed description of homogeneous coordinates and transformation
matrices since this section presents only an overview.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column v
of three coordinates and a scale factor w ≠ 0. For example:

P(wx, wy, wz, w) ≡ P(x/w, y/w, z/w, 1) ≡ (x, y, z)

One advantage of this approach is that translation, which normally must be expre
as an addition, can be represented as a matrix multiplication. Another advantag
that homogeneous coordinate representations simplify perspective transformati
The notion of rows and columns used by IDL is opposite that of Foley and Van D
(1982). In IDL, the column subscript is first, while in Foley and Van Dam (1982) t
row subscript is first. This changes all row vectors to column vectors and transp
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis
the origin, a positive rotation is counterclockwise. As usual, thex-axis runs across the
display, they-axis is vertical, and the positivez-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about thez-axis transforms the
x-axis to they-axis.

Transformation Matrices

Note
For most applications, it is not necessary to create, manipulate, or to even
understand transformation matrices. The procedure T3D, explained below,
implements most of the common transformations.
Using IDL Three-Dimensional Graphics

300 Chapter 12: Plotting Multi-Dimensional Arrays

int
nto a
be
ing

.T.
Transformation matrices, which post-multiply a point vector to produce a new po
vector, must be (4, 4). A series of transformation matrices can be concatenated i
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to
applied in order, and the matrix A is the product of the three matrices, the follow
applies.

((P • A1) • A2) • A3 ≡ P • ((A1 • A2) • A3) = P • A

IDL stores the concatenated transformation matrix in the system variable field !P

Each of the operations of translation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (Dx, Dy, Dz) is shown below.

Scaling

Scaling by factors ofSx, Sy, andSz about thex-, y-, andz-axes respectively, is
represented by the matrix below.

1 0 0 Dx

0 1 0 Dy

0 0 1 Dz

0 0 0 1

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 301

e

ng

ion,
are
Rotation

Rotation about thex-, y-, andz-axes is represented respectively by the following thre
matrices:

T3D Procedure

The IDL procedure T3D creates and accumulates transformation matrices, stori
them in the system variable field !P.T. The procedure can be used to create a
transformation matrix composed of any combination of translation, scaling, rotat
perspective projection, oblique projection, and axis exchange. Transformations
applied in the order of the keyword descriptions below:

Rx

1 0 0 0

0 θxcos θxsin– 0

0 θxsin θxcos 0

0 0 0 1

=

Ry

θycos 0 θysin 0

0 1 0 0

θysin– 0 θycos 0

0 0 0 1

=

Rz

θzcos θzsin– 0 0

θzsin θzcos 0 0

0 0 1 0

0 0 0 1

=

Using IDL Three-Dimensional Graphics

302 Chapter 12: Plotting Multi-Dimensional Arrays

 a

l

 by

 by

axis

n

RESET

Set this keyword to reset the transformation matrix to the identity matrix to begin
new accumulation of transformations. If this keyword is not present, the current
transformation matrix !P.T is post-multiplied by the new transformation. The fina
transformation matrix is always stored back in !P.T.

TRANSLATE

This keyword argument accepts a 3-element vector. The viewpoint is translated
the three-element vector [Tx, Ty, Tz].

SCALE

This keyword argument accepts a 3-element vector. The viewing area is scaled
factor [Sx, Sy, Sz].

ROTATE

This keyword accepts a 3-element vector. The viewing area is rotated about each
by the amount [θx, θy, θz], in degrees.

PERSPECTIVE

A scalar (p) indicating thez distance of the center of the projection in the negative
direction. Objects are projected into thexy plane, atz = 0, and the eye is at point
(0, 0, –p).

OBLIQUE

A two-element vector, [d, α], specifying the parameters for an oblique projection.
Points are projected onto thexy-plane atz = 0 as follows:

x0 = x + z(d cosα)

y0 = y + z(d sin α)

An oblique projection is a parallel projection in which the normal to the projectio
plane is thez-axis, and the unit vector (0, 0, 1) is projected to (d cosα, d sin α) where
α is expressed in degrees.

XYEXCH

If set, exchanges thex- andy-axes.

XZEXCH

If set, exchanges thex- andz-axes.
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 303

f

-

cales
nit

the
ave
e

YZEXCH

If set, exchanges they- andz-axes.

Example: The Transformation Created by SURFACE

The SURFACE procedure creates a transformation matrix from its keyword
parameters AX and AZ as follows:

1. Starting with the identity transformation, SURFACE translates the center o
the normalized cube to the origin.

2. SURFACE rotates 90 degrees about thex-axis to make the +z-axis of the data
the +y axis of the display. The +y data axis extends from the front of the
display to the rear.

3. SURFACE rotates AZ degrees about they-axis. This rotates the result counter
clockwise, as seen from above the page.

4. SURFACE rotates AX degrees about thex-axis, tilting the data towards the
viewer.

5. The procedure then removes the translation applied in the first step and s
the data so that the data are still contained within the normal coordinate u
cube after transformation.

These transformations can be created using T3D as shown below. TheSCALE3
procedure, documented in the IDL Reference Guide, mimics the transformation
matrix created bySURFACE using the following method:

;Translate to move center of cube to origin.
T3D, /RESET, TRANSLATE = [-.5, -.5, -.5]
;Rotate 90 degrees about x-axis, so +z axis is now +y.
;Then rotate AZ degrees about y-axis.
T3D, ROTATE = [-90, AZ, 0]
;Rotate AX about x axis:
T3D, ROTATE = [AX, 0, 0]
;Restore origin.
T3D, TRANSLATE = [0.5, 0.5, 0.5]

The SCALE3 procedure, scales the unit cube by a fixed factor, 1/√3 to ensure that the
corners of the rotated cube fit within the drawing area. If requested, it also will set
data scaling. Animations involving rotations or the SURFACE procedure should h
their scaling and viewing transformation set by SCALE3 rather than the obsolet
SURFR procedure, so that the scaling does not vary between frames.
Using IDL Three-Dimensional Graphics

304 Chapter 12: Plotting Multi-Dimensional Arrays

,

tes.

l

ed

 to
 if a
of the

nal
Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to a two-dimensional coordinate
IDL follows these steps:

• Data coordinates are converted to three-dimensional normalized coordina
To convert thex coordinate from data to normalized coordinates, use the
formulaNx = X0 + X1Dx. The same process is used to convert they andz
coordinates using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose
homogeneous representation is (Nx, Ny, Nz, 1), is multiplied by the
concatenated transformation matrix !P.T:

P′ = P • !P.T

• The vector P¢ is scaled by dividing byw, and the normalized two-dimensiona
coordinates are extracted:

N′x = P′x/P′w andN′y = P′y/P′w
• The normalizedxy coordinate is converted to device coordinates as describ

in “Two-Dimensional Coordinate Conversion” in Chapter 11.

The CONVERT_COORD function performs the above process when converting
and from coordinate systems when the T3D keyword is specified. For example,
three-dimensional coordinate system is established, then the device coordinates
data point (0, 1, 2) can be computed as follows:

D = CONVERT_COORD(0, 1, 2, /TO_DEVICE, /T3D, /DATA)

On completion, the three-element vectorD will contain the desired device
coordinates. The process of converting from three-dimensional to two-dimensio
coordinates also can be written as an IDL function:

;Accept a three-dimensional data coordinate,
;return a two-element vector containing the coordinate
;transformed to two-dimensional normalized coordinates
;using the current transformation matrix.
FUNCTION CVT_TO_2D, X, Y, Z
;Make a homogeneous vector of normalized
;three-dimensional coordinates.
P = [!X.S[0] + !X.S[1] * X, !Y.S[0] + !Y.S[1] * Y, $

!Z.S[0] + !Z.S[1] * Z, 1]
;Transform by !P.T.
P = P # !P.T
;Return the scaled result as a two-element,
;two-dimensional, xy vector.
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 305

evel
en

s—

:

be.

d
be

s the
nate
osing
ting

wed
ch
RETURN, [P[0] / P[3], P[1] / P[3]]
END

Establishing a Three-Dimensional Coordinate System

Usually, scaling parameters for coordinate conversion are set up by the higher-l
procedures. To set up your own three-dimensional coordinate system with a giv
transformation matrix andx, y, z data range, follow these steps:

• Establish the scaling from your data coordinates to normalized coordinate
the (0, 1) cube. Assuming your data are contained in the range (Xmin, Ymin,
Zmin) to (Xmax, Ymax, Zmax), set the data scaling system variables as follows

!X.S = [-Xmin, 1] / (Xmax - Xmin)
!Y.S = [-Ymin, 1] / (Ymax - Ymin)
!Z.S = [-Zmin, 1] / (Zmax - Zmin)

• Establish the transformation matrix that determines the view of the unit cu
This can be done by either calling T3D, as explained above or by directly
manipulating !P.T yourself. If you wish to simply mimic the rotations provide
by the SURFACE procedure, call the SCALE3 procedure (which can also
used to perform the previous step).

Example

This example draws four views of a simple house. The procedure HOUSE define
coordinates of the front and back faces of the house. The data-to-normal coordi
scaling is set, as shown above, to a volume about 25 percent larger than that encl
the house. The PLOTS procedure is called to draw lines describing and connec
the front and back faces. XYOUTS is called to label the front and back faces.

The commands shown after the definition of the HOUSE procedure contain four
sequences of calls to T3D to establish the coordinate transformation, each follo
by a call to HOUSE. If you prefer not to enter the IDL code by hand, run the bat
file showhaus with the following command at the IDL prompt:

@showhaus

See“Running the Example Code” on page 280 if IDL does not find the batch file.

;Define a procedure to draw a house.
PRO HOUSE
;X coordinates of 10 vertices. First 5 are front face,
;second 5 are back face. The range is 0 to 16.
house_x = [0, 16, 16, 8, 0, 0, 16, 16, 8, 0]
;The corresponding y values range from 0 to 16.
house_y = [0, 0, 10, 16, 10, 0, 0, 10, 16, 10]
Using IDL Three-Dimensional Graphics

306 Chapter 12: Plotting Multi-Dimensional Arrays
;The z values range from 30 to 54.
house_z = [54, 54, 54, 54, 54, 30, 30, 30, 30, 30]
;Define max and min xy values to scale.
;Slightly larger than data range.
min_x = -4 & max_x = 20.
;Set x data scale to range from -4 to 20.
!X.S = [-(-4), 1.]/(20 - (-4))
;Same for y.
!Y.S = !X.S
;The z range is from 10 to 70.
!Z.S = [-10, 1.]/(70 - 10)
;Indices of front face.
face = [INDGEN(5), 0]
;Draw front face.
PLOTS, house_x[face], house_y[face], $

house_z[face], /T3D, /DATA
;Draw back face.
PLOTS, house_x[face + 5], house_y[face + 5], $

house_z[face + 5], /T3D, /DATA
;Connecting lines from front to back.
FOR I = 0, 4 DO PLOTS, [house_x[i], house_x[i + 5]], $

[house_y[i], house_y[i + 5]], $
[house_z[i], house_z[i + 5]], /T3D, /DATA

;Annotate front peak.
XYOUTS, house_x[3], house_y[3], Z = house_z[3], 'Front', $

/T3D, /DATA, SIZE = 2
;Annotate back.
XYOUTS, house_x[8], house_y[8], Z = house_z[8], 'Back', $

/T3D, /DATA, SIZE = 2
;End of house procedure.
END

The HOUSE procedure could be called from the IDL command line to produce a
number of different plots. For example:

;Set up no rotation, scale, and draw house.
T3D, /RESET & HOUSE
;Create a handy constant.
H = [0.5, 0.5, 0.5]
;Straight projection after rotating 30 degrees about x and y axes.
T3D, /RESET, TRANS = -H, ROT = [30, 30, 0] & $

T3D, TR = H & HOUSE
;No rotation, oblique projection, z factor = 0.5, angle = 45.
T3D, /RESET, TRANS = -H, ROT=[0, 0, 0], OBLIQUE=[.5, -45] & $

T3D, TR = H & HOUSE
;Rotate 6 degrees about x and y, then apply perspective .
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 307

a by
T3D, /RESET, TR=-H, ROT=[-6, 6, 0], PERS=4 & $
T3D, TR=H & HOUSE

The figure illustrates the different transformations. The four rotations are:

• Upper left: no rotation, plain projection

• Upper right: oblique projection, factor = 0.5, angle = –45

• Bottom left: rotation of 30 degrees about both thex-andy-axes, plain
projection

• Bottom right: rotation of –6 degrees about thex-axis and +6 degrees about the
y-axis, and perspective projection with the eye at 4.

Rotating the House

A common procedure for visualizing three-dimensional data is to animate the dat
rotating it about one or more axes. To make an animation of the house in the
preceding example with the XINTERANIMATE procedure, use the following
example.

;Initialize animation: set frame size and number of frames.
sizx = 300
sizy = 300

Figure 12-9: Illustration of Different Three-Dimensional Transformations
Using IDL Three-Dimensional Graphics

308 Chapter 12: Plotting Multi-Dimensional Arrays

ame
tch
nframes = 16
XINTERANIMATE, SET=[sizx, sizy, nframes]
;Rotate about the z axis. Draw the house.Save the window.
FOR i = 0, nframes - 1 DO BEGIN $

SCALE3, AX = 75, AZ = i * 360. / nframes & $
ERASE & $
HOUSE & $
SCALE3, AX = 75, AZ = i * 360. / nframes & $
XINTERANIMATE, FRAME=i, WINDOW=!D.WINDOW & $

ENDFOR
;Show the animation.
XINTERANIMATE

In the above example, SCALE3 rather than SCALE3D is used to maintain the s
scaling in all rotations. If you prefer not to enter the IDL code by hand, run the ba
file animhaus with the following command at the IDL prompt:

@animhaus

See“Running the Example Code” on page 280 if IDL does not find the batch file.
Three-Dimensional Graphics Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 309

 is
the

 at

s in

ic
ith
 For
Three-Dimensional Transformations

The CONTOUR and PLOT procedures output their results using the three-
dimensional coordinate transformation contained in !P.T when the keyword T3D
specified. Note that !P.T must contain a valid transformation matrix prior to using
T3D keyword.

PLOT and its variants output graphs in thexy-plane at the normal coordinatez value
given by the keyword ZVALUE. If this keyword is not specified, the plot is drawn
the bottom of the unit cube atz = 0.

CONTOUR draws its axes atz= 0 and its contours at theirzdata value if ZVALUE is
not specified. If ZVALUE is present, CONTOUR draws both the axes and contour
thexy-plane at the givenz value.

Combining CONTOUR and SURFACE

It is easy to combine the results of SURFACE with the other IDL graphics
procedures. The keyword parameter SAVE causes SURFACE to save the graph
transformation it used in !P.T. Then, when either CONTOUR or PLOT is called w
the keyword parameter T3D, its output is transformed with the same projection.
example, the figure below illustrates how SURFACE and CONTOUR can be
combined. In essence, this is a combination of figures from 2 previous sections
(Figure 12-2 andFigure 12-8).

Figure 12-10: Combining CONTOUR with SURFACE, Maroon Bells Data
Using IDL Three-Dimensional Transformations

310 Chapter 12: Plotting Multi-Dimensional Arrays

s

e

Using the same variables as in the earlier sections of this chapter, the figure wa
produced with the following statements:

;Restore variables.
@cntour01
;Resize the original data into a 72 x 92 array,
;setting all data values which are less than
;2650 (the lowest elevation we wish to show) to 2650.
surf = REBIN(elev > 2650, 360/5, 460/5)
;Make the mesh.
SURFACE, surf, X, Y, SKIRT=2650, /SAVE
;Specify T3D to align with SURFACE, at ZVALUE of 1.0.
;Suppress clipping as the plot is outside the normal plot window.
CONTOUR, surf, X, Y, /T3D, /NOERASE, TITLE = 'Contour Plot', $

MAX_VAL = 5000., ZVALUE = 1.0, /NOCLIP, $
LEVELS = 2750. + FINDGEN(6) * 250

More Complicated Transformations

The figure below illustrates the application of three-dimensional transforms to th
output of CONTOUR and PLOT. Using the two-dimensional Gaussian arrayz
defined in“The SURFACE Procedure” on page 295, it draws a three-dimensional
contour plot with the contours stacked above the axes in thez direction. It then plots
the sum of the columns, also a Gaussian, in thexz-plane, and the sum of the rows in
theyz plane.

It was constructed as follows:

Figure 12-11: PLOT and CONTOUR with a Three-dimensional Transform
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 311

-

ed

ry

is

our

n of
ly,
• First, the SCALE3 procedure is called to establish the default three- to two
dimensional transformation used by SURFACE, as explained above. The
default rotations are 30 degrees about both thex- andz-axes.

• Next, a vector, POS, defining the cube containing the plot window is defin
in normalized coordinates. The cube extends from 0.1 to 1.0 in thex andy
directions and from 0 to 1 in thez direction. Each call to CONTOUR and
PLOT must explicitly specify this window to align the plots. This is necessa
because the default margins around the plot window are different in each
direction.

• CONTOUR is called to draw the stacked contours with the axes atz = 0.
Clipping is disabled to allow drawing outside the default plot window, which
only two-dimensional.

• The procedure T3D is called to exchange they- andz-axes. The originalxyz
coordinate system is nowxzy.

• PLOT is called to draw the column sums which appear in front of the cont
plot. The expression Z#REPLICATE(1.,Ny) creates a row vector containing
the sum of each row in the two-dimensional arrayz. The NOERASE and
NOCLIP keywords are specified to prevent erasure and clipping. This plot
appears in thexz-plane because of the previous axis exchange.

• T3D is called again to exchange thex- andz-axes. This makes the originalxyz
coordinate system, which was converted toxzy, now correspond toyzx.

• PLOT is called to produce the column sums in theyz-plane in the same manner
as the first plot. The originalx-axis is drawn in they-plane, and they-axis is in
thez-plane. One unavoidable side effect of this method is that the annotatio
this plot is backwards. If the plot is transformed so the letters read correct
thex-axis of the plot would be reversed in relation to they-axis of the contour
plot.

The IDL code used to draw the figure is as follows:

;Create the Z variable:
Z = SHIFT(DIST(40), 20, 20)
Z = EXP(-(Z/10)^2)
;NX and NY are the X and Y dimensions of the Z array:
NX = (SIZE(Z))(1)
NY = (SIZE(Z))(2)
;Set up !P.T with default SURFACE transformation.
SCALE3
;Define the three-dimensional plot
;window: x = 0.1 to 1, Y=0.1 to 1, and z = 0 to 1.
POS=[.1, .1, 1, 1, 0, 1]
Using IDL Three-Dimensional Transformations

312 Chapter 12: Plotting Multi-Dimensional Arrays

the

low,
;Make the stacked contours. Use 10 contour levels.
CONTOUR, Z, /T3D, NLEVELS=10, /NOCLIP, POSIT=POS, CHARSIZE=2
;Swap y and z axes. The original xyz system is now xzy:
T3D, /YZEXCH
;Plot the column sums in front of the contour plot:
PLOT, Z#REPLICATE(1., NY), /NOERASE, /NOCLIP, /T3D, $

TITLE='COLUMN SUMS', POSITION = POS, CHARSIZE = 2
;Swap x and z—original xyz is now yzx:
T3D, /XZEXCH
;Plot the row sums along the right side of the contour plot:
PLOT, REPLICATE(1., NX)#Z, /NOERASE, /T3D, /NOCLIP, $

TITLE = 'ROW SUMS', POSITION = POS, CHARSIZE = 2

If you prefer not to enter the IDL code by hand, run the batch file cntour06 with
following command at the IDL prompt:

@cntour06

See“Running the Example Code” on page 280 if IDL does not find the batch file.

Combining Images with Three-Dimensional Graphics

Images are combined with three-dimensional graphics, as shown in the figure be
using the transformation techniques described above.

Figure 12-12: Using SHOW3 to Overlay an Image, Surface Mesh, and Contour
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 313

rawn

hich

rs

 the

e.

etails
The rectangular image must be transformed so that it fits underneath the mesh d
by SURFACE. The general approach is as follows:

• Use SURFACE to establish the general scaling and geometrical
transformation. Draw no data, as the graphics made by SURFACE will be
over-written by the transformed image.

• For each of the four corners of the image, translate the data coordinate, w
is simply the subscript of the corner, into a device coordinate. The data
coordinates of the four corners of an (m, n) image are (0, 0), (m–1, 0), (0,n–1),
and (m–1,n–1). Call this data coordinate system (x, y). Using a procedure or
function similar to CVT_TO_2D (see“Three-Dimensional Coordinate
Conversion” on page 304) convert to device coordinates, which in this
discussion are called (U, V).

• The image is transformed from the originalxy coordinates to a new image in
UV coordinates using the POLY_2D function. POLY_2D accepts an input
image and the coefficients of a polynomial in UV giving thexy coordinates in
the original image. The equations forx andy are below.

X = S0,0 + S1,0U +S1,0V +S1,1UV

Y = T0,0 + T1,0U + T1,0V + T1,1UV

We solve for the four unknownScoefficients using the four equations relating
thex corner coordinates to theirU coordinates. TheT coefficients are similarly
found using they andV coordinates. This can be done using matrix operato
and inversion or more simply, with the procedure POLY_WARP.

• The new image is a rectangle that encloses the quadrilateral described by
UV coordinates. Its size is specified in the formula below:

(MAX(U) – MIN(U) +2, MAX(V) – MIN(V) +1)

• POLY_2D is called to form the new image which is displayed at device
coordinate (MIN(U), MIN(V)).

• SURFACE is called once again to display the mesh surface over the imag

• Finally, CONTOUR is called with ZVALUE set to 1.0, placing the contour
above both the image and the surface.

The SHOW3 procedure performs these operations. It should be examined for d
of how images and graphics can be combined.

The following IDL commands were used to create the previous image:
Using IDL Three-Dimensional Transformations

314 Chapter 12: Plotting Multi-Dimensional Arrays
;Restore variables:
@cntour01
;Reduce the size of elev array:
new = REBIN(elev, 360/5, 460/5)
;Create an array of levels for CONTOUR:
levs = (FINDGEN(10)*100)+3500
;Use SHOW3. Note the use of keywords E_SURFACE
;and E_CONTOUR to pass values to the SURFACE and
;CONTOUR routines used within SHOW3.
SHOW3, new, E_SURFACE={min:2000}, E_CONTOUR={levels:levs}
Three-Dimensional Transformations Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 315

de
as a
ted
ther

ible

, can
time

ion is
ch
en

t
):

e

Shaded Surfaces

The SHADE_SURF procedure creates a shaded representation of a surface ma
from regularly gridded elevation data. The shading information can be supplied
parameter or computed using a light-source model. Displays are easily construc
depicting the surface elevation of a variable shaded as a function of itself or ano
variable. This procedure is similar to the SURFACE routine, but it renders the vis
surface as a shaded image rather than a mesh.

Parameters are identical to those of the SURFACE procedure. SeeSHADE_SURFin
theIDL Reference Guide for details.

Shading Method

The shading applied to each polygon, defined by its four surrounding elevations
be either constant over the entire cell or interpolated. Constant shading takes less
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolat
used: the shade values are computed at each elevation point, coinciding with ea
polygon vertex. The shading is then interpolated along each edge, finally, betwe
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambien
light, and diffuse reflection, adapted from Foley and Van Dam (1982, Chapter 19

I = Ia + dIp(L • N)

where

Ia Term due to ambient light. All visible objects have at least this
intensity, which is approximately 20 percent of the maximum
intensity.

Ip(L • N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vectorN and the vector pointing to the light source,L.
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from th
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.
Using IDL Shaded Surfaces

316 Chapter 12: Plotting Multi-Dimensional Arrays

 and
re
es

d

e

 in
Shading Parameters

Parameters affecting the method of shading interpolation, light source direction,
rejection of hidden faces are set with the SET_SHADING procedure. Defaults a
Gouraud interpolation, light-source direction [0, 0, 1], and rejection of hidden fac
enabled.

See the description ofSET_SHADING in theIDL Reference Guide for a more
complete description of the parameters.

Note
The REJECT keyword has no effect on the output of SHADE_SURF—it is use
only with solids.

Examples Using SHADE_SURF

The following figure illustrates the application of SHADE_SURF, with light-sourc
shading, to the two-dimensional Gaussian (also drawn as a mesh inFigure 12-7).
This figure was produced by the following statements.

;Create a 40-by-40 array in which each element
;is equal to the Euclidean distance from the center.
Z = SHIFT(DIST(40), 20, 20)
;Make Gaussian with a 1/e width of 10:
Z = EXP(-(Z/10)^2)
SHADE_SURF, Z

The right half of the following figure shows the use of an array of shades, which
this case is simply the surface elevation scaled into the range of bytes.

Figure 12-13: Shaded Representations of a Two-Dimensional Gaussian
Shaded Surfaces Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 317

ents

this

he
face.
The output of SURFACE is superimposed over the shaded image with the statem
below.

;Show Gaussian with shades created by scaling
;elevation into the range of bytes.
SHADE_SURF, Z, SHADES=BYTSCL(Z, TOP = !D.TABLE_SIZE)
;Draw the mesh surface over the shaded figure.
;Suppress the axes:
SURFACE, Z, XST = 4, YST = 4, ZST = 4, /NOERASE

The next figure shows the Maroon Bells data as a light-source shaded surface (
data is also shown in the right half ofFigure 12-8). It was produced by the following
statements:

;Restore variables.
@cntour01
SHADE_SURF, elev, AZ=210, AX=45, XST=4, YST=4, ZST=4

The AX and AZ keywords specify the orientation. The axes are suppressed by t
axis-style keyword parameters; as in this orientation, the axes are behind the sur

Figure 12-14: Maroon Bells Data Shown as a Shaded Surface
Using IDL Shaded Surfaces

318 Chapter 12: Plotting Multi-Dimensional Arrays

ace

s
ity
tures.
n be
ly

vel.
ons

ide
ues,

tex

d
ygon
the
Volume Visualization

A common problem in data visualization is how to display a constant density surf
(also known as an isosurface), given a three-dimensional grid of density
measurements. In medical imaging, stacking a series of two-dimensional image
created by computed tomography or magnetic resonance creates a grid of dens
measurements that can be contoured to display the surfaces of anatomical struc
Atmospheric scientists create three-dimensional grids of water densities that ca
contoured at the proper density level to show the surface of clouds. It is relative
easy to produce these surfaces using the SHADE_VOLUME procedure in
conjunction with the POLYSHADE function.

SHADE_VOLUME accepts a three-dimensional grid of densities and a contour le
It outputs the set of polygons that describe the surface of the contour. The polyg
are described by a (3,n) array of vertices and a polygon list array that contains the
vertices belonging to each polygon. Given a volume array with dimensions of (D0,
D1, D2), the resulting vertex coordinates range between 0 andD0 – 1 inx, 0 andD1 –
1 in y, and 0 andD2 – 1 inz. Keyword parameters to SHADE_VOLUME include the
following:

LOW

A flag indicating which side of the contour surface is to be viewed: 1 for the high s
and 0 for the low (the default). If the contour to be viewed encloses high data val
as in the“Cloud Example” data, set the LOW keyword parameter to 1.

SHADES

An array of shading values for each volume element (voxel). On completion,
SHADE_VOLUME replaces this array with the interpolated shading for each ver
of the surface.

These polygons are then fed to the POLYSHADE function to produce the shade
surface representation. It must be noted that the maximum volume size and pol
complexity are limited by the amount of available memory, as these routines store
density measurements, vertex list, and polygon list in memory.
Volume Visualization Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 319

nal
e-

ting-
Cloud Example

This next figure, produced by the following IDL code, shows the three-dimensio
contour surface of the precipitating region of a thunderstorm simulated by a thre
dimensional cloud model.

The data were provided by the National Center for Atmospheric Research. The
original data are contained in an array called clouds, a (55, 55, 32) element floa
point array. Each array element contains the amount of water contained in the
corresponding volume of air.

;Restore the data:
RESTORE, FILEPATH('clouds3d.dat', SUBDIR=['examples','data'])
;Create the contour surface polygons (v and p)
;at density 0.1, from clouds. Show the low side:
SHADE_VOLUME, clouds, 0.1, v, p, /LOW
;Obtain the dimensions of the volume.
;Variables S[1], S[2], and S[3] now contain
;the number of columns, rows, and slices in the volume:
s = SIZE(clouds)

Figure 12-15: A 3-dimensional Contour Surface of a Cloud’s Precipitating
Region
Using IDL Volume Visualization

320 Chapter 12: Plotting Multi-Dimensional Arrays

e-
.
ees.

r
 a

ol
;Use SCALE3 to establish the three-dimensional
;transformation matrix. Rotate 45 degrees about the z-axis:
SCALE3, XRANGE=[0,S[1]], YRANGE=[0,S[2]], $

ZRANGE=[0,S[3]], AX=0, AZ=45
;Render and display the polygons:
TV, POLYSHADE(v, p, /T3D)

If you prefer not to enter the IDL code by hand, run the batch fileclouds with the
following command at the IDL prompt:

@clouds

See“Running the Example Code” on page 280 if IDL does not find the batch file.

The shaded volume can be viewed from different rotations by changing the thre
dimensional transformation matrix, !P.T, and calling POLYSHADE for each view
The following code displays 20 views of the volume, each separated by 18 degr

;Define number of views:
nframes = 20
FOR i = 0, nframes - 1 DO BEGIN & $
;Translate the center of the (0, 1) unit cube
;to (0,0) and rotate about the x-axis:
T3D, TR=[-.5, -.5, -.5], ROT=[0, 360./NFRAMES, 0] & $
;Translate the center back to (0.5, 0.5, 0.5):
T3D, TR = [.5, .5, .5] & $
;Show the surface:
TV, POLYSHADE(v, p, /T3D) & $
ENDFOR

The animation rate of the above loop will not be very fast, especially with a large
number of polygons. Each image could be saved for rapid replay by writing it to
disk file. Given enough memory and/or display resources, the XINTERANIMATE
procedure could be used to animate the views.

The SLICER3 Tool

IDL also includes an interactive volume visualization tool called SLICER3. This to
can be used to view isosurfaces and slices of volume data. SeeSLICER3 in theIDL
Reference Guide for more information.
Volume Visualization Using IDL

Chapter 12: Plotting Multi-Dimensional Arrays 321
References

Foley, J.D., and A. Van Dam (1982),Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co.
Using IDL References

322 Chapter 12: Plotting Multi-Dimensional Arrays
References Using IDL

Chapter 13:

Map Projections
The following topics are covered in this chapter:
2

Overview . 324
The MAP_SET Procedure 325
The MAP_GRID Procedure 327
The MAP_CONTINENTS Procedure . . . 328
Graphics Techniques for Mapping 329
Map Projections Described. 331

Azimuthal Projections 332
Cylindrical Projections 340
Pseudocylindrical Projections 345
Putting Data on Maps 348
High-Resolution Continent Outlines. 350
References . 35
Using IDL 323

324 Chapter 13: Map Projections

oints
ions.
, the
map

ing

n be
rs.

ics.
Overview

The IDL mapping package contains the following procedures:

MAP_SET

This procedure establishes the coordinate conversion mechanism for mapping p
on a globe’s surface to points on a plane, according to one of 16 possible project
This procedure also sets up the clipping parameters of the region to be mapped
center of the map, and the polar rotation. MAP_SET must be called to set up a
projection before any other mapping routines are called. SeeMAP_SET in theIDL
Reference Guide for more information.

MAP_GRID

This procedure draws the graticule of parallels and meridians (grid lines) accord
to the specifications established by MAP_SET. SeeMAP_GRID in theIDL
Reference Guide for more information.

MAP_CONTINENTS

This procedure draws continental or other boundaries over a map projection
established by MAP_SET. Continents, coastlines, rivers, and political borders ca
draw in either low or high resolution. Continents may also be filled with solid colo
SeeMAP_CONTINENTS in theIDL Reference Guide for more information.

MAP_IMAGE and MAP_PATCH

These functions return an image warped to fit the current map projection. See
MAP_IMAGE andMAP_PATCH in theIDL Reference Guide for more information.

Example Graphics

The examples in this chapter are all written to take advantage of IDL Direct Graph
Overview Using IDL

Chapter 13: Map Projections 325

.

ical

oints

the

ion

r of
idian

e

The MAP_SET Procedure

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the Earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of 16 possible map projections
Many other keywords are available to control various graphics options. For
information on all the available keywords, seeMAP_SET in theIDL Reference
Guide for more information.

You can select the map projection, the map center, polar rotation, and geograph
limits. The system variable !MAP1 retains the information needed to effect
coordinate conversions to the plane and inversely from the projection plane to p
on the earth in latitude and longitude. Do not change the values of the fields in
!MAP1 directly. You can plot the graticule and continental boundaries with
MAP_SET by setting the GRID and CONTINENT keywords. The procedure has
calling sequence:

MAP_SET[, P0lat , P0lon , Rot]

where the keywords are described as follows:

P0lat

P0lat is the latitude of the point on the earth’s surface at the center of the project
plane. Latitude is measured in degrees North of the equator, where –90° ≤ P0lat ≤ 90°.
If P0lat is not set, the default value is zero.

P0lon

P0lon is the longitude of the point on the Earth’s surface to be mapped to the cente
the map projection. Longitude is measured in degrees east of the Greenwich mer
and –180° ≤ P0lon ≤ 180°. If P0lon is not set, the default value is zero.

Rot

Rotis the angle through which the North direction should be rotated around the linL
between the Earth’s center and the point (P0lat, P0lon). Rot is measured in degrees
with the positive direction being clockwise rotated aroundL. Rot should satisfy
–180≤ Rot≤ 180.

If the center is at the North Pole, the North direction is in the direction ofP0lon + 180
degrees. If the origin is at the South Pole, then North is in the direction ofP0lon. The
default value ofRot is zero.
Using IDL The MAP_SET Procedure

326 Chapter 13: Map Projections

e

d.

r

s of

o of
for
MAP_SET Keywords

MAP_SET accepts many keywords that customize the projection attributes of th
map. A few of the important ones are described below. SeeMAP_SET in theIDL
Reference Guide for descriptions of all the keywords.

CONTINENTS

Set this keyword to plot the continental boundaries.

GRID

Set this keyword to draw the grid of parallels and meridians.

ISOTROPIC

Set this keyword to produce a map that has the same scale in theX andY directions.

LIMIT

Set this keyword to a four- or eight-element vector. The four-element vector, [Latmin,
Lonmin, Latmax, Lonmax], specifies the boundaries of a simple region to be mappe
(Latmin, Lonmin) and (Latmax, Lonmax) are the latitudes and longitudes of two points
diagonal from each other on the region’s boundary. For more complex regions o
projections, the eight-element vector, [Lat0, Lon0, Lat1, Lon1, Lat2, Lon2, Lat3, Lon3]
specifies four points located, respectively, on the left, top, right and bottom edge
the map.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the rati
1:scale. If SCALE is not specified, the map is fit to the window. The typical scale
global maps is in the ratio of between 1:100 million and 1:200 million. For
continents, the typical scale is in the ratio of approximately 1:50 million. For
example,SCALE=100E6 sets the scale at the center of the map to 1:100 million,
which is in the same ratio as 1 inch to 1578 miles (1 cm to 1000 km).
The MAP_SET Procedure Using IDL

Chapter 13: Map Projections 327

alled
lar
The MAP_GRID Procedure

MAP_GRID draws the graticule of parallels and meridians according to the
specifications established by MAP_SET. The MAP_SET procedure should be c
before MAP_GRID to establish the projection type, the center of the projection, po
rotation, and geographical limits. Latitude and/or longitude lines can be drawn in
different line styles, colors, and spacings. SeeMAP_GRID in theIDL Reference
Guide for more information on all the available options.
Using IDL The MAP_GRID Procedure

328 Chapter 13: Map Projections

ing
re
,

The MAP_CONTINENTS Procedure

MAP_CONTINENTS draws the projection of the continental boundaries, accord
to the specifications established by MAP_SET. MAP_SET should be called befo
MAP_CONTINENTS to establish the projection type, the center of the projection
polar rotation, and geographical limits. SeeMAP_CONTINENTS in theIDL
Reference Guide for more information on all the available options.
The MAP_CONTINENTS Procedure Using IDL

Chapter 13: Map Projections 329

e to a
cted
nd

map

s up

nter-
 not
ors
be

e is
ter of

re
the
 that

to a
Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a spher
two-dimensional surface for two reasons. First, two points on a sphere are conne
by two different lines. Second, areas may wrap around the edges of cylindrical a
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The MAP_SET procedure automatically set
the proper mapping technique to best fit the projection selected by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in cou
clockwise order when observed from outside the sphere. If this requirement is
met, the exterior, instead of the interior, of the polygons may be filled. Also, vect
connecting the points spanning the singular line for cylindrical projections will
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of a great circle line, is located opposite the center of the
projection; points on this line appear on both edges of the map. The singular lin
the intersection of the surface of the sphere with a plane passing through the cen
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping plane in one or mo
clipping stages. For example, to draw a hemisphere centered on a given point,
clipping plane passes through the center of the sphere and has a normal vector
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed
point on the mapping plane.
Using IDL Graphics Techniques for Mapping

330 Chapter 13: Map Projections

ional
closed
Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a convent
rectangular clipping stage ensures that the graphics are properly bounded and
in the rectangular display area.
Graphics Techniques for Mapping Using IDL

Chapter 13: Map Projections 331

do-
Map Projections Described

In the following sections, the available projections are discussed in detail. The
projections are grouped within three categories: azimuthal, cylindrical, and pseu
cylindrical.

Note
In this text, the plane of the projection is referred to as theUV plane with horizontal
axisu and vertical axisv.
Using IDL Map Projections Described

332 Chapter 13: Map Projections

 are

at

ago.
nite

 are

ed
Azimuthal Projections

With azimuthal projections, theUV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude
P0lat andP0lon, respectively.Rot is the angle between North and thev-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and gre
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:
orthographic, stereographic, gnomonic, azimuthal equidistant, Aitoff, Lambert’s
azimuthal equal area, Hammer-Aitoff, and satellite.

Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years
This projection looks like a globe because it is a perspective projection from infi
distance. As such, it maps one hemisphere of the globe into theUV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses
compressed.

The following statements are used to produce an orthographic projection center
over Eastern Spain at a scale of 70 million to 1:

MAP_SET, /ORTHOGRAPHIC, 40, 0, SCALE=70e6, /CONTINENTS, $
/GRID, LONDEL=15, LATDEL=15, $
TITLE = 'Oblique Orthographic'
Azimuthal Projections Using IDL

Chapter 13: Map Projections 333

g

o
of

re
The output of these statements is shown in the figure below.

Stereographic Projection

The stereographic projection is a true perspective projection with the globe bein
projected onto theUV plane from the pointP on the globe diametrically opposite to
the point of tangency. The whole globe exceptP is mapped onto theUV plane. There
is great distortion for regions close toP, sinceP maps to infinity.

The stereographic projection is the only known perspective projection that is als
conformal. It is frequently used for polar maps. For example, a stereographic view
the north pole has the south pole as its point of perspective.

The following statement uses the stereographic projection to draw the hemisphe
centered on the equator at longitude –105 degrees and produces an equatorial
stereographic map:

MAP_SET, /STEREO, 0, -105, /ISOTROPIC, $
/GRID, LATDEL = 20, LONDEL = 20, /HORIZON, /CONTINENT, $
TITLE = 'Equatorial Stereographic'

Figure 13-1: Orthographic Projection
Using IDL Azimuthal Projections

334 Chapter 13: Map Projections

re.

are
 grid

s to
with
tion,

c

The output of this statement is shown in the upper-left corner of the following figu

Since the LATDEL and LONDEL keywords are set to 20, parallels and meridians
spaced 20 degrees apart. The GRID and CONTINENT keywords signal that the
and continents should be drawn.

Gnomonic Projection

The gnomonic projection (also called Central or Gnomic) projects all great circle
straight lines. The gnomonic projection is the perspective, azimuthal projection
point of perspective at the center of the globe. Hence, with the gnomonic projec
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomoni
projection is a circle with a radius of 60 degrees at the center of projection.

Figure 13-2: Azimuthal Projections
Azimuthal Projections Using IDL

Chapter 13: Map Projections 335

he

–105
70

ause
ts on

rtion

are
orld
are
gency

e

The oblique gnomonic projection shown in the lower-left corner of the figure in t
“Stereographic Projection” section is produced by the following statement:

MAP_SET, /GNOMIC, 40, -105, LIMIT = [20, -130, 70, -70], $
/ISOTROPIC, /GRID, /CONTINENT, $
TITLE = 'Oblique Gnomonic'

This projection is centered around the point at latitude 40 degrees and longitude
degrees. The region on the globe that is mapped lies between 20 degrees and
degrees of latitude and –130 degrees and –70 degrees of longitude.

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not a true perspective projection, bec
it preserves correctly the distances between the tangent point and all other poin
the globe. The pointP opposite the tangent point is mapped to a circle on theUV
plane, and hence, the whole globe is mapped to the plane. There is infinite disto
close to the outer rim of the map, which is the circular image ofP.

If the keyword LIMIT is not set, the whole globe is mapped to theUV plane. The
polar azimuthal projection shown in the lower-right corner of figure in the
“Stereographic Projection” section is created using the following statement:

MAP_SET, /AZIMUTHAL, /ISOTROPIC, -90, $
/GRID, LONDEL=20, LATDEL=20, /CONTINENT, $
/HORIZON, TITLE = 'Polar Azimuthal'

It is centered at the South Pole and shows the entire globe.

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines parallel to the equator
stretched horizontally and meridian values are doubled, thereby displaying the w
as an ellipse with axes in a 2:1 ratio. Both the equator and the central meridian
represented at true scale; however, distances measured between the point of tan
and any other point on the map are no longer true to scale.

An Aitoff projection centered on the international dateline can be produced by th
command:

MAP_SET, 0, 180, /Aitoff, /GRID, /CONTINENTS, /ISOTROPIC, $
TITLE= 'Aitoff Projection'
Using IDL Azimuthal Projections

336 Chapter 13: Map Projections

area.

en

ons.

per-

ees,

ion,
lunes

e
ata
here

 in

ed
Lambert’s Equal Area Projection

Lambert’s equal area projection adjusts projected distances in order to preserve
Hence, it is not a true perspective projection.

Like the stereographic projection, it maps to infinity the pointP diametrically
opposite the point of tangency. Note also that to preserve area, distances betwe
points become more contracted as the points become closer toP. Lambert’s equal
area projection has less overall scale variation than the other azimuthal projecti

The following statement produces the polar Lambert projection shown in the up
right corner of the figure in the“Stereographic Projection” section:

MAP_SET, /LAMBERT, 90, 0, -105, /ISOTROPIC, $
/GRID, LATDEL=20, LONDEL=20, $
/CONTINENTS, E_CONTINENTS={FILL:1}, /HORIZON, $
TITLE = 'Polar Lambert'

Note
This map shows the Northern Hemisphere rotated counterclockwise 105 degr
filling the continents with a solid color.

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it is included in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivat
the hemisphere is represented inside an ellipse with the rest of the world in the
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entir
globe, it is useful for visual representations of geographically related statistical d
and distributions. Astronomers use this projection to show the entire celestial sp
on one map in a way that accurately depicts the relative distribution of the stars
different regions of the sky.

A Hammer-Aitoff projection centered on the international dateline can be produc
by the command:

MAP_SET, 0, 180, /HAMMER, /GRID, /CONTINENTS, /ISOTROPIC, $
/HORIZON, TITLE= 'Hammer-Aitoff Projection'
Azimuthal Projections Using IDL

Chapter 13: Map Projections 337

s a
of the

int).
tion
, the

e

e

al.

tion

ust
 the
Satellite Projection

The satellite projection, also called the General Perspective projection, simulate
view of the globe as seen from a camera in space. If the camera faces the center
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are special cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite po
If the projection plane is perpendicular to the line connecting the point of projec
and the center of the globe, a Vertical Perspective projection results. Otherwise
projection plane is horizontally turnedΓ degrees clockwise from the north, then tilted
ω degrees downward from horizontal.

For the satellite projection,P0Lat andP0Lonrepresent the latitude and longitude of th
sub-satellite point. Three additional parameters,P, Omega, andGamma (supplied as
a three-element vector argument to the SAT_P keyword), are required where:

• P is the distance of the point of perspective (camera) from the center of th
globe, expressed in units of the radius of the globe.

• Omegais the downward tilt of the camera, in degrees from the new horizont
If both Gamma andOmega are 0, a Vertical Perspective projection results.

• Gammais the angle, expressed in degrees clockwise from north, of the rota
of the projection plane.

Note
Since all meridians and parallels are oblique lines or arcs, the LIMIT keyword m
be supplied as an eight-element vector representing four points that delineate
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.
Using IDL Azimuthal Projections

338 Chapter 13: Map Projections

nited
the

y.
The map in the accompanying figure, which shows the eastern seaboard of the U
States from an altitude of about 160km, above Newburgh, NY, was produced with
code that follows.

The parameters for this satellite projection are:

• Center of projection = 41.5N latitude, –74W longitude

• P (altitude) = 1.025 = (1.0 + 160 / 6371km)

• Gamma (rotation of projection plane) = 150 degrees

• Omega (tilt of projection plane) = 55 degrees

• The eight element LIMIT keyword array specifies the latitude/longitude
locations of points at the bottom, left, top, and right of the map respectivel

• The HORIZON keyword draws a horizon line.

Figure 13-3: Satellite Projection
Azimuthal Projections Using IDL

Chapter 13: Map Projections 339
Example: Labeling and Drawing Projections

Labeling and drawing a vector on a satellite projection.

MAP_SET, /SATELLITE, SAT_P=[1.0251, 55, 150], 41.5, -74., $
/ISOTROPIC, /HORIZON, $
LIMIT=[39, -74, 33, -80, 40, -77, 41,-74], $
/CONTINENTS, TITLE='Satellite / Tilted Perspective'

;Set up the satellite projection:
MAP_GRID, /LABEL, LATLAB=-75, LONLAB=39, LATDEL=1, LONDEL=1
;Get North vector:
p = convert_coord(-74.5, [40.2, 40.5], /TO_NORM)
;Draw North arrow:
ARROW, p(0,0), p(1,0), p(0,1), p(1,1), /NORMAl
XYOUTS, -74.5, 40.1, 'North', ALIGNMENT=0.5
Using IDL Azimuthal Projections

340 Chapter 13: Map Projections

g

llel

er
se
ity—
ld be
e.g.,
r) are
0,

cted.
Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrappin
theUV plane around the globe with theu-axis coinciding with a great circle. The
parametersP0lat, P0lon, andRot determine the great circle that passes through the
pointC=(P0lat, P0lon). In the discussions below, this great circle is sometimes
referred to as EQ.Rot is the angle between North at the map’s center and thev-axis
(which is perpendicular to the great circle). The cylinder is cut along the line para
to thev-axis and passing through the point diametrically opposite to C. It is then
rolled out to form a plane.

The cylindrical projections in IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area
conic.

Mercator Projection

Mercator’s projection is partially developed by projecting the globe onto the cylind
from the center of the globe. This is a partial explanation of the projection becau
vertical distances are subjected to additional transformations to achieve conform
that is, local preservation of shape. To properly use the projection, the user shou
aware that the two points on the globe 90 degrees from the central great circle (
the North and South Poles in the case that the selected great circle is the equato
mapped to infinite distances. By default, the keyword LIMIT is set to [–80, –180, 8
180] because of the great distortions around the poles when the equator is sele

The following statement produces a simple Mercator projection:

MAP_SET, /MERCATOR, 0, 0, /ISOTROPIC, $
/GRID, /CONTINENTS, $
TITLE = 'Simple Mercator'
Cylindrical Projections Using IDL

Chapter 13: Map Projections 341

re.

ows

hese
are

the
 IDL
The result of this statement is shown in the upper-left corner of the following figu

Latitudes range from –80 degrees to 80 degrees.

Transverse Mercator Projection

The Transverse Mercator (also called theUTM, andGauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it foll
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is always in contact with a meridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; t
four lines are straight. All other meridians and parallels are complex curves which
concave toward the central meridian. Shape is true only within small areas and
areas increase in size as they move away from the central meridian. Most other
projections are scaled in the range of +/– 1 to +/– 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this
projection and its use of the meridian makes it useful for north-south regions.

Figure 13-4: Cylindrical Projections
Using IDL Cylindrical Projections

342 Chapter 13: Map Projections

ed

type

ator

h and
e

uct.
ces

.

nd
-

The Clarke 1866 ellipsoid is used for the default, but its parameters can be alter
with the ELLIPSOID keyword.

