
IDL Version 5.3
September, 1999 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

What’s New
in IDL 5.3

Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

0

 21

. 24

7

31

 33

34

9

 43

 44

.. 49
Contents
Chapter 1:
Overview of New Features in IDL 5.3 .. 9
Visualization and Analysis Enhancements.. 1

IDL Language Enhancements..

File I/O Enhancements..

Development Environment Enhancements.. 2

Scientific Data Formats Enhancements...

IDL GUIBuilder Enhancements..

IDL ActiveX Control Enhancements...

Installation and Licensing Enhancements.. 3

IDL DataMiner Enhancements..

Documentation Enhancements...

New Object Features..
What’s New in IDL 5.3 3

4

... 58

5

 80

 81

82

... 84

6

.. 87

89

90

 93

 96

. 99

1

 102

04

 105

07

10

17

. 120

21
New Routines..

New and Updated Keywords/Arguments.. 6

New Environment Variables..

Routines Obsoleted in IDL 5.3..

Platforms Supported in this Release..

Chapter 2:
Creating IDL Projects .. 83
Overview...

Where to Store Source Files for a Project.. 8

Creating a Project...

Opening, Closing, and Saving Projects..

Adding, Moving, and Removing Files...

Working with Files in a Project...

Setting the Options for a Project..

Selecting the Build Order..

Compiling an Application from a Project.. 10

Building a Project..

Running an Application from a Project... 1

Exporting a Project..

About IDL Developer’s Kit Licenses.. 1

Chapter 3:
IDL Development Environment Enhancements 109
Enhanced Breakpoint Functionality... 1

New IDL Functions and Procedures Context Menu for Windows and Motif... 114

New Color/Font Style Coding for Source Files on UNIX................................. 115

Enhanced IDL Macros Support... 1

Chapter 4:
IDL Macros for Importing Data ... 119
Overview...

Using Macros to Import Image Files... 1
Contents What’s New in IDL 5.3

5

25

31

37

142

 143

145

147

149

 153

. 156

158

62

64

166

72

73

174

76

. 178

. 179

 181

 183

 185

. 186

 187

 189

. 190

193

 196
Using Macros to Import ASCII Files... 1

Using Macros to Import Binary Files.. 1

Using Macros to Import HDF Files... 1

Chapter 5:
New IDL Routines .. 141
.FULL_RESET_SESSION..

.RESET_SESSION..

ADAPT_HIST_EQUAL ..

BINARY_TEMPLATE ...

CDF_COMPRESSION..

COMPILE_OPT..

CW_FILESEL...

CW_LIGHT_EDITOR ..

CW_LIGHT_EDITOR_GET... 1

CW_LIGHT_EDITOR_SET... 1

CW_PALETTE_EDITOR...

CW_PALETTE_EDITOR_GET... 1

CW_PALETTE_EDITOR_SET.. 1

DIALOG_READ_IMAGE ..

DIALOG_WRITE_IMAGE .. 1

DLM_LOAD ...

DRAW_ROI ...

ENABLE_SYSRTN ..

EOS_GD_QUERY..

EOS_PT_QUERY..

EOS_QUERY...

EOS_SW_QUERY..

GET_DRIVE_LIST ...

GRID_TPS..

IMAGE_STATISTICS ..

ISOCONTOUR..
What’s New in IDL 5.3 Contents

6

 199

 201

. 202

 204

 206

 207

09

 210

212

 214

 216

 217

219

222

224

 226

 228

 229

 231

232

 234

236

 239

 242

 243

 245

. 247

. 248

 250

. 252

. 256

. 257
ISOSURFACE...

LOCALE_GET ..

MESH_CLIP...

MESH_DECIMATE..

MESH_ISSOLID...

MESH_MERGE..

MESH_NUMTRIANGLES... 2

MESH_SMOOTH..

MESH_SURFACEAREA...

MESH_VALIDATE ..

MESH_VOLUME ...

MORPH_CLOSE...

MORPH_DISTANCE..

MORPH_GRADIENT...

MORPH_HITORMISS..

MORPH_OPEN...

MORPH_THIN ..

MORPH_TOPHAT..

MSG_CAT_CLOSE..

MSG_CAT_COMPILE...

MSG_CAT_OPEN..

PARTICLE_TRACE ...

QUERY_IMAGE ...

QUERY_WAV ..

READ_BINARY ...

READ_IMAGE ..

READ_WAV ..

STRCMP...

STREAMLINE ..

STREGEX...

STRJOIN...

STRMATCH ...
Contents What’s New in IDL 5.3

7

. 260

 264

. 266

 268

 269

 271

 273

 275

 277

 278

. 279

. 284

 307

 324

28

30

. 332

 342

47

49
STRSPLIT ..

STRUCT_HIDE...

TETRA_CLIP ...

TETRA_SURFACE...

TETRA_VOLUME ..

VALUE_LOCATE ..

VECTOR_FIELD ..

WATERSHED...

WRITE_IMAGE ..

WRITE_WAV ...

XOBJVIEW ..

Chapter 6:
New Objects ... 283
IDLanROI ...

IDLanROIGroup..

IDLffLanguageCat...

IDLgrBuffer::GetDeviceInfo... 3

IDLgrClipboard::GetDeviceInfo.. 3

IDLgrROI ..

IDLgrROIGroup ..

IDLgrVRML::GetDeviceInfo .. 3

IDLgrWindow::GetDeviceInfo.. 3

Index ... 351
What’s New in IDL 5.3 Contents

8

Contents What’s New in IDL 5.3

Chapter 1:

Overview of New
Features in IDL 5.3

This chapter contains the following topics:
8

Visualization and Analysis Enhancements. 10
IDL Language Enhancements. 21
File I/O Enhancements 24
Development Environment Enhancements. 27
Scientific Data Formats Enhancements. . . . 31
IDL GUIBuilder Enhancements. 33
IDL ActiveX Control Enhancements 34
Installation and Licensing Enhancements. . 39

IDL DataMiner Enhancements 43
Documentation Enhancements 44
New Object Features 49
New Routines. 5
New and Updated Keywords/Arguments. . 65
New Environment Variables 80
Routines Obsoleted in IDL 5.3 81
Platforms Supported in this Release 82
What’s New in IDL 5.3 9

10 Chapter 1: Overview of New Features in IDL 5.3

ype

trast
es

h

s.

it
Visualization and Analysis Enhancements

The following enhancements have been made in the area of Visualization and
Analysis in the IDL 5.3 release:

• Image Processing Improvements

• 3D Visualization Improvements

• New Vector Output of Object Graphics

• New Sub-Rectangle Support for Image Display

• Enhanced User Control Over Axis Label Orientation

• Enhanced Query Support for Objects Graphics Devices

• Enhanced Sparse Matrix Functionality

• New Object Viewer

Image Processing Improvements

Additional image processing tools are included in the IDL 5.3 release. The new
functionality is designed to increase IDL’s capabilities in quantitative image
analyses, such as those needed to analyze images from medical scanning
technologies, satellite data, microscopes, telescopes, etc.

New Routines, Objects, and Compound Widgets

The following list describes the new functionality added in this release and the t
of image processing technique where it is used.

• ADAPT_HIST_EQUAL — Performs adaptive histogram equalization, a form
of automatic image contrast enhancement. This method of automatic con
enhancement has proven to be broadly applicable to a wide range of imag
and to have demonstrated effectiveness.

• GRID_TPS — A geometric manipulation and interpolation technique whic
uses thin plate splines to interpolate a set of values.

• IMAGE_STATISTICS — Generates sample statistics for an array of value

• CW_PALETTE_EDITOR — Creates a compound widget to display and ed
color palettes. This compound widget facilitates displaying and editing of
color palettes used in image processing.
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 11

ge
IDL

he
 are
ned.

pixel
ical

n is

e)
nd

s on
A set of additional morphological functions are now available in IDL for use in ima
processing. The following list shows the morphological routines included in the
5.3 release with a short description of the new functionality.

• MORPH_CLOSE — Applies the closing operator to a binary or grayscale
image. It is simply a dilation operation followed by an erosion operation. T
result of a closing operation is that small holes and gaps within the image
filled, yet the original sizes of the primary foreground features are maintai

• MORPH_DISTANCE — EstimatesN-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background
using a given norm. The distance map is useful for a variety of morpholog
operations: thinning, erosion and dilation by discs of radius “r”, and
granulometry.

• MORPH_GRADIENT — Applies the morphological gradient operator to a
grayscale image. The practical result of a morphological gradient operatio
that the boundaries of features are highlighted.

• MORPH_HITORMISS — Applies the hit-or-miss operator to a binary
image.

• MORPH_OPEN — Applies the opening operator to a binary or grayscale
image. The result of an opening operation is that small features (e.g., nois
within the image are removed, yet the original sizes of the primary foregrou
features are maintained.

• MORPH_THIN — Implements a thinning operator on binary images.

• MORPH_TOPHAT — Applies the top-hat operator to a grayscale image.
Applying the top-hat operator shows the bright peaks within the image.

• WATERSHED — Applies watershed segmentation to a binary image.

Four object classes have also been added for graphical and analysis capabilitie
regions of interest (ROIs). These are described in the“New Object Features” section
of this chapter.

• IDLanROI — The IDLanROI object class provides an analytical
representation of a region of interest.

• IDLanROIGroup — Analytical representation of a group of regions of
interest.

• IDLgrROI — An Object Graphics representation of a region of interest.
What’s New in IDL 5.3 Visualization and Analysis Enhancements

12 Chapter 1: Overview of New Features in IDL 5.3

of

the

m

d
rd

ut
• IDLgrROIGroup — Object Graphics representation of a group of regions
interest.

Changes to Existing Image Processing Routines

New keywords have been added to pre-existing image processing routines:.

• ERODE andDILATE — Added UINT, ULONG, PRESERVE_TYPE, and
THRESHOLD keywords. These keyword expand the data type support for
functions to include the UINT and ULONG data types in addition to the
existing byte type, and also allows the output from LABEL_REGION to be
used as input to the ERODE and DILATE functions.

• DILATE — Two additional keywords, BACKGROUND and
CONSTRAINED have been added for constrained dilation support.

• LABEL_REGION — The argument for this function has been changed fro
Image to Data, and now allowsn-dimensional arrays to be labeled.

Two new keywords (ALL_NEIGHBORS and ULONG) have been added an
one keyword (EIGHT) has been obsoleted. The ALL_NEIGHBORS keywo
functionally replaces the obsoleted keyword, and ULONG allows the outp
array to be an unsigned long integer instead of a short.

• TOTAL — The CUMULATIVE keyword has been added.

Example Program Using New Image Processing Tools

A new example is included with IDL 5.3 that show how to use the ROI
improvements. This example (roi_example.pro) is located in the
examples/objects directory and shows how you can easily create applications
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 13

d

using the new IDLanROI and IDLgrROI objects. You can run these examples by
simply typingroi_example at the IDL command line.

3D Visualization Improvements

Additional 3D visualization functionality in included in the IDL 5.3 release. These
functions provide a suite of focused tools in the form of compound widgets in
addition to some new and consistent end-user routines.

Three new routines have been added for feature extraction functionality:

• ISOCONTOUR — Exposes the contouring algorithm found in the
IsoContour object.

• ISOSURFACE — Expands on the existing SHADE_VOLUME algorithm.

The following routines have been added for polygon mesh functionality:

• MESH_CLIP — Clips a polygonal mesh to an arbitrary plane in space an
return a polygonal mesh of the remaining portion.

Figure 1-1: Example of New Image Processing Tools (roi_example.pro)
What’s New in IDL 5.3 Visualization and Analysis Enhancements

14 Chapter 1: Overview of New Features in IDL 5.3

o-

to
ines

les

 to

nd

 a

ctor

a

d

• MESH_DECIMATE — Deletes points in a polygonal mesh that satisfy a c
planar or co-linear condition and replaces the resulting hole with a new
triangulation.

• MESH_ISSOLID — Computes various mesh properties and enables IDL
determine if a mesh is a solid. If the mesh can be considered a solid, rout
can compute the volume of the mesh.

• MESH_MERGE — Merges two polygonal meshes.

• MESH_NUMTRIANGLES — Computes various mesh properties and
enables IDL to determine the number of triangles in the mesh.

• MESH_SMOOTH — Performs spatial smoothing on a polygon mesh.

• MESH_SURFACEAREA — Computes various mesh properties and enab
IDL to determine the mesh surface area, including integration of other
properties interpolated on the surface of the mesh.

• MESH_VALIDATE — Checks for NaN values in vertices and removes
unused vertices.

• MESH_VOLUME — Computes various mesh properties and enables IDL
determine the volume that the mesh encloses.

Three new routines have been added for tetrahedral mesh functionality:

• TETRA_CLIP — Clips a tetrahedron mesh to an arbitrary plane in space a
returns a tetrahedral mesh of the remaining portion.

• TETRA_SURFACE — Extracts a polygon mesh as the exterior surface of
tetrahedral mesh.

• TETRA_VOLUME — Computes properties of a tetrahedral mesh array.

The following routines have been added for field visualization functionality:

• PARTICLE_TRACE — Traces the path of a mass-less particle through a
vector field and allows the user to specify a set of starting points and a ve
field.

• STREAMLINE — Computes a line that traces the path of a particle through
constant vector field.

• VECTOR_FIELD — Used to place colored, orientated vectors of specifie
length at each vertex in an input vertex array.
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 15

y:

f

it

e

r,

es in
The following new compound widgets have been added for graphics functionalit

• CW_LIGHT_EDITOR — Creates a compound widget to edit properties o
existing IDLgrLight objects in a view.

• CW_PALETTE_EDITOR — Creates a compound widget to display and ed
color palettes. This compound widget facilitates displaying and editing of
color palettes used in image processing.

The following routine has been enhanced in the area of visualization through th
addition of new keywords and arguments.

• EXTRACT_SLICE — New keywords and arguments have been added to
support anisotropy, alternative forms of defining the plane for slicing, and
allows for a vertex grid to be generated without sampling the data.

Example Programs Using New 3D Visualization Tools

Two new examples are included with IDL 5.3 that show how to use the 3D
Visualization improvements. These examples are:

• decimate.pro — Shows the use of the new MESH_ routines, in particula
the MESH_DECIMATE routine

• tetra.pro — Shows the use of the TETRA_ routines, in particular the
TETRA_CLIP routine

The source for these examples are included with IDL in theexamples/objects
directory and show how you can easily create applications using the new featur
What’s New in IDL 5.3 Visualization and Analysis Enhancements

16 Chapter 1: Overview of New Features in IDL 5.3

is
er

t

IDL 5.3. You can run these examples by simply typing eitherdecimate or tetra at
the IDL command line.

New Vector Output of Object Graphics

IDL now includes support for vector output for both the clipboard and printer. This
to improve performance of printing as well as moving graphics from IDL into oth
applications.

New keywords have been added to support the new vector output to the
IDLgrClipboard and IDLgrPrinter object classes.

• IDLgrClipboard::Draw

• FILE — Use this keyword to write the output to a file instead of the
clipboard.

• POSTSCRIPT — Use this keyword to specify that the generated outpu
should be in PostScript format.

• VECTOR — Use this keyword to generate the graphics primitives in
either bitmap or vector format.

Figure 1-2: Examples of New 3D Visualization Tools
(decimator.pro on the left, tetra.pro on the right)
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 17

-offs
ed

es.
file

er

butes

an

 is

ugh
• IDLgrPrinter::Draw

• VECTOR — Use this keyword to generate the graphics primitives in
either bitmap or vector format.

For more information, see“New and Updated Keywords to IDL Object Methods”on
page 53.

Vector Output vs. Bitmap Output

Using the vector output does not always ensure a better result. There are trade
involved depending on the type of graphics editing you are using, and the intend
format for the final result.

When to use Vector Output for the Printer

Vector output to the printer results in faster print times for relatively simple scen
An increase in the scene complexity results in slower print times due to the larger
being printed. For complex scenes, bitmap output may be faster. But for simple
scenes that contain only simpler line plots, the vector format will print much fast
and generate an identical image.

When to use Bitmap Output for the Printer

Bitmap output should always be used whenever you need to preserve image attri
of complex 3D scenes. Again, this includes lighting and shading effects, precise
depth buffering, and other advanced graphical effects.

When to use Vector Output for the Clipboard

Vector output works very well for editing individual objects in a scene using a
graphical object editor like the one in Microsoft Word; however, if you’re editing
image with a bitmap editor, such as Microsoft Paint, vector output is not
recommended.

Use vector output for accurately resizing a pasted clipboard object. If the pasted
clipboard object is in vector format, resizing produces good results. This feature
extremely useful for producing images to include in documents, when resizing is
often necessary to make the image fit in the document’s confined spaces. Altho
bitmaps can also be resized, the quality of the image degrades as the bitmap is
enlarged or reduced in size.

Vector output provides efficiency gains by reducing the memory required for a
clipboard object, depending on the scene content. Simple images with large
dimensions require a lot of space in the clipboard.
What’s New in IDL 5.3 Visualization and Analysis Enhancements

18 Chapter 1: Overview of New Features in IDL 5.3

ing
ther
r

r

ng a
nd

on

l

r

s:
When to use Bitmap Output for the Clipboard

Bitmap output to the clipboard is preferable when trying to preserve all image
attributes for complex 3D scenes. Image attributes you may wish to preserve us
bitmap output include lighting and shading effects, precise depth buffering, and o
advanced graphical effects. Many of these special effects are lost when a vecto
representation is used instead.

New Sub-Rectangle Support for Image Display

You can now access, process, and display sub-rectangles of a given data set fo
imaging by using the new SUB_RECT keyword for theIDLgrImage::Init method.
This is useful when you have a very large image but are only interested in viewi
sub section of the image. This keyword specifies the position of the lower left-ha
corner and the dimensions of the sub-rectangle to display.

For more information, see“New and Updated Keywords to IDL Object Methods”on
page 53.

Enhanced User Control Over Axis Label Orientation

The following new keywords have been added to theIDLgrAxis::Init object method
to allow the user to specify the orientation of the text items used to label tickmarks
the IDLgrAxis object.

• TEXTALIGNMENTS — This keyword specifies the horizontal and vertica
justification of the tick text: left- or right-, and top- or bottom-justified.

• TEXTBASELINE — This keyword describes the direction in which the
baseline of the tick text is to be oriented.

• TEXTUPDIR — This keyword describes the direction in which the up-vecto
of the tick text is to be oriented.

For more information, see“New and Updated Keywords to IDL Object Methods”on
page 53.

Enhanced Query Support for Objects Graphics Devices

The following items of information are now available for query in Object Graphic

• OpenGL renderer description string

• Maximum view port dimensions

• Maximum texture dimensions
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 19

e by

first

. This
rix is
• Approximate performance measurement (e.g., number of polygons per
second)

You can obtain this information and use it to optimize your Object Graphics cod
understanding the limitations of a device.

The following methods have been added:

• IDLgrBuffer::GetDeviceInfo

• IDLgrClipboard::GetDeviceInfo

• IDLgrVRML::GetDeviceInfo

• IDLgrWindow::GetDeviceInfo

For more information, seeChapter 6, “New Objects”.

Enhanced Sparse Matrix Functionality

In previous versions of IDL, there was no way to create a sparse matrix without
creating a full storage matrix. TheSPRSIN function has been enhanced to allow
conversion of a list of subscripts and values to row-indexed sparse storage mode
is a more efficient method than converting an array when the density of the mat
low. For more information, see“New and Updated Keywords/Arguments” on
page 65.

New Object Viewer

The newXOBJVIEW procedure allows you to quickly and easily view and
manipulate IDL Object Graphics on screen. This procedure displays a widget
containing buttons that allow you to rotate, pan, and scale the object using your
mouse.

SeeChapter 5, “New IDL Routines”for complete documentation on the XOBJVIEW
procedure.
What’s New in IDL 5.3 Visualization and Analysis Enhancements

20 Chapter 1: Overview of New Features in IDL 5.3
Figure 1-3: The XOBJVIEW draw widget
Visualization and Analysis Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 21

3

age

nd an
IDL Language Enhancements

The following enhancements have been made in the IDL language in the IDL 5.
release:

• Internationalization Support for IDL Applications

• New String Processing Functionality

• New IDL Session Reset Commands

• New COMPILE_OPT Statement

• New Output Options for the HELP Procedure

• Raised Limits

Internationalization Support for IDL Applications

New support for internationalization provides you with the ability to create a mess
catalog that you can call from within your application. This catalog can then be
translated so that you can support multiple languages. Several new procedures a
object class have been added to support internationalizing your IDL application.

Three new procedures have been added. They are:

• MSG_CAT_COMPILE — Creates an IDL language catalog file.

• MSG_CAT_CLOSE — Closes an IDL language catalog file.

• MSG_CAT_OPEN — Returns the specified object from an IDL language
catalog file.

For more information, seeChapter 5, “New IDL Routines”.

A new IDLffLanguageCat object class has been added that has the following
methods:

• IDLffLanguageCat::IsValid — Determines whether the IDLffLanguage Cat
object has a valid catalog.

• IDLffLanguageCat::Query — Returns the language string associated with a
specified key.

• IDLffLanguageCat::SetCatalog — Specifies a catalog to use.

For more information, seeChapter 6, “New Objects”.
What’s New in IDL 5.3 IDL Language Enhancements

22 Chapter 1: Overview of New Features in IDL 5.3

son

are

as
tern

t this
ing
ing

t,
New String Processing Functionality

The following new string processing routines have been added. SeeChapter 5, “New
IDL Routines” for complete documentation on these new routines:

• STRCMP — Compares two strings. Can perform case-insensitive compari
of first N characters more easily than using the EQ operator.

• STREGEX — Performs regular expression matching. Regular expressions
a very powerful way to match arbitrary text. Regular expressions are an
integral part of many UNIX tools, including awk, egrep, lex, perl, and sed,
well as many text editors. Regular expressions are slower than simple pat
matching algorithms, but are vastly more powerful than simple pattern
matching, and can easily handle tasks that would be difficult or impossible
otherwise.

• STRJOIN — Collapses a string scalar or array into merged strings. The
separator string used between the joined strings can be specified.

• STRMATCH — Compares its search string, which can contain wild card
characters, against the input string expression.

• STRSPLIT — Splits its input string argument into separate sub-strings,
according to the specified pattern.

The following existing string routines have been enhanced:

• STRMID

• TheFirst_Character andLength arguments can now be arrays.

• REVERSE_OFFSET — This new keyword specifies thatFirst_Character
should be counted from the end of the string backwards. This allows
simple extraction of strings from the end.

• STRPOS

• REVERSE_OFFSET — Normally, the value of thePos argument is used
as an offset from the beginning of the expression towards the end. Se
keyword to use it as an offset from the last character of the string mov
towards the beginning. This keyword makes it easy to position the start
point of the search at a fixed offset from the end of the string.

• REVERSE_SEARCH — STRPOS usually starts atPosand moves toward
the end of the string looking for a match. If REVERSE_SEARCH is se
the search instead moves towards the beginning of the string. This
keyword obsoletes the RSTRPOS function.
IDL Language Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 23

 or

,
e
by
s.

. []

 or
New IDL Session Reset Commands

The new executive commands.RESET_SESSION and.FULL_RESET_SESSION
allow you to reset much of the state of an IDL session without having to exit and
restart the IDL session. SeeChapter 5, “New IDL Routines” for complete
documentation on these new commands.

New COMPILE_OPT Statement

The newCOMPILE_OPT statement allows you to provide the IDL compiler with
information that changes some of the default rules for how to compile a function
procedure. SeeChapter 5, “New IDL Routines” for complete documentation on this
new statement.

New Output Options for the HELP Procedure

Several new keywords to theHELP procedure provide greater control over the
information returned by the HELP procedure. The BRIEF keyword causes terse
summary style output, while the FULL keyword causes full, unfiltered output. Th
FUNCTIONS and PROCEDURES keywords allow you to limit output produced
the ROUTINES and SOURCE_FILES keywords to either functions or procedure

Raised Limits

Limits for the following have been raised in IDL 5.3:

• The limit on the number of elements allowed in an array concatenation (e.g
operators) has been raised from 90 to 65535.

• The limit on the number of plain or keyword arguments to an IDL function
procedure has been raised from 64 to 65535.
What’s New in IDL 5.3 IDL Language Enhancements

24 Chapter 1: Overview of New Features in IDL 5.3

3

w

te
uired.

S
P
ely

rite
File I/O Enhancements

The following enhancements have been made in the IDL language in the IDL 5.
release:

• New Support for GZIP File Compression/Decompression

• New File Input/Output/Query Functionality

• New Support for .WAV Audio Files

• Enhanced Support for Tiff Images

• Improved Macros for Importing Data

New Support for GZIP File Compression/Decompression

IDL 5.3 now has support for GZIP file compression/decompression. You can no
read and write data files that use GZIP as well as create.SAV files which can be
compressed as well. This allows you to read and write data files as well as crea
.SAV files that have been compressed which greatly reduces the disk space req

TheOPEN procedures (OPENR, OPENW, and OPENU) now have a COMPRES
keyword that allows you to read and write all data to the file in the standard GZI
format. This means that IDL’s compressed files are 100% compatible with the wid
available gzip and gunzip programs.

TheSAVE procedure also has a new COMPRESS keyword that causes IDL to w
all data to the SAVE file using the ZLIB compression library to reduce its size.

IDL Demo files now use this feature so the they are compressed, resulting in a
smaller IDL installation size.

New File Input/Output/Query Functionality

Additional file input/output functionality is included in the IDL 5.3 release. This
allows you to easily read ASCII, binary, image, and audio files into IDL. The
following list describes the areas of new functionality:

• The following routines have been added for file location functionality:

• GET_DRIVE_LIST (Windows and Mac only) — Returns a string array
of the names of valid drives / volumes for the file system.
File I/O Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 25

ead

o

und
• The following routines have been added for reading binary data:

• BINARY_TEMPLATE — Allows the user to interactively generate a
template structure for a binary file. You can then use this template to r
in binary file with the READ_BINARY function.

• READ_BINARY — Reads the contents of a binary file using a passed
template or basic command line keywords.

• The following routines have been added for general image functionality:

• QUERY_IMAGE — Reads the header of a file and determines if it is
recognized as an image file.

• READ_IMAGE — Reads the image contents of a file and returns the
image in an IDL variable.

• WRITE_IMAGE — Writes an image and its color table vectors, if any, t
a file of a specified type.

• The following compound widgets and dialogs have been added for compo
widgets and dialogs functionality:

• CW_FILESEL — A compound widget for file selection.

• DIALOG_READ_IMAGE — A graphical user interface used for reading
image files.

• DIALOG_WRITE_IMAGE — A graphical user interface used for
writing image files.

Figure 1-4: DIALOG_READ_IMAGE
What’s New in IDL 5.3 File I/O Enhancements

26 Chapter 1: Overview of New Features in IDL 5.3

ve

s

e
ls.

 the

tion,
New Support for .WAV Audio Files

These new routines add support for input and output of .WAV audio files.

• QUERY_WAV — Checks that the file is actually a .WAV file and that the
READ_WAV function can read the data in the file.

• READ_WAV — Reads the audio stream from the named .WAV file.

• WRITE_WAV — Writes the audio stream from the named .WAV file.

Enhanced Support for Tiff Images

IDL now supports single or multi-channel TIFF images. The following routines ha
been enhanced:

• READ_TIFF — This procedure now reads single and multi-channel image
and returns the image and color table vectors.

• WRITE_TIFF — This procedure can now write TIFF files with one or mor
channels where each channel can contain 8, 16, 32, or floating point pixe

Improved Macros for Importing Data

Items have been added to the IDL Development Environment Macros menu and
Tool Bar to make importing of image, ASCII, binary, and HDF data into IDL even
easier by giving you dialogs that step you through the process. For more informa
seeChapter 4, “IDL Macros for Importing Data”.

Figure 1-5: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Import Image

Import ASCII File Import Binary File

Import HDF
FileFile
File I/O Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 27

3

r
ier
ojects
Development Environment Enhancements

The following enhancements have been made in the IDL language in the IDL 5.
release:

• New IDL Projects

• Enhanced Breakpoint Functionality

• New IDL Functions/Procedures Context Menu

• New Color/Font Style Coding for Source Files on Motif

• Enhanced IDL MACRO Support

New IDL Projects

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop you
IDL application. All of your application files can be organized so that they are eas
to access and easier to export to other developers, colleagues, or users. IDL Pr
are a great benefit to development teams working on a large project as well as
individual developers managing multiple projects.

Figure 1-6: Projects Window for Macintosh (left) and Windows (right)

Projects
Window
What’s New in IDL 5.3 Development Environment Enhancements

28 Chapter 1: Overview of New Features in IDL 5.3

our

ct

set

and

IDL
IDL

ce
ta
Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:

• IDL source code files (.pro)

• GUI files (.prc) created with IDL GUIBuilder

• Data files (ASCII text or binary)

• Image files (.tif, .gif, .bmp, etc.)

• Other files (help files, .sav files, etc.)

After you add all of your files to your project, you can simply double click on.pro
files to open them in the IDL editor or.prc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects make it easy to add, remove, move, edit, compile, and test files in y
project.

All of your workspace information is saved as well. If you save and exit your proje
with open files, when you open your project, those same files will be opened
automatically for you.

IDL projects also store and retain breakpoint information. There is no need to re
breakpoints every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled
run by specifying options for your project.

Creating IDL Runtime Distributions

Once you have completed your application, you can quickly and easily create an
Runtime distribution with a new automated process. If you have purchased the
Developer’s Kit, your application is automatically licensed for distribution.

Exporting Your Applications

You can easily move your application to another platform or distribute your sour
code to colleagues by exporting your project. All your source code, GUI files, da
files, and image files are copied to a directory you specify.
Development Environment Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 29

lete,
tures
dd

t

the
For more information on IDL Projects and Developer’s Kit, seeChapter 2, “Creating
IDL Projects”.

Enhanced Breakpoint Functionality

Breakpoints have been enhanced in IDL 5.3. You can now selectively create, de
enable, disable, and set other options for breakpoints from one dialog. Other fea
include new keywords to the BREAKPOINT procedure as well as the ability to a
breakpoints to a file that has not been compiled. For more information, seeChapter 3,
“IDL Development Environment Enhancements”.

New IDL Functions/Procedures Context Menu

Previously only available on the Macintosh, the IDL Function/Procedure Contex
Menu has been added to the Windows and Motif versions of IDL. The IDL
Function/Procedure Context Menu allows you to navigate between the different
procedures and functions you have defined in the current file you have open in
IDL Editor. For more information, seeChapter 3, “IDL Development Environment
Enhancements”.

Figure 1-7: New Edit Breakpoints Dialog
What’s New in IDL 5.3 Development Environment Enhancements

30 Chapter 1: Overview of New Features in IDL 5.3

ify
L

tion,
New Color/Font Style Coding for Source Files on Motif

Previously available on Windows and Macintosh platforms, color and font style
coding has been added to IDL for Motif. This allows you to color code and spec
different font styles for the different types of IDL statements that appear in the ID
Editor window. For more information, seeChapter 3, “IDL Development
Environment Enhancements”.

Enhanced IDL MACRO Support

New Command Stream Substitution

The %? substitution string has been added in IDL 5.3. This substitution string
displays a dialog for a user to enter a value to pass to a macro. For more informa
seeChapter 3, “IDL Development Environment Enhancements”.

New Support for Command Stream Substitutions on Macintosh

Command stream substitution are now available on the Macintosh. You can use
command stream substitutions to include certain types of information into IDL
Macros. For more information, seeChapter 3, “IDL Development Environment
Enhancements”.

Figure 1-8: IDL Function/Procedure Context Menu
on Windows (top) and Motif (bottom)

Context Window
on Windows

Context Window
on Motif
Development Environment Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 31

3

le.

ata
Scientific Data Formats Enhancements

The following enhancements have been made in the IDL language in the IDL 5.
release:

• New Support for Compression of CDF and HDF SD Data Sets

• New HDF-EOS Query Routines

• New EOS_EXISTS Function

• HDF_BROWSER Enhancements

• Updated Library Versions

New Support for Compression of CDF and HDF SD Data Sets

The newCDF_COMPRESSION procedure allows you to set or retrieve the
compression mode of a CDF file and/or variable.

The newHDF_SD_SETCOMPRESS procedure compresses an existing HDF SD
data set or sets the compression method of a newly created HDF SD data set.

New HDF-EOS Query Routines

The following new HDF-EOS query routines have been added:

• EOS_GD_QUERY — Returns information about a specified grid.

• EOS_PT_QUERY — Returns information about a specified point.

• EOS_QUERY— Returns information about the makeup of an HDF-EOS fi

• EOS_SW_QUERY — Returns information about a specified swath.

New EOS_EXISTS Function

The newEOS_EXISTS function allows you to determine whether the HDF-EOS
extensions are supported on the current platform.

HDF_BROWSER Enhancements

The following new features have been added to theHDF_BROWSER function:

• VData/VGroup Data Access — This allows access to VData and VGroup d
within HDF files.
What’s New in IDL 5.3 Scientific Data Formats Enhancements

32 Chapter 1: Overview of New Features in IDL 5.3

a
ngle
• New Show3 Preview Type — This new preview type combines an image,
surface plot of the image data, and a contour plot of the images data in a si
tri-level display.

Updated Library Versions

IDL now supports the following library versions:

• Common Data Format (CDF) 2.6r7

• Hierarchical Data Format (HDF) 4.1r3

• Hierarchical Data Format Earth Observing System (HDF-EOS) 2.4
Scientific Data Formats Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 33

tten

ds
in

ode
IDL GUIBuilder Enhancements

The IDL GUIBuilder has been enhanced so that the event file is no longer overwri
when you generate it. When the event file is built, pre-existing functions and
procedures in the event file are not overwritten. The IDL GUIBuilder now appen
new event routines to the end of the file so that you can now more easily mainta
your event file.

Because of this change, menu options that generate the event file and source c
separately are no longer needed. There is now only one menu item:

Figure 1-9: New Menu Configuration for IDL GUIBuilder
What’s New in IDL 5.3 IDL GUIBuilder Enhancements

34 Chapter 1: Overview of New Features in IDL 5.3

hen
.
iveX

l

s

tures
IDL ActiveX Control Enhancements

IDL 5.3 includes a new version of the IDLDrawX ActiveX control. The control is
now named IDLDrawX2.

Why Was a New Version of the Control Created?

One of the features of COM is that interfaces are immutable. That is to say that w
an interface is created you “contractually” agree that the interface won’t change
Changes require that a new interface (or version) be created. Since the IDL Act
control is a COM object it is bound by this agreement. Because we have made
improvements to the ActiveX control interface by adding new methods and
properties, it was necessary that we create a new ActiveX control with the new
interface.

What Must You Change to Take Advantage of the Control?

If you are a Visual Basic user, you need to add the “IDLDrawX2 ActiveX Contro
Module” to your project and remove the “IDLDrawX ActiveX Control Module” from
your project. The source code need not change.

What About the Previous ActiveX Control?

While version 1.0 of the IDLDrawX control will continue to work with new version
of IDL, it is no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new fea
and bug fixes.

Figure 1-10: IDL DrawX2 ActiveX Control
IDL ActiveX Control Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 35

the

me
h as
ch

ves
ol

age

that
our

ter

the
Why Should You Upgrade?

The new control has a number of new features including printing support, dual
interface control, and new memory improvements. The rest of this section details
improvements made in the new version of the IDL ActiveX control.

New Dual Interface Control

Starting in IDL 5.3, the IDLDrawX2 ActiveX control is a dual interface control. A
dual interface control is an ActiveX control that can be bound to at both compile ti
through a vTable and at runtime through a dispatch interface. Scripting clients suc
java script, VB Script, and VBA use runtime binding while compiled languages su
as Visual C++ and some VB applications use compile time binding. This now gi
compiled languages the ability to call methods on the IDLDrawX2 ActiveX contr
directly rather than through a dispatch interface.

New Printing Support

Applications that have printing and print preview capabilities can now take advant
of printing support within the new IDLDrawX2 ActiveX control. This new capability
is transparent to applications that have built-in print capabilities. For applications
do not have built-in print capabilities, you can call the new Print method to get y
output. The new enhancements that support this capability are:

• A new Print method

• A new BufferId property

Print

This method prints the contents of the ActiveX control to the current default prin
for both Direct and Object Graphics windows. The Print method will print the
contents of the window at screen resolution with a Direct Graphics window. For
information about controlling print resolution of an object graphics window, see
BufferId property.

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.

YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.

Height: The desired height of the printed graphic in 0.01 of a millimeter.
What’s New in IDL 5.3 IDL ActiveX Control Enhancements

36 Chapter 1: Overview of New Features in IDL 5.3

ge.
e
lues

een.

at

n
esh

e

se

:

The X offset plus the width should be less than or equal to the width of a single pa
The Y offset plus the height should be less than or equal to the height of a singl
page. The origin of the offset 0,0 is in the upper left corner of a page. If these va
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the scr

Returns

BOOL: TRUE if printing succeeded.

BufferId

The BufferId controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

1. A value of -1 will cause the graphics to print using vector output. This form
is suitable for line graphs and mesh surfaces.

2. A value of 0 will cause the graphics to print at roughly two times the scree
resolution. This format is suitable for shaded surfaces or vertex colored m
surfaces. This is the default.

3. A value greater then 0 will be construed as an IDLgrBuffer object referenc
whose data will be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information on IDLgrBuffer, see theIDL Reference Guide.

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for the
print options to work.

The following Visual Basic example shows how to use the new BufferId property

‘Create an IDLgrBuffer with dimensions of 1280x1024
IDLDrawWidget1.ExecuteStr(“buffer=OBJ_NEW(IDLgrBuffer, $

dimensions=[1280,1024])”)

‘Get the object reference of the buffer we just created
buffer=IDLDrawWidget1.GetNamedData(“buffer”)

‘Set the buffer ID to the object reference
IDLDrawWidget1.BufferId=buffer

‘Increase the size of the buffer to 2000 pixels by 2000 pixels
IDLDrawWidget1.ExecuteStr(“buffer->SetProperty(dimensions = $

[2000,2000])”)
IDL ActiveX Control Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 37

s

e

rror

 its

ics
lid
Tip
Remember to destroy the IDLgrBuffer object after it is no longer needed for
printing purposes.

Improved Error Reporting in the IDLDrawX2 ActiveX Control

The following have been added to aid developer’s in reporting errors:

Return Value Change for ExecuteStr

The BOOL return value has been replaced by a LONG return value which is 0 if
successful or the IDL error code if it fails.

Tip
This can be used in conjunction with the new LastIdlError property that contain
the actual text of the error message to help you debug your program.

LastIdlError (Runtime)

A string that contains the last IDL error message. This string will not change if th
ExecuteStr method is called and an error does not occur.

Tip
You can check the return value from the ExecuteStr method to determine if an e
occurred. For more information, see IDLgrWindow in theIDL Reference Guide.

Method Enhancements to the IDLDrawX2 ActiveX Control

New Parameter for SetNamedArray

BOOL: Set to TRUE if the control should free a shared array when IDL releases
reference.

New Properties to the IDLDrawX2 ActiveX Control

Renderer

This property specifies either the software or hardware renderer for object graph
windows is to be used. It Has no effect if the GraphicsLevel property is set to 1. Va
values are:
What’s New in IDL 5.3 IDL ActiveX Control Enhancements

38 Chapter 1: Overview of New Features in IDL 5.3

in

s that
• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, the setting in your IDL preferences is used.

New Auto Event Properties to the IDLDrawX2 ActiveX
Control

OnDblClick

An IDL procedure that will be called when a mouse button is double clicked with
the draw widget. The procedure must be in the form:

pro button_dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

IDL ActiveX Control Examples

All of the example IDL ActiveX control examples in the
rsi-director y\external\activex directory (wherersi-directory is the
installation directory for IDL) have been updated to the new IDLDrawX2 ActiveX
control. These examples show the techniques you can use to create application
use the IDL ActiveX control in several different environments.

Parameter Description

button Describes which mouse button has been clicked. The valid
values are:

• 1 — Left mouse button.

• 2 — Middle mouse button.

• 4 — Right mouse button.

xPos The horizontal position of the mouse when the button was
clicked.

yPos The vertical position of the mouse when the button was
clicked.

Table 1-1: OnDblClick Parameters
IDL ActiveX Control Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 39

ions
Installation and Licensing Enhancements

IDL ActiveX Control Demonstration Application

The IDL ActiveX Control demonstration application or “Tstorm demo” is now an
option for installing on Windows platforms. This application shows how the IDL
ActiveX control can be used to create IDL applications. To start the application,
select Start→ Programs→ Research Systems IDL 5.3→ TStorm.

This demonstration application shows how easy it is to create Windows applicat
using the IDL ActiveX control.

You can view the source for this demonstration application in the
rsi-directory /examples/tstorm wherersi-directory is the installation
directory for IDL.

Figure 1-11: IDL ActiveX Control Demonstration Application
What’s New in IDL 5.3 Installation and Licensing Enhancements

40 Chapter 1: Overview of New Features in IDL 5.3

. If
ny

able
New licensing Dialog

The IDL License Information dialog has been enhanced to ease licensing of IDL
you are using the HASP (or Node Locked Hardware) option, you can now add a
optional features listed on your RSI Registration/Licensing form in the Optional
Features box.

For more information on how to install and license IDL, see theInstallation Guide
for your platform.

Replacing the Licensing Dialog Image in Callable IDL
Applications

You can now specify the image for the Demo dialog that appears for an IDL call
application. This allows you to customize the licensing of your callable IDL
application.

Figure 1-12: IDL License Information Dialog
Installation and Licensing Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 41

the
The Unlicensed Application dialog displays at the startup of a callable IDL
application if it is not licensed.

Replacing the Image for Windows Callable Applications

To replace the image in the Unlicensed Application dialog for Windows, you use
IDL_SetValue routine:

int IDL_SetValue(int id, void* pvValue);

You must call the IDL_SetValue routine prior to the IDL_Win32Init() call which
initializes IDL. pvValue may be either a string containing the path of a.BMP file or a
bitmap resource defined in your callable application.

For example, to specify a path to a.BMP file, you would use something like the
following:

// string containing path of bitmap file
strcpy(bitmapFile, "c:\\test_app\\source\\example.bmp");
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) bitmapFile);

If you are specifying a resource, you would use something like the following:

// bitmap resource
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) IDB_BITMAP1);

Figure 1-13: Unlicensed Application Dialog for Windows

Default image that
you can replace
What’s New in IDL 5.3 Installation and Licensing Enhancements

42 Chapter 1: Overview of New Features in IDL 5.3

d to

the
Replacing the Image for Macintosh Callable Applications

To replace the image in the Unlicensed Application dialog for Macintosh, you nee
edit the IDL executable resource using a resource editor. In the following
instructions, ResEdit is used to modify the resource.

To replace the image for Macintosh callable applications, complete the following
steps:

1. Copy the graphic you want to add to the Unlicensed Application dialog to
clipboard.

2. Start ResEdit.

3. Open the IDL executable.

4. Open the PICT resources by double-clicking on the PICT icon.

5. Open the 139 resource by double-clicking it.

6. Paste the graphic into the window. Choose Edit→ Paste.

7. Save the file. Choose File→ Save.

8. Quit ResEdit. Choose File→ Quit.
Installation and Licensing Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 43

ee
IDL DataMiner Enhancements

IDL DataMiner is now supported on the IRIX platform. The following table
describes the supported databases:

For more information on how to install, setup, and use IDL DataMiner on IRIX, s
theIDL DataMiner manual.

Supported
Databases Driver Name Platform Information

INFORMIX 5.x,
6.x, or 7.x

INFORMIX IRIX 6.4

INFORMIX 7.x or
9.x

INFORMIX 9 IRIX 6.4

Oracle 8.0 Oracle 8 IRIX 6.4 (requires Oracle N32 Client
Development Kit, Version 8.0.5.0.0
(Oracle Part Number: Z24604-02) or
later)

SQL Server 4.9.2,
SQL Server
System 10, System
11, and Adaptive
Server 11.5 and
11.9

Sybase IRIX 6.4

Table 1-2: Supported IRIX ODBC Drivers for DataMiner
What’s New in IDL 5.3 IDL DataMiner Enhancements

44 Chapter 1: Overview of New Features in IDL 5.3

his
t set

ke it

e

,
ns

fic
an

re,

ns
Documentation Enhancements

Numerous improvements have been made to the documentation for IDL 5.3,
including the printed manuals, online help, and PDF versions of each manual. T
section outlines these changes, and discusses the organization of the documen
and online help.

Here’s a summary of what has been improved and added in the IDL 5.3
documentation.

Reorganization of Core IDL Manuals

The content of the IDL 5.3 core documentation set has been reorganized to ma
easier to find the information you need. Existing IDL documentation has been
enhanced visually and organizationally to help you access the full power of IDL.

IDL Reference Guide

TheIDL Reference Guideis now a comprehensive reference for IDL that contains th
following:

• An alphabetical list of IDL routines that now includes executive commands
IDL objects, and IDL statements, in addition to the already-existing functio
and procedures. Any IDL language element (with the exception of Scienti
Data Formats routines) that can be entered at the command prompt or in
IDL program can now be found in theIDL Reference Guide. Descriptions of
Scientific Data Formats routines (CDF_*, EOS_*, HDF_*, and NCDF_*
routines) can be found in theScientific Data Formats manual.

• The Syntax (formerly called “Calling Sequence”) for each function, procedu
and object now includes all the keywords available for a routine.

Using IDL

TheUsing IDL manual now has placed a new emphasis on how to perform such
powerful IDL functionality as signal processing, image processing and mapping
among others.

Building IDL Applications

Building IDL Applicationsnow has placed a new emphasis on creating applicatio
in IDL. It covers such topics as how to create applications, components of IDL
applications, and programming tools that help you build IDL applications.
Documentation Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 45

ved

-

rial

ine

 can
e
ore
ly to

IDL
d by
Object Graphics Documentation

TheObject Graphics manual has been eliminated, and the material has been mo
into other manuals as follows:

• Information on using IDL Object Graphics has been moved to theUsing IDL
manual.

• The Object Graphics Class Library has been moved to theIDL Reference
Guide.

The New Getting Started with IDL Manual

The newGetting Started with IDLmanual replaces the formerIDL Basicsmanual as
your introduction into the world of IDL. As always, this book assumes beginning
level exposure to IDL. The existing material has been revised to be more user-
friendly, following a step-by-step example-based format, and relevant new mate
has been added.

Improved IDL HandiGuide

TheIDL HandiGuide now alphabetically lists all IDL functions, procedures,
statements, objects, and executive commands, including Scientific Data Format
routines. A description and the syntax (including keywords) is listed for each rout
or object.

The New IDL Master Index

A master index to the entire IDL documentation set now exists as a PDF file and
be accessed through the IDL Online Guide. All entries are hypertext linked to th
actual information you are looking for. The combined index in the back of each c
manual has been removed. The index in the back of each manual now applies on
that manual.

Improved Help System

The IDL Help system has been reorganized to help you find the information you
need.

The Contents tab is no longer organized according to the individual books in the
document set. Instead, all information in the entire IDL document set is presente
topic. This allows you to find the information you need without having to know
which printed book the information resides in.
What’s New in IDL 5.3 Documentation Enhancements

46 Chapter 1: Overview of New Features in IDL 5.3

nds
’re

n

ded
t

The IDL online help is now contained in a single.hlp file. This allows you to search
and find the information you’re looking for in one source.

The IDL online help also contains a convenient navigational section in its comma
reference section to allow you to easily navigate to the routine or procedure you
looking for.

Improved PDF System

All volumes of the IDL documentation set are now available in Adobe Acrobat
Portable Document Format (PDF). These PDF files are automatically installed o
your machine with IDL. You will need a copy of Adobe’s Acrobat Reader with
Search software (version 3.0 or later). A copy of Adobe Acrobat Reader is inclu
on your product CD-ROM. For more information on Adobe Acrobat Reader, visi
their World Wide Web site atwww.adobe.com

Figure 1-14: The IDL Help Navigator
Documentation Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 47
To access the IDL online manuals after you have installed IDL:

• On Windows, select Start→ Programs→ Research Systems IDL 5.3→ IDL
Online Manuals.

• On Macintosh, a shortcut can be found in thersi-directory:RSI:IDL 5.3 folder
namedIDL Online Manuals.

• On UNIX, execute the following at the UNIX prompt:

idlman

The IDL online manuals can also be found in theinfo directory of your product CD-
ROM.

Figure 1-15: The Online Guide and Search Dialog
What’s New in IDL 5.3 Documentation Enhancements

48 Chapter 1: Overview of New Features in IDL 5.3

e
 for
tion

 IDL
Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. The Onlin
Guide (onlguide.pdf) file is your guide to the IDL documentation set. It has links
all manuals in the documentation set as well as links on how to get more informa
from Research Systems.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need
within the IDL manual set. To search the IDL manual set, you can click on the
binocular/page button in the Acrobat Reader tool bar after you have opened any
manual in the set including the Online Guide.
Documentation Enhancements What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 49

.3.

e

f

New Object Features

This section describes the new object classes, methods, and keywords in IDL 5

New Object Classes

The following table describes the new object classes in IDL 5.3:

New Object Methods

New and existing IDL Object Graphics classes have been updated to include th
following new methods:

Object Class Description

IDLanROI The IDLanROI object class provides an analytical
representation of a region of interest.

IDLanROIGroup Analytical representation of a group of regions of
interest.

IDLffLanguageCat Provides an interface to IDL language catalog files.

IDLgrROI An Object Graphics representation of a region of
interest.

IDLgrROIGroup Object Graphics representation of a group of regions o
interest.

Table 1-3: New Object Classes in IDL 5.3.

New Methods Description

IDLanROI::AppendData Appends vertices to the current region.

IDLanROI::Cleanup Performs all cleanup for a region of
interest object.

IDLanROI::ComputeGeometry Computes the requested geometrical
values (area, perimeter, and/or centroid)
for the region.

Table 1-4: New Object Methods in IDL 5.3
What’s New in IDL 5.3 New Object Features

50 Chapter 1: Overview of New Features in IDL 5.3
IDLanROI::ComputeMask Prepares a two-dimensional mask for this
region.

IDLanROI::ContainsPoints Determines whether the given data
coordinates are contained within this
region.

IDLanROI::GetProperty Retrieves the value of a property or group
of properties for the region.

IDLanROI::Init Initializes a region of interest object.

IDLanROI::RemoveData Removes vertices from the region.

IDLanROI::ReplaceData Replaces vertices in the region with
alternate values.

IDLanROI::Rotate Modifies the vertices for the region by
applying a rotation.

IDLanROI::Scale Modifies the vertices for the region by
applying a scale.

IDLanROI::SetProperty Sets the value of a property or group of
properties for the region.

IDLanROI::Translate Modifies the vertices for the region by
applying a translation.

IDLanROIGroup::Add Adds a region to the region group. Only
objects of the IDLanROI class may be
added to the group.

IDLanROIGroup::Cleanup Performs all cleanup for a region of
interest group object.

IDLanROIGroup::ContainsPoints Determines whether the given data
coordinates are contained within the
closed polygon regions within this group.
A point is considered to be contained if it
lies within the boundary of a region.

IDLanROIGroup::ComputeMask Prepares a two-dimensional mask for this
group of regions.

New Methods Description

Table 1-4: New Object Methods in IDL 5.3
New Object Features What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 51
IDLanROIGroup::ComputeMesh Triangulates a surface mesh (optionally
capped) from the stack of regions
contained within this group.

IDLanROIGroup::GetProperty Retrieves the value of a property or group
of properties for the group of regions.

IDLanROIGroup::Init Initializes a region of interest group
object.

IDLanROIGroup::Rotate Modifies the vertices for all regions within
the group by applying a rotation.

IDLanROIGroup::Scale Modifies the vertices for the region by
applying a scale.

IDLanROIGroup::Translate Modifies the vertices all regions within the
group by applying a translation.

IDLffLanguageCat::IsValid Determines whether the
IDLffLanguageCat object has a valid
catalog.

IDLffLanguageCat::Query Returns the language string associated
with the given key.

IDLffLanguageCat::SetCatalog Sets the appropriate catalog file.

IDLgrBuffer::GetDeviceInfo Returns information on OpenGL hardware
that may be installed on the computer.

IDLgrClipboard::GetDeviceInfo Returns information on OpenGL hardware
that may be installed on the computer.

IDLgrROI::Cleanup Performs all cleanup for an Object
Graphics region of interest object.

IDLgrROI::GetProperty Retrieves the value of a property or group
of properties for the Object Graphics
region.

IDLgrROI::Init Initializes an Object Graphics region of
interest object.

New Methods Description

Table 1-4: New Object Methods in IDL 5.3
What’s New in IDL 5.3 New Object Features

52 Chapter 1: Overview of New Features in IDL 5.3
IDLgrROI::PickVertex Picks a vertex of the region that, when
projected onto the given destination
device, is nearest to the given 2D device
coordinate.

IDLgrROI::SetProperty Sets the value of a property or group of
properties for the Object Graphics region.

IDLgrROIGroup::Add Adds a region to the region group. Only
objects of the IDLgrROI class may be
added to the group. The regions in the
group must all be of the same type (all
points, all paths, or all polygons).

IDLgrROIGroup::Cleanup Performs all cleanup for an Object
Graphics region of interest group object.

IDLgrROIGroup::Init Initializes an Object Graphics region of
interest group object.

IDLgrROIGroup::PickRegion Picks a region within the group that, when
projected onto the given destination
device, is nearest to the given 2D device
coordinate.

IDLgrVRML::GetDeviceInfo Returns information on OpenGL hardware
that may be installed on the computer.

IDLgrWindow::GetDeviceInfo Returns information on OpenGL hardware
that may be installed on the computer.

New Methods Description

Table 1-4: New Object Methods in IDL 5.3
New Object Features What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 53
New and Updated Keywords to IDL Object Methods

The following table describes the new and updated keywords to IDL objects.

Object Method Keyword Description

IDLffDICOM::Read ENDIAN Set this keyword to configure
the endian format when
reading a DICOM file.

• 1 = Implicit VR Little
Endian

• 2 = Explicit VR Little
Endian

• 3 = Implicit VR Big
Endian

• 4 = Explicit VR Big
Endian

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3
What’s New in IDL 5.3 New Object Features

54 Chapter 1: Overview of New Features in IDL 5.3
IDLgrAxis::Init TEXTALIGNMENTS
(Get, Set)

Set this keyword to a two-
element floating point vector,
[horizontal, vertical],
specifying the horizontal and
vertical alignments for the tick
text. Each alignment value
should be a value between 0.0
and 1.0. For horizontal
alignment, 0.0 left-justifies the
text; 1.0 right-justifies the text.
For vertical alignment, 0.0
bottom-justifies the text, 1.0
top-justifies the text. The
defaults are as follows:

• X-Axis: [0.5, 1.0]
(centered horizontally,
top-justified vertically)

• Y-Axis: [1.0, 0.5] (right-
justified horizontally,
centered vertically)

• Z-Axis: [1.0, 0.5] (right-
justified horizontally,
centered vertically)

TEXTBASELINE
(Get, Set)

Set this keyword to a two- or
three-element vector
describing the direction in
which the baseline of the tick
text is to be oriented. Use this
keyword in conjunction with
the TEXTUPDIR keyword to
specify the plane on which the
tick text lies. The default is
[1,0,0].

Object Method Keyword Description

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3
New Object Features What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 55
IDLgrAxis::Init

(continued)

TEXTUPDIR
(Get, Set)

Set this keyword to a two- or
three-element vector
describing the direction in
which the up-vector of the tick
text is to be oriented. Use this
keyword in conjunction with
the TEXTBASELINE
keyword to specify the plane
on which the tick text lies.
TEXTUPDIR should be
orthogonal to
TEXTBASELINE. The default
is as follows:

• X-Axis: [0, 1, 0]

• Y-Axis: [0, 1, 0]

• Z-Axis: [0, 0, 1]

IDLgrClipboard::Draw FILENAME Set this keyword to a string
representing the name of a file
to which the output should be
written. By default, this
keyword is a null string
indicating that the output is
written to the clipboard.

POSTSCRIPT Set this keyword to a nonzero
value to indicate that the
generated output should be in
PostScript format. By default,
the generated output is in
Windows Enhanced Metafile
Format on Windows platforms,
PICT format on Macintosh
platforms, and PostScript on
UNIX/VMS platforms.

Object Method Keyword Description

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3
What’s New in IDL 5.3 New Object Features

56 Chapter 1: Overview of New Features in IDL 5.3
IDLgrClipboard::Draw
(continued)

VECTOR Set this keyword to indicate
the type of graphics primitives
generated. Valid values are:

• 0 — Bitmap (the default).
The Draw method renders
the scene to a buffer and
then copies the buffer to
the printer in bitmap
format. The bitmap retains
the quality of the original
image.

• 1 — Vector. The Draw
method renders the scene
using simple vector
operations that result in a
representation of the scene
that is scalable to the
printer. This representation
does not retain all the
attributes of the original
image.

IDLgrImage::Init SUB_RECT
(Get, Set)

Set this keyword to a four-
element vector, [x, y, xdim,
ydim], specifying the position
of the lower left-hand corner
and the dimensions of the sub-
rectangle to display.

Object Method Keyword Description

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3
New Object Features What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 57
IDLgrPrinter::Draw VECTOR Set this keyword to indicate
the type of graphics primitives
generated. Valid values are:

• 0 — Bitmap (the default).
The Draw method renders
the scene to a buffer and
then copies the buffer to
the printer in bitmap
format. The bitmap retains
the quality of the original
image.

• 1 — Vector. The Draw
method renders the scene
using simple vector
operations that result in a
representation of the scene
that is scalable to the
printer. The vector
representation does not
retain all the attributes of
the original image. The
vector representation is
sent to the printer.

Object Method Keyword Description

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3
What’s New in IDL 5.3 New Object Features

58 Chapter 1: Overview of New Features in IDL 5.3

t

New Routines

The following is a list of new functions, procedures, statements, and executive
commands added to IDL. To view documentation for new routines, seeChapter 5,
“New IDL Routines”.

Routine Description

.RESET_SESSION This executive command resets much of the
state of an IDL session without requiring the
user to exit and restart the IDL session. Note
that executive commands can only be used a
the IDL command prompt, not in IDL
programs.

.FULL_RESET_SESSION This executive command does everything
.RESET_SESSION does, plus the following:

• Removes all system routines installed via
LINKIMAGE or a DLM.

• Removes all structure definitions installed
via a DLM.

• Removes all message blocks added by
DLMs.

• Unloads all sharable libraries loaded into
IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

• Re-initializes all DLMs to their unloaded
initial state.

Note that executive commands can only be
used at the IDL command prompt, not in IDL
programs.

ADAPT_HIST_EQUAL Performs adaptive histogram equalization, a
form of automatic image contrast
enhancement.

Table 1-6: New Routines in IDL 5.3
New Routines What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 59
BINARY_TEMPLATE Allows the user to interactively generate a
template structure for use with
READ_BINARY.

CDF_COMPRESSION Sets or returns the compression mode for a
CDF file and/or variables.

COMPILE_OPT Allows the author to provide the IDL compiler
with information that changes some of the
default rules for how to compile the function
or procedure within which the
COMPILE_OPT statement appears.

CW_FILESEL A compound widget for file selection.

CW_LIGHT_EDITOR Creates a compound widget to edit properties
of existing IDLgrLight objects in a view.