Example: The UTM Map

To create a UTM map, centered near London, with a scale of 10 million to one,
the following:

MAP_SET, /TRANSVERSE, 51, 0, SCALE=10e6, $
/GRID, LATDEL=2.5, LONDEL=2.5, /LABEL, LONLAB=48, $
/CONTINENTS, E_CONT={COUNTRIES:1, COASTS:1}, $
TITLE='UTM Projection'

When the eccentricity of the Earth is not important, global scale Transverse Merc
projections can be easily created using the Mercator projection with the
CENTRAL_AZIMUTH keyword set to 90 degrees, and settingRotto rotate the map
90 degrees. For example, to create the Transverse Mercator map showing Nort
South America, with a central meridian of –90 degrees West and centered on th
Equator, shown in the upper-right corner of the figure in the“Mercator Projection”
section. It is produced by the following statement:

MAP_SET, /MERCATOR, 0, -75, 90, CENTRAL_AZIMUTH=90, $
/ISOTROPIC, LIMIT= [32,-130, 70,-86, -5,-34, -58, -67], $
/GRID, LATDEL=15, LONDEL=15, /CONTINENTS, $
TITLE = 'Transverse Mercator'

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to constr
If EQ is the equator, this projection simply lays out horizontal and vertical distan
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

If EQ is the equator, meridians and parallels will be equally spaced parallel lines

The following code is used to produce a simple cylindrical equidistant projection a
an oblique cylindrical equidistant projection as shown in the lower-left and lower
right sections of the figure under the“Mercator Projection” heading:

–180≤ u ≤ 180

and

–90≤ v ≤ 90
Cylindrical Projections Using IDL

Chapter 13: Map Projections 343

rea,
ch

and
es.

g
nd

ne

hich
MAP_SET, /CYLINDRICAL, 0, 0, /GRID, /CONTINENTS, $
TITLE = 'Simple Cylindrical Equidistant', $
MAP_SET, /CYLINDRICAL, 0, 0, 45, $
/GRID, /CONTINENT, /HORIZON, $
TITLE='Oblique Cylindrical Equidistant'

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-a
conformal or equidistant along the meridians. Meridians are equidistant from ea
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians
parallels intersect each other at right angles, with the poles shown as straight lin
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallels is constructed by
projecting the globe onto a cone passing through two parallels. Additional scalin
achieves conformity. The pole under the cone’s apex is transformed to a point, a
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels are projected onto circles and meridians onto equally spaced
straight lines. The STANDARD_PARALLELS keyword specifies the latitudes of o
or two standard parallels.

The following statement produces the map shown in the accompanying figure, w
features North America with standard parallels at 20 degrees and 60 degrees:

MAP_SET, /CONIC, 40, -80, STANDARD_PARALLELS=[20,60], $
/ISOTROPIC, LIMIT=[0, -260, 80, 100], $
/GRID, LATDEL=15, LONDEL=20, /CONTINENT, $
TITLE= 'Lambert’s Conic'
Using IDL Cylindrical Projections

344 Chapter 13: Map Projections

ally
 any
al of
o

ge.
tion.

ny
Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equ
spaced radii, parallels are concentric arcs of circles and scale is constant along
parallel. To maintain equal area, the scale factor along meridians is the reciproc
the scale factor along parallels, with the scale along the parallels between the tw
standard parallels too small, and the scale beyond the standard parallels too lar
Standard parallels are correct in scale along the parallel, as well as in every direc

The Albers projection is particularly useful for predominantly east-west regions. A
keywords for the Lambert conformal conic also apply to the Albers conic.

Figure 13-5: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°
Cylindrical Projections Using IDL

Chapter 13: Map Projections 345

rm,

city.

ct

rner

r
ntral

ulas
Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest fo
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for major continents, and simpli
It was designed to make the world look right. Since its introduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel is equally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses.

Note
The central meridian should always be 0 degrees longitude to retain the corre
balance of shapes, sizes, and relative positions.

The next statement produces the Robinson projection shown in the lower-left co
of the figure which follows.

MAP_SET, /ROBINSON, 0, 0, /ISOTROPIC, /GRID, $
/HORIZON, E_CONTINENTS={FILL:1}, TITLE=’Robinson’

Sinusoidal Projection

With the sinusoidal projection, the central meridian is a straight line and all othe
meridians are equally spaced sinusoidal curves. The scaling is true along the ce
meridian as well as along all parallels.

The sinusoidal projection is one of the easiest projections to construct. The form
below from Snyder (1987) give the relationship between the latitudeφ and longitude
λ of a point on the globe and its image on theUV plane.

u = λcosφ

v = φ
Using IDL Pseudocylindrical Projections

346 Chapter 13: Map Projections

ese

T is

ed at

ns
re
The parametersP0Lat andRot of the MAP_SET procedure must be zero. If they are
not, an error message results and the procedure MAP_SET will reset both of th
parameters to zero and continue. By default,P0Lon (the central longitude) is zero, but
the user can set it to any other value between –180 and 180. If the keyword LIMI
undefined, the entire globe is the region selected for mapping.

The following statements produces the sinusoidal map of the whole globe center
longitude 0 degrees and latitude 0 degrees:

MAP_SET, /SINUSOIDAL, /ISOTROPIC, $
/CONTINENTS, TITLE=’Sinusoidal’

MAP_GRID, LONDEL=20, /HORIZON

The result of these statements is shown in the upper-left corner of the following
figure.

Mollweide Projection

With the Mollweide projection, the central meridian is a straight line, the meridia
90 degrees from the central meridian are circular arcs and all other meridians a

Figure 13-6: Pseudocylindrical Projections
Pseudocylindrical Projections Using IDL

Chapter 13: Map Projections 347

 the
is

e
ed

not

923,
e
ral

f the
d the

n in
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in
UV plane. The circular arcs encompass a hemisphere and the rest of the globe
contained in the lunes on either side.

If the keyword LIMIT is not set, the whole globe will be mapped to the plane. Th
following statement produces a Mollweide projection in oblique form, as illustrat
in the upper-right corner of the previous figure:

MAP_SET, /MOLLWEIDE, 45, 0, /ISOTROPIC, $
/GRID, LATDEL=20, LONDEL=20, $
/HORIZON, E_CONTINENTS={FILL:1}, $
TITLE='Oblique Mollweide'

Since the center of the projection is not on the equator, parallels of latitude are
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homolosine projection, developed by J. Paul Goode, in 1
is designed for World maps to show the continents with minimal scale and shap
distortion. This is accomplished by interrupting the projection and choosing seve
central meridians to coincide with large land masses. This projection is a fusion o
Sinusoidal projection between the latitudes of 44.7 degrees North and South, an
Mollweide projection between these parallels and the poles.

The following statement produced the example of Goode’s Homolosine projectio
the lower-right corner of the previous figure:

MAP_SET, /GOODESHOMOLOSINE, 0, 0, /ISOTROPIC, /GRID, $
LATDEL=15, LONDEL=20, /HORIZON, E_CONTINENTS={FILL:1}, $
TITLE=’Goode Homolosine’
Using IDL Pseudocylindrical Projections

348 Chapter 13: Map Projections

d to
SET,
d

own
Putting Data on Maps

The procedures PLOT, OPLOT, PLOTS, XYOUTS, and CONTOUR can be use
display and annotate geographical data on maps created by the routines MAP_
MAP_GRID, and MAP_CONTINENTS. The MAP_IMAGE procedure can be use
to warp regularly-gridded images to map projections.

Example—Using CONTOUR with MAP_SET

The following simple example creates a CONTOUR plot over a Mollweide map
projection and then over a polar stereographic projection. The resulting map is sh
below.

;Make a 10 degree latitude/longitude grid covering the Earth:
lat = REPLICATE(10., 37) # FINDGEN(19) - 90.
lon = FINDGEN(37) # REPLICATE(10, 19)
;Convert lat and lon to Cartesian coordinates:

Figure 13-7: Combining CONTOUR with MAP_SET
Putting Data on Maps Using IDL

Chapter 13: Map Projections 349

at
 the
s on
X = COS(!DTOR * lon) * COS(!DTOR * lat)
Y = SIN(!DTOR * lon) * COS(!DTOR * lat)
Z = SIN(!DTOR * lat)
;Create the function to be plotted, set it equal
;to the distance squared from (1,1,1):
F = (X-1.)^2 + (Y-1.)^2 + (Z-1.)^2
MAP_SET, /MOLLWEIDE, 0, 0, /ISOTROPIC, $

/HORIZON, /GRID, /CONTINENTS, $
TITLE='Mollweide Contour'

CONTOUR, F, lon, lat, NLEVELS=7, $
/OVERPLOT, /DOWNHILL, /FOLLOW

;Fill the contours over the northern hemisphere and
;display in a polar sterographic projection:
MAP_SET, /STEREO, 90, 0, $

/ISOTROPIC, /HORIZON, E_HORIZON={FILL:1}, $
TITLE='Stereographic Contour'

; Display points in the northern hemisphere only:
CONTOUR, F(*,10:*), lon(*,10:*), lat(*,10:*), $

/OVERPLOT, /FILL, NLEVELS=5
MAP_GRID, /LABEL, COLOR=255
MAP_CONTINENTS, COLOR=255

Limitations

Filling contours or polygons over maps that cover more than a hemisphere will
produce incorrect results. This is because of the ambiguity between polygons th
enclose an area, and those that enclose the entire surface of the sphere outside
area; and because of the ambiguity of determining the clockwise-ness of polygon
a sphere that cover more than a hemisphere.
Using IDL Putting Data on Maps

350 Chapter 13: Map Projections

he
by
are
IDL

ling

ling

art.
s

ntal

ases:
High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is a low-resolution
continental outline database that is automatically installed when you install IDL. T
high-resolution database was adapted from the 1993 CIA World Map database
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines
found in an optional data set that may not have been installed when your copy of
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when cal
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by cal
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS in theIDL Reference Guidefor an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer ap
Note, however, that in the case of the coast and river databases, actual distance
between the data points may be much smaller because of convolutions in the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the contine
map database used in previous versions of IDL (the filesupmap.dat in the
resource/maps subdirectory of the main IDL directory). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.

The following table compares the low-resolution and high-resolution map datab

Feature Low-Resolution High-Resolution

Coastlines, islands, and
lakes (including
continental outlines)

Data in filesupmap.dat . Entire CIA World Map

Table 13-1: Comparison of Low- and High-resolution Map Databases
High-Resolution Continent Outlines Using IDL

Chapter 13: Map Projections 351
Continental polygons Data extracted from
supmap.dat .

Every 20th point of
CIA World Map.

Rivers Every 250th point of the CIA
World Map.

Entire CIA World Map.

National boundaries Every 100th point of CIA
World Map.

Entire CIA World Map.

Feature Low-Resolution High-Resolution

Table 13-1: Comparison of Low- and High-resolution Map Databases
Using IDL High-Resolution Continent Outlines

352 Chapter 13: Map Projections

D.C.
References

Greenwood, David (1964),Mapping, University of Chicago Press, Chicago.

Pearson, Frederick II (1990),Map Projections: Theory and Applications, CRC Press,
Inc., Boca Raton.

Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington,
References Using IDL

Chapter 14:

Image Display
Routines

The following topics are found in this chapter:
3

5

Overview . 354
Images . 355
Imaging Routines 356
Image Display. 357
Reading from the Display Device. 361

Color Tables. 36
True-Color Displays. 370
Controlling the Device Cursor. 374
References . 37
Using IDL 353

354 Chapter 14: Image Display Routines

nes
ay
vides

ics.
Overview

IDL provides a powerful environment for image processing and display. The routi
described in this chapter provide the interface between IDL and the image displ
system. This chapter describes these image display and control routines and pro
examples of their use.

Graphics Used in Examples

The examples in this chapter are all written to take advantage of IDL Direct Graph
Overview Using IDL

Chapter 14: Image Display Routines 355

orm
 of
rm of
Images

An image consists of a two-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of this f
are known as sampled or raster images, because they consist of a discrete grid
samples. Such images come from many different sources and are a common fo
representing scientific and medical data.
Using IDL Images

356 Chapter 14: Image Display Routines

o be

play

play

used
Imaging Routines

The following IDL routines are used for the display and manipulation of images:

TVCRS

This procedure manipulates the image device cursor. TVCRS allows the cursor t
enabled and disabled, as well as allowing it to be positioned.

TV

This procedure displays images on the image display.

TVSCL

This procedure scales the intensity values of the image into the range of the dis
device, then displays the result on the image display.

TVLCT

This procedure loads a new color table into the display device.

TVRD

This function reads image pixels back from the display device.

In addition, most routines used for plotting and graphics can be used with the dis
of images as well. These routines are described inChapter 11, “Direct Graphics
Plotting” andChapter 14, “Image Display Routines”. For example, to overlay an
image and its contour plot, the output of theCONTOURprocedure is combined with
that ofTV. The CURSOR routine, described in“Using the CURSOR Procedure” on
page 277, reads the position of the interactive pointing device and may also be
to determine the location of image pixels.
Imaging Routines Using IDL

Chapter 14: Image Display Routines 357

s use
ge
ly.

f

age.

r can
es

er-
the

wer-
Image Display

The TV and TVSCL procedures display images on the screen. These procedure
the same arguments and keywords and differ only in that TVSCL scales the ima
into the intensity range of the display device, while TV displays the image direct
They have the form:

TV, IMAGE[, POSITION]
TV, IMAGE[, X, Y[, CHANNEL]]
TVSCL, IMAGE[, POSITION]
TVSCL, IMAGE[, X, Y[, CHANNEL]]

where the arguments and keywords are as follows:

IMAGE

A vector or two-dimensional matrix to be displayed as an image. If not already o
byte type, it is converted prior to use.

X, Y

If present, these arguments specify the lower-left coordinate of the displayed im

POSITION

Position number of the image. Image positions are discussed in detail below.

CHANNEL

Some image display devices are capable of storing more than a single image o
combine three single color images to form a true color image. CHANNEL specifi
the memory channel to be written. It is assumed to be zero if not specified. This
parameter is ignored on display systems that have only one memory channel.

If no optional parameters are present, IMAGE is output to the display with its low
left corner at coordinate (0, 0). The optional parameters can be used to specify
screen position of the image in a variety of ways.

Image Orientation

The screen coordinate system for image displays puts the origin, (0, 0), at the lo
left corner of the device. The upper-right corner has the coordinate (xsize–1,ysize–1),
wherexsize andysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of
512× 512, although other sizes may be used.
Using IDL Image Display

358 Chapter 14: Image Display Routines

 the
-to-
from
 It
tion

E

e

c) as

a
creen
s are
r-

ny
The system variable !ORDER controls the order in which the image is written to
screen. Images are normally output with the first row at the bottom, i.e., in bottom
top order, unless !ORDER is 1, in which case images are written on the screen
top to bottom. The ORDER keyword also can be specified with TV and TVSCL.
works in the same manner as !ORDER except that its effect only lasts for the dura
of the single call—the default reverts to that specified by !ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTAT
function.

Image Position

Image positions run from the left of the screen to the right and from the top of th
screen to the bottom. If a position number is used instead ofx andy, the position of
the image is calculated from the dimensions of the image (using integer arithmeti
follows:

xsize, ysize = size of display or window

xdim, ydim = dimensions of array

Nx = xsize/xdim = images across screen

x = xdimPositionmoduloNx = startingx

y = ysize – ydim (1 +Position/Nx) = startingy

For example, when displaying 128× 128 images on a 512× 512 display, the position
numbers run from 0 to 15 as follows:

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Image Size

Most image devices have a fixed number of display pixels. Common sizes are
512× 512, 1280× 1024, and 900× 1152 (for Sun workstations). Such pixels have
fixed size which cannot be changed. For such devices, the area written on the s
is the same size as the dimensions of the image array. One-dimensional vector
considered row vectors. Thex andy parameters specify the coordinates of the lowe
left corner of the area written on the display.

There are some devices, however, that have the ability to place an image with a
number of pixels into an area of arbitrary size. PostScript devices are a notable
Image Display Using IDL

Chapter 14: Image Display Routines 359

ect

ixels,

on a
age.
the

ith
he
 for
a
nd

 to fill
example. Such devices are said to have scalable pixels, because there is no dir
connection between the number of pixels in the image and the physical space it
occupies in the displayed image. When the current image device has scalable p
IDL sets the first bit of !D.FLAGS. The following IDL statement can be used to
determine if the current device has scalable pixels:

SP = !D.FLAGS AND 1

SP will be nonzero if the device has scalable pixels. When displaying an image
device with scalable pixels, the default uses the entire display surface for the im
The XSIZE and YSIZE keywords can be used to override this default and specify
width and height that should be used.

The XSIZE and YSIZE keywords also should be used when positioning images w
the POSITION argument to TV or TVSCL. POSITION normally uses the size of t
image in pixels to determine the placement of the image, but this is not possible
devices with scalable pixels. Instead, the default for such devices is to assume
single position that fills the entire available display surface. However, if XSIZE a
YSIZE are specified, POSITION will use them to determine image placement.

Examples

;Set all display memory to 100:
TV, REPLICATE(100B, 512, 512)
;Define a 50 column by 100 row array:
ABC = BYTARR(50, 100)
;Display array ABC starting at location x = 300, y=400.
;Display pixels in columns 300 to 349, and
;rows 400 to 499 are zeroed.
TV, ABC, 300, 400
;Display image divided by 2 at position number 12:
TV, ABC/2, 12
;Output image to memory channel 2, lower-left
;corner at (256, 256).
TV, A, 256, 256, 2
;Assume file one contains a sequence of 64 × 64 byte arrays:
AA = ASSOC(1, BYTARR(64, 64))
;Display 64 images from file, from left to right and
;top to bottom, filling a 512 × 512 area:
FOR I = 0, 63 DO TV, AA[I], I

Image Scaling

An image can be contrast enhanced so any subrange of pixel values are scaled
the entire range of displayed brightnesses using a variety of methods.
Using IDL Image Display

360 Chapter 14: Image Display Routines

sion

ge
For example, if the imageA contains an object superimposed on a varying
background and the pixel values in the object range from a value ofSto the brightest
value in the image the IDL statement:

TVSCL, A > S

will use the entire range of display brightnesses to display the object. The expres
A > S results in an image in which each pixel inA less thanS is set toS. Thus,S
becomes the new minimum intensity. The TVSCL procedure scales the new ima
into the available number of color-table entries before loading it into the display.
Again, the imageA is not changed.

Another method that is more efficient, although slightly obscure, is to use the
BYTSCL function to scale the array as follows:

TV, BYTSCL(A, MIN = S, TOP = !D.TABLE_SIZE)

This method is more efficient because the valueS is known and avoids scanning the
array for the minimum and maximum values. Also, one less array operation is
required.

If the object inA has values from 2.6 to 9.4, the statements

;Slow method.
TVSCL, A > 2.6 < 9.4
;Faster method.
TV, BYTSCL(A, MIN=2.6, MAX=9.4, TOP = !D.TABLE_SIZE)

will truncate the image so 2.6 is the new minimum and 9.4 is the new maximum
before scaling and display.

Some examples of using the TVSCL function follow.

;Display square root of image:
TVSCL, SQRT(A)
;Display unsharp masked image:
TVSCL, A - SMOOTH(A, 3)
;Display scaled sum at position number 12:
TVSCL, A + B, 12
Image Display Using IDL

Chapter 14: Image Display Routines 361

n
ny
ge in

he

 the
Reading from the Display Device

The TVRD function reads the contents of the display device memory back into a
IDL variable. One use for this capability is to build up a complex display using ma
IDL statements, and then read the resulting image back as a single unit for stora
a file.

The TVRD function returns the contents of the specified rectangular portion of t
display subsystem’s memory. The coordinate (x0, y0) is the starting coordinate of the
data to be read, andNx, Ny is the size of the rectangle in columns and rows. This
results in a byte array of dimensionsNx × Ny.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD() may cause unexpected
results. For example, data may be improperly read from the window even when
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

The TVRD function has the form:

TVRD([X0, [Y0, [NX, [NY[, Channel]]]]])

where the arguments are described as follows.

X0

Specifies the starting column of data to read.

Y0

Specifies the starting row of data to read.

NX

The number of columns to read.

NY

The number of rows to read.

Channel

The memory channel to be read. It is assumed to be zero if not specified. This
parameter is ignored on display systems that only have one memory channel.
Using IDL Reading from the Display Device

362 Chapter 14: Image Display Routines

 up;

y. If
If the system variable !ORDER is set to zero, then data are read from the bottom
otherwise, data are read in the top-down direction.

Example

The following statement inverts the 100× 100 area of the display starting at
(200, 300):

;Reverse area:
TV, NOT TVRD(200, 300, 100, 100)

Ability to Read from Display

Not all image devices are able to support reading pixels back from device memor
the current device has this ability, IDL sets the eighth bit of !D.FLAGS.

;Determine if the current device allows reading
;from display memory:
TEST = !D.FLAGS AND 128

TEST will be nonzero if the device allows such operations.
Reading from the Display Device Using IDL

Chapter 14: Image Display Routines 363

tems,
en

lor
and

low)
L

sian

int
 of
of
 is

%

he

s.
of

ble
-bit
nt
Color Tables

There are numerous systems for the measuring and specification of color. Most
systems are three-dimensional in nature. For a complete discussion of color sys
refer to Foley and Van Dam (1982, Chapter 17). Parts of this discussion are tak
from that chapter.

Most devices capable of displaying color use the RGB (red, green, and blue) co
system. Other common color systems include the Munsell, HSV (hue, saturation,
value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and yel
color systems. Algorithms exist to convert colors from one system to another. ID
accepts color specifications in the RGB, HLS, or HSV color systems.

The RGB color system, as implemented in IDL, uses a three-dimensional Carte
coordinate system with the value of each color ranging from 0 to 255. Each
displayable color is a point within this cube, shown inFigure 14-1 (after Foley and
Van Dam). The origin, (0, 0, 0), where each color coordinate is 0, is black. The po
at (255, 255, 255) is white and represents an additive mixture of the full intensity
each of the three colors. Points along the main diagonal—where the intensities
each of the three primary colors are equal—are shades of gray. The color yellow
represented by the coordinate (255, 255, 0), or a mixture of 100% red, plus 100
green, and no blue.

Typically, digital display devices represent each component of an RGB color
coordinate as ann-bit integer in the range of 0 to 2n –1. Each displayable color is an
RGB coordinate triple ofn-bit numbers yielding a palette containing 23n total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and t
total palette contains 224 or 16,777,216 colors.

A display with anm-bit pixel can represent 2m colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all color
The more common case is a display with 8 bits per pixel which allows the display
28 = 256 colors selected from the much larger palette.

If there are not enough bits in a pixel to represent all colors,m < 23n, a color
translation table is used to associate the value of a pixel with a color triple. This ta
is an array of color triples with an element for each possible pixel value. Given 8
pixels, a color table containing 28 = 256 elements is required. The color table eleme
with an index ofi specifies the color for pixels with a value ofi.

To summarize, given a display with ann-bit color representation and anm-bit pixel,
the color translation table,C, is a 2m long array of RGB triples:
Using IDL Color Tables

364 Chapter 14: Image Display Routines

nd

ing

T

Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, ofi are displayed with a color ofCi.

The IDL COLOR_CONVERT procedure can be used to convert color triples to a
from the RGB color system and the HLS and HSV systems.

You can display true color images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for display
the true-color image and then maps the true color image to the new palette. See
COLOR_QUAN in theIDL Reference Guide for more information.

Loading Color Tables

IDL maintains its own internal color table which is read and written by the TVLC
procedure. When this table is modified, it is loaded into the currently selected
graphics output device. A call to this procedure has the form:

TVLCT, V1, V2, V3 [, Start]

where the arguments and keywords are as follows:

Figure 14-1: RGB Color Cube. (Note: grays are on the main diagonal.)
Color Tables Using IDL

Chapter 14: Image Display Routines 365

GB,
n so

the

in
 the

in
he

dds
r for
ents
, 0,
ust

olor
V1, V2, and V3

The vectors containing the intensity or value of each color for each index in the R
HLS, or HSV color systems. Standard devices have an 8-bit color representatio
the color values should range from 0 to 255. These vectors can contain up to 2m

elements (usually 256), assuming the display contains m bit pixels.

Start

The starting index in the color translation table into whichV1, V2, andV3 are loaded.
If not specified, a value of 0 is used, causing the tables to be loaded starting at
first element of the translation vectors. TheStart argument can be used to change
only part of the color table.

In addition, the following keyword parameters can also be present:

GET

Returns the RGB values from the internal color table into the three variables.

HLS

Indicates that the parameters specify color using the HLS color system. The pla
argument parameters are in the order H-L-S. Hue is expressed in degrees, and
lightness and saturation range from 0 to 1.

HSV

Indicates that the parameters specify color using the HSV color system. The pla
argument parameters are in the order H-S-V. As above, hue is in degrees, and t
saturation and value range from 0 to 1.

Example

This example creates a graph with the axes drawn in white, then successively a
red, green, blue, and yellow lines. As there are five distinct colors, plus one colo
the background, a six-element color table is created. Usually, color index 0 repres
black (0, 0, 0). We arbitrarily choose color index 1 to be white (1, 1, 1), 2 as red (1
0), 3 as green (0, 1, 0), 4 as blue (0, 0, 1), and 5 as yellow (1, 1, 0). The display m
have at least 3 bits per pixel to represent six colors simultaneously, and an 8-bit c
table is assumed.

;Specify the red component of each color:
RED = [0, 1, 1, 0, 0, 1]
;Specify the green component of each color:
GREEN = [0, 1, 0, 1, 0, 1]
;Specify the blue component of each color:
Using IDL Color Tables

366 Chapter 14: Image Display Routines

 file
or
BLUE = [0, 1, 0, 0, 1, 0]
;Load the first six elements of the color table:
TVLCT, 255 * RED, 255 * GREEN, 255 * BLUE
;Draw the axes in white, color index 1:
PLOT, COLOR = 1, /NODATA,...
;Draw in red:
OPLOT, COLOR = 2, ...
;Draw in green:
OPLOT, COLOR = 3, ...
;Draw in blue.
OPLOT, COLOR = 4, ...
;Draw in yellow:
OPLOT, COLOR = 5,

The INDGEN function is handy when creating larger color tables in which each
color’s intensity can be expressed as a function of its index:

;Straight line, A[I] = I:
A = INDGEN(256)
;Display image with a linear red scale, disable green and blue:
TVLCT, A, A * 0, A * 0
;Display with linear black and white scale:
TVLCT, A, A, A
;Warm body temperature scale. Red is linear,
;green starts at 128, and blue starts at 192:
TVLCT, A, 2 * (A - 128) > 64, 4 * (A - 192) > 0

Color Table Procedures

The following IDL procedures are used to manipulate color tables:

LOADCT

Load predefined color tables. LOADCT has one parameter: the index of the
predefined color table to be loaded. There are 40 pre-defined color tables in the
colors1.tbl, which is supplied with IDL. To obtain a menu listing the available col
tables, call LOADCT with no parameters. Standard tables are listed below.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red +
Stripes

Table 14-1: Predefined Color Tables
Color Tables Using IDL

Chapter 14: Image Display Routines 367

can

ree
te
XLOADCT

This procedure provides a widget interface to LOADCT. Pre-defined color tables
be loaded and manipulated using this tool. Tables can be stretched and Gamma
corrected interactively using this procedure.

XPALETTE

This widget procedure allows you to create your own color tables using a set of th
sliders. This procedure can interpolate the space between color indices (to crea
smooth color transitions) or edit individual colors.

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma-II 26 Eos A

6 Prism 27 Eos B

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Level 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Number Name Number Name

Table 14-1: Predefined Color Tables
Using IDL Color Tables

368 Chapter 14: Image Display Routines

the
arly

 the
e

d

nge
ith

n

MODIFYCT

Saves color tables for later use by LOADCT.

HSV

Makes and loads color tables based on the HSV color system. A spiral through
single-ended HSV cone is traced. The color representation of pixel values is line
interpolated from beginning and ending values of hue, saturation, and value.

HLS

Makes and loads color tables based on the HLS color system which is based on
Otswald color system. As with the HSV procedure, spirals are interpolated in th
three-dimensional color space.

PSEUDO

Generates and loads a pseudo-color table based on the LHB (lightness, hue, an
brightness) system.

STRETCH

Linearly expands the entire range of the last color table loaded to cover a given ra
of pixel values. STRETCH has two parameters: the pixel value to be displayed w
color index 0 and the pixel value to be displayed with the maximum color index:

STRETCH, LOW, HIGH

Example

;Expand the color tables so that pixels in
;the range of 100 to 150 fill the entire color range:
STRETCH, 100, 150

To revert to a normal color table, call STRETCH with no parameters.

Note
The window-oriented procedures will not work without a window system.

Obtaining the Color Tables

All of the IDL color-table procedures maintain the current color table in a commo
block called COLORS, defined as follows:

COMMON COLORS, R_orig, G_orig, B_orig, R_curr, G_curr, B_curr
Color Tables Using IDL

Chapter 14: Image Display Routines 369

our
ion is
ig,
ble

g the

into
of

ot

 by
his
The variables are integer vectors of length equal to the number of color indices. Y
program can access these variables by defining the common block. The convent
that routines that modify the current color table should read it from R_orig, G_or
and B_orig, then load the color table using TVLCT and leave the resulting color ta
in R_curr, G_curr, and B_curr.

Color Tables—Switching Between Devices

Use the SET_PLOT procedure to direct the graphics output to different devices.
Because devices have differing capabilities and not all are capable of representin
same number of colors, the treatment of color tables when switching devices is
somewhat tricky.

After selecting a new graphics output device, SET_PLOT will perform one of the
following color-table actions depending upon which keyword parameters are
specified:

• The default is to do nothing. The problem with this treatment is that the
internal color tables incorrectly reflect the state of the device’s color tables
until TVLCT is called (usually via LOADCT).

• If the COPY keyword parameter is set, the internal color tables are copied
the device. This is straightforward if both devices have the same number
color indices. If the new device has more colors than the old device, some
color indices will be invalid. If the new device has less colors than the old, n
all the colors are saved. This is the preferred method if you are displaying
graphics and each color index is explicitly loaded.

• When the INTERPOLATE keyword is set, the new device’s table is loaded
interpolating the old color table to span the new number of color indices. T
method works best when displaying images with continuous color ranges.
Using IDL Color Tables

370 Chapter 14: Image Display Routines

or
ary
y

y.
ll

ces

56

cess.
to
True-Color Displays

IDL supports the use of some true-color displays with 24 bits per pixel. True-col
displays have multiple channels. That is, they store information about each prim
color component (red, green, and blue) of a pixel separately. A true-color displa
with n bits per memory channel can display 23n simultaneous colors, as opposed to
the 2n simultaneous colors available with a normal indexed (pseudo) color displa
Images can be transferred to and from each individual memory channel, or to a
channels simultaneously.

The X Window visuals TrueColor and DirectColor are among the true-color devi
supported by IDL.

Configuration

The true-color display is configured as a single display with three channels:

Lookup Tables

Warning
Not all true-color display systems have writable color lookup tables.

Each output channel, red, green, or blue, is routed through its own 8-bit deep, 2
element lookup table. The lookup tables can be used to compensate for color
inaccuracies generated by the display hardware or present in the acquisition pro
Initially, each lookup table is loaded with a linear ramp, mapping its input directly
its output.

Channel
Number Output

0 All colors

1 Red

2 Green

3 Blue

Table 14-2: True-Color Display Channels
True-Color Displays Using IDL

Chapter 14: Image Display Routines 371

those

splay

ue-
ay,
nnel
urns
nnel

 to
e, a

 The
bit
el
all

cified

to
As the TrueColor lookup tables are of the same size and number of elements as
on a pseudo-color display, operation of the TVLCT procedure, which loads the
lookup tables, is unchanged.

Furthermore, if the same image is loaded into each channel, operation of the di
mimics that of a standard 8-bit deep pseudo-color display. Most, but not all, IDL
image processing procedures written for a standard color display will run on a tr
color display without modification. The routines that transfer images to the displ
TV and TVSCL, write the same 8-bit data to each channel (channel 0) if no cha
parameter is present. The function TVRD, which reads data from the display, ret
the maximum value contained in the three-color channels for each pixel if no cha
parameter is present.

Color Indices

The color index specifier can range from 0 to 224–1. The system variable field
!D.N_COLORS, which contains the number of colors, is set to 224 on a true-color
display.The system variable field, !D.TABLE_SIZE, contains the number of RGB
color table elements.

The low 8 bits, bits 0 to 7, of the color index are written to the red channel; bits 8
15 are written to the green; and bits 16 to 23 are written to the blue. For exampl
given RGB, the index is R + 256(G + 256B). To create a plot with a given color
(assuming linear lookup tables), use the following statement:

PLOT, X, Y, COLOR = R + 256L * (G + 256L * B)

True-Color Images

Images can be transferred to and from the display in either 8-bit or 24-bit mode.
CHANNEL parameter specifies the source or destination channel number for 8-
images, and the TRUE keyword indicates for 24-bit images the method of chann
interleaving. If neither keyword parameter is present, the 8-bit image is written to
three-color channels, yielding the same effect as if the channel parameter is spe
as 0.

For example, to transfer three 8-bit images contained in the arrays R, G, and B
their respective channels, use the following statements:

;Load red in channel 1:
TV, R, 0, 0, 1
;Load green in channel 2:
TV, G, 0, 0, 2
;Load blue in channel 3:
TV, B, 0, 0, 3
Using IDL True-Color Displays

372 Chapter 14: Image Display Routines

e

e.
line

le

n

d.
e

o be
e

The position parameters (0, 0 above) can be altered to write to any location in th
window.

For 24-bit images, the RGB data can be interleaved by pixel, by line, or by imag
Use the TRUE parameter to specify the method of interleaving. A c column by l
true-color image is dimensioned as follows:

For example, to write a true-color, line interleaved image contained in the variabt,
with its lower-left corner at coordinate (100, 200), use the following statement:

TV, T, 100, 200, TRUE = 2

Reading Images

To read from the display to an IDL variable or expression, use the TVRD functio
with either the CHANNEL parameter or TRUE keyword parameter. The calling
sequence for TVRD is:

Result = TVRD([X0, Y0, Nx, Ny, Channel])

where (X0, Y0) specifies the window coordinate of the lower-left corner of the
rectangle to be read, and (Nx, Ny) contains the number of columns and rows to rea
Note that all parameters to TVRD are optional. If no arguments are supplied, th
entire area of the display device is returned.

When used without the TRUE parameter, TVRD returns an (Nx, Ny) byte image read
from the indicated channel. If the channel number is not specified or is zero, the
maximum RGB value of each pixel is returned, approximating the luminance.

If present and nonzero, the TRUE keyword indicates that a true-color image is t
read and specifies the index of the dimension over which color is interleaved. Th
result is a (3, Nx, Ny) pixel interleaved array if TRUE is 1; or an (Nx, 3,Ny) line
interleaved array if TRUE is 2; or an (Nx, Ny, 3) image interleaved array if TRUE is 3.

Some examples of TVRD follow.

TRUE Value Dimensions Interleaving

1 (3, c, l) Pixel

2 (c, 3,l) Line

3 (c, l, 3) Image

Table 14-3: Values for the TRUE Keyword
True-Color Displays Using IDL

Chapter 14: Image Display Routines 373
;Read a 512 × 512 image, starting at (0, 0),
;from the red channel into R:
R = TVRD(0, 0, 512, 512, 1)
;Read a true-color 512 × 512, line interleaved image,
;starting at (0, 0) into T. The variable T is
;now dimensioned (512, 3, 512):
T = TVRD(0, 0, 512, 512, TRUE = 2)
;Read the maximum RGB value of each pixel into L:
L = TVRD(0, 0, 512, 512)
Using IDL True-Color Displays

374 Chapter 14: Image Display Routines

r to
nd

or is
 off.

bly,
Controlling the Device Cursor

The TVCRS function manipulates the cursor of the image display. Normally, the
cursor is disabled and is not visible. TVCRS with one argument allows the curso
be enabled or disabled. While TVCRS with two parameters enables the cursor a
places it on pixel location (x, y). TVCRS has the form

TVCRS[, ON_OFF]
TVCRS[, X, Y]

where the arguments and keywords are as follows:

ON_OFF

Specifies whether the cursor should be on or off. If present and nonzero, the curs
enabled. If ON_OFF is zero or no parameters are specified, the cursor is turned

X

The column to which the cursor will be set.

Y

The row to which the cursor will be set.

TVCRS also takes various keywords that affect how it positions the cursor. Nota
the keywords DATA, DEVICE, and NORMAL specify the coordinate system. See
the entry forTVCRS in theIDL Reference Guide for details.
Controlling the Device Cursor Using IDL

Chapter 14: Image Display Routines 375
References

Foley, J.D., and A. Van Dam (1982),Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Company.
Using IDL References

376 Chapter 14: Image Display Routines
References Using IDL

Chapter 15:

Signal Processing
The following topics are covered in this chapter:
0

4

Overview . 378
Digital Signals. 379
Signal Analysis Transforms 382
The Fourier Transform 383
Interpreting FFT Results. 384
Displaying FFT Results 386
Using Windows. 391
Aliasing . 395
FFT Usage Details 396
The Hilbert Transform 397

The Wavelet Transform 399
Convolution . 40
Correlation and Covariance. 401
Digital Filtering . 402
Finite Impulse Response (FIR) Filters. . . . 403
FIR Filter Implementation. 407
Infinite Impulse Response Filters 409
Routines for Signal Processing 413
References . 41
Using IDL 377

378 Chapter 15: Signal Processing

l
he
a

fer

res
nly

ics.

les
he
Overview

A signal, by definition, contains information. Any signal obtained from a physica
process also contains noise. It is often difficult or impossible to make sense of t
information contained in a digital signal by looking at it in its raw form—that is, as
sequence of real values at discrete points in time. Signal analysis transforms of
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedu
and functions mentioned here work in two or more dimensions. For simplicity, o
one dimensional signals are used in the examples.

Running the Example Code

The examples in this chapter are all written to take advantage of IDL Direct Graph

The example code used in this chapter is part of the IDL distribution. All of the fi
mentioned are located in the doc subdirectory of the examples subdirectory of t
main IDL directory. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“!PATH” in Appendix D of theIDL Reference Guide for information on IDL’s path.
Overview Using IDL

Chapter 15: Signal Processing 379

 in an
t

, or
time

the

al of
, and
Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector
array-oriented language like IDL. The term digital actually describes two differen
properties:

1. The signal is defined only at discrete points in time as a result of sampling
because the instrument which measured the signal is inherently discrete-
in nature. Usually, the time interval between measurements is constant.

2. The signal can take on only discrete values.

In this discussion, we assume that the signal is sampled at a time interval. The
concepts and techniques presented here apply equally well to any type of signal—
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signalu(k), sampled at an
intervaldelt . This simulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interv
0.02 seconds. The signal contains a DC component and components at 2.8, 6.5
11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024
delt = 0.02
u = -0.3 $

+ 1.0 * SIN(2 * !PI * 2.8 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 11.0 * delt * FINDGEN(N))

Alternately, you can run the following batch file to create the signal:

@sigprc01

See“Running the Example Code” on page 378 if IDL does not find the batch file.
Using IDL Digital Signals

380 Chapter 15: Signal Processing

 (or
qual

t are
Because the signal is digital, the conventional way to display it is with a histogram
step) plot. To create a histogram plot, set the PSYM keyword to the PLOT routine e
to 10. A section of the example signalu(k) is plotted in the figure below.

Note
When the number of sampled data points is large, the steps in the histogram plo
too small to see. In such cases you should not plot in histogram mode.

Enter the following commands at the IDL prompt to create the plot:

;Compute time data sequence u.
@sigprc01
;Vector of discrete times:
t = delt * FINDGEN(N)
;Beginning of plot time range:
t1 = 1.0
;End of plot time range:
t2 = 2.0
PLOT, t+delt/2, u, PSYM=10, XRANGE=[t1,t2], $

XTITLE='time in seconds', YTITLE='amplitude', $
TITLE='Portion of Sampled Time Signal u(k)'

Figure 15-1: Histogram plot of sample signal u(k).
Digital Signals Using IDL

Chapter 15: Signal Processing 381
Alternately, you can run the following batch file to create the plot:

@sigprc02

See“Running the Example Code” on page 378 if IDL does not find the batch file.
Using IDL Digital Signals

382 Chapter 15: Signal Processing

nal

al
Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) sig
components.The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a sign
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.
Signal Analysis Transforms Using IDL

Chapter 15: Signal Processing 383

ent
m

ils
The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for
determining the frequency spectra of digital signals. This is due to the developm
of an efficient algorithm for computing DFTs known as the Fast Fourier Transfor
(FFT).

The discrete Fourier transform,v(m), of anN-element, one-dimensional function,
u(k), is defined as:

The inverse transform is defined as:

IDL implements the Fast Fourier Transform in the FFT function. You can find deta
on using IDL’s FFT function in the following sections and inFFT in theIDL
Reference Guide.

v m() 1
N
---- u k()exp j2πmk N⁄–[]

k 0=

N 1–

∑=

u k() v m()exp j2πmk N⁄[]
m 0=

N 1–

∑=
Using IDL The Fourier Transform

384 Chapter 15: Signal Processing

 in
f the

es
Interpreting FFT Results

Just as the sampled time data represents the value of a signal at discrete points
time, the result of a (forward) Fast Fourier Transform represents the spectrum o
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval
(δ):

The frequencies for which the FFT of a sampled signal are defined are sometim
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency bin is 1/(N*δ).

Due to the complex exponential in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency indexm. That is:

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 toN–1, which is also
a valid range for the frequency indexm. However, the frequencies associated with
frequency indices greater thanN/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency indexm to be from – (N/2 – 1) toN/2 so that it is (nearly)
centered around zero. From the cyclic relation above withp = –1:

v(– (N/2 – 1)) =v(N/2 + 1 –N) = v(N/2 + 1)

v(– (N/2 – 2)) =v(N/2 + 2 –N) = v(N/2 + 2)

...

v(–2) =v(N – 2 –N) = v(N – 2)

v(–1) =v(N – 1 –N) = v(N – 1)

f m() m
Nδ
-------=

v m pN+() v m()=
Interpreting FFT Results Using IDL

Chapter 15: Signal Processing 385
This index shift is easily accomplished in IDL with the SHIFT function (see the
following example).
Using IDL Interpreting FFT Results

386 Chapter 15: Signal Processing

esult

he
Displaying FFT Results

Depending on the application, there are many ways to display spectral data, the r
of the (forward) FFT function.

Real and Imaginary Components

The most direct way is to plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. T
following figure displays the real and imaginary parts of the spectrumv(m) of the
sampled signalu(k) for frequencies from –(N/2 – 1)/(N*δ) to (N/2)/(N*δ) cycles per
second.

Enter the following commands at the IDL prompt to create the plot:

;Compute time sequence data:
@sigprc01
;Compute spectrum v:
V = FFT(U)
M = (INDGEN(N)-(N/2-1))

Figure 15-2: Real and Imaginary parts of the sample signal.
Displaying FFT Results Using IDL

Chapter 15: Signal Processing 387

ith
rmed

re
data.
the

ure.
ero),

 the
cy
;Frequencies corresponding to m in cycles/second:
F = M / (N*delt)
;Set up for two plots in window:
!P.MULTI = [0, 1, 2]
PLOT, F, FLOAT(SHIFT(V,N/2-1)), $

YTITLE='real part of spectrum', $
XTITLE='Frequency in cycles / second', $
XRANGE=[-1,1]/(2*delt), XSTYLE=1, $
TITLE='Spectrum of u(k)'

PLOT, F, IMAGINARY(SHIFT(V,N/2-1)), $
YTITLE='imaginary part of spectrum', $
XTITLE='Frequency in cycles / second', $
XRANGE=[-1,1]/(2*delt), XSTYLE=1

!P.MULTI = 0

Alternately, you can run the following batch file to create the plot:

@sigprc03

See“Running the Example Code” on page 378 if IDL does not find the batch file.

IDL’s FFT function always returns a single- or double-precision complex array w
the same dimensions as the input argument. In the case of a forward FFT perfo
on a one-dimensional vector ofN real values, the result is anN-element vector of
complex quantities, which takes 2N real values to represent. It would seem that the
is twice as much information in the spectral data as there is in the time sequence
This is not the case. For a real valued time sequence, half of the information in
frequency sequence is redundant. Specifically:

;1 redundant value:
IMAGINARY(v(0)) = 0.0
;1 redundant value:
IMAGINARY(v(N/2)) = 0.0

and

;for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ(v(m))

so that exactlyN of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous fig
Notice that the real part of the spectrum is an even function (symmetric about z
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). This is always the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of
spectrum of a real time sequence. That is, only the spectral values with frequen
indices from 0 toN/2, which correspond to frequencies from 0 to 1/(2*δ), the Nyquist
Using IDL Displaying FFT Results

388 Chapter 15: Signal Processing

ng

ave
m,
ence

n the

ase

f our
frequency. This vector of positive frequencies is generated in IDL with the followi
command:

;f = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1)/(N*delt)

Magnitude and Phase

It is also common to display the magnitude and phase of the spectrum, which h
physical significance, as opposed to the real and imaginary parts of the spectru
which do not have physical significance. Since there is a one-to-one correspond
between a complex number and its magnitude and phase, no information is lost i
transformation from a complex spectrum to its magnitude and phase. In IDL, the
magnitude is easily determined with the absolute value (ABS) function, and the ph
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on a logarithmic scale. The magnitude and phase o
sample signal are plotted in the figure below.

Enter the following commands at the IDL prompt to create the plot:

Figure 15-3: Magnitude and phase of the sample signal.
Displaying FFT Results Using IDL

Chapter 15: Signal Processing 389

 out
 the

1.0
plot.

cted
. The
n as

d is
th of
er of
cles
le,

 real
;Compute time sequence data:
@sigprc01
;Compute spectrum v:
V = FFT(U)
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
;Magnitude of first half of v:
mag = ABS(V(0:N/2))
;Phase of first half of v:
phi = ATAN(V(0:N/2))
;Set up for two plots in window:
!P.MULTI = [0, 1, 2]
;Create log plots of magnitude in dB and phase in degrees:
PLOT, F, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Spectrum of u(k)'

PLOT, F, phi/!DTOR, YTITLE='Phase in degrees', $
YRANGE=[-180,180], YSTYLE=1, YTICKS=4, YMINOR=3, $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

!P.MULTI = 0

Alternately, you can run the following batch file to create the plot:

@sigprc04

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Using a logarithmic scale for the frequency axis has the advantage of spreading
the lower frequencies, while higher frequencies are crowded together. Note that
spectrum at zero frequency (DC) is lost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 1
cycles/second as peaks in the magnitude plot, and as discontinuities in the phase
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expe
from the pure sine wave component at that frequency in the time data sequence
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect know
smearing or leakage. This effect is a direct result of the definition of the DFT an
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the leng
the time sequence, or by choosing a sample size which includes an integral numb
cycles of the frequency component of interest. There are an integral number of cy
of the 6.25 cycles/second component in the time sequence used for this examp
which is why the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an
anomaly known as phase wrapping. It is a result of resolving the phase from the
Using IDL Displaying FFT Results

390 Chapter 15: Signal Processing

s
de of
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between –180 and +180 degrees.

Power Spectrum

Finally, for many applications, the phase information is not useful. For these, it i
often customary to plot the power spectrum, which is the square of the magnitu
the complex spectrum. The resulting plot is shown in the figure below.

Enter the following commands at the IDL prompt to create the plot:

;Compute time sequence data.
@sigprc01
;Compute spectrum v:
V = FFT(U)
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
;Create log-log plot of power spectrum:
PLOT, F, ABS(V(0:N/2))^2, YTITLE='Power Spectrum of u(k)', $

/YLOG, XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

Alternately, you can run the following batch file to create the plot:

@sigprc05

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Figure 15-4: Power spectrum of the sample signal.
Displaying FFT Results Using IDL

Chapter 15: Signal Processing 391

f the
ple

sing

ctor
e

Using Windows

The smearing or leakage effect mentioned previously is a direct consequence o
definition of the Discrete Fourier Transform and of the fact that a finite time sam
of a signal often does not include an integral number of some of the frequency
components in the signal. The effect of this truncation can be reduced by increa
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signal
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal ve
before applying the FFT. For example, the following IDL command computes th
Hanning window and then applies the FFT function:

v_n = FFT(HANNING(N)*U)

w k() 1
2
--- 1

2πk
N 1–

 cos–
 =
Using IDL Using Windows

392 Chapter 15: Signal Processing

e
The power spectrum of the Hanning windowed signal shows the mitigation of th
truncation effect (see the figure below).

Enter the following commands at the IDL prompt to create the plot:

;Compute time sequence data:
@sigprc01
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
v_n = FFT(HANNING(N)*U)
;Create a log-log plot of power spectrum:
PLOT, F, ABS(v_n(0:N/2))^2, YTITLE='Power Spectrum', $

/YLOG, YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARGIN=[4,4], $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE=’Power Spectrum of u(k) with Hanning Window ' $
+'(solid)!Cand without Window (dashed)'

;Overplot without window:
OPLOT, F, ABS((FFT(U))(0:N/2))^2, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:

@sigprc06

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Figure 15-5: Power spectrum of the sample signal after applying a Hanning
window.
Using Windows Using IDL

Chapter 15: Signal Processing 393

ctor
e

he
Hamming Window

The Hamming window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal ve
before applying the FFT. For example, the following IDL command computes th
Hamming window and then applies the FFT function:

v_m = FFT(HANNING(N, ALPHA=0.56)*U)

The power spectrum of the Hamming windowed signal shows the mitigation of t
truncation effect (see the figure below).

Enter the following commands at the IDL prompt to create the plot:

;Compute time sequence data.
@sigprc01
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N/2+1) / (N*delt)
v_m = FFT(HANNING(N, ALPHA=0.54)*U)
;Create log-log plot of power spectrum:
PLOT, F, ABS(v_m(0:N/2))^2, YTITLE='Power Spectrum', $

/YLOG, YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARGIN=[4,4], $
XTITLE='Frequency in cycles / second', $

Figure 15-6: Power spectrum of the sample signal after applying a Hamming
window.

w k() 0.54 0.46
2πk
N 1–

 cos–=
Using IDL Using Windows

394 Chapter 15: Signal Processing
/XLOG, XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Power Spectrum of u(k) with Hamming Window'
+'!C(solid) and without Window (dashed)'

;Overplot without window:
OPLOT, F, ABS((FFT(U))(0:N/2))^2, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:

@sigprc07

See“Running the Example Code” on page 378 if IDL does not find the batch file.
Using Windows Using IDL

Chapter 15: Signal Processing 395

the

nce
the
ss

r
in

f 25
f the

ncy
Aliasing

Aliasing is a well known phenomenon in sampled data analysis. It occurs when
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sampling frequency. Aliasing is a conseque
of the fact that after sampling, every periodic signal at a frequency greater than
Nyquist frequency looks exactly like some other periodic signal at a frequency le
than the Nyquist frequency.