CW_LIGHT_EDITOR_GET Gets the CW_LIGHT_EDITOR properties.

CW_LIGHT_EDITOR_SET Sets the CW_LIGHT_EDITOR properties.

CW_PALETTE_EDITOR Creates a compound widget to display and
edit color palettes.

CW_PALETTE_EDITOR_GET Gets the CW_PALETTE_EDITOR properties.

CW_PALETTE_EDITOR_SET Sets the CW_PALETTE_EDITOR properties.

DIALOG_READ_IMAGE A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE A graphical user interface used for writing
image files.

DLM_LOAD Normally, IDL system routines that reside in
Dynamically Loadable Modules (DLMs) are
automatically loaded on demand when a
routine from a DLM is called. The
DLM_LOAD procedure can be used to
explicitly cause a DLM to be loaded.

DRAW_ROI Draws a region to the current Direct Graphics
device.

Routine Description

Table 1-6: New Routines in IDL 5.3
What’s New in IDL 5.3 New Routines

60 Chapter 1: Overview of New Features in IDL 5.3
ENABLE_SYSRTN Enables/disables IDL system routines.

EOS_EXISTS Returns success (1) if the HDF-EOS
extensions are supported on the current
platform, and fail (0) if not.

EOS_GD_QUERY Returns information about a specified grid.

EOS_PT_QUERY Returns information about a specified point.

EOS_QUERY Returns information about the makeup of an
HDF-EOS file.

EOS_SW_QUERY Returns information about a specified swath.

GET_DRIVE_LIST Returns a string array of the names of valid
drives / volumes for the file system. (Windows
/ Macintosh only)

GRID_TPS Uses thin plate splines to interpolate a set of
values over a regular grid.

HDF_SD_SETCOMPRESS Compresses an existing HDF SD data set or
sets the compression method of a newly
created HDF SD data set.

IMAGE_STATISTICS Computes sample statistics for a given array
of values.

ISOCONTOUR Allows for contouring on arbitrary meshes and
returns line or orientated tessellated polygon
output.

ISOSURFACE Returns topologically consistent triangles by
using orientated tetrahedral decomposition
internally and allows the algorithm to
isosurface any arbitrary tetrahedral mesh.

MESH_CLIP Clips a polygon mesh to an arbitrary plane in
space and returns a polygon mesh of the
remaining portion.

Routine Description

Table 1-6: New Routines in IDL 5.3
New Routines What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 61
MESH_DECIMATE Accepts an additional array of auxiliary data
values which can be used together with a
weighting function to allow external data to be
considered when a particular triangle is
removed.

MESH_ISSOLID Computes various mesh properties and
enables IDL to determine if a mesh is a solid.
If the mesh can be considered a solid, routines
can compute the volume of the mesh.

MESH_MERGE Merges two polygonal meshes.

MESH_NUMTRIANGLES Computes various mesh properties and
enables IDL to determine the number of
triangles in a polygonal mesh.

MESH_SMOOTH Performs spatial smoothing on a polygonal
mesh.

MESH_SURFACEAREA Computes various mesh properties and
enables IDL to determine the mesh surface
area, including integration of other properties
interpolated on the surface of the mesh.

MESH_VALIDATE Checks for NaN values in vertices and
removes unused vertices.

MESH_VOLUME Computes various mesh properties and
enables IDL to determine the volume that the
mesh encloses.

MORPH_CLOSE Applies the closing operator to a binary or
grayscale image.

Routine Description

Table 1-6: New Routines in IDL 5.3
What’s New in IDL 5.3 New Routines

62 Chapter 1: Overview of New Features in IDL 5.3

h

t

t

MORPH_DISTANCE EstimatesN-dimensional distance maps,
which contain for each foreground pixel the
distance to the nearest background pixel,
using a given norm. Available norms include:
Euclidean, which is exact and is also known as
the Euclidean Distance Map (EDM), and two
more efficient approximations, chessboard
and city block.

MORPH_GRADIENT Applies the morphological gradient operator
to a grayscale image.

MORPH_HITORMISS Applies the hit-or-miss operator to a binary
image.

MORPH_OPEN Applies the opening operator to a binary or
grayscale image.

MORPH_THIN Implements a thinning operator on binary
images.

MORPH_TOPHAT Applies the top-hat operator to a grayscale
image.

MSG_CAT_CLOSE Closes an IDL language catalog file from the
stored cache.

MSG_CAT_COMPILE Creates an IDL language catalog file.

MSG_CAT_OPEN Returns a specified object from an IDL
language catalog file.

PARTICLE_TRACE Traces the path of a mass-less particle throug
a vector field and allows the user to specify a
set of starting points and a vector field.

QUERY_IMAGE Reads the header of a file and determines if i
is recognized as an image file.

QUERY_WAV Reads the header of a file and determines if i
is recognized as a .WAV file.

Routine Description

Table 1-6: New Routines in IDL 5.3
New Routines What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 63

e

READ_BINARY Reads the contents of a binary file using a
passed template or basic command line
keywords.

READ_IMAGE Reads the image contents of a file.

READ_WAV Reads the audio stream from the named .WAV
file.

STRCMP Compares two strings. Can perform case-
insensitive comparison of first N characters
more easily than using the EQ operator.

STREAMLINE Computes a line that traces the path of a
particle through a constant vector field.

STREGEX Performs regular expression string matching.

STRJOIN Collapses a string scalar or array into merged
strings. The separator string used between th
joined strings can be specified.

STRMATCH Compares its search string, which can contain
wildcard characters, against the input string
expression.

STRSPLIT Splits its input string argument into separate
substrings, according to the specified delimiter
or regular expression.

STRUCT_HIDE Used by authors of large vertical applications
to prevent the IDL HELP procedure from
displaying information about structures or
objects that are not part of their public
interface.

TETRA_CLIP Clips a tetrahedral mesh to an arbitrary plane
in space and return a tetrahedral mesh of the
remaining portion.

TETRA_SURFACE Extracts a polygonal mesh as the exterior
surface of a tetrahedral mesh.

Routine Description

Table 1-6: New Routines in IDL 5.3
What’s New in IDL 5.3 New Routines

64 Chapter 1: Overview of New Features in IDL 5.3

h

TETRA_VOLUME Computes properties of a tetrahedral mesh
array.

VALUE_LOCATE Finds the interval(s) within a given
monotonically increasing (or monotonically
decreasing) vector that brackets a given searc
value (or set of values).

VECTOR_FIELD Used to place colored, orientated vectors of
specified length at each vertex in an input
vertex array.

WATERSHED Applies watershed segmentation to a binary
image.

WRITE_IMAGE Writes an image and its color table vectors, if
any, to a file of a specified type.

WRITE_WAV Writes the audio stream from the named
.WAV file.

XOBJVIEW Allows you to quickly and easily view and
manipulate IDL Object Graphics on screen.
This procedure displays a widget containing
buttons that allow you to rotate, pan, and scale
the object using your mouse.

Routine Description

Table 1-6: New Routines in IDL 5.3
New Routines What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 65

DL
New and Updated Keywords/Arguments

The following is a list of new and updated keywords and arguments to existing I
routines.

Routine Keyword/
Argument Description

BREAKPOINT DISABLE Disables the specified
breakpoint if it exists. The
breakpoint can be specified
using the breakpoint index or
file and line number.

ENABLE Enables the specified
breakpoint if it exists. The
breakpoint can be specified
using the breakpoint index or
file and line number.

CALL_EXTERNAL UNLOAD Normally, IDL keepsImage
loaded in memory after the call
to CALL_EXTERNAL
completes. This is done for
efficiency—loading a sharable
object can be a slow operation.
Setting the UNLOAD keyword
will cause IDL to unloadImage
after the call to it is complete.

CHECK_MATH MASK Defines the bitmask of
exceptions to check.

NOCLEAR If NOCLEAR is set, exceptions
are not cleared and remain
pending.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

66 Chapter 1: Overview of New Features in IDL 5.3
DILATE BACKGROUND Set this keyword to the pixel
value that is to be considered
the background when dilation
is being performed in
constrained mode.

CONSTRAINED If this keyword is set and
grayscale dilation has been
selected, the dilation algorithm
will operate in constrained
mode. In this mode, a pixel is
set to the value determined by
normal grayscale dilation rules
in the output image only if the
current value destination pixel
value matches the
BACKGROUND pixel value.
Once a pixel in the output
image has been set to a value
other than the BACKGROUND
value, it cannot change.

PRESERVE_TYPE Set this keyword to return the
same type as the input array.
This keyword only applies if
the GRAY keyword is set.

UINT Set this keyword to return an
unsigned integer array. This
keyword only applies if the
GRAY keyword is set.

ULONG Set this keyword to return an
unsigned longword integer
array. This keyword only
applies if the GRAY keyword
is set.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 67
ERODE PRESERVE_TYPE Set this keyword to return the
same type as the input array.
This keyword only applies if
the GRAY keyword is set.

UINT Set this keyword to return an
unsigned integer array. This
keyword only applies if the
GRAY keyword is set.

ULONG Set this keyword to return an
unsigned longword integer
array. This keyword only
applies if the GRAY keyword
is set.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

68 Chapter 1: Overview of New Features in IDL 5.3
EXTRACT_SLICE ANISOTROPY Set this keyword to a three-
element array. This array
specifies the spacing between
the planes of the input volume
in grid units of the (isotropic)
output image.

VERTICES Set this keyword to a named
variable in which to return a
[3,Xsize,Ysize] floating point
array. This is an array of the x,
y, z sample locations for each
pixel in the normal output.

PlaneNormal This new argument is a 3-
element array that provides an
alternate form for the plane
specification. The values are
interpreted as the normal of the
slice plane.

Xvec This new argument is a 3-
element array that provides an
alternate form for the plane
specification. The three values
are interpreted as the 0
dimension directional vector.
This should be a unit vector.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 69
FIX PRINT Set this keyword to specify that
any special-case processing
when converting between
string and byte data, or the
reverse, should be suppressed.

TYPE FIX normally converts its
expression to the integer type.
If TYPE is specified, it is the
type code to set the type of the
conversion. This feature allows
dynamic type conversion,
where the desired type is not
known until runtime, to be
carried out without the use of
large CASE or IF...THEN
logic.

FSTAT n/a FSTAT returns two new fields:
XDR (nonzero if the file was
opened with the XDR
keyword) and COMPRESS
(nonzero if the file was opened
with the COMPRESS
keyword).

HDF_BROWSER n/a VGroups and VData have been
added to the display options.

n/a A new Show3 preview type has
been added, which combines
an image, surface plot, and
contour plot.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

70 Chapter 1: Overview of New Features in IDL 5.3
HELP BRIEF BRIEF produces very terse
summary style output instead
of the output normally
displayed by the following
keywords: DLM,
HEAP_VARIABLES,
MESSAGES, OBJECTS,
ROUTINES,
SOURCE_FILES,
STRUCTURES, and
SYSTEM_VARIABLES.

FULL By default, HELP filters its
output in an attempt to only
display information likely to be
of use to the IDL end user.
Specify FULL to see all
available information on a
given topic without any such
filtering.

FUNCTIONS Normally, the ROUTINES or
SOURCE_FILES keywords
produce information on both
functions and procedures. If
FUNCTIONS is specified, only
output on functions is
produced.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 71
HELP (continued) NAMES NAMES now works with the
output from the following
keywords: DLM,
HEAP_VARIABLES,
MESSAGES, OBJECTS,
ROUTINES,
SOURCE_FILES,
STRUCTURES, and
SYSTEM_VARIABLES.

PROCEDURES Normally, the ROUTINES or
SOURCE_FILES keywords
produce information on both
functions and procedures. If
PROCEDURES is specified,
only output on procedures is
produced.

INTERPOL LSQUADRATIC If set, interpolate using a least
squares quadratic fit to the
equation y = a + bx + cx2, for
each 4 point neighborhood (x[i-
1], x[i], x[i+1], x[i+2])
surrounding the interval of the
interpolate, x[i]≤ u < x[i+1].

QUADRATIC If set, interpolate by fitting a
quadratic y = a + bx + cx2, to
the three point neighborhood
(x[i-1], x[i], x[i+1])
surrounding the interval x[i]≤
u < x[i+1].

SPLINE If set, interpolate by fitting a
cubic spline to the 4 point
neighborhood (x[i-1], x[i],
x[i+1], x[i+2]) surrounding the
interval, x[i] ≤ u < x[i+1].

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

72 Chapter 1: Overview of New Features in IDL 5.3
INTERPOLATE n/a Expanded to allow for the
interpolation of quantities of
higher dimension (minimally
vectors) which allows one to
interpolate and sample many
points at once. It also allows for
multiple dimensions to be
considered simultaneously.

LABEL_REGION ALL_NEIGHBORS Set this keyword to indicate
that all adjacent neighbors to a
given pixel should be searched.
(This is sometimes called 8-
neighbor searching when the
image is 2-dimensional). The
default is to search only the
neighbors that are exactly one
unit in distance from the
current pixel (sometimes called
4-neighbor searching when the
image is 2-dimensional).

Data This argument, which used to
be called Image, can now be an
n-dimensional array.

EIGHT This keyword is now obsolete.
It has been replaced by the
ALL_NEIGHBORS keyword
(because this routine now
handles N-dimensional data).

ULONG Set this keyword to specify that
the output array should be an
unsigned long integer.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 73
LMGR EXPIRE_DATE Set this keyword to a named
variable that will receive a
string containing the expiration
date of the current IDL session
if the session is a trial session.
This named variable will be
undefined if the IDL session
has a permanent license.

INSTALL_NUM Set this keyword to a named
variable that will receive a
string containing the
installation number of the
current IDL session. This
named variable will be
undefined if the IDL session is
unlicensed.

SITE_NOTICE Set this keyword to a named
variable that will receive a
string containing the site notice
of the current IDL session. This
named variable will be
undefined if the IDL session is
unlicensed.

MIN_CURVE_SURF DOUBLE Set this keyword to force the
computation to be done in
double-precision arithmetic.

OBJ_CLASS Arg This argument is now optional.
If specified, OBJ_CLASS
works as before, but if Arg is
omitted, OBJ_CLASS returns
an array containing the names
of all known object classes.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

74 Chapter 1: Overview of New Features in IDL 5.3
OPEN Procedures
(OPENR, OPENW,
OPENU)

COMPRESS If COMPRESS is set, IDL
reads and writes all data to the
file in the standard GZIP
format. IDL’s GZIP support is
based on the freely available
ZLIB library by Mark Adler
and Jean-loup Gailly. This
means that IDL’s compressed
files are 100% compatible with
the widely available gzip and
gunzip programs.

RESOLVE_ROUTINE EITHER If set, indicates that the caller
does not know whether the
supplied routine names are
functions or procedures, and
will accept either.

NO_RECOMPILE Normally,
RESOLVE_ROUTINE
compiles all specified routines
even if they have already been
compiled. Setting
NO_RECOMPILE indicates
that such routines are not
recompiled.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 75
ROUTINE_INFO DISABLED Set this keyword to get the
names of currently disabled
system procedures or functions
(in conjunction with the
FUNCTIONS keyword). Use
of DISABLED implies
SYSTEM, since user routines
cannot be disabled.

ENABLED Set this keyword to get the
names of currently enabled
system procedures or functions
(in conjunction with the
FUNCTIONS keyword). Use
of ENABLED implies
SYSTEM, since user routines
cannot be disabled.

SOURCE This keyword now returns the
path to the SAVE file if the
routine comes from an
SAVE/RESTORE file.

SAVE COMPRESS If COMPRESS is set, IDL
writes all data to the SAVE file
using the ZLIB compression
library to reduce its size.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

76 Chapter 1: Overview of New Features in IDL 5.3
SPRSIN Columns A vector containing the column
subscripts of the nonzero
elements. Values must be in the
range of 0 to (N-1).

Rows A vector, of the same length as
Column, containing the row
subscripts of the nonzero
elements. Values must be in the
range of 0 to (N-1).

Values A vector, of the same length as
Column, containing the values
of the non-zero elements.

N The size of the resulting sparse
matrix.

STRMID First_Character The First_Character argument
can now be an array.

Length The Length argument can now
be an array.

REVERSE_OFFSET Specifies that First_Character
should be counted from the end
of the string backwards. This
allows simple extraction of
strings from the end.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 77
STRPOS REVERSE_OFFSET Normally, the value of thePos
argument is used as an offset
from the beginning of the
expression towards the end. Set
REVERSE_OFFSET to use it
as an offset from the last
character of the string moving
towards the beginning. This
keyword makes it easy to
position the starting point of
the search at a fixed offset from
the end of the string.

REVERSE_SEARCH STRPOS usually starts atPos
and moves toward the end of
the string looking for a match.
If REVERSE_SEARCH is set,
the search instead moves
towards the beginning of the
string.

STRUCT_ASSIGN NOZERO Normally, any fields found in
the destination structure that
are not found in the source
structure are zeroed. Set
NOZERO to prevent this action
and leave the original contents
of such fields unchanged.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

78 Chapter 1: Overview of New Features in IDL 5.3
THIN NEIGHBOR_COUNT Set this keyword to select an
alternate form of output. In this
form, output pixel values count
the number of neighbors an
individual skeletal pixel has
(including itself). For example,
a pixel that is part of a line will
have the value 3 (two neighbors
and itself). Terminal pixels will
have the value 2, while isolated
pixels have the value 1.

PRUNE If the PRUNE keyword is set,
pixels with single neighbors are
removed interactively until
only pixels with 2 or more
neighbors exist. This
effectively removes (or
“prunes”) skeleton branches,
leaving only closed paths.

TOTAL CUMULATIVE If this keyword is set, the result
is an array of the same size as
the input, with each element, i,
containing the sum of the input
array elements 0 to i. This
keyword also works with the
Dimension parameter, in which
case the sum is performed over
the given dimension.

TRIANGULATE n/a Extended to allow for direct
interpolation of values in an
irregular grid in multiple
dimensions.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
New and Updated Keywords/Arguments What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 79
TRIGRID n/a Extended to allow for direct
interpolation of values in an
irregular grid in multiple
dimensions.

Routine Keyword/
Argument Description

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3
What’s New in IDL 5.3 New and Updated Keywords/Arguments

80 Chapter 1: Overview of New Features in IDL 5.3

s

er

g

n

New Environment Variables

The following environment variables have been added in IDL 5.3:

Environment
Variable Description

IDL_TMPDIR IDL, and code written in the IDL language, sometimes need
to create temporary files. The location where these files
should be created is highly system dependent, and local us
conventions are often different from “standard practice”. By
default, IDL selects a reasonable location based on operatin
system and vendor conventions. Set the IDL_TMPDIR
environment variable to override this choice and explicitly
specify the location for temporary files.

The GETENV system function handles IDL_TMPDIR as a
special case, and can be used by code written in IDL to obtai
the temporary file location.

Table 1-8: New Environment Variables in IDL 5.3
New Environment Variables What’s New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 81

DL
ds to
uld
Routines Obsoleted in IDL 5.3

The following routines were present in IDL Version 5.2 but became obsolete in I
Version 5.3. These routines have been replaced with new routines or new keywor
existing routines that offer enhanced functionality. These obsoleted routines sho
not be used in new IDL code.

Routine Replaced by .pro File?

HDF_DFSD_*
Routines

HDF_SD_* Routines

RSTRPOS STRPOS, /REVERSE_SEARCH rstrpos.pro

STR_SEP STRSPLIT for single character
delimiters

STRSPLIT, /REGEX for longer
delimiters

str_sep.pro

Table 1-9: Routines Obsoleted in IDL 5.3
What’s New in IDL 5.3 Routines Obsoleted in IDL 5.3

82 Chapter 1: Overview of New Features in IDL 5.3

.

Platforms Supported in this Release

IDL supports the following platforms and operating systems:

†Red Hat 6.0

††IDL 5.3 is the last release that will support the Windows NT for Alpha platform

††† Includes iMac and G3

Platform Vendor Hardware Operating
System

Supporte
d

Versions

VMS Compaq Alpha VMS 7.1

UNIX Compaq Alpha Tru64 UNIX 4.0

HP PA-RISC HP-UX 10.20, 11

IBM RS/6000 AIX 4.3

Intel Intel x86 Linux 2.2 †

SGI Mips Irix 6.4, 6.5

SUN SPARC Solaris 2 2.6, 2.7

SUN Ultra Solaris 2 2.6

SUN Intel x86 Solaris 2 2.6

Windows Microsoft Intel x86 Windows 95, 98

Microsoft Intel x86 Windows NT 4.0

Microsoft Alpha Windows NT 4.0††

Macintosh Apple PowerPC††† MacOS 8.1

Table 1-10: Platforms Supported in IDL 5.3
Platforms Supported in this Release What’s New in IDL 5.3

Chapter 2:

Creating IDL
Projects

This chapter describes the following topics.
Overview . 84
Where to Store Source Files for a Project. . 86
Creating a Project . 87
Opening, Closing, and Saving Projects. . . . 89
Adding, Moving, and Removing Files 90
Working with Files in a Project. 93
Setting the Options for a Project. 96

Selecting the Build Order 99
Running an Application from a Project. . . 104
Compiling an Application from a Project . 101
Building a Project 102
Exporting a Project 105
About IDL Developer’s Kit Licenses 107
What’s New in IDL 5.3 83

84 Chapter 2: Creating IDL Projects

r
ier
ojects

our

ct

set

and
Overview

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop you
IDL application. All of your application files can be organized so that they are eas
to access and easier to export to other developers, colleagues, or users. IDL Pr
are a great benefit to development teams working on a large project as well as
individual developers managing multiple projects.

Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:

• IDL source code files (.pro)

• GUI files (.prc) created with IDL GUIBuilder

• Data files (ASCII text or binary)

• Image files (.tif, .gif, .bmp, etc.)

• Other files (help files, .sav files, etc.)

After you add all of your files to your project, you can simply double click on.pro
files to open them in the IDL editor or.prc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects makes it easy to add, remove, move, edit, compile, and test files in y
project.

All of your workspace information is saved as well. If you save and exit your proje
with open files, when you open your project, those same files will be opened
automatically for you.

IDL projects also store and retain breakpoint information. There is no need to re
breakpoints every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled
run by specifying options for your project.
Overview What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 85

IDL

ce
ta

 to
Creating IDL Runtime Distributions

Once you have completed your application, you can quickly and easily create an
Runtime distribution. If you have purchased the IDL Developer’s Kit, your
application is automatically licensed for distribution.

Exporting Your Applications

You can easily move your application to another platform or distribute your sour
code to colleagues by exporting your project. All your source code, GUI files, da
files, and image files are copied to a directory you specify. You can also specify
export the Runtime version of IDL with you application.

Example of a Project

A working example project has been included with IDL in theexamplesdirectory and
is nameddemo_proj.prj .
What’s New in IDL 5.3 Overview

86 Chapter 2: Creating IDL Projects

g
he

le,

t.

in
If

e,
Where to Store Source Files for a Project

The directory structure you use for your application files is important for exportin
projects. Even though you can add any file from any path to your project, keep t
following in mind:

• Create a directory structure with all of your files in your project. For examp
you might create a directory structure similar to the following:

C:\myproject

myproj.prj

\source

\gui

\data

\bitmaps

\other

where all of your source files (.pro) are in thesource directory, IDL
GUIBuilder files (.prc) are in thegui directory, data files are in thedata
directory, image files are in thebitmaps directory, and any other
miscellaneous files are in theother directory.

• Keep the project file (.prj) at the root level of all the other files in your projec
As shown in the previous example, the project filemyproj.prj is in the root
level directorymyproject .

When a project is exported, the files will be placed according to where they are
relation to the.prj file keeping the directory structure intact whenever possible.
for example, one of your source files exists inD:\otherproj , when you export
your project it will be placed in the same directory as your project file. In this cas
C:\myproject .

Note
The .prj file is not exported.

For more information on exporting a project, see“Exporting a Project” on page 105.
Where to Store Source Files for a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 87

ects
us
ct,
Creating a Project

To create a Project, complete the following steps:

1. SelectFile → New → Project (on Windows and Motif) orFile → New
Project (on Macintosh). The Save dialog displays.

2. Select the path and name of the project file. ClickSave. A .prj extension will
automatically be appended to the name you enter. You will see that your
project is displayed in theProjects Window.

3. Save your new project. SelectFile → Save Project.

Note
For Windows and Motif, you can only have one project open at a time. On
Macintosh, you can have multiple project windows open at the same time.

After you have created your project, you’ll see your project displayed in the Proj
Window. The Projects window is where you control your project. If you click the pl
sign (Windows and Motif) or the expand arrow (Macintosh) to expand your proje

Figure 2-1: Projects Window for Macintosh (left) and Windows (right)

Projects
Window
What’s New in IDL 5.3 Creating a Project

88 Chapter 2: Creating IDL Projects

our
you will see that 5 groups have been automatically created when you created y
project. You can then click the minus sign to collapse the listing.

The following table describes the purpose for each group:

Figure 2-2: Project Window Collapsed (Left) and Expanded (Right)

Group Description

Source Stores IDL source code files (.pro).

GUI Stores GUI files (.prc) created using the IDL GUIBuilder.

Data Stores any data files (ASCII or binary).

Bitmaps Stores bitmap files (.gif, .tif, .bmp, etc.).

Other Stores any other files that do not apply to the other groups.

Table 2-1: Project Group Descriptions
Creating a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 89

ou

 in
Opening, Closing, and Saving Projects

After you have created a project, you can open, save, and close a project.

Opening Projects

To open a project, complete the following steps:

1. For Windows and Motif, selectFile → Open Project. For Macintosh, select
File → Open.

2. Select the path and name of your project file.

Tip
IDL keeps track of the most recently opened projects. You can use theFile →
Recent Projects menu (on Windows and Motif) andFile → Open Recent (on
Macintosh) to select projects to open.

Saving Projects

To save a project, selectFile → Save Project.

Tip
IDL Projects stores information about the project’s workspace. This includes
information about which files you have open and breakpoints you have set. If y
have files that you are commonly working in all the time, leave those files open
when saving and closing your project. These files will be automatically opened
the IDL Editor or GUIBuilder windows when you reopen your project.

Closing Projects

To close a project, selectFile → Close Project.
What’s New in IDL 5.3 Opening, Closing, and Saving Projects

90 Chapter 2: Creating IDL Projects

 the

ny
ject,
Adding, Moving, and Removing Files

After you have created a project, you can add, move, and remove files in your
application.

Adding Files

To add files to your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click Project → Add/Remove Files...(on Windows and Motif) orProject →
Add Files... (on Macintosh). TheAdd/Remove Files dialog displays.

3. Select the path and name of the file you want to add to your project. Click
Add button. You will see the file added to the list of current files in your
project.

Tip
You can also add files to your project by dragging and dropping the files from a
file manager. If you already have the file open that you want to add to your pro

Figure 2-3: Add/Remove Dialog

Current directory

File list in the current directory

File to add/remove

Filter for listing different

Current Files in project

file types
Adding, Moving, and Removing Files What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 91

ject

e

you
 a

.

u

t

use

e, it
you can right click in the editor window and selectAdd to Current Project from
the context menu. On the Macintosh, you can also add an open file to your pro
by selectingProject → Add Window. On some Motif platforms, dragging and
dropping is not supported. In this case, use theAdd/Remove... dialog.

4. Continue to add the files you want to include in your project. Then clickOK .

5. You can expand the listings in the Project window to see the files you hav
added.

6. Save your project file by selectingFile → Save Project.

Moving Files

When you add a file to your project, it will be added to the appropriate group. If
want the file to exist in a different group, you can move it to that group. To move
file, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file yo
want to move.

3. To move the file, select the file and then drag it to a different group or righ
click over the file you want to move and selectMove To...from the context
menu and then select the different group.

Note
On some Motif platforms, dragging and dropping is not supported. In this case,
theMove To... menu item on the context menu.

4. Save your project file by selectingFile → Save Project.

Note
When moving a file in your project, it does not change the actual path of the fil
only moves it with respect to which group the file appears within your project.
What’s New in IDL 5.3 Adding, Moving, and Removing Files

92 Chapter 2: Creating IDL Projects

ou
tes

ick
y
lete

r

lect
Removing Files

When you no longer want a file to be in your project, you can remove it. When y
remove a file from your project, it does not delete the file on your disk, it only dele
the reference to the file from your project.

On Windows and Motif, to remove files from your project, complete the following
steps:

1. Open your project. SelectFile → Open Project and select the path and name
of your project file.

2. Click Project → Add/Remove Files...(on Windows and Motif) orProject →
Add Files... (on Macintosh). TheAdd/Remove Files dialog displays.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove.

Tip
On Windows and Motif, you can use the context menu to remove a file. Right cl
over the file and then selectRemove. On Windows, you can also use the Delete ke
to remove files. Select the file by left clicking over the file and then press the De
key.

4. Save your project file by selectingFile → Save Project.

On Macintosh, to remove files from your project, complete the following steps:

1. Open your project.Select File→ Open and select the path and name of you
project file.

2. Select the file you want to remove.

3. SelectProject → Remove Selection.

Tip
On Macintosh, you can use the Cmd-Delete key sequence to remove files. Se
the file by clicking over the file and then press Cmd-Delete.

4. Save your project file by selectingFile → Save Project.
Adding, Moving, and Removing Files What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 93

ess

ctly

.

L

u
e

.

e.

s

t

Working with Files in a Project

Once you have added all of the files in your application to a project, you can acc
those files through the project.

Editing a Source File

All source files that can be opened in IDL (.pro and .prc files) can be opened dire
through the project. To open a file for editing, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right clicking over the file you want to open.
SelectEdit from the context menu. Source files (.pro) are opened in the ID
editor and GUIBuilder files (.prc) are opened in the IDL GUIBuilder

Tip
Double clicking on the file will also open .pro and .prc files. Also, on Windows yo
can drag the file from the Projects window to the IDL Editor window to open th
file.

Compiling a File

All source files can be compiled through the project window. To compile a file,
complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right clicking over the file you want to compil
SelectCompile from the context menu. The file is compiled.

For more information on how to compile all the files in your project or just the file
that have been recently modified, see“Compiling an Application from a Project” on
page 101.

Note
On Macintosh, you will see a red check mark to the left of each file that has no
been compiled after it has been modified.
What’s New in IDL 5.3 Working with Files in a Project

94 Chapter 2: Creating IDL Projects

ct.

.

lect

of a

s

o

r

t

Testing a File

All IDL GUIBuilder files (.prc) can be run under test mode directly through a proje
To run a .prc file in test mode, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Access the context menu by right clicking over the file you want to test. Se
Test from the context menu. The file is run in test mode.

For more information on running .prc files in test mode, see“Running the
Application in Test Mode” in Chapter 17 of theBuilding IDL Applications manual.

Setting the Properties of a File

Each file in a project has properties. The following table describes each property
file:

Property Description

File name The name of the file. (This field is read only.)

Path The path of the file. (This field is read only.)

Group The name of the group in which the file resides. (This field i
read only.)

File Not Found If the source file cannot be found, you can click this button t
display a dialog for finding the path to the file.

Do not Compile Indicates whether or not to compile the file when running o
building. For example, you may have include files for your
main program that you do not want compiled. Selecting this
check box indicates that you do not want this file compiled.

Note - You do not need to set this property for non-source
files such as data files, image files, etc. These types of files
will be automatically excluded from compilation.

Export Indicates whether or not to export the file when exporting a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not wan
to export. When checked, this file will be exported.

Table 2-2: File Properties
Working with Files in a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 95

.

u

ow.
the
it.
To set the properties for a file, complete the following steps:

1. Open your project. SelectFile → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file yo
want to change.

3. Select the file by left clicking it.

4. Right click over the file and selectProperties from the menu. TheFile
Properties dialog displays.

5. Change any properties of the file.

Note
On Macintosh, the Do Not Compile option can be selected in the Project Wind
If you want the file to be compiled, make sure that the black dot to the right of
file name is displayed. If it is not displayed, click to the right of the file to display

6. Click OK .

7. Save your project file by selectingFile → Save Project.

Figure 2-4: File Properties Dialog
What’s New in IDL 5.3 Working with Files in a Project

96 Chapter 2: Creating IDL Projects

the
Setting the Options for a Project

The options for a project describe how to run, compile, and build a project. To set
options for your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click Project → Options... TheProject Settings dialog displays.

3. Set the options based upon the information in the following table:

Figure 2-5: Project Settings Dialog

Option Description

Name Specifies the project name.

Note - This field is read only.

Table 2-3: Project Options
Setting the Options for a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 97

ll

t

Path Specifies the path of the project.

Note - This field is read only.

Run Command Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid IDL
command including .sav or .pro files (these can be files that
are included or not included in your project.) Typically this is
the main program in your application.

Tip - You can use the %? command stream substitution to ca
a dialog to enter a value or values to pass to the called
program. For example, if you have a program named “main”
and it requires the argument “x” to be passed to it, then you
can enter the following for the Run Command:

main, %?(Enter the value for x, x)

For more information on how to run your application, see
“Running an Application from a Project” on page 104.

Build Command Specifies the IDL command to build the application. The
default is blank. If left blank, the files in the project are built
according to theExecution File Format specified and are
compiled (if applicable) in the order specified under Build
Order. For more information, see“Selecting the Build Order”
on page 99.

You can enter any valid IDL command including .sav or .pro
files. You can also enter a batch file using @filenamein order
to perform other operations (for example, running a Perl scrip
on your source or data files before compiling. For more
information on batch scripts, see theUsing IDL manual.

Save File Specifies the name of the save file to create when building
your project. For more information on building a project, see
“Building a Project” on page 102.

Note - This field is grayed out if you have selected the .pro
File Project Type.

Option Description

Table 2-3: Project Options
What’s New in IDL 5.3 Setting the Options for a Project

98 Chapter 2: Creating IDL Projects

file.
4. After completing any changes, clickOK .

5. Save your project file by selectingFile → Save Project.

Note
In addition to setting options for a project, you can also set the properties of a
For more information, see“Setting the Properties of a File” on page 94.

Execution File
Format

Specifies how the project will run or build. The available
formats are:

• Source File (.pro).

• Save File (.sav).

• Licensed Save File (.sav)

Note - The Licensed Save File option is grayed out if you do
not have an IDL Developer Kit license. For more information,
see“About IDL Developer’s Kit Licenses” on page 107.

For more information on building and running projects, see
“Building a Project”on page 102 or“Running an Application
from a Project” on page 104.

Option Description

Table 2-3: Project Options
Setting the Options for a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 99

be
t
if the

t a

s:

st
d

r

uild
Selecting the Build Order

Selecting the build order of a project determines the order in which the files will
compiled. In some cases, you might not be able to run all the files in your projec
because of dependencies on the order in which they are compiled. For example,
file main.pro contains:

Pro main
x=1
y=AddTen(x)
Print, x

End

and file AddTen.pro contains:

Function AddTen, x
x=x+10

End

IDL can’t tell if the statementy=AddTen(x) is referring to a variable named AddTen
or a function named AddTen. Unless AddTen is compiled before main, you will ge
“Variable undefined” error message.

To select the build order for the files in your project, complete the following step

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. Click theBuild Order tab in the Projects window.

3. Move the files to the order in which you want to compile them. The topmo
file listed in the Build Order window will be compiled first. On Windows an
Macintosh, you can move a file by dragging and dropping it to the desired
location. On UNIX, first select a file by left clicking it, then change the orde
by using the up and down arrows located in the bottom left corner of the
Projects window. For example, using the scenario stated previously, the B
Order would look like the following:
What’s New in IDL 5.3 Selecting the Build Order

100 Chapter 2: Creating IDL Projects
4. Save your project file by selectingFile → Save Project.

Figure 2-6: Build Order Window
Selecting the Build Order What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 101

n

or
Compiling an Application from a Project

You can compile all of your source files or just the files that you have recently
modified from your project. A modified file is one that has been modified and the
saved (on Macintosh, the file does not have to be saved).

To compile the files in your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. To compileall the files in your project on Windows and Motif, selectProject
→ Compile → All Files. On Macintosh, while holding down the Option key,
selectProject → Compile All Files.

3. To compilejust the files that have been modified since the last compilation on
Windows and Motif, selectProject → Compile → Modified Files. On
Macintosh, selectProject → Compile Modified Files.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 99.

All the files in your project are now compiled. You can now run your application. F
more information, see“Running an Application from a Project” on page 104.
What’s New in IDL 5.3 Compiling an Application from a Project

102 Chapter 2: Creating IDL Projects

ed

vel
ject
are

l
ject

e

in

e file
ded
Building a Project

Building a project creates a .sav file of your project or compiles your project bas
upon the options you have set for your project. If you have specified:

• Source File — The IDL session is reset (all procedures, functions, main le
variables and common blocks are deleted from memory), all files in the pro
are compiled, and all undefined but referenced functions and procedures
resolved.

For more information on resetting an IDL session, see
.FULL_RESET_SESSIONin theIDL Reference Guide. For more information
on resolving undefined but referenced functions, seeRESOLVE_ALL in the
IDL Reference Guide.

• Save File — The IDL session is reset (all procedures, functions, main leve
variables and common blocks are deleted from memory), all files in the pro
are compiled, all undefined but referenced functions and procedures are
resolved, and all the functions and procedures are saved into the file you
specified in the project’s options.

The save file is created using the XDR and COMPRESS options. For mor
information, seeSAVE in theIDL Reference Guide.

• Licensed Save File — The IDL session is reset (all procedures, functions,
main level variables and common blocks are deleted from memory), all files
the project are compiled, all undefined but referenced functions and
procedures are resolved, all the functions and procedures are saved into th
specified in the project’s options, and embedded license information is ad
to the save file.

For more information on embedded license information, see“About IDL
Developer’s Kit Licenses” on page 107.

Note
For more information on project options, see“Setting the Options for a Project”on
page 96.

To build your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.
Building a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 103

s

2. SelectProject → Build . A dialog display confirming that you want to reset

your session. This will delete all procedures, functions, main level variable
and common blocks from memory so that they will not be saved.

3. Click OK .

Your project has been built.
What’s New in IDL 5.3 Building a Project

104 Chapter 2: Creating IDL Projects

our
 run

e

Running an Application from a Project

After compiling your project, you can run your application. What is run depends
upon the options you have set for your project:

• If you have selected your execution file format as source file, each file in y
project is compiled and then run using the command you specified as the
command.

• If you have selected your execution file format as save file or licensed sav
file, the most recently compiled version is run using the command you
specified as the run command. You must have compiled or built your
application before running it.

For more information on setting options for your project, see“Setting the Options for
a Project” on page 96.

To run your application, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. SelectProject → Run.
Running an Application from a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 105

ted

at

a

e

y

u

L

.

Exporting a Project

Exporting a project allows you to create a distribution of your project to either:

• Move a project (including the project file and all of the source files associa
with a project to another machine.)

• Create a distribution of your .sav file and an IDL Runtime distribution so th
you can distribute it so that others may run your application.

Note
Exporting an IDL Runtime distribution is not supported on Windows NT for Alph
platform.

This is dependent upon the options you have selected for the project. If you hav
selected:

• Source File — Your project’s source, IDL GuiBuilder, data, bitmaps, and an
other files listed in your project will be exported to a directory you specify.

• Save File — The .sav file for your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform yo
are exporting on.

• Licensed Save File — The .sav file (with an embedded license) for your
project will be exported. You will also be given the option of exporting an ID
Runtime distribution for the platform you are exporting on.

For more information on the options for a project, see“Setting the Options for
a Project” on page 96. For more information on creating a .sav file with an
embedded license, see“About IDL Developer’s Kit Licenses” on page 107.

To export your project, complete the following steps:

1. Open your project. SelectFile → Open Project. Select the path and name of
your project file.

2. If you are exporting a .sav file, you must build the project before exporting
See“Building a Project” on page 102 for more information.

3. SelectProject → Export . TheBrowse for Folder dialog displays.

4. Select the folder to export the project and clickOK .
What’s New in IDL 5.3 Exporting a Project

106 Chapter 2: Creating IDL Projects

ort

t

h

o be

ove

ing
5. If you are exporting a .sav file, a dialog displays asking if you want to exp
an IDL Runtime distribution with your .sav file. SelectYes to include the
distribution orNo to not include the distribution.

6. If you are exporting an IDL Runtime distribution on Windows, enter
information on where to copy the distribution files from.

For Windows platforms, you will need to insert your IDL product CD-ROM
into your CD-ROM drive. The files needed to create this distribution will be
copied from the CD-ROM. Enter the drive letter of your CD-ROM drive tha
contains your IDL product CD-ROM.

Note
You do not need to specify the path to the IDL distribution for UNIX and Macintos
platforms.

Your project has now been exported.

If you are moving a project from one platform to another, there are a few items t
aware of:

• Project workspace information such as which files are open, etc. will not m
from platform to platform.

• Problems with paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by chang
the properties of the file. For more information, see“Where to Store Source
Files for a Project” on page 86 and“Setting the Properties of a File” on
page 94.

For information on how to customize an IDL Runtime distribution and how to
distribute it, seeChapter 3, “Distributing IDL Applications” in theBuilding IDL
Applications manual.
Exporting a Project What’s New in IDL 5.3

Chapter 2: Creating IDL Projects 107

on
to

nique
sed
About IDL Developer’s Kit Licenses

An IDL Developer’s Kit License allows a developer to embed licensing informati
into an IDL application (.sav file). This creates an application that is fully licensed
run on an IDL Runtime distribution. When this embedded license is present, IDL
Runtime bypasses normal license checking. One example of this licensing tech
is the IDL Demo Applications. The Demo Applications can be run on an unlicen
IDL distribution.

For more information on purchasing a Developer’s Kit License, contact your
Research Systems sales representative.
What’s New in IDL 5.3 About IDL Developer’s Kit Licenses

108 Chapter 2: Creating IDL Projects
About IDL Developer’s Kit Licenses What’s New in IDL 5.3

Chapter 3:

IDL Development
Environment
Enhancements

This chapter describes the following topics.
5

Enhanced Breakpoint Functionality 110
New IDL Functions and Procedures Context
Menu for Windows and Motif. 114

New Color/Font Style Coding for Source Files
on UNIX . 11
Enhanced IDL Macros Support. 117
What’s New in IDL 5.3 109

110 Chapter 3: IDL Development Environment Enhancements

ons

he
dy

t.
L

m
nts,

at
Enhanced Breakpoint Functionality

Breakpoints have been enhanced in IDL 5.3. These enhancements include:

• New Tool Bar buttons for easily creating breakpoints, enabling/disabling
breakpoints, and displaying the Set Complex Breakpoint dialog.

• You can now selectively create, delete, enable, disable, and set other opti
from a single dialog (theEdit Breakpoints dialog).

• Two new keywords for the BREAKPOINT routine:

• DISABLE

• ENABLE

• You can now set breakpoints on a file that has not been compiled. These
breakpoints are not enabled until the file is compiled.

The New Breakpoint Tool Bar Buttons

There are now three buttons in the main menu bar. These are:

TheToggle Breakpoint button creates or deletes a breakpoint. If you
place the cursor in the line you want to create a breakpoint in, clicking t
Toggle Breakpoint button creates the breakpoint. If a breakpoint alrea
exists in that line, the breakpoint is removed.

TheEnable/Disable Breakpoint button enables or disables a breakpoin
If a breakpoint is enabled, a solid circle appears next to the line in the ID
Editor window. If it disabled, the circle is not filled. If a breakpoint has
been disabled, the breakpoint is ignored when running the file.

TheEdit Breakpoints button displays theEdit Breakpoints dialog. In
previous releases, this printed a listing of the current breakpoints. Fro
this dialog, you can list your current breakpoints, create new breakpoi
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The New Edit Breakpoints Dialog

The newEdit Breakpoints dialog allows you to add, remove, and remove all
breakpoints in a file as well as the ability to move to the line in the source file th
Enhanced Breakpoint Functionality What’s New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 111

he
contains the breakpoint. The following figure shows the newEdit Breakpoints
dialog:

To create a breakpoint using the newEdit Breakpoints dialog, complete the
following steps:

1. Open the file you in which you want to set a breakpoint.

2. Display theEdit Breakpoints dialog by clicking the button in the
IDLDE Tool Bar or by selectingRun → Edit Breakpoints...

3. Place the cursor in the line in which you want to create the breakpoint in t
Editor window.

4. SelectAdd in theEdit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

Figure 3-1: Edit Breakpoints Dialog

Item Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteria for the breakpoint is
met.

Module Specifies the procedure or function the breakpoint is set in.

Note - This item will not be displayed until the file has been
compiled with the new breakpoint.

Table 3-1: Edit Breakpoints Description
What’s New in IDL 5.3 Enhanced Breakpoint Functionality

112 Chapter 3: IDL Development Environment Enhancements

y

st

e

e

5. At this point, you can modify any of the items (except Module and Line) b
double-clicking in the entry.

Your breakpoint entry is now complete.

New Keywords to the BREAKPOINT Routine

The following keywords have been added to the BREAKPOINT routine:

Line Specifies the line number where breakpoint has been set.

File Specifies the filename where the breakpoint has been set.

After Specifies how many times the execution must pass the
breakpoint before stopping execution. For example, if this
item is set to 0, execution will stop the first time this
breakpoint is encountered. If it is set to 9, execution will not
stop until the breakpoint has been encountered for the ninth
time.

Once The breakpoint is removed after it is encountered for the fir
time.

Condition Specifies a condition to be met for the execution to stop. Th
condition is a string containing an IDL expression. When a
breakpoint is encountered, the expression is evaluated. If th
expression is true (if it returns a non-zero value), program
execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint.

Keyword Description

DISABLE Disables the specified breakpoint if it exists. The
breakpoint can be specified using the breakpoint index
or file and line number.

Table 3-2: New BREAKPOINT Keywords

Item Description

Table 3-1: Edit Breakpoints Description
Enhanced Breakpoint Functionality What’s New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 113
ENABLE Enables the specified breakpoint if it exists. The
breakpoint can be specified using the breakpoint index
or file and line number.

Keyword Description

Table 3-2: New BREAKPOINT Keywords
What’s New in IDL 5.3 Enhanced Breakpoint Functionality

114 Chapter 3: IDL Development Environment Enhancements

the
e

New IDL Functions and Procedures Context
Menu for Windows and Motif

Previously only available on the Macintosh, the IDLFunction/Procedure Context
Menu has been added to the Windows and UNIX versions of IDL 5.3. The IDL
Function/Procedure Context Menu allows you to navigate between the different
procedures and functions you have defined in the current file you have open in
IDL Editor. On Windows, the menu is located in the main menu bar. On Motif, th
menu is located in the upper left corner of the IDL Editor window.

Figure 3-2: IDL Function/Procedure Context Menu
on Windows (top) and Motif (bottom)

Context Window
on Windows

Context Window
on Motif
New IDL Functions and Procedures Context Menu for Windows and Motif What’s New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 115

ou
New Color/Font Style Coding for Source Files
on UNIX

Previously available on Windows and Macintosh platforms, color and font style
coding has been added to IDL Development Environment for UNIX. This allows y
to color code and specify different font styles for the different types of IDL
statements that appear in the IDL Editor window.

To change the color or font, complete the following steps:

1. SelectFile → Preferences...

2. On thePreferences dialog, click theEdit tab.

Figure 3-3: Example of Color/Font Coding

Figure 3-4: Preferences Dialog Edit Tab
What’s New in IDL 5.3 New Color/Font Style Coding for Source Files on UNIX

116 Chapter 3: IDL Development Environment Enhancements

nt

ave
3. In theColored Syntax section of the dialog, make sure that theEnable Edit
button is checked.

4. Click theSet Colors... button.

5. TheSet Colorsdialog displays. In this dialog, you can choose the color or fo
style for a particular statement. Make your selections and clickOK .

You should see the color and font styles you’ve selected in the current file you h
open in the IDL Editor window.

Figure 3-5: Set Colors dialog
New Color/Font Style Coding for Source Files on UNIX What’s New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 117

e %?
Enhanced IDL Macros Support

Enhancements to IDL macros include:

• New %? command stream substitution to display a dialog for input.

• Support for command stream substitutions on the Macintosh.

New %? Command Stream Substitution

The %? substitution string has been added in IDL 5.3. This substitution string
displays a dialog for a user to enter a value to pass to a macro. The syntax for th
substitution string is the following:

%?(prompt_text, dialog_title)

whereprompt_text describes the text to prompt the user for entering anddialog_title
is the text to display in the title bar of the dialog box.

For example, if you want to create a macro that returns the sine of a number,
complete the following steps:

1. SelectMacros → Edit .

2. Click theAdd button.

3. Enter the name of the new macro. For this example, enter “Sine”. ClickOK .

4. Enter the following in theIDL Command field:

print, sin(%?(Enter value:, Convert to Sine))

5. Enter “Sine” in theMenu item name field. ClickOK .

When you execute the macro by selectingMacro → Sine, the following dialog
displays:

Figure 3-6: %? Example Dialog
What’s New in IDL 5.3 Enhanced IDL Macros Support

118 Chapter 3: IDL Development Environment Enhancements

e

If you enter a value, the macro will print the sine of that value.

New Support for Command Stream Substitutions on
Macintosh

Command stream substitutions are now available on the Macintosh. You can us
command stream substitutions to include certain types of information into IDL
Macros. The following table lists the available command stream substitutions:

Command Description

%S The text of the current selection.

%F or %P The filename associated with the current IDL Editor.

%N The base name of the filename (without path and suffix).

%B The base name of the filename (without path, but with a suffix).

%L The line number with the current insertion point.

%% Inserts “%”.

%? Displays a dialog for entering a value to pass. The syntax is:

%?(prompt_text, dialog_title)

whereprompt_text describes the text to prompt the user for
entering anddialog_titleis the text to display in the title bar of the
dialog box.

Table 3-3: Command Stream Substitutions
Enhanced IDL Macros Support What’s New in IDL 5.3

Chapter 4:

IDL Macros for
Importing Data

This chapter describes the following topics.
Overview . 120
Using Macros to Import Image Files 121
Using Macros to Import ASCII Files 125

Using Macros to Import Binary Files 131
Using Macros to Import HDF Files. 137
What’s New in IDL 5.3 119

120 Chapter 4: IDL Macros for Importing Data

his
ary,
Overview

In IDL 5.3, new macros have been added to ease the importing of data into IDL. T
chapter introduces these macros and describes how to import image, ASCII, bin
and Scientific Data Format (SDF) files. These macros are available through the
Macros menu and also through new IDLTool Bar buttons.

Figure 4-1: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Import Image

Import ASCII File Import Binary File

Import HDF
FileFile
Overview What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 121

the
e

ugh
in

E.
Using Macros to Import Image Files

To import an image file into IDL, complete the following steps:

1. Select theImport Image File tool bar button. TheSelect Image File dialog
displays.

2. Select a file to import. For example, select the
rsi-directory /examples/muscle.jpg file wherersi-directory is the
installation directory for IDL.

You can now see a preview of this image as well as other information about
file in the lower section of the Select Image File dialog. You can change th
preview toColor, Grayscale, orNo Preview. If the image file had more than
one actual image, you can see them using the arrow buttons to scroll thro
the images. You can only read in one image of a multi-image file. The image
the preview is the image that will be read.

3. Click Open.

4. The file has been opened into a structure variable named MUSCLE_IMAG

Figure 4-2: Select Image File Dialog
What’s New in IDL 5.3 Using Macros to Import Image Files

122 Chapter 4: IDL Macros for Importing Data

 the

. If
d

u

Images opened with theImport Image File macro are stored in structure variables
which are namedfilename_IMAGE wherefilename is the name of the file you
opened without the extension. So, the file we just opened (muscle.jpg) is now in
structure variable named MUSCLE_IMAGE. The file is a structure as follows:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your image isn-by-m the palette is usually present and
the R, G, and B color table vectors mentioned above will contain values
your image is 3-by-n-by-m, the palette will not be present and the R,G, an
B color table vectors will not contain any values.

• IMAGE_INDEX — The index of the image of the file. The default is 0,
the first image in the file. If there are multiple images in the file that yo
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.

• PIXEL_TYPE — The IDLType Code of the image pixel format. Valid
types are:

PIXEL_TYPE returned Data Types

1 Byte

2 Integer

3 Longword Integer

4 Floating Point

5 Double-precision Floating Point

12 Unsigned Integer

13 Unsigned Longword Integer

Table 4-1: Values for PIXEL_TYPE in the Structure
Using Macros to Import Image Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 123

 the
• TYPE — The image type. Valid return values are:

BMP, GIF, JPEG, PNG, PPM, SRF, TIFF, DICOM

The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

TV, MUSCLE_IMAGE.IMAGE

14 64-bit Integer

15 Unsigned 64-bit Integer

Figure 4-3: Variable Watch Window Showing MUSCLE_IMAGE Structure

PIXEL_TYPE returned Data Types

Table 4-1: Values for PIXEL_TYPE in the Structure
What’s New in IDL 5.3 Using Macros to Import Image Files

124 Chapter 4: IDL Macros for Importing Data
This displays the following:

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 4-4: MUSCLE_IMAGE.IMAGE
Using Macros to Import Image Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 125

r

ce,

in
Using Macros to Import ASCII Files

To import an ASCII file into IDL, complete the following steps:

1. Select theImport ASCII File tool bar button. TheSelect an ASCII file to
read dialog displays.

2. Select a file to import. For example, select the
rsi-directory /examples/ascii.txt file wherersi-directory is the
installation directory for IDL. ClickOpen.

3. In theDefine Data Type/Range dialog, you specify information about your
file. The first few lines of the file are displayed to help you find the
information you need to specify.

First, select the type of field which best describes your data. You can eithe
chooseFixed Width which specifies that the data is aligned in columns, or
Delimited which specifies that the data is separated by commas, whitespa
etc. In this example, the data is delimited by commas so we’ll select the
Delimited radio button.

Next, enter a character or string that is used to comment lines within the file
theComment String to Ignore: field. In this example, if we read the first few

Figure 4-5: Select an ASCII file to read Dialog
What’s New in IDL 5.3 Using Macros to Import ASCII Files

126 Chapter 4: IDL Macros for Importing Data

r the

he
lines of this file, it defines the % character as the comment character. Ente
% sign in theComment String to Ignore: field.

Next, enter the line number in which the data starts in theData Starts at Line:
field. In this example, the data starts on line 6 so we’ll enter that value in t
field.

Click Next.

4. In theDefine Delimiter/Fieldsdialog, we’ll specify the information about the
actual data in the file.

First, we’ll enter the number of columns or fields in theNumber of Fields Per
Line: field. In this example, there are 7 fields.

Next, we’ll enter the how the data is delimited. You can chooseWhite Space,
Comma, Colon, Semicolon, Tab, orOther. If you specifyOther, you must
then enter the characters in the field. In this example, we’ll selectComma
since the data is delimited by commas.

Figure 4-6: Define Data Type/Range Dialog
Using Macros to Import ASCII Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 127

f

g.

. In
 –
Click Next.

5. In theField Specificationdialog, we’ll enter information about the contents o
each column or field in the data.

First, select the first field in the data in the box in the upper left of the dialo
Enter the name of the field in theName field and the type of data represented
in theType field. In this example we’ll specifyLongitude andFloating for
the this field. Continue naming all the fields in the data using this procedure
this example, we’ll use Latitude – Floating; Elevation – Long; Temperature
Long; DewPoint – Long; WindSpeed – Long; WindDir – Long for the other
field pairs.

You can also group some or all of the fields into one field by using theGroup
or Group All buttons. In this example, there is no need to group any of the
fields.

Figure 4-7: Define Delimiter/Fields Dialog
What’s New in IDL 5.3 Using Macros to Import ASCII Files

128 Chapter 4: IDL Macros for Importing Data

dard

the
ld
Next, select the value to assign missing data. You can select the IEEE stan
for NaN or a custom value. In this example, we’ll chooseIEEE NaN.

6. Click Finish.

ASCII files opened with theImport ASCII File macro are stored in structure
variables which are namedfilename_ASCII wherefilename is the name of the file
you opened without the extension. So, the file we just opened (ascii.txt) is now in
structure variable named ASCII_ASCII. The variable is a structure with each fie
name being an element of the structure.

Figure 4-8: Field Specification Dialog
Using Macros to Import ASCII Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 129

 the
The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field, enter the following:

Print, ASCII_ASCII.LONGITUDE

IDL prints:

-156.950 -116.967 -104.255 -114.522 -106.942
-94.7500 -73.6063 -117.176 -116.093 -106.372
-93.2237 -109.635 -76.0225 -93.1535 -118.721

If you want to plot Temperature, enter the following:

PLOT, ASCII_ASCII.TEMPERATURE

Figure 4-9: Variable Watch Window Showing ASCII_ASCII Structure
What’s New in IDL 5.3 Using Macros to Import ASCII Files

130 Chapter 4: IDL Macros for Importing Data
The following figure results.

Figure 4-10: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 131

ike

 or
ibly
les,
not

y
ions
Using Macros to Import Binary Files

Sometimes, data is stored in files as arrays of bytes instead of a known format l
JPEG or TIFF. These files are referred to as binary files.

Note
TheImport Binary File macro is intended for use in loading raw binary data from
files into IDL. Such data is comprised of bits that are meaningful — as integers
floating-point numbers for example — with no special processing (except poss
byte-order swapping) required. Commercial spreadsheet or word processing fi
for example, are binary but they are not raw in the above sense, and thus are
good candidates for use with this macro.

Also note that theImport Binary File macro is intended for use in loading data
from files the contents of which you have some knowledge about. To effectivel
read data with this macro, you must be able to supply literal values or express
that specify the type and location of the data in the file you wish to read.

To import a binary file into IDL, complete the following steps:

1. Select theImport Binary File tool bar button. TheSelect a binary file to
read dialog displays.

Figure 4-11: Select a binary file to read Dialog
What’s New in IDL 5.3 Using Macros to Import Binary Files

132 Chapter 4: IDL Macros for Importing Data

are
es

nt

red

t

d as
s a
2. Select a file to import. For example, select the
rsi-directory /examples/surface.dat file wherersi-directory is the
installation directory for IDL. ClickOpen.

3. In theBinary Template dialog box, specify information about your file.

First, enter the name of the template you are going to create in theTemplate
name: field. For this example, “marbellstemplate” is used.

Next, select the byte order in the file in theFile’s byte ordering: pull-down
menu. The choices are:

• Native — The type of storage method that is native to the machine you
currently running. Little Endian for Intel microprocessor-based machin
and Big Endian for Motorola microprocessor-based machines. No byte
swapping will be performed.

• Little Endian — A method of storing numbers so that the least significa
byte appears first in the number. For example, given the hexadecimal
number A02B, the little endian method specifies the number to be sto
as 2BA0. Specify this if the original file was created on a machine that
uses an Intel microprocessor.

• Big Endian — A method of storing numbers so that the most significan
byte appears first in the number. For example, given the hexadecimal
number A02B, the big endian method specifies the number to be store
A02B. Specify this if the original file was created on a machine that use
Motorola microprocessor.

Figure 4-12: The Binary Template dialog
Using Macros to Import Binary Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 133

ple

he

e:

his

.

es

any

a

ot

in
The filesurface.dat was created on a machine that uses an Intel
microprocessor. For this example, selectLittle Endian for the byte order.

4. Now we are ready to enter the field values for the file. You can have multi
fields within a binary file. Click theNew Field... button in the lower-left
corner of theBinary Template dialog box.