For example, suppose we add a 30 cycle per second periodic component to ou
sampled data sequenceu(t). The power spectrum of the augmented signal is shown
the figure below.

Because the frequency of the new component is above the Nyquist frequency o
cycles per second (25 = 1/(2*delt)), the power spectrum shows the contribution o
new component as an alias at 20 cycles per second.

To prevent aliasing, frequency components of a signal above the Nyquist freque
must be removed before sampling.

You can run the following batch file to create the plot:

@sigprc08

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Figure 15-7: Power spectrum of the sample signal after adding a 30 cycles per
second component.
Using IDL Aliasing

396 Chapter 15: Signal Processing

does
les
not
 is

 an
his

be

r of

med

of

r
ncy.
FFT Usage Details

Unlike many implementations of the Fast Fourier Transform, IDL’s FFT algorithm
does not require that the number of sampled data points be a power of 2. Neither
IDL pad the original signal with zeros to artificially increase the number of samp
to a power of 2. Instead, IDL’s FFT function sacrifices computational efficiency,
accuracy, when the number of samples is not a power of 2. The result produced
always in accordance with the definition of the Discrete Fourier Transform.

IDL’s implementation of the FFT is based on the Cooley-Tukey algorithm. The
algorithm takes advantage of the fact that the DFT of a discrete time series with
even number of points is a sum of two DFTs, each half the length of the original. T
idea is used recursively, each iteration subdividing the data into smaller sets to
transformed. If the number of data pointsN in the original time series is a power of 2,
the routine can use the same implementation for each subdivision. If the numbe
points in the original time series is not a power of 2, the original data are still
subdivided into data sets with lengths equal to the prime factors ofN. The resulting
subdivisions with lengths equal to prime numbers other than 2 must be transfor
using a slow DFT. The slow DFT is mathematically equivalent to the FFT, but
requiresN2 operations instead ofNlog2(N).

This implementation means that IDL’s FFT function is fastest when the number
points is a power of 2, but no accuracy is lost if it is not. The function is still
computationally efficient if the prime factors ofN are rich in powers of two. The
slowest case is when the number of samples is a large prime number; adding o
removing one data point in this case can result in a huge improvement in efficie
FFT Usage Details Using IDL

Chapter 15: Signal Processing 397

fts
 by

ll of
ignal.
the

the
The Hilbert Transform

The Hilbert transform is a time-domain to time-domain transformation which shi
the phase of a signal by 90 degrees. Positive frequency components are shifted
+90 degrees, and negative frequency components are shifted by – 90 degrees.
Applying a Hilbert transform to a signal twice in succession shifts the phases of a
the components by 180 degrees, and so produces the negative of the original s
IDL’s HILBERT function accepts both real and complex valued signals as inputs;
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signalr(t) is known as
the quadrature function ofr(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

wherej is the square root of –1 andH is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and
time axis is the original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

r̂ t() r t() jH r t()()–=
Using IDL The Hilbert Transform

398 Chapter 15: Signal Processing

l
The following example plots the complex analytic signal of a periodic time signa
with a slowly varying amplitude.

Enter the following commands at the IDL prompt to create the plot:

;Number of time samples in data set:
N = 1024
;Sampling interval in seconds:
delt = 0.02
;Vector of discrete times:
T = delt * FINDGEN(N)
f1 = 5.0 / ((n-1)*delt)
f2 = 0.5 / ((n-1)*delt)
R = SIN(2*!PI*f1*T) * SIN(2*!PI*f2*T)
PLOT_3DBOX, T, R, -FLOAT(HILBERT(R)), $

AX=40, AZ=15, XTICKS=5, XCHARSIZE=2, $
XTITLE = 'time in seconds', YTICKS=2, YCHARSIZE=2, $
YTITLE = 'real', YMARGIN=[4,8], ZTICKS=2, ZCHARSIZE=2, $
ZTITLE = 'imaginary'

XYOUTS, 0.5, 0.95, /NORMAL, ALIGNMENT=0.5, SIZE=1.5, $
'Ana;lytic Signal for r(t) Using Hilbert Transform'

Alternately, you can run the following batch file to create the plot:

@sigprc09

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Figure 15-8: Analytic signal for r(t).
The Hilbert Transform Using IDL

Chapter 15: Signal Processing 399

ear
ain

tric

.
lly

e
n of
The Wavelet Transform

Like the discrete Fourier transform, the discrete wavelet transform (DWT) is a lin
operation that defines a forward and inverse relationship between the time-dom
and the frequency-domain, also called the wavelet domain. This relationship is
expressed through the use of basis functions. In the case of the DFT, trigonome
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets
Also like the DFT, the DWT is orthogonal, making many operations computationa
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavelet transforms can
usefully be severely truncated—that is, they can be effectively turned into spars
expressions. This property is a result of the simultaneous compact representatio
the wavelet basis functions in the time and frequency domains. SeeWTN in theIDL
Reference Guide for an example using the wavelet transform.
Using IDL The Wavelet Transform

400 Chapter 15: Signal Processing

als.

he
Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL has two functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signals is the
Inverse Fourier transform of the product of the Fourier transforms of the two sign
BLK_CON is faster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See t
example in the“Finite Impulse Response (FIR) Filters” on page 403.
Convolution Using IDL

Chapter 15: Signal Processing 401

 of
eful
e of

nd
Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values
the signals removed beforehand) are closely related to convolution. They are us
in analyzing signals with random components. Autocorrelation and autocovarianc
signals are computed with the A_CORRELATE function, and crosscorrelation a
crosscovariance are computed with the C_CORRELATE function. See“Time-Series
Analysis” on page 459 for details.
Using IDL Correlation and Covariance

402 Chapter 15: Signal Processing

y
te

e

Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequenc
components (noise) from a sampled signal. Two broad classes of filters are Fini
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (IIR) or AutoRegressive Moving Average (ARMA) filters. Both of thes
classes of filters are described below.
Digital Filtering Using IDL

Chapter 15: Signal Processing 403

r of
FIR
ich
R

n.
the

 7
ds.
Finite Impulse Response (FIR) Filters

Digital filters that have an impulse response which reaches zero in a finite numbe
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An
filter can be implemented non-recursively by convolving its impulse response (wh
is often used to define an FIR filter) with the time data sequence it is filtering. FI
filters are somewhat simpler than Infinite Impulse Response (IIR) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL’s DIGITAL_FILTER function computes the impulse response of an FIR filter
based on Kaiser’s window, which in turn is based on the modified Bessel functio
The Kaiser filter is “nearly optimum in the sense of having the largest energy in
mainlobe for a given peak sidelobe level” [Jackson, Leland B.,Digital Filters and
Signal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters.

The figure below plots a bandstop filter which suppresses frequencies between
cycles per second and 15 cycles per second for data sampled every 0.02 secon

Enter the following commands at the IDL prompt to create the plot:

;Sampling period in seconds:
delt = 0.02
;Frequencies above f_low will be passed:

Figure 15-9: Bandstop FIR filter.
Using IDL Finite Impulse Response (FIR) Filters

404 Chapter 15: Signal Processing

(see
f_low = 15.
;Frequencies below f_high will be passed:
f_high = 7.
;Ripple amplitude will be less than -50 dB:
a_ripple = 50.
;The order of the filter:
nterms = 40
;Compute the impulse response = the filter coefficients:
bs_ir_k = DIGITAL_FILTER(f_low*2*delt, f_high*2*delt, $
a_ripple, nterms)
;The frequency response of the filter is the FFT of its
;impulse response:
nfilt = N_ELEMENTS(bs_ir_k)
;where nfilt = number of points in impulse response.
;Scale frequency response by number of points:
bs_fr_k = FFT(bs_ir_k) * nfilt
;Create a log plot of magnitude in decibels:
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
;Magnitude of bandstop filter transfer function:
mag = ABS(bs_fr_k(0:nfilt/2))
PLOT, f_filt, 20*ALOG10(mag), YTITLE='Magnitude in dB', $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response for Bandstop!CFIR Filter (Kaiser)'

Alternately, you can run the following batch file to create the plot:

@sigprc10

See“Running the Example Code” on page 378 if IDL does not find the batch file.

Other FIR filters can be designed based on the Hanning and Hamming windows
“Using Windows” on page 391), or any other user-defined window function. The
design procedure is simple:

1. Compute the impulse response of an ideal filter using the inverse FFT

2. Apply a window to the impulse response. The modified impulse response
defines the FIR filter.
Finite Impulse Response (FIR) Filters Using IDL

Chapter 15: Signal Processing 405

cy

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequen
domain using the Hanning window.

Enter the following commands at the IDL prompt to create the plot:

;Sampling period in seconds:
delt = 0.02
;Frequencies above f_low will be passed:
f_low = 15.
;Frequencies below f_high will be passed:
f_high = 7.
;The length of the filter:
nfilt = 81
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
;Pass frequencies greater than f_low and less than f_high:
ideal_fr = (f_filt GT f_low) OR (f_filt LT F_high)
;Convert from byte to floating point:
ideal_fr = FLOAT(ideal_fr)
;Replicate to obtain values for negative frequencies:
ideal_fr = [ideal_fr, REVERSE(ideal_fr[1:*])]
;Now use an inverse FFT to get the impulse response
;of the ideal filter:
ideal_ir = FLOAT(FFT(ideal_fr, /INVERSE))
;Ideal_fr is an even function, so the result is real.
;Scale by the # of points:
ideal_ir = ideal_ir / nfilt
;Shift it before applying the window:
ideal_ir = SHIFT(ideal_ir, nfilt/2)

Figure 15-10: Bandstop filter using Hanning Window.
Using IDL Finite Impulse Response (FIR) Filters

406 Chapter 15: Signal Processing
;Apply a Hanning window to the shifted ideal impulse response.
;These are the coefficients of the filter:
bs_ir_n = ideal_ir*HANNING(nfilt)
;The frequency response of the filter is the FFT
;of its impulse response. Scale by the number of points:
bs_fr_n = FFT(bs_ir_n) * nfilt
;Create a log plot of magnitude in decibels
;Magnitude of Hanning bandstop filter transfer function:
mag = ABS(bs_fr_n(0:nfilt/2))
PLOT, f_filt, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response for Bandstop!CFIR Filter (Hanning)'

Alternately, you can run the following batch file to create the plot:

@sigprc11

See“Running the Example Code” on page 378 if IDL does not find the batch file.
Finite Impulse Response (FIR) Filters Using IDL

Chapter 15: Signal Processing 407

is

the
he

d

ent at
8 and
lter.
FIR Filter Implementation

The simplest FIR filter to apply to a signal is the rectangular or boxcar filter, which
implemented with IDL’s SMOOTH function, or the closely related MEDIAN
function.

Applying other FIR filters to signals is straightforward since the filter is non-
recursive. The filtered signal is simply the convolution of the impulse response of
filter with the original signal. The impulse response of the filter is computed with t
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve a filter
with a signal. Usingu(k) from the previous example and the bandstop filter create
above creates the plot shown in the figure below.

The frequency response of the filtered signal shows that the frequency compon
11.0 cycles / second has been filtered out, while the frequency components at 2.
6.25 cycles / second, as well as the DC component, have been passed by the fi

Enter the following commands at the IDL prompt to create the plot:

;Compute time data sequence u:
@sigprc01
;Compute the Kaiser filter coefficients
;with the sampling period in seconds:
delt = 0.02

Figure 15-11: Digital signal before and after filtering.
Using IDL FIR Filter Implementation

408 Chapter 15: Signal Processing
;Frequencies above f_low will be passed:
f_low = 15.
;Frequencies below f_high will be passed:
f_high = 7.
;Ripple amplitude will be less than -50 dB:
a_ripple = 50.
;The order of the filter:
nterms = 40
;Compute the impulse response = the filter coefficients:
bs_ir_k = DIGITAL_FILTER(f_low*2*delt, f_high*2*delt, $

a_ripple, nterms)
;Convolve the Kaiser filter with the signal:
u_filt = BLK_CON(bs_ir_k, u)
;Spectrum of original signal:
v = FFT(u)
;Spectrum of the filtered signal:
v_filt = FFT(u_filt)
;Create a log-log plot of power spectra.
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1) / (N*delt)
PLOT, F, ABS(v(0:N/2))^2, YTITLE='Power Spectrum', /YLOG, $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Spectrum of u(k) Before (solid) and!CAfter $
(dashed) Digital Filtering'

Alternately, you can run the following batch file to create the plot:

@sigprc12

See“Running the Example Code” on page 378 if IDL does not find the batch file.
FIR Filter Implementation Using IDL

Chapter 15: Signal Processing 409

rs
 of

ple,
nd

is
ues.

e

Infinite Impulse Response Filters

Digital filters which must be implemented recursively are called Infinite Impulse
Response (IIR) filters because, theoretically, the response of these filters to an
impulse never settles to zero. In practice, the impulse response of many IIR filte
approaches zero asymptotically, and may actually reach zero in a finite number
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For exam
the Laplace transform representation (or continuous transfer function) of a seco
order notch filter with the notch at f0 cycles per second is:

wheres is the Laplace transform variable. Then the continuous transfer function
converted to the equivalent discrete transfer function using one of several techniq
One of these is the bilinear (Tustin) transform, where

(2/ δ)*(z-1)/(z+1)

is substituted for the Laplace transform variables. In this expression,z is the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discret
transfer function:

where c = (1 –π*f 0*δ) / (1 +π*f 0*δ).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

y s()
u s()

f 0

2π
------ s

2
+

1 2s
f 0

2π

 s
2

+ +

--=

y z()
u z()

1 c
2

+
2

-------------- 2cz– 1 c
2

+
2

--------------z
2

+

c
2

2cz– z
2

+()
---=
Using IDL Infinite Impulse Response Filters

410 Chapter 15: Signal Processing

very

ble

r’s
delt = 0.02
;Notch frequency in cycles per second:
f0 = 6.5
c = (1.0-!PI*F0*delt) / (1.0+!PI*F0*delt)
b = [(1+c^2)/2, -2*c, (1+c^2)/2]
a = [c^2, -2*c, 1]

Alternately, you can run the following batch file to compute the coefficients:

@sigprc13

See“Running the Example Code” on page 378 if IDL does not find the batch file.

IIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at e
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

is implemented with the difference equation

An IIR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer functiona(z) are all less than one. The impulse response of a sta
IIR filter approaches zero as the time indexk approaches infinity. The frequency
response function of a stable IIR filter is the Discrete Fourier Transform of the filte
impulse response.

y z()
b0 b1z … bnbz

nb
+ + +

a0 a1z … anaz
nb

+ + +

u z()=

y k()
b0u k nb–() b1u k nb– 1+() … bnbu k() a0y k na–()– a1y k na– 1+() …– ana 1– y k 1–()––+ + +()

ana
--=
Infinite Impulse Response Filters Using IDL

Chapter 15: Signal Processing 411

ch
The figure below plots the impulse and frequency response functions of the not
filter defined above using recursive difference equations.

Enter the following commands at the IDL prompt to create the plot:

;Load the coefficients for the notch filter:
@sigprc13
;Degree of denominator polynomial:
na = N_ELEMENTS(A)-1
;Degree of numerator polynomial:
nb = N_ELEMENTS(B)-1
N = 1024L
;Create an impulse U:
U = FLTARR(N)
U[0] = FLOAT(N)
Y = FLTARR(N)
Y[0] = B[2]*U[0] / A[na]
;Recursively compute the filtered signal:
FOR K = 1, N-1 DO $

Y(K) = (TOTAL(B[nb-K>0:nb]*U[K-nb>0:K]) $
- TOTAL(A[na-K>0:na-1]*Y[K-na>0:K-1])) / A[na]

;Compute spectrum V:
V = FFT(Y)

Figure 15-12: Impulse and frequency response of a notch filter.
Using IDL Infinite Impulse Response Filters

412 Chapter 15: Signal Processing

nt
on of
;F = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1) / (N*delt)
;Magnitude of first half of V:
mag = ABS(V(0:N/2))
;Phase of first half of V:
phi = ATAN(V(0:N/2))
;Create log plots of magnitude in decibels and phase in degrees.
;Set up for two plots in window:
!P.MULTI = [0, 1, 2]
PLOT, F, 20*ALOG10(mag), YTITLE='Magnitude in dB', $

XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TITLE='Frequency Response Function of b(z)/a(z)'

PLOT, F, phi/!DTOR, YTITLE='Phase in degrees', $
YRANGE=[-180,180], YSTYLE=1, YTICKS=4, YMINOR=3, $
XTITLE='Frequency in cycles / second', /XLOG, $
XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1

!P.MULTI = 0

Note
Because the impulse response approaches zero, IDL may warn of floating-poi
underflow errors. This is an expected consequence of the digital implementati
an Infinite Impulse Response filter.

Alternately, you can run the following batch file to create the plot:

@sigprc14

See“Running the Example Code” on page 378 if IDL does not find the batch file.

The same code could be used to filter any input sequenceu(k).
Infinite Impulse Response Filters Using IDL

Chapter 15: Signal Processing 413
Routines for Signal Processing

Below is a brief description of IDL routines for signal processing. More detailed
information is available in theIDL Reference Guide.

A_CORRELATE Compute the autocorrelation or autocovariance of a
sample population as a function of the lag.

BLK_CON Convolve an input signal with an impulse-response
sequence.

C_CORRELATE Compute the cross-correlation or cross-covariance of a
sample population as a function of the lag.

CONVOL Convolve two vectors or arrays.

DIGITAL_FILTER Calculate coefficients of a non-recursive digital filter.

FFT Fast Fourier Transform.

HANNING Compute Hanning and Hamming windows.

HILBERT Construct a Hilbert matrix.

MEDIAN Median function and filter.

SMOOTH Smooth with a boxcar average.

WTN Wavelet transform.
Using IDL Routines for Signal Processing

414 Chapter 15: Signal Processing
References

Bracewell, Ronald N.,The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong,One-Dimensional Digital Signal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B.,Digital Filters and Signal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru,Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari,Digital Signal Processing: Applications to
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W.,Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede,Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al.Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G.,Digital Signal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard,Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong,Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1
References Using IDL

Chapter 16:

Mathematics
The following topics are covered in this chapter:
0
5

4
6

9

IDL’s Numerical Recipes Functions. 417
Accuracy & Floating-Point Operations. . . 418
Arrays and Matrices 420
Correlation Analysis. 423
Curve and Surface Fitting. 427
Eigenvalues and Eigenvectors. 429
Gridding and Interpolation 435
Hypothesis Testing 437

Integration . 44
Linear Systems. 44
Nonlinear Equations 452
Optimization . 45
Sparse Arrays. 45
Time-Series Analysis. 459
Multivariate Analysis. 462
References . 46
Using IDL 415

416 Chapter 16: Mathematics

ns.

n

n and

Bug
stics
This chapter documentsIDL’s mathematics and statistics procedures and functio
These include Numerical Recipes™ algorithms published inNumerical Recipes in C:
The Art of Scientific Computing (Second Edition).

This chapter also includes introductory discussions of the following topics and a
overview of the way IDL handles the particular problems involved:

• Arrays and Matrices

• Correlation Analysis

• Curve and Surface Fitting

• Eigenvalues and Eigenvectors

• Gridding and Interpolation

• Hypothesis Testing

• Integration

• Linear Systems

• Nonlinear Equations

• Optimization

• Sparse Arrays

• Time Series Analysis

References are provided at the end of each section for a more detailed descriptio
understanding of the topic.

Research Systems, Inc. is extremely interested in the accuracy of its algorithms.
reports, documentation errors and suggestions for future mathematics and stati
enhancements can be sent to Research Systems via:

Internet:support@rsinc.com

Fax: (303) 786-9909
Using IDL

Chapter 16: Mathematics 417

on
s is
n
n

d be
new
IDL’s Numerical Recipes Functions

IDL includes a number of routines based on algorithms published inNumerical
Recipes in C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in theIDL Reference Guide and in the
online help.

In IDL versions up to and including IDL version 3.6, mathematics functions based
Numerical Recipes algorithms required that input be in column-major format. Thi
no longer the case. Routines based on Numerical Recipes algorithms have bee
reworked and renamed, so that all IDL functions now expect input arrays to be i
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations nee
made to existing code as a result of this change in IDL. We recommend that all
IDL programs take advantage of the new names and input convention.
Using IDL IDL’s Numerical Recipes Functions

418 Chapter 16: Mathematics

ases
uter
s to

e

gits
ng

bits,
n be

ely

ting-

nal

f the

s an
as
Accuracy & Floating-Point Operations

In a computer, real numbers are represented with finite precision. While in most c
it is safe to assume that the result of an arithmetical operation done on your comp
is correct, it is important to remember that this finite-precision representation lead
unavoidable errors, especially when floating-point numbers, which are digital
approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider th
following:

• Floating-point numbers must be made to fit in a space (a string of binary di
in a computer’s memory register) that can only hold an integer and a scali
factor.

• Floating-point numbers are represented by strings of a limited number of
but represent numbers much larger or smaller than that number of digits ca
made to express.

In other words, floating-point values are finite-precision approximations of infinit
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. This is the smallest number that, when added to 1.0, produces a floa
point result that is different from 1.0.

A useful way of thinking about machine accuracy is to consider it to be the fractio
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit o
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissa is rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduce
error at least equal to the machine accuracy into the result. This error is known
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involvingn arithmetic operations might have a total roundoff error
between SQRT(n) times the machine accuracy andn times the machine accuracy.
Accuracy & Floating-Point Operations Using IDL

Chapter 16: Mathematics 419

mber
tities

rror
s

be
f

r

al
Note that the machine accuracy is not the same as the smallest floating-point nu
your computer can represent. To find these and other machine-dependent quan
for your own computer, seeMACHAR in theIDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation e
is the error introduced by the process of numerically approximating a continuou
function by evaluating it at a finite number of discrete points. Often, accuracy can
increased (again at some cost of computation time) by increasing the number o
discrete points evaluated.

For example, consider the process of calculating

Obviously, the answer becomes more accurate asn approaches infinity. When
performing the actual computation, however, a cutoff value must be specified fon.
Increasingn reduces truncation error at the expense of computational effort.

Several IDL routines allow you to specify cutoff values in such cases (see, for
example,INT_2D of theIDL Reference Guide). When writing your own routines in
IDL, it is important to consider this trade-off between accuracy and computation
time.

 Routines for Mathematical Error Assessment

Below is a brief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in theIDL Reference
Guide.

CHECK_MATH Return and clear accumulated math error status.

FINITE Returns TRUE if argument is finite.

MACHAR Returns machine-specific parameters that affect
floating-point arithmetic.

ex 1 x x2

2!
----- x3

3!
----- … xn

n!
-----+ + + + +=
Using IDL Accuracy & Floating-Point Operations

420 Chapter 16: Mathematics

can
ta
ment
e

der
 last
he
g,
 IDL’s

w)

sing

ed

ith
Arrays and Matrices

In a computer, a multidimensional data set can be indexed in one of two ways. It
be indexed in column-major format, which means that the linear order of the da
elements proceeds from the first element in the first column through the last ele
in the first column before beginning on the second column, and so on. This is th
format used by C and Pascal to index data.

Alternatively, data can be indexed in row-major format, meaning that the linear or
of the data elements proceeds from the first element of the first row through the
element of the first row before beginning on the second row, and so on. This is t
format used by FORTRAN, and is traditionally associated with image processin
because it keeps all the elements of a single image scan line together. Because
origins are in image processing, it indexes data in row-major format.

Note
Many computer languages, such as C, Pascal, and Visual Basic, index
2-dimensional arrays in (row, column) order. IDL indexes arrays in (column, ro
order.

For example, a two-by-two arrayA that looks like this on paper:

would be indexed:A0,0, A1,0, A0,1, A1,1 in IDL.

Remembering the difference between these two indexing schemes is crucial for u
IDL’s matrix and array functions effectively. To specify an individual element of a
column-major array, you specify the row index first, then the column index. To
specify an individual element of a row-major array, you specify the column index
first, then the row index. Since many numerical algorithms assume data is index
(row, column), while IDL indexes it (column, row), it is important to keep this
distinction in mind.

IDL always allocates and references data in row-major format. In order to work w
data in column-major format, use IDL’sTRANSPOSE function to interchange the
order of the indices.

A0 0, A1 0,

A0 1, A1 1,
Arrays and Matrices Using IDL

Chapter 16: Mathematics 421

use
cond

 the
rows
e

SE

en

rray
mns

d array
Example

Suppose you have an arrayA of data with each element set to the value of its one-
dimensional subscript, stored in a column-major array, like this:

0 3
1 4
2 5

If you give this array as input to an IDL function that expects data in row-major
format, IDL will calculate an answer other than the one you expect. Why? Beca
while you consider the second element in this array to be the number one (the se
element in a column-major array), IDL considers the second element to be the
number three (the second element in a row-major array).

;Transpose the column-major array into row-major format and print:
PRINT, TRANSPOSE(A)

IDL prints:

0 1 2
3 4 5

Symmetric Arrays

It is possible for an array to be indistinguishable from its transpose. In this case
number of columns and rows are identical and there is a symmetry between the
of the array and the columns of its transpose. Arrays satisfying this condition ar
called symmetric. When dealing with symmetric arrays the use of the TRANSPO
function is unnecessary, sinceAT = A.

Multiplying Arrays

IDL has two operators used to multiply arrays. To illustrate the difference betwe
the two operators, consider the following two arrays:

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]

The # Operator

The # operator computes array elements by multiplying the columns of the first a
by the rows of the second array. The resulting array has the same number of colu
as the first array and the same number of rows as the second array. The secon
must have the same number of columns as the first array has rows.
Using IDL Arrays and Matrices

422 Chapter 16: Mathematics

s of
array
ve the
;Multiply the arrays and print the result:
PRINT, array1#array2

IDL prints:

7 -1 7
2 -1 2
3 1 3

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the column
the second array. The resulting array has the same number of rows as the first
and the same number of columns as the second array. The second array must ha
same number of rows as the first array has columns.

;Multiply the arrays and print the result:
PRINT, array1##array2

IDL prints:

2 6
4 7

Note
The # and ## operators are order specific. Note also thatA # B = B ##A.
Arrays and Matrices Using IDL

Chapter 16: Mathematics 423

,

.

ns
e

Correlation Analysis

Given twon-element sample populations,X andY, it is possible to quantify the degree
of fit to a linear model using the correlation coefficient. The correlation coefficientr,
is a scalar quantity in the interval [-1.0, 1.0], and is defined as the ratio of the
covariance of the sample populations to the product of their standard deviations

or

The correlation coefficient is a direct measure of how well two sample populatio
vary jointly. A value ofr = +1 orr = –1 indicates a perfect fit to a positive or negativ
linear model, respectively. A value ofr close to +1 or –1 indicates a high degree of
correlation and a good fit to a linear model. A value ofr close to 0 indicates a poor fit
to a linear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X = [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y = [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.
PRINT, CORRELATE(X, Y)

IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X = [1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y = [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

r covariance of X and Y
standard deviation of X() standard deviation of Y()

---=

r

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–

yi

yk

N

k 0=

N 1–

∑–

i 0=

N 1–

∑

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–

 2

i 0=

N 1–

∑ 1
N 1–
------------- yi

yk

N

k 0=

N 1–

∑–

 2

i 0=

N 1–

∑
--=
Using IDL Correlation Analysis

424 Chapter 16: Mathematics

ber

 a

ric
 are

le

f
 the

e

f
poor
ar
IDL prints:

-0.979907

The following sample populations represent a poor linear correlation.

X = [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y = [1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it is important to remem
the following two caveats:

1. Although a high degree of correlation (a value close to +1 or –1) indicates
good mathematical fit to a linear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmosphe
phenomena and the consumption of alcohol in Russia, but the two events
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to a linear
model, it does not mean that there is no correlation between the two samp
populations. It is possible that the relationship betweenX andY is accurately
described by a nonlinear model. See“Curve and Surface Fitting” on page 427
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

The fundamental principles of correlation that apply to the linear model of two
sample populations may be extended to the multiple-linear model. The degree o
relationship between three or more sample populations may be quantified using
multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may b
quantified using the partial correlation coefficient. Both of these coefficients are
scalar quantities in the interval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value close to +1 indicates a high degree o
linear relationship between populations; whereas a value close to 0 indicates a
linear relationship between populations. (Although a value of 0 indicates no line
Correlation Analysis Using IDL

Chapter 16: Mathematics 425
relationship between populations, remember that there may be a nonlinear
relationship.)

Partial Correlation Example

Define the independent (X) and dependent (Y) data.

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation ofY on the first column ofX. The result should be
0.798816.

PRINT, M_CORRELATE(X[0,*], Y)

IDL prints:

0.798816

Compute the multiple correlation ofY on the first two columns ofX. The result
should be 0.875872.

PRINT, M_CORRELATE(X[0:1,*], Y)

IDL prints:

0.875872
Using IDL Correlation Analysis

426 Chapter 16: Mathematics
Compute the multiple correlation ofY on all columns ofX. The result should be
0.877197.

PRINT, M_CORRELATE(X, Y)

IDL prints:

0.877197
;Define the five sample populations.
X0 = [30, 26, 28, 33, 35, 29]
X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y = [37, 33, 32, 37, 36, 33]

Compute the partial correlation ofX1 andY with the effects ofX0, X2 andX3
removed.

PRINT, P_CORRELATE(X1, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS(X1)))

IDL prints:

0.996017

Routines for Computing Correlations

Below is a brief description of IDL routines for computing correlations. More
detailed information is available in theIDL Reference Guide.

A_CORRELATE Compute the autocorrelation or autocovariance of a
sample population as a function of the lag.

C_CORRELATE Compute the cross-correlation or cross-covariance
of a sample population as a function of the lag.

CORRELATE Compute the linear correlation coefficient.

M_CORRELATE Compute the multiple correlation coefficient.

P_CORRELATE Compute the partial correlation coefficient.

R_CORRELATE Compute the rank correlation of two populations.
Correlation Analysis Using IDL

Chapter 16: Mathematics 427

 the

r
e

Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given a tabulated set of data values {xi, yi} and the general form of a mathematical
model (a functionf(x) with unspecified parameters), determine the parameters of
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {xi, yi, zi} and a functionf(x, y) of two spatial dimensions.

For example, we can use theCURVEFITroutine to determine the parametersA andB
of a user-supplied functionf(x), such that the sums of the squares of the residuals
between the tabulated data {xi, yi} and function are minimized. We will use the
following function and data:

f (x) = a (1 –e-bx)

xi = [0.25, 0.75, 1.25, 1.75, 2.25]

yi = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function,f, and its
partial derivatives with respect to the parametersa0 anda1:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1] * X))

;If the function is called with four parameters,
;calculate the partial derivatives:

IF N_PARAMS() GE 4 THEN BEGIN
;PDER’s column dimension is equal to the number of elements
;in xi and its row dimension is equal to the number of
;parameters in the function F:

pder = FLTARR(N_ELEMENTS(X), 2)
;Compute the partial derivatives with respect to a0 and
;place in the first row of PDER.

pder[*, 0] = 1.0 - EXP(-A[1] * X)
;Compute the partial derivatives with respect to a1 and
;place in the second row of PDER.

pder[*, 1] = A[0] * x * EXP(-A[1] * X)
ENDIF

END

Note
The function will not calculate the partial derivatives unless it is called with fou
parameters. This allows the calling routine (in this case CURVEFIT) to avoid th
extra computation in cases when the partial derivatives are not needed.
Using IDL Curve and Surface Fitting

428 Chapter 16: Mathematics

:
Next, we can use the following IDL commands to find the function’s parameters

;Define the vectors of tabulated:
X = [0.25, 0.75, 1.25, 1.75, 2.25]
;data values:
Y = [0.28, 0.57, 0.68, 0.74, 0.79]
;Define a vector of weights:
W = 1.0 / Y
;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]
;Compute the parameters a0 and a1:
yfit = CURVEFIT(X, Y, W, A, SIGMA_A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602

Thus the nonlinear function that best fits the data is:

f (x) = 0.787386 (1 -–e-1.71602x)

Routines for Curve and Surface Fitting

Below is a brief description of IDL routines for curve and surface fitting. More
detailed information is available in theIDL Reference Guide.

COMFIT Gradient-expansion least squares fit to paired
data.

CRVLENGTH Compute the length of a curve with tabular
representation.

CURVEFIT Non-linear least squares fit to a function.

GAUSSFIT Fit sum of a gaussian and a quadratic.

LADFIT Least absolute deviation fit to paired data.

LINFIT Minimal Chi-square fit to paired data.

POLY_FIT Polynomial least squares fit.

POLYFITW Weighted polynomial least squares fit.

REGRESS Multiple linear regression.

SFIT Determine a polynomial fit to a surface.

SVDFIT General least squares fit using SVD.
Curve and Surface Fitting Using IDL

Chapter 16: Mathematics 429

se.

ed

and

y

Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationshipAx = λx,
whereA is ann-by-n array,x is ann-element vector, andλ is a scalar. A scalarλ and
nonzero vectorx that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the arrayA, respectively. The set of all eigenvectors
of the arrayA is then referred to as the eigenspace ofA. Ideally, the eigenspace will
consist ofn linearly-independent eigenvectors, although this is not always the ca

IDL computes the eigenvalues and eigenvectors of a real symmetricn-by-n array
using Householder transformations and the QL algorithm with implicit shifts. The
eigenvalues of a real,n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are comput
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can also be defined in terms of the determinant
function. The eigenvalues of ann-by-n arrayA are the roots of the polynomial
defined by det(A – λI), where I is the identity matrix (an array with 1s on the main
diagonal and 0s elsewhere) with the same dimensions asA. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues
eigenvectors of real, symmetric and nonsymmetricn-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors b
algebraically manipulating the definition given above to readAx– λx = 0; in this case
0 denotes ann-element vector, all elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

Example

To compute eigenvalues and eigenvectors of a real, symmetric,n-by-n array, begin
with a symmetric arrayA.

Note
The eigenvalues and eigenvectors of a real, symmetricn-by-n array are real
numbers.
Using IDL Eigenvalues and Eigenvectors

430 Chapter 16: Mathematics
A = [[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

;Compute the tridiagonal form of A:
TRIRED, A, D, E
;Compute the eigenvalues (returned in vector D) and
;the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A
;Print eigenvalues:
PRINT, D

IDL prints:

2.00000 4.76837e-07 12.0000

The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are:

Nonsymmetric Array with n Distinct Real and Complex
Eigenvalues

Example

To compute the eigenvalues and eigenvectors of a real, nonsymmetricn-by-n array,
begin with an arrayA. In this example, there aren distinct eigenvalues andn linearly-
independent eigenvectors.

A = [[1.0, 0.0, 2.0], $
[0.0, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]

;Reduce to upper Hessenberg format:
hes = ELMHES(A)
;Compute the eigenvalues:

1 2⁄ 1– 2⁄ 0

1– 3⁄ 1– 3⁄ 1– 3⁄

1– 6⁄ 1– 6⁄ 2 6⁄
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 431

t of
evals = HQR(hes)
;Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of ann-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

;Initialize a variable to contain the residual:
residual = 1
;Compute the eigenvectors and the residual for each
;eigenvalue/eigenvector pair, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
;Print the eigenvectors, which are returned as
;row vectors in evecs:
PRINT, evecs[*,0]

IDL prints:

(0.68168704, 0.18789033)(-0.34084352, -0.093945164)
(0.16271780, -0.59035830)
PRINT, evecs[*,1]

IDL prints:

(0.18789033, 0.68168704)(-0.093945164, -0.34084352)
(-0.59035830, 0.16271780)
PRINT, evecs[*,2]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relationAx – λx = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the resul
this computation.

PRINT, residual

IDL prints:

(-1.2021898e-07, 1.1893681e-07)(6.0109490e-08, -5.9468404e-08)
(1.0300230e-07, 1.0411269e-07)
(1.1893681e-07, -1.2021898e-07)(-5.9468404e-08, 6.0109490e-08)
Using IDL Eigenvalues and Eigenvectors

432 Chapter 16: Mathematics
(1.0411269e-07, 1.0300230e-07)
(0.0000000, 0.0000000)(0.0000000, 0.0000000)

The results are all zero to within machine precision.

Repeated Eigenvalues

Example

To compute the eigenvalues and eigenvectors of a real, nonsymmetricn-by-n array,
begin with an arrayA. In this example, there are fewer thann distinct eigenvalues, but
n independent eigenvectors are available.

A = [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]

;Reduce A to upper Hessenberg form and compute the eigenvalues.
;Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
;Print the eigenvalues:
PRINT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

;Initialize a variable to contain the residual:
residual = 1
;Compute the eigenvectors and residual, using
;double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
;Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRINT, evecs[*,2]
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 433

by

ement
tor—
IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)

We can compute an independent eigenvector for the repeated eigenvalue (2.0)
perturbing it slightly, allowing the algorithmEIGENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual)
PRINT, evecs[*,2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each el
in the residuals —for both the original eigenvectors and the perturbed eigenvec
is zero to within machine precision.

Example 4: The So-called Defective Case

In the so-called defective case, there are fewer thann distinct eigenvalues and fewer
thann linearly-independent eigenvectors. Begin with an arrayA:

A = [[2.0, -1.0], $
[1.0, 0.0]]

;Reduce A to upper Hessenberg form and compute the eigenvalues.
;Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
;Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, 0.00000)(1.00000, 0.00000)

Note
The two eigenvalues are real, but not distinct.

;Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE)
;Print the eigenvectors:
PRINT, evecs[*,0]
Using IDL Eigenvalues and Eigenvectors

434 Chapter 16: Mathematics

in the

the
IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

We attempt to compute an independent eigenvector using the method described
previous example:

evecs[*,1] = EIGENVEC(A, evals[1]+1.0e-6, /DOUBLE)
PRINT, evecs[1,*]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example,n independent eigenvectors do not exist. This situation is termed
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and Eigenvectors

Below is a brief description of IDL routines for computing eigenvalues and
eigenvectors. More detailed information is available in theIDL Reference Guide.

EIGENQL Compute eigenvectors of a real, symmetric array,
given the array.

EIGENVEC Compute eigenvectors of a real, nonsymmetric array,
given the array and its eigenvalues.

ELMHES Reduce a real, nonsymmetric array to upper-
Hessenberg form.

HQR Compute the eigenvalues of an upper-Hessenberg
array.

TRIQL Compute eigenvalues and eigenvectors of a real,
symmetric, tridiagonal array.

TRIRED Use Householder’s method to reduce a real,
symmetric array to tridiagonal form.
Eigenvalues and Eigenvectors Using IDL

Chapter 16: Mathematics 435

as

that
s
ta

on
type

g
and

e of
te
ed
, is
Gridding and Interpolation

Given a set of tabulated data inn-dimensions with each dimension being described
follows:

1. {xi, yi = f (xi)},

2. {xi, yi, zi = f (xi, yi)}, or

3. {xi, yi, zi, wi = f (xi, yi, zi)}

it is possible to calculate intermediate values of the functionf using interpolation.
IDL includes a variety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function
establishes a relationship between the tabulated data points. Different algorithm
employ different types of interpolating functions suitable for different types of da
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating functi
be an exact fit at each of the tabulated data points. Interpolation does not use any
of error analysis and its accuracy depends upon the behavior of the interpolatin
function between successive data points. Polynomial, spline, nearest-neighbor,
kriging are among the interpolation methods used in IDL.

Gridding, a topic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this typ
problem by constructing a Delaunay triangulation. This method is highly accura
and has great utility since many of IDL’s graphics routines require uniformly-gridd
data. Extrapolation, the estimation of values outside the range of tabulated data
also possible using this method.

Routines for Gridding and Interpolation

Below is a brief description of IDL routines for gridding and interpolation. More
detailed information is available in theIDL Reference Guide.

BILINEAR Bilinear interpolation.

GRID3 Smooth fit to a set of 3D scattered nodes.

INTERPOL Linear interpolation of vectors.

INTERPOLATE Compute linear, bilinear, or trilinear interpolates.
Using IDL Gridding and Interpolation

436 Chapter 16: Mathematics
KRIG2D Interpolate regularly or irregularly gridded points
using kriging.

MIN_CURVE_SURF Interpolate regularly or irregularly gridded points
using minimum curvature spline surface.

POLAR_SURFACE Interpolate a surface from polar coordinates to
rectangular coordinates.

SPL_INIT Establish interpolating spline for a data set (use
with SPL_INTERP).

SPL_INTERP Compute cubic-spline interpolated values (use
with SPL_INIT).

SPLINE Cubic spline interpolation.

SPLINE_P Parametric cubic spline interpolation.

TRIANGULATE Construct a Delaunay triangulation of a planar
set of points. With TRIGRID, this procedure can
interpolate irregularly-gridded data to a regular
grid.

TRIGRID Compute a regular grid of interpolated values.

TRI_SURF Compute aregularly- or irregularly-gridded set of
points with a smooth quintic surface.

VORONOI Compute the Voronoi polygon of a point.
Gridding and Interpolation Using IDL

Chapter 16: Mathematics 437

ristic

ug in
g is

lected
ically
t the

osed

ove
e-
 the
d to

hods.
hich
about

lace a
Hypothesis Testing

Hypothesis testing tests one or more sample populations for a statistical characte
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:

• The formulation of a hypothesis.

• The selection and collection of sample population data.

• The application of an appropriate test.

• The interpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of a new dr
the treatment of a certain ailment. Researchers test the assumption that the dru
effective by administering it to a sample population and collecting data on the
patients’ health. Once the data are collected, an appropriate statistical test is se
and the results analyzed. If the interpretation of the test results suggests a statist
significant improvement in the patients’ condition, the researchers conclude tha
drug will be effective in general.

It is important to remember that a valid or successful test does not prove the prop
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly impr
the condition of the patients receiving it was tested. This type of test is called on
sided or one-tailed, because it is concerned with deviation in one direction from
norm (in this case, improvement of the patients’ condition). A hypothesis designe
test the improvement or ill-effect of the trial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Tests of hypothesis are usually classified into parametric and nonparametric met
Parametric methods make assumptions about the underlying distribution from w
sample populations are selected. Nonparametric methods make no assumptions
a sample population’s distribution and are often based upon magnitude-based
ranking, rather than actual measurement data. In many cases it is possible to rep
Using IDL Hypothesis Testing

438 Chapter 16: Mathematics

est

n of

sed

d its
ted.
parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means t
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’sTM_TEST function,
assuming thatX andY belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The small value of the significance (2.52455e-06) indicates thatX andY have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL’sRS_TEST function, to test the
hypothesis thatX andY have the same mean of distribution.

PRINT, RS_TEST(X, Y)

IDL prints:

-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejectio
the proposed hypothesis and the conclusion thatX andY have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functions is ba
upon a well-known and widely-accepted statistical test. Each of these functions
returns a two-element vector containing the statistic on which the test is based an
significance. Examples are provided and demonstrate how the result is interpre
Hypothesis Testing Using IDL

Chapter 16: Mathematics 439
Routines for Hypothesis Testing

Below is a brief description of IDL routines for hypothesis testing. More detailed
information is available in theIDL Reference Guide.

CTI_TEST Construct contingency table from observed
frequency data.

FV_TEST Compute the F-statistic for two sample populations.

KW_TEST Test the hypothesis that three or more sample
populations have the same mean of distribution.

LNP_TEST Compute the Lomb Normalized Periodogram of two
sample populations.

MD_TEST Test the hypothesis that a sample population is
random.

R_CORRELATE Compute the rank correlation of two sample
populations.

R_TEST Test the hypothesis that a binary population is
random.

RS_TEST Test the hypothesis that two sample populations have
the same mean of distribution.

S_TEST Test the hypothesis that two sample populations have
the same mean of distribution.

TM_TEST Compute the student’s t-statistic for two sample
populations.

XSQ_TEST Compute the Chi-square goodness-of-fit between
observed and expected frequencies.
Using IDL Hypothesis Testing

440 Chapter 16: Mathematics

ure

s,

rs

ible

d is
 an

is
Integration

Numerical methods of approximating integrals are important in many areas of p
and applied science. For a function of a single variable,f (x), it is often the case that
the antiderivativeF = ∫ f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate function
f (x, y) andf (x, y, z). Numerically approximating the integral operator provides the
only method of solution when the antiderivative is not explicitly available. IDL offe
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

• Integration of a univariate function over an open or closed interval is poss
using one of several routines based on well known methods developed by
Romberg and Simpson.

• The problem of integrating over a tabulated set of data {xi, yi = f (xi) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This metho
more accurate and efficient than using interpolation or curve-fitting to find
approximate function and then integrating.

• Integration of a bivariate function over a regular or irregular region in thex-y
plane is possible using an iterated Gaussian Quadrature routine.

• Integration of a trivariate function over a regular or irregular region inx-y-z
space is possible using an iterated Gaussian Quadrature routine.

Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow thedy-
dx anddz-dy-dx order of evaluation, respectively. Problems not conforming to th
standard must be changed as described in the following example.

I f x() xd
x a=

x b=

∫=

I f x y,() yd xd
y p x()=

y q x()=

∫x a=

x b=

∫=

I f x y z, ,() zd yd xd
z u x y,()=

z v x y,()=

∫y p x()=

y q x()=

∫x a=

x b=

∫=
Integration Using IDL

Chapter 16: Mathematics 441

r the

at
A Bivariate Function

Example

Suppose that we wish to evaluate

The order of integration is initially described as adx-dy region in thex-y plane. Using
the diagram below, you can easily change the integration order tody-dx.

The integral is now of the form

The new expression can be evaluated using theINT_2D function.

To use INT_2D, we must specify the function to be integrated and expressions fo
upper and lower limits of integration. First, we write an IDL function for the
integrand, the functionf (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X^5)

END

Next, we write a function for the limits of integration of the inner integral. Note th
the limits of the outer integral are specified numerically, in vector form, while the

Figure 16-1: The Bivariate Function

y x
5()cos⋅ xd yd

x y=

x 2=

∫y 0=

y 4=

∫

Y

X

x y=

x 2=

2 4,()

dy
dx

y x
5()cos⋅ yd xd

y 0=

y x2=

∫x 0=

x 2=

∫

Using IDL Integration

442 Chapter 16: Mathematics

f

 this
imits
 of

s the

st
ts of
nd
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the function is:

FUNCTION pq_limits, X
RETURN, [0.0, X^2]

END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define a variable AB_LIMITS containing the vector o
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in
case). The second argument is the name of the variable containing the vector of l
for the outer integral (AB_LIMITS, in this case). The third argument is the name
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, in this case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase a
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limits = [0.0, 2.0]
PRINT, INT_2D('fxy', ab_limits, 'pq_limits', 48)

IDL prints:

0.055142668

This is the exact solution to 9 decimal accuracy.

A Trivariate Function

Example

Suppose that we wish to evaluate

This integral can be evaluated using the INT_3D function. As with INT_2D, we mu
specify the function to be integrated and expressions for the upper and lower limi
integration. Note that in this case IDL functions must be provided for the upper a
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrandf (x, y, z):

FUNCTION fxyz, X, Y, Z
RETURN, Z * (X^2 + Y^2 + Z^2)^1.5

z x
2

y
2

z
2

+ +()
3 2⁄

zd yd xd
z 0=

z 4 x2– y2–=
∫

y 4 x2––=

y 4 x2–=
∫x 2–=

x 2=

∫

Integration Using IDL

Chapter 16: Mathematics 443

gral
END

The limits of integration of the first inside integral:

FUNCTION pq_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 -X^2)]

END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X^2 - Y^2)]

END

We can use the following IDL commands to determine the value of the above inte
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 6)

IDL prints:

57.417720

For 10 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 10)

IDL prints:

57.444248

20 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 20)

IDL prints:

57.446201

48 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 48)

IDL prints:

57.446265

The exact solution to 6-decimal accuracy is 57.446267.
Using IDL Integration

444 Chapter 16: Mathematics
Routines for Integration

Below is a brief description of IDL routines for integration. More detailed
information is available in theIDL Reference Guide.

CRVLENGTH Compute the length of a curve with tabular
representation.

INT_2D Evaluate the double integral of a bivariate function
f(x, y).

INT_3D Evaluate the triple integral of a trivariate function
f(x, y, z).

INT_TABULATED Integrate a tabulated data set {xi, yi = f (xi) }.

QROMB Evaluate integral over a closed interval using
Romberg’s method.

QROMO Evaluate integral over an open interval using a
modified Romberg’s method.

QSIMP Evaluate integral over a closed interval using
Simpson’s method.
Integration Using IDL

Chapter 16: Mathematics 445

. In
e and
ly.

m

he

, it
ely
the

re of

 to
ay

oat).
r

Linear Systems

IDL offers a variety of methods for the solution of simultaneous linear equations
order to use these routines successfully, the user should consider both existenc
uniqueness criteria and the potential difficulties in finding the solution numerical

The solution vectorx of ann-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A is invertible. Using a simple algebraic
manipulation, it is possible to formulate the solution vectorx in terms of the inverse
of the coefficient array A and the right-side vector b:x = A-1b. Although this
relationship provides a concise mathematical representation of the solution, it is
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An alternate way of describing the existence of a solution is to say that the syste
Ax = b is solvable if and only if the vector b may be expressed as a linear
combination of the columns of A. This definition is important when considering t
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists
does not help in determining the solution. Some systems can be solved accurat
using numerical methods whereas others cannot. In order to better understand
accuracy of a numerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of a linear system is a measu
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of ann-by-n linear system Ax = b is computed explicitly as |A||A-1| (where | |
denotes a Euclidean norm). A linear system whose condition number is small is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number is large is considered ill-conditioned and prone
computational errors. To some extent, the solution of an ill-conditioned system m
be improved using an extended-precision data type (such as double-precision fl
Other situations require an approximate solution to the system using its Singula
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when a linear system is over- or underdetermined.
Using IDL Linear Systems

446 Chapter 16: Mathematics

s than
umns
s of
 of
lumns

s of

al

t-
Overdetermined Systems

Example

In the case of the overdetermined system (when there are more linear equation
unknowns), the vector b cannot be expressed as a linear combination of the col
of arrayA. (In other words, b lies outside of the subspace spanned by the column
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution
the overdetermined system (b is projected onto the subspace spanned by the co
of A and then the system is solved). This type of solution has the property of
minimizing the residual errorE = b – Ax in a least-squares sense.

Suppose that we wish to solve the following linear system:

The vectorb does not lie in the two-dimensional subspace spanned by the column
A (there is no linear combination of the columns ofA that yieldb), and therefore an
exact solution is not possible.

It is possible, however, to find a solution to this system that minimizes the residu
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the arrayA. The projected vector is then used as the righ
hand side of the system. The orthogonal projection ofb onto the column space ofA
may be expressed with the array-vector product A(ATA)-1ATb, where A(ATA)-1AT is
known as the projection matrix, P.

Figure 16-2: Overdetermined System Diagram

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

6.0

=

Pb

column 1

column 2

b

Linear Systems Using IDL

Chapter 16: Mathematics 447

st to
r b

tem

 W.
ts

. (See
In this example, the array-vector product Pb yields:

and we wish to solve the linear system

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For this reason it is be
use singular value decomposition to effect the orthogonal projection of the vecto
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the sys
in a numerically stable manner. Begin with the array A:

A = [[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

;Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]
;Compute the singular value decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector
To avoid overflow errors when the reciprocal values are calculated, only elemen
with absolute values greater than or equal to 1.0× 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $
IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product
Section 2.6 ofNumerical Recipes for a derivation of this formula.)

X = V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRINT, X

IDL Prints:

4.0

5.0

0.0

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

0.0

where
x0

x1

= 2.0

1.0
=

Using IDL Linear Systems

448 Chapter 16: Mathematics

ns
it is
 of
ith

sults
2.00000
1.00000

Underdetermined Systems

Example

In the case of the underdetermined system (when there are fewer linear equatio
than unknowns), a unique solution is not possible. Using IDL’s SVDC procedure
possible to determine the minimal norm solution. Given a vector norm, this type
solution has the property of having the minimal length of all possible solutions w
respect to that norm.

Suppose that we wish to solve the following linear system.

Using elementary row operations it is possible to reduce the system to

It is now possible to express the solutionx in terms ofx1 andx3:

The values ofx1 andx3 are completely arbitrary. Settingx1 = 0 andx3 = 0 results in
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and re
in the minimal norm condition. The minimal norm solution for this system is:

1.0 3.0 3.0 2.0

2.0 6.0 9.0 5.0

1.0– 3.0– 3.0 0.0

x0

x1

x2

x3

1.0

5.0

5.0

=

1.0 3.0 3.0 2.0

0.0 0.0 3.0 1.0

0.0 0.0 0.0 0.0

x0

x1

x2

x3

1.0

3.0

0.0

=

x

2– 3x1– x3–

x1

1 x3 3⁄–

x3

=

Linear Systems Using IDL

Chapter 16: Mathematics 449

al

 W.
ts

. (See
Note that this vector also satisfies the solutionx as it is expressed in terms ofx1 and
x3.

The following IDL commands use singular value decomposition to find the minim
norm solution. Begin with the arrayA:

A = [[1.0, 3.0, 3.0, 2.0], $
[2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]

;Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
;Compute the decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector
To avoid overflow errors when the reciprocal values are calculated, only elemen
with absolute values greater than or equal to 1.0× 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $
IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product
Section 2.6 ofNumerical Recipes for a derivation of this formula.) The solution is
expressed in terms of x1 andx3 with minimal norm.

X = V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027

x

2.0–

0.0

1.0

0.0

=

x

0.211009–

0.633027–

0.963303

0.110092

=

Using IDL Linear Systems

450 Chapter 16: Mathematics

em:
0.963303
0.110092

Complex Linear Systems

Example

We can useIDL’s LU_COMPLEX function to compute the solution to a linear system
with real and complex coefficients. Suppose we wish to solve the following linear syst

;First we define the real part of the complex coefficient array:
re =[[-1, 1, 2, 3], $

[-2, -1, 0, 3], $
[3, 0, 0, 0], $
[2, 1, 2, 2]]

;Next, we define the imaginary part of the coefficient array:
im =[[0, -3, 0, 3], $

[0, 3, 1, 1], $
[0, 4, -1, -3], $
[0, 1, 1, 1]]

;Combine the real and imaginary parts to form
;a single complex coefficient array:
A = COMPLEX(re, im)
;Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $

COMPLEX(-10,10)
;Compute the solution using double-precision complex arithmetic:
z = LU_COMPLEX(A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
 2.00, 2.00i
 0.00, 3.00i
-0.00,-1.00i
;We can check the accuracy of the computed solution by
;computing the residual, A z–b:
PRINT, A##Z-B

1– 0i+ 1 3i– 2 0i+ 3 3i+

2– 0i+ 1– 3i+ 0– 1i+ 3 1i+

3 0i+ 0 4i+ 0 1i– 0– 3i–

2 0i+ 1 1i+ 2 1i+ 2 1i+

z0

z1

z2

z3

15 2i–

2– 1i–

20– 11i+

10– 10i+

=

Linear Systems Using IDL

Chapter 16: Mathematics 451

r

IDL prints:

(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Routines for Solving Simultaneous Linear Equations

Below is a brief description of IDL routines for solving simultaneous linear
equations. More detailed information is available in theIDL Reference Guide.

CHOLDC Construct the Cholesky decomposition of an array.

CHOLSOL Solve sets of linear equations (use with CHOLDC).

COND Compute the condition number of a square array.

CRAMER Solve a linear system using Cramer’s rule.

DETERM Compute the determinant of a square array.

GS_ITER Solve a linear system using Gauss-Seidel iteration.

IDENTITY Create an identity array.

INVERT Invert a square array.

LU_COMPLEX Solve a complex linear system or invert a complex array.

LUDC Construct the LU Decomposition of an array.

LUMPROVE Iteratively improve the solution vector of a set of linear
equations.

LUSOL Solve sets of linear equations (use with LUDC).

NORM Compute the infinity norm of a square array or the
Euclidean norm of a vector.

SVDC Construct the Singular Value Decomposition of an array.

SVSOL Use back-substitution to solve a set of simultaneous linea
equations (use with SVDC).

TRACE Compute the trace of an array.

TRISOL Solve a tridiagonal system of linear equations.
Using IDL Linear Systems

452 Chapter 16: Mathematics

ess

th J

e

n

ose
uite

e
hich
Nonlinear Equations

The problem of finding a solution to a system ofn nonlinear equations, F(x) = 0, may
be stated as follows:

given F: Rn → Rn, findx* (an element of Rn) such that F(x*) = 0

For example:

x* = [0, 3] orx* = [3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton’s method. This method begins with an initial gu
and constructs a solution by iteratively approximating then-dimensional nonlinear
system of equations with ann-by-n linear system of equations.

The first step formulates ann-by-n linear system of equations (Js = – F) where the
coefficient array J is the Jacobian (the array of first partial derivatives of F),s is a
solution vector, and – F is the negative of the nonlinear system of equations. Bo
and – F are evaluated at the current value of then-element vectorx.

J(xk) sk = – F(xk)

The second step uses the solutionsk of the linear system as a directional update to th
current approximate solutionxk of the nonlinear system of equations. The next
approximate solutionxk+1 is a linear combination of the current approximate solutio
xk and the directional updatesk.

xk+1 = xk + sk

The success of Newton’s method relies primarily on providing an initial guess cl
to a solution of the nonlinear system of equations. In practice this proves to be q
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that th
initial guess be close to a solution. These algorithms implement a line search w

F x()
x0 x1 3–+

x0
2

x1
2

9–+
=

Nonlinear Equations Using IDL

Chapter 16: Mathematics 453

uring

ton

and
checks, and if necessary modifies, the course of the algorithm at each step ens
progress toward a solution of the nonlinear system of equations. IDL’s NEWTON
and BROYDEN functions are among a class of algorithms known as quasi-New
methods.

The solution of ann-dimensional system of nonlinear equations, F(x) = 0, is often
considered a root of that system. As a one-dimensional counterpart to NEWTON
BROYDEN, IDL provides the FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

Below is a brief description of IDL routines for solving systems of nonlinear
equations. More detailed information is available in theIDL Reference Guide.

BROYDEN Solve sets of non-linear equations using a globally-
convergent Broyden’s method.

FX_ROOT Compute the real and complex roots of a univariate
non-linear function using Müller’s method.

FZ_ROOTS Compute the roots of a complex polynomial.

NEWTON Solve sets of non-linear equations using a globally-
convergent Newton’s method.
Using IDL Nonlinear Equations

454 Chapter 16: Mathematics

em
. It is

e

f

t of
Optimization

The problem of finding an unconstrained minimizer of ann-dimensional function,f,
may be stated as follows:

givenf: Rn → R, findx* (an element of Rn) such thatf(x*) is a minimum off.

For example:

f (x) = (x0 – 3)4 + (x1 - 2)2

x* = [3, 2]

In minimizing ann-dimensional functionf, it is a necessary condition that the
gradient at the minimizerx* , ∇f(x*), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

This relation might suggest that finding a minimizer is equivalent to solving a syst
of linear equations based on the gradient. In most cases, however, this is not true
just as likely that a solution,x* , of ∇f(x)=0 be a maximizer or a local minimizer off.
Thus the gradient alone does not provide sufficient information in determining th
role ofx* .

IDL provides two algorithms that do sufficiently determine the global minimizer o
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradien
the function to be minimized. IDL’s POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routine is evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

f x()∂
x0∂

f x()∂
x1∂

…
f x()∂
xn 1–∂

0

0

…
0

=

Optimization Using IDL

Chapter 16: Mathematics 455
Routines for Optimization

Below is a brief description of IDL routines for optimization. More detailed
information is available in theIDL Reference Guide.

AMOEBA Multidimensional minimization of a user
supplied function using the downhill simplex
method.

CONSTRAINED_MIN Solves nonlinear optimization problems.

DFPMIN Davidon-Fletcher-Powell minimization of a user
supplied function.

POWELL Powell minimization of a user supplied function.
Using IDL Optimization

456 Chapter 16: Mathematics

orage
erred

with

tores
th of
mber

ven if
nes

tially

h

t

he
Sparse Arrays

The occurrence of zero elements in a large array is both a computational and st
inconvenience. An array in which a large percentage of elements are zeros is ref
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing
sparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which s
the array in structure form, as a vector of data and a vector of indices. The leng
each vector is equal to the number of diagonal elements of the array plus the nu
of off-diagonal elements with an absolute magnitude greater than or equal to a
specified threshold value. Diagonal elements of the array are always retained e
their absolute magnitude is less than the specified threshold. Sparse array routi
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least par
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in whic
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Example

Create a 500-by-500 element pseudo-random diagonally-dominant floating-poin
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of t
absolute values of the non-diagonal elements in that row.)

N = 500L
A = RANDOMN(SEED, N, N)*10
;Set elements with absolute magnitude greater than or
;equal to eight to zero:
I = WHERE(ABS(A) GE 8)
A[I] = 0.0
;Set each diagonal element to the absolute sum of
;its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
Sparse Arrays Using IDL

Chapter 16: Mathematics 457

ing

thing
;Create a right-hand side vector, b, in which 40% of
;the elements are ones and 60% are twos.
B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measur
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include every
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

;Begin with an initial guess:
X = REPLICATE(1.0, N_ELEMENTS(B))
;Start the timer:
start = SYSTIME(1) & $
;Solve the system:
result1 = LINBCG(SPRSIN(A), B, X) & $
;Stop the timer.
stop = SYSTIME(1)
;Print the time taken, in seconds:
PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start

IDL prints:

Time for Iterative Biconjugate Gradient 1.1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

;Start the timer:
start = SYSTIME(1) & $
;Compute the LU decomposition of A:
LUDC, A, index & $
;Compute the solution:
result2 = LUSOL(A, index, B) & $
;Stop the timer:
stop = SYSTIME(1)
;Print the time taken, in seconds:
PRINT, 'Time for LU Decomposition:', stop-start

IDL prints:

Time for LU decomposition 14.871168

Finally, we can compare the absolute error between result1 and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0× 10-5, or a –1 if the two results are identical to within five
decimal places.

error = ABS(result1-result2)
Using IDL Sparse Arrays

458 Chapter 16: Mathematics

ng
ific

led
PRINT, WHERE(error GT 1.0e-5)

IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alpha workstation runni
OSF/1; they are shown as examples only. Your times will depend on your spec
computing platform.

Routines for Handling Sparse Arrays

Below is a brief description of IDL routines for handling sparse arrays. More detai
information is available in theIDL Reference Guide. Note that SPRSIN must be used
to convert to sparse storage format before the other routines can be used.

FULSTR Restore a row-indexed sparse array to full storage
format.

LINBCG Solve a system of linear equations using the iterative
biconjugate method.

READ_SPR Read a row-indexed sparse array from a file.

SPRSAB Multiply two row-indexed sparse arrays.

SPRSAX Multiply a row-indexed sparse array by a vector.

SPRSIN Convert an array or list to row-indexed sparse storage
format.

WRITE_SPR Write a row-indexed sparse array to a file.
Sparse Arrays Using IDL

Chapter 16: Mathematics 459

In
ite set

s is

ts:

t
tions
them
nd

. A
 of

ation
he
s as a
Time-Series Analysis

A time-series is a sequential collection of data observations indexed over time.
most cases, the observed data is continuous and is recorded at a discrete and fin
of equally-spaced points. Ann-element time-series is denoted asx = (x0, x1, x2, ... ,
xn–1), where the time-indexed distance between any two successive observation
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four componen

• A trend or long term movement.

• A cyclical fluctuation about the trend.

• A pronounced seasonal effect.

• A residual, irregular, or random effect.

Collectively, these components make the analysis of a time-series a far more
challenging task than just fitting a linear or nonlinear regression model. Adjacen
observations are unlikely to be independent of one another. Clusters of observa
are frequently correlated with increasing strength as the time intervals between
become shorter. Often the analysis is a multi-step process involving graphical a
numerical methods.

The first step in the analysis of a time-series is the transformation to stationarity
stationary series exhibits statistical properties that are unchanged as the period
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrel
function is a commonly used tool in determining the stationarity of a time-series. T
autocorrelation of a time-series measures the dependence between observation
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of a time-series.

For example, suppose the IDL variableX contains time-series data:

X =[5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]

The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.
Using IDL Time-Series Analysis

460 Chapter 16: Mathematics

 plot.

ys.

ries
;Set the plotting window to hold two plots:
!P.MULTI=[0,1,2]
;Plot the data:
PLOT, X

Compute the sample autocorrelation function for time lagged values 0 – 20 and

lag = INDGEN(21)
result = A_CORRELATE(X, lag)
PLOT, lag, result
;Add a reference line at zero:
PLOTS, [0,20], [0,0], /DATA
;Set the plotting window back to a single plot:
!P.MULTI=0

The following figure shows the resulting graph.

Nonstationary components of a time-series may be eliminated in a variety of wa
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in a time-se
by taking successive averages of groups of observations. Each successive

Figure 16-3: The top graph plots time-series data. The bottom graph plots the
autocorrelation of that data versus the lag. Because the time-series has a
significant autocorrelation up to a lag of seven, it must be considered non-

stationary.
Time-Series Analysis Using IDL

Chapter 16: Mathematics 461

f that
ation
tep

g an
rvation,
plest

sive

ng.

d

overlapping sequence of k observations in the series is replaced by the mean o
sequence. The method of forward differencing replaces each time-series observ
with the difference of the current observation and its adjacent observation one s
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once a time-series has been transformed to stationarity, it may be modeled usin
autoregressive process. An autoregressive process expresses the current obse
xt, as a combination of past time-series values and residual white noise. The sim
case is known as a first order autoregressive model and is expressed as

xt = φxt–1 + ωt

The coefficientφ is estimated using the time-series data. The general autoregres
model of orderp is expressed as

xt = φ1xt–1 +φ2xt–2 + ... +φpxt–p + ωt

Modeling a stationary time-series as ap-th order autoregressive process allows the
extrapolation of data for future values of time. This process is know as forecasti

Routines for Time-Series Analysis

Below is a brief description of IDL routines for time-series analysis. More detaile
information is available in theIDL Reference Guide.

A_CORRELATE Compute the autocorrelation or autocovariance of a
sample population.

C_CORRELATE Compute the cross-correlation or cross-covariance of
two sample populations.

SMOOTH Smooth a time-series using a moving average.

TS_COEF Compute the coefficients used in an autoregressive
time-series forecasting model.

TS_DIFF Compute forward differences of a time-series.

TS_FCAST Compute the future values of a stationary time-series.

TS_SMOOTH Compute central, backward, or forward moving
averages of a time-series.
Using IDL Time-Series Analysis

462 Chapter 16: Mathematics

f an

an

 a
ow
s
ples
ral,

er of
ter
nique.

. In
the
r

Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis andPrincipal Components
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification o
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes
distance criterion based upon the variables of the data. Given an m-column, n-r
array, IDL’s CLUSTER_WTS and CLUSTER functions compute n cluster center
and n clusters, respectively. Conceivably, some clusters will contain multiple sam
while other clusters will contain none. The choice of clusters is arbitrary; in gene
however, the user will want to specify a number less than the default (the numb
rows in the input array). The cluster number (the number that identifies the clus
group) assigned to a particular sample or group of samples is not necessarily u

It is possible that not all variables play an equal role in the classification process
this situation, greater or lesser importance may be given to each variable using
VARIABLE_WTS keyword to the CLUSTER_WTS function. The default behavio
is to assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUSTER_WTS and CLUSTER functions provide this functionality by first
transposing them-column,n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array=[[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114], $
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[42, 108, 37, 51, 41], $
Multivariate Analysis Using IDL

Chapter 16: Mathematics 463

, 2, 5,
ntain
d to

 is
nge.

ated
are
ble

d
ta,

rived
ty of

nce
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114]]

;Compute the cluster weights with four cluster centers:
weights = CLUST_WTS(array, N_CLUSTERS = 4)
;Compute the cluster assignments, for each sample,
;into one of four clusters:
result = CLUSTER(array, weights, N_CLUSTERS = 4)
;Display the cluster assignment and corresponding sample (row):
FOR k = 0, 8 DO $
PRINT, result[k], array[*, k]

IDL prints:

1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 co
identical data and are assigned to cluster #0. Sample 4 is unique and is assigne
cluster #2.

If this example is run several times, each time computing new cluster weights, it
possible that the cluster number assigned to each grouping of samples may cha

Principal Components Analysis

Principal components analysis is a mathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formul
using specific linear combinations of the original variables. The derived variables
uncorrelated and are computed in decreasing order of importance; the first varia
accounts for as much as possible of the variation in the original data, the secon
variable accounts for the second largest portion of the variation in the original da
and so on. Principal components analysis attempts to construct a small set of de
variables which summarize the original data, thereby reducing the dimensionali
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covaria
Using IDL Multivariate Analysis

464 Chapter 16: Mathematics

its
trix

o
them
nd a

al

 to 2
matrix. If the variables of the multivariate data are measured in widely differing un
(large variations in magnitude), it is usually best to use the sample correlation ma
in computing the principal components; this is the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior t
computing principal components. Standardizing the variables essentially makes
all equally important by creating new variables that each have a mean of zero a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its princip
components. There are three variables, each consisting of five samples.

We compute the principal components (the coefficients of the derived variables)
decimal accuracy and store them by row in the following array.

The derived variables {z1, z2, z3} are then computed as follows:

Var 1 Var 2 Var 3

Sample 1 2.0 1.0 3.0

Sample 2 4.0 2.0 3.0

Sample 3 4.0 1.0 0.0

Sample 4 2.0 3.0 3.0

Sample 5 5.0 1.0 9.0

Table 16-1: Data for Principal Component Analysis

0.87 0.70– 0.69

0.01 0.64– 0.66–

0.49 0.32 0.30–
Multivariate Analysis Using IDL

Chapter 16: Mathematics 465

upon

f

In this example, analysis shows that the derived variablez1 accounts for 57.3% of the
total variance of the original data, the derived variablez2 accounts for 28.2% of the
total variance of the original data, and the derived variablez3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing o
twenty samples.

;Define an array with 4 variables and 20 samples:
data=[[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

z1 0.87()

2.0

4.0

4.0

2.0

5.0

0.70–()

1.0

2.0

1.0

3.0

1.0

0.69()

3.0

3.0

0.0

3.0

9.0

+ +=

z2 0.01()

2.0

4.0

4.0

2.0

5.0

0.64–()

1.0

2.0

1.0

3.0

1.0

0.66–()

3.0

3.0

0.0

3.0

9.0

+ +=

z3 0.49()

2.0

4.0

4.0

2.0

5.0

0.32()

1.0

2.0

1.0

3.0

1.0

0.30–()

3.0

3.0

0.0

3.0

9.0

+ +=
Using IDL Multivariate Analysis

466 Chapter 16: Mathematics
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be
initialized as nonzero values prior to calling PCOMP.

coef = 1 & eval = 1 & var = 1
;Compute the derived variables based upon
;the principal components.
result=PCOMP(data, COEFFICIENTS = coef, $

EIGENVALUES = eval, VARIANCES = var)
;Display the array of derived variables:
PRINT, result, FORMAT = '(4(f5.1, 2x))'

IDL prints:

81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6

81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6

97.0 6.4 -4.4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6

81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6

113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6

91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6
Multivariate Analysis Using IDL

Chapter 16: Mathematics 467

o

thus

d

Display the percentage of total variance for each derived variable:

PRINT, var

IDL prints:

0.712422
0.250319
0.0370950
0.000164269

Display the percentage of variance for the first two derived variables; the first tw
columns of the resulting array above.

PRINT, TOTAL(var[0:1])

IDL prints:

0.962741

This indicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and
could be used to summarize the original data.

Routines for Multivariate Analysis

Below is a brief description of IDL routines for multivariate analysis. More detaile
information is available in theIDL Reference Guide.

CLUST_WTS Compute the cluster weights of a multivariate data
set.

CLUSTER Compute a cluster analysis classification of a
multivariate data set.

CORRELATE Compute the linear correlation coefficient.

CTI_TEST Construct contingency table from observed
frequency data.

KW_TEST Test the hypothesis that three or more sample
populations have the same mean of distribution.

M_CORRELATE Compute the multiple correlation coefficient.

P_CORRELATE Compute the partial correlation coefficient.

PCOMP Compute the principal components and derived
variables of a multivariate data set.
Using IDL Multivariate Analysis

468 Chapter 16: Mathematics
STANDARDIZE Compute standardized variables.
Multivariate Analysis Using IDL

Chapter 16: Mathematics 469
References

Accuracy and Floating Point Operations

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds.Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch.Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al.Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Correlation Analysis

Harnet, Donald L.Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore.Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Curve and Surface Fitting

Bevington, Philip R.Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.

Lancaster, Peter and Kestutis Salkauskas.Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Eigenvalues and Eigenvectors

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert.Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Gridding and Interpolation

Lancaster, Peter and Kestutis Salkauskas.Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0
Using IDL References

470 Chapter 16: Mathematics
Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H.Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Kraft, Charles H. and Constance Van Eeden.A Nonparametric Introduction to
Statistics. New York: Macmillan, 1968.

Sprent, Peter.Applied Nonparametric Statistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration

Chapra, Steven C. and Raymond P. Canale.Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems

Golub, Gene H. and Van Loan, Charles F.Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin.Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert.Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Nonlinear Equations

Dennis, J.E. Jr. and Robert B. Schnabel.Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
References Using IDL

Chapter 16: Mathematics 471
Optimization

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations.Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Sparse Arrays

Press, William H.et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C.The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore.Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

Jackson, Barbara Bund.Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S.Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash.Multivariate Statistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6
Using IDL References

472 Chapter 16: Mathematics
References Using IDL

Part IV: Object
Graphics

Chapter 17:

Object Graphics
, and
This chapter discusses the difference between IDL Direct Graphics and IDL Object Graphics
provides an overview of the IDL Object Graphics classes.
1

Overview . 476
Direct versus Object Graphics 478
How to Use Object Graphics 480
Overview of Object Graphics Classes. . . . 483
Container Objects 485
Structure Objects. 486
Atomic Graphic Objects. 487

Composite Objects. 489
Attribute Objects . 490
Helper Objects. 49
Destination Objects 492
File Format Objects. 493
Properties of Objects 494
Undocumented Graphic Object Classes . . 496
Using IDL 475

476 Chapter 17: Object Graphics

h of
ch as
f
ts are

ctions
f its
med
s

 to
and
t,

g of
all a
ects
an

, !X,

The
ve in
bject

tion
d to

e

Overview

The IDL Object Graphics system is a collection of pre-defined object classes, eac
which is designed to encapsulate a particular visual representation. Actions (su
the modification of attributes, or data picking) may be performed on instances o
these object classes by calling corresponding pre-defined methods. These objec
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAxis object provides an encapsulation of all of the
components associated with a graphical representation of an axis. One of the a
that can be performed on an axis is retrieving the current value of one or more o
attributes (such as its color, tick values, or data range). This action may be perfor
via the IDLgrAxis::GetProperty method. A complete listing of the types of object
included in the Object Graphics system are described beginning in“Overview of
Object Graphics Classes” on page 483.

Object Graphics should be thought of as a collection of building blocks. In order
display something on the screen, the user selects the appropriate set of blocks
puts them together so that as a group they provide a visual result. In this respec
Object Graphics are quite different than Direct Graphics. A single line of code is
unlikely to produce a complete visualization. Furthermore, a basic understandin
the IDL object system is required (for instance, how to create an object, how to c
method, how to destroy an object, etc.). Because of the level at which these obj
are presented, Object Graphics are aimed at application programmers rather th
command line users.

Object Graphics do not interact in any way with the system variables (such as !P
!Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structures is not condoned.
advantage of this approach is that once an object is created, it will always beha
the same way even if the system state is modified by another program, or if the o
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualiza
applications. Direct manipulation tools (such as the Trackball object) are provide
aid the application developer. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more tim
focusing on domain specific data analysis and visualization features.
Overview Using IDL

Chapter 17: Object Graphics 477

s
ome

re
Over time, Research Systems, Inc., will continue to build higher-level application
with these objects, applications that are suitable for users who prefer not to bec
programmers to interact with their data. Insight and the LIVE_tools are good
examples of currently available applications built using Object Graphics. For mo
information on IDL Insight and the LIVE_tools, see theUsing IDL Insight manual.

Additional examples based on Object Graphics can be found in the IDL demo.
Using IDL Overview

478 Chapter 17: Object Graphics

t

 on
rs’

th

s,

vice

e
n

 a
ic.

tine

L

y
of

l

Direct versus Object Graphics

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direc
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly
the current graphics device. Object Graphics use an object-oriented programme
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmers choosing.

IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are already familiar wi
IDL Direct Graphics. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (‘X’ for X-windows systems display
‘WIN’ for Microsoft Windows displays, ‘MAC’ for Macintosh displays, ‘PS’
for PostScript files, etc.). You switch between graphics devices using the
SET_PLOT command, and control the features of the current graphics de
using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands lik
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly o
the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on
different device, you must re-issue the IDL commands to create the graph

• When you add a new item to an existing direct-mode graphic (using a rou
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

Documentation for IDL Direct Graphics routines is found in four volumes of the ID
Documentation set:Using IDL, Building IDL Applcations, and theIDL Reference
Guide.

IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphics in addition to
Direct Graphics. The salient features of Object Graphics are:

• Object graphics are rendered in three dimensions. Rendering implies man
operations not needed when drawing Direct Graphics, including calculation
normal vectors for lines and surfaces, lighting considerations, and genera
Direct versus Object Graphics Using IDL

Chapter 17: Object Graphics 479

n be
ted.

ted
es,
in,

nds
; this

ich

hile

t to

e
ient
p—

ve if
object overhead. As a result, the time needed to render a given object—a
surface, for example—will often be longer than the time taken to draw the
analogous image in Direct Graphics.

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object ca
displayed on any physical device for which a destination object can be crea

• Object graphics are object oriented. Graphic objects are meant to be crea
and re-used; you may create a set of graphic objects, modify their attribut
draw them to a window on your computer screen, modify their attributes aga
then draw them to a printer device without reissuing all of the IDL comma
used to create the objects. Graphics objects also encapsulate functionality
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object Graphics use a programmers interface. Unlike Direct Graphics, wh
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. W
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenien
build a program off line than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for th
programmer to be cognizant of memory issues and memory leakage. Effic
design—remembering to destroy unused object references and cleaning u
will avert most problems, but even the best designs can be memory-intensi
large numbers of graphic objects (or large datasets) are involved.

Explanatory material on IDL’s object system is contained inChapter 12, “Object
Basics” in theBuilding IDL Applcations manual. For reference material describing
IDL’s object classes, seeAppendix A, “IDL Object Class & Method Reference” of
theIDL Reference Guide.
Using IDL Direct versus Object Graphics

480 Chapter 17: Object Graphics

e

at

you

w
ct to

t is
How to Use Object Graphics

All Object Graphics applications require at least two basic building blocks. Thes
include:

• A destination object - the device (such as a window, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered. For more
information, see“Destination Objects” on page 492

• A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into th
rectangle).

For example:

;Create a destination object, in this case a window:
oWindow = OBJ_NEW('IDLgrWindow')
;Create a viewport that fills the entire window:
oView = OBJ_NEW('IDLgrView')
;Draw the view within the window:
OWindow->Draw, oView

By themselves, a window and a single view are not particularly enlightening, but
will find that these two types of objects are utilized by all Object Graphics
applications. To change an attribute of an object, you do not have to create a ne
instance of that object. Instead, use the SetProperty method on the original obje
modify the value of the attribute.

For example, to change the color of the view to gray:

;Set the color property of the view:
OView->SetProperty, COLOR=[60,60,60]
;Redraw:
OWindow->Draw, oView

If more than one view is to be drawn to the destination, then an additional objec
required:

• A scene object - a container of views

For example:

;Create a scene and add our original view to it:
OScene = OBJ_NEW(’IDLgrScene’)
oScene->Add, oView
;Modify our original view so that it covers
;the upper left quadrant of the window.
How to Use Object Graphics Using IDL

Chapter 17: Object Graphics 481

tion

axis,

elf-
ect.

t it

n
yed in
OView->SetProperty, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
UNITS=3
;Create and add a second red view that covers
;the right half of the window.
OView2 = OBJ_NEW(’IDLgrView’, LOCATION=[0.5,0.0], $
DIMENSIONS=[0.5,1.0], UNITS=3,COLOR=[255,0,0])
OScene->Add, oView2
; Now draw the scene, rather than the view, to the window:
OWindow->Draw, oScene

In the examples so far, the views have been empty canvases. For data visualiza
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

• A model object - a transformation node

• An atomic graphic object - a graphical representation of data (such as an
plot line, or surface mesh). For more information, see“Atomic Graphic
Objects” on page 487.

For example, to include a text label within a view:

; Create a model and add it to the original view:
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
; Create a text object and add it to the model:
oText = OBJ_NEW('IDLgrText','Hello World',ALIGNMENT=0.5)
oModel->Add, oText
; Redraw the scene:
OWindow->Draw, oScene

Notice that the scene, views, model, and text are all combined together into a s
contained hierarchy. It is the overall hierarchy that is drawn to the destination obj

The transformation associated with the model can be modified to impact the tex
contains. For example:

; Rotate by 90 degrees about the Z-axis:
oModel->Rotate, [0,0,1], 90
; Redraw:
OWindow->Draw, oScene

When the objects are no longer required, they need to be destroyed. Destinatio
objects must be destroyed separately, but the graphic hierarchies can be destro
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oWindow
OBJ_DESTROY, oScene
Using IDL How to Use Object Graphics

482 Chapter 17: Object Graphics

ts
In this example, the destruction of the scene will cause the destruction of all of i
children (including the views, model, and text).
How to Use Object Graphics Using IDL

Chapter 17: Object Graphics 483

ed
DL
s:

ntain

hich

de
the
ur

om
res

e. For
es

cept
Overview of Object Graphics Classes

The following sections provide an overview of the different types of objects includ
in the IDL Object Graphics class library. In order to describe the attributes of the I
Object Graphics classes, we have grouped the objects into functional categorie
Container Objects, Structure Objects, Atomic Graphic Objects, Composite Objects,
Attribute Objects, Helper Objects, Destination Objects, andFile Format Objects.

Note
These category names are purely descriptive; for example, structure objects co
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named
structure. There is one exception to this rule: the container objects category w
includes the IDL_Container class.

This chapter does not describe the relationships between object classes. SeeChapter
18, “The Graphics Object Hierarchy” for a discussion of the object tree.

Naming Conventions

In general, object classes shipped with IDL have names of the form:

IDLxxYyyy

wherexx represents the broad functional grouping (gr for graphics objects,db for
database objects, andan for analysis, for example).Yyyy is the class name itself
(such asAxis or Surface). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping co
entirely (IDL_Container). All object classes shipped with IDL are prepended with
letters IDL—we strongly suggest that you do not use this prefix when writing yo
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objects is slightly different fr
that used for non-object functions and procedures. Whereas non-object procedu
are presented in upper case letters, object classes and methods use mixed cas
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method nam
are also presented in mixed case (IDLgrAxis::GetProperty).

Common Methods

In addition to their own specific methods, all object classes shipped with IDL ex
for the IDL_Container class have four methods in common: Cleanup, Init,
Using IDL Overview of Object Graphics Classes

484 Chapter 17: Object Graphics

ods,
(See

) the
phics
GetProperty, and SetProperty. The Cleanup and Init methods are life-cycle meth
and cannot be called directly except within a subclass’ Cleanup or Init method.
“The Object Lifecycle” in Chapter 12 of theBuilding IDL Applications manual.) The
GetProperty and SetProperty methods allow you to inspect (get) or change (set
various properties associated with a given object. Properties associated with gra
objects include things like color, location, line style, or data.
Overview of Object Graphics Classes Using IDL

Chapter 17: Object Graphics 485

oup
 way
p
er
Container Objects

IDL’s container object, realized in the IDL_Container class, provides a way to gr
disparate IDL objects into single object. Container objects provide a convenient
to move or destroy groups of objects; when a container is destroyed, its Cleanu
method automatically calls the Cleanup methods of all the objects in the contain
and destroys them as well.

SeeIDL_Container for details.
Using IDL Container Objects

486 Chapter 17: Object Graphics

e
pace.
y by
.

ts

f its

el
g to

ject

ects.
Structure Objects

Structure objects create a hierarchy of graphic objects—an object tree. Structur
objects also contain the information necessary to transform graphics objects in s
Building an object tree allows you to manipulate groups of graphic objects easil
transforming a single IDLgrModel object to which members of the group belong
(SeeChapter 18, “The Graphics Object Hierarchy” for a discussion of the object
tree.)

Model

Objects of the IDLgrModel class serve as containers for individual graphic objec
(plot lines, axes, text, etc.) and for other model objects. Model objects include a
three-dimensional transformation matrix that describes how the model and all o
components are positioned in space. Altering the model’s transformation matrix
changes the position and orientation of any objects the model contains. If a mod
object contains another model object, the contained model is positioned accordin
both its own transformation matrix and that of its container.

SeeIDLgrModel in theIDL Reference Guide for further details.

View

Objects of the IDLgrView class serve as containers for model objects. A view ob
can be supplied as the argument to a Draw method.

SeeIDLgrView in theIDL Reference Guide for further details.

Viewgroup

Objects of the IDLgrViewgroup class serve as containers for views. A viewgroup
object can be supplied as the argument to a Draw method.

SeeIDLgrViewgroup in theIDL Reference Guide for further details.

Scene

Objects of the IDLgrScene class serve as containers for view and view group obj
A scene object can be supplied as the argument to a Draw method.

SeeIDLgrScene in theIDL Reference Guide for further details.
Structure Objects Using IDL

Chapter 17: Object Graphics 487

eate
color
in

r

tted

are

ght

lied
Atomic Graphic Objects

Atomic Graphic Objects, or graphics atoms, are the low-level objects used to cr
images. Graphics atoms have attributes such as size, color, width, or associated
palette. Graphics atoms do not include a transformation matrix and do not conta
other objects.

Axis

Objects of the IDLgrAxis class are individual axes. One axis object is required fo
each axis line to be rendered.

SeeIDLgrAxis in theIDL Reference Guide for further details.

Contour

Objects of the IDLgrContour class are lines representing contour information plo
from user data.

SeeIDLgrContour in theIDL Reference Guide for further details.

Image

Objects of the IDLgrImage class are two-dimensional arrays of data with an
associated mapping of the data values to pixel values.

SeeIDLgrImage in theIDL Reference Guide for further details.

Light

Objects of the IDLgrLight class are light sources by which atomic graphic objects
illuminated. Light objects are not actually rendered, but are included as graphics
atoms (meaning they must be contained in a model object) so that they can be
positioned and transformed along with the graphic objects they illuminate. If no li
object is included in a particular view, default lighting is supplied.

SeeIDLgrLight in theIDL Reference Guide for further details.

Plot

Objects of the IDLgrPlot class are individual plot lines, created from a user-supp
vector of dependent data values (and, optionally, a vector of independent data
values). Plot objects do not include axes.
Using IDL Atomic Graphic Objects

488 Chapter 17: Object Graphics

by a

ated

 to a
o

SeeIDLgrPlot in theIDL Reference Guide for further details.

Polygon

Objects of the IDLgrPolygon class are individual polygons, created from a user-
supplied array of data values.

SeeIDLgrPolygon in theIDL Reference Guide for further details.

Polyline

Objects of the IDLgrPolyline class are individual polylines, created from a user-
supplied array of data points. Locations of the data points supplied are connected
single line.

SeeIDLgrPolyline in theIDL Reference Guide for further details.

Surface

Objects of the IDLgrSurface class are individual three-dimensional surfaces, cre
from a user-supplied array of data values.

SeeIDLgrSurface in theIDL Reference Guide for further details.

Text

Objects of the IDLgrText class are text strings that can be positioned within the
rendering area.

SeeIDLgrText in theIDL Reference Guide for further details.

Volume

Objects of the IDLgrVolume class map a three-dimensional array of data values
three-dimensional array of voxel colors, which, when drawn, are projected to tw
dimensions.

SeeIDLgrVolume in theIDL Reference Guide for further details.
Atomic Graphic Objects Using IDL

Chapter 17: Object Graphics 489

ut

the
Composite Objects

A composite object is an encapsulation of a group of other objects that together
provide a commonly useful graphical representation.

Colorbar

Objects of the IDLgrColorbar class are annotations that provide information abo
the data values associated with colors used in a visualization.

SeeIDLgrColorbar in theIDL Reference Guide for further details.

Legend

Objects of the IDLgrLegend class are annotations that provide information about
meaning of individual data items or lines in a visualization.

SeeIDLgrLegend in theIDL Reference Guide for further details.
Using IDL Composite Objects

490 Chapter 17: Object Graphics

t

red,

eft

en
Attribute Objects

Attribute objects are used when rendering graphic objects, but exist outside the
hierarchy of Model-View-Scene objects that are actually rendered.

Font

Objects of the IDLgrFont class define the typeface, size, weight, and style of tex
used when rendering a text object.

SeeIDLgrFont in theIDL Reference Guide for further details.

Palette

Objects of the IDLgrPalette class define a color lookup table that maps indices to
green, and blue values.

SeeIDLgrPalette in theIDL Reference Guide for further details.

Pattern

Objects of the IDLgrPattern class defines which pixels are filled and which are l
blank when a graphic object is filled.

SeeIDLgrPattern in theIDL Reference Guide for further details.

Symbol

Objects of the IDLgrSymbol class define graphical element that can be used wh
plotting data.

SeeIDLgrSymbol in theIDL Reference Guide for further details.
Attribute Objects Using IDL

Chapter 17: Object Graphics 491

tside

mple
).
ns.

late
Helper Objects

Helper objects alter data in useful ways or provide other services. They exist ou
the hierarchy of Model-View-Scene objects that are actually rendered.

Tessellator

Objects of the IDLgrTessellator class convert a simple concave polygon (or a si
polygon with holes) into a number of simple convex polygons (general triangles
Tessellation is useful because IDL’s polygon object handles only convex polygo

SeeIDLgrTessellator in theIDL Reference Guide for further details.

TrackBall

Objects of the TrackBall class provide a simple interface to allow the user to trans
and rotate three-dimensional Object Graphics hierarchies displayed in an IDL
WIDGET_DRAW window using the mouse.

SeeTrackBall in theIDL Reference Guide for further details.
Using IDL Helper Objects

492 Chapter 17: Object Graphics

on a

hat

em’s

ce in
Destination Objects

Destination objects are objects on which object trees can be rendered (displayed
screen or printed on a printer).

Buffer

Objects of the IDLgrBuffer class represent an off-screen, in-memory data area t
may serve as a graphics source or destination.

SeeIDLgrBuffer in theIDL Reference Guide for further details.

Clipboard

Objects of the IDLgrClipboard class send Object Graphics to the operating syst
native clipboard in bitmap format.

SeeIDLgrClipboard in theIDL Reference Guide for further details.

Printer

Objects of the IDLgrPrinter class represent a hardcopy graphics destination. By
default, printer objects represent the default system printer; you can use the IDL
routines DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to change the
printer associated with a printer object.

SeeIDLgrPrinter in theIDL Reference Guide for further details.

VRML

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy as a VRML 2.0 format file.

SeeIDLgrVRML in theIDL Reference Guide for further details.

Window

Objects of the IDLgrWindow class represent an on-screen area on a display devi
which graphic objects can be rendered.

SeeIDLgrWindow in theIDL Reference Guide for further details.
Destination Objects Using IDL

Chapter 17: Object Graphics 493

 an
File Format Objects

MPEG

Objects of the IDLgrMPEG class allow you to save an array of image frames as
MPEG movie.

SeeIDLgrMPEG in theIDL Reference Guide for further details.

Also available: the VRML destination object, described above, theIDLffDICOM
object, and theIDLffDXF object in theIDL Reference Guide.
Using IDL File Format Objects

494 Chapter 17: Object Graphics

line
thod
ou

e
ties
 call

e.
l of
t and
to

 is

ngle

ct’s
ord
Properties of Objects

IDL’s graphics objects have a number of associated properties—things like color,
style, size, etc. Properties are set or changed via keywords to the object’s Init me
(specified when the object is created) or to the object’s SetProperty method. If y
are familiar with IDL Direct Graphics, many of the keywords used by IDL Object
Graphics will be familiar to you. Note, however, that unlike IDL Direct Graphics, th
IDL Object Graphics system allows you to change the value of an object’s proper
without re-creating the entire object. (Objects must be redrawn, however, with a
to the destination object’s Draw method, for the changes to become visible.)

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first tim
Do this by specifying any keywords to the object’s Init method directly in the cal
OBJ_NEW that creates the object. For example, suppose you are creating a plo
wish to use a red line to draw the plot line. You could specify the COLOR keyword
the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, COLOR=[255, 0, 0])

Remember that in most cases, an object’s Init method cannot be called directly.
Arguments to OBJ_NEW are passed directly to the Init method when the object
created.

Setting Properties of Existing Objects

After you have created an object, you can set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the si
call to OBJ_NEW shown above:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata)
myPlot -> SetProperty, COLOR=[255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an obje
SetProperty method are noted with the word Set in parentheses after the keyw
name in the list of keywords to the object’s Init method.
Properties of Objects Using IDL

Chapter 17: Object Graphics 495

turns
eturn
ent:

ject

he

ct’s
ord
Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty
method. The GetProperty method accepts a list of keyword-variable pairs and re
the value of the specified properties in the variables specified. For example, to r
the value of the COLOR property of the plot object in our example, use the statem

myPlot -> GetProperty, COLOR=plotcolor

This returns the value of the COLOR property in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics ob
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPlot -> GetProperty, ALL=allprops

returns an anonymous structure in the variable allprops; the structure contains t
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an obje
GetProperty method are noted with the word Get in parentheses after the keyw
name in the list of keywords to the object’s Init method.)
Using IDL Properties of Objects

496 Chapter 17: Object Graphics

You
re to

make

them.
Undocumented Graphic Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects.
may see references to the generic IDL objects when using IDL’s HELP procedu
get information on an object, or when you use the OBJ_ISA or OBJ_CLASS
functions. You may also notice that the generic objects are not documented in
Appendix A, “IDL Object Class & Method Reference” of theIDL Reference Guide.
This is not an oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from
Research Systems, Inc. does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of IDL.
Undocumented Graphic Object Classes Using IDL

Chapter 18:

TheGraphicsObject
Hierarchy

The following topics are covered in this chapter:
Overview . 498
Scenes. 499
Viewgroups . 500
Views . 501
Models. 502

Atomic Graphic Objects 503
Attribute and Helper Objects. 504
The Rendering Process 505
Simple Plot Example. 507
Using IDL 497

498 Chapter 18: The Graphics Object Hierarchy

to a
ch in

d in
cts,
ure

nch
ation
Overview

In this chapter we will discuss the organization of a group of graphics objects in
hierarchy or tree. A graphics tree may have any number of branches, each of whi
turn may have any number of sub-branches, etc.

For example, a graphics object tree with four graphics atoms might be containe
three separate model objects, which are in turn contained in two distinct view obje
both of which are contained in one scene object. In this example (shown in the fig
below), the scene object is the root of the graphics tree.

The advantage of organizing graphic objects into a tree structure is that by
manipulating any of the branches of the tree, all of the sub-branches of that bra
can be altered simultaneously. In our example, changes to the spatial transform
associated with the model containing two graphics atoms will affect both of the
atoms. Similarly, calling a window or printer object’s Draw method on the scene
object will render all of the objects in the tree to that window or printer.

Figure 18-1: A graphics object tree.
Overview Using IDL

Chapter 18: The Graphics Object Hierarchy 499

s
h
A
thod.

ne
Scenes

A scene, or instance of theIDLgrSceneclass, is the root-level object of most graphic
trees. Instances of the IDLgrScene class have Add and Remove methods, whic
allow you to include or remove IDLgrView or IDLgrViewgroup objects in a scene.
scene object is one of the possible arguments for a destination object’s Draw me

It is not necessary to create a scene object if your graphics tree contains only o
view object; in that case, the view can serve as the root of the tree.
Using IDL Scenes

500 Chapter 18: The Graphics Object Hierarchy

,

ally
p
jects
Viewgroups

A viewgroup, or instance of theIDLgrViewgroup class, is a simple container object
similar to the Scene object. The Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when the destination
object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and therefor do not typic
serve as the root-level object of a graphics tree. Instances of the IDLgrViewgrou
class have Add and Remove methods, which allow you to include or remove ob
in a viewgroup.
Viewgroups Using IDL

Chapter 18: The Graphics Object Hierarchy 501

of
ds,
ct

t to
 by a
Views

A view, or instance of theIDLgrView class, can also serve as the root-level object
a graphics tree. Instances of the IDLgrView class have Add and Remove metho
which allow you to include or remove IDLgrModel objects in a view. A view obje
is one of the possible arguments for a destination object’s Draw method.

Every graphics tree must contain at least one view object. Often, it is convenien
divide the objects being rendered into separate views, which are then contained
viewgroup or scene object.
Using IDL Views

502 Chapter 18: The Graphics Object Hierarchy

ion

cts it
ds to
Models

A model, or instance of theIDLgrModel class, is a container for atomic graphic
objects or for other model objects. The model object incorporates a transformat
matrix (seeChapter 19, “Transformations” for an in-depth discussion of
transformation matrices) that applies to all of the graphics atoms and model obje
contains. In addition to Add and Remove methods, the model object has metho
Rotate, Scale, and Translate the model and its contents.
Models Using IDL

Chapter 18: The Graphics Object Hierarchy 503

od)
Atomic Graphic Objects

An atomic graphic object, or graphic atom, is an instance of one of the following
classes:IDLgrAxis, IDLgrContour, IDLgrImage, IDLgrLight, IDLgrPlot,
IDLgrPolygon, IDLgrPolyline, IDLgrSurface, IDLgrText, or IDLgrVolume.
Graphics atoms combined in a model object (using the model object’s Add meth
share the same transformation matrix and can be rotated, scaled, or translated
together.
Using IDL Atomic Graphic Objects

504 Chapter 18: The Graphics Object Hierarchy

tom
ed to

ng

ting

ular
f the

le
gon
with
all
Attribute and Helper Objects

Attribute objects are used by atomic graphic objects to define how the graphics a
will be rendered; attribute objects themselves are not drawn, and thus do not ne
be added to a model object. Attribute objects are instances of one of the followi
classes:IDLgrFont, IDLgrPalette, IDLgrPattern, or IDLgrSymbol. For example, a
text object (a graphic atom) defines which type style it will be rendered in by set
its FONT property equal to an instance of the IDLgrFont object.

Helper objects are used to change or create data to make it suitable for a partic
type of rendering. In IDL, there are several helper objects which are instances o
following classes:IDLgrTessellator andTrackBall. The tessellator object changes a
simple concave polygon (or a simple polygon with holes) into a number of simp
convex polygons (general triangles) suitable for use by objects of the IDLgrPoly
class. The trackball object translates widget events from a draw widget (created
the WIDGET_DRAW function) into transformations that emulate a virtual trackb
(for transforming object graphics in three dimensions).