In theNew Field dialog (shown at the end of these example steps), enter t
name of the field in theField name: text box. In this example, enter “A” as the
field name.

Next, you need to specify where in the file to start reading. The options ar

• Offset — Specifies the byte offset or where to begin reading the file. T
is always a decimal integer unless theAllow an expression for the offset
checkbox is checked. The> symbol specifies to offset forward from a byte
position, the< symbol specifies to offset backward from a byte position

• From beginning of file — Specifies to start reading this field starting with
the first byte of the file plus anyOffset specified.

• From initial position in file/From end of previous field — This field
changes depending upon if this is the first field or any other field besid
the first. If this is the first field you are defining, this option specifies to
read from the beginning of the file plus anyOffset specified. If this is not
the first field, this option changes toFrom end of previous field and
specifies to begin reading the field where the previous field ended plus
Offset specified.

• Allow an expression for the Offset — If this is checked, you can enter
any valid IDL expression in theOffset field. You can use any previously
defined field in the expression.

In this example, since this is the first field in the file and we don’t have any
header information in the file, specifyFrom the beginning of filewithout any
offset.

Next, select whether or not you want this field to be returned to IDL when
file is read. For example, you may have a section of your binary file that
contains header information. If you create a field for this section, you do n
want it returned to IDL. In this case, you would not selectReturned in the
result. You must specify at least one field to be returned to IDL. In this
example, we want to return the field we’re creating so we’ll check the box
the upper-right corner markedReturned in the result.
What’s New in IDL 5.3 Using Macros to Import Binary Files

134 Chapter 4: IDL Macros for Importing Data

ou

alar.

ple,

f
 two-

rder
-by-
Next, you need to specify whether or not you want to verify any of the data y
are returning in theVerified equal to field. This field is only available if the
field is a scalar. This can be any valid IDL expression that evaluates to a sc
For this example, we won’t verify any of the data.

Next, you need to specify the type of data that is in this field. In this exam
the data is integer type data so select the Integer (16 bits) at theType pull-
down menu. The valid values forType are:

• Byte (unsigned 8-bits)

• Integer (16-bits)

• Long (32-bits)

• Long64 (64 bits)

• Float (32 bits)

• Double-Precision (64-bits)

• Unsigned Integer (16 bits)

• Unsigned Long (32-bits)

• Unsigned Long64 (64-bits)

• Complex (real-imaginary pair of floats)

• Double-Precision Complex (pair of doubles)

Next, specify the number of dimensions contained in the data in theNumber
of dimensions:pull-down menu. This will activate a corresponding number o
boxes in the dimensions section of the dialog. In this example, the data is
dimensional.

Finally, enter the size of each dimension in the field. If you select theAllow
expressions for dimension sizes check box, you enter any valid IDL
expression that returns the size of the dimension. You can also choose to
reverse the order of the data by selecting theReverse check box for each
dimension. This can be useful when image data is returned in the reverse o
and appears upside down. In this example, the data is contained in a 350
450 array, so enter 350 for the size of the1st dimensionand 450 for the size of
the2nd dimension in the text fields markedSize:.

Click OK .
Using Macros to Import Binary Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 135

ure
5. You can now see the information that you entered in theBinary Template
dialog. If you need to enter more fields, select theNew Field button. Repeat
the steps until you have entered all the fields in the binary file.

In this example, there is only one field. ClickOK .

Binary files opened with theImport Binary File macro are stored in structure
variables which are namedfilename_BINARY wherefilename is the name of the file
you opened without the extension. So, the file we just opened (surface.dat) is
now in the structure variable named SURFACE_BINARY. The variable is a struct
with each field name being an element of the structure.

Figure 4-13: Modifying fields in Binary Template
What’s New in IDL 5.3 Using Macros to Import Binary Files

136 Chapter 4: IDL Macros for Importing Data

 the
The structure can be viewed in theVariable Watch Window.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.element_name

For example, display the image by entering:

TVSCL, SURFACE_BINARY.A

Figure 4-14: Variable Watch Window Showing MARBELLS_BINARY Structure

Figure 4-15: Surface.dat displayed using TVSCL
Using Macros to Import Binary Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 137

L,

e

o

Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into ID
complete the following steps:

1. Select theImport HDF File tool bar button. TheSelect a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. ClickOpen.

3. TheHDF Browser window is displayed (shown at the end of these exampl
steps). In theHDF Browser window, select the data in the file you want to
import into IDL.

In theDisplay pull-down menu, select the type of file you are reading. The tw
options are:

• HDF/NETCDF

• HDF-EOS

Figure 4-16: Select a valid HDF, NETCDF or HDF-EOS file Dialog
What’s New in IDL 5.3 Using Macros to Import HDF Files

138 Chapter 4: IDL Macros for Importing Data

ibe
.

ws

ed.
Next, select the type of data you want to import. The following tables descr
the options available for the two display choices from the pull-down menu

Once you have selected the type of data, information is displayed that sho
the different elements of data available in the file you are opening. For
example, if it is an image file, you will see the names of the images display
Select the item to import.

If you have selected an image, 2D data set, or 3-by-n-by-m data set from the
pull-down menu, you can click on thePreview button to view the image. If

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

Table 4-2: Menu Options for HDF/NetCDF Data Types

Menu Selection Description

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Grid EOS grid data and attributes

Table 4-3: Menu Options for HDF-EOS Data Types
Using Macros to Import HDF Files What’s New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 139

 on
e

t the

ted

es
you have selected a data item that can be plotted in two dimensions, click
thePreview button to view a 2D plot of the data (the default); or click on th
Preview Surface radio button to display a surface plot; click on thePreview
Contour radio button to display a contour plot; or click on thePreview Show3
radio button for an image, surface, and contour display. You can also selec
Fit to Window check box to fit the image to the window.

Next, if you want the data or metadata item you are previewing to be impor
into IDL, select theRead check box to extract the current data or metadata
item from the HDF file.

Next, specify a name for the extracted data or metadata item.

Note
TheRead check box must be selected for the item to be extracted. Default nam
are generated for all data items, but may be changed at any time by the user.

Figure 4-17: HDF Browser Window
What’s New in IDL 5.3 Using Macros to Import HDF Files

140 Chapter 4: IDL Macros for Importing Data

t to

ith

 the

and
al

ee
4. Continue selecting to read and name the data or metadata items you wan
import into IDL.

5. Click OK .

HDF, NETCDF, or HDF-EOS files read with theImport Binary File macro are
stored in structure variables which are namedfilename_DF wherefilename is the
name of the file you opened without the extension. The variable is a structure w
each data or metadata name being an element of the structure.

You can specify which part of the structure variable you want to access by using
following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf
you named the elements IMAGE1 and IMAGE2, you could access each individu
data element using the following:

HYDROGEN_DF.IMAGE1

HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

TV, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, s
theScientific Data Formats manual.
Using Macros to Import HDF Files What’s New in IDL 5.3

Chapter 5:

New IDL Routines
.3.

e

This chapter contains documentation for IDL Routines introduced in IDL version 5
Complete documentation for IDL Routines (including enhancements to existing
routines) can be found in theIDL Reference Guide, or in the IDL Online Help.
Documentation for the new SDF routines documented in this chapter can also b
found in theScientific Data Formats manual.
What’s New in IDL 5.3 141

142 Chapter 5: New IDL Routines

n

.FULL_RESET_SESSION

The .FULL_RESET_SESSION command does everything.RESET_SESSIONdoes,
plus the following:

• Removes all system routines installed via LINKIMAGE or a DLM.

• Removes all structure definitions installed via a DLM.

• Removes all message blocks added by DLMs.

• Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

• Re-initializes all DLMs to their unloaded initial state.

Note
The VMS operating system does not support unloading sharable libraries.
Therefore, .FULL_RESET_SESSION is identical to .RESET_SESSION under
VMS, and these extra steps are not performed.

Note
.FULL_RESET_SESSION is an executive command. Executive commands ca
only be used at the IDL command prompt, not in programs.

Syntax

.FULL_RESET_SESSION
.FULL_RESET_SESSION What’s New in IDL 5.3

Chapter 5: New IDL Routines 143

hout

ny

ice

m

.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session wit
requiring the user to exit and restart the IDL session.

.RESET_SESSION does the following:

• Returns current execution point to $MAIN$ (RETALL).

• Removes all breakpoints.

• Closes all files except the standard 3 units, the JOURNAL file (if any), and a
files in use by graphics drivers.

• Destroys/Removes the following:

• All local variables in $MAIN$.

• All widgets. Exit handlers are not called.

• All windows and pixmaps for the current window system graphics dev
are closed. No other graphics state is reset.

• All common blocks.

• All handles

• All user defined system variables

• All pointer and object reference heap variables.

• Object destructors are not called.

• All user defined structure definitions.

• All user defined object definitions.

• All compiled user functions and procedures, including the main progra
($MAIN$), if any.

The following are not reset:

• The current values of intrinsic system variables are retained.

• The saved commands and output log are preserved.

• Graphics drivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

• The following files are not closed:
What’s New in IDL 5.3 .RESET_SESSION

144 Chapter 5: New IDL Routines

re
rary
E

be
• Stdin (LUN 0)

• Stdout (LUN -1)

• Stderr (LUN -2)

• The journal file (!JOURNAL) if one is open.

• Any files in use by graphics drivers (e.g. PostScript).

• Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor a
any dynamic sharable libraries containing such drivers, even if the same lib
was also used for another purpose such as CALL_EXTERNAL, LINKIMAG
system routines, or DLMs. See the.FULL_RESET_SESSION executive
command to unload dynamic libraries.

Note
.RESET_SESSION is an executive command. Executive commands can only
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION
.RESET_SESSION What’s New in IDL 5.3

Chapter 5: New IDL Routines 145

a
izer

each

s
trated

t

 data,

the

t

ADAPT_HIST_EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization,
form of automatic image contrast enhancement. The algorithm is described in P
et. al., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement ha
proven to be broadly applicable to a wide range of images and to have demons
effectiveness.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, NREGIONS=nregions]
[, TOP=value])

Return Value

The result of the function is a byte image with the same dimensions as the inpu
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords

CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is no
limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.
What’s New in IDL 5.3 ADAPT_HIST_EQUAL

146 Chapter 5: New IDL Routines

 size

255.

 the
NREGIONS

Set this keyword to the size of the overlapped tiles, as a fraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a cerebral angiogram, and then displays both the original image and
adaptive histogram equalized image:

OPENR, 1, DEMO_FILEPATH(’cereb.dat’, &
SUBDIRECTORY=[’examples’,’data’])

;Image size = 512 x 512
a = BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

;Show original
TVSCL, a, 0

;Show processed
TV, ADAPT_HIST_EQUAL(a, TOP=!D.TABLE_SIZE-1), 1
ADAPT_HIST_EQUAL What’s New in IDL 5.3

Chapter 5: New IDL Routines 147

s
RY.

nary

of
usly

ed

e

n the

r

ll
BINARY_TEMPLATE

The BINARY_TEMPLATE function presents a graphical user interface which allow
the user to interactively generate a template structure for use with READ_BINA

The graphical user interface allows the user to define one or more fields in the bi
file. The file may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type
data to be read. Where necessary, fields can be defined in terms of other previo
defined fields using IDL expressions. Fields can also be designated as “Verify”.
When a file is read using a template with “Verify” fields, those fields will be check
against a user defined value supplied via the template.

Syntax

Template = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=filename])

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test th
template. As the user interacts with the BINARY_TEMPLATE graphical user
interface, the user’s input will be tested for correctness against the binary data i
file. If filename is not specified, a dialog allows the user to choose the file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the use
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader is killed, for any reason, a
widgets in the group are also destroyed.
What’s New in IDL 5.3 BINARY_TEMPLATE

148 Chapter 5: New IDL Routines

’s

plied

ser
ffset
N_ROWS

Set this keyword to the number of rows to be visible in the BINARY_TEMPLATE
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the
Y_SCROLL_SIZE keywords.

TEMPLATE

Use this keyword to specify an initial template for viewing and editing via the
BINARY_TEMPLATE graphical user interface.

Note
A greater than (“>”) or less than (“<“) symbol can appear in the
BINARY_TEMPLATE’s “New Field” and the “Modify Field” dialogs where the
offset value is displayed. The presence of either symbol indicates that the sup
offset value is “relative” from the end of the previous field or from the initial
position in the file. Greater than means offset forward. Less than means offset
backward. “>0” and “<0” are synonymous and mean “offset zero bytes”. The u
can delete these special symbols (thereby indicating that their corresponding o
value is not “relative”) by typing over them in the “New Field” or “Modify Field”
dialogs where the offset value is displayed.
BINARY_TEMPLATE What’s New in IDL 5.3

Chapter 5: New IDL Routines 149

r a
 are

call

the
es

 for
 a
CDF_COMPRESSION

Note
This is a new SDF routine, and is documented in theScientific Data Formats
manual.

The CDF_COMPRESSION procedure sets or returns the compression mode fo
CDF file and/or variables. Compression parameters should be set before values
written to the CDF file.

Syntax

CDF_COMPRESSION,Id [, GET_COMPRESSION=variable]
[, GET_GZIP_LEVEL=variable] [, GET_VAR_COMPRESSION=variable]
[, GET_VAR_GZIP_LEVEL=variable] [, SET_COMPRESSION = {0 | 1 | 2 | 3 | 5}]
[, SET_GZIP_LEVEL=integer{1 to 9}] [, SET_VAR_COMPRESSION = {0 | 1 | 2 |
3 | 5}] [, SET_VAR_GZIP_LEVEL=integer{1 to 9}] [, VARIABLE= variable name
or index] [, /ZVARIABLE]

Arguments

Id

The CDF ID of the file being compressed or queried, as returned from a previous
to CDF_OPEN or CDF_CREATE. Note that CDF compression only works for
single-file CDF files.

Keywords

GET_COMPRESSION

Set this keyword to a named variable to retrieve the compression type used for
single-file CDF file. Note that individual CDF variables may have compression typ
different than the one for the rest of the CDF file.

GET_GZIP_LEVEL

Set this keyword to a named variable in which the current GZIP effort level (1-9)
the CDF file is returned. If the compression type for the file is not GZIP (5), then
value of zero is returned.
What’s New in IDL 5.3 CDF_COMPRESSION

150 Chapter 5: New IDL Routines

able

e

ote
 for

is

).

e

GET_VAR_COMPRESSION

Set this keyword to a named variable to retrieve the compression type for the vari
identified by the VARIABLE keyword.

GET_VAR_GZIP_LEVEL

Set this keyword to a named variable in which the GZIP effort level (1-9) for the
variable specified by the VARIABLE keyword is returned. If the compression typ
for the variable is not GZIP (5), then a value of zero is returned.

SET_COMPRESSION

Set this keyword to the compression type to be used for the single-file CDF file. N
that individual CDF variables may use compression types different than the one
the rest of the CDF file. Valid compression types are:

• 0 = No Compression

• 1 = Run-Length Encoding

• 2 = Huffman

• 3 = Adaptive Huffman

• 5 = GZIP (see the optional GZIP_LEVEL keyword)

SET_GZIP_LEVEL

This keyword is used to indicate the desired effort for the GZIP compression. Th
effort must be expressed as a scalar in the range (1-9). If GZIP_LEVEL is not
specified upon entry, then the default effort level is taken to be 5. If the
SET_GZIP_LEVEL keyword is set to a valid value, and the keyword
SET_COMPRESSION is not specified, SET_COMPRESSION is set to GZIP (5

SET_VAR_COMPRESSION

Set this keyword to the compression type for the variable identified by the
VARIABLE keyword. If the variable is a zVariable, and is referred to by index in th
VARIABLE keyword, then the keyword ZVARIABLE must be set. The desired
variable compression should be set before variable data is added with
CDF_VARPUT. Valid compression types are:

• 0 = No Compression

• 1 = Run-Length Encoding

• 2 = Huffman
CDF_COMPRESSION What’s New in IDL 5.3

Chapter 5: New IDL Routines 151

of

ex

sers
itly.
 file
• 3 = Adaptive Huffman

• 5 = GZIP (see the optional GZIP_LEVEL keyword)

SET_VAR_GZIP_LEVEL

Set this keyword to the GZIP effort level (1-9). If the compression type for the
variable is not GZIP (5), no action is performed.

VARIABLE

Set this keyword to the name of a variable or a variable index to set the current
variable. This keyword is mandatory when querying/setting the compression
parameters of an rVariable or zVariable. Note that if VARIABLE is set to the index
a zVARIABLE, the ZVARIABLE keyword must also be set. If ZVARIABLE is not
set, the variable is assumed to be an rVariable.

ZVARIABLE

Set this keyword if the current variable is a zVARIABLE and is referred to by ind
in the VARIABLE keyword. For example:

CDF_COMPRESSION, id, VARIABLE=0, /ZVARIABLE,$
GET_VAR_COMPRESSION=vComp

Special Note About Temporary File Location

CDF creates temporary files whenever files/variables are compressed or
uncompressed. By default, these files are created in the current directory. UNIX u
can set the environment variable CDF_TMP to set the temporary directory explic
VMS users can similarly set the logical name CDF$TMP to an alternate scratch
directory.

Example

; Create a CDF file and define the compression.
; Compression only works on Single-File CDFs:
id=CDF_CREATE('demo.cdf',[10,20],/CLOBBER,/SINGLE_FILE)
CDF_COMPRESSION,id,SET_COMPRESSION=1 ; (Run-length encoding)
att_id=CDF_ATTCREATE(id, 'Date',/GLOBAL)
CDF_ATTPUT,id,'Date',att_id,systime()

; Change the compression type for the file to GZIP by using
; SET_GZIP_LEVEL:
CDF_COMPRESSION,id,SET_GZIP_LEVEL=7

; Retrieve compression information:
CDF_COMPRESSION,id,GET_GZIP_LEVEL=glevel,GET_COMPRESSION=gcomp
What’s New in IDL 5.3 CDF_COMPRESSION

152 Chapter 5: New IDL Routines
HELP,glevel,gcomp

; Create and compress an rVariable:
rid=CDF_VARCREATE(id,'rvar0',[1,1],/CDF_FLOAT)
CDF_COMPRESSION,id,SET_VAR_COMPRESSION=2,VARIABLE='rvar0'
CDF_VARPUT,id,'rvar0',findgen(10,20,5)
CDF_COMPRESSION,id,GET_VAR_COMPRESSION=v_comp,VARIABLE=rid,$
GET_VAR_GZIP_LEVEL=v_glevel
HELP,v_comp,v_glevel
; Create and compress a zVariable:
zid=CDF_varcreate(id,'zvar0',[1,1,1],DIM=[10,20,30],/ZVARIABLE,$

/CDF_DOUBLE)

; You can set a compression and check it in the same call:
CDF_COMPRESSION,id,SET_VAR_GZIP_LEVEL=9,VARIABLE=zid,/ZVARIABLE,$

GET_VAR_GZIP_LEVEL=v_gzip
HELP,v_gzip

CDF_VARPUT,id,zid,dindgen(10,20,30),/ZVARIABLE

; File and variable keywords can be combined in the same call
; (Set calls are processed before Get calls)
CDF_COMPRESSION,id,GET_VAR_COMPRESSION=v_comp,VARIABLE='zvar0',$

/ZVARIABLE, SET_COMPRESSION=2,GET_COMPRESSION=file_comp
HELP,file_comp,v_comp

CDF_DELETE,id

IDL Output

GLEVEL LONG = 7
GCOMP LONG = 5

V_COMP LONG = 2
V_GLEVEL LONG = 0

(Note that V_GLEVEL is 0, since the variable compression is not GZIP.)

V_GZIP LONG = 9

FILE_COMP LONG = 2
V_COMP LONG = 5
CDF_COMPRESSION What’s New in IDL 5.3

Chapter 5: New IDL Routines 153

 use

.g.

he
t

e

COMPILE_OPT

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears.

Research Systems recommends the use of

COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e
helper routines that are part of a larger package).

Note
COMPILE_OPT is an IDL statement. For information on using statements, see
Chapter 10, “Statements” in Building IDL Applcations.

Syntax

COMPILE_OPTopt1 [, opt2, ...,optn]

Arguments

opt n

This argument can be any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants default to t
32-bit type rather than the usual default of 16-bit integers. This takes effec
from the point where the COMPILE_OPT statement appears in the routin
being compiled and remains in effect until the end of the routine. The
What’s New in IDL 5.3 COMPILE_OPT

154 Chapter 5: New IDL Routines

L
es

le
to

that
re
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants:

• HIDDEN — This routine should not be displayed by HELP, unless the FUL
keyword to HELP is used. This directive can be used to hide helper routin
that regular IDL users are not interested in seeing.

A side-effect of making a routine hidden is that IDL will not print a “Compi
module” message for it when it is compiled from the library to satisfy a call
it. This makes hidden routines appear built-in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages
this routine is obsolete. This directive can be used to warn people that the
may be better ways to perform the desired task.

Constant Normal Type DEFINT32 Type

Without type specifier:

42 INT LONG

'2a'x INT LONG

42u UINT ULONG

'2a'xu UINT ULONG

With type specifier:

0b BYTE BYTE

0s INT INT

0l LONG LONG

42.0 FLOAT FLOAT

42d DOUBLE DOUBLE

42us UINT UINT

42ul ULONG ULONG

42ll LONG64 LONG64

42ull ULONG64 ULONG64

Table 1: Examples of the effect of the DEFINT32 argument
COMPILE_OPT What’s New in IDL 5.3

Chapter 5: New IDL Routines 155

N

• STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTIO
definition.
What’s New in IDL 5.3 COMPILE_OPT

156 Chapter 5: New IDL Routines

s
nt

r.
CW_FILESEL

The CW_FILESEL function is a compound widget for file selection.

Syntax

Result = CW_FILESEL (Parent[, /FILENAME] [, FILTER=string array]
[, /FIX_FILTER] [, /FRAME] [, /IMAGE_FILTER] [, /MULTIPLE] [, PATH= string]
[, UNAME=string] [, UVALUE= value])

Arguments

Parent

The widget ID of the parent.

Keywords

FILENAME

Set this keyword to have the initial filename filled in the filename text area.

FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is “All Files”. All files containing the chosen filter string will be displayed a
possible selections. “All Files” is a special filter which returns all files in the curre
directory.

Example:

FILTER=["All Files", ".gif", ".txt"]

Multiple filter types may be used per filter entry, using a comma as the separato

Example:

FILTER=[".jpg, .jpeg", ".txt, .text"]

FIX_FILTER

If set, the user can not change the file filter.

FRAME

If set, a frame is drawn around the widget.
CW_FILESEL What’s New in IDL 5.3

Chapter 5: New IDL Routines 157

nd

e

rent

ou
name

et
IMAGE_FILTER

If set, the filter “Image Files” will be added to the end of the list of filters. If set, a
FILTER is not set, “Image Files” will be the only filter displayed. Valid image files
are determined from QUERY_IMAGE.

MULTIPLE

If set, the file selection list will allow multiple filenames to be selected. The filenam
text area will not be editable in this case.

PATH

Set this keyword to the initial path the widget is to start in. The default is the cur
directory.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. Y
can associate a name with each widget in a specific hierarchy, and then use that
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget.
What’s New in IDL 5.3 CW_FILESEL

158 Chapter 5: New IDL Routines

of

et

nt.

the
cross

tton is

r
sed
CW_LIGHT_EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties
existing IDLgrLight objects in a view. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property). The returned value of this function is the widg
ID of a newly-created light editor.

Syntax

Result= CW_LIGHT_EDITOR (Parent [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED]
[, LIGHT=objref(s)] [, /LOCATION_DISABLED] [, /TYPE_DISABLED]
[, UVALUE=value] [, XSIZE=pixels] [, YSIZE=pixels] [, XRANGE=vector]
[, YRANGE=vector] [, ZRANGE=vector])

Arguments

Parent

The widget ID of the parent widget for the new light editor.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in
compound widget is being dragged or when the mouse cursor is being dragged a
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comes to rest at its final position and the mouse bu
released.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.
CW_LIGHT_EDITOR What’s New in IDL 5.3

Chapter 5: New IDL Routines 159

, but

it,

nt.

l
ord.

nt.

nt.

ciate
ry the

et
Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a ‘hint’ to the toolk
and may be ignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This wil
replace the current set of lights being edited with the list of lights from this keyw

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can asso
a name with each widget in a specific hierarchy, and then use that name to que
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.
What’s New in IDL 5.3 CW_LIGHT_EDITOR

160 Chapter 5: New IDL Routines

dget

 is

sed

sed

sed

vent
and

is
UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the wi
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE
not present, the widget's initial user value is undefined.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is u
to determine the valid range for the light's location and direction properties

XSIZE

The width of the drawable area in pixels. The default width is 180.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is u
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels. The default height is 180.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is u
to determine the valid range for the light's location and direction properties

Light Editor Events

There are variations of the light editor event structure depending on the specific e
being reported. All of these structures contain the standard three fields (ID, TOP,
HANDLER). The different light editor event structures are described below.

Light Selected

This is the type of structure returned when the light selected in the light list box
modified by a user.

{ CW_LIGHT_EDITOR_LS, ID:0L, TOP:0L, HANDLER:0L, LIGHT:OBJ_NEW()}

LIGHT specifies the object ID of the new light selection.
CW_LIGHT_EDITOR What’s New in IDL 5.3

Chapter 5: New IDL Routines 161

This
ee

nd
OL
an

 An
f a

ts an

itor
Light Modified

This is the type of structure returned when the user has modified a light property.
event maybe generated continuously if the DRAG_EVENTS keyword was set. S
DRAG_EVENTS above.

{ CW_LIGHT_EDITOR_LM, ID:0L, TOP:0L, HANDLER:0L}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compou
widget's base widget. This means that many keywords to the WIDGET_CONTR
and WIDGET_INFO routines that affect or return information on base widgets c
be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget.
IDLgrLight object reference of the currently selected light is returned. The value o
widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified light editor compound widget. This widget accep
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light ed
controls are updated to reflect those properties.
What’s New in IDL 5.3 CW_LIGHT_EDITOR

162 Chapter 5: New IDL Routines

ot

hile a
ing

r
sed

, but
CW_LIGHT_EDITOR_GET

The CW_LIGHT_EDITOR_GET procedure gets the CW_LIGHT_EDITOR
properties.

Syntax

CW_ LIGHT_EDITOR_GET,WidgetID[, DIRECTION_DISABLED=variable]
[, DRAG_EVENTS=variable] [, HIDE_DISABLED=variable] [, LIGHT=variable]
[, LOCATION_DISABLED=variable] [, TYPE_DISABLED=variable]
[, XSIZE=variable] [, YSIZE=variable] [, XRANGE=variable]
[, YRANGE=variable][, ZRANGE=variable]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will n
generate an event.

DRAG_ EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously w
slider in the compound widget is being dragged or when the mouse cursor is be
dragged across the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.
CW_LIGHT_EDITOR_GET What’s New in IDL 5.3

Chapter 5: New IDL Routines 163

nd

nces

und

ning

rea

ning

rea

ning
HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compou
widget unchangeable by the user.

LIGHT

Set this keyword to a named variable that will contain one or more object refere
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compo
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable a
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the y direction.

YSIZE

Set this keyword to a named variable that will contain the height of the drawable a
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defi
the data range in the z direction.
What’s New in IDL 5.3 CW_LIGHT_EDITOR_GET

164 Chapter 5: New IDL Routines

nt.

the
cross

r
sed

, but

nt.
CW_LIGHT_EDITOR_SET

The CW_LIGHT_EDITOR_SET procedure sets the CW_LIGHT_EDITOR
properties.

Syntax

CW_ LIGHT_EDITOR_SET,WidgetID[, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=objref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixels]
[, YSIZE=pixels] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in
compound widget is being dragged or when the mouse cursor is being dragged a
the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slowe
machines, poor performance can result. Therefore, this option should only be u
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events
behave just like regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve
CW_LIGHT_EDITOR_SET What’s New in IDL 5.3

Chapter 5: New IDL Routines 165

l
ord.

nt.

nt.

sed

sed

sed
LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This wil
replace the current set of lights being edited with the list of lights from this keyw

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an eve

XRANGE

A two-element vector defining the data range in the x direction. This keyword is u
to determine the valid range for the light's location and direction properties.

XSIZE

The width of the drawable area in pixels.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is u
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is u
to determine the valid range for the light's location and direction properties.
What’s New in IDL 5.3 CW_LIGHT_EDITOR_SET

166 Chapter 5: New IDL Routines

d
isplay
gram.

, and
 in

,Y
area
CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display an
edit color palettes. The palette editor is a base that contains a drawable area to d
the color palette, a set of vectors that represent the palette and an optional histo

Syntax

Result = CW_PALETTE_EDITOR (Parent[, DATA=array] [, FRAME=width]
[, HISTOGRAM=vector] [, /HORIZONTAL] [, SELECTION=[start, end]]
[, UNAME=string] [, UVALUE= value] [, XSIZE=width] [, YSIZE=height])

Return Value

The returned value of this function is the widget ID of the newly created palette
editor.

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing a display of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red
channel is displayed in red, the Green channel in green, the Blue channel in blue
the optional Alpha channel in purple. The optional Histogram vector is displayed
Cyan.

An area with a white background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X
values and channel pixel values at the cursor location are displayed in a status
below the graphics area.
CW_PALETTE_EDITOR What’s New in IDL 5.3

Chapter 5: New IDL Routines 167

lt
ieved
ce.

ode.

tly
tion

w a
at

t
 to
n in

ted

the
of

the

the
 of

t:

ed

thed.
Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HLS color spaces. RGB is the defau
color space. Note that regardless of the color space in use, the color vectors retr
with the GET_VALUE keyword to widget control are always in the RGB color spa

Editing Mode

A droplist allows selection of the editing mode. Freehand is the default editing m

Unless noted below, editing operations apply only to the channel vectors curren
selected for editing. Unless noted below, editing operations apply only to the por
of the vectors within the selection indicators.