For more information, seeChapter 21, “Using Attributes and Helpers”.
Attribute and Helper Objects Using IDL

Chapter 18: The Graphics Object Hierarchy 505

ject
is
 the
 at
eir

is

n
r
each

 its
s. In
to
ix

s:

en
of a
The Rendering Process

In Object Graphics, rendering occurs when the Draw method of a destination ob
is called. A scene, viewgroup, or view is typically provided as the argument to th
Draw method. This argument represents the root of a graphics hierarchy. When
destination’s Draw method is called, the graphics hierarchy is traversed, starting
the root, then proceeding to children in the order in which they were added to th
parent.

For example, suppose we have the following hierarchy:

oWindow = OBJ_NEW(’IDLgrWindow’)
oView = OBJ_NEW(’IDLgrView’)
oModel = OBJ_NEW(’IDLgrModel’)
oView->Add, oModel
oXAxis = OBJ_NEW(’IDLgrAxis’, 0)
oModel->Add, oXAxis
oYAxis = OBJ_NEW(’IDLgrAxis’, 1)
oModel->Add, oYAxis

To draw the view (and its contents) to the window, the Draw method of the window
called with the view as its argument:

oWindow->Draw, oView

The window’s Draw method will perform any window-specific drawing setup, the
ask the view to draw itself. The view will then perform view-specific drawing (fo
example, clearing a rectangular area to a color), then calls the Draw method for
of its children (in this case, there is only one child, a model). The model’s Draw
method will push its transformation matrix on a stack, then step through each of
children (in the order in which they were added) and ask them to draw themselve
this example, oXAxis will be asked to draw itself first; then oYAxis will be asked
draw itself. Once each of the model’s children is drawn, the transformation matr
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three step

• Perform setup drawing for this object.

• Step through list of contained children and ask them to draw themselves.

• Perform an follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on wh
the objects are drawn. Drawing order can be changed by using the Move method
Using IDL The Rendering Process

506 Chapter 18: The Graphics Object Hierarchy

in

en
and
n can

ribute
ain
uld
scene, viewgroup, view, or model to change the position of a specific object with
the hierarchy.

The first time a graphic atom (such as an axis, plot line, or text) is drawn to a giv
destination, a device-specific encapsulation of its visual representation is created
stored as a cache. Subsequent draws of this graphic atom to the same destinatio
then be drawn very efficiently. The cache is destroyed only when necessary (for
example, when the data associated with the graphic atom changes). Graphic att
changes (such as color changes) typically do not cause cache destruction. To g
maximum benefit from the caches, modification of atomic graphic properties sho
be kept to bare minimum.
The Rendering Process Using IDL

Chapter 18: The Graphics Object Hierarchy 507

hile
r that
t as

ger
he
 is
Simple Plot Example

The following section shows the IDL code used to create a simple object tree. W
you are free to enter the commands shown at the IDL command line, remembe
the IDL Object Graphics API is designed as a programmer’s interface, and is no
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

The following IDL commands construct a simple plot of an array versus the inte
indices of the array. Note that no axes, title, or other annotations are included; t
commands draw only the plot line itself. (This example is purposefully simple; it
meant to illustrate the skeleton of a graphics tree, not to produce a useful plot.)

;Create a view 2 units high by 100 units wide
;with its origin at (0,-1):
view = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,-1,100,2])
;Create a model:
model = OBJ_NEW('IDLgrModel')
;Create a plot line of a sine wave:
plot = OBJ_NEW('IDLgrPlot', SIN(FINDGEN(100)/10))
;Create a window into which the plot line will be drawn:
window = OBJ_NEW('IDLgrWindow')
;Add the plot line to the model object:
model -> ADD, plot
;Add the model object to the view object:
view -> ADD, model
;Render the contents of the view object in the window:
window -> DRAW, view

To destroy the window and remove the objects created from memory, use the
following commands:

OBJ_DESTROY, window
;Destroying the view object destroys all
;of the objects contained in the view:
OBJ_DESTROY, view
Using IDL Simple Plot Example

508 Chapter 18: The Graphics Object Hierarchy
Simple Plot Example Using IDL

Chapter 19:

Transformations
The following topics are covered in this chapter:
Overview . 510
Viewport . 512
Projection . 514
Eye Position . 516
View Volume . 518

Model Transformations 521
Coordinate Conversion 524
A Simple Example. 527
Virtual Trackball and 3D Transformations 530
Using IDL 509

510 Chapter 19: Transformations

lly

ta to
n
ant.

e
er’s

 the

hics
ated,
ains

ple,
is

nd
ver
s are
 and

caled
Overview

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatica
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspects to this transformation from a generic depiction of your da
a representation that can be rendered to an output device (a graphics destinatio
object, such as a window or printer) with the perspective, size, and location you w

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of th
viewing area (the viewport), the type of projection used, the position of the view
eye as it looks at the graphics objects, and the particular view volume in three-
dimensional space that will be rendered to the viewing area. These elements of
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered.

Location

The second aspect of the transformation is the location and position of your grap
objects with respect to the viewing area. Graphics objects can be translated, rot
or scaled by setting the appropriate properties of the IDLgrModel object that cont
them.

Note
The viewport and location of an object are independent: It is possible, for exam
to translate a graphic object so that it is no longer within the viewing area that
rendered in a window or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, a
normalized coordinates. The IDL Object Graphics system gives you full control o
which data values are used, which are displayed, and which coordinate system
used. This means that you must explicitly ensure that the objects to be rendered
the view object to which they belong use the same coordinate system and are s
appropriately.
Overview Using IDL

Chapter 19: Transformations 511

h your
This chapter discusses the properties and methods used to size and position bot
viewing area and the graphics objects you wish to render.
Using IDL Overview

512 Chapter 19: Transformations

ered

e
and

ing
ith

ght

:

Viewport

One of the first steps in determining how graphics objects will appear when rend
on a graphics destination object is to select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will b
displayed. Set the location and dimensions of the viewport using the LOCATION
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method). For example, the follow
statement creates a view object with a viewport that is 300 pixels by 200 pixels, w
its lower left corner located 100 pixels up from the bottom and 100 pixels to the ri
of the left edge of the destination object:

myView = OBJ_NEW('IDLgrView', LOCATION=[100,100], $
DIMENSIONS=[300,200])

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of units in which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method

Figure 19-1: Positioning a view on the screen.
Viewport Using IDL

Chapter 19: Transformations 513

e of
myView -> SetProperty, LOCATION=[0,0], DIMENSIONS=[200,200]

changes the location of the viewport to have its lower left corner at (0, 0) and a siz
200 pixels by 200 pixels.

Note
The eye is positioned in only one dimension (along thez-axis) and always points in
the –z direction.
Using IDL Viewport

514 Chapter 19: Transformations

inted
f

ng
 that
n

se
od
Projection

When three-dimensional graphics are displayed on a flat computer screen or pr
on paper, they must be projected onto the viewing plane. A projection is a way o
converting positions in 3D space into locations in the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objects in 3D space onto the 2D viewing plane alo
parallel rays. The figure below shows a parallel projection; note that two objects
are the same size but at different locations still appear to be the same size whe
projected onto the viewplane.

View objects use a parallel projection by default. To explicitly set a view object to u
a parallel projection, set the PROJECTION keyword to the IDLgrView::Init meth

Figure 19-2: In a parallel projection, rays do not converge at the eye.
Projection Using IDL

Chapter 19: Transformations 515

w

tive

he
equal to 1 (or use the SetProperty method to set the projection for an exiting vie
object):

myView -> SetProperty, PROJECTION = 1

Perspective Projections

A perspective projection projects objects in 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspec
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use t
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myView -> SetProperty, PROJECTION = 2

Figure 19-3: In a perspective projection, rays converge at the eye.
Using IDL Projection

516 Chapter 19: Transformations

o

ye
d

gle.
ill

ion
ing
Eye Position

The eye position is the position along thez-axis from which a set of objects contained
in a view object are seen. Use the EYE keyword to the IDLgrView::Init method t
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to alter the eye position of an existing view object). The eye
position must be azvalue larger than thezvalue of the near clipping plane (see“Near
and Far Clipping Planes”on page 518) or zero, which ever is greater. That is, the e
must always be located at a positivezvalue, and must be outside the volume bounde
by the near and far clipping planes.

For example, the following moves the eye position toz = 5:

myView -> SetProperty, EYE=5

The eye is always positioned directly in front of the center of the viewplane rectan
That is, if the VIEWPLANE_RECT property is set equal to [–1, –1, 2, 2], the eye w
be located atX=0, Y=0.

Changing the position of the eye has no affect when you are using a parallel
projection. Changing the eye position when you are using a perspective project
has a somewhat counter-intuitive affect: moving the eye closer to the near clipp
Eye Position Using IDL

Chapter 19: Transformations 517

n

wing
plane causes objects in the volume being rendered to appear smaller rather tha
larger. To understand why this should be true, consider the following diagram.

In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) in a
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy a larger area on the vie
plane when rendered.

Figure 19-4: Moving the eye closer to the viewplane causes objects to appear
smaller.
Using IDL Eye Position

518 Chapter 19: Transformations

cted,
e

e

ated

ion

er

two
 the

ye
ill

ing
s the
t
the
View Volume

The view volume defines the three-dimensional volume in space that, once proje
is to fit within the viewport. There are two parts to the view volume: the viewplan
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will b
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always loc
at Z=0.

Use the VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the locat
and extent of the viewplane rectangle. Set the keyword equal to a four-element
floating-point vector; the first two elements specify the X and Y location of the low
left corner of the rectangle, and the second two elements specify the width and
height. The default rectangle is located at (-1.0, -1.0) and is two units wide and
units high ([–1.0, –1.0, 2.0, 2.0]). For example, the following command changes
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myView -> SetProperty, VIEWPLANE_RECT = [0.0, 0.0, 1.0, 1.0]

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the e
than the near clipping plane or farther from the eye than the far clipping plane w
not be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipp
planes. Set the keyword equal to a two-element floating-point vector that define
positions of the two clipping planes: [near, far]. The default clipping planes are a
Z = 1.0 andZ = –1.0 ([1.0, –1.0]). For example, the following command changes
near and far clipping planes to be located atZ = 2.0 andZ = –3.0, respectively.
View Volume Using IDL

Chapter 19: Transformations 519

n in
ee.

 be

w

tory
ject
myView -> SetProperty, ZCLIP = [2.0, -3.0]

Finding an Appropriate View Volume

Finding an appropriate view volume for a given object tree is relatively simple in
theory. To find the appropriate viewplane rectangle, you must find the overallX andY
range of the object (usually a model or scene object) that contains the items draw
the object tree, accounting for any transformations of objects contained in the tr
Similarly, to find the appropriate near and far clipping planes, you can find theZ
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for a large object tree can
complicated.

Two routines contained in the IDL distribution provide an example of how the vie
volume can be computed in many cases. The routines SET_VIEW.PRO and
GET_BOUNDS.PRO are located in the object subdirectory of the examples direc
of the IDL distribution. The SET_VIEW procedure accepts as arguments the ob

Figure 19-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.
Using IDL View Volume

520 Chapter 19: Transformations

iew
w
re

s do
suit
references of a view object and a destination object, computes an appropriate v
volume for the view object, and sets the VIEWPLANE_RECT property of the vie
object accordingly. The SET_VIEW procedure calls the GET_BOUNDS procedu
to compute theX, Y, andZ ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examples in this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routine
not produce the desired result, we encourage you to copy and alter the code to
your own needs.

Inspect theSET_VIEW.PRO andGET_BOUNDS.PRO files for further details.
View Volume Using IDL

Chapter 19: Transformations 521

d,
t via
h
es

by
n
d are

ty

el’s

t to
Model Transformations

An IDLgrModel object is a container for any graphics atoms that are to be rotate
translated, or scaled. Each IDLgrModel object has a transformation property (se
the TRANSFORM keyword to the IDLgrModel::Init or SetProperty method), whic
is a 4 x 4 floating-point matrix. For a general discussion of transformation matric
and three-dimensional graphics, see“Three-Dimensional Graphics” in Chapter 12.

Note
A model object’s transformation matrix is akin to the transformation matrix used
IDL Direct Graphics and stored in the !P.T system variable field. Transformatio
matrices associated with model object do not use the value of !P.T, however, an
not affected by the T3D procedure used in Direct Graphics.

By default, a model object’s transformation matrix is set equal to a 4-by-4 identi
matrix:

You can change the transformation matrix of a model object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

myModel = OBJ_NEW('IDLgrModel', TRANSFORM = tmatrix)

wheretmatrix is a 4-by-4 transformation matrix. Alternatively, you can use the
Translate, Rotate, and Scale methods to the IDLgrModel object to alter the mod
transformation matrix.

Translation

The IDLgrModel::Translate method takes three arguments specifying the amoun
translate the model object and its contents in theX, Y, andZ directions. For example,
to translate a model and its contents by 1 unit in theX-direction, you could use the
following statements:

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0
Using IDL Model Transformations

522 Chapter 19: Transformations

ents.
dx = 1 & dy = 0 & dz = 0
myModel -> Translate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

;Define translation values:
dx = 1 & dy = 0 & dz = 0
;Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
;Provide a transformation matrix that performs the translation:
transT = [[1.0, 0.0, 0.0, dx], $

[0.0, 1.0, 0.0, dy], $
[0.0, 0.0, 1.0, dz], $
[0.0, 0.0, 0.0, 1.0]]

;Multiply the existing transformation matrix by
;the matrix that performs the translation:
newT = oldT # transT
;Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Rotation

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degrees to rotate the model object and its cont
For example, to rotate a model and its contents by 90 degrees around they-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myModel -> Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

;Define rotation values:
axis = [0,1,0] & angle = 90
;Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
;Define sine and cosine of angle:
cosa = COS(!DTOR*angle)
sina = SIN(!DTOR*angle)
;Provide a transformation matrix that performs the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $

[0.0, 1.0, 0.0, 0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

;Multiply the existing transformation matrix
;by the matrix that performs the rotation.
newT = oldT # rotT
Model Transformations Using IDL

Chapter 19: Transformations 523

cale

d in
er.
her
er

 and
ll be
;Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Scaling

The IDLgrModel::Scale method takes three arguments specifying the amount to s
the model object and its contents in thex, y, andz directions. For example, to scale a
model and its contents by 2 units in they direction, you could use the following
statements:

sx = 1 & sy = 2 & sz = 1
myModel -> Scale, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

;Define scaling values:
sx = 1 & sy = 2 & sz = 1
;Get existing transformation matrix:
myModel -> GetProperty, TRANSFORM = oldT
;Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], $

[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

;Multiply the existing transformation matrix
;by the matrix that performs the scaling.
newT = oldT # scaleT
;Apply the new transformation matrix to the model object:
myModel -> SetProperty, TRANSFORM = newT

Combining Transformations

Note that model transformations are cumulative. That is, a model object containe
another model is subject to both its own transformation and to that of its contain
All transformation matrices that apply to a given model object are multiplied toget
when the object is rendered. For example, consider a model that contains anoth
model:

model1 = OBJ_NEW('IDLgrModel', TRANSFORM = trans1)
model2 = OBJ_NEW('IDLgrModel', TRANSFORM = trans2)
model2 -> Add, model1

The model1 object is now subject to both its own transformation matrix (trans1)
to that of its container (trans2). The result is that when model1 is rendered, it wi
rendered with a transformation matrix = trans1 # trans2.
Using IDL Model Transformations

524 Chapter 19: Transformations

For

your
one.

ta
te

his,

at

nge

ng

to
e by
Coordinate Conversion

Most transformations are handled by the transformation matrix of a model object.
convenience, however, graphic atoms may also have a simplified transformation
applied to them. Coordinate transformations applied to individual graphic atoms
allow you to change only the translation (position) and scale; this is useful when
converting from one coordinate system to another. For example, you may build
view object using normalized coordinates, so that values range between zero and
If you create a graphic object—a surface object, say—based on the range of da
values, you would need to convert your surface object (built with a data coordina
system) to match the view object (built with a normal coordinate system). To do t
use the [XYZ]COORD_CONV keywords to the graphic object in question. The
[XYZ]COORD_CONV keywords take as their argument a two-element vector th
specifies the translation and scale factor for each dimension.

For example, suppose you have a surface object whose data is specified in a ra
from [0, 0,zMin] to [xMax, yMax, zMax]. If you wanted to work with this surface as
if it were in a normalized [–1, –1, –1] to [1, 1, 1] space, you could use the followi
coordinate conversions:

;Create some data:
myZdata = DIST(60)
;Use the IDL SIZE command to determine
;the size of each dimension of myZdata:
sz = SIZE(myZdata)
;Create a scale factor for the X dimension:
xs = 2.0/(sz[1]-1)
;Create a scale factor for the Y dimension:
ys = 2.0/(sz[2]-1)
;Create a scale factor for the Z dimension:
zs = 2.0/MAX(myZdata)

Now, use the [XYZ]COORD_CONV keywords to the IDLgrSurface::Init method
translate the surface by minus one unit in each direction, and to scale the surfac
the scale factors:

mySurface = OBJ_NEW('IDLgrSurface', myZdata, $
XCOORD_CONV = [-1, xs], YCOORD_CONV = [-1, ys], $
ZCOORD_CONV = [-1, zs])

Remember that using the [XYZ]COORD_CONV keywords is simply a
convenience—the above example could also have been written as follows:

;Create some data:
myZdata = DIST(60)
Coordinate Conversion Using IDL

Chapter 19: Transformations 525

y fit
 the
you

ord
s

ed

hod
;Use the IDL SIZE command to determine the size
;of each dimension of myZdata:
sz = SIZE(myZdata)
;Create a scale factor for the X dimension:
xs = 2.0/(sz(1)-1)
;Create a scale factor for the Y dimension:
ys = 2.0/(sz(2)-1)
;Create a scale factor for the Z dimension:
zs = 2.0/(MAX(myZdata)
;Create a model object:
myModel = OBJ_NEW('IDLgrModel')
;Apply scale factors:
myModel -> Scale, xs, ys, zs
;Translate:
myModel -> Translate, -1, -1, -1
;Create surface object:
mySurface = OBJ_NEW('IDLgrSurface', myZdata)
;Add surface object to model object:
myModel -> Add, mySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that the
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding
code to make this coordinate conversion to your code in each place it is required,
may wish to define a coordinate conversion function.

For example, the following function definition accepts a two-element array
representing minimum and maximum values returned by the XYZRANGE keyw
to the GetProperty method, and returns two-element array of scaling parameter
suitable for the XYZCOORD_CONV keywords:

FUNCTION NORM_COORD, range
scale = [-range[0]/(range[1]-range[0]), 1/(range[1]-range[0])]
RETURN, scale
END

If you define a function like this in your code, you can then call it whenever you ne
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of theX andY ranges
for the plot, and the use the XYCOORD_CONV keywords to the SetProperty met
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ_NEW('IDLgrPlot', data)
plot -> GetProperty, XRANGE=xr, YRANGE=yr
plot -> SetProperty, XCOORD_CONV=NORM_COORD(xr), $

YCOORD_CONV=NORM_COORD(yr)
Using IDL Coordinate Conversion

526 Chapter 19: Transformations
The function NORM_COORD is defined in the filenorm_coord.pro in the object
subdirectory of theexamples directory of the IDL distribution.
Coordinate Conversion Using IDL

Chapter 19: Transformations 527

d all

here

e

turn
s to
as
A Simple Example

The following example steps through the process of creating a surface object an
of the supporting objects necessary to display it.

Note
You do not need to enter the example code yourself. The example code shown
is duplicated in the procedure filetest_surface.pro , located in the
examples/object subdirectory of the IDL distribution. You can run the exampl
procedure by entering TEST_SURFACE at the IDL command prompt.

When creating this procedure, we allow the user to specify keywords that will re
object references to the view, model, surface, and window objects. This allows u
manipulate the objects directly from the IDL command line after the procedure h
been run.

PRO test_surface, VIEW=oView, MODEL=oModel, $
SURFACE=oSurface, WINDOW=oWindow

;Create some data.
zData = DIST(60)

;Create a view object. We set the color of the view
;area to a dark grey using the COLOR keyword,
;and set the viewplane to a square area occupying one
;unit in each quadrant of the XY plane—a normalized
;coordinate system—using the VIEWPLANE_RECT keyword.
oView = OBJ_NEW('IDLgrView', COLOR=[60,60,60], $

VIEWPLANE_RECT=[-1,-1,2,2])

;Create a model object:
oModel = OBJ_NEW('IDLgrModel')

;Add the model object to the view object:
oView->Add, oModel

;Create a surface object. We set the color of
;the surface to pure red, using the COLOR keyword:
oSurface = OBJ_NEW('IDLgrSurface', zData, color=[255,0,0])

;Add the surface object to the model object:
oModel->Add, oSurface
Using IDL A Simple Example

528 Chapter 19: Transformations

the

EL,

ndow
;Next, we use the GetProperty method of the surface
;object to retrieve the data range of the surface:
oSurface->GetProperty,XRANGE=xrange,YRANGE=yrange,ZRANGE=zrange

;Scale surface to normalized units and center using
;the SetProperty method of the surface object to change
;the [XYZ]COORD_CONV properties:
xs = [-0.5, 1/(xrange[1]-xrange[0])]
ys = [-0.5, 1/(yrange[1]-yrange[0])]
zs = [-0.5, 1/(zrange[1]-zrange[0])]
oSurface->SetProperty, XCOORD_CONV=xs, YCOORD_CONV=ys,$

ZCOORD_CONV=zs

;Now we rotate the model object to display a standard view:
oModel->Rotate,[1,0,0], -90
oModel->Rotate,[0,1,0], 30
oModel->Rotate,[1,0,0], 30

;Finally, we create a window (destination) object
;and draw the contents of the view object to it:
oWindow = OBJ_NEW('IDLgrWindow')
oWindow->Draw, oView
END

Play with the example to learn how object transformations work and interact. Try
following commands at the IDL prompt to observe what they do:

First, compiletest_surface.pro :

.RUN test_surface.pro

Now, execute the procedure. The variables you supply via the SURFACE, MOD
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line:

test_surface, VIEW=myview, MODEL=mymodel, $
SURFACE=mysurf, WINDOW=mywin

This will create a window object and display the surface. Now try the following to
translate the object to the right:

mymodel -> Translate, 0.2, 0, 0

The model transformation changes as soon as you issue this command. The wi
object, however, will not be updated to reflect the new position until you issue a
Draw command:

mywin -> Draw, myview

Try a rotation in they direction:
A Simple Example Using IDL

Chapter 19: Transformations 529

e in
mymodel -> Rotate, [0,1,0], 45
mywin -> Draw, myview

Repeat the commands several times and observe what happens.

Try some of the following. Remember to issue a Draw command after each chang
order to see what you have done.

mymodel -> Scale, 0.5, 0.5, 0.5
mymodel -> Scale, 1, 0.5, 1
mymodel -> Scale, 1, 2, 1
mymodel -> Rotate, [0,0,1], 45
mysurf -> SetProperty, COLOR = [0, 255, 0]
myview -> SetProperty, PROJECTION = 2, EYE = 2
myview -> SetProperty, EYE = 1.1
myview -> SetProperty, EYE = 6
Using IDL A Simple Example

530 Chapter 19: Transformations

the
ide a

 this
ith
hods
ions

d the
ct.
otate

ll
 the
ght
Virtual Trackball and 3D Transformations

To create truly interactive object graphics, you must allow the user to transform
position or orientation of objects using the mouse. One way to do this is to prov
virtual trackball that lets the user manipulate objects interactively on the screen.

The procedure filetrackball__define.pro , found in thelib directory of the
IDL distribution, contains the object definition procedure for a virtual trackball
object. This trackball object is used in several of the examples presented later in
volume, and is also used by other example and demonstration code included w
IDL. The trackball object has three methods: Init, Update, and Reset. These met
allow you to retrieve mouse movement events and alter your model transformat
accordingly.

The trackball object behaves as if there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state an
model transformation of the objects displayed in the draw widget’s window obje
When the user clicks and drags in the draw widget, objects in the draw widget r
as if the user were manipulating them with a physical trackball.

SeeTrackBall in theIDL Reference Guide for details on creating and using trackba
objects. Several of the other example files located in the objects subdirectory of
examples directory include trackball objects, and may be studied for further insi
into the mechanics of transforming object hierarchies based on user input.
Virtual Trackball and 3D Transformations Using IDL

Chapter 20:

Working with Color
The following topics are covered in this chapter:
7
8

Overview . 532
Color and Digital Data 533
Indexed Color Model 534
RGB Color Model. 535

Color and Destination Objects. 536
Palettes. 53
Using Color . 53
How IDL Interprets Color Values540
Using IDL 531

532 Chapter 20: Working with Color

ject
pter
s

Overview

Color is often an integral part of the process of visualizing a dataset. The IDL Ob
Graphics system allows you to use color in a number of different ways; this cha
explains how to specify color when using Object Graphics and how IDL interact
with the destination devices on which graphics are finally displayed.
Overview Using IDL

Chapter 20: Working with Color 533

r
o

iate

n

ers,

y
the

d,
ation
Color and Digital Data

The IDL Object Graphics system provides two color models for you to choose
between when creating destination (window or printer) objects: an Indexed Colo
Model and an RGB Color Model. Indexed color allows you to map data values t
color values using a color palette. RGB color allows you to specify color values
explicitly, using an RGB triple. (See“Specifying RGB Values” on page 538for more
information on RGB triples.) You choose one of these two color models to assoc
with each destination object.

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that a
RGB color model destination will be available for all display situations.

The devices on which graphics are rendered—computer displays, printers, plott
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on an
physical device. That is, the color model used by IDL is entirely independent of
color model used by the physical device.“How IDL Interprets Color Values” on
page 540 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or re
green, and blue (RGB) value, regardless of the color model used by the destin
object or the physical destination device. See“Using Color” on page 538 for
details.
Using IDL Color and Digital Data

534 Chapter 20: Working with Color

olor
nto
bject
 the

the

he

ed

ice,
ou
arest
olor.
Indexed Color Model

In the Indexed color model, you have control over how colors are loaded into a c
lookup table. You do this by specifying a palette, which maps color index values i
RGB values, for the destination object. When the contents of your destination o
are rendered on the physical device (that is, when you call the Draw method for
destination object), the RGB values from the palette are either:

• passed directly through to the physical device (if it uses RGB values), or

• loaded into the physical device’s lookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting
COLOR_MODEL property of the object equal to 1 (one):

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 1)

Specify a palette object by setting the PALETTE property equal to an object of t
IDLgrPalette class:

myWindow -> SetProperty, PALETTE=myPalette

If you do not specify a palette object for a destination object that uses the Index
color model, a grayscale ramp palette is loaded automatically.

When you assign a color index to an object that is drawn on the destination dev
the color index is used to look up an RGB value in the specified palette. When y
assign an RGB value to an object that is drawn on the destination device, the ne
match within the destination object’s palette is found and used to represent that c
Indexed Color Model Using IDL

Chapter 20: Working with Color 535

n
t are
RGB Color Model

In the RGB color model, IDL takes responsibility for filling the color lookup table o
the destination device (if necessary). When the contents of your destination objec
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

• passed directly through to the physical device (if it uses RGB values), or

• matched as nearly as possible with colors loaded in the physical device’s
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero):

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 0)

This is the default for newly-created destination objects.
Using IDL RGB Color Model

536 Chapter 20: Working with Color

iated

he
 the
een

r a
ion
olor

set
an
B

to
Color and Destination Objects

Each destination object has one of the two color models described above assoc
with it. Destination objects use the Indexed color model if the COLOR_MODEL
property is set equal to 1 (one) or the RGB color model if the COLOR_MODEL
property is set equal to 0 (zero, the default). Once a destination object has been
created, you cannot change the associated color model.

You can, however, create destination objects that use different color models in t
same IDL session. That is, it is possible to have two window objects—one using
Indexed color model and one using the RGB color model—on your computer scr
at the same time.

Remember also that you can specify the color of any graphic object using eithe
color index or an RGB value, regardless of the color model used by the destinat
object or the physical destination device. The main distinction between the two c
models lies in how IDL manages the color lookup table (if any) of the physical
destination device. See“Using Color” on page 538 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET_DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS_LEVEL keyword
equal to 2, the widget contains an instance of an IDLgrWindow object rather than
IDL Direct Graphics drawable window. By default, the window object uses the RG
color model; to use the indexed color model, set the COLOR_MODEL keyword
WIDGET_DRAW equal to 1 (one).
Color and Destination Objects Using IDL

Chapter 20: Working with Color 537

ramp

ject
l, the
Palettes

Objects of the IDLgrPalette class are used to create color lookup tables. The
following statements create a palette object that reverses a standard grayscale
palette:

rval = (gval = (bval = REVERSE(INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myWindow -> SetProperty, PALETTE=myPalette

or

myImage -> SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic atoms are only used when the destination ob
uses an RGB color model; if the destination object uses an indexed color mode
destination object’s palette is always used.

See“IDLgrPalette” in Appendix Aof theIDL Reference Guidefor details on creating
palette objects.
Using IDL Palettes

538 Chapter 20: Working with Color

ou
r
o the

ject.

used

ctor

f
]

(the

ot

k.
ject
Using Color

The color of a graphic object is specified by the COLOR property of that object. Y
can set the color of an object either when the object is created or afterwards. Fo
example, the following statement creates a view object and sets its color value t
RGB triple [60, 60, 60] (a dark gray).

myView = OBJ_NEW('IDLgrView', COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis ob

myAxis -> SetProperty, COLOR=100

Remember that color palettes associated with individual graphic atoms are only
when the destination object uses an RGB color model.

Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element ve
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zero is
the darkest possible value for each of the three channels—thus an RGB triple o
[0, 0, 0] represents black, [0, 255, 0] represents bright green, and [255, 255, 255
represents white.

For example, suppose we create a plot line with the following statements:

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0, 0, 10, 10])
myModel = OBJ_NEW('IDLgrModel')
myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), THICK = 5, $

COLOR=[255, 255, 255])
myModel -> Add, myPlot
myView -> Add, myModel
myWindow -> Draw, myView

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode
default).

2. The default color of the view object—the background against which the pl
line is drawn—is white ([255, 255, 255]).

3. The default color of the plot object (and all objects, for that matter) is blac
This means that it is necessary to specify a color other than black for the ob
if we wish it to show up against the black background.
Using Color Using IDL

Chapter 20: Working with Color 539
Try changing the colors with the following statements:

myPlot -> SetProperty, COLOR = [150, 0, 150]
myView -> SetProperty, COLOR = [75, 250, 75]
myWindow -> Draw, myView
Using IDL Using Color

540 Chapter 20: Working with Color

ject
vice

x is
 the

is
d at

lue.

ped

ted

iated
B

d is
le.
How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination ob
uses an Indexed or RGB color model, and on whether the physical destination de
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

• If the physical device uses an Indexed color model, the specified color inde
used as an index into the physical device’s lookup table. (Remember that
physical device’s color lookup table is loaded via the PALETTE keyword to
the destination object.)

• If the physical device uses an RGB color model, the specified color index
used as an index into the destination object’s palette. The RGB triple store
the index’s location in the palette is used as the physical device’s color va

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is map
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calcula
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a palette assoc
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RG
triple at the specified index in the destination object’s palette is retrieved.

• If the physical device uses an Indexed color model, the RGB triple retrieve
mapped to the index of the nearest match in the device’s color lookup tab
How IDL Interprets Color Values Using IDL

Chapter 20: Working with Color 541

s

ped
• If the physical device uses an RGB color model, the RGB triple retrieved i
passed directly to the device.

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is map
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.
Using IDL How IDL Interprets Color Values

542 Chapter 20: Working with Color
How IDL Interprets Color Values Using IDL

Chapter 21:

Using Attributes and
Helpers

The following topics are covered in this chapter:
49
51
55
Overview . 544
Font Objects . 545
Palette Objects . 548

Pattern Objects . 5
Symbol Objects . 5
Tessellator Objects 5
Using IDL 543

544 Chapter 21: Using Attributes and Helpers

ic

r

Overview

Attribute objects are not rendered directly, but are used to determine how graph
objects will be rendered. There are four attribute object classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, and IDLgrSymbol.

Helper objects perform operations on object instance data. There are two helpe
object classes: IDLgrTessellator and Trackball. For additional information the
trackball object, see“Virtual Trackball and 3D Transformations” on page 530.
Overview Using IDL

Chapter 21: Using Attributes and Helpers 545

jects

font
your
).
es a

such

he

t of
rn
they

a,
Font Objects

Font objects allow you to specify the type style and size used when rendering ob
of the IDLgrText class. You can use either TrueType outline fonts or IDL’s built-in
Hershey vector fonts.

Fonts used by font objects are specified in a string constant constructed from a
name and one or more optional modifiers. The font name is the name by which
computer system knows the font (Times for the Times Roman font, for example
Modifiers specify the weight, angle, and other attributes of the font (Bold specifi
weight, italic an angle). The font name string looks like this:

'fontname*weight*angle*other_modifiers'

where other_modifiers can be any other font property supported by a given font,
as a slant. For example, the font name string for Helvetica bold italic is:

'helvetica*bold*italic'

The font name string for Times Roman Regular is:

'times'

While the font name must come first in the font name string, the order in which t
modifiers are specified is not important.

IDL’s default font is 12 point Helvetica regular.

See“IDLgrFont” in Appendix A of theIDL Reference Guide for details on creating
font objects.

Determining Available Fonts

Each destination object includes a GetFontnames method, which returns the lis
available fonts that can be used in IDLgrFont objects. This method will only retu
the names of the available TrueType fonts. Hershey fonts will not be returned as
are fixed—seeAppendix G, “Fonts” in theIDL Reference Guide for more
information.

Outline Fonts

IDL provides five TrueType outline fonts for use in font objects: Courier, Helvetic
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.
Using IDL Font Objects

546 Chapter 21: Using Attributes and Helpers

 of

size,
s a

ts:

the
The five TrueType fonts provided by IDL support the following modifiers:

Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. SeeAppendix G,
“Fonts” in theIDL Reference Guide for information on Hershey fonts.

You can use Hershey fonts when creating font objects by specifying a fontname
the form Hershey*fontnum to the IDLgrFont::Init method.

Creating Font Objects

Specify a font name string when you create a font object. You can also specify a
in points, for the font upon creation. For example, the following statement create
font object using a bold version of the Times Roman font, with a size of 20 poin

myFont = OBJ_NEW('IDLgrFont', 'times*bold', SIZE=20)

To create a font object using a Hershey font, omit the font name string and specify
Hershey font’s index number with the HERSHEY keyword to the IDLgrFont::Init
method. The following statement creates a font object using the Duplex Roman
Hershey font, with a size of 14 points:

myHersheyFont = OBJ_NEW('IDLgrFont', 'hershey*5', SIZE=14)

Using Font Objects

To use a font object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

Font Modifier

Courier bold, italic

Helvetica bold, italic

Monospace Symbol none

Symbol none

Times bold, italic

Table 21-1: TrueType Font Modifiers
Font Objects Using IDL

Chapter 21: Using Attributes and Helpers 547

.

rge
ject
myText = OBJ_NEW('IDLgrText', 'Ay, Carumba', FONT = myFont)

or

myText -> SetProperty, FONT=myHersheyFont

If no font object is specified, IDL uses the Helvetica font with a size of 12 points

See“Text Objects” on page 566 for details on creating Text objects.

Font Objects and Resource Use

Because font objects are relatively complex, each font object uses a relatively la
amount of system resources. As a result, it is better to re-use an existing font ob
than to create a second identical font object.
Using IDL Font Objects

548 Chapter 21: Using Attributes and Helpers

kup
ify

are
you
his

s.

when
tors
xceed
t

ject
l, the
Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color loo
tables assign individual numerical values to color values; this allows you to spec
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettes
most useful when you want data values to correspond to color values—that is, if
want a data value of 200, for example, to always correspond to a single color. T
correspondence is one of the main uses of the Indexed Color Model. See“Indexed
Color Model” in Chapter 20 for additional discussion of indexed color and its use

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the palette
you call the IDLgrPalette::Init method. The values in the red, green, and blue vec
must be integers between zero and 255, and the length of each vector must not e
256 elements. For example, the following statements create a palette object tha
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE(INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

See“IDLgrPalette” in Appendix Aof theIDL Reference Guidefor details on creating
palette objects.

Using Palette Objects

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myWindow -> SetProperty, PALETTE=myPalette

or

myImage -> SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic atoms are only used when the destination ob
uses an RGB color model; if the destination object uses an Indexed color mode
destination object’s palette is always used. See“How IDL Interprets Color Values”
in Chapter 20 for details.
Palette Objects Using IDL

Chapter 21: Using Attributes and Helpers 549

ss.

te
ke

te a
ple,

xels

the
n to
m
nging
Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon cla
Pattern objects can create a solid fill (the default), a line fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using a by
pattern you specify). Pattern objects do not have a color of their own; patterns ta
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify a fill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create a solid fill, equal to one to crea
line pattern, or equal to two to use a bitmap byte array as the fill pattern. For exam
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW('IDLgrPattern', 0)

The following statement creates a pattern object with lines ten pixels apart, 5 pi
wide, at an angle of 30 degrees:

myPattern = OBJ_NEW('IDLgrPattern', 1, SPACING=10, THICK=5, $
ORIENTATION=30)

To create a pattern fill, specify a 32-by-4 byte array via the PATTERN property of
pattern object. The byte array you specify will be tiled over the area of the polygo
be filled. For example, the following statements create a pattern fill with a rando
speckle. The first statement creates a 32-by-4 byte array with random values ra
between 0 and 255. The second statement creates the pattern object.

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)

See“IDLgrPattern” in Appendix A of theIDL Reference Guide for details on
creating pattern objects.

Using Pattern Objects

To fill a polygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPolygon -> SetProperty, FILL_PATTERN = myPattern

The following statements create a triangle and fills it with the random speckle
pattern:

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
Using IDL Pattern Objects

550 Chapter 21: Using Attributes and Helpers
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
myModel = OBJ_NEW('IDLgrModel')
myPolygon = OBJ_NEW('IDLgrPolygon', [4, 7, 3], [8, 6, 3],$

color=[255,0,255], fill_pattern=myPattern)
myView -> Add, myModel
myModel -> Add, myPolygon
myWindow = OBJ_NEW('IDLgrWindow')
myWindow -> Draw, myView
Pattern Objects Using IDL

Chapter 21: Using Attributes and Helpers 551

r in
hat
del

the

sults,
ple,

e
 and
Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, eithe
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects t
display one of seven pre-defined symbols, any atomic graphic object, or any mo
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.

To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:

• 1 = Plus sign (the default)

• 2 = Asterisk

• 3 = Period

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

For example, to create a symbol object using a red triangle for the symbol, use
following statement:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

To Use a Graphic Object as a Symbol

You can use an atomic graphic object or a model object as a symbol. For best re
create an object that fills the domain between –1 and 1 in all directions. For exam
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:

pentagon=OBJ_NEW('IDLgrPolygon', [-0.8,0.0,0.8,0.4,-0.4], $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0,255])

mySymbol = OBJ_NEW('IDLgrSymbol', pentagon)

Note that we create the pentagon to fit in the plane between –1 and 1 in both thX
andY directions. We could also have created the pentagon to fit in a unit square
then scaled it to fit the domain between –1 and 1.
Using IDL Symbol Objects

552 Chapter 21: Using Attributes and Helpers

ject.

. Set
e
at
nit to

f the
g

ct

ove.
ne
For example:

pentagon=OBJ_NEW('IDLgrPolygon', [0.1,0.5,0.9,0.7,0.3], $
[0.6,0.9,0.6,0.1,0.1], COLOR=[0,0,255])

symModel = OBJ_NEW('IDLgrModel')
symModel -> Add, pentagon
symModel -> Scale, 2, 2, 1
symModel -> Translate, -1, -1, 0
mySymbol = OBJ_NEW('IDLgrSymbol', symModel)

Note
We create the symbol object to use the model object rather than the polygon ob
Using a model object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent
the SIZE property of the symbol object to a two-element vector that describes th
scaling factor inX andY to apply to the symbol to change the size of the symbols th
are rendered. For example, to scale a symbol so that it extends one tenth of a u
each side of the data point, use the statement:

mySymbol -> SetProperty, SIZE=[0.1, 0.1]

Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting o
COLOR property of the symbol object itself is ignored. For example, the followin
statements create a symbol object that uses a red triangle:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

See“IDLgrSymbol” in Appendix A of theIDL Reference Guide for details on
creating symbol objects.

Using Symbol Objects

To use a symbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline obje
equal to the symbol object reference:

myPlot -> SetProperty, SYMBOL=mySymbol

Suppose you wish to create a symbol object using the pentagon we created ab
Suppose also that you wish to be able to use the pentagon code in more than o
Symbol Objects Using IDL

Chapter 21: Using Attributes and Helpers 553

lor,

here

EL
 the
instance, and would like to be able to make changes to the pentagon object’s co
size, and orientation. You might create a procedure like the following to define a
pentagon object contained in a model object, and return the object references.

Note
You do not need to enter the example code yourself. The example code shown
is duplicated in the procedure filepenta.pro , located in theobject subdirectory
of theexamples directory of the IDL distribution.

;Allow user to set the color and retrieve the object
;references to the symbol, and model objects created.
PRO penta, COLOR=color, SYMBOL=symbol, MODEL=model
;If the color keyword is set, use the specified color.
;Otherwise, use blue.
IF KEYWORD_SET(color) THEN COLOR=color ELSE COLOR=[0,0,255]
;Create a model object.
model = OBJ_NEW('IDLgrModel')
;Create a polygon that takes up most of the domain
;between -1 and 1 in the X and Y directions. Set its color.
symbol = OBJ_NEW('IDLgrPolygon', [-0.8, 0.0, 0.8, 0.4, -0.4], $

[0.2, 0.8, 0.2, -0.8, -0.8], COLOR=color)
;Add the polygon to the model.
model -> ADD, symbol
END

Once you have compiled the penta procedure, call it with the SYMBOL and MOD
keywords set equal to named variables that will contain the object references of
model and polygon objects:

PENTA, SYMBOL=sym, MODEL=symmodel

Next, create a symbol object using the pentagon:

mySymbol = OBJ_NEW('IDLgrSymbol', symmodel)

Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), SYMBOL=mySymbol)

Next, display the plot:

myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
myModel = OBJ_NEW('IDLgrModel')
myView->Add, myModel
myModel -> Add, myPlot
myWindow = OBJ_NEW('IDLgrWindow')
myWindow -> Draw, myView
Using IDL Symbol Objects

554 Chapter 21: Using Attributes and Helpers

e

le
t
y of
Note that the plotting symbols are larger than you might wish. Try making them
smaller:

mySymbol -> SetProperty, SIZE=[0.2,0.2]
myWindow -> Draw, myView

Or, create the following procedure to spin the pentagons around thez-axis (enter
.RUN at the command prompt, followed by these statements):

PRO SPIN, model, view, window, steps
FOR i = 0, steps do begin

model -> Rotate, [0,0,1], 10
window -> Draw, view

END
END

After compiling the SPIN procedure, call it from the command line and watch th
pentagons spin:

SPIN, symmodel, myView, myWindow, 100

While it is unlikely that you will wish to create spinning plot symbols, this examp
demonstrates one of the key advantages of IDL Object Graphics over IDL Direc
Graphics—once created, graphics objects can be easily manipulated in a variet
ways without the need to recreate the entire graph or image after each change.
Symbol Objects Using IDL

Chapter 21: Using Attributes and Helpers 555

gon
ral

into

ent

t.
es the

can
Tessellator Objects

The IDLgrTessellator class is a helper class that converts a simple concave poly
(or a simple polygon with holes) into a number of simple convex polygons (gene
triangles). A polygon is simple if it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon
a group of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::Init method takes no arguments. Use the following statem
to create a tessellator object:

myTess = OBJ_NEW('IDLgrTessellator')

See“IDLgrTessellator” in Appendix A of theIDL Reference Guide for details on
creating tessellator objects.

Using Tessellator Objects

The procedure fileobj_tess.pro , located in theobject subdirectory of the
examples directory of the IDL distribution, provides an example of the use of the
IDLgrTessellator object. To run the example, enter OBJ_TESS at the IDL promp
The procedure creates a concave polygon, attempts to draw it, and then tessellat
polygon and re-draws. Finally, the procedure demonstrates adding a hole to a
polygon. (You will be prompted to press Return after each step is displayed.) You
also inspect the source code in theobj_tess.pro file for hints on using the
tessellator object.
Using IDL Tessellator Objects

556 Chapter 21: Using Attributes and Helpers
Tessellator Objects Using IDL

Chapter 22:

Working with Axes
and Text

The following topics are covered in this chapter:
6
Overview . 558
Axis Objects . 559

Text Objects. 56
Using IDL 557

558 Chapter 22: Working with Axes and Text

 or
em in
Overview

In IDL Object Graphics, axes and titles are not automatically included when plot
surface objects are created. Instead, you create axis and text objects and place th
the object hierarchy to annotate your plots and graphs.
Overview Using IDL

Chapter 22: Working with Axes and Text 559

nal
f you

you

od

r
. For
e

Axis Objects

Axis objects provide a visual notation of data values in two- and three-dimensio
plots and graphs. Each axis is represented by an individual axis object; that is, i
have a plot inX andY, you will need to create anx-axis object and ay-axis object.

Note
Axis objects do not take their range values from data values or other objects, as
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAxis::Init meth
when calling OBJ_NEW. Specify 0 (zero) to create anx-axis object, 1 (one) to create
ay-axis object, or 2 to create az-axis object:

xaxis = OBJ_NEW('IDLgrAxis', 0)
yaxis = OBJ_NEW('IDLgrAxis', 1)
zaxis = OBJ_NEW('IDLgrAxis', 2)

The various keywords to the Init method allow you to control the number of majo
and minor ticks, the tick length and direction, the data range, and other attributes
example, to create anx-axis object whose data range is between –5 and 5, with th
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKDIR=1)

To suppress minor tick marks:

xaxis -> SetProperty, MINOR=0

See“IDLgrAxis” in Appendix A of theIDL Reference Guide for details on creating
axis objects.

Using Axis Objects

Suppose you wish to create anX-Yplot of some data and wish to include bothx- and
y-axes. First, we create some data to plot, the plot object, and the axis objects:

data = FINDGEN(100)
myplot = OBJ_NEW('IDLgrPlot', data)
xaxis = OBJ_NEW('IDLgrAxis', 0)
Using IDL Axis Objects

560 Chapter 22: Working with Axes and Text

 this

o

view
yaxis = OBJ_NEW('IDLgrAxis', 1)

Next, we retrieve the data range from the plot object and set thex- andy-axis objects’
RANGE properly so that the axes will match the data when displayed:

myplot -> GetProperty, XRANGE=xr, YRANGE=yr
xaxis -> SetProperty, RANGE=xr
yaxis -> SetProperty, RANGE=yr

By default, major tickmarks are 0.2 data units in length. Since the data range in
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1] - xr[0])
ytl = 0.02 * (yr[1] - yr[0])
xaxis -> SetProperty, TICKLEN=xtl
yaxis -> SetProperty, TICKLEN=ytl

Create model and view objects to contain the object tree, and a window object t
display it:

mymodel = OBJ_NEW('IDLgrModel')
myview = OBJ_NEW('IDLgrView')
mywindow = OBJ_NEW('IDLgrWindow')
mymodel -> Add, myplot
mymodel -> Add, xaxis
mymodel -> Add, yaxis
myview -> Add, mymodel

Use the SET_VIEW procedure to add an appropriate viewplane rectangle to the
object. (See“Finding an Appropriate View Volume” on page 519 for information on
SET_VIEW).

SET_VIEW, myview, mywindow

Now, display the plot:

mywindow -> Draw, myview

The above example code is included in a procedure file namedobj_axis.pro ,
located in theobject subdirectory of theexamples directory of the IDL
distribution. You can run the example code by enteringobj_axis at the IDL prompt.
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 561

ell.
me
You can also examine the.pro file itself for examples of some of the topics
discussed in this section.

Logarithmic Axes

Creating a plot of logarithmic data requires that you create a logarithmic axis as w
The following example first creates a linear plot, then takes a logarithm of the sa
data and creates a log-linear plot.

The example code below is included in a procedure file namedobj_logaxis.pro ,
located in theobject subdirectory of theexamples directory of the IDL
distribution. You can run the example code by enteringobj_logaxis at the IDL
prompt. You can also examine the.pro file itself for examples of some of the topics
discussed in this section.

;Create a window and a view.
PRO obj_logaxis
oWindow = OBJ_NEW('IDLgrWindow')

;Create a model for the graphics; add to the view.
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-0.2,-0.2,1.4,1.4])

Figure 22-1: Axis Object
Using IDL Axis Objects

562 Chapter 22: Working with Axes and Text
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel

;Create some simple data:
yData = FINDGEN(50)*20.

;Compute data range in X and Y:
yMin = MIN(yData, MAX=yMax)
yRange = yMax - yMin
xMin = 0
xMax = N_ELEMENTS(yData)-1
xRange = xMax - xMin

;Create an X-axis with a title:
oXTitle = OBJ_NEW('IDLgrText', 'Linear X Axis')
oXAxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[xmin,xmax], $

TICKLEN=(0.1*yRange), TITLE=oXTitle)
oModel->Add, oXAxis

;Create a Y-axis with a title:
oYTitle = OBJ_NEW('IDLgrText', 'Linear Y Axis')
oYAxis = OBJ_NEW('IDLgrAxis', 1, RANGE=[yMin,yMax], $

TICKLEN=(0.1*xRange), TITLE=oYTitle)
oModel->Add, oYAxis

;Create a plot of the data:
oPlot = OBJ_NEW('IDLgrPlot', yData, COLOR=[255,0,0])
oModel->Add, oPlot

;Scale and translate the model so the plot fits within the view:
oModel->Scale, 1.0/xRange, 1.0/yRange, 1.0
oModel->Translate, -(xMin/xRange), -(yMin/yRange), 0.0

;Ensure that axis text recomputes its dimensions as needed:
oXAxis->GetProperty, TICKTEXT=oXTickText
oXTitle->SetProperty, RECOMPUTE_DIMENSIONS=2
oXTickText->SetProperty, RECOMPUTE_DIMENSIONS=2
oYAxis->GetProperty, TICKTEXT=oYTickText
oYTickText->SetProperty, RECOMPUTE_DIMENSIONS=2
oYTitle->SetProperty, RECOMPUTE_DIMENSIONS=2

;Draw the plot:
oWindow->Draw, oView

;Refresh the plot when ready:
val=''
READ, val, PROMPT='Press <Return> to refresh the window.'
oWindow->Draw, oView
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 563
;Now that the original plot has been displayed,
;switch to a logarithmic version of the plot when ready:
READ, val, $

PROMPT='Press <Return> to draw with a logarithmic Y axis.'

;Only positive values are valid when computing
;the logarithmic data:
posElts = WHERE(yData GT 0, nPos)

IF (nPos GT 0) THEN BEGIN

;Compute new Y range:
yValidData = yData(posElts)
yValidMin = MIN(yValidData, MAX=yValidMax)

;Compute logarithmic data:
yLogData = ALOG10(yValidData)

;Update the plot data:
oPlot->Setproperty, DATAY=yLogData
ENDIF ELSE BEGIN
MESSAGE, 'Original plot data is entirely non-positive.', $

/INFORMATIONAL
MESSAGE, 'Log plot will contain no data.', /NOPREFIX, $

/INFORMATIONAL

;Create a fake log axis range:
yValidMin = 1.0
yValidMax = 10.0

;Simply hide the plot, since no valid log data exists:
oPlot->SetProperty, /HIDE
ENDELSE

;Update the Y axis to be logarithmic, and modify the Y axis title:
oYAxis->SetProperty, /LOG, RANGE=[yValidMin, yValidMax]
oYTitle->SetProperty, STRING='Logarithmic Y Axis'

;Get the new Y axis logarithmic range:
oYAxis->GetProperty, CRANGE=crange
yLogMin = crange[0]
yLogMax = crange[1]
yLogRange = yLogMax - yLogMin

;Update the X axis ticklen:
oXAxis->SetProperty, TICKLEN=(0.1*yLogRange), $

LOCATION=[0,yLogMin,0]

;Update the model transform to match the new data ranges:
oModel->Reset
Using IDL Axis Objects

564 Chapter 22: Working with Axes and Text

e
ia

long
oModel->Scale, 1.0/xRange, 1.0/yLogRange, 1.0
oModel->Translate, -(xMin/xRange), -(yLogMin/yLogRange), 0.0
oWindow->Draw, oView
READ, val, PROMPT='Press <Return> to quit.'
OBJ_DESTROY, oView
OBJ_DESTROY, oWindow
OBJ_DESTROY, oXTitle
OBJ_DESTROY, oYTitle
END

Axis Titles and Tickmark Text

You can supply an axis title for an axis by setting the TITLE property equal to th
object reference of an IDLgrText object. Text objects connected to axis objects v
the TITLE property are automatically centered under or next to the axis they be
with.

Figure 22-2: Logarithmic Axes
Axis Objects Using IDL

Chapter 22: Working with Axes and Text 565

f,
ess

t of

of

jor
Note
Titles and tickmark text inherit the color specified for the IDLgrAxis object itsel
even if the COLOR property is specified for the IDLgrText object specified, unl
the USE_TEXT_COLOR property for the axis is nonzero.

By default, major tick marks are labelled with the data values. You can supply a se
tickmark text values by setting the TICKTEXT property equal to either a single
instance of an IDLgrText object containing a vector of text strings or to a vector
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are ma
tick marks for the axis.
Using IDL Axis Objects

566 Chapter 22: Working with Axes and Text

tion
gle

it

at a
 to

he
t

t
t

Text Objects

Text objects contain string values that are drawn to the destination object at a loca
you specify. You have control over the font used (via an IDLgrFont object), the an
of the text baseline, and the vertical direction of the text.

Creating Text Objects

To create a text object, specify a string or an array of strings to the IDLgrText:In
method when calling OBJ_NEW.

mytext = OBJ_NEW('IDLgrText', 'A Text String')

or

mytextarr = OBJ_NEW('IDLgrText', ['First String', $
'Second String', 'Third String'])

See“IDLgrText” in Appendix A of theIDL Reference Guide for details on creating
text objects.

Using Text Objects

Creating text annotations in their simplest form—two-dimensional text displayed
given location—involves only specifying the text, and the location. For example,
display the words Text String in a window in the default font, the following
statements suffice:

mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[400,400])
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
mymodel = OBJ_NEW('IDLgrModel')
mytext = OBJ_NEW('IDLgrText', 'Text String', LOCATION=[4,4], $

COLOR=[50,100,150])
myview -> Add, mymodel
mymodel -> Add, mytext
mywindow -> Draw, myview

The text is drawn at the specified location, with the baseline parallel to thex-axis.

Location and Alignment

Specifying a location via the LOCATION property picks a point in space where t
text object will be placed. By default, text objects are aligned with their lower lef
edge located at the point specified by the LOCATION property.

You can change the horizontal position of the text object with respect to the poin
specified by LOCATION by changing the ALIGNMENT property to a floating-poin
Text Objects Using IDL

Chapter 22: Working with Axes and Text 567

t the

to
lt
1.0

nal
hs—

,

may
 the

lue

e

value between 0.0 and 1.0. The default value (0.0) aligns and left-justifies text a
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect
location can also be set using the VERTICAL_ALIGNMENT property. The defau
value (0.0) bottom-justifies the text at the given location. A vertical alignment of
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like all graphics atoms, are located and oriented in three-dimensio
space. (We often ignore the third dimension when making simple plots and grap
in these cases we simply use the defaultz value of zero.) With text objects, however
there is an option to project text on the glass.

Projecting text on the glass ensures that it is displayed as if it were in flat, two-
dimensional space no matter what its true orientation in three-dimensional space
be. In cases where text objects may be rotated at arbitrary angles, projecting on
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to a va
other than zero.

Baseline

The text baseline can be altered from its default orientation (parallel to thex-axis) by
setting the text object’s BASELINE property to a two- or three-element array. Th
new baseline will be oriented parallel to a line drawn between the origin and the

Figure 22-3: 3D Text and Text “On the Glass”
Using IDL Text Objects

568 Chapter 22: Working with Axes and Text

eline

e

 of

e
om
h

lane.

fy a
text
the
coordinates specified. For example, the following statement makes the text bas
parallel to a line drawn between the points [0, 0] and [1, 2]:

mytext -> SetProperty, BASELINE=[1,2]

The following statement makes the baseline parallel to a line drawn between th
origin and a point located at [2, 1, 3]:

mytext -> SetProperty, BASELINE=[2,1,3]

Notice that the orientation of the baseline is only an orientation; changing value
the BASELINE property does not change the location of the text object.

Upward Direction

In addition to the baseline orientation, you can control the upward direction of th
text object. (The upward direction is the direction defined by a vector pointing fr
the origin to the point specified.) The upward direction defines the plane on whic
text is drawn; by specifying a baseline and an upward direction, you define the p

Note
The upward direction does not specify a slant angle. That is, even if you speci
direction that is not perpendicular to the baseline for the upward direction, the
will still be perpendicular to the baseline. All that matters is the plane defined by
baseline and upward direction.

Figure 22-4: Baseline
Text Objects Using IDL

Chapter 22: Working with Axes and Text 569

e a

d by

 is

is
For example, in the default situation, the baseline is oriented parallel to thex-axis,
and the upward direction is parallel to they-axis, pointing in the positivey direction.

Warning
If the baseline and upward direction are coincident—that is, if they do not defin
plane on which to draw the text—IDL generates an error message.

Fonts

The type style and size of the characters displayed in a text object are controlle
the FONT property. Set the FONT property equal to the object reference of an
IDLgrFont object to use that font’s properties for the text object. If no font object
specified, IDL uses the default font (12 point Helvetica regular).

Font objects are discussed in“Font Objects” on page 545.

A Text Example

An example procedure named rot_text.pro is included in theobject
subdirectory of theexamples directory of the IDL distribution. This file creates a
simple text string, rotates it around they- andz-axes using the BASELINE and
UPDIR properties, and displays several different fonts.

You can run the example code by enteringrot_text at the IDL prompt. You can
also examine the.pro file itself for examples of some of the topics discussed in th
section.
Using IDL Text Objects

570 Chapter 22: Working with Axes and Text
Text Objects Using IDL

Chapter 23:

Working with Plots
and Graphs
 and
This chapter describes the use of contour, polygon, polyline, and plot objects to create plots
graphs. The following topics are covered in this chapter:
1
Contour Objects . 572
Polygon Objects . 575
Polyline Objects . 580

Plot Objects . 58
Legend Objects . 585
A Plotting Routine. 588
Using IDL 571

572 Chapter 23: Working with Plots and Graphs

ay or
lled

 the
ing
IST

red.

onal
 and
Contour Objects

Contour objects create a set of contour lines from data stored in a rectangular arr
in a set of unstructured points. Contour objects can consist either of lines or of fi
regions.

Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing
values to be contoured to the IDLgrContour::Init method. For example, the follow
statement creates a contour from a two-dimensional array returned by the IDL D
function:

mycontour = OBJ_NEW('IDLgrContour', DIST(20))

See“IDLgrContour” in Appendix A of theIDL Reference Guide for details on
creating contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rende
See“IDLgrContour::Init” in Appendix A of theIDL Reference Guidefor a complete
listing. The following code displays the contour object created above in theX-Y
plane.

Note
In order to display the contour as on the plane (rather than as a three-dimensi
image), you must set the PLANAR property of the contour object equal to one
explicitly set the GEOMZ property equal to zero.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,19,19])
mymodel = OBJ_NEW('IDLgrModel')
data = DIST(20)
mycontour = OBJ_NEW('IDLgrContour', data, COLOR=[100,150,200], $

C_LINESTYLE=[0,2,4], /PLANAR, GEOMZ=0, C_VALUE=INDGEN(20))

myview -> Add, mymodel
mymodel -> Add, mycontour
Contour Objects Using IDL

Chapter 23: Working with Plots and Graphs 573

To
mywindow -> Draw, myview

A more complex example using a contour object is shown in the contour demo.
start the demos, typedemo at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 23-1: Contour Object
Using IDL Contour Objects

574 Chapter 23: Working with Plots and Graphs
Figure 23-2: Complex Contour Object
Contour Objects Using IDL

Chapter 23: Working with Plots and Graphs 575

ave
ing

ree
Init
nit in

ou
rty

The
e:

ting

.

Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not h
any indentations). Concave polygons can be converted into convex polygons us
the helper object IDLgrTessellator. See“Tessellator Objects” on page 555 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon object, provide a two- or three-dimensional array (or two or th
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::
method. For example, the following statement creates a square with sides one u
length, with the lower left corner at the origin:

mypolygon = OBJ_NEW('IDLgrPolygon', [[0,0], [0,1], [1,1], [1,0]])

See“IDLgrPolygon” in Appendix A of theIDL Reference Guide for details on
creating polygon objects.

Using Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. Y
can set these properties when creating the polygon object, or use the SetPrope
method to the polygon object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the polygon is
rendered. Set the STYLE property equal to 0 (zero) to render only the vertices.
following statement changes the polygon to display only the vertex points, in blu

mypolygon -> SetProperty, STYLE=0, COLOR=[0,0,255]

Set the STYLE property equal to 1 (one) to render the vertices and lines connec
them. The following statement draws the polygon’s outline in green:

mypolygon -> SetProperty, STYLE=1, COLOR=[0,255,0,]

The default setting for the STYLE property is 2, which produces a filled polygon
The following statement draws the filled polygon in red:

mypolygon -> SetProperty, STYLE=2, COLOR=[255,0,0]
Using IDL Polygon Objects

576 Chapter 23: Working with Plots and Graphs

es

 line

ual
alled
:

the
e

line
he

ing
mple

tex

t to

s.
Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertic
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting
one of four colors:

vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mypolygon -> SetProperty, STYLE=1, VERT_COLORS=vcolors

Fill Patterns

As demonstrated in“Pattern Objects” on page 549, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property eq
to the object reference of the pattern object. If you have created a pattern object c
mypattern, the following statement uses that pattern as the polygon’s fill pattern

mypolygon -> SetProperty, STYLE=2, FILL_PATTERN=mypattern

Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of
first vertex in each polygon is used to define the color for the entire polygon. Th
polygon color has a constant intensity. In Gouraud shading, the colors along each
are interpolated between vertex colors, and then along scanlines from each of t
edge intensities.

Set the SHADING property of the polygon object equal to 0 (zero) to use flat shad
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above exa
using vertex colors, adding the following statement:

mypolygon -> SetProperty, STYLE=2, SHADING=1

creates a polygon fill in which the color values are interpolated between the ver
colors.

Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrImage objec
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the polygon’s vertice
Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.
Polygon Objects Using IDL

Chapter 23: Working with Plots and Graphs 577

be
ial
re
ial

ices.

he
 as

st
ee the
Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally—via the
POLYGON keyword—a connectivity array describing how those vertices are to
connected to form one or more polygons. Internally, IDL can identify three spec
types of polygonal meshes that may be represented very efficiently and therefo
displayed substantially faster than individually described polygons. These spec
mesh types are characterized by repetitive patterns in the connectivity of the vert
In performance terms, it is to the users advantage to utilize this optimization
whenever possible by appropriately preparing the connectivity list according to t
rules described for the corresponding type of mesh. The special mesh types are
follows:

Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and la
vertex for one quad are the same as the second and third of the previous quad. S
figure below.

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
oPoly = OBJ_NEW(IDLgrPolygon, verts, POLYGON=[4, 0, 1, 5, 4, $

4, 1, 2 ,6, 5, $
4, 2, 3, 7, 6, $
4, 4, 5, 9, 8, $

Figure 23-3: Quad Strip Mesh

0 1 2 3

4 5 6 7

8 9 10 11
Using IDL Polygon Objects

578 Chapter 23: Working with Plots and Graphs

 take
t the
same

ide

 with

ave
e or
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

Triangle Fans

A triangle fan is a set of connected triangles that all share a common vertex. To
advantage of accelerated triangle fans, the connectivity should be set up so tha
first vertex in every triangle is the common vertex, and the second vertex is the
as the last vertex of the previous triangle, as shown below.

For example, to use a triangle fan optimization for the polygons shown in the left s
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, POLYGON=[3, 0, 1, 2, $

3, 0, 2, 3, $
3, 0, 3, 4, $
3, 0, 4, 5])

Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices
the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two vertices in every triangle must h
been in the previous triangle and ordered in the same direction (counter-clockwis
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

Figure 23-4: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

2 3 4

1 0 5

0 2 4

1 3 5
Polygon Objects Using IDL

Chapter 23: Working with Plots and Graphs 579

iven
on

tions
rade

ise

ny

on

x by
e then

 the

ity,
tually
ormal

on
er.
verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, POLYGON=[3, 0, 1, 2, $

3, 2, 1, 3, $
3, 2, 3, 4, $
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any g
polygon object. A single POLYGON keyword value might contain any combinati
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

As the length of the strips or fans grows, and as the percentage of vertex connec
that are optimized by the rules described above increases, the performance upg
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherw
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In a
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimizati
automatically without programmer intervention.

Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each verte
averaging the normals of the polygons that share that vertex. These normals ar
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant a new internal cache (for example, if the connectiv
vertices, shading, or style have changed). In some cases, the normals do not ac
change as other modifications are made. In these cases, the expense of default n
computation can be bypassed if the user provides the normals explicitly (via the
NORMALS keyword). The provided normals will be reused every time the polyg
is drawn (without further computation) until they are replaced explicitly by the us
SeeCOMPUTE_MESH_NORMALS in theIDL Reference Guide for more
information.
Using IDL Polygon Objects

580 Chapter 23: Working with Plots and Graphs

ce.

it
he

ou
rty

 the
ray

r as
Polyline Objects

Polyline objects lines connect a series of points in two- or three-dimensional spa

Creating Polyline Objects

To create a polyline object, provide a 2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline’s constituent points to the IDLgrPolyline::In
method. For example, the following statement creates a line from the origin, to t
pointX = 1, Y = 2, then to the pointX = 4, Y = 3:

mypolyline = OBJ_NEW('IDLgrPolyline', [[0,0], [1,2], [4,3]])

See“IDLgrPolyline” in Appendix A in theIDL Reference Guide for details on
creating polyline objects.

Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. Y
can set these properties when creating the polyline object, or use the SetPrope
method to the polyline object to change these properties after creation.

Symbols

You can specify a symbol to render at each point in the polyline’s path by setting
SYMBOL property to the object reference of an IDLgrSymbol object (or to an ar
of IDLgrSymbol objects). See“Symbol Objects” on page 551 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manne
polygon objects. See“Shading” and“Vertex Colors” in “Using Polygon Objects” on
page 575 for details.
Polyline Objects Using IDL

Chapter 23: Working with Plots and Graphs 581

es a
xes

 8]

ndard
e

Plot Objects

Plot objects maps a set of abscissa values to a set of ordinate values and creat
polyline connecting the points. Note that plot objects do not automatically create a
for the plot lines they create.

Creating Plot Objects

Create a plot line by providing a vector ofY values, and, optionally, a vector ofX
values. If noX values are provided, theY values are plotted against the element
indices of theY vector.

The following statement creates a plot object plotting the values [2, 9, 4, 4, 6, 2,
against their own indices:

myplot = OBJ_NEW('IDLgrPlot', [2,9,4,4,6,2,8])

The following statements plot the same data versus a series of primes:

datay = [2,9,4,4,6,2,8]
datax = [0,1,2,5,7,11,13]
myplot = OBJ_NEW('IDLgrPlot', datax, datay)

See“IDLgrPlot” in Appendix A in theIDL Reference Guide for details on creating
plot objects.

Using Plot Objects

Plot objects can be configured to draw regularX vs.Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create a polar plot. The following example uses the same data set to create a sta
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots ar
displayed in the same view.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-10,-10,20,20])
mymodel = OBJ_NEW('IDLgrModel')

x = (FINDGEN(21) / 10.0 - 1.0) * 10.0
y = [3.0, -2.0, 0.5, 4.5, 3.0, 9.5, 9.0, 4.0, 1.0, -8.0, $

-6.5, -7.0, -2.0, 5.0, -1.0, -2.0, -6.0, 3.0, 5.5, 2.5, -3.0]
myplot1 = OBJ_NEW('IDLgrPlot', x, y, COLOR=[120, 120, 120])
myplot2 = OBJ_NEW('IDLgrPlot', x, y, /HISTOGRAM, LINESTYLE=4)
y2 = SMOOTH(y, 5)
myplot3 = OBJ_NEW('IDLgrPlot', x, y2, LINESTYLE=2)
Using IDL Plot Objects

582 Chapter 23: Working with Plots and Graphs

ct.
an
han

s of
myview -> Add, mymodel
mymodel -> Add, myplot1
mymodel -> Add, myplot2
mymodel -> Add, myplot3

mywindow -> Draw, myview

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot obje
Set the MAX_VALUE property of the plot object to disregard data values higher th
a specified value. Set the MIN_VALUE property to disregard data values lower t
a specified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum value
the histogram plot, and re-draws the view object:

myplot2 -> SetProperty, MAX_VALUE=8, MIN_VALUE=2
mywindow -> Draw, myview

Figure 23-5: Plot Object
Plot Objects Using IDL

Chapter 23: Working with Plots and Graphs 583

bol
bol

OL

ta
d.
Using Plotting Symbols

Set the SYMBOL property of a plot object equal to the object reference of a sym
object to display that symbol at each data point. For example, to use a triangle sym
at each data point, create the following symbol object, set the plot object’s SYMB
property, and re-draw:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[.3,.3])
myplot1 -> SetProperty, SYMBOL=mySymbol
mywindow -> Draw, myview

Averaging Points

Use the NSUM property of the plot object to average the values of a group of da
points before plotting. If there are m data points, m/NSUM data points are plotte
For example, the following statement causes IDL to average pairs of data points
when plotting the line for the histogram plot:

myplot2 -> SetProperty, NSUM=2
mywindow -> Draw, myview

Figure 23-6: Plotting Symbols
Using IDL Plot Objects

584 Chapter 23: Working with Plots and Graphs

, and
mple
Polar Plots

To create a polar plot, provide a vector of radius values, a vector of theta values
set the POLAR property to a nonzero value. The following example creates a si
polar plot:

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-100,-100,200,200])
mymodel = OBJ_NEW('IDLgrModel')
r = FINDGEN(100)
theta = r/5
mypolarplot = OBJ_NEW('IDLgrPlot', r, theta, /POLAR)
myview -> Add, mymodel
mymodel -> Add, mypolarplot
mywindow -> Draw, myview

Figure 23-7: Polar Plot
Plot Objects Using IDL

Chapter 23: Working with Plots and Graphs 585

elf
d in
h

rays
or
ith
r

box.

 the

ay of
tring
fined

f
y)

the
d.

x.
Legend Objects

Legend objects provide a simple interface for displaying legends. The legend its
consists of a (filled and/or framed) box around one or more legend items (arrange
a single column) and an optional title string. Each legend item consists of a glyp
patch positioned to the left of a text string. The glyph patch is drawn in a square
which is a fraction of the legend label font height.

Creating Legend Objects

To create a legend object, you must provide an array of item names, along with ar
of symbols, line styles, or objects, along with arrays of attributes (such as color
thickness) for the items. The following simple example creates a legend object w
two items. The first item (Cows) is represented by the predefined symbol numbe
four (a diamond), and the second item (Weasels) is represented by a line-filled

itemNameArr = [’Cows’, ’Weasels’]
mytitle = OBJ_NEW(’IDLgrText’, ’My Legend’)
mysymbol = OBJ_NEW(’IDLgrSymbol’, 4)
mypattern = OBJ_NEW(’IDLgrPattern’, 1)
myLegend = OBJ_NEW(’IDLgrLegend’, itemNameArr, TITLE=mytitle, $

ITEM_TYPE=[0,1], ITEM_OBJECT=[mysymbol, mypattern], $
/SHOW_OUTLINE)

See“IDLgrLegend” in Appendix A in theIDL Reference Guide for details on
creating legend objects. See the next section for a more detailed explanation of
elements of the legend.

Using Legend Objects

The legend object allows you to define the annotations that correspond to the arr
strings used as legend names in a variety of ways. The length of the argument s
array is used to determine the number of items to be displayed. Each item is de
by taking one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors, if they are defined. I
the number of items (as defined by the argument array or the ITEM_NAME arra
exceeds any of the attribute vectors, the attribute defaults will be used for any
additional items.

Specify a list of item names either via the argument to IDLgrLegend::Init, or via
ITEM_NAME property. The length of this array determines the size of the legen

Use the ITEM_TYPE property to define whether an element in the legend is
represented by a line (with an optional plotting symbol) or by a filled or unfilled bo
Using IDL Legend Objects

586 Chapter 23: Working with Plots and Graphs

rray

at are

ill
it

.

There should be one element of the ITEM_TYPE array per element in the input a
or ITEM_NAME array.

Use the ITEM_LINESTYLE and ITEM_THICK properties to define the style and
thickness of lines used as legend items. These arrays are ignored for elements th
not lines. Use the ITEM_COLOR property to specify the color of each legend
element independently.

Use the ITEM_OBJECT property to specify that a graphic object be used as an
annotation.

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties w
be zero. Because you must know the size of the legend object in order to scale
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation

The following example builds and displays a three-element legend.

;Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview -> Add, mymodel
;Create the legend with two items:
itemNameArr = ['Original Data', 'Histogram Plot', $

'Boxcar-filtered (Width=5)']
mytitle = OBJ_NEW('IDLgrText', 'Plot Legend')
mysymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[0.3, 0.3])
myLegend = OBJ_NEW('IDLgrLegend', itemNameArr, TITLE=mytitle, $

BORDER_GAP=0.8, GAP=0.5, $
ITEM_TYPE=[0,1], ITEM_LINESTYLE=[0,4,2], $
ITEM_OBJECT=[mysymbol, OBJ_NEW(), OBJ_NEW()]$
GLYPH_WIDTH=2.0, /SHOW_OUTLINE)

;Add the legend to the model:
mymodel -> Add, mylegend
;Center the legend in the window.
;Note that you must use the ComputeDimensions method
;to get the dimensions of the legend.
dims = mylegend->ComputeDimensions(mywindow)
mymodel->Translate, -(dims[0]/2.), -(dims[1]/2.), 0
;Draw the legend:
mywindow->Draw, myview
Legend Objects Using IDL

Chapter 23: Working with Plots and Graphs 587
Figure 23-8: Legend Object
Using IDL Legend Objects

588 Chapter 23: Working with Plots and Graphs

tures
in the

f a

d we
odel,
fter

er to

pass

 in
A Plotting Routine

This section develops a plotting routine that uses many of the object graphics fea
discussed here and in previous chapters. The code for this example is contained
file obj_plot.pro , located in theobject subdirectory of theexamples directory
of the IDL distribution.

The OBJ_PLOT routine will create a window object, and display within it a view o
single model object, which will contain a plot object,x- andy-axis objects, and anx-
axis title object. It will use the Times Roman font for the axis title.

In creating the procedure, we allow the user to specify the data to be plotted, an
define keyword variables which can return the object references for the view, m
window, axis, and plot objects. This allows the user to manipulate the object tree a
it has been created. We also specify the _EXTRA keyword, which allows the us
include other keyword parameters in the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See“A Function for Coordinate Conversion” on page 525 for a discussion of the
NORM_COORD function used in this example. Also, SET_VIEW is discussed
“Finding an Appropriate View Volume” on page 519. (In the IDL distribution,
norm_coord.pro is included in theobject subdirectory of theexamples
directory. It is also included in theobj_plot.pro file.)

PRO obj_plot, data, VIEW=myview, MODEL=mymodel, WINDOW=mywindow, $
CONTAINER=mycontainer, XAXIS=myxaxis, YAXIS=myyaxis, $
PLOT=myplot, _EXTRA=e

;Next, create the window, view, and model objects:
mycontainer = OBJ_NEW('IDL_Container')
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')

;And a font object, specifying Times Roman for
;the font and the default size of 12 points:
myfont = OBJ_NEW('IDLgrFont', 'times')
A Plotting Routine Using IDL

Chapter 23: Working with Plots and Graphs 589
;Next, create a plot object using data specified
;at the command line:
myplot = OBJ_NEW('IDLgrPlot', data, COLOR=[200,100,200])

;Now pass any extra keywords to OBJ_PLOT to
;the SetProperty method of the plot object.
;Keywords that do not apply to the SetProperty method are ignored.
myplot ->SetProperty, _EXTRA=e

;Retrieve the data ranges from the plot object,
;and convert to normalized coordinates using the NORM_COORD
;function.
myplot -> GetProperty, XRANGE=xr, YRANGE=yr
myplot -> SetProperty, XCOORD_CONV=norm_coord(xr), $

YCOORD_CONV=norm_coord(yr)

;Using the range from the plot object, create X- and
;Y-axis objects with appropriate ranges, and convert
;to normalized coordinates. Set the tick lengths to 5% of
;the data range (which is now normalized to 0.0-1.0).
myxaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[xr[0], xr[1]])
myxaxis -> SetProperty, XCOORD_CONV=norm_coord(xr)
myyaxis = OBJ_NEW('IDLgrAxis', 1, RANGE=[yr[0], yr[1]])
myyaxis -> SetProperty, YCOORD_CONV=norm_coord(yr)
myxaxis -> SetProperty, TICKLEN=0.05
myyaxis -> SetProperty, TICKLEN=0.05

;Add the model object to the view object,
;and the plot and axis objects to the model object.
myview -> Add, mymodel
mymodel -> Add, myplot
mymodel -> Add, myxaxis
mymodel -> Add, myyaxis

;Use the SET_VIEW routine to set an appropriate viewplane
;rectangle and zclip region for the view.
SET_VIEW, myview, mywindow

;Add a title to the X-axis, using the font object defined above:
xtext = OBJ_NEW('IDLgrText', 'X Title', FONT=myfont)
myxaxis -> SetProperty, TITLE=xtext

;Add all objects to the container object.
;Destroying the container destroys all of its contents:
mycontainer -> Add, mywindow
mycontainer -> Add, myview
mycontainer -> Add, myfont
mycontainer -> Add, xtext
Using IDL A Plotting Routine

590 Chapter 23: Working with Plots and Graphs

 do
re is
ld

es for
t

 a
ject
tire

e

;Finally, draw the object tree:
mywindow -> Draw, myview
END

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ_PLOT, FINDGEN(10)

creates and displays the object hierarchy with a simple plot line. However, if you
not retrieve the window, view, and other object references via the keywords, the
no way you can interactively modify the plot. A better way to call OBJ_PLOT wou
be:

OBJ_PLOT, FINDGEN(10), WINDOW=win, VIEW=view, PLOT=plot,
CONTAINER=cont

This statement creates the same object hierarchy, but returns the object referenc
the window, view, and plot objects in named variables. Having access the objec
references allows you to do things like change the color of the plot:

plot -> SetProperty, COLOR=[255,255,255]
window -> Draw, view

enlarge the viewplane rectangle by 10 percent:

view -> GetProperty, VIEWPLANE_RECT=vr
vr2 = [vr[0]-(vr[0]*0.1), vr[1]-(vr[1]*0.1), $

vr[2]+(vr[2]*0.1), vr[2]+(vr[2]*0.1)]
view -> SetProperty, VIEWPLANE_RECT = vr2
window -> Draw, view

or just clean it up:

OBJ_DESTROY, cont

Note that when using the OBJ_DESTROY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use
container object to collect all of the objects, including attribute objects and text ob
that are not explicitly added to the object tree, which allows you to destroy the en
collection with a single call to OBJ_DESTROY.

Improvements to the OBJ_PLOT Routine

A number of improvements to the OBJ_PLOT routine are left as exercises for th
programmer:

• Provide error checking on the input arguments.
A Plotting Routine Using IDL

Chapter 23: Working with Plots and Graphs 591

as

g the
• Provide a way to set properties of the axis and text objects when calling
obj_plot .

• Provide a graphical user interface to using IDL widgets.

• Do the object cleanup (destroying the objects created byobj_plot) when the
user is finished with the routine. (This is easily accomplished if the routine h
a widget interface.)

• Provide a way to retrieve data values once the data has been plotted, usin
mouse to select data points.
Using IDL A Plotting Routine

592 Chapter 23: Working with Plots and Graphs
A Plotting Routine Using IDL

Chapter 24:

Working with
Surfaces
in this
This chapter describes the use of surface and light objects. The following topics are covered
chapter:
Surface Objects. 594
Light Objects. 599

An Interactive Surface Example 602
Using IDL 593

594 Chapter 24: Working with Surfaces

re
good

s

 or
. If
es of

a

Surface Objects

Surface objects create a representation of functions of two variables. Surfaces a
presented as three-dimensional objects in three-dimensional space, and thus are
candidates for interactive rotation, and scaling. Examples in this chapter discus
interactive manipulation of surface objects.

Creating Surface Objects

To create a surface object, provide a two-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors
arrays X and Y that specify the locations in the XY plane of the Z values provided
X and Y are not provided, the surface is generated as a function of the array indic
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z dat
array indices:

zdata = DIST(40)
mysurf = OBJ_NEW('IDLgrSurface', zdata)

Figure 24-1: Surface Object
Surface Objects Using IDL

Chapter 24: Working with Surfaces 595

ays
the

u can
ethod

red.

es

 line
Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arr
specifying the X and Y values which, when evaluated by some function, result in
zdata array, you would create the surface object with the following statement:

mysurf = OBJ_NEW('IDLgrSurface', zdata, xdata, ydata)

See“IDLgrSurface” in Appendix A in theIDL Reference Guide for details on
creating surface objects.

Using Surface Objects

Surface objects have numerous properties controlling how they are rendered. Yo
set these properties when creating the surface object, or use the SetProperty m
to the surface object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the surface is rende
Set the STYLE property equal to one of the following integer values:

0 = Display a single pixel for each data point.

1 = Display the surface as a wire mesh. (This is the default.)

2 = Display the surface as a solid.

3 = Display the surface using only lines drawn parallel to thex-axis.

4 = Display the surface using only lines drawn parallel to they-axis.

5 = Display a wire meshlego-type surface (similar to a histogram plot).

6 = Display a solidlego-type surface (similar to a histogram plot).

For example, the following statement changes the surface object to display the
surface as a wire mesh, with the lines drawn in blue:

mysurf -> SetProperty, STYLE=1, COLOR=[0,0,255]

The following statement draws the surface as a solidlego-type surface in green:

mysurf -> SetProperty, STYLE=6, COLOR=[0,255,0]

Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertic
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting
one of four colors:
Using IDL Surface Objects

596 Chapter 24: Working with Surfaces

first
has a
ed
es.

a

ing
mple

olors.
vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mysurf -> SetProperty, STYLE=1, VERT_COLORS=vcolors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the
vertex in the surface is used to define the color for the entire surface. The color
constant intensity. In Gouraud shading, the colors along each line are interpolat
between vertex colors, and then along scanlines from each of the edge intensiti

Note
By default, only ambient lighting is provided for surfaces. If you do not supply
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See“Light Objects” on page 599 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shad
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above exa
using vertex colors, adding the following statement:

mysurf -> SetProperty, STYLE=2, SHADING=1

creates a surface in which the color values are interpolated between the vertex c

Figure 24-2: Surface Object Shading
Surface Objects Using IDL

Chapter 24: Working with Surfaces 597

e
e of
g

ines
den
n

Skirts

You can draw a skirt around the bottom edge of your surface object by setting th
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edg
the surface to aZ value specified by the SKIRT property. For example, the followin
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the valuez = 0.1:

mysurf -> SetProperty, STYLE=1, /SHOW_SKIRT, SKIRT=0.1

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove l
that are behind the visible parts of the surface from the rendering. By default, hid
lines are drawn. The following statement alters the surface to remove the hidde
lines:

mysurf -> SetProperty, /HIDDEN_LINES

Warning
Hidden line removal can be time-consuming.

Figure 24-3: Surface Object Hidden Lines
Using IDL Surface Objects

598 Chapter 24: Working with Surfaces

s. If
e
d

Texture Mapping

You can map an image onto a surface object by specifying anIDLgrImage object
to the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the surface’s vertice
the TEXTURE_COORD property is not specified, the surface object will map th
texture onto the entire data space (the region between 0.0 and 1.0 in normalize
coordinates).
Surface Objects Using IDL

Chapter 24: Working with Surfaces 599

cts.
ree

 is
ht

id

two-

od

tion,

 a

t

o
e
t
e is

t
e.
Light Objects

Objects of the IDLgrLight class represent sources of illumination for graphic obje
Although light objects are not rendered themselves, they are part of the model t
and thus can be transformed along with the graphic objects they illuminate.

If no light sources are specified for a given model, a default ambient light source
supplied. This allows you to display many objects without explicitly creating a lig
source. The use of only ambient light becomes problematic, however, when sol
surfaces and other objects constructed from polygons are displayed. With only
ambient lighting, all solid surfaces appear flat—in fact, they appear to be single
dimensional polygons rather than objects in three-dimensional space.

Note
Graphic objects do not automatically cast shadows onto other objects.

Creating Light Objects

There are no arguments to the IDLgrLight::Init method. Keywords to the Init meth
allow you to control a number of properties of the light object, including the
attenuation, color, cone angle (area of coverage), direction, focus, intensity, loca
and type of light.

The following statement creates a default light object. The default light object is
white positional light, located at the origin.

mylight = OBJ_NEW('IDLgrLight')

There are four types of light objects available. Set the TYPE property of the ligh
object to one of the following integer values:

• 0 = Ambient light. An ambient light is a universal light source, which has n
direction or position. An ambient light illuminates every surface in the scen
equally, which means that no edges are made visible by contrast. Ambien
lights control the overall brightness and color of the entire scene. If no valu
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

• 2 = Directional light. A directional light supplies parallel light rays. The effec
is that of a positional light source located at an infinite distance from scen
Using IDL Light Objects

600 Chapter 24: Working with Surfaces

f a
first
• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

See“IDLgrLight” in Appendix A in theIDL Reference Guide for details on creating
light objects.

Using Light Objects

In addition to the type of light source, you can control several other properties o
light object. The following example creates a solid surface object and displays it
with only ambient lighting, then adds various light objects to the scene.

Note
See“A Function for Coordinate Conversion” on page 525 for a discussion of the
NORM_COORD function. The SET_VIEW function is discussed in“Finding an
Appropriate View Volume” on page 519. (In the IDL distribution,
norm_coord.pro is included in theobject subdirectory of theexamples
directory.)

Begin by creating some data, the surface object, and supporting objects:

zdata = DIST (40)
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrMODEL')
mysurf = OBJ_NEW('IDLgrSurface', zdata, STYLE=2)
;Create the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, mysurf
;Retrieve the X, Y, and Z ranges from the surface object,
;and convert to normalized coordinates using the NORM_COORD
;function.
mysurf -> GetProperty, XRANGE=xr, YRANGE=yr, ZRANGE=zr
mysurf -> SETPROPERTY, XCOORD_CONV=norm_coord(xr), $

YCOORD_CONV=norm_coord(yr), ZCOORD_CONV=norm_coord(zr)
;Rotate the surface to a convenient orientation:
mymodel ->Rotate, [1,0,0], -90
mymodel ->Rotate, [0,1,0], 30
mymodel ->Rotate, [1,0,0], 30
;Use the SET_VIEW routine to set an appropriate viewplane
;rectangle and zclip region for the view:
SET_VIEW, myview, mywindow
;Draw the contents of the view:
mywindow -> Draw, myview
Light Objects Using IDL

Chapter 24: Working with Surfaces 601

three-

f the
 a
Once the surface object is drawn, we see that there is no definition or apparent
dimensional shape to the surface. If we add a positional light one unit in the Z
direction above the XY origin, however, details appear:

mylight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[0,0,1])
mymodel -> Add, mylight
mywindow -> Draw, myview

We can continue to alter the lighting characteristics by changing the properties o
existing light or by adding more light objects. (You can have up to eight lights in
given view object.) We can change the color:

mylight -> SetProperty, COLOR=[200,0,200]
mywindow -> Draw, myview

We can change the intensity of the light:

mylight -> SetProperty, INTENSITY=0.3
mywindow -> Draw, myview

We can add a yellow spotlight to illuminate the surface from the upper right:

mylight2 = OBJ_NEW('IDLgrLight', TYPE=3, LOCATION=[1.0,0.3,1.0], $
DIRECTION=[-1.0,-0.3,-1.0], COLOR=[255,255,0])

mymodel -> Add, mylight2
mywindow -> Draw, myview
Using IDL Light Objects

602 Chapter 24: Working with Surfaces

lay
 file

n

e

e (a

te

cts
An Interactive Surface Example

With a little programming, we can create an application that allows the user to disp
a surface object and transform its model tree interactively using the mouse. The
surf_track.pro , located in theobject subdirectory of theexamples directory
of the IDL distribution, uses IDL widgets to create a graphical user interface to a
object tree. The SURF_TRACK procedure creates a surface object from user-
specified data (or from default data, if none is specified), and places the surface
object in an IDL draw widget. The SURF_TRACK interface allows the user to
specify several attributes of the object hierarchy via pull-down menus. Finally, th
SURF_TRACK procedure uses the example trackball object (see“Virtual Trackball
and 3D Transformations” on page 530 for details) to allow the user to rotate the
surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surfac
Bessel function) or with a two-dimensional array as its argument:

;Make up some data:
zdata = DIST(40)
SURF_TRACK, zdata

We encourage you to inspect the code insurf_track.pro for hints on how to
create a widget application around a draw widget that uses Object Graphics. No
especially that the SURF_TRACK procedure is well-behaved when it exits,
destroying all of the objects it creates so as not to tie up memory with leftover obje
for which object references are no longer available.
An Interactive Surface Example Using IDL

Chapter 25:

Working with
Images

The following topics are covered in this chapter:
Image Objects. 604
Colorbar Objects. 608

Saving an Image to a File. 610
Using IDL 603

604 Chapter 25: Working with Images

or

ent,

el, by

it
E

ge
Image Objects

An object of the IDLgrImage class (seeIDLgrImage in theIDL Reference Guide)
represents a two-dimensional array of pixel values, rendered on the planez = 0.
Image objects can have a single channel (one value per pixel—greyscale or col
indexed), two channels (greyscale and Alpha), three channels (Red, Green, and
Blue), or four channels (Red, Green, Blue, and Alpha). The Alpha channel, if pres
determines the transparency of the pixel.

Image objects that have more than one channel can be interleaved either by pix
line, or by image. That is, if the image has three channels, widthm and heightn, the
image array can be organized 3-by-m-by-n (pixel interleaving),m-by-3-by-n (line, or
scanline interleaving), orm-by-n-by-3 (image, or planar interleaving).

Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrImage::In
method. If the image has more than one channel, be sure to set the INTERLEAV
property of the image object to the appropriate value. If image is an array of ima
data that is pixel interleaved, you would use the following statement to create an
image object:

myimage = OBJ_NEW('IDLgrImage', image, INTERLEAVE=0)

For example, the following statements read a JPEG file located in the IDL
distribution and create an image object from the RGB image. First, locate the
rose.jpg file and read the image data into the variable image:

file = FILEPATH('rose.jpg', SUBDIR=['examples', 'data'])
READ_JPEG, file, image
;Create the objects:
mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[227,149])
myview = OBJ_NEW('IDLgrView', VIEW=[0,0,227,149])
mymodel = OBJ_NEW('IDLgrModel')
myimage = OBJ_NEW('IDLgrImage', image, INTERLEAVE=0)
;Organize the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, myimage
;Draw to the window:
Image Objects Using IDL

Chapter 25: Working with Images 605

s, it

rty
Set
mywindow -> Draw, myview

SeeIDLgrImage in theIDL Reference Guide for details on creating image objects.

Note
IDLgrImage does not treat NaN data as missing. If the image data includes NaN
is recommended that theBYTSCL function (in theIDL Reference Guide) be used
to appropriately handle those values. For example:

oImage->SetProperty, DATA = BYTSCL(myData, /NaN, MIN=0, MAX=255)

Using Image Objects

Several properties allow you to control the way image objects are rendered.

Alpha Blending

If your image data includes an alpha channel, use the BLEND_FUNCTION prope
of the image object to control how the alpha channel values will be interpreted.
the BLEND_FUNCTION property equal to a two-element vector [src, dst] specifying

Figure 25-1: Image Object
Using IDL Image Objects

606 Chapter 25: Working with Images

 The

u
y the

e
d by
ple,
one of the functions listed below for each of the source and destination objects.
values of the blending function (Vsrc andVdst) are used in the following equation

where Cd is the initial color of a pixel on the destination device (the background
color), Ci is the color of the pixel in the image, and Cd' is the resulting color of the
pixel.

Settingsrc anddst in the BLEND_FUNCTION vector to the following values
determine how each term in the equation is calculated:

For example, setting BLEND_FUNCTION = [3, 4] creates an image in which yo
can see through the foreground image to the background to the extent defined b
alpha channel values of the foreground image.

Interleaving

Set the INTERLEAVE property of the image object to 0 (zero) to indicate that th
image is interleaved by pixel, to 1 (one) to indicated that the image is interleave
line, or to 2 to indicate that the image is interleaved by image, or plane. For exam
the following statement changes the image object to use line interleaving:

src or dst Vsrc or Vdst What the function does

0 n/a Alpha blending is disabled. Cd' = Ci.

1 0 The value ofVsrc or Vdst in the equation is zero,
thus the value of the term is zero.

2 1 The value ofVsrc or Vdst in the equation is one,
thus the value of the term is the same as the
color value.

3 Imageα The value ofVsrc or Vdst in the equation is the
value of the alpha channel of the image.

4 1– Imageα The value ofVsrc or Vdst in the equation is one
minus the value of the alpha channel of the
image.

Table 25-1: BLEND_FUNCTION Vector Behavior

Cd' Vsrc Ci⋅() Vdst Cd⋅()+=
Image Objects Using IDL

Chapter 25: Working with Images 607

d the

ce of

isting

nel.
myimage -> SetProperty, INTERLEAVE=1

Palettes

If your image array contains indexed color data (that is, if it is anm-by-n array), you
can specify a palette object to control the conversion between the image data an
palette used by an RGB-mode destination object. (See“Using Color” on page 538for
a discussion of the interaction between indexed color objects and RGB color
destinations.) Set the PALETTE property of the image object equal to an instan
an IDLgrPalette object:

myimage -> SetProperty, PALETTE = mypalette

To specify that an image be drawn in greyscale mode rather than through an ex
color palette, set the GREYSCALE property equal to 1 (one). The GREYSCALE
property is only used if the image data is a single channel (anm-by-n array).

Note
A 2-by-m-by-n array is considered to be a greyscale image with an Alpha chan
An image containing indexed color data cannot have an alpha channel.
Using IDL Image Objects

608 Chapter 25: Working with Images

nd

to be
 the

ths

 the

s.

ill
it

.

Colorbar Objects

The IDLgrColorbar object consists of a color-ramp with an optional framing box a
annotation axis. The object can be horizontal or vertical.

Creating Colorbar Objects

To create a colorbar object, you must provide a set of red, green, and blue values
displayed in the bar. Axis values are determined from the number of elements in
color arrays unless otherwise specified via the TICKVALUES property. The
following creates a colorbar one tenth of the window dimension wide by four-ten
of the window dimension high, with a red-green-blue color ramp:

mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW(’IDLgrColorbar’, redValues, $
greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

SeeIDLgrColorbar in theIDL Reference Guide for details on creating colorbar
objects. See the next section for a more detailed explanation of the elements of
legend.

Using Colorbar Objects

The colorbar object allows you to define the size, colors, and various annotation

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties w
be zero. Because you must know the size of the legend object in order to scale
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation

The following example builds and displays the colorbar described above:

;Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview->Add, mymodel
;Create the colorbar. Make the bar one tenth of
;the window size horizontally and four tenths of
Colorbar Objects Using IDL

Chapter 25: Working with Images 609
;the window size vertically. Show the axis values (using the
;default axis annotations) and draw an outline around the bar.
mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW('IDLgrColorbar', redValues, $

greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

mymodel -> Add, mycolorbar
;Center the colorbar in the window.
;Note that you must use the ComputeDimensions method to
;get the dimensions of the colorbar.
barPlusTextDims = mycolorbar -> ComputeDimensions(mywindow)
mymodel->Translate, -barDims[0]+(barPlusTextDims[0]/2.), $

-barDims[1]+(barPlusTextDims[1]/2.), 0
;Draw the colorbar:
mywindow -> Draw, myview

Figure 25-2: Colorbar Object
Using IDL Colorbar Objects

610 Chapter 25: Working with Images

e the
ve
ge

w
t

hem
 an
ou
Saving an Image to a File

If you have created a scene or view containing graphical objects and wish to sav
rendering to a file, you will first need to create an image object from which to retrie
the image data. The following steps render an object to a window, create an ima
object from the window, and save the image data as a GIF file.

First, create the view to be rendered. Use an indexed color model for the windo
object, setting the background color to white and the foreground color of the plo
object to black.

mywindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)
myview = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT=[0,-4,10,8], COLOR=255)
mymodel = OBJ_NEW('IDLgrModel')
myplot = OBJ_NEW('IDLgrPlot', RANDOMN(seed, 10), COLOR=0, $

THICK=3)
;Organize the object hierarchy:
myview -> Add, mymodel
mymodel -> Add, myplot
;Draw to the window:
mywindow -> Draw, myview
;Next, use the window object’s Read method to create
;an image object with the rendered scene as its image data:
myimage = mywindow -> Read()
;Retrieve the image data using the GetProperty method
;of the image object:
myimage -> GetProperty, DATA=image
;Display the image data using Direct Graphics:
TV, image
;Write the image to a TIFF file named myfile.tif:
WRITE_TIFF, 'myfile.tif', image

Create an MPEG File

If you have a series of image objects (or simple image arrays), you can combine t
into a single MPEG file using the IDLgrMPEG helper object. Suppose you have
array imagearray containing IDLgrImage objects that represent a time-series. Y
could use the following commands to create an MPEG file from the images.

First, create an MPEG object, and populate the file with frames from theimagearray
array:

myMPEG = OBJ_NEW('IDLgrMPEG', FILENAME='mympeg.mpg')
FOR image = 0, N_ELEMENTS(imagearray) DO BEGIN

myMPEG -> Put, imagearray[image], image
Saving an Image to a File Using IDL

Chapter 25: Working with Images 611

me
ENDFOR
;Save the MPEG file:
myMPEG -> Save

Note
Note that imagearray can contain either IDLgrImage objects or simple two-
dimensional image arrays. All of the arrays or image objects must have the sa
dimensions.

SeeIDLgrMPEG in theIDL Reference Guide for details on creating MPEG objects.
Using IDL Saving an Image to a File

612 Chapter 25: Working with Images
Saving an Image to a File Using IDL

Chapter 26:

Working with
Volumes
opics
This chapter describes the process of creating and displaying volume objects. The following t
are covered in this chapter:
Volume Objects. 614Volume Object Attributes 616
Using IDL 613

614 Chapter 26: Working with Volumes

et of
ough
ided

them
le,
ich

.

ple

t.

e. In

ter
Volume Objects

A volume object contains a three dimensional data array of voxel values and a s
rendering attributes. The voxel array is mapped to colors and opacity values thr
a set of lookup tables in the volume object. Several rendering methods are prov
to draw the volume to a destination.