In Freehand editing mode the user can click and drag in the graphics area to dra
new curve. Editable channel vectors will be modified to use the new curve for th
part of the X range within the selection that was drawn in Freehand mode.

In Line Segment editing mode a click, drag and release operation defines the star
point and end point of a line segment. Editable channel vectors will be modified
use the new curve for that part of the X range within the selection that was draw
Line Segment mode.

In Barrel Shift editing mode click and drag operations in the horizontal direction
cause the editable curves to be shifted right or left, with the portion which is shif
off the end of selection area wrapping around to appear on the other side of the
selection area. Only the horizontal component of drag movement is used.

In Slide editing mode click and drag operations in the horizontal direction cause
editable curves to be shifted right or left. Unlike the Barrel Shift mode, the portion
the curves shifted off the end of the selection area does not wrap around. Only
horizontal component of drag movement is used.

In Stretchediting mode click and drag operations in the horizontal direction cause
editable curves to be compressed or expanded. Only the horizontal component
drag movement is used.

A number of buttons provide editing operations which do not require cursor inpu

TheRamp operation causes the selected part of the editable curves to be replac
with a linear ramp from 0 to 255.

TheSmooth operation causes the selected part of the editable curves to be smoo
What’s New in IDL 5.3 CW_PALETTE_EDITOR

168 Chapter 5: New IDL Routines

laced

ed in

n the

annel

d
of a

lue
es
g

ha

om of
ThePosterize operation causes the selected part of the editable curves to be rep
with a series of steps.

TheReverseoperation causes the selected part of the editable curves to be revers
the horizontal direction.

TheInvertoperation causes the selected part of the editable curves to be flipped i
vertical direction.

TheDuplicate operation causes the selected part of the editable curves to be
compressed by 50% and duplicated to produce two contiguous copies of the ch
vectors within the initial selection.

TheLoad PreDefineddroplist choice leads to additional choices of pre-defined
palettes. Loading a pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the selection endpoints an
editable checkboxes. This allows loading only a single channel or only a portion
pre-defined palette.

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, B
and the optional Alpha channel should be displayed. A second row of checkbox
allows the user to indicate which channels should be edited by the current editin
operation. The checkboxes for the Alpha channel will be sensitive only if an Alp
channel is loaded.

Zoom

Four buttons allow the user to zoom the display of the palette.

The “| |” button zooms to show the current selection.

The “+” button zooms in 50%.

The “-” button zooms out 100%.

The “1:1” button returns the display to the full palette.

Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bott
the graphics area can be used to view a different part of the palette.
CW_PALETTE_EDITOR What’s New in IDL 5.3

Chapter 5: New IDL Routines 169

ial

s
e

e.

of
he

e

ciate
ry the
Arguments

Parent

The widget ID of the parent widget for the new palette editor.

Keywords

DATA

A 3x256 byte array containing the initial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the init
color values and the optional Alpha channel. The value supplied can also be an
IDLgrPalette object reference. If an IDLgrPalette object reference is supplied it i
used internally and is not destroyed on exit. If an object reference is supplied th
ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a “hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM

A 256 element byte vector containing the values for the optional histogram curv

HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists
the controls to the right of the display area. The default is a vertical layout with t
controls below the display area.

SELECTION

The selection is a two element vector defining the starting and ending point of th
selection region of color indexes. The default is [0,255].

UNAME

Set this keyword to a string that can be used to identify the widget. You can asso
a name with each widget in a specific hierarchy, and then use that name to que
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
What’s New in IDL 5.3 CW_PALETTE_EDITOR

170 Chapter 5: New IDL Routines

et

dget

 is

ific
,

d

e

t of

te.

L,
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widg
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the wi
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE
not present, the widget's initial user value is undefined.

XSIZE

The width of the drawable area in pixels. The default width is 256.

YSIZE

The height of the drawable area in pixels. The default height is 256.

Palette Editor Events

There are variations of the palette editor event structure depending on the spec
event being reported. All of these structures contain the standard three fields (ID
TOP, and HANDLER). The different palette editor event structures are describe
below.

Selection Moved

This is the type of structure returned when one of the vertical bars that define th
selection region is moved by a user.

{ CW_PALETTE_EDITOR_SM, ID:0L, TOP:0L, HANDLER:0L,
SELECTION:[0,255]}

SELECTION indicates a two element vector defining the starting and ending poin
the selection region of color indexes.

Palette Edited

This is the type of structure returned when the user has modified the color palet

{ CW_PALETTE_EDITOR_PM, ID:0L, TOP:0L, HANDLER:0L}

The value of the palette editor will need to be retrieved (i.e., WIDGET_CONTRO
GET_VALUE) in order to determine the extent of the actual user modification.
CW_PALETTE_EDITOR What’s New in IDL 5.3

Chapter 5: New IDL Routines 171

nd
OL
an

 A
d.

pts a
tte
e. If
oyed
WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compou
widget's base widget. This means that many keywords to the WIDGET_CONTR
and WIDGET_INFO routines that affect or return information on base widgets c
be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget.
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returne

The value of a widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified palette editor compound widget. This widget acce
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array representing the value of the pale
to be set. Another type of argument accepted is an IDLgrPalette object referenc
an IDLgrPalette object reference is supplied it is used internally and is not destr
on exit.
What’s New in IDL 5.3 CW_PALETTE_EDITOR

172 Chapter 5: New IDL Routines

rve.
CW_PALETTE_EDITOR_GET

The CW_PALETTE_EDITOR_GET procedure gets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GET,WidgetID [, ALPHA=variable]
[, HISTOGRAM=variable])

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

Set this keyword to a named variable that will contains the optional alpha curve.

HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram cu
CW_PALETTE_EDITOR_GET What’s New in IDL 5.3

Chapter 5: New IDL Routines 173

tte.
rve

n be

 the
CW_PALETTE_EDITOR_SET

The CW_PALETTE_EDITOR_SET procedure sets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SET,WidgetID [, ALPHA=byte_vector]
[, HISTOGRAM=byte_vector])

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

A 256 element byte vector that describes the alpha component of the color pale
The alpha value may also be set to the scalar value zero to remove the alpha cu
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword ca
used to display a distribution of color index values to facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove
histogram curve from the display.
What’s New in IDL 5.3 CW_PALETTE_EDITOR_SET

174 Chapter 5: New IDL Routines

ton

d.

f

E

full

uld
DIALOG_READ_IMAGE

The DIALOG_READ_IMAGE function is a graphical interface used for reading
image files.

Syntax

Result= DIALOG_READ_IMAGE ([Filename] [, BLUE=variable]
[, DIALOG_PARENT=widget_id] [, FILE=variable] [, FILTER=string]
[, /FIX_FILTER] [, GREEN=variable] [, IMAGE=variable] [, PATH=string]
[, QUERY=variable] [, RED=variable] [,TITLE=string])

Return Value

This routine returns 1 if the “Open” button was clicked, and 0 if the “Cancel” but
is clicked.

Arguments

Filename

An optional scalar string containing the full pathname of the file to be highlighte

Keywords

BLUE

Set this keyword to a named variable that will contain the blue channel vector (i
any).

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_READ_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_READ_IMAG
dialog.

FILE

Set this keyword to a named variable that will contain the selected filename with
path when the dialog is created.

FILTER

Set this keyword to a scalar string containing the format type the dialog filter sho
begin with. The default is “Image Files”. The user cannot modify the filter if the
DIALOG_READ_IMAGE What’s New in IDL 5.3

Chapter 5: New IDL Routines 175

s”

r has

(if

ncel

. If

re
iable

ny).

fied,
FIX_FILTER keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. In addition, there is also the “All File
type. If set to “All Files”, queries will only happen on filename clicks, making the
dialog much more efficient.

Example:

FILTER=’.jpg, .gif, .tiff’

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The use
no ability to modify the filter.

GREEN

Set this keyword to a named variable that will contain the green channel vector
any).

IMAGE

Set this keyword to a named variable that will contain the image array read. If Ca
was clicked, no action is taken.

PATH

Set this keyword to a string that contains the initial path from which to select files
this keyword is not set, the current working directory is used.

QUERY

Set this keyword to a named variable that will return the QUERY_IMAGE structu
associated with the returned image. If the “Cancel” button was pressed, the var
set to this keyword is not changed. If an error occurred during the read, the
FILENAME field of the structure will be a null string.

RED

Set this keyword to a named variable that will contain the red channel vector (if a

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not speci
the default title is “Select Image File”.
What’s New in IDL 5.3 DIALOG_READ_IMAGE

176 Chapter 5: New IDL Routines

on

 be

GE

ion.

r has
DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function is a graphical user interface used for
writing image files.

Syntax

Result = DIALOG_WRITE_IMAGE (Image[, R, G, B]
[, DIALOG_PARENT=widget_id] [, FILENAME=string] [, /FIX_TYPE]
[, /NOWRITE] [, OPTIONS=variable] [, PATH=string] [,TITLE=string]
[, TYPE=variable])

Return Value

This routine returns 1 if the “Save” button was clicked, and 0 if the “Cancel” butt
was clicked.

Arguments

Image

The array to be written to the image file.

R, G, B (optional)

These are optional arguments defining the Red, Green, and Blue color tables to
associated with the image array.

Keywords

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_WRITE_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_WRITE_IMA
dialog.

FILENAME

Set this keyword to a scalar string that contains the name of the initial file select
This keyword is useful for specifying a default filename.

FIX_TYPE

When this keyword is set, only files that satisfy the type can be selected. The use
no ability to modify the type.
DIALOG_WRITE_IMAGE What’s New in IDL 5.3

Chapter 5: New IDL Routines 177

d.

s by

. If

fied,

eld
e
ge
e

NOWRITE

Set this keyword to prevent the dialog from writing the file when “Save” is clicke
No data conversions will take place when the save type is chosen.

OPTIONS

Set this keyword to a named variable to contain a structure of the chosen option
the user, including the filename and image type chosen.

PATH

Set this keyword to a string that contains the initial path from which to select files
this keyword is not set, the current working directory is used.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not speci
the default title is “Save Image File”.

TYPE

Set this keyword to a scalar string containing the format type the “Save as type” fi
should begin with. The default is “TIFF”. The user can modify the type unless th
FIX_TYPE keyword is set. Valid values are obtained from the list of supported ima
types returned from QUERY_IMAGE. The “Save as type” field will reflect the typ
of the selected file (if one is selected).
What’s New in IDL 5.3 DIALOG_WRITE_IMAGE

178 Chapter 5: New IDL Routines

d.
.

ed
DLM_LOAD

Normally, IDL system routines that reside in Dynamically Loadable Modules
(DLMs) are automatically loaded on demand when a routine from a DLM is calle
The DLM_LOAD procedure can be used to explicitly cause a DLM to be loaded

Syntax

DLM_LOAD, DLMNameStr1 [, DLMNameStr2,...,DLMNameStrn]

Arguments

DLMNameStr n

A string giving the name of the DLM to be loaded. DLM_LOAD causes each nam
DLM to be immediately loaded.

Keywords

None.

Example

Force the JPEG DLM to be loaded:

DLM_LOAD, 'jpeg'

IDL Output

% Loaded DLM: JPEG.
DLM_LOAD What’s New in IDL 5.3

Chapter 5: New IDL Routines 179

rect

nts,

es,
yle,

st.
DRAW_ROI

The DRAW_ROI procedure draws a region or group of regions to the current Di
Graphics device. The primitives used to draw each ROI are based on the TYPE
property of the given IDLanROI object. The TYPE property selects between poi
polylines, and filled polygons.

Syntax

DRAW_ROI,oROI [, /LINE_FILL] [, SPACING=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, THICK=value]

Arguments

oROI

A reference to an IDLanROI object to be drawn.

Keywords

LINE_FILL

Set this keyword to indicate that polygonal regions are to be filled with parallel lin
rather than using the default solid fill. When using a line fill, the thickness, linest
orientation, and spacing of the lines may be specified by keywords.

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

Graphics Keywords Accepted

CLIP, COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NORMAL,
ORIENTATION, PSYM, SYMSIZE, T3D, THICK

Example

The following example displays an image and collects data for a region of intere
The resulting ROI is displayed as a filled polygon.
What’s New in IDL 5.3 DRAW_ROI

180 Chapter 5: New IDL Routines
PRO roi_ex
; Load and display an image.
img=READ_DICOM(FILEPATH(‘mr_knee.dcm’,SUBDIR=[‘examples’,’data’]))
TV, img

; Create a polygon region object.
oROI = OBJ_NEW(‘IDLanROI’, TYPE=2)

; Print instructions.
PRINT,’To create a region:’
PRINT,’ Left mouse: select points for the region.’
PRINT,’ Right mouse: finish the region.’

; Collect first vertex for the region.
CURSOR, xOrig, yOrig, /UP, /DEVICE
oROI->AppendData, xOrig, yOrig
PLOTS, xOrig, yOrig, PSYM=1, /DEVICE

;Continue to collect vertices for region until right mouse button.
x1 = xOrig
y1 = yOrig
while !MOUSE.BUTTON ne 4 do begin

x0 = x1
y0 = y1
CURSOR, x1, y1, /UP, /DEVICE
PLOTS, [x0,x1], [y0,y1], /DEVICE
oROI->AppendData, x1, y1

endwhile
PLOTS, [x1,xOrig], [y1,yOrig], /DEVICE

; Draw the the region with a line fill.
DRAW_ROI, oROI, /LINE_FILL, SPACING=0.2, ORIENTATION=45, /DEVICE
END
DRAW_ROI What’s New in IDL 5.3

Chapter 5: New IDL Routines 181

ot

By
NS

abled

plied.

hat
ENABLE_SYSRTN

The ENABLE_SYSRTN procedure enables/disables IDL system routines. This
procedure is intended for use by runtime and callable IDL applications, and is n
generally useful for interactive use.

Syntax

ENABLE_SYSRTN [,Routines] [, /DISABLE] [, /EXCLUSIVE] [, /FUNCTIONS]

Arguments

Routines

A string scalar or array giving the names of routines to be enabled or disabled.
default, these are procedures, but this can be changed by setting the FUNCTIO
keyword.

Keywords

DISABLE

By default, the Routines are enabled. Setting this keyword causes them to be dis
instead.

EXCLUSIVE

By default, ENABLE_SYSRTN does not alter routines not listed in Routines. If
EXCLUSIVE is set, the specified routines are taken to be the only routines that
should be enabled or disabled, and all other routines have the opposite action ap

Therefore, setting EXCLUSIVE and not DISABLE means that the routines in the
Routines argument are enabled and all other system routines of the same type
(function or procedure) are disabled. Setting EXCLUSIVE and DISABLE means t
all listed routines are disabled and all others are enabled.

FUNCTIONS

Normally, ROUTINES specifies the names of procedures. Set the FUNCTIONS
keyword to manipulate functions instead.
What’s New in IDL 5.3 ENABLE_SYSRTN

182 Chapter 5: New IDL Routines

r
g an

L is

ns
Special Cases

The following is a list of cases in which ENABLE_SYSRTN is unable to enable o
disable a requested routine. All such attempts are simply ignored without issuin
error, allowing the application to run without error in different IDL environments:

• Attempts to enable/disable non-existent system routines.

• Attempts to enable a system routine disabled due to the mode in which ID
licensed, as opposed to being disabled via ENABLE_SYSRTN, are quietly
ignored (e.g. demo mode).

• The routines CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE,
and EXECUTE cannot be disabled via ENABLE_SYSRTN. However,
anything that can be called from themcan be disabled, so this is not a
significant drawback.

Examples

To disable the PRINT procedure:

ENABLE_SYSRTN, /DISABLE, 'PRINT'

To enable the PRINT procedure and disable all other procedures:

ENABLE_SYSRTN, /EXCLUSIVE, 'PRINT'

To ensure all possible functions are enabled:

ENABLE_SYSRTN, /DISABLE, /EXCLUSIVE, /FUNCTIONS

In the last example, all named functions should be disabled and all other functio
should be enabled. Since noRoutines argument is provided, this means that all
routines become enabled.
ENABLE_SYSRTN What’s New in IDL 5.3

Chapter 5: New IDL Routines 183

ID

The
EOS_GD_QUERY

Note
This is a new SDF routine, and is documented in theScientific Data Formats
manual.

The EOS_GD_QUERY function returns information about a specified grid.

Syntax

Result = EOS_GD_QUERY (Filename, GridName, Info)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS GR
extensions, and 0 otherwise.

Arguments

Filename

A string containing the name of the file to query.

GridName

A string containing the name of the grid to query.

Info

Returns an anonymous structure containing information about the specified grid.
returned structure contains the following fields:

Field IDL Data Type Description

ATTRIBUTES String array Array of attribute names

DIMENSION_NAMES String array Names of dimensions

DIMENSION_SIZES Long array Sizes of dimensions

FIELD_NAMES String array Names of fields

Table 5-1: Fields of the Info Structure
What’s New in IDL 5.3 EOS_GD_QUERY

184 Chapter 5: New IDL Routines

rs
FIELD_RANKS Long array Ranks (dimensions) of fields

FIELD_TYPES Long array IDL types of fields

GCTP_PROJECTION Long GCTP projection code

GCTP_PROJECTION_PARM Double array GCTP projection paramete

GCTP_SPHEROID Long GCTP spheroid code

GCTP_ZONE Long GCTP zone code (for UTM
projection)

IMAGE_LOWRIGHT Double[2] Location of lower right
corner (meters)

IMAGE_UPLEFT Double[2] Location of upper left corner
(meters)

IMAGE_X_DIM Long Number of columns in grid
image

IMAGE_Y_DIM Long Number of rows in grid
image

NUM_ATTRIBUTES Long Number of attributes

NUM_DIMS Long Number of dimensions

NUM_IDX_MAPS Long Number of indexed
dimension mapping entries

NUM_MAPS Long Number of dimension
mapping entries

NUM_FIELDS Long Number of fields

NUM_GEO_FIELDS Long Number of geolocation field
entries

ORIGIN_CODE Long Origin code

PIX_REG_CODE Long Pixel registration code

Field IDL Data Type Description

Table 5-1: Fields of the Info Structure
EOS_GD_QUERY What’s New in IDL 5.3

Chapter 5: New IDL Routines 185

T

t.
EOS_PT_QUERY

Note
This is a new SDF routine, and is documented in theScientific Data Formats
manual.

The EOS_PT_QUERY function returns information about a specified point.

Syntax

Result = EOS_PT_QUERY (Filename, PointName, Info)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS POIN
extensions, and 0 otherwise.

Arguments

Filename

A string containing the name of the file to query.

PointName

A string containing the name of the point to query.

Info

Returns an anonymous structure containing information about the specified poin
The returned structure contains the following fields:

Field IDL Data Type Description

ATTRIBUTES String array Array of attribute names

NUM_ATTRIBUTES Long Number of attributes

NUM_LEVELS Long Number of levels

Table 5-2: Fields of the Info Structure
What’s New in IDL 5.3 EOS_PT_QUERY

186 Chapter 5: New IDL Routines

S

file.
EOS_QUERY

Note
This is a new SDF routine, and is documented in theScientific Data Formats
manual.

The EOS_QUERY function returns information about the makeup of an HDF-EO
file.

Syntax

Result = EOS_QUERY (Filename, Info)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS
extensions, and 0 otherwise.

Arguments

Filename

A scalar string containing the name of the file to query.

Info

Returns an anonymous structure containing information about the contents of the
The returned structure contains the following fields:

Field IDL Data Type Description

GRID_NAMES String array Names of grids

NUM_GRIDS Long Number of grids in file

NUM_POINTS Long Number of points in file

NUM_SWATHS Long Number of swaths in file

POINT_NAMES String array Names of points

SWATH_NAMES String array Names of swaths

Table 5-3: Fields of the Info Structure
EOS_QUERY What’s New in IDL 5.3

Chapter 5: New IDL Routines 187

H

th.
EOS_SW_QUERY

Note
This is a new SDF routine, and is documented in theScientific Data Formats
manual.

The EOS_SW_QUERY function returns information about a specified swath.

Syntax

Result = EOS_SW_QUERY (Filename, SwathName, Info)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS SWAT
extensions, and 0 otherwise.

Arguments

Filename

A string containing the name of the file to be queried.

SwathName

A string containing the name of the swath to be queried.

Info

Returns an anonymous structure containing information about the specified swa
The returned structure contains the following fields:

Field IDL Data Type Description

ATTRIBUTES String array Array of attribute names

DIMENSION_NAMES String array Names of dimensions

DIMENSION_SIZES Long array Sizes of dimensions

FIELD_NAMES String array Names of fields

Table 5-4: Fields of the Info Structure
What’s New in IDL 5.3 EOS_SW_QUERY

188 Chapter 5: New IDL Routines
FIELD_RANKS Long array Ranks (dimensions) of fields

FIELD_TYPES Long array IDL types of fields

GEO_FIELD_NAMES String array Names of geolocation fields

GEO_FIELD_RANKS Long array Ranks (dimensions) of
geolocation fields

GEO_FIELD_TYPES Long array IDL types of geolocation fields

IDX_MAP_NAMES String array Names of index maps

IDX_MAP_SIZES Long array Sizes of index map arrays

NUM_ATTRIBUTES Long Number of attributes

NUM_DIMS Long Number of dimensions

NUM_FIELDS Long Number of fields

NUM_GEO_FIELDS Long Number of geolocation fields

NUM_IDX_MAPS Long Number of indexed dimension
mapping entries

NUM_MAPS Long Number of mapping entries

MAP_INCREMENTS Long array Increment of each geolocation
relation

MAP_NAMES String array Names of maps

MAP_OFFSETS Long array Offset of each geolocation
relation

Field IDL Data Type Description

Table 5-4: Fields of the Info Structure
EOS_SW_QUERY What’s New in IDL 5.3

Chapter 5: New IDL Routines 189

s /

file
GET_DRIVE_LIST

The GET_DRIVE_LIST function returns a string array of the names of valid drive
volumes for the file system (Windows / Macintosh only).

Syntax

Result= GET_DRIVE_LIST()

Return Value

This function returns a string array of the names of valid drives/volumes for the
system.

Arguments

None.

Keywords

None.
What’s New in IDL 5.3 GET_DRIVE_LIST

190 Chapter 5: New IDL Routines

er a

y
l

GRID_TPS

The GRID_TPS function uses thin plate splines to interpolate a set of values ov
regular two dimensional grid, from irregularly sampled data values. Thin plate
splines are ideal for modeling functions with complex local distortions, such as
warping functions, which are too complex to be fit with polynomials.

Givenn points, (xi, yi) in the plane, a thin plate spline can be defined as:

with the constraints:

whereri
2 = (x-xi)

2 + (y-yi)
2. A thin plate spline (TPS) is a smooth function, which

implies that it has continuous first partial derivatives. It also grows almost linearl
when far away from the points (xi, yi). The TPS surface passes through the origina
points:f(xi, yi) = zi.

Note
GRID_TPS requires at least 7 noncolinear points.

Syntax

Interp = GRID_TPS (Xp, Yp, Values [, COEFFICIENTS=variable]
[, NGRID = [nx, ny]] [, START = [x0, y0]] [, DELTA = [dx, dy]])

Return Value

The function returns an array of dimension (nx, ny) of interpolated values. If the
values argument is a two-dimensional array, the output array has dimensions (nz, nx,
ny), wherenz is the leading dimension of the values array allowing for the
interpolation of arbitrarily sized vectors in a single call. Keywords can be used to
specify the grid dimensions, size, and location.

f x y,() a0 a+ 1x a2y
1
2
--- bir i

2
r i

2
log

i 0=

n 1–

∑+ +=

bi
i 1=

n 1–

∑ bi xi bi yi 0=
i 0=

n 1–

∑=
i 1=

n 1–

∑=
GRID_TPS What’s New in IDL 5.3

Chapter 5: New IDL Routines 191

ine

n

Arguments

Xp

A vector ofx points.

Yp

A vector ofy points, with the same number of elements as theXp argument.

Values

A vector or two-dimensional array of values to interpolate. If values are a two-
dimensional array, the leading dimension is the number of values for which
interpolation is performed.

Keywords

COEFFICIENTS

A named variable in which to store the resulting coefficients of the thin plate spl
function for the last set of Values. The firstN elements, whereN is the number of
input points, contain the coefficientsbi, in the previous equation. Coefficients with
subscriptsn, n+1, andn+2, contain the values ofa0, a1, anda2, in the above equation.

DELTA

A two-element array of the distance between grid points (dx, dy). If a scalar is passed,
the value is used for bothdx anddy. The default is the range of thexp andyp arrays
divided by (nx – 1,ny – 1).

NGRID

A two-element array of the size of the grid to interpolate (nx, ny). If a scalar is passed,
the value is used for bothnx andny. The default value is [25, 25].

START

A two-element array of the location of grid point (x0, y0). If a scalar is passed, the
value is used for bothx0 andy0. The default is the minimum values in thexp andyp
arrays.

References

I. Barrodale, et al, “Note: Warping digital images using thin plate splines”, Patter
Recognition, Vol 26, No. 2, pp 375-376, 1993.
What’s New in IDL 5.3 GRID_TPS

192 Chapter 5: New IDL Routines

a
ate a
 is

 two
M. J. D. Powell, “Tabulation of thin plate splines on a very fine two-dimensional
grid”, Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
(1992).

Example

The following example creates a set of 25 random values defining a surface on
square, 100 units on a side, starting at the origin. Then, we use GRID_TPS to cre
regularly gridded surface, with dimensions of 101 by 101 over the square, which
then displayed. The same data set is then interpolated using TRIGRID, and the
results are displayed for comparison.

;X values
x = RANDOMU(seed, 25) * 100

;Y values
y = RANDOMU(seed, 25) * 100

;Z values
z = RANDOMU(seed, 25) * 10

z1 = GRID_TPS(x, y, z, NGRID=[101, 101], START=[0,0], DELTA=[1,1])

;Show the result
LIVE_SURFACE, z1, TITLE=’TPS’

;Grid using TRIGRID
TRIANGULATE, x, y, tr, bounds

z2 = TRIGRID(x, y, z, tr, [1,1], [0,0,100, 100], $
EXTRAPOLATE=bounds)

;Show triangulated surface
LIVE_SURFACE, z2, TITLE=’TRIGRID - Quintic’
GRID_TPS What’s New in IDL 5.3

Chapter 5: New IDL Routines 193

y of
bset

ithin

ex.
ent
h a
tistic.
IMAGE_STATISTICS

The IMAGE_STATISTICS procedure computes sample statistics for a given arra
values. An optional mask may be specified to restrict computations to a spatial su
of the input data.

Syntax

IMAGE_STATISTICS,Data
[, /LABELED | [, /WEIGHTED] [, WEIGHT_SUM=variable]] [, /VECTOR]
[, LUT=array] [, MASK=array] [, COUNT=variable] [, MEAN=variable]
[, STDDEV=variable] [, DATA_SUM=variable] [, SUM_OF_SQUARES=variable]
[, MINIMUM= variable] [, MAXIMUM= variable] [, VARIANCE=variable]

Arguments

Data

An N-dimensional input data array.

Keywords

COUNT

Set this keyword to a named variable to contain the number of samples that
correspond to nonzero values within the mask.

DATA_SUM

Set this keyword to a named variable to contain the sum of the samples that lie w
the mask.

LABELED

When set, this keyword indicates values in the mask representing region labels,
where each pixel of the mask is set to the index of the region in which that pixel
belongs (see the LABEL_REGION function in theIDL Reference Guide). If the
LABELED keyword is set, each statistic’s value is computed for each region ind
Thus, a vector containing the results is provided for each statistic with one elem
per region. By default, this keyword is set to zero, indicating that all samples wit
corresponding nonzero mask value are used to form a scalar result for each sta
What’s New in IDL 5.3 IMAGE_STATISTICS

194 Chapter 5: New IDL Routines

tical

st
oint

ing
es

les

les

ples

ples
Note
The LABELED keyword cannot be used with either the WEIGHT_SUM or the
WEIGHTED keywords.

LUT

Set this keyword to a one-dimensional array. For non-floating point inputData, the
pixel values are looked up through this table before being used in any of the statis
computations. This allows an integer image array to be calibrated to any user
specified intensity range for the sake of calculations. The length of this array mu
include the range of the input array. This keyword may not be set with floating p
input data. When signed input data types are used, they are first cast to the
corresponding IDL unsigned type before being used to access this array. For
example, the integer value –1 looks up the value 65535 in the LUT array.

MASK

An array ofN, orN–1 (when the VECTOR keyword is used) dimensions represent
the mask array. If the LABELED keyword is set, MASK contains the region indic
of each pixel; otherwise statistics are only computed for data values where the
MASK array is non-zero.

MAXIMUM

Set this keyword to a named variable to contain the maximum value of the samp
that lie within the mask.

MEAN

Set this keyword to a named variable to contain the mean of the samples that lie
within the mask.

MINIMUM

Set this keyword to a named variable to contain the minimum value of the samp
that lie within the mask.

STDDEV

Set this keyword to a named variable to contain the standard deviation of the sam
that lie within the mask.

SUM_OF_SQUARES

Set this keyword to a named variable to contain the sum of the squares of the sam
that lie within the mask.
IMAGE_STATISTICS What’s New in IDL 5.3

Chapter 5: New IDL Routines 195

t lie

 be
this
tion

ght
d,

d.
VARIANCE

Set this keyword to a named variable to contain the variance of the samples tha
within the mask.

VECTOR

Set this keyword to specify that the leading dimension of the input array is not to
considered spatial but consists of multiple data values at each pixel location. In
case, the leading dimension is treated as a vector of samples at the spatial loca
determined by the remainder of the array dimensions.