Creating Volume Objects

To create a volume object, create a three dimensional array of voxels and pass
to the IDLgrVolume::Init method. Voxel arrays must be of BYTE type. For examp
the following will create a simple volume data set and create a volume object wh
uses it:

data = BYTARR(64,64,64)
FOR i=0,63 DO data[*,i,0:i] = i*2
data[5:15, 5:15, 5:55] = 128
data[45:55, 45:55, 5:15] = 255
myvolume = OBJ_NEW('IDLgrVolume', data)

The volume contains a shaded prism along with two brighter cubes (one located
within the prism).

SeeIDLgrVolume in theIDL Reference Guidefor details on creating volume objects

Note
You do not need to enter the example code in this chapter yourself. The exam
code shown here is duplicated in the procedure fileobj_vol.pro , located in the
object subdirectory of theexamples directory of the IDL distribution. You can
run the example procedure by entering OBJ_VOL at the IDL command promp
The procedure file stops after each operation (roughly corresponding to each
section below) and requests that you press return before continuing.

Using Volume Objects

A volume object has spatial dimensions equal to the size of the data in the volum
the example, the volume object occupies the range 0-63 in thex-, y-, andz-axes. To
make the volume easier to manipulate, we use the XCOORD_CONV,
YCOORD_CONV, and ZCOORD_CONV properties of the volume object to cen
the volume at 0,0,0 and scale it to fit in a unit cube:

cc = [-0.5, 1.0/64.0]
Volume Objects Using IDL

Chapter 26: Working with Volumes 615
myvolume -> SetProperty, XCOORD_CONV=cc, YCOORD_CONV=cc, $
ZCOORD_CONV=cc

;Create a window and view tree:
mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[200,200])
myview = OBJ_NEW('IDLgrView',VIEWPLANE_RECT=[-1,-1,2,2], $

ZCLIP=[2.0,-2.0], COLOR=[50,50,50])
mymodel = OBJ_NEW('IDLgrModel')
myview -> Add, mymodel
mymodel -> Add, myvolume
;Rotate the volume a little and draw it:
mymodel -> rotate, [1,1,1], 45
mywindow -> Draw, myview

Figure 26-1: Volume Object
Using IDL Volume Objects

616 Chapter 26: Working with Volumes

ese
ethod.

 of

ithin
e

Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. Th
properties can be set when the object is created or set using the SetProperty m

Opacity

The opacity table controls the transparency of a given voxel value. Manipulation
the opacity table is critical to improving the quality of a rendering. The following
example makes the prism transparent and the cubes opaque, allowing the cube w
the prism to be seen, by setting the OPACITY_TABLE0 array to low values for th
prism and high values for the cubes.

opac = BYTARR(256)
opac[0:127] = BINDGEN(128)/8
;Voxel value of one cube:
opac[255] = 255
;Voxel value of the other cube:
opac[128] = 255
myvolume -> SetProperty, OPACITY_TABLE0=opac
mywindow -> Draw, myview
Volume Object Attributes Using IDL

Chapter 26: Working with Volumes 617

can
bes,
Color

Each voxel value can be assigned an individual color as well. This color mapping
be changed by changing the RGB_TABLE0 property. To further highlight the cu
we change their colors to blue and red, using the following statements:

rgb = bytarr(256,3)
;Grayscale ramp for the prism:
rgb[0:127,0] = bindgen(128)
rgb[0:127,1] = bindgen(128)
rgb[0:127,2] = bindgen(128)
;One cube is red:
rgb[128,*] = [255,0,0]
;One cube is blue:

Figure 26-2: Volume Object Opacity
Using IDL Volume Object Attributes

618 Chapter 26: Working with Volumes

used
are

L

D
ht

es

xels
g,
t).

P).
rgb[255,*] = [0,0,255]
myvolume -> SetProperty, RGB_TABLE0=rgb
mywindow -> Draw, myview

Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are
to approximate a surface normal for each voxel, and the lights in the current view
then applied. The gradient shading is enabled by setting the LIGHTING_MODE
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDE
property allows both sides of a voxel to be lighted. An example of this using a lig
source follows:

myvolume->SetProperty, AMBIENT=[100,100,100], LIGHTING_MODEL=1, $
TWO_SIDED=1

lmodel = OBJ_NEW('IDLgrModel')
myview -> Add, lmodel
light = OBJ_NEW('IDLgrLight', TYPE=2, LOCATION=[0,0,1], $

COLOR=[255,255,255])
lmodel -> Add, light
mywindow -> Draw, myview
;Disable lighting:
myvolume -> SetProperty, LIGHTING_MODEL=0

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sourc
increases the rendering time.

Compositing

The volume object supports a number of methods for blending the projected vo
together to form an image. By default, Alpha blending is used. (In Alpha blendin
each voxel occludes voxels behind it according to the opacity of the voxel in fron
Another common compositing technique is the maximum intensity projection (MI
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one. SeeIDLgrVolume::Init in theIDL
Reference Guide for other options.

myvolume -> SetProperty, COMPOSITE_FUNCTION=1
mywindow -> Draw, myview
Volume Object Attributes Using IDL

Chapter 26: Working with Volumes 619

r
 is

els
by

ated
ear

al to

 the
e
is
ering
els
ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the othe
(solid) objects properly. To increase rendering speed, the intersection operation
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

myvolume -> SetProperty, ZBUFFER=1

Additionally, volume objects allow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such vox
(even though no change is made in the image color). This writing to the zbuffer
transparent voxels be disabled by setting the ZERO_OPACITY_SKIP property.

myvolume -> SetProperty, ZERO_OPACITY_SKIP=1

Note
In volumes with large numbers of voxels with their opacity set to zero, enabling
ZERO_OPACITY_SKIP can improve rendering performance.

Interpolation

By default, when rendering a volume object, values between the voxels are estim
using nearest neighbor sampling. When higher quality rendering is desired, trilin
interpolation can be selected instead by setting the INTERPOLATE property equ
one.

myvolume -> SetProperty, INTERPOLATE=1

Note
Trilinear interpolation will cause the rendering to take considerably longer than
nearest neighbor interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use
RENDER_STEP property to control this speed/quality trade-off. The value of th
RENDER_STEP property specifies a step size in the screen dimensions which
used to skip voxels during the rendering process. Larger values yield faster rend
times, but lower final image quality. For example, to render only half as many vox
in the screen Z dimension, use the following statement:

myvolume -> SetProperty, RENDER_STEP=[1,1,2]
Using IDL Volume Object Attributes

620 Chapter 26: Working with Volumes

tion
A more complex example using a volume object is shown in the volume visualiza
demo. To start the demos, type demo at the IDL command prompt.

Figure 26-3: Volume Object Rendering
Volume Object Attributes Using IDL

Chapter 27:

Selecting Objects
. The
This chapter will describe the IDL Object Graphics selection and direct manipulation features
following topics are covered in this chapter:
6
Selection and Data Picking. 622
Selection . 623
A Selection Example. 625

Data Picking. 62
A Data Picking Example 627
Using IDL 621

622 Chapter 27: Selecting Objects

the
that
re

t the
Selection and Data Picking

When graphical items are drawn to a window, it is often useful to be able to click
mouse on a certain location and request a list of the items that are displayed at
particular location. In IDL, this is called selection. Because IDL object graphics a
retained in memory, they can be uniquely identified by their individual object
references, and therefore can be reported as having been selected.

In many cases, it is also useful to be able to request the data value of the object a
user-selected location. In IDL, this is called data picking.
Selection and Data Picking Using IDL

Chapter 27: Selecting Objects 623

that

f an

ic
lect
ven
al

ord.

 the
If no

n
n
is to

an
he
Selection

With object graphics, the process of selection is very similar to drawing, except
nothing is displayed on the screen, and information about which objects were
selected is returned to the user. Selection is performed via the Select method o
IDLgrWindow object.

Three types of objects may be selected: view objects, model objects, and graph
atoms. For a given scene that contains more than one view, you can use the Se
method to determine which view is selected at a given location. Likewise, for a gi
view, you can use the Select method to determine which models and/or graphic
atoms within that view are selected.

An object is considered to be selected if its graphical rendering falls within a box
centered on a given location. The dimensions of the box are set via the
DIMENSIONS keyword to the Select method. Both the location argument and
dimensions keyword values are measured in units specified via the UNITS keyw

The Select method returns a vector of objects, sorted in depth order (nearest to
eye is first), that meet the criteria of having been selected at the given location.
objects are selected at the given location, the Select method returns –1.

SeeIDLgrWindow::Select in theIDL Reference Guide for a detailed description of
the Select method.

Selecting Views

To determine which of a set of views within a given scene are selected at a give
location, call the Select method on an IDLgrWindow object with an instance of a
IDLgrScene object as its first argument, and the location at which the selection
occur as its second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedViews = myWindow -> Select(myScene, myLoc)

Selecting Graphic Atoms

To determine which graphic items within a given view are selected at a given
location, call the Select method on an IDLgrWindow object should be called with
instance of an IDLgrView object as its first argument, and the location at which t
selection is to occur as the second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedGraphics = myWindow -> Select(myView, myLoc)
Using IDL Selection

624 Chapter 27: Selecting Objects

than

f the
del
e
rked

y of

 to
Note
If a model within the view is set as a selection target, the model object, rather
its contained graphic atoms, is returned in the vector of selected objects.

 Selecting Models

In some cases, a group of graphic atoms may be considered subcomponents o
model in which they are contained. As a result, you may want to know when a mo
object (rather than one or more of its atomic parts) has been selected. To enabl
selection of a model (rather than its graphic atoms), the model object must be ma
as a selection target.

To mark a model as being a selection target, set the SELECT_TARGET propert
the model object to a nonzero value.

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView')
myModel = OBJ_NEW('IDLgrModel')
myView -> Add, myModel
myModel -> SetProperty, /SELECT_TARGET
myAxis = OBJ_NEW('IDLgrAxis', 0)
myModel -> Add, myAxis
myWindow -> Draw, myView

In the above example, if a selection at location [myX, myY] would normally select the
axis object, the returned value of the Select method will be the object reference
myModel rather than the object reference to myAxis.
Selection Using IDL

Chapter 27: Selecting Objects 625

hat
A Selection Example

An example procedure namedsel_obj.pro is included in theexamples/object
subdirectory of the IDL distribution. This file creates two views, places models
within the views, and provides an interface to let you choose between selecting
models or graphic atoms. A mouse click in one of the views will update a label t
identifies the current selections.
Using IDL A Selection Example

626 Chapter 27: Selecting Objects

to

d of
an
Data Picking

To get the data value that corresponds to a particular window location, use the
PickData method of an IDLgrWindow object. Note that you must draw the view
the window before calling the PickData method.

myLoc = [myMouseEvent.x, myMouseEvent.y]
result = myWindow -> PickData(myView, myModel, myLoc, returnedXYZ)

The PickData method returns a value that is 0 (zero) if the pick hit the backgroun
the view, 1 (one) if the pick hit the one of the graphic atoms in the view, or –1 if
error occurred (for instance, if the pick location lies outside of the given view).

The data value at the pick is returned in thereturnedXYZ argument. This value
represents the mapping of the window location to the data space of the model.
Data Picking Using IDL

Chapter 27: Selecting Objects 627

d

A Data Picking Example

The example proceduresurf_track.pro includes code using the PickData metho
to retrieve data values from a surface object.surf_track.pro is located in the
examples/object subdirectory of the IDL distribution, and is described in“An
Interactive Surface Example” on page 602.
Using IDL A Data Picking Example

628 Chapter 27: Selecting Objects
A Data Picking Example Using IDL

Chapter 28:

Using Destination
Objects

The following topics are covered in this chapter:
8

0
3

Overview . 630
Window Objects . 631
Using Window Objects. 634
Instancing . 636

Buffer Objects . 63
Clipboard Objects 639
Printer Objects. 64
VRML Objects. 64
Using IDL 629

630 Chapter 28: Using Destination Objects

le

 the

t of
rn
they

ften
Overview

Once a graphic object tree has been created, it can be displayed, or drawn, to a
physical destination device (such as a computer screen or printer), to a memory
location (such as a buffer or the operating system clipboard), or to a particular fi
format (such as a VRML file). Destination objects represent the final locations to
which object graphics are drawn, and provide methods that allow you to control
properties of the physical device, memory buffer, or file format.

Each destination object includes a GetFontnames method, which returns the lis
available fonts that can be used in IDLgrFont objects. This method will only retu
the names of the available TrueType fonts. Hershey fonts will not be returned as
are fixed—seeAppendix G, “Fonts” in theIDL Reference Guide for more
information.

There are five destination objects:

1. buffers (IDLgrBuffer objects),

2. clipboards (IDLgrClipboard objects),

3. printers (IDLgrPrinter objects)

4. VRML files (IDLgrVRML objects), and

5. windows (IDLgrWindow objects).

Of the five destination objects, Window objects are the most common and most o
used, and will be addressed first.
Overview Using IDL

Chapter 28: Using Destination Objects 631

reen
tand-

it
s

t to

 a
rd

ce to

ses
t

.

Window Objects

Objects of the IDLgrWindow class represent a rectangular area on a computer sc
into which graphics hierarchies can be rendered. Window objects can be either s
alone windows on the screen or drawable areas in an IDL draw widget.

Creating Window Objects

There are two ways to create window objects: directly via the window object’s In
method and indirectly by creating a draw widget that uses a window object as it
drawable area.

Using the Init Method

The IDLgrWindow::Init method takes no arguments. Use the following statemen
create a window object:

myWindow = OBJ_NEW('IDLgrWindow')

The window is displayed on the screen as soon as it has been created.

Creating a Draw Widget that Uses a Window Object

To create a draw widget that uses an Object Graphics window object rather than
Direct Graphics window for its drawable area, set the GRAPHICS_LEVEL keywo
to the WIDGET_DRAW function equal to 2:

drawwid = WIDGET_DRAW(base, GRAPHICS_LEVEL=2)

Once the draw widget has been realized, you can then retrieve the object referen
the draw widget’s window object using the WIDGET_CONTROL procedure:

WIDGET_CONTROL, drawwid, GET_VALUE=myWindow

Color Model

By default, window objects use the RGB color model. To create a window that u
the Indexed color model, set the COLOR_MODEL property of the window objec
equal to 1 (one) when creating the window:

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)

You cannot change the color model used by a window after it has been created

SeeChapter 20, “Working with Color” for a discussion of the two color models.
Using IDL Window Objects

632 Chapter 28: Using Destination Objects

 the
ent

port
ide
ill

rtant

not

e

em

used

es
erty

le
ware
Hardware vs. Software Rendering

The RENDERER property to the IDLgrWindow object (and the preference of the
same name in the IDL Development Environment) allows you to select between
operating system’s native (hardware) rendering system and a platform independ
(software) rendering system for IDL Object Graphics displays.

Hardware rendering allows IDL to make use of 3D graphics accelerators that sup
OpenGL, if any are installed in the system. In general, such accelerators will prov
better rendering performance for many object graphics displays. By default, IDL w
use hardware rendering when possible.

The software rendering system will generally run more slowly than the hardware
rendering system. However, use of the software rendering system has a few impo
advantages:

• Software rendering is available in situations where hardware rendering is
(remote display to non-OpenGL capable X servers, for example).

• The number of expose events an IDL application will have to respond to is
much smaller when software rendering is used.

• The software rendering system is generally much faster than the hardwar
rendering system for Instancing.

• Software rendering can be used to avoid bugs in hardware rendering syst
driver software (over which Research Systems has no control).

• Finally, on some displays (most notably SGI systems with 24 or fewer
bitplanes), the quality of the screen display will be better when using the
software rendering system because its design allows more bitplanes to be
for graphics display.

Note
IDL may not be able to provide hardware rendering in all situations and on
particular platforms. The Macintosh and many Unix platforms do not support
hardware rendering and will always use the software rendering system. In cas
where hardware rendering is not available, the setting of the RENDERER prop
(and the IDL Development Environment preference) will be quietly ignored.

Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawab
area. The limits are device-dependent — they depend both on your graphics hard
Window Objects Using IDL

Chapter 28: Using Destination Objects 633

em

and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280-by-1024 pixels; the limit on your syst
may be larger.
Using IDL Window Objects

634 Chapter 28: Using Destination Objects

.

n
ed

s

o

Using Window Objects

To render a graphics tree to a window, call the IDLgrWindow::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

myWindow -> Draw, myView

or

myWindow -> Draw, myScene

All objects contained within the view or scene object will be drawn to the window

Erasing a Window

To erase the contents of a window, call the IDLgrWindow::Erase method. You ca
optionally supply a color to use to clear the window. By default, the window is eras
to white.

For example, to erase the window to black:

myWindow -> Erase, COLOR=[0,0,0]

Exposing or Hiding a Window

To expose a window so that it is the front-most window on the screen, call the
IDLgrWindow::Show method with a nonzero value as the argument:

myWindow -> Show, 1

To hide a window, call the IDLgrWindow::Show method with a zero value as the
argument:

 myWindow -> Show, 0

Iconifying a Window

To iconify a window, call the IDLgrWindow::Iconify method with a nonzero value a
its argument:

myWindow -> Iconify, 1

To restore an iconified window, call the IDLgrWindow::Iconify method with a zer
value as its argument:

myWindow -> Iconify, 0
Using Window Objects Using IDL

Chapter 28: Using Destination Objects 635

e

oon
Setting the Window Cursor

To set the appearance of the mouse cursor in an IDLgrWindow object, call the
IDLgrWindow::SetCurrentCursor method with a string argument representing th
name of the cursor. Valid string values for the cursor name argument are:

The following statement sets the cursor to an up arrow:

myWindow -> SetCurrentCursor, 'UP_ARROW'

The ORIGINAL cursor sets the cursor to the window system’s default cursor.

SeeIDLgrWindow::SetCurrentCursor in theIDL Reference Guide for details on
cursor values.

Saving/Restoring Windows

When an instance of an IDLgrWindow object is restored via the RESTORE
procedure), it is not immediately displayed on the screen. It will be displayed as s
as one of its methods (Draw, Erase, Iconify, etc.) is called.

ARROW CROSSHAIR

ICON IBEAM

MOVE ORIGINAL

SIZE_NE SIZE_NW

SIZE_SE SIZE_SW

SIZE_NS SIZE_EW

UP_ARROW
Using IDL Using Window Objects

636 Chapter 28: Using Destination Objects

 the
ts in
ot of
ad of

 is

st,
t the
e

Instancing

For interactive graphics, where views are drawn repeatedly over time, it is often
case that one small part of the view is changing continuously, but the other objec
the view remain static. In such a case, it may be more efficient to take a snapsh
the unchanged portion of the view and display the snapshot for each draw inste
re-rendering each of the unchanging objects from scratch. The objects that are
changing are rendered as usual. This process is called instancing. It is to your
advantage to use instancing only in cases where displaying the snapshot image
faster than rendering each of the objects that remain unchanged.

The following example shows how a typical instancing loop would be set up. Fir
hide the objects in the view that will be changing. In this example, we assume tha
objects that change continuously are contained by a single model object, with th
object reference myChangingModel. We set the HIDE property for this model to
remove it from the rendered view.

myChangingModel -> SetProperty, HIDE=1

;Next, create an instance of the remaining portion
;of the view by setting the CREATE_INSTANCE keyword to
;the window’s Draw method:
myWindow -> Draw, myScene, /CREATE_INSTANCE

;Next, hide the unchanging objects.
;Assume that the unchanging portion of the
;scene is contained in a single model object.
myUnchangingModel -> SetProperty, HIDE=1

;Set the HIDE property for the changing model
;object equal to zero, revealing the object:
myChangingModel -> SetProperty, HIDE=0

;Set the view object’s TRANSPARENT property.
;This ensures that we will not erase the
;instance data (the unchanging part of the scene)
;when drawing the changing model.
myView -> SetProperty, /TRANSPARENT

;Next, we set up a drawing loop that will render
;the changing model. For example, this loop might
;rotate the changing model in 1 degree increments.
ROT = 0
FOR i=0,359 DO BEGIN

ROT=ROT+1
Instancing Using IDL

Chapter 28: Using Destination Objects 637
myChangingModel->Rotate, [0,1,0], ROT
myWindow -> Draw, myView, /DRAW_INSTANCE

ENDFOR

;After the drawing loop is done, ensure nothing is hidden,
;and that the view erases as it did before:
myUnchangingModel -> SetProperty, HIDE=0
myView -> SetProperty, TRANSPARENT=0
Using IDL Instancing

638 Chapter 28: Using Destination Objects

the
iding
ls.

o

to or
Buffer Objects

Objects of the IDLgrBuffer class represent a memory buffer into which graphics
hierarchies can be rendered. Object trees can be drawn to instances of the
IDLgrBuffer object and the resulting image can be retrieved from the buffer using
Read() method. The off-screen representation avoids dithering artifacts by prov
a full-resolution buffer for objects using either the RGB or Color Index color mode

Creating Buffer Objects

The IDLgrBuffer::Init method takes no arguments. Use the following statement t
create a buffer object:

myBuffer = OBJ_NEW('IDLgrBuffer')

This creates an object that is available as a destination device to be rendered in
copied from.

SeeIDLgrBuffer in theIDL Reference Guidefor details on creating and using buffer
objects.
Buffer Objects Using IDL

Chapter 28: Using Destination Objects 639

the
he
ulated

t to
Clipboard Objects

Objects of the IDLgrClipboard class will send Object Graphics output to the
operating system native clipboard in bitmap format. The format of bitmaps sent to
clipboard is operating system dependent: output is stored as a PICT image on t
Macintosh, as a device-independent bitmap under Windows, and as an Encaps
PostScript (EPS) image under Unix and VMS.

Creating Clipboard Objects

The IDLgrClipboard::Init method takes no arguments. Use the following statemen
create a clipboard object:

myClipboard = OBJ_NEW('IDLgrClipboard')

This creates an object that represents the system-native clipboard buffer.

SeeIDLgrClipboard::Init in theIDL Reference Guide for details on creating
clipboard objects.
Using IDL Clipboard Objects

640 Chapter 28: Using Destination Objects

s

to

is

d in

the
l to

r

a

Printer Objects

Objects of the IDLgrPrinter class represent a physical printer onto which graphic
hierarchies can be rendered.

Creating Printer Objects

The IDLgrPrinter::Init method takes no arguments. Use the following statement
create a printer object:

myPrinter = OBJ_NEW('IDLgrPrinter')

This creates an object that maintains information about the printer. By default, th
information pertains to the default printer installed for your system. To select a
different printer or setup attributes of the printer, use the printer dialogs describe
the next section.

SeeIDLgrPrinter in theIDL Reference Guide for details on creating printer objects.

Color Model

By default, printer objects use the RGB color model. To create a printer that uses
Indexed color model, set the COLOR_MODEL property of the printer object equa
1 (one) when creating the printer:

myWindow = OBJ_NEW('IDLgrPrinter', COLOR_MODEL=1)

You cannot change the color model used by a printer after it has been created.

SeeChapter 20, “Working with Color” for a discussion of the two color models.

Printer Dialogs

IDL includes two functions useful for controlling printers and printjobs.

DIALOG_PRINTERSETUP

Call the DIALOG_PRINTERSETUP function with the object reference of a printe
object as its argument to open an operating system native dialog for setting the
applicable properties of a particular printer. DIALOG_PRINTERSETUP returns
nonzero value if the user pressed theOK button in the dialog, or zero otherwise.

result = DIALOG_PRINTERSETUP(myPrinter)

SeeDIALOG_PRINTERSETUP in theIDL Reference Guide for details.
Printer Objects Using IDL

Chapter 28: Using Destination Objects 641

ct
b.

e as

 a
DIALOG_PRINTJOB

Call the DIALOG_PRINTJOB function with the object reference of a printer obje
as its argument to open an operating system native dialog to initiate a printing jo
DIALOG_PRINTJOB returns a nonzero value if the user pressed theOK button in
the dialog, or zero otherwise.

result = DIALOG_PRINTJOB(myPrinter)

SeeDIALOG_PRINTJOB in theIDL Reference Guide for details.

Drawing to a Printer

To draw a graphics tree to a printer, call the IDLgrPrinter::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

myPrinter -> Draw, myView

or

myPrinter -> Draw, myScene

All objects contained within the scene or view will be drawn to the printer.

Note
The scene or view to be drawn may be the same as the scene or view being
displayed in one or more windows.

Note
The IDLgrPrinter::Draw method has keywords that allow you to send the imag
a bitmap or vector format. For more information, seeIDLgrPrinter::Draw in the
IDL Reference Guide.

Starting a New Page on a Printer

To ensure that any subsequent calls to the IDLgrPrinter::Draw method occur on
new page, call the IDLgrPrinter::NewPage method:

myPrinter -> NewPage
Using IDL Printer Objects

642 Chapter 28: Using Destination Objects

is

 of
Submitting a Printer Job

To actually submit a printer job, call the IDLgrPrinter::NewDocument method. Th
method and submits the printing job (consisting of all previous calls to
IDgrPrinter::Draw and IDLgrPrinter::NewPage) to the printer.

After this method has been called, the printer is prepared to accept a new batch
graphics calls (via IDLgrPrinter::Draw).

myPrinter -> NewDocument
Printer Objects Using IDL

Chapter 28: Using Destination Objects 643

n a
s

to

L

VRML Objects

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy into a VRML 2.0 format file. The graphics tree can only contai
single view due to limitations in the VRML specification. The resulting VRML file i
interactive and allows you to explore the geometry interactively using a VRML
browser.

Creating VRML Objects

The IDLgrVRML::Init method takes no arguments. Use the following statement
create a VRML object:

myVRML = OBJ_NEW('IDLgrVRML')

This creates an object that will convert object hierarchies rendered to it into VRM
format files.

SeeIDLgrVRML in theIDL Reference Guide for details on creating and using
VRML objects.
Using IDL VRML Objects

644 Chapter 28: Using Destination Objects
VRML Objects Using IDL

Chapter 29:

Subclassing from
Object Graphics
 The
This chapter describes the creation of composite classes or subclasses in Object Graphics.
following topics are covered in this chapter:
Creating Composite Classes or Subclasses 646
Using IDL 645

646 Chapter 29: Subclassing from Object Graphics

d for
f
this

r

Creating Composite Classes or Subclasses

Research Systems, Inc., has provided a rich set of basic objects that an be use
creating visualizations. You may find that you are using a certain combination o
these objects again and again within your applications for a particular purpose. If
is the case, you might want to consider defining a composite object class that
encapsulates the combination of those subcomponents.

In fact, Research Systems has already defined a few composite classes on you
behalf. These include theIDLgrColorbarobject and theIDLgrLegendobject found in
theIDL Reference Guide. You will find the IDL code for these objects in thelib
directory of your IDL distribution.

Another example can be found in theidlexshow3_define.pro in the
examples/object directory. In this case, an image, surface, and contour
Creating Composite Classes or Subclasses Using IDL

Chapter 29: Subclassing from Object Graphics 647

 To

ble in
t that
representation are combined into a single object called the IDLexShow3 object.
see this object being used in an application, run the show3_track routine

You may also find that you want to customize one or more of the classes availa
Object Graphics. For instance, you may want to create a specialized image objec
can handle 16-bit palettes. An example of this is provided in
idlexpalimage_define.pro in theexamples/object directory.

Figure 29-1: Show3_track example
Using IDL Creating Composite Classes or Subclasses

648 Chapter 29: Subclassing from Object Graphics
Creating Composite Classes or Subclasses Using IDL

Chapter 30:

Performance Tuning
Object Graphics

The following topics are covered in this chapter:
8

Overview . 650
Polygon Mesh Optimization. 651
Normal Computations. 654
Retained Graphics and Expose Events . . . 655

Improving Redraw Performance 656
Back-face Culling 657
Lighting . 65
Using IDL 649

650 Chapter 30: Performance Tuning Object Graphics

tions
Overview

The Object Graphics subsystem is designed to provide a rich set of graphical
functionality that can be displayed in reasonable time. This section offers sugges
on how to utilize the object graphics in such a way as to take full advantage of
performance enhancement benefits.
Overview Using IDL

Chapter 30: Performance Tuning Object Graphics 651

ray
s.

y
the

ding

e

, the
Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally, a connectivity ar
describing how those vertices are to be connected to form one or more polygon
Internally, IDL can identify three special types of polygonal meshes that may be
represented very efficiently and therefore displayed substantially faster than
individually described polygons. These special mesh types are characterized b
repetitive patterns in the connectivity of the vertices. In performance terms, it is to
user’s advantage to utilize this optimization whenever possible by appropriately
preparing the connectivity list according to the rules described for the correspon
type of mesh. The special mesh types are as follows:

Quad Strips

A quad strip is a connected set of four-sided polygons (see“Polygon Mesh
Optimization” in Chapter 23). To take advantage of accelerated quad strips, the
connectivity should be set up so that the first and last vertex for one quad are th
same as the second and third of the previous quad.

For example, to use a quad strip optimization for the polygons in the figure above
connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2 ,6, 5, $

Figure 30-1: Quad Strip Mesh

0 1 2 3

4 5 6 7

8 9 10 11
Using IDL Polygon Mesh Optimization

652 Chapter 30: Performance Tuning Object Graphics

x. To
o that
the

tices

ave
e or
4, 2, 3, 7, 6, $
4, 4, 5, 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

Triangle Fans

A triangle fan mesh is a set of connected triangles that all share a common verte
take advantage of accelerated triangle fans, the connectivity should be set up s
the first vertex in every triangle is the common vertex, and the second vertex is
same as the last vertex of the previous triangle.

For example, to use a triangle fan optimization for the polygons in the left-hand
figure below, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, $
3, 0, 3, 4, $
3, 0, 4, 5])

Triangle Strips

A triangle strip mesh is a set of connected triangles, each of which share two ver
with the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two vertices in every triangle must h
been in the previous triangle and ordered in the same direction (counter-clockwis
clockwise) and the final vertex must be new.

Figure 30-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

2 3 4

1 0 5

0 2 4

1 3 5
Polygon Mesh Optimization Using IDL

Chapter 30: Performance Tuning Object Graphics 653

and

iven
on

tions
rade

ise

ny

on
For example, to use the triangle strip optimization for the polygons in the right-h
figure above, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW('IDLgrPolygon', verts, $

POLYGON=[3, 0, 1, 2, $
3, 2, 1, 3, $
3, 2, 3, 4, $
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any g
polygon object. A single POLYGON keyword value might contain any combinati
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

As the length of the strips or fans grows, and as the percentage of vertex connec
that are optimized by the rules described above increases, the performance upg
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherw
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In a
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimizati
automatically without programmer intervention.
Using IDL Polygon Mesh Optimization

654 Chapter 30: Performance Tuning Object Graphics

x by
e then

 the

ity,
tually
ormal

ill
ey
Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each verte
averaging the normals of the polygons that share that vertex. These normals ar
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant a new internal cache (for example, if the connectiv
vertices, shading, or style have changed). In some cases, the normals do not ac
change as other modifications are made. In these cases, the expense of default n
computation can be bypassed if the user provides the normals explicitly (via the
NORMALS keyword). These normals can be computed by using the
COMPUTE_MESH_NORMALS routine in theIDL Reference Guide. The resulting
normals, if passed in via the NORMALS keyword of the IDLgrPolygon object, w
be reused every time the polygon is drawn (without further computation) until th
are replaced explicitly by the user.
Normal Computations Using IDL

Chapter 30: Performance Tuning Object Graphics 655

s
are

n two
the

king
ty to

ated.

he
t can

s of
een
are
Retained Graphics and Expose Events

During the course of an IDL session, it is possible that an IDL window will be
obscured by another window. When the hidden window is brought to the front, it
contents need to be regenerated. The user interface toolkit portions of the window
repaired automatically. However, the drawable portion of the window (in which
graphics are rendered) requires special attention. The user can choose betwee
methods to handle this situation. The first option is to set the RETAIN property on
IDLgrWindow object to 2, which suggests that IDL is required to retain a backing
store of the entire contents of the window. When the window is exposed, the bac
store will be copied to the screen. The second option is to set the RETAIN proper
0 (no retention), and to request that expose events are to be reported for draw
widgets. Whenever a portion of the window becomes exposed, an event is gener
The event handler for the drawable can then re-issue a draw of the appropriate
contents for that window.

While the second option may seem a bit more complicated, it is to the users
advantage to take this approach for performance reasons. When RETAIN is 0, t
window device drivers are able to utilize a double-buffered rendering scheme tha
capitalize on hardware acceleration. For interactive applications, this hardware
acceleration can have a crucial impact on the perceived manipulation capabilitie
the interface. When RETAIN is 2, on the other hand, IDL will render to an offscr
pixmap, which often relies on a software implementation. If several drawing calls
issued in a row, the performance may be noticeably slower.
Using IDL Retained Graphics and Expose Events

656 Chapter 30: Performance Tuning Object Graphics

iew
o

all
e
ged
ging
or
Improving Redraw Performance

Within interactive graphics applications, it is often necessary to redraw a given v
over and over again (for example, as the user clicks and drags within the view t
manipulate one or more objects). During those redraws, it may be that only a sm
subset of the objects within the view is changing, while the remaining objects ar
static. In such a case, it may be more efficient to take a snapshot of the unchan
portion of the view. This snapshot can be reused for each draw, and only the chan
portion of the view needs to be re-rendered. This process is called instancing. F
more information on instancing, see“Instancing” on page 636.
Improving Redraw Performance Using IDL

Chapter 30: Performance Tuning Object Graphics 657

often
way
the

to
 eye.

t to
Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is
wasteful to spend any time rendering the polygons whose normal vector faces a
from the eye because it is known that the polygons whose normals face toward
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficial to employ back-face culling, which is simply the process of choosing
skip the rasterization of any polygons whose normal vector faces away from the

To enable back-face culling, set the REJECT property on the IDLgrPolygon objec
1.
Using IDL Back-face Culling

658 Chapter 30: Performance Tuning Object Graphics

the
e
.
lem

e
n of
ting
ting
Lighting

Lighting computations are generally set up to compute the light intensity based on
normal vector for the polygon. If the polygon normal faces away from the eye, th
lighting model will likely determine that the light intensity for that polygon is zero
When the polygonal mesh being rendered is a closed surface, this is not a prob
because the back-facing polygons will always be obscured. However, when the
polygon mesh represents an open shape (for which back-facing polygons may b
visible), the dark appearance of these polygons may hinder the user’s perceptio
the overall shape. In such a case, two-sided lighting can be useful. Two-sided ligh
is the process of reversing the normals for all back-facing polygons before compu
the light intensities for that polygon.

In IDL’s Object Graphics, two-sided lighting is enabled by default. When the
additional lighting calculation is not required, one-sided lighting can be used to
improve rendering performance. On an IDLgrModel object, set the LIGHTING
property to a value of 1 to enable one-sided lighting.
Lighting Using IDL

Index

Symbols
!EDIT_INPUT system variable, 37
!MAP system variable, 325
!ORDER system variable, 358
!P.MULTI system variable, 270
operator, 421
operator, 422
$ character, 47
@ character, 48

Numerics
3D

text objects, 567
transformations, 309

A
A_CORRELATE function, 413, 426, 461
aborting IDL, 45
about IDL, 16
accuracy

floating-point operations, 418
numerical algorithms, 416

action routines, 142
Aitoff map projection, 335
Albers equal-area conic projection, 344
aliasing, 395
aligning text objects, 566
alpha blending, 605, 618
alpha channel, 604
AMOEBA function, 455
analytic signal, 397
animation, 307
Using IDL 659

660 B
annotating text objects, 566
annotations

plots, 255
ARMA filter , 402
arrays

column-major indexing, 420
condition number computation, 451
eigenvalue computing, 434
eigenvector computing, 434
infinity norm computation, 451
memory allocation under VMS, 33
multiplying, 421
rotating, 301
row-major indexing, 420
sparse, 456
stored in structure form, 456
symmetric, 421
tridiagonal, 434
upper-Hessenberg, 434

ASCII
importing using macros, 189
reading files, 223

ASCII_TEMPLATE function, 223
atomic graphic objects, 487, 503
attribute objects, 490, 504, 544
automatic compilation, 44
autoregressive moving average filters, 402
axes

logarithmic, 268
plotting, 275
range, 251
scaling, 249

axis object, 487, 559
AXIS procedure, 275
axis tick labels, 565
axis title, 564
azimuthal equidistant map projection, 335
azimuthal map projections, 332

B
back-face culling, 657
backing store

Macintosh platform, 172
Motif platform, 127
Windows platform, 86

bandpass filters, 403
bandstop filters, 403
bar charts, 261
baseline changes to text objects, 567
batch files, 48

IDLDE startup file
Macintosh platform, 174
Motif platform, 129
Windows platform, 89

using as startup file
discussion, 51

batch mode, 48
bilinear

transform, 409
BILINEAR function, 435
bilinear interpolation, 435
binary data

importing using macros, 195
template interface, 231

BINARY_TEMPLATE function, 232
BLK_CON function, 413
boundaries

maps, 326
box charts, 261
boxcar filter, 407
Bristol Technology, 42
BROYDEN function, 453
Broyden’s method, 453
buffer object, 492, 638
buffer objects

creating, 638
overview, 638

byte ordering
big endian, 196, 231
binary data, 196, 231
Index Using IDL

 C 661
little endian, 196, 231
native method, 196, 231

BYTSCL function, 360

C
C_CORRELATE function, 413, 426, 461
cell drawing using contour method, 282
central map projection, 334
changing working directory on Macintosh, 179
channels

alpha, 604
image objects, 604

CHECK_MATH function, 419
CHOLDC procedure, 451
CHOLSOL function, 451
chromacoded editor

Motif platform, 128
Windows platform, 95

CIA World Map database, 350
clipboard object, 492
clipboard objects

creating, 639
clipboard support

graphics windows
Macintosh, 157
Windows, 63

clipping planes, 518
CLUST_WTS function, 467
CLUSTER function, 467
color

mapping voxel values, 617
pixel depth on Macintosh, 172

color indices, 371
color map flashing, 133
color map sharing in Motif, 133
color model

destination objects, 536
digital data, 533
indexed, 534
palette objects, 537

printers, 640
RGB, 533, 535
window objects, 631

color palette
Macintosh platform, 171
Windows platform, 98

color property
specifying color values, 538

color systems
HLS, 363
HSV, 363
RGB, 363

color tables
common block, 368
loading, 364
obtaining, 368
overview, 363
predefined, 366
switching between devices, 369

colorbar object, 489
colorbar objects

creating, 608
overview, 608
using, 608

coloring
vertices, 580

colors
indices, 371
reserving for IDL, 133
tables,Seecolor tables

COLORS common block, 368
column-major indexing, 420
combining

contour and surface plots, 309
combining transformations, 523
COMFIT function, 428
Command Input Line

anchoring on Macintosh platform, 171
IDLDE

Macintosh platform, 154, 171
Motif platform, 103
Using IDL Index

662 C
Windows platform, 61
command line

switches, 27
command line options

Motif platform, 134, 140
command recall, 35
command stream substitutions on Motif, 140
common methods in object classes, 483
compiling

functions and procedures, 44
programs on Macintosh, 179

compiling files
IDLDE

Macintosh platform, 162
Motif platform, 110
Windows platform, 70

composite classes, 646
concave polygons, 555
COND function, 451
conformal conic map projection, 343
CONSTRAINED_MIN procedure, 455
contacting RSI, 22
container object, 485
continents, 328
contour object, 487, 572
contour plots

direction of grade, 294
filling , 293
labeling, 291
overlaying images, 287, 287
overview, 281
smoothing, 292

CONTOUR procedure, 281, 309
Control Panel Buttons

modifying in Motif, 139
Motif platform, 102

controlling the device cursor, 374
CONVERT_COORD function, 247, 247, 304
convex polygons, 555
CONVOL function, 413
Cooley-Tukey algorithm, 396

coordinate conversion, 524
coordinate systems

scaling coordinates, 510
transformation, 510

coordinate transformations, 524
coordinates

converting, 247, 304
data, 246
device, 246
homogeneous, 299
normal, 246

CORRELATE function, 426, 467
correlation

analysis, 423
coefficient, 423, 424
routines for computing, 426

CRAMER function, 451
creating

buffer objects, 638
clipboard objects, 639
colorbar objects, 608
contour objects, 572
image objects, 604
legend objects, 585
light objects, 599
plot objects, 581
polygon objects, 575
polyline objects, 580
printer objects, 640
surface objects, 594
volume objects, 614
VRML objects, 643
window objects, 631

creating axis objects, 559
creating text objects, 566
CRVLENGTH function, 428, 444
CTI_TEST function, 439, 467
cubic spline interpolation, 436
culling to improve performance, 657
cursor

controlling position, 374
Index Using IDL

 D 663
determining position, 277
CURSOR procedure, 277
curve fitting

discussion, 427
routines, 428

CURVEFIT function, 427, 428
customizing

IDLDE
Macintosh platform, 170
Motif platform, 122
Windows platform, 81

CW_FILESEL function, 219
cyclical fluctuation, 459
cylindrical equidistant map projection, 342
cylindrical map projections, 340

D
data coordinates, 246
data picking, 622, 626
Davidon-Fletcher-Powell minimization, 455
debugging, 40

IDLDE
Macintosh platform, 156, 162
Motif platform, 110
Windows platform, 70

default font, 545, 569
Delaunay triangulation, 435
derived variables, 463
destination device, 630
destination objects, 492

color models, 536
drawing, 630

DETERM function, 451
device

controlling the cursor, 374
coordinates, 246
graphics

independent, 242
independent graphics, 242

device independent graphics, 479

DFPMIN procedure, 455
DFT, 383
DIALOG_PICKFILE function, 217, 217
DIALOG_PRINTERSETUP function, 640
DIALOG_PRINTJOB function, 641
DIALOG_READ_IMAGE function, 210
DIALOG_WRITE_IMAGE function, 212
dialogs for printing, 640
dicer, 320
differences among platforms

Macintosh, 178
Windows, 96

digital filters, 402
digital signal processing, 379
DIGITAL_FILTER function, 403, 413
Direct Graphics, 478

clipboard support
Macintosh platform, 157
Windows platform, 63

overview, 240
direction of grade, 294
discrete Fourier transform, 383
discrete wavelet transform, 399
display

graphics driver
Windows platform, 96

isosurfaces, 318
DISPLAY environment variable, 32
displaying images, 357
document windows

IDLDE
Macintosh platform, 156
Windows platform, 62

draw widgets, 536, 631
drawing

continents on maps, 328
destination device, 630
meridians, 326
parallels, 326

drawing to a printer object, 641
DWT, 399
Using IDL Index

664 E
E
editing resource files, 132
editor windows

IDLDE
Macintosh platform, 156
Motif platform, 104
Windows platform, 62

EIGENQL function, 434
eigenvalues

complex, 430
real, 429
repeated, 432, 433
routines for computing, 434

EIGENVEC function, 434
eigenvectors

complex, 430
real, 429
repeated, 433
routines for computing, 434

ELMHES function, 434
endian

big, 196, 231
byte ordering, 196, 231
little, 196, 231

environment variables
DISPLAY, 32
IDL_ARRAY_MEMORY_SIZE, 33
IDL_DEVICE, 31
IDL_DIR, 31
IDL_DLM_PATH, 31
IDL_HELP_PATH, 32
IDL_PATH, 32
IDL_STARTUP, 32, 51
LM_LICENSE_FILE, 33
PATH, 27
TERM, 33
used by IDL, 31

equal-area map projection, 344
erasing a window object, 634
error

floating-point, 418

mathematical error assessment, 419
rounding, 418
truncation, 419

error handling on Macintosh, 180
executive commands, 40
exiting IDL, 30
expose events, 655
exposing window objects, 634
external editors in Motif, 150
eye position, 516

F
far clipping plane, 518
Fast Fourier transform, 383

implementation, 396
FFT, 383, 391

Cooley-Tukey algorithm, 396
implementation, 396

FFT function, 413
file selection

using compound widgets, 219
using dialogs, 217

files
filenames

Macintosh platform, 178
Windows platform, 97

Message-of-the-Day
Macintosh platform, 177
Windows platform, 92

MPEG, 610
pointer position

Windows platform, 97
reading

Windows platform, 96
restoring

Windows platform, 97
saving

Windows platform, 97
saving images, 610
Index Using IDL

 G 665
specifying search path
Macintosh platform, 175
Motif platform, 131
Windows platform, 90

writing
Windows platform, 96

filling contours, 293
filling polygons, 260, 576
filters

autoregressive moving average, 402
bandpass, 403
bandstop, 403
boxcar, 407
digital, 402
FIR, 402
highpass, 403
IIR filter, 402
Kaiser’s window, 403
lowpass, 403
moving average, 402
notch, 409
rectangular, 407

finding text
IDLDE

Macintosh platform, 161
Motif platform, 109
Windows platform, 69

finite
impulse response filters, 402

FINITE function, 419
FIR filter, 402
fixed pixels, 288
flashing color maps, 133
floating-point accuracy, 418
font object, 490, 545
FONT property of text objects, 569
fonts

default, 545, 569
hardware, 256
Hershey, 546
selecting, 256

specifying
Macintosh platform, 171, 173
Motif platform, 130
Windows platform, 90

TrueType, 545
type size, 569
type style, 569

Fourier transform
discrete, 383

Fourier transforms
fast, 383

frequency plot leakage, 389
frequency plot smearing, 389
frequency response function, 410
FULSTR function, 458
function, 43
FV_TEST function, 439
FX_ROOT function, 453
FZ_ROOTS function, 453

G
GAUSSFIT function, 428
Gaussian

iterated quadrature, 440
Gauss-Krueger map projection, 341
general perspective map projection, 337
gnomic map projection, 334
gnomonic map projection, 334
Gouraud shading, 315
grade, 294
graphics

atoms, 487, 503
clipboard support

Windows, 63
coordinate systems, 246, 299
data picking, 622
device independent graphics, 242, 479
devices, 241
devices for Direct Graphics, 478
Using IDL Index

666 H
driver information
Windows platform, 96

IDLDE windows
backing store for Macintosh, 172
backing store for Motif, 127
backing store for Windows, 86
changing Macintosh preferences, 171
changing Windows preferences, 85
layout in Motif platform, 104
layout in Windows platform, 85
layout on Macintosh platform, 172
layout on Motif platform, 126
OS clipboard support

Macintosh, 157
Windows, 63

modes, 240, 478
object-oriented, 242, 479
printing, 42
selecting, 622
two-dimensional arrays, 280

graphics hierarchy, 498
graphics object tree, 498
graphs, 571
graticule, 327
GRID3 function, 435
gridding

data extrapolation, 435
Delaunay triangulation, 435
drawing meridians, 326
routines, 435
uniformly-spaced planar data, 435

gridding plots, 264
GS_ITER function, 451

H
Hammer-Aitoff map projection, 336
Hamming window, 393
HANNING function, 413
Hanning window, 391

HDF files
importing using macros, 201

HDF-EOS files
importing using macros, 201

helper objects, 491, 504
Hershey fonts, 546
hidden line removal, 597
hidden object classes, 496
hiding window objects, 634
hierarchy of objects, 498
highpass filters, 403
high-resolution continent outlines, 350
HILBERT function, 413
Hilbert transform, 397
histogram

plot, 380
plotting mode, 258

HLS color system, 365
HLS procedure, 368
home directory

Macintosh platform, 174
Motif platform, 131
Windows platform, 88

homogeneous coordinates, 299
HQR function, 434
HSV color system, 365
HSV procedure, 368
hue, 365
hypothesis testing

routines, 439
statistics, 437

I
iconifying windows, 634
IDENTITY function, 451
IDL

Development Environment
Macintosh platform, 153
Motif platform, 100
Windows platform, 58
Index Using IDL

 I 667
Direct Graphics, 240, 478
Object Graphics, 240, 478
program file format, 43

IDL GUIBuilder
generating files, 66
IDLDE

Windows platform, 62
IDL_ARRAY_MEMORY_SIZE, 33
IDL_Container class, 485
IDL_DEVICE environment variable, 31
IDL_DIR environment variable, 31
IDL_DLM_PATH environment variable, 31
IDL_HELP_PATH environment variable, 32
IDL_PATH environment variable, 32
IDL_STARTUP environment variable, 32, 51
IDLDE

Windows platform
IDL GUIBuilder, 62

IDLDE windows
Editor

Macintosh platform, 156
Motif platform, 104
Windows platform, 62

Graphics
Macintosh, 171
Motif platform, 104
preferences in Windows, 85

IDLgrAxis class, 487
IDLgrBuffer class, 492
IDLgrClipboard class, 492
IDLgrColorbar class, 489
IDLgrContour class, 487
IDLgrFont class, 490
IDLgrImage class, 487
IDLgrLegend class, 489
IDLgrLight class, 487
IDLgrModel class, 486
IDLgrMPEG class, 493
IDLgrPalette class, 490
IDLgrPattern class, 490
IDLgrPlot class, 487

IDLgrPolygon class, 488
IDLgrPolyline class, 488
IDLgrPrinter class, 492
IDLgrScene class, 486
IDLgrSurface class, 488
IDLgrSymbol class, 490
IDLgrTessellator class, 491
IDLgrText class, 488
IDLgrView class, 486
IDLgrViewgroup class, 486
IDLgrVolume class, 488
IDLgrVRML class, 492
IDLgrWindow class, 492
IIR, 402
IIR filter, 409
image interleaving, 604
image object, 487
image objects

alpha blending, 605
channels, 604
creating, 604
interleave property, 606
palette, 607
pixel interleaving, 604
saving as MPEG file, 610
saving to a file, 610
using, 605

image processing
array indexing format, 420

IMAGE_CONT procedure, 287
images

combining with 3D graphics, 312
determining file type, 214
dialog for reading, 210
dialog for saving, 212
displaying, 357
displaying on Macintosh, 172
file selection

compound widget, 219
using a dialog, 217

macros for importing, 185
Using IDL Index

668 J
orientation, 357
overlaying with contour plots, 287
overview, 355
position in display, 358
processing, 354, 356
query file type, 214, 215
raster, 355
read routines, 215
reading from display, 361, 372
routines, 356
scaling, 359
size of display, 358
writing routines, 216

import macro
ASCII files, 189
binary files, 195
image files, 185
scientific data formats, 201

include files, 43
indexed color model, 533, 534
indexing

arrays
column-major format, 420
row-major format, 420

arrays in IDL, 420
infinite impulse response filters, 402
infinity norm computation, 451
initialization of objects, 494
instancing

back-face culling, 657
interactive graphics, 636
lighting, 658
redraw performance, 656
window objects, 636