WEIGHT_SUM

Set the WEIGHT_SUM keyword to a named variable to contain the sum of the
weights in the mask.

Note
The WEIGHT_SUM keyword cannot be used if the LABELED keyword is
specified.

WEIGHTED

If the WEIGHTED keyword is set, the values in the MASK array are used to wei
individual pixels with respect to their count value. If a MASK array is not provide
all pixels are assigned a weight of 1.0.

Note
The WEIGHTED keyword cannot be used if the LABELED keyword is specifie
What’s New in IDL 5.3 IMAGE_STATISTICS

196 Chapter 5: New IDL Routines

nd
ow
well.

d.

in
ISOCONTOUR

The ISOCONTOUR procedure interprets the contouring algorithm found in the
IDLgrContour object. The algorithm allows for contouring on arbitrary meshes a
returns line or orientated tessellated polygonal output. The interface will also all
secondary data values to be interpolated and returned at the output vertices as

Syntax

ISOCONTOUR,Values, Outconn, Outverts
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, C_VALUE=vector]
[, GEOMX=vector] [, GEOMY=vector] [, GEOMZ=vector] [, /FILL]
[, LEVEL_VALUES=variable] [, N_LEVELS=levels] [, /OUTCONN_INDICES]
[, POLYGONS=array of polygon descriptions]

Arguments

Values

An input vector or a two-dimensional array specifying the values to be contoure

Outconn

Output variable to contain the connectivity information of the contour geometry
the form: [n0, i(0, 0), i(0, 1)..., i(0, n0–1), n1, i(1, 0), ...].

Outverts

Output variable to contain the contour vertices.

Keywords

AUXDATA_IN

The auxiliary values to be interpolated at contour vertices. Ifp is the dimensionality
of the auxiliary values, set this argument to ap-by-n array (if theValuesargument is a
vector of lengthn), or to ap-by-m-by-n array (if theValues argument is anm-by-n
two-dimensional array).

AUXDATA_OUT

If the AUXDATA_IN keyword was specified, set this keyword to a named output
variable to contain the interpolated auxiliary values at the contour vertices. Ifp is the
ISOCONTOUR What’s New in IDL 5.3

Chapter 5: New IDL Routines 197

d. If
f the

nn is

urs

es
dimensionality of the auxiliary values, the output is ap-by-n array of values, wheren
is the number of vertices inOutverts.

C_VALUE

Set this keyword to a vector of values for which contour levels are to be generate
this keyword is set to 0, contour levels will be evenly sampled across the range o
Values argument, using the value of the N_LEVELS keyword to determine the
number of samples.

FILL

Set this keyword to generate an output connectivity as a set of polygons (Outco
in the form used by the IDLgrPolygon POLYGONS keyword). The resulting
representation is as a set of filled contours. The default is to generate line conto
(Outconn is in the form used by the IDLgrPolyline POLYLINES keyword).

GEOMX

Set this keyword to a vector or two-dimensional array specifying theX coordinates of
the geometry with which the contour values correspond. IfX is a vector, it must
match the number of elements in theValuesargument, or it must match the first of the
two dimensions of theValues argument (in which case theX coordinates will be
repeated for each column of data values).

GEOMY

Set this keyword to a vector or two-dimensional array specifying theYcoordinates of
the geometry with which the contour values correspond. IfY is a vector, it must
match the number of elements in theValuesargument, or it must match the first of the
two dimensions of theValues argument (in which case theY coordinates will be
repeated for each column of data values).

GEOMZ

Set this keyword to a vector or two-dimensional array specifying theZ coordinates of
the geometry with which the contour values correspond.

If GEOMZ is a vector or an array, it must match the number of elements in theValues
argument.

If GEOMZ is not set, the geometry will be derived from theValues argument (if it is
set to a two-dimensional array). In this case connectivity is implied. The X and Y
coordinates match the row and column indices of the array, and the Z coordinat
match the data values.
What’s New in IDL 5.3 ISOCONTOUR

198 Chapter 5: New IDL Routines

tor is

red
is
cate

d

tivity

To
LEVEL_VALUES

Set this keyword to a named output variable to receive a vector of values
corresponding to the values used to generate the contours. The length of this vec
equal to the number of contour levels generated.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is igno
if the C_LEVELS keyword is set to a vector, in which case the number of levels
derived from the number of elements in that vector. Set this keyword to 0 to indi
that IDL should compute a default number of levels based on the range of data
values. This is the default.

OUTCONN_INDICES

Set this keyword to a named output variable to receive an array of beginning an
ending indices of connectivity for each contour level.

The output array is of the form: [start0, end0, start1, end1, ..., startnc–1, endnc–1],
wherenc is the number of contour levels.

POLYGONS

Set this keyword to an array of polygonal descriptions that represents the connec
information for the data to be contoured (as specified in theValues argument). A
polygonal description is an integer or long array of the form: [n, i0, i1, ..., in–1], where
n is the number of vertices that define the polygon, and i0...in–1 are indices into the
GEOMX, GEOMY, and GEOMZ keywords that represent the polygonal vertices.
ignore an entry in the POLYGONS array, set the vertex count, n to 0. To end the
drawing list, even if additional array space is available, setn to –1.
ISOCONTOUR What’s New in IDL 5.3

Chapter 5: New IDL Routines 199

E
ral
ry
rray
ta

ions

o

 in
ISOSURFACE

The ISOSURFACE procedure algorithm expands on the existing SHADE_VOLUM
algorithm. It returns topologically consistent triangles by using oriented tetrahed
decomposition internally. This also allows the algorithm to isosurface any arbitra
tetrahedral mesh. If the user provides an optional auxiliary array, the data in this a
is interpolated onto the output vertices and is returned as well. This auxiliary da
array is allowed to have more than one value at each vertex. Any size leading
dimension is allowed as long as the number of values in the subsequent dimens
matches the number of elements in the input Data array.

Syntax

ISOSURFACE,Data, Value, Outverts, Outconn
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, AUXDATA_IN= array, AUXDATA_OUT=variable]

Arguments

Data

Input three-dimensional array of scalars which are to be contoured.

Value

Input scalar contour value. This value specifies the constant-density surface (als
called an iso-surface) to be extracted.

Outverts

Output [3,n] array of floating point vertices making up the triangle surfaces.

Outconn

Output array of polygonal connectivity values (see IDLgrPolygon, POLYGONS
keyword). If no polygons were extracted, this argument returns the array [–1].

Keywords

AUXDATA_IN

Input array of auxiliary data with trailing dimensions being the number of values
Data.
What’s New in IDL 5.3 ISOSURFACE

200 Chapter 5: New IDL Routines

y

his
ted,
be on

is

tivity
dron.
Note
If AUXDATA_IN is specified then AUXDATA_OUT must also be specified.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliar
data sampled at the locations in Outverts.

Note
If AUXDATA_OUT is specified then AUXDATA_IN must also be specified.

GEOM_XYZ

A [3,n] input array of vertex coordinates (one for each value in the Data array). T
array is used to define the spatial location of each scalar. If this keyword is omit
Data must be a three-dimensional array and the scalar locations are assumed to
a uniform grid.

Note
If GEOM_XYZ is specified then TETRAHEDRA must also be specified if either
to be specified.

TETRAHEDRA

An input array of tetrahedral connectivity values. If this array is not specified, the
connectivity is assumed to be a rectilinear grid over the input three-dimensional
array. If this keyword is specified, the input data array need not be a three-
dimensional array. Each tetrahedron is represented by four values in the connec
array. Every four values in the array correspond to the vertices of a single tetrahe
ISOSURFACE What’s New in IDL 5.3

Chapter 5: New IDL Routines 201
LOCALE_GET

The LOCALE_GET function returns the current locale (string) of the operating
platform.

Syntax

Result = LOCALE_GET()

Arguments

None

Keywords

None
What’s New in IDL 5.3 LOCALE_GET

202 Chapter 5: New IDL Routines

and
y
.

he

ed
f

MESH_CLIP

The MESH_CLIP function clips a polygonal mesh to an arbitrary plane in space
returns a polygonal mesh of the remaining portion. An auxiliary array of data ma
also be passed and clipped. This array can have multiple values for each vertex

Syntax

Result= MESH_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of triangles in the returned mesh.

Arguments

Plane

Input four element array describing the equation of the plane to be clipped to. T
elements are the coefficients (a,b,c,d) of the equationax+by+cz+d=0.

Vertsin

Input array of polygonal vertices [3,n].

Connin

Input polygonal mesh connectivity array.

Vertsout

Output array of polygonal vertices.

Connout

Output polygonal mesh connectivity array.

Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and return
through AUXDATA_OUT. The trailing array dimension must match the number o
vertices in the Vertsin array.
MESH_CLIP What’s New in IDL 5.3

Chapter 5: New IDL Routines 203

ted

d to
AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of interpola
auxiliary data.

CUT_VERTS

Output array of vertex indices (into Vertsout) of the vertices which are considere
be “on” the clipped surface.
What’s New in IDL 5.3 MESH_CLIP

204 Chapter 5: New IDL Routines

ing
nal

erve

arge
As a
s 20-

t if

he
n

 to
ts of
MESH_DECIMATE

The MESH_DECIMATE function reduces the density of geometry while preserv
as much of the original data as possible. The classic case is to thin out a polygo
mesh to use fewer polygons while preserving the mesh form. The decimation
algorithm removes triangles from the mesh. This is done in such a way as to pres
the mesh edges and to remove roughly planar polygons.

Decimation is a memory and CPU intensive process. Expect the decimation of l
models to require large amounts of memory and dozens of seconds to complete.
reference, a model with approximately 36,000 vertices and 70,000 faces require
30 seconds to decimate to 10% of its original size on a typical NT PC with 64Mb
RAM and 333MHz Pentium processor.

If the input polygons are not all triangles, IDL converts the polygons to triangles
before decimating. For best results, the polygons should all be convex. Note tha
the input polygons are not all triangles, then IDL may return more polygons (as
triangles) than were submitted as input, even after decimating a percentage of t
polygons. IDL applies the PERCENT_POLYGONS keyword value to the polygo
list after converting the list to triangles to approximate the same visual effect of
decimating the requested percentage of polygons.

IDL takes steps to deal with input data with a wide variation in magnitude. For
example, a troublesome input polygon list may have X and Y values in the 10^1
10^2 range, while the Z values may have magnitudes of about 10^20. If the resul
the decimation are unacceptable, consider scaling the input data so that the
magnitudes of the data are closer together.

Syntax

Result = MESH_DECIMATE (Verts, Conn, Connout [, /VERTICES]
[, PERCENT_VERTICES=percent| , PERCENT_POLYGONS=percent])

Return Value

The return value is the number of triangles in the output connectivity array.

Arguments

Verts

Input array of polygonal vertices [3,n].
MESH_DECIMATE What’s New in IDL 5.3

Chapter 5: New IDL Routines 205

 array.

nout

out

ult,
Conn

Input polygonal mesh connectivity array.

Connout

Output polygonal mesh connectivity array.

Note
Some of the vertices in the Verts array may not be referenced by the Connout

Keywords

PERCENT_VERTICES

Set this keyword to the percent of the original vertices to be returned in the Con
array. It specifies the amount of decimation to perform.

PERCENT_POLYGONS

Set this keyword to the percent of the original polygons to be returned in the Conn
array. It specifies the amount of decimation to perform.

Note
PERCENT_VERTICES and PERCENT_POLYGONS are mutually exclusive
keywords.

VERTICES

If this keyword is set, the decimation is allowed to add or remove vertices. By defa
the output connectivity array is restricted to the set of original input vertices.
What’s New in IDL 5.3 MESH_DECIMATE

206 Chapter 5: New IDL Routines

L to
solid,

dge

.

ions.
MESH_ISSOLID

The MESH_ISSOLID function computes various mesh properties and enables ID
determine if a mesh encloses space (is a solid). If the mesh can be considered a
routines can compute the volume of the mesh.

Syntax

Result= MESH_ISSOLID (Conn)

Return Value

Returns 1 if the input mesh fully encloses space (assuming no polygonal
interpenetration) or 0 otherwise. A mesh is defined to fully enclose space if each e
in the input mesh appears an even number of times in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Conn

This is an integer or longword array that represents a series of polygon descript
Each polygon description takes the form [n, i0, i1, ..., in-1], wheren is the number of
vertices that define the polygon, andi0...in-1 are indices into the vertex array.

Keywords

None.
MESH_ISSOLID What’s New in IDL 5.3

Chapter 5: New IDL Routines 207

esh

ned

e

MESH_MERGE

The MESH_MERGE function merges two polygonal meshes.

Syntax

Result = MESH_MERGE (Verts, Conn, Verts1, Conn1 [, /COMBINE_VERTICES]
[, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal m
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3,n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and retur
to the user.

Verts1

Additional input polygonal vertex array [3,n].

Conn1

Additional input polygonal mesh connectivity array.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at th
same location in space into single vertices. If the expression

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
What’s New in IDL 5.3 MESH_MERGE

208 Chapter 5: New IDL Routines
is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of theVerts argument.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTICES keyword. The default value is 0.0.
MESH_MERGE What’s New in IDL 5.3

Chapter 5: New IDL Routines 209

).
MESH_NUMTRIANGLES

The MESH_NUMTRIANGLES function computes the number of triangles in a
polygonal mesh.

Syntax

Result= MESH_NUMTRIANGLES (Conn)

Return Value

Returns the number of triangles in the mesh (a quad is considered two triangles

Arguments

Conn

Polygonal mesh connectivity array.

Keywords

None.
What’s New in IDL 5.3 MESH_NUMTRIANGLES

210 Chapter 5: New IDL Routines

his
MESH_SMOOTH

The MESH_SMOOTH function performs spatial smoothing on a polygon mesh. T
function smooths a mesh by applying Laplacian smoothing to each vertex, as
described by the following formula:

where:

Syntax

Result = MESH_SMOOTH (Verts, Conn [, ITERATIONS=value]
[, FIXED_VERTICES=array] [, /FIXED_EDGE_VERTICES] [, LAMBDA=value])

Return Value

The output of this function is resulting [3,n] array of modified vertices.

Arguments

Verts

Input array of polygonal vertices [3,n].

Conn

Input polygonal mesh connectivity array.

Keywords

ITERATIONS

Number of iterations to smooth. The default value is 50.

is vertexi for iterationn

λ is the smoothing factor

M is the number of vertices that share a common edge withxin.

xi n 1+()
xi n

λ
M
----- x j n

xi n
–()

j 0=

M

∑+=

xin
MESH_SMOOTH What’s New in IDL 5.3

Chapter 5: New IDL Routines 211

e

 by
FIXED_VERTICES

Set this keyword to an array of vertex indices which are not to be modified by th
smoothing.

FIXED_EDGE_VERTICES

Set this keyword to specify that mesh outer edge vertices are not to be modified
the smoothing.

LAMBDA

Smoothing factor. The default value is 0.05.
What’s New in IDL 5.3 MESH_SMOOTH

212 Chapter 5: New IDL Routines

.

used
egral
lt
MESH_SURFACEAREA

The MESH_SURFACEAREA function computes various mesh properties to
determine the mesh surface area, including integration of other properties
interpolated on the surface of the mesh.

Syntax

Result= MESH_SURFACEAREA (Verts, Conn [, AUXDATA= array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) surface area of the polygons in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Verts

Array of polygonal vertices [3,n].

Conn

Polygonal mesh connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are
to weight a vertex for the purpose of the area computation. The surface area int
will linearly interpolate these values over the surface of each triangle. The defau
weight is 1.0 which results in the basic polygon area.
MESH_SURFACEAREA What’s New in IDL 5.3

Chapter 5: New IDL Routines 213

xis.
MOMENT

If this keyword is present, it will return a three element float vector which
corresponds to the first order moments computed with respect to the X, Y and Z a
The computation is:

wherea is the (weighted) area of the triangle andc is the centroid of the triangle, thus

yields the (weighted) centroid of the polygon mesh.

m aici
ntris
∑=

m sarea⁄
What’s New in IDL 5.3 MESH_SURFACEAREA

214 Chapter 5: New IDL Routines

ed

esh

ned

e

MESH_VALIDATE

The MESH_VALIDATE function checks for NaN values in vertices, removes unus
vertices, and combines close vertices.

Syntax

Result = MESH_VALIDATE (Verts, Conn[, /REMOVE_NAN]
[, /PACK_VERTICES] [, /COMBINE_VERTICES] [, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal m
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and retur
to the user.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at th
same location in space into single vertices. If the expression

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of theVerts argument.

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
MESH_VALIDATE What’s New in IDL 5.3

Chapter 5: New IDL Routines 215
PACK_VERTICES

If this keyword is set, the Verts input array will be packed to exclude any non-
referenced vertices. The result is returned in the Verts argument.

REMOVE_NAN

If this keyword is set, the function will remove any polygons from CONN which
reference vertices containing NaN values.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTS keyword. The default value is 0.0.
What’s New in IDL 5.3 MESH_VALIDATE

216 Chapter 5: New IDL Routines

e (i.e.

.

esh
MESH_VOLUME

The MESH_VOLUME function computes the volume that the mesh encloses.

Syntax

Result= MESH_VOLUME (Verts, Conn [, /SIGNED])

Return Value

Returns the volume that the mesh encloses. If the mesh does not enclose spac
MESH_ISSOLID() would return 0), this function returns 0.0.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons

Arguments

Verts

Array of polygonal vertices [3,n].

Conn

Polygonal mesh connectivity array.

Keywords

SIGNED

Set this keyword to compute the signed volume. The sign will be negative for a m
consisting of inward facing polygons.
MESH_VOLUME What’s New in IDL 5.3

Chapter 5: New IDL Routines 217

ale

he

an

ge,
xels.

e

The
ing

t. If
 0.

be of
MORPH_CLOSE

The MORPH_CLOSE function applies the closing operator to a binary or graysc
image. MORPH_CLOSE is simply a dilation operation followed by an erosion
operation. The result of a closing operation is that small holes and gaps within t
image are filled, yet the original sizes of the primary foreground features are
maintained. The closing operation is an idempotent operator, applying it more th
once produces no further effect.

Both the opening and the closing operators have the effect of smoothing the ima
with the opening operation removing pixels, and the closing operation adding pi

Syntax

Result = MORPH_CLOSE (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the closing operation is to b
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values - either zero or nonzero. The structur
element must have the same number of dimensions as theImage argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of theStructureparameter determine the shape of the structuring elemen
the VALUES keyword is not present, all elements of the structuring element are

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of UINT and ULONG.
What’s New in IDL 5.3 MORPH_CLOSE

218 Chapter 5: New IDL Routines

for

ly

 a
.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies for grayscale operations, and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions asStructure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and
morphological closing operator with a 3 by 3 square kernel to the original image
Notice that most of the holes in the pollen grains have been filled by the closing
operator.

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Apply the threshold creating a binary image
b = a ge 140b

;Load a simple color table
TEK_COLOR
TV, b, 0

;Apply closing operator
c = MORPH_CLOSE(b, REPLICATE(1,3,3))

;Show the result
TV, c, 1

;Show added pixels in white
TV, b + c, 2
MORPH_CLOSE What’s New in IDL 5.3

Chapter 5: New IDL Routines 219

sing
own

tead
MORPH_DISTANCE

The MORPH_DISTANCE function estimatesN-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel, u
a given norm. Available norms include: Euclidean, which is exact and is also kn
as the Euclidean Distance Map (EDM), and two more efficient approximations,
chessboard and city block.

The distance map is useful for a variety of morphological operations: thinning,
erosion and dilation by discs of radius “r”, and granulometry.

Syntax

Result = MORPH_DISTANCE (Data [, /BACKGROUND]
[, NEIGHBOR_SAMPLING={1| 2 | 3 }] [, /NO_COPY])

Return Value

The returned variable is an array of the same dimension as the input array.

Arguments

Data

An input binary array. Zero-valued pixels are considered to be part of the
background.

Keywords

BACKGROUND

By default, the EDM is computed for the foreground (non-zero) features in theData
argument. Set this keyword to compute the EDM of the background features ins
of the foreground features.
What’s New in IDL 5.3 MORPH_DISTANCE

220 Chapter 5: New IDL Routines

el is

he
NEIGHBOR_SAMPLING

Set this keyword to indicate how the distance of each neighbor from a given pix
determined. The following table describes the valid values:

Default Two Dimensional Example

1
1 X 1

1

Chessboard Two-Dimensional Example

1 1 1
1 X 1
1 1 1

City Block Two-Dimensional Example:

2 1 2
1 X 1
2 1 2

Actual Distance Two-Dimensional Example

sqrt(2) 1 sqrt(2)
1 X 1

sqrt(2) 1 sqrt(2)

Setting Action Taken

0 - default No diagonal neighbors. Each neighbor is assigned a
distance of 1.

1 - chessboard Each neighbor is assigned a distance of 1.

2 - city block Each neighbor is assigned a distance corresponding to t
number of pixels to be visited when travelling from the
current pixel to the neighbor. (The path can only take 90
degree turns; no diagonal paths are allowed.)

3 - actual distance Each neighbor is assigned its actual distance from the
current pixel (within the limitations of floating point
representations).

Table 5-5: NEIGHBOR_SAMPLING Settings
MORPH_DISTANCE What’s New in IDL 5.3

Chapter 5: New IDL Routines 221

ord

 the
 a
c of
NO_COPY

Set this keyword to request that the input array be reused, if possible. If this keyw
is set, the input argument is undefined upon return.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and
morphological distance operator. Thresholding the result distance operator with
value of “n”, produces the equivalent of eroding the thresholded image with a dis
radius “n”.

;Read the image
READ_JPEG, ’/usr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Apply the threshold
b = a ge 140b

;Show thresholded image
TVSCL, b, 0

;Create Euclidean distance function
c = MORPH_DISTANCE(b, NEIGHBOR_SAMPLING = 3)

;Show distance function
TVSCL, c, 1

;Show image after erosion with a disc of radius 5
TVSCL, c GT 5, 2
What’s New in IDL 5.3 MORPH_DISTANCE

222 Chapter 5: New IDL Routines

o a
the
f a

ted.

The
ing

be of
MORPH_GRADIENT

The MORPH_GRADIENT function applies the morphological gradient operator t
grayscale image. MORPH_GRADIENT is the subtraction of an eroded version of
original image from a dilated version of the original image. The practical result o
morphological gradient operation is that the boundaries of features are highligh

Syntax

Result= MORPH_GRADIENT (Image, Structure[, PRESERVE_TYPE=bytearray|
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological gradient
operation is to be performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values - either zero or nonzero. The structur
element must have the same number of dimensions as theImage argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
MORPH_GRADIENT What’s New in IDL 5.3

Chapter 5: New IDL Routines 223

e

in a
disc
VALUES

An array of the same dimensions as theStructure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of th
structuring element are 0.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then creates disc of radius 2,
5 by 5 array, with all elements within a radius of 2 from the center set to 1. This
is used as the structuring element for the morphological gradient which is then
displayed as both a gray scale image, and as a thresholded image.

;Radius of disc
r = 2

;Read the image
READ_JPEG, ’/usr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Show original image
TVSCL, a, 0

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

b = MORPH_GRADIENT(a, disc)

;Show edges
TVSCL, b, 1

;Show thresholded edges
TVSCL, b ge 100, 2
What’s New in IDL 5.3 MORPH_GRADIENT

224 Chapter 5: New IDL Routines

ator

ent
The

n is

t.

ent.

nt.
MORPH_HITORMISS

The MORPH_HITORMISS function applies the hit-or-miss operator to a binary
image. The hit-or-miss operator is implemented by first applying an erosion oper
with ahit structuring element to the original image. Then an erosion operator is
applied to the complement of the original image with a secondarymiss structuring
element. The result is the intersection of the two results.

The resulting image corresponds to the positions where the hit structuring elem
lies within the image, and the miss structure lies completely outside the image.
two structures must not overlap.

Syntax

Result = MORPH_HITORMISS (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological operatio
to be performed. The image is treated as a binary image with all nonzero pixels
considered as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring elemen
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring elem
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoi
MORPH_HITORMISS What’s New in IDL 5.3

Chapter 5: New IDL Routines 225

n 4
in the

x
e

What’s New in IDL 5.3 MORPH_HITORMISS

Keywords

None.

Example

The following code snippet identifies blobs with a radius of at least 2, but less tha
in the pollen image. These regions totally enclose a disc of radius 2, contained
5 x 5 kernel named “hit”, and in turn, fit within a hole of radius 4, contained in the 9
9 array named “miss”. Executing this specific example identifies four blobs in th
image with these attributes.

;Radius of hit disc
rh = 2

;Radius of miss disc
rm = 4

;Create a binary disc of given radius.
hit = SHIFT(DIST(2*rh+1), rh, rh) LE rh

;Complement of disc for miss
miss = SHIFT(DIST(2*rm+1), rm, rm) GT rm

;Load discrete color table
TEK_COLOR

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Apply the threshold
b = a GE 140b

;Show thresholded image
TV, b, 0

;Compute matches
c = MORPH_HITORMISS(b, hit, miss)

;Expand matches to size of hit disc
c = DILATE(c, hit)

;Show matches.
TV, c, 1

;Superimpose, showing hit regions in blue.
;(Blue = color index 4 for tek_color.)
TV, b + 3*c, 2

226 Chapter 5: New IDL Routines

ale

ithin
 are

than

the
tors

xels,

 be

The
ring

t. If
 0.
MORPH_OPEN

The MORPH_OPEN function applies the opening operator to a binary or graysc
image. MORPH_OPEN is simply an erosion operation followed by a dilation
operation. The result of an opening operation is that small features (e.g., noise) w
the image are removed, yet the original sizes of the primary foreground features
maintained. The opening operation is an idempotent operator, applying it more
once produces no further effect.

An alternative definition of the opening, is that it is the union of all sets containing
structuring element in the original image. Both the opening and the closing opera
have the effect of smoothing the image, with the opening operation removing pi
and the closing operation adding pixels.

Syntax

Result = MORPH_OPEN (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the opening operation is to
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values — either zero or nonzero. The structu
element must have the same number of dimensions as theImage argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of theStructureparameter determine the shape of the structuring elemen
the VALUES keyword is not present, all elements of the structuring element are
MORPH_OPEN What’s New in IDL 5.3

Chapter 5: New IDL Routines 227

be of

for

ly

d a
e.
the
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword on
applies for grayscale operations and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions asStructure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing an magnified image of grains of pollen. It then applies a threshold an
morphological opening operator with a 3 by 3 square kernel to the original imag
Notice that much of the irregular borders of the grains have been smoothed by
opening operator.

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a
;Apply the threshold
b = a ge 140b
;Load a simple color table
TEK_COLOR
TV, b, 0
;Apply opening operator
c = MORPH_OPEN(b, REPLICATE(1,3,3))
;Show the result
TV, c, 1
;Show pixels that have been removed in white
TV, c + b, 2
What’s New in IDL 5.3 MORPH_OPEN

228 Chapter 5: New IDL Routines

e

lt

g

 be
ered

t.

ent.
MORPH_THIN

The MORPH_THIN function performs a thinning operation on binary images. Th
thinning operator is implemented by first applying a hit or miss operator to the
original image with a pair of structuring elements, and then subtracting the resu
from the original image.

In typical applications, this operator is repeatedly applied with the two structurin
elements, while rotating them after each application, until the result remains
unchanged.

Syntax

Result = MORPH_THIN (Image, HitStructure, MissStructure)

Arguments

Image

A one-, two-, or three-dimensional array upon which the thinning operation is to
performed. The image is treated as a binary image with all nonzero pixels consid
as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring elemen
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring elem
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as theImage
argument.

Note
It is assumed that theHitStructure and theMissStructure arguments are disjoint.

Keywords

None.
MORPH_THIN What’s New in IDL 5.3

Chapter 5: New IDL Routines 229

ge.
e
top-

e

The
ring

be of
MORPH_TOPHAT

The MORPH_TOPHAT function applies the top-hat operator to a grayscale ima
The top-hat operator is implemented by first applying the opening operator to th
original image, then subtracting the result from the original image. Applying the
hat operator provides a result that shows the bright peaks within the image.

Syntax

Result = MORPH_TOPHAT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the top-hat operation is to b
performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element.
elements are interpreted as binary values — either zero or nonzero. The structu
element must have the same number of dimensions as theImage argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.
What’s New in IDL 5.3 MORPH_TOPHAT

230 Chapter 5: New IDL Routines

e

age
VALUES

An array of the same dimensions as theStructure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of th
structuring element are 0.

Example

The following example illustrates an application of the top-hat operator to an im
in theexamples/demo/demodata directory:

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Show original
TVSCL, a, 0

;Radius of disc
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Apply top-hat operator
b = MORPH_TOPHAT(a, disc)

;Display stretched result.
tvscl, b < 50, 1
MORPH_TOPHAT What’s New in IDL 5.3

Chapter 5: New IDL Routines 231
MSG_CAT_CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.

Syntax

MSG_CAT_CLOSE,object

Arguments

object

The object reference returned from MSG_CAT_OPEN.

Keywords

None
What’s New in IDL 5.3 MSG_CAT_CLOSE

232 Chapter 5: New IDL Routines

es

f the
g

MSG_CAT_COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation tak
place.

Syntax

MSG_CAT_COMPILE,input[, output] [, LOCALE_ALIAS=string] [, /MBCS]

Arguments

input

The input file with which to create the catalog. The file is a text representation o
key/MBCS association. Each line in the file must have a key. The language strin
must then be surrounded by double quotes, then an optional comment.

For example:

VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file.