INT_2D function, 440, 444
INT_3D function, 440, 444
INT_TABULATED function, 444
integration

bivariate functions, 441
discussion, 440

numerical, 440
routines, 444
trivariate functions, 442

interactive graphics
instancing, 636

interleaving
image, 604
image objects, 604
line, 604
pixel, 604
planar, 604
scanline, 604

INTERPOL function, 435
INTERPOLATE function, 435
interpolation

cubic spline, 436
kriging, 436
parametric cubic spline, 436
routines, 435
tabulated data points, 435

interpolation of voxel values, 619
interrupting program execution, 44
INVERT function, 451
isosurface display, 318

J
JOURNAL procedure, 54
journaling, 54

K
Kaiser filter, 403
keyboard shortcuts

IDLDE
Motif platform, 120
Windows platform, 79

KRIG2D function, 436
KW_TEST function, 439, 467
Index Using IDL

 L 669
L
LADFIT function, 428
Lambert’s conformal conic map projection,
343
Lambert’s equal area map projection, 336
leakage, 389
least absolute deviation fit, 428
least squares fit

gradient-expansion routine, 428
non-linear routine, 428
polynomial routine, 428
singular value decomposition, 428

legend object, 489, 585
life-cycle methods, 484
light object, 487
light objects

creating, 599
overview, 599
types of lights, 599
using, 600

light source
changing parameters, 316
shading, 315

lighting, 618, 658
lightness, 365
LINBCG function, 458
line editing, 35
line interleaving, 604
linear

algebra, 423
correlation, 423
equations

routines, 451
regression, 428
systems

condition number, 445
overdetermined, 446
solving simultaneous equations, 445
underdetermined, 448

LINFIT function, 428

LM_LICENSE_FILE environment variable,
33
LNP_TEST function, 439
LOADCT procedure, 366
location

object graphics to view area, 510
location of text, 566
logarithmic

plots, 561
scaling, 268

logical names,See environment variables.
logical unit number

Macintosh platform, 180
LOGIN.COM file, 27
Lomb Normalized Periodogram, 439
lowpass filters, 403
LU_COMPLEX function, 451
LUDC procedure, 451
LUMPROVE function, 451
LUN

Macintosh-specific differences, 180
LUSOL function, 451

M
M_CORRELATE function, 426, 467
MA filter , 402
MACHAR function, 419
Macintosh

backing store, 172
batch files, 174
changing IDLDE working directory, 179
color palette, 171
compiling functions and procedures, 179
displaying images, 172
editor windows, 156
error handling, 180
file search path, 175
IDLDE, 153
LUN differences, 180
mouse differences, 178
Using IDL Index

670 M
optimizing performance with memory, 176
pixel depth, 172
positioning file pointers, 180
reading files, 180
saving files, 180
writing files, 180

macro
importing

ASCII data, 189
binary data, 195
HDF files, 201
HDF-EOS files, 201
image files, 185
NETCDF files, 201

magnitude
signal spectra, 388

main
programs, 43

main IDL directory
Macintosh platform, 174
Motif platform, 131
Windows platform, 88

main window
IDLDE preferences

Macintosh platform, 170
Motif platform, 123, 124
Windows platform, 83

map projections
Aitoff , 335
Albers equal-area conic, 344
azimuthal, 332
azimuthal equidistant, 335
boundaries

specifying, 326
central gnomic, 334
cylindrical, 340
cylindrical equidistant, 342
drawing continent boundaries, 326
general perspective, 337
gnomonic, 334

Hammer-Aitoff, 336
high-resolution outlines, 350
Lambert’s conformal conic, 343
Lambert’s equal area, 336
Mercator, 340
Miller cylindrical, 343
Mollweide, 346
orthographic, 332
overview, 324
pseudocylindrical, 345
Robinson, 345
satellite, 337
sinusoidal, 345
stereographic, 333
Transverse Mercator, 341
warping images to maps, 348

MAP_CONTINENTS procedure, 324, 328
MAP_GRID procedure, 324, 327
MAP_IMAGE function, 324
MAP_PATCH function, 324
MAP_SET procedure, 324, 325
mathematics

error assessment routines, 419
routines, 416

maximum intensity projection, 618
maximum size

drawable window, 632
maximum values in plots, 582
MD_TEST function, 439
MEDIAN function, 413
memory

allocation under VMS, 33
graphics system use, 479
object graphics system, 242
optimizing performance

Macintosh platform, 176
Motif platform, 123
Windows platform, 82

Menu Editor
opening, 69
Index Using IDL

 N 671
menus
IDLDE menu items

Macintosh platform, 158
Motif platform, 105
Windows platform, 64

Mercator map projection, 340
meridians, 326

graticules, 327
gridding, 327

Message-of-the-Day file
Macintosh platform, 177
Windows platform, 92

Microsoft Windows
mouse differences, 96

Miller cylindrical map projection, 343
MIN_CURVE_SURF function, 292, 436
minimization, 454

downhill-simplex method, 455
See also optimization

minimum curvature surface, 436
minimum values in plots, 582
missing data, 274
model class

methods, 521
model object, 486, 502
model objects

selecting models, 624
MODIFYCT procedure, 368
Mollweide map projection, 346
MOTD, SeeMessage-of-the-Day.
Motif widgets, 142
mouse

determining position, 277
emulating three-button, 96, 178
Macintosh differences, 178

mouse cursor, 635
moving average filter, 402
MPEG object, 493
MPEG objects

overview, 610
multidimensional minimization, 455

multiple correlation coefficient, 424
Multiple Document Panel

IDLDE
Windows platform, 60

Multiple Document Window
IDLDE

Motif platform, 102
multiple plots on a page, 270
MULTIPLE_FILES keyword, 217
multiplying arrays, 421

N
near and far clipping planes, 518
NETCDF files

importing using macros, 201
new page, 641
NEWTON function, 453
Newton’s method, 452
non-interactive mode, 48, 52
nonlinear equations

discussion, 452
routines, 453

nonparametric hypothesis tests, 437
NORM function, 451
normal

coordinates, 246
normal computations, 579, 654
notch filter, 409
numerical integration, 440
Numerical Recipes in C, 417
Nyquist frequency, 395

O
object classes

attribute objects, 504
attributes, 490, 545
axis, 487, 559
buffer, 492, 638
Using IDL Index

672 O
clipboard, 492
colorbar, 489
common methods

Cleanup, 483
GetProperty, 484
Init, 483
SetProperty, 484

composite objects, 489
container, 485
contour, 487, 572
destination objects, 492
file format objects, 493
font, 490, 545
helper objects, 491, 504
image, 487
legend, 489, 585
light, 487, 599
model, 486, 502

Rotate method, 522
Scale method, 523
Translate method, 521

MPEG, 493
naming conventions, 483
palette, 490, 548
pattern, 490, 549
plot, 487, 581
polygon, 488, 575, 651
polyline, 488, 580
printer, 492, 640
scene, 486, 499
structure, 486
surface, 488, 594
symbol, 490, 551
tessellator, 491, 555
text, 488, 566
TrackBall, 491
undocumented, 496
view, 486, 501
viewgroup, 486, 500
volume, 488
VRML, 492, 643

window, 492
Object Graphics, 478

classes, 475
clipboard support

Macintosh platform, 157
Windows platform, 63

composite classes, 646
device independent, 479
hierarchy, 486
instancing, 656
typographical conventions used, 483

object graphics
expose events, 655
indexed color model, 533
performance tuning, 651
setting properties, 494

object tree, 486, 498
object-oriented graphics, 479
objects

clipboard support
Macintosh, 157

Object Graphics, 240
clipboard support

Windows platform, 63
object-oriented

graphics, 242
Oetli, Thomas, 350
one-tailed hypothesis tests, 437
on-the-glass text, 567
opacity table, 616
operating system

issuing commands, 47
OPLOT procedure, 248, 253
optimization

discussion, 454
routines, 455

orientation of text objects, 568
orthographic map projection, 332
Output Log

IDLDE
Macintosh platform, 154
Index Using IDL

 P 673
Motif platform, 102
Windows platform, 60

overlaying images, 287

P
P_CORRELATE function, 426, 467
palette

indexed color data, 607
palette object, 490, 548
palette objects, 537
parallel projection, 514
parallels, 326
parametric hypothesis tests, 437
partial correlation coefficient, 424
path

IDLDE
Macintosh platform, 175, 178
Motif platform, 130
Windows platform, 90

PATH environment variable, 27
pattern filling of polygon objects, 576
pattern object, 490, 549
PCOMP function, 467
performance

optimizing memory
Macintosh platform, 176
Motif platform, 123
Windows platform, 82

performance tuning, 651
perspective projection, 515
phase

signal spectra, 388
pixel interleaving, 604
pixels

fixed, 288
scalable, 287
scaling, 359
two-dimensional image arrays, 355

pixmap objects
using, 634

planar interleaving, 604
platform differences

Windows platform, 96
plot

maximum data values, 582
minimum data values, 582

plot object, 487, 581
plot objects

averaging points, 583
minimum and maximum values, 582
plotting symbols, 583

PLOT procedure, 248, 276, 309
plots, 571

contour, 281
filled contour, 293
frequency smearing, 389
logarithmic, 268, 561
overplotting, 253
shaded surface, 315
step, 380
surface, 295
X versus Y, 248

plotting
annotation, 255
axes, 275
combining images with graphics, 312
font selection, 256
histogram style, 258
keyword parameters, 245
location on page, 272
missing data, 274
multi-dimensional arrays, 280
multiple plots on a page, 270
object graphics example, 588
overplotting, 253
overview, 244
polar coordinates, 276
scaling axes, 249
symbols, 257, 258
titles, 250
two-dimensional arrays, 280
Using IDL Index

674 P
pointers
file positioning

Macintosh platform, 180
Windows platform, 97

polar plots, 276
POLAR_SURFACE function, 436
POLY_FIT function, 428
POLYFITW function, 428
polygon filling, 260
polygon mesh optimization, 651
polygon object, 488, 575, 651
polygon objects

back-face culling, 657
normal computations, 654
optimization methods, 651, 652, 653
quad strip mesh, 651
triangle fan mesh, 652
triangle strip mesh, 653

polygons, 555
polyline object, 488, 580
position of graphics, 510
positioning objects, 510
positioning text objects, 566
Powell minimization (POWELL procedure),
455
POWELL procedure, 455
power spectrum, 390
preferences

IDLDE
Macintosh platform, 170
Motif platform, 122
Windows platform, 81

principal components analysis, 463
printer object, 492, 640
printer objects

color model, 640
creating, 640
dialogs, 640
drawing, 641
starting a new page, 641
submitting print jobs, 642

printing
graphics, 42
IDLDE

Macintosh platform, 159
Motif platform, 106
Windows platform, 66

procedure
discussion, 43

procedures
DFPMIN, 455
POWELL, 455

program
executing files, 44

programming
format of program files, 43
main programs, 43
preparing and running programs, 43

Project Window
overview, 60, 102, 155, 158

projection
overview, 514
parallel, 514
perspective, 515

projection matrix, 446
projections

Aitoff , 335
Albers equal-area conic, 344
azimuthal, 332
azimuthal equidistant, 335
central gnomic, 334
cylindrical, 340
cylindrical equidistant, 342
general perspective, 337
gnomonic, 334
Hammer-Aitoff, 336
high-resolution continent outlines, 350
Lambert’s conformal conic, 343
Lambert’s equal area, 336
Mercator, 340
Miller cylindrical, 343
Mollweide, 346
Index Using IDL

 Q 675
orthographic, 332
pseudocylindrical, 345
Robinson, 345
satellite, 337
sinusoidal, 345
stereographic, 333
Transverse Mercator, 341

properties
retrieving, 495
setting, 494

Properties dialog
opening, 68

properties of objects, 494
PSEUDO procedure, 368
pseudocylindrical map projections, 345

Q
QROMB function, 444
QROMO function, 444
QSIMP function, 444
quad strip optimization, 651
quadrature function, 397
query

image file type, 215
QUERY_IMAGE function, 214
quitting IDL, 30

R
R_CORRELATE function, 426, 439
R_TEST function, 439
raster images, 355
READ_ASCII function, 223
READ_BINARY function, 231
READ_IMAGE function, 214
READ_SPR function, 458
reading

ASCII data, 189, 223
binary data, 195, 231

data using macros, 185, 189, 195
HDF files, 201
HDF-EOS files, 201
image file types, 215
image files, 185, 210
images from the display, 361
NETCDF files, 201
scientific format data, 201

reading files
Macintosh platform, 180
Windows platform, 96

recall buffer
IDLDE

Motif platform, 123
Windows platform, 82

recent files
IDLDE

Macintosh platform, 159
Motif platform, 107
Windows platform, 66

recent projects
IDLDE

Motif platform, 107
Windows platform, 66

rectangular
filter, 407

REGRESS function, 428
rendering

hardware versus software, 632
polygon objects, 575
polyline objects, 580
speed of volumes, 619
surface objects, 595

rendering process
rendering objects, 505

rendering style
polygon objects, 575

replacing text
IDLDE

Macintosh platform, 161
Motif platform, 110
Using IDL Index

676 S
Windows platform, 69
REPLICATE function, 311
reserving colors, 133
resolution of map databases, 350
resource files, 132
resources for an X Window, 132
restore

files
Macintosh platform, 180
Windows platform, 97

RESTORE procedure, 53
restoring windows, 635
retained graphics, 655
RETALL procedure, 45
retrieving object properties, 495
RETURN procedure, 45
revealing window objects, 634
RGB color model, 533, 535
RGB color system, 363
right-handed coordinate system, 299
Robinson map projection, 345
Rotate method, 522
rotating

arrays, 301
images, 301
views, 307

rotation, 521, 522
routines

accessing, 44
row-indexed sparse storage method, 456
row-major indexing, 420
RS_TEST function, 439
RSI

electronic mail address, 22
postal address, 22
telephone and fax numbers, 22

running IDL, 27

S
S_TEST function, 439

sampled data analysis, 395
sampled images, 355
sampling

aliasing data, 395
satellite map projection, 337
saturation, 365
save

files
Macintosh platform, 180
Windows platform, 97

SAVE procedure, 53
saving

image files, 212
saving files

IDLDE
Macintosh platform, 159
Motif platform, 106
Windows platform, 65

saving windows, 635
scalable pixels, 287
Scale method, 523
SCALE3 procedure, 303
scaling, 523, 523

axes, 249
coordinate systems, 510
graphics atoms, 521
images, 359
maps, 326
matrices, 300
pixels, 359

scanline interleaving, 604
scene object, 486
scene objects, 499
scientific data format

importing using macros, 201
search path

Macintosh platform, 175
Motif platform, 131
Windows platform, 90

seasonal effect, 459
Index Using IDL

 S 677
selecting
graphic atoms, 623
views in a window object, 623

selection
model objects, 624
window objects, 623

SET_SHADING procedure, 316
setting

window object cursor, 635
setting properties

existing objects, 494
initialization, 494
objects, 494

SFIT function, 428
SHADE_SURF procedure, 315
SHADE_VOLUME procedure, 318
shaded surfaces

plotting, 315
SHADE_SURF procedure, 315

shading
Gouraud interpolation, 315
light source, 315
parameters, 316
polylines, 580

shading polygon objects, 576
shared color maps in Motif, 133
shortcuts

keyboard
Motif platform, 120
Windows platform, 79

signal
analysis transforms, 382
processing, 379

signal processing routines, 413
simple polygons, 555
simultaneous linear equations, 445
singular value decomposition, 428, 445
sinusoidal map projection, 345
sizing graphics windows

Macintosh platform, 172
Motif platform, 126

Windows platform, 85
skirts, 597
SLICER3 procedure, 320
smearing frequency plots, 389
SMOOTH function, 407, 413, 461
smoothing contours, 292
sparse arrays, 456
SPAWN procedure, 47
special characters, 39
SPL_INIT function, 436
SPL_INTERP function, 436
SPLINE function, 436
SPLINE_P procedure, 436
SPRSAB function, 458
SPRSAX function, 458
SPRSIN function, 458
STANDARDIZE function, 468
standardized variables, 464
starting IDL, 27
startup

file
discussion, 51

file in IDLDE
Macintosh platform, 174
Motif platform, 129
Windows platform, 89

IDLDE preferences
Macintosh platform, 174
Motif platform, 128
Windows platform, 88

switches, 27
stationarity, 459
statistics

hypothesis testing, 437
routines, 416

Status Bar
IDLDE

Motif platform, 103
Windows platform, 61

step plot, 380
stereographic map projection, 333
Using IDL Index

678 T
stopping program execution, 44
STRETCH procedure, 368
structure objects, 486
structures

arrays stored in structure form, 456
submitting a print job, 642
surface fitting

discussion, 427
routines, 428

surface object, 488
overview, 594

surface objects
creating, 594
hidden line removal, 597
interactive example, 602
rendering style, 595
shading, 596
skirts, 597
texture mapping, 598
using, 595

surface plots, 295
SURFACE procedure, 295
SVDC procedure, 451
SVDFIT function, 428
SVSOL function, 451
switches

command line, 27
symbol object, 490, 551
symbol use for polylines, 580
symbols

plots, 257, 258
symmetric arrays, 421
system variables

!EDIT_INPUT, 37
!MAP, 325
!ORDER, 358

T
T3D procedure, 301
TERM environment variable, 33

tessellator object, 491, 555
text

replacing in IDLDE
Macintosh platform, 161
Motif platform, 110
Windows platform, 69

searching in IDLDE
Macintosh platform, 161
Motif platform, 109
Windows platform, 69

selecting in IDLDE
Windows platform, 94

text object, 488, 566
texture mapping, 598
texture mapping polygon objects, 576
three-dimensional

coordinate conversion, 304
graphics, 299
transformation

matrices, 299
PLOT and CONTOUR, 309

tick labels, 565
tick marks, 264
time-series analysis, 459
titles

multiline on plots, 250
TM_TEST function, 439
toolbars

IDLDE
Motif platform, 102, 139
Windows platform, 60

IDLDE buttons
Motif platform, 102

TRACE function, 451
TrackBall object, 491
transformation matrices, 299
transformations, 523

combining, 523
coordinate, 524
model class example, 527
model objects, 521
Index Using IDL

 U 679
rotation, 521, 522
scaling, 521
translation, 521, 521

transforms
Fourier, 383
Hilbert, 397
Tustin bilinear, 409
wavelet, 399

Translate method, 521
translation, 300, 521, 521
transparency of voxels, 616
TRANSPOSE function, 420
Transverse Mercator map projection, 341
trend analysis, 459
TRI_SURF function, 436
triangle fan mesh, 652
triangle strip mesh, 652
TRIANGULATE procedure, 436
TRIGRID function, 436
TRIQL procedure, 434
TRIRED procedure, 434
TRISOL function, 451
true map scale, 326
true-color displays, 370
TrueType fonts, 545
TS_COEF function, 461
TS_DIFF function, 461
TS_FCAST function, 461
TS_SMOOTH function, 461
Tustin transform, 409
TV procedure, 356, 357
TVCRS procedure, 356, 374
TVLCT procedure, 356, 364
TVRD function, 356, 361, 372
TVSCL procedure, 356, 357
two-tailed hypothesis tests, 437
typographical conventions, 18, 483

U
unconstrained minimizer, 454

undocumented object classes, 496
unsharp masking, 360
upper-Hessenberg array, 434
upward direction of text objects, 568
USERSYM procedure, 258
using

colorbar objects, 608
image objects, 605
pixmap objects, 634
volume objects, 614
window objects, 631, 634

UTM map projection, 341

V
variable context, 45
Variable Watch Window

IDLDE
Windows platform, 61

variables
derived, 463
standardized, 463

vectors
Euclidean norm computation, 451

view area, 510
view object, 486, 501
view volume

example programs, 519
finding, 519
overview, 518
viewplane rectangle, 518

viewgroup object, 486, 500
viewplane rectangle, 518
viewport, 510, 512
volume

visualization, 318
slicing, 320

volume object, 488
volume objects

attributes, 616
color values, 617
Using IDL Index

680 W
compositing, 618
creating, 614
interpolating values, 619
lighting, 618
opacity table, 616
overview, 614
rendering speed, 619
using, 614
zbuffering, 619

VORONOI procedure, 436
voxel transparency, 616
voxel values, 614
VRML object, 492, 643
VRML objects

creating, 643
overview, 643

W
wavelet transform, 399
window object, 492
window objects

color model, 631
creating, 631
draw widgets, 631
erasing, 634
exposing, 634
hiding, 634
iconifying, 634
instancing, 636
maximum size, 632
restoring, 635
saving, 635
selection, 623

setting the cursor, 635
using, 631, 634

windowing
Hamming windowed signal, 393

windowing algorithm
HANNING function, 391

windows
clipboard support for graphics, 63, 157

working directory
changing on Macintosh, 179

WRITE_IMAGE function, 214
WRITE_SPR procedure, 458
writing

image files, 212
routines for image files, 216

writing files
Macintosh platform, 180
Windows platform, 96

WTN function, 413

X
X - Y Plots, 248
X resources, 132
XLOADCT procedure, 367
XPALETTE procedure, 367
XSQ_TEST function, 439
XYOUTS procedure, 255

Z
zbuffering, 619
Index Using IDL

	Online Guide
	Contents
	Overview
	About IDL
	Typographical Conventions
	Reporting Problems
	Background Information
	Double Check
	Describing The Problem
	Reproducibility
	Simplify the Problem
	Bugs with Dynamic Loading
	Sending Data with Your Bug Report
	Contact Us
	Mail
	Telephone
	Electronic Mail

	Part I: The IDL Development Environment
	Running IDL
	Starting IDL
	Startup Switches Accepted by IDL

	Quitting IDL
	Environment Variables Used by IDL
	Environment Variables — All Platforms
	IDL_DEVICE
	IDL_DIR
	IDL_DLM_PATH
	IDL_HELP_PATH
	IDL_PATH
	IDL_STARTUP
	IDL_TMPDIR

	Environment Variables — UNIX
	DISPLAY
	TERM
	LM_LICENSE_FILE

	Logical Names — VMS
	IDL_ARRAY_MEMORY_SIZE

	Path Expansion

	Input to IDL
	Command Recall and Line Editing
	Changing the Number of Lines Saved

	Special Characters
	Executive Commands
	Printing Graphics
	Printing IDL Direct Graphics
	Printing IDL Object Graphics

	Preparing and Running Programs
	Format of Program Files
	Procedure
	Function
	Main Program
	Include File

	Executing Program Files
	Automatic Execution
	Explicit Execution

	Interrupting Program Execution
	Variable Context After Interruption
	Aborting IDL

	Issuing Operating System Commands
	Batch Execution
	Interpretation of Batch Statements
	Batch Examples

	Startup File
	Non-interactive IDL
	SAVE and RESTORE
	Journaling

	The IDL for Windows Interface
	The Main IDL Window
	Docking/Undocking
	Menu Bar
	Tool Bars
	Project Window
	Multiple Document Panel
	Output Log
	Variable Watch Window
	Command Input Line
	Status Bar

	IDLDE Windows
	IDL Editor Windows
	IDL GUIBuilder Windows
	IDL Graphics Windows

	The Menu Items
	File Menu
	New
	Open... [Ctrl+O]
	Close
	Open Project...
	Save Project
	Save Project As...
	Close Project
	Save [Ctrl+S]
	Save As...
	Revert to Saved
	Generate .pro
	Print... [Ctrl+P]
	Print Setup...
	Recent Files
	Recent Projects
	Preferences...
	Exit [Ctrl+Q]

	Edit Menu
	Undo [Ctrl+Z]
	Redo [Ctrl+Y]
	Cut [Ctrl+X]
	Copy [Ctrl+C]
	Paste [Ctrl+V]
	Delete [Del]
	Select All
	Clear All [Ctrl+Del]
	Clear Log
	Properties
	Menu

	Search Menu
	Find... [Ctrl+F]
	Find Again [F3]
	Find Selection [Ctrl+E]
	Replace... [Ctrl+H]
	Replace Again [Shift+F3]
	Go To Line... [Ctrl+G]
	Go To Definition [Ctrl+D]

	Run Menu
	Compile filename.pro [Ctrl+F5]
	Compile filename.pro from Memory [Ctrl+F6]
	Compile All
	Run filename [Shift+F5]
	Resolve Dependencies
	Profile
	Test GUI [Ctrl+T]
	Break [Ctrl+Break]
	Stop [Ctrl+R]
	Reset [Ctrl+Alt+T]
	Step Into [F8]
	Step Over [F10]
	Step Out [Ctrl+F8]
	Trace...
	Run to Cursor [F7]
	Run to Return [Ctrl+F7]
	Set Breakpoint [F9]
	Disable Breakpoint
	Edit Breakpoint...
	Up Stack [Ctrl+Up]
	Down Stack [Ctrl+Down]
	List Call Stack

	Project Menu
	Add/Remove Files...
	Options...
	Compile
	Build
	Run
	Export

	Macros Menu
	Edit...
	Print Var
	Help On Var
	Import Image
	Import ASCII
	Import Binary
	Import HDF
	Demo

	Window Menu
	Next [F6]
	Previous [Shift+F6]
	Cascade
	Tile Horizontally
	Tile Vertically
	Arrange Icons
	Close All
	Command Input [Ctrl+I]
	Output Log [Ctrl+L]
	Variable Watch [Ctrl+A]
	Project
	Toolbars
	Status Bar
	Numbered Windows

	Help Menu
	Contents...[Ctrl+F1]
	Find Topic... [F1]
	Help on the IDL Dev Env...
	Help on the IDL Language...
	Help on Help...
	About IDL...

	Keyboard Shortcuts
	Customizing IDL
	General Preferences
	Program
	Log and Command Windows
	Files

	Layout Preferences
	Main window
	Show Window

	Graphics Preferences
	Window layout
	Backing Store
	True Type Fonts
	Default object graphics renderer

	Editor Preferences
	Startup Preferences
	IDL Main Directory
	Working Directory
	Startup file

	Fonts Preferences
	Path Preferences
	Search Path

	Message-of-the-Day File

	Using the IDL Editor
	Text Selection Modes
	Chromacoded Editor
	Turning Chromacoding Off

	Windows IDL Differences
	A Note about Microsoft Windows Displays
	Getting Information About Your Graphics Device

	Using a Two-Button Mouse with IDL
	File Manipulation
	Reading and Writing Files
	Filenames
	Save/Restore Files
	Positioning File Pointers

	Running IDL with Fewer than 256 Colors
	The Windows Palette

	The IDL for Motif Interface
	The Main IDL Window
	Menu Bar
	Tool Bars
	Control Panel Buttons
	Project Window
	Multiple Document Window
	Output Log
	Variable Watch Window
	Command Input Line
	Status Bar

	IDLDE Windows
	IDL Editor Windows
	IDL Graphics Windows

	The Menu Items
	File Menu
	New [Ctrl+N]
	Open [Ctrl+O]
	Close
	Open Project...
	Save Project
	Save Project As...
	Close Project
	Save [Ctrl+S]
	Save As... [Ctrl+W]
	Revert to Saved
	Print... [Ctrl+P]
	Print Setup
	Recent Files
	Recent Projects
	Preferences
	Exit [Ctrl+Q]

	Edit Menu
	Undo [Alt+Z]
	Redo [Alt+Y]
	Cut [Alt+X]
	Copy [Alt+C]
	Paste [Alt+V]
	Delete [Del]
	Select All
	Clear All
	Clear Log [Ctrl+Y]

	Search Menu
	Find... [Alt+F]
	Find Again [Alt+G]
	Find Selection [Alt+I]
	Enter Selection [Alt+T]
	Replace... [Alt+R]
	Replace & Find [Alt+P]
	Go To Line [Ctrl+G]
	Go To Definition [Ctrl+T]

	Run Menu
	Compile filename.pro [Ctrl+F5]
	Compile from Memory filename.pro [Ctrl+F6]
	Compile All
	Run filename [F5]
	Resolve Dependencies [Alt+F5]
	Profile
	Break [Ctrl+C]
	Stop [Ctrl+R]
	Reset [Ctrl+T]
	Step Into [F8]
	Step Over [F10]
	Step Out [Ctrl+F8]
	Trace ...
	Run to Cursor [F7]
	Run to Return [Ctrl+F7]
	Set Breakpoint [F9]
	Disable Breakpoint
	Edit Breakpoint
	Up Stack [Ctrl+Up]
	Down Stack [Ctrl+Down]
	List Call Stack

	Project Menu
	Add/Remove Files...
	Options...
	Compile
	Build
	Run
	Export

	Macros Menu
	Edit...
	Print Variable
	Help On Variable
	Import Image
	Import Ascii
	Import Binary
	Import HDF
	IDL Demo
	File in XEmacs
	File in running XEmacs
	File in Emacs (X Window)
	File in Emacs (Xterm)
	File in running Emacs
	File in vi (Xterm)

	Window Menu
	Read Only
	Next [F11]
	Previous [Alt+F11]
	Cascade
	Tile
	Close All
	Configure
	Tool Bar
	Multiple Windows (Single Window)
	Open Windows

	Help Menu
	Help on IDL...
	Find Topic...
	Help on IDE...
	Help on Help
	About IDL

	Keyboard Shortcuts
	Using Preferences to Customize IDLDE
	General Preferences
	Program
	Log and Command Window
	Files

	Layout Preferences
	Main window
	Windows
	Control Panel

	Graphics Preferences
	Windows Size
	Backing Store
	Graphics Attributes

	Edit Preferences
	Startup Preferences
	Select IDL Main Dir ...
	Select Working Directory
	Select Startup File

	Font Preferences
	Path Preferences
	IDL Files Search Path

	Using Resources to Customize IDL
	X Resources in Brief
	Editing Resource Files
	Reserving Colors

	Command Line Options
	Example
	-nocommand
	/NOCOMMAND
	-command
	/COMMAND
	-nocontrol
	/NOCONTROL
	-control
	/CONTROL
	-nolog
	/NOLOG
	-log
	/LOG
	-nostartup
	/NOSTARTUP
	-startup
	/STARTUP
	-startupfile "file"
	/STARTUPFILE="file"
	-nostatus
	/NOSTATUS
	-status
	/STATUS
	-path "path"
	/PATH="path"
	-quiet
	/QUIET
	-readonly
	/READONLY
	-readwrite
	/READWRITE
	-single
	/SINGLE
	-multi
	/MULTI
	-view
	/VIEW
	-noview
	/NOVIEW
	-title "Title"
	/TITLE="Title"
	/VAX_FLOAT

	Modifying the Control Panel
	Bitmaps for Control Panel Buttons
	Examples
	Command Stream Substitutions

	Action Routines
	IdlBreakpoint
	IdlClearLog
	IdlClearView
	IdlCommandHide
	IdlCompile
	IdlControlHide
	IdlEdit
	IdlEditMacros
	IdlExit
	IdlFile
	IdlFileReadOnly
	IdlFunctionKey
	IdlInterrupt
	IdlListStack
	IdlLogHide
	IdlRecallCommand
	IdlReset
	IdlRun
	IdlSearch
	IdlStatusHide
	IdlStep
	IdlTrace
	IdlViewHide
	IdlWindows

	Modifying the Macros Menu
	Example
	Modifying other resources:
	Example

	Using External Editors
	Using the IDL Editor

	The IDL for Macintosh Interface
	The Main IDL Windows
	Output Log
	Command Input Line
	Variable Watch Window
	Project Window

	IDL Document Windows
	IDL Editor Windows
	Debug Windows
	IDL Graphics Windows

	The Menus
	File Menu
	New
	New Project...
	Open
	Open Selection
	Open Recent
	Close / Hide
	Save
	Save As...
	Revert to Saved
	Page Setup...
	Print
	Recent Files
	Preferences
	Working Folder...
	Quit

	Edit Menu
	Undo
	Cut
	Copy
	Paste
	Clear
	Select All
	Shift Left
	Shift Right
	Comment Line
	Uncomment Line

	Search Menu
	Find...
	Find Again
	Find Selection
	Enter Selection
	Replace...
	Replace & Find Again
	Go To Routine Definition
	Go To Line...

	Run Menu
	Compile
	Compile from Memory
	Compile All
	Run
	Resolve Dependencies
	Profile...
	Continue
	Break
	Clear IDL
	Reset IDL
	Step Over
	Step Into
	Step Out
	Trace
	Run to Cursor
	Run to Return
	Set Breakpoint
	Edit Breakpoint ...
	Clear All Breakpoints
	List Breakpoints
	List Call Stack

	Project Menu
	Add Window
	Add Files...
	Remove Selected Items
	Project Options...
	Compile/Compile Modified Files
	Build
	Run
	Export...

	Macros Menu
	Edit Macros...
	Import Image
	Import Ascii
	Import Binary
	Import HDF

	Window Menu
	Stagger
	Tile
	Command Input Anchored
	Command Input
	Output Log
	Variable Watch
	Macro Editor
	Profile
	Profile Results
	Breakpoints
	Open Editor Windows

	Help Menu
	About Balloon Help...
	Show Balloons
	IDL Online Help
	Help on Selection

	Customizing IDL
	General Preferences
	Lines to Save in Log Window
	Anchor Command Window
	Default Text Formats
	Use Debugger

	Graphics Window Settings
	Number of Colors Used
	Default Window Width
	Default Window Height
	Backing Store
	Startup Depth
	Dither to Lower Depth Screens
	Size of TrueType Font Cache (in Glyphs)
	Object Graphics Renderer
	Hardware Font

	Edit Preferences
	Window Format
	Auto Indent

	Startup Settings
	Select IDL Main Dir...
	Select Startup File
	Use No Startup File

	Path Specifications
	Syntax Coloring
	Setting IDL’s Memory Partition
	Message-of-the-Day File

	Macintosh IDL Differences
	Using the Macintosh Mouse with IDL
	Specifying Paths
	Operating System Commands
	Changing the Current Working Directory

	File Manipulation
	Compiling Programs
	Save/Restore Files
	Logical Unit Numbers
	Positioning File Pointers

	Math Error Handling
	Macintosh-Specific File Information

	Part II: Reading and Writing Data
	IDL Macros for Importing Data
	Overview
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	Reading and Writing Images
	Overview
	List of Commands
	Compound Widgets and Dialogs
	Images (Generalized)
	Images (Specific Formats)

	Accessing Image Files Using Dialogs
	Selecting an Image File
	Saving an Image File

	Accessing General Image File Formats
	Querying an Image File
	Reading an Image File
	Writing an Image File

	Accessing Specific Image File Formats
	QUERY_* Routines
	READ_* Routines
	WRITE_* Routines

	Accessing Files Using Dialogs
	File Selection
	Directory Selection
	Multiple File Selection

	Accessing Files With Compound Widgets
	Selecting a File

	Advanced File Input/Output

	Reading and Writing ASCII Data
	Overview
	Reading an ASCII Data File
	Using the ASCII_TEMPLATE Function

	Advanced File Input/Output

	Reading and Writing Binary Data
	Overview
	Reading a Binary Data File
	Using the BINARY_TEMPLATE Function

	Advanced File Input/Output

	Part III: Using Direct Graphics
	Graphics
	Overview
	IDL Direct Graphics
	IDL Object Graphics

	Direct Graphics Plotting
	Overview
	Running the Example Code

	Plotting Keyword Parameters
	Correspondence with System Variables
	Example—The COLOR Keyword Parameter

	Direct Graphics Coordinate Systems
	DATA Coordinates
	DEVICE Coordinates
	NORMAL Coordinates
	Two-Dimensional Coordinate Conversion
	CONVERT_COORD Function
	X Versus Y Plots—PLOT and OPLOT
	Axis Scaling
	Multiline Titles
	Range Keyword
	Overplotting

	Annotation – The XYOUTS Procedure
	Font Selection

	Plotting Symbols
	Defining Your Own Plotting Symbols
	Histogram Mode

	Polygon Filling
	Bar Charts

	Tick Marks
	[XYZ]GRIDSTYLE
	[XYZ]MINOR
	[XYZ]THICK
	[XYZ]TICKFORMAT
	TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKS
	[XYZ]TICKV
	Example: Specifying Tick Marks
	More Tick Mark Examples

	Logarithmic Scaling
	Multiple Plots on a Page
	Specifying the Location of the Plot
	POSITION
	!P.POSITION
	!P.REGION
	!P.MULTI
	[XYZ]MARGIN
	![XYZ]MARGIN

	Plotting Missing Data
	Using the AXIS Procedure
	Example: The AXIS Procedure
	Using AXIS with Polar Plots

	Using the CURSOR Procedure
	Simple Interactive Examples

	Plotting Multi- Dimensional Arrays
	Overview
	Running the Example Code

	Contour Plots
	Contouring Methods
	Cell Drawing
	Contour Following

	Example: Maroon Bells Peaks

	Overlaying Images and Contour Plots
	Overlaying with Scalable Pixels
	Overlaying with Fixed Pixels
	Method 1: Scale the Image to Fit the Display
	Method 2: Scale the Display to Fit the Image

	Additional Contour Options
	Labeling Contours
	Smoothing Contours
	Filling Contours
	Indicating Direction of Grade

	The SURFACE Procedure
	SURFACE Keyword Parameters
	Example

	Three-Dimensional Graphics
	Homogeneous Coordinates
	Right-Handed Coordinate System
	Transformation Matrices
	Translation
	Scaling
	Rotation
	T3D Procedure
	RESET
	TRANSLATE
	SCALE
	ROTATE
	PERSPECTIVE
	OBLIQUE
	XYEXCH
	XZEXCH
	YZEXCH

	Example: The Transformation Created by SURFACE
	Three-Dimensional Coordinate Conversion
	Establishing a Three-Dimensional Coordinate System
	Example
	Rotating the House

	Three-Dimensional Transformations
	Combining CONTOUR and SURFACE
	More Complicated Transformations
	Combining Images with Three-Dimensional Graphics

	Shaded Surfaces
	Shading Method
	Shading Parameters
	Examples Using SHADE_SURF

	Volume Visualization
	LOW
	SHADES
	Cloud Example
	The SLICER3 Tool

	References

	Map Projections
	Overview
	MAP_SET
	MAP_GRID
	MAP_CONTINENTS
	MAP_IMAGE and MAP_PATCH
	Example Graphics

	The MAP_SET Procedure
	P0lat
	P0lon
	Rot
	MAP_SET Keywords
	CONTINENTS
	GRID
	ISOTROPIC
	LIMIT
	SCALE

	The MAP_GRID Procedure
	The MAP_CONTINENTS Procedure
	Graphics Techniques for Mapping
	Splitting
	3D Clipping
	Projection
	Rectangular Clipping

	Map Projections Described
	Azimuthal Projections
	Orthographic Projection
	Stereographic Projection
	Gnomonic Projection
	Azimuthal Equidistant Projection
	Aitoff Projection
	Lambert’s Equal Area Projection
	Hammer-Aitoff Projection
	Satellite Projection
	Example: Labeling and Drawing Projections

	Cylindrical Projections
	Mercator Projection
	Transverse Mercator Projection
	Example: The UTM Map
	Cylindrical Equidistant Projection
	Miller Cylindrical Projection
	Conic Projection
	Albers Equal-Area Conic Projection

	Pseudocylindrical Projections
	Robinson Cylindrical
	Sinusoidal Projection
	Mollweide Projection
	Goode’s Homolosine Projection

	Putting Data on Maps
	Example—Using CONTOUR with MAP_SET
	Limitations

	High-Resolution Continent Outlines
	Resolution of Map Databases

	References

	Image Display Routines
	Overview
	Graphics Used in Examples

	Images
	Imaging Routines
	Image Display
	IMAGE
	X, Y
	POSITION
	CHANNEL
	Image Orientation
	Image Position
	Image Size
	Examples
	Image Scaling

	Reading from the Display Device
	A Note on Reading Data from Windows
	X0
	Y0
	NX
	NY
	Channel
	Example

	Ability to Read from Display

	Color Tables
	Loading Color Tables
	V1, V2, and V3
	Start
	GET
	HLS
	HSV

	Example
	Color Table Procedures
	LOADCT
	XLOADCT
	XPALETTE
	MODIFYCT
	HSV
	HLS
	PSEUDO
	STRETCH
	Example

	Obtaining the Color Tables
	Color Tables—Switching Between Devices

	True-Color Displays
	Configuration
	Lookup Tables
	Color Indices
	True-Color Images
	Reading Images

	Controlling the Device Cursor
	ON_OFF
	X
	Y

	References

	Signal Processing
	Overview
	Running the Example Code

	Digital Signals
	Signal Analysis Transforms
	The Fourier Transform
	Interpreting FFT Results
	Displaying FFT Results
	Real and Imaginary Components
	Magnitude and Phase
	Power Spectrum

	Using Windows
	Hanning Window
	Hamming Window

	Aliasing
	FFT Usage Details
	The Hilbert Transform
	The Wavelet Transform
	Convolution
	Correlation and Covariance
	Digital Filtering
	Finite Impulse Response (FIR) Filters
	FIR Filter Implementation
	Infinite Impulse Response Filters
	IIR Filter Implementation

	Routines for Signal Processing
	References

	Mathematics
	IDL’s Numerical Recipes Functions
	Accuracy & Floating-Point Operations
	Roundoff Error
	Truncation Error
	Routines for Mathematical Error Assessment

	Arrays and Matrices
	Example
	Symmetric Arrays
	Multiplying Arrays
	The # Operator
	The ## Operator

	Correlation Analysis
	Correlation Example
	Notes on Interpreting the Correlation Coefficient
	Multiple Linear Models
	Partial Correlation Example

	Routines for Computing Correlations

	Curve and Surface Fitting
	Routines for Curve and Surface Fitting

	Eigenvalues and Eigenvectors
	Symmetric Array with n Distinct Real Eigenvalues
	Example

	Nonsymmetric Array with n Distinct Real and Complex Eigenvalues
	Example

	Repeated Eigenvalues
	Example

	Example 4: The So-called Defective Case
	Routines for Computing Eigenvalues and Eigenvectors

	Gridding and Interpolation
	Routines for Gridding and Interpolation

	Hypothesis Testing
	One- and Two-sided Tests
	Parametric and Nonparametric Tests
	Routines for Hypothesis Testing

	Integration
	A Bivariate Function
	Example

	A Trivariate Function
	Example

	Routines for Integration

	Linear Systems
	Overdetermined Systems
	Example

	Underdetermined Systems
	Example

	Complex Linear Systems
	Example

	Routines for Solving Simultaneous Linear Equations

	Nonlinear Equations
	Routines for Solving Nonlinear Equations

	Optimization
	Routines for Optimization

	Sparse Arrays
	Diagonally-Dominant Array
	Example

	Routines for Handling Sparse Arrays

	Time-Series Analysis
	Routines for Time-Series Analysis

	Multivariate Analysis
	Cluster Analysis
	Example of Cluster Analysis

	Principal Components Analysis
	Example of Derived Variables from Principal Components

	Routines for Multivariate Analysis

	References
	Accuracy and Floating Point Operations
	Correlation Analysis
	Curve and Surface Fitting
	Eigenvalues and Eigenvectors
	Gridding and Interpolation
	Hypothesis Testing
	Integration
	Linear Systems
	Nonlinear Equations
	Optimization
	Sparse Arrays
	Time-Series Analysis
	Multivariate Analysis

	Part IV: Object Graphics
	Object Graphics
	Overview
	Direct versus Object Graphics
	IDL Direct Graphics
	IDL Object Graphics

	How to Use Object Graphics
	Overview of Object Graphics Classes
	Naming Conventions
	Common Methods

	Container Objects
	Structure Objects
	Model
	View
	Viewgroup
	Scene

	Atomic Graphic Objects
	Axis
	Contour
	Image
	Light
	Plot
	Polygon
	Polyline
	Surface
	Text
	Volume

	Composite Objects
	Colorbar
	Legend

	Attribute Objects
	Font
	Palette
	Pattern
	Symbol

	Helper Objects
	Tessellator
	TrackBall

	Destination Objects
	Buffer
	Clipboard
	Printer
	VRML
	Window

	File Format Objects
	MPEG

	Properties of Objects
	Setting Properties at Initialization
	Setting Properties of Existing Objects
	Retrieving Property Settings

	Undocumented Graphic Object Classes

	The Graphics Object Hierarchy
	Overview
	Scenes
	Viewgroups
	Views
	Models
	Atomic Graphic Objects
	Attribute and Helper Objects
	The Rendering Process
	Simple Plot Example

	Transformations
	Overview
	Viewport
	Location
	Coordinate Systems and Scaling

	Viewport
	Projection
	Parallel Projections
	Perspective Projections

	Eye Position
	View Volume
	Viewplane Rectangle
	Near and Far Clipping Planes
	Finding an Appropriate View Volume

	Model Transformations
	Translation
	Rotation
	Scaling
	Combining Transformations

	Coordinate Conversion
	A Function for Coordinate Conversion

	A Simple Example
	Virtual Trackball and 3D Transformations

	Working with Color
	Overview
	Color and Digital Data
	Indexed Color Model
	RGB Color Model
	Color and Destination Objects
	A Note about Draw Widgets

	Palettes
	Using Color
	Specifying RGB Values

	How IDL Interprets Color Values
	Indexed Color Model
	If a Color Index is Specified
	If an RGB Triple is Specified

	RGB Color Model
	If a Color Index is Specified
	If an RGB Triple is Specified

	Using Attributes and Helpers
	Overview
	Font Objects
	Determining Available Fonts
	Outline Fonts
	Hershey Fonts
	Creating Font Objects
	Using Font Objects
	Font Objects and Resource Use

	Palette Objects
	Creating Palette Objects
	Using Palette Objects

	Pattern Objects
	Creating Pattern Objects
	Using Pattern Objects

	Symbol Objects
	Creating Symbol Objects
	To Use a Pre-defined Symbol
	To Use a Graphic Object as a Symbol
	Setting Size
	Setting Color

	Using Symbol Objects

	Tessellator Objects
	Creating Tessellator Objects
	Using Tessellator Objects

	Working with Axes and Text
	Overview
	Axis Objects
	Creating Axis Objects
	Using Axis Objects
	Logarithmic Axes
	Axis Titles and Tickmark Text

	Text Objects
	Creating Text Objects
	Using Text Objects
	Location and Alignment
	3D Text and Text “On the Glass”
	Baseline
	Upward Direction
	Fonts

	A Text Example

	Working with Plots and Graphs
	Contour Objects
	Creating Contour Objects
	Using Contour Objects

	Polygon Objects
	Creating Polygon Objects
	Using Polygon Objects
	Style
	Vertex Colors
	Fill Patterns
	Shading
	Texture Mapping

	Polygon Mesh Optimization
	Quad Strips
	Triangle Fans
	Triangle Strips

	Normal Computations

	Polyline Objects
	Creating Polyline Objects
	Using Polyline Objects
	Symbols
	Shading and Vertex Coloring

	Plot Objects
	Creating Plot Objects
	Using Plot Objects
	Minimum and Maximum Values
	Using Plotting Symbols
	Averaging Points

	Polar Plots

	Legend Objects
	Creating Legend Objects
	Using Legend Objects
	Dimensions

	A Plotting Routine
	Improvements to the OBJ_PLOT Routine

	Working with Surfaces
	Surface Objects
	Creating Surface Objects
	Using Surface Objects
	Style
	Vertex Colors
	Shading
	Skirts
	Hidden Line Removal
	Texture Mapping

	Light Objects
	Creating Light Objects
	Using Light Objects

	An Interactive Surface Example

	Working with Images
	Image Objects
	Creating Image Objects
	Using Image Objects
	Alpha Blending
	Interleaving
	Palettes

	Colorbar Objects
	Creating Colorbar Objects
	Using Colorbar Objects
	Dimensions

	Saving an Image to a File
	Create an MPEG File

	Working with Volumes
	Volume Objects
	Creating Volume Objects
	Using Volume Objects

	Volume Object Attributes
	Opacity
	Color
	Lighting
	Compositing
	ZBuffering
	Interpolation
	Rendering speed

	Selecting Objects
	Selection and Data Picking
	Selection
	Selecting Views
	Selecting Graphic Atoms
	Selecting Models

	A Selection Example
	Data Picking
	A Data Picking Example

	Using Destination Objects
	Overview
	Window Objects
	Creating Window Objects
	Using the Init Method
	Creating a Draw Widget that Uses a Window Object

	Color Model
	Hardware vs. Software Rendering
	Note on Window Size Limits

	Using Window Objects
	Erasing a Window
	Exposing or Hiding a Window
	Iconifying a Window
	Setting the Window Cursor
	Saving/Restoring Windows

	Instancing
	Buffer Objects
	Creating Buffer Objects

	Clipboard Objects
	Creating Clipboard Objects

	Printer Objects
	Creating Printer Objects
	Color Model
	Printer Dialogs
	DIALOG_PRINTERSETUP
	DIALOG_PRINTJOB

	Drawing to a Printer
	Starting a New Page on a Printer
	Submitting a Printer Job

	VRML Objects
	Creating VRML Objects

	Subclassing from Object Graphics
	Creating Composite Classes or Subclasses

	Performance Tuning Object Graphics
	Overview
	Polygon Mesh Optimization
	Quad Strips
	Triangle Fans
	Triangle Strips

	Normal Computations
	Retained Graphics and Expose Events
	Improving Redraw Performance
	Back-face Culling
	Lighting

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