APPLICATION (required)

SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:

idl_ + "Application name" + _ + "Locale" + .cat

For example:

idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat
MSG_CAT_COMPILE What’s New in IDL 5.3

Chapter 5: New IDL Routines 233

ult is
Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE,'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The defa
8-bit ASCII.
What’s New in IDL 5.3 MSG_CAT_COMPILE

234 Chapter 5: New IDL Routines

s if

log

log

, 0

ale

talog
MSG_CAT_OPEN

The MSG_CAT_OPEN function returns a catalog object for the given parameter
found. If a match is not found, an unset catalog object is returned. If unset, the
IDLffLanguageCat::Query method will always return the empty string unless a
default catalog is provided.

Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Arguments

application

A scalar string representing the name of the desired application's catalog file.

Keywords

DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open. If this keyword is set,application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found
otherwise.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current loc
is used.

PATH

Set this keyword to a scalar string containing the path to search for language ca
files. The default is the current directory.
MSG_CAT_OPEN What’s New in IDL 5.3

Chapter 5: New IDL Routines 235

If a
SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against.
match is found, it is used to further sub-set the possible return catalog choices.
What’s New in IDL 5.3 MSG_CAT_OPEN

236 Chapter 5: New IDL Routines

h a

The
ach
teps
ingle

tation.
 is

ser as
ject

.

PARTICLE_TRACE

The PARTICLE_TRACE procedure traces the path of a massless particle throug
vector field. The function allows the user to specify a set of starting points and a
vector field. The input seed points can come from any vertex-producing process.
points are tracked by treating the vector field as a velocity field and integrating. E
path is tracked until the path leaves the input volume or a maximum number of s
is reached. The vertices generated along the paths are returned packed into a s
array along with a polyline connectivity array. The polyline connectivity array
organizes the vertices into separate paths (one per seed). Each path has an orien
The initial orientation may be set using the SEED_NORMAL keyword. As a path
tracked, the change in the normal is also computed and may be returned to the u
an optional argument. Path output can be passed directly to an IDLgrPolyline ob
or passed to the STREAMLINE procedure for generation of orientated ribbons.
Control over aspects of the integration (e.g. method or stepsize) is also provided

Syntax

PARTICLE_TRACE,Data, Seeds, Verts, Conn [, Normals]
[, MAX_ITERATIONS=value] [, ANISOTROPY=array]
[, INTEGRATION={0 | 1}] [, SEED_NORMAL=vector] [, TOLERANCE=value]
[, MAX_STEPSIZE=value] [, /UNIFORM]

Arguments

Data

Input data array. This array can be of dimensions [2,dx, dy] for two-dimensional
vector fields or [3,dx, dy, dz] for three-dimensional vector fields.

Seeds

Input array of seed points ([3,n] or [2, n].

Verts

Array of output path vertices ([3,n] or [2, n] array of floats).

Conn

Output path connectivity array in IDLgrPolyline POLYLINES keyword format.
There is one set of line segments in this array for each input seed point.
PARTICLE_TRACE What’s New in IDL 5.3

Chapter 5: New IDL Routines 237

ree-

e

ta
r

Normals

Output normal estimate at each output vertex ([3,n] array of floats).

Keywords

ANISOTROPY

Set this input keyword to a two- or three- element array describing the distance
between grid points in each dimension. The default value is [1.0, 1.0, 1.0] for th
dimensional data and [1.0, 1.0] for two-dimensional data.

INTEGRATION

Set this keyword to one of the following values to select the integration method:

• 0 = 2nd order Runge-Kutta

• 1 = 4th order Runge-Kutta

The default is zero.

SEED_NORMAL

Set this keyword to a three-element vector which selects the initial normal for th
paths. The default value is [0.0, 0.0, 1.0]. This keyword is ignored for two-
dimensional data.

TOLERANCE

This keyword is used with adaptive step-size control in the 4th order Runge-Kut
integration scheme. It is ignored if the UNIFORM keyword is set or the 2nd orde
Runge-Kutta scheme is selected.

MAX_ITERATIONS

This keyword specifies the maximum number of line segments to return for each
path. The default value is 200.

MAX_STEPSIZE

This keyword specifies the maximum path step size. The default value is 1.0.

UNIFORM

If this keyword is set, the step size will be set to a fixed value, set via the
MAX_STEPSIZE keyword. If this keyword is not specified, and TOLERANCE is
either unspecified or inapplicable, then the step size is computed based on the
velocity at the current point on the path according to the formula:
What’s New in IDL 5.3 PARTICLE_TRACE

238 Chapter 5: New IDL Routines

))
stepsize = MIN(MaxStepSize, MaxStepSize/MAX(ABS(U), ABS(V), ABS(W)

where (U,V,W) is the local velocity vector.
PARTICLE_TRACE What’s New in IDL 5.3

Chapter 5: New IDL Routines 239

g

for

re
QUERY_IMAGE

The QUERY_IMAGE function reads the header of a file and determines if it is
recognized as an image file. If it is an image file, an optional structure containin
information about the image is returned.

Syntax

Result = QUERY_IMAGE (Filename[, Info] [, CHANNELS=variable]
[, DIMENSIONS=variable] [, HAS_PALETTE=variable]
[, IMAGE_INDEX=index] [, NUM_IMAGES=variable] [, PIXEL_TYPE=variable]
[, SUPPORTED_READ=variable] [, SUPPORTED_WRITE=variable]
[, TYPE=variable])

Return Value

Result is a long with the value of 1 if the query was successful (the file was
recognized as an image file) or 0 on failure. The return status will indicate failure
files that contain formats that are not supported by the corresponding READ_
routine, even though the file may be valid outside the IDL environment.

Arguments

Filename

A scalar string containing the name of the file to query.

Info

An optional anonymous structure containing information about the image. This
structure is valid only when the return value of the function is 1. The Info structu
for all image types has the following fields:

Tag Type

CHANNELS Long

DIMENSIONS Two-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

Table 2: The Info Structure for All Image Types
What’s New in IDL 5.3 QUERY_IMAGE

240 Chapter 5: New IDL Routines

age.

-

the

.

L

Keywords

CHANNELS

Set this keyword to a named variable to retrieve the number of channels in the im

DIMENSIONS

Set this keyword to a named variable to retrieve the image dimensions as a two
dimensional array.

HAS_PALETTE

Set this keyword to a named variable to equal to 1 if a palette is present, else 0.

IMAGE_INDEX

Set this keyword to the index of the image to query from the file. The default is 0,
first image.

NUM_IMAGES

Set this keyword to a named variable to retrieve the number of images in the file

PIXEL_TYPE

Set this keyword to a named variable to retrieve the IDL Type Code of the image
pixel format. See the documentation for the SIZE routine for a complete list of ID
Type Codes.

The valid types for PIXEL_TYPE are:

• 1 = Byte

• 2 = Integer

• 3 = Longword Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Tag Type

Table 2: The Info Structure for All Image Types
QUERY_IMAGE What’s New in IDL 5.3

Chapter 5: New IDL Routines 241

e

g.
• 4 = Floating Point

• 5 = Double-precision Floating Point

• 12 = Unsigned Integer

• 13 - Unsigned Longword Integer

• 14 - 64-bit Integer

• 15 - Unsigned 64-bit Integer

SUPPORTED_READ

Set this keyword to a named variable to retrieve a string array of image types
recognized by READ_IMAGE. If the SUPPORTED_READ keyword is used the
filename and info arguments are optional.

SUPPORTED_WRITE

Set this keyword to a named variable to retrieve a string array of image types
recognized by WRITE_IMAGE. If the SUPPORTED_WRITE keyword is used th
filename and info arguments are optional.

TYPE

Set this keyword to a named variable to retrieve the image type as a scalar strin
Valid return values are:

• BMP

• GIF

• JPEG

• PNG

• PPM

• SRF

• TIFF

• DICOM
What’s New in IDL 5.3 QUERY_IMAGE

242 Chapter 5: New IDL Routines

e
al

ery

elds

d.
QUERY_WAV

The QUERY_WAV function checks that the file is actually a .WAV file and that th
READ_WAV function can read the data in the file. Optionally, it can return addition
information about the data in the file. This function returns the value of 1 if the qu
was successful (and the file type was correct) or 0 on failure.

Syntax

Result = QUERY_WAV (Filename, Info)

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Info

An anonymous structure containing information about the data in the file. The fi
are defined as:

Keywords

None.

Tag Type Definition

CHANNELS INT Number of data channels in the file.

SAMPLES_PER_SEC LONG Data sampling rate in samples per secon

BITS_PER_SAMPLE INT Number of valid bits in the data.

Table 5-6: The Info Structure for Info Fields
QUERY_WAV What’s New in IDL 5.3

Chapter 5: New IDL Routines 243

ven
o

s

f the
t a
es
TE
to
READ_BINARY

The READ_BINARY function reads the contents of a binary file using a passed
template or basic command line keywords. The result is an array or anonymous
structure containing all of the entities read from the file. Data is read from the gi
filename or from the current file position in the open file pointed to by FileUnit. If n
template is provided, keywords can be used to read a single IDL array of data.

Note
The READ_BINARY function does not work on VMS platforms due to limitation
in the POINT_LUN procedure. For more information, seePOINT_LUN.

Syntax

Result = READ_BINARY ([Filename] | FileUnit [, TEMPLATE=template] |
[[, DATA_START=value] [, DATA_TYPE=typecodes] [, DATA_DIMS=array]
[, ENDIAN=string]])

Arguments

Filename

A scalar string containing the name of the binary file to read. Iffilenameand file unit
are not specified, a dialog allows the user to choose a file.

FileUnit

A scalar containing an open IDL file unit number to read from.

Keywords

DATA_DIMS

Set this keyword to a scalar or array of up to eight elements specifying the size o
data to be read and returned. For example, DATA_DIMS=[512,512] specifies tha
two-dimensional, 512 by 512 array be read and returned. DATA_DIMS=0 specifi
that a single, scalar value be read and returned. Default is -1, which, if a TEMPLA
is not supplied that specifies otherwise, indicates that READ_BINARY will read
end-of-file and store the result in a 1D array.
What’s New in IDL 5.3 READ_BINARY

244 Chapter 5: New IDL Routines

set,

r the
.

he

can
d

DATA_START

Set this keyword to specify where to begin reading in a file. This value is as an off
in bytes, that will be applied to the initial position in the file. Default is 0.

DATA_TYPE

Set this keyword to an IDL typecode of the data to be read. See documentation fo
IDL SIZE function for a listing of typecodes. Default is 1 (IDL's BYTE typecode)

ENDIAN

Set this keyword to one of three string values: ‘big”, “little” or “native” which
specifies the byte ordering of the file to be read. If the computer running
READ_BINARY uses byte ordering that is different than that of the file,
READ_BINARY will swap the order of bytes in multi-byte data types read from t
file. (Default: “native” = perform no byte swapping.)

TEMPLATE

Set this keyword to a template structure describing the file to be read. A template
be created using BINARY_TEMPLATE. The TEMPLATE keyword cannot be use
simultaneously with keywords DATA_START, DATA_TYPE, DATA_DIMS, or
ENDIAN.

When a template is used with READ_BINARY, the result of a successful call to
READ_BINARY is a structure containing fields specified by the template.

If a template is not used with READ_BINARY, the result of a successful call to
READ_BINARY is an array.
READ_BINARY What’s New in IDL 5.3

Chapter 5: New IDL Routines 245

age
ree
l

t be

r

olor

lor
READ_IMAGE

The READ_IMAGE function reads the image contents of a file and returns the im
in an IDL variable. If the image contains a palette it can be returned as well in th
IDL variables. READ_IMAGE returns the image in the form of a two-dimensiona
array (for grayscale images) or a (3, n, m) array (for TrueColor images).
READ_IMAGE can read most types of image files supported by IDL. See
QUERY_IMAGE for a list of supported formats.

Syntax

Result = READ_IMAGE (Filename [, Red, Green, Blue]
[, ALLOWED_FORMATS=string] [, FORMAT=string] [, IMAGE_INDEX= index])

Return Value

Result is the image array read from the file or scalar value of -1 if the file could no
read.

Arguments

Filename

A scalar string containing the name of the file to read.

Red

An optional named variable to receive the red channel of the color table if a colo
table exists.

Green

An optional named variable to receive the green channel of the color table if a c
table exists.

Blue

An optional named variable to receive the blue channel of the color table if a co
table exists.
What’s New in IDL 5.3 READ_IMAGE

246 Chapter 5: New IDL Routines

d

 the
Keywords

ALLOWED_FORMATS

Set this keyword to a scalar or array of format types READ_IMAGE will be allowe
to read. The default is all known image types.

FORMAT

Set this keyword to a scalar string of the image type to read. This will force
READ_IMAGE to attempt to read the file as the given format type.

IMAGE_INDEX

Set this keyword to the index of the image to read from the file. The default is 0,
first image.
READ_IMAGE What’s New in IDL 5.3

Chapter 5: New IDL Routines 247

of a
READ_WAV

The READ_WAV function reads the audio stream from the named .WAV file.
Optionally, it can return the sampling rate of the audio stream.

Syntax

Result = READ_WAV (Filename[, Rate])

Return Value

In the case of a single channel stream, the returned variable is a BYTE or INT
(depending on the number of bits per sample) one-dimensional array. In the case
file with multiple channels, a similar two-dimensional array is returned, with the
leading dimension being the channel number.

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Rate

Returns an IDL long containing the sampling rate of the stream in samples per
second.

Keywords

None.
What’s New in IDL 5.3 READ_WAV

248 Chapter 5: New IDL Routines

not.

d to
a

an
is an
ult
ame,
STRCMP

The STRCMP function performs string comparisons between its two String
arguments, returning True (1) for those that match and False (0) for those that do
Normally, the IDL equality operator (EQ) is used for such comparisons, but
STRCMP can optionally perform case-insensitive comparisons and can be limite
compare only the first N characters of the two strings, both of which require extr
steps using the EQ operator.

Syntax

Result = STRCMP (String1, String2 [, N] [, /FOLD_CASE])

Return Value

If all of the arguments are scalar, the result is scalar. If one of the arguments is
array, the result is an integer with the same structure. If more than one argument
array, the result has the structure of the smallest array. Each element of the res
contains True (1) if the corresponding elements of String1 and String2 are the s
and False (0) otherwise.

Arguments

String1, String2

The strings to be compared.

N

Normally String1 and String2 are compared in their entirety. If N is specified, the
comparison is made on at most the first N characters of each string.

Keywords

FOLD_CASE

String comparison is normally a case-sensitive operation. Set FOLD_CASE to
perform case-insensitive comparisons instead.

Example

Compare two strings in a case-insensitive manner, considering only the first 3
characters:
STRCMP What’s New in IDL 5.3

Chapter 5: New IDL Routines 249
Result = STRCMP('Moose', 'moo', 3, /FOLD_CASE)
PRINT, Result

IDL Output

 1
What’s New in IDL 5.3 STRCMP

250 Chapter 5: New IDL Routines

The
he
 each

re

 grid
STREAMLINE

The STREAMLINE procedure generates the visualization graphics from a path.
output is a polygonal ribbon which is tangent to a vector field along its length. T
ribbon is generated by placing a line at each vertex in the direction specified by
normal value multiplied by the anisotropy factor. The input normal array is not
normalized before use, making it possible to vary the ribbon width as well.

Syntax

STREAMLINE, Verts, Conn, Normals, Outverts, Outconn [, ANISOTROPY=array]
[, SIZE=vector] [, PROFILE=array]

Arguments

Verts

Input array of path vertices ([3,n] array).

Conn

Input path connectivity array in IDLgrPolyline POLYLINES keyword format. The
is one set of line segments in this array for each streamline.

Normals

Normal estimate at each input vertex ([3,n] array).

Outverts

Output vertices ([3xM] float array). Useful if the routine is to be used with Direct
Graphics or the user wants to manipulate the data directly.

Outconn

Output polygonal connectivity array to match the output vertices.

Keywords

ANISOTROPY

Set this input keyword to a three-element array describing the distance between
points in each dimension. The default value is [1.0, 1.0, 1.0]
STREAMLINE What’s New in IDL 5.3

Chapter 5: New IDL Routines 251

used
h.

oss
rray
tex in
rmal
r

SIZE

Set this keyword to a vector of values (one for each path point). These values are
to specify the width of the ribbon or the size of profile at each point along its pat
This keyword is generally used to convey additional data parameters along the
streamline.

PROFILE

Set this keyword an array of two-dimensional points which are treated as the cr
section of the ribbon instead of a line segment. If the first and last points in the a
are the same, a closed profile is generated. The profile is placed at each path ver
the plane perpendicular to the line connecting each path vertex with the vertex no
defining the up direction. This allows for the generation of streamtubes and othe
geometries.
What’s New in IDL 5.3 STREAMLINE

252 Chapter 5: New IDL Routines

ings

 and
is
 to

RSI
at

in
it
STREGEX

The STREGEX procedure performs regular expression matching against the str
contained in StringExpression. STREGEX can perform either a simple boolean
True/False evaluation of whether a match occurred, or it can return the position
offset within the strings for each match. The regular expressions accepted by th
routine, which correspond to “Posix Extended Regular Expressions”, are similar
those used by such UNIX tools as egrep, lex, awk, and Perl.

For more information about regular expressions, see“Learning About Regular
Expressions” in Chapter 9 ofBuilding IDL Applcations.

STREGEX is based on the regex package written by Henry Spencer, modified by
only to the extent required to integrate it into IDL. This package is freely available
ftp://zoo.toronto.edu/pub/regex.shar .

Syntax

Result = STREGEX (StringExpression, RegularExpression [, /BOOLEAN |
, /EXTRACT | , LENGTH=variable[, /SUBEXPR]] [, /FOLD_CASE])

Return Value

By default, STREGEX returns the position and length of the matched string with
StringExpression. If no match is found, -1 is returned for both of these. Optionally,
can return a boolean True/False result of the match, or the matched strings.

Arguments

StringExpression

String to be matched.

RegularExpression

A scalar string containing the regular expression to match. See“Learning About
Regular Expressions” in Chapter 9 ofBuilding IDL Applcations for a description of
the meta characters that can be used in a regular expression.
STREGEX What’s New in IDL 5.3

Chapter 5: New IDL Routines 253

on

on
ply

her

ith

e
AN

it to
n is
gular
nt

g is

three
ted
Keywords

BOOLEAN

Normally, STREGEX returns the position of the first character in StringExpressi
that matches RegularExpression. Setting BOOLEAN modifies this behavior to
simply return a True/False value indicating if a match occurred or not.

EXTRACT

Normally, STREGEX returns the position of the first character in StringExpressi
that matches RegularExpression. Setting EXTRACT modifies this behavior to sim
return the matched substrings. The EXTRACT keyword cannot be used with eit
BOOLEAN or LENGTH.

FOLD_CASE

Regular expression matching is normally a case-sensitive operation. Set
FOLD_CASE to perform case-insensitive matching instead.

LENGTH

If present, specifies a variable to receive the lengths of the matches. Together w
this result of this function, which contains the starting points of the matches in
StringExpression, LENGTH can be used with the STRMID function to extract th
matched substrings. The LENGTH keyword cannot be used with either BOOLE
or EXTRACT.

SUBEXPR

By default, STREGEX only reports the overall match. Setting SUBEXPR causes
report the overall match as well as any subexpression matches. A subexpressio
any part of a regular expression written within parentheses. For example, the re
expression ‘(a)(b)(c+)’ has 3 subexpressions, whereas the functionally equivale
'abc+' has none. The SUBEXPR keyword cannot be used with BOOLEAN.

If a subexpression participated in the match several times, the reported substrin
the last one it matched. Note, as an example in particular, that when the regular
expression ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches the
'b's and then an infinite number of empty strings following the last ‘b’, so the repor
substring is one of the empties. This occurs because the ‘*’ matcheszero or more
instances of the character that precedes it.

In order to return multiple positions and lengths for each input, the result from
SUBEXPR has a new first dimension added compared to StringExpression.
What’s New in IDL 5.3 STREGEX

254 Chapter 5: New IDL Routines

”:

and

is

t

Examples

Example 1

To match a string starting with an “a”, followed by a “b”, followed by 1 or more “c

pos = STREGEX('aaabccc', 'abc+', length=len)
PRINT, STRMID('aaabccc', pos, len)

IDL Prints:

abccc

To perform the same match, and also find the locations of the three parts:

pos = STREGEX('aaabccc', '(a)(b)(c+)', length=len, /SUBEXPR)
print, STRMID('aaabccc', pos, len)

IDL Prints:

abccc a b ccc

Or more simply:

print,STREGEX('aaabccc','(a)(b)(c+)',/SUBEXPR,/EXTRACT)

IDL Prints:

abccc a b ccc

Example 2

This example searches a string array for words of any length beginning with “f”
ending with “t” without the letter “o” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'affluent']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statemen
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
STREGEX What’s New in IDL 5.3

Chapter 5: New IDL Routines 255

EX
t

• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the ^ anchor in the above example, STREG
would also return “ffluent” (a substring of “affluent”). Similarly, if we left ou
the $ anchor, STREGEX would also return “fat” (a substring of “fate”).
What’s New in IDL 5.3 STREGEX

256 Chapter 5: New IDL Routines

is

, an
STRJOIN

The STRJOIN function collapses a string scalar or array into merged strings. Th
function reduces the rank of its input array by one dimension. The strings in the
removed first dimension are concatenated into a single string using the string in
Delimiter to separate them.

Syntax

Result = STRJOIN (String [, Delimiter] [, /SINGLE])

Arguments

String

A string scalar or array to be collapsed into merged strings.

Delimiter

The separator string to use between the joined strings. If Delimiter is not specified
empty string is used.

Keywords

SINGLE

If SINGLE is set, the entire String is joined into a single scalar string result.

Example

Replace all the blanks in a sentence with colons:

str = 'Out, damned spot! Out I say!'
print, (STRJOIN(STRSPLIT(str, /EXTRACT), ':'))

IDL Output

Out,:damned:spot!:Out:I:say!
STRJOIN What’s New in IDL 5.3

Chapter 5: New IDL Routines 257

d
me

nding

ard

.

STRMATCH

The STRMATCH function compares its search string, which can contain wildcar
characters, against the input string expression. The result is an array with the sa
structure as the input string expression. Those elements that match the correspo
input string are set to True (1), and those that do not match are set to False (0).

The wildcards understood by STRMATCH are similar to those used by the stand
UNIX shell:

Syntax

Result = STRMATCH(String, SearchString[, /FOLD_CASE])

Arguments

String

The String to be matched.

SearchString

The search string, which can contain wildcard characters as discussed above.

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by “-” matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g
“*” matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
“\a” is the same as “a”).

Table 5-7: Wilcard Characters used by STRMATCH
What’s New in IDL 5.3 STRMATCH

258 Chapter 5: New IDL Routines

ses a

f

ot
Keywords

FOLD_CASE

The comparison is usually case sensitive. Setting the FOLD_CASE keyword cau
case insensitive match to be done instead.

Examples

Example 1

Find all 4-letter words in a string array that begin with “f” or “F” and end with “t” or
“T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2

Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3

Find 4-letter words beginning with “f” and ending with “t”, with any combination o
“o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4

Find all words beginning with “f” and ending with “t” whose second character is n
the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
STRMATCH What’s New in IDL 5.3

Chapter 5: New IDL Routines 259
This results in:

Feet FAST ferret
What’s New in IDL 5.3 STRMATCH

260 Chapter 5: New IDL Routines

n of
PLIT

rs. In

ing

cify
 any
rator

e

STRSPLIT

The STRSPLIT function splits its inputString argument into separate substrings,
according to the specified delimiter or regular expression. By default, the positio
the substrings is returned. The EXTRACT keyword can be used to cause STRS
to return an array containing the substrings.

Syntax

Result= STRSPLIT (String [, Pattern] [, ESCAPE=string | , /REGEX
|, /FOLD_CASE] [, /EXTRACT | , LENGTH=variable] [, /PRESERVE_NULL])

Arguments

String

A scalar string to be split into substrings.

Pattern

Pattern can contain one of two types of information:

• A string containing the character codes that are considered to be separato
this case, IDL performs a simple string search for those characters. This
method is simple and fast.

• A regular expression, as implemented by the STREGEX function, which is
used by IDL to match the separators. This method is slower and more
complex, but can handle extremely complicated input strings.

Pattern is an optional argument. If it is not specified, STRSPLIT defaults to splitt
on spans of whitespace (space or tab characters) inString.

Keywords

ESCAPE

When doing simple pattern matching, the ESCAPE keyword can be used to spe
any characters that should be considered to be “escape” characters. Preceding
character with an escape character prevents STRSPLIT from treating it as a sepa
character even if it is found inPattern.

Note that if the EXTRACT keyword is set, STRSPLIT will automatically remove th
escape characters from the resulting substrings. If EXTRACT is not specified,
STRSPLIT What’s New in IDL 5.3

Chapter 5: New IDL Routines 261

l

from
 Set

itive

ed

n-
t

STRSPLIT cannot perform this editing, and the returned position and offsets wil
include the escape characters.

For example:

print, STRSPLIT('a\,b', ',', ESCAPE='\', /EXTRACT)

IDL prints:

a,b

ESCAPE cannot be specified with the FOLD_CASE or REGEX keywords.

EXTRACT

By default, STRTRIM returns an array of character offsets intoString that indicate
where the substrings are located. These offsets, along with the lengths available
the LENGTH keyword can be used later with STRMID to extract the substrings.
EXTRACT to bypass this step, and cause STRSPLIT to return the substrings.
EXTRACT cannot be specified with the LENGTH keyword.

FOLD_CASE

Indicates that the regular expression matching should be done in a case-insens
fashion. FOLD_CASE can only be specified if the REGEX keyword is set, and
cannot be used with the ESCAPE keyword.

LENGTH

Set this keyword to a named variable to receive the lengths of the substrings.
Together with this result of this function, LENGTH can be used with the STRMID
function to extract the matched substrings. The LENGTH keyword cannot be us
with the EXTRACT keyword.

PRESERVE_NULL

Normally, STRSPLIT will not return null length substrings unless there are no no
null values to report, in which case STRSPLIT will return a single null string. Se
PRESERVE_NULL to cause all null substrings to be returned.

REGEX

For complex splitting tasks, the REGEX keyword can be specified. In this case,
Pattern is taken to be a regular expression to be matched againstString to locate the
separators. If REGEX is specified andPatternis not, the defaultPatternis the regular
expression:
What’s New in IDL 5.3 STRSPLIT

262 Chapter 5: New IDL Routines

alue

ple
t
 to
mas

d by
'[' + STRING(9B) + ']+'

which means “any series of one or more space or tab characters” (9B is the byte v
of the ASCII TAB character).

Note that the defaultPattern contains a space after the [character.

The REGEX keyword cannot be used with the ESCAPE keyword.

Examples

Example 1

To split a string on spans of whitespace and replace them with hyphens:

Str = 'STRSPLIT chops up strings.'
print, STRJOIN(STRSPLIT(Str, /EXTRACT), '-')

IDL Output

STRSPLIT-chops-up-strings.

Example 2

As an example of a more complex splitting task that can be handled with the sim
character-matching mode of STRSPLIT, consider a sentence describing differen
colored ampersand characters. For unknown reasons, the author used commas
separate all the words, and used ampersands or backslashes to escape the com
that actually appear in the sentence (which therefore should not be treated as
separators). The unprocessed string looks like:

Str = 'There,was,a,red,&&&,,a,yellow,&&\,,and,a,blue,\&.'

We use STRSPLIT to break this line apart, and STRJOIN to reassemble it as a
standard blank-separated sentence:

S = STRSPLIT(Str, ',', ESCAPE='&\', /EXTRACT)
PRINT, STRJOIN(S, ' ')

IDL Output

There was a red &, a yellow &, and a blue &.

Example 3

Finally, suppose you had a complicated string, in which every token was precede
the count of characters in that token, with the count enclosed in angle brackets:

str = '<4>What<1>a<7>tangled<3>web<2>we<6>weave.'
STRSPLIT What’s New in IDL 5.3

Chapter 5: New IDL Routines 263

gular

This is too complex to handle with simple character matching, but can be easily
handled using the regular expression '<[0-9]+>' to match the separators. This re
expression can be read as “an opening angle bracket, followed by one or more
numeric characters between 0 and 9, followed by a closing angle bracket.” The
STRJOIN function is used to glue the resulting substrings back together:

S = STRSPLIT(str,'<[0-9]+>',/EXTRACT,/REGEX)
PRINT, STRJOIN(S, ' ')

IDL Output

What a tangled web we weave.
What’s New in IDL 5.3 STRSPLIT

264 Chapter 5: New IDL Routines

is is
ines
t
nal
 or
sets

nefit

ade
STRUCT_HIDE

The IDL HELP procedure displays information on all known structures or object
classes when used with the STRUCTURES or OBJECTS keywords. Although th
usually the desired behavior, authors of large vertical applications or library rout
may wish to prevent IDL from displaying information on structures or objects tha
are not part of their public interface, but which exist solely in support of the inter
implementation. The STRUCT_HIDE procedure is used to mark such structures
objects as “hidden”. Items so marked are not displayed by HELP unless the user
the FULL keyword, but are otherwise unaltered.

Note
STRUCT_HIDE is primarily intended for use with named structures or objects.
Although it can be safely used with anonymous structures, there is no visible be
to doing so as anonymous structures are hidden by default.

Tip
Authors of objects will often place a call to STRUCT_HIDE in the _ _DEFINE
procedure that defines the structure.

Syntax

STRUCT_HIDE,Arg1 [, Arg2, ...,Argn]

Arguments

Arg 1, ..., Arg n

If an argument is a variable of one of the following types, its underlying structure
and/or object definition is marked as being hidden from the HELP procedure’s
default output:

• Structure

• Pointer that refers to a heap variable of structure type

• Object Reference

Any arguments that are not one of these types are quietly ignored. No change is m
to the value of any argument.
STRUCT_HIDE What’s New in IDL 5.3

Chapter 5: New IDL Routines 265

 the
Keywords

None.

Example

To create a named structure called “bullwinkle” and prevent it from appearing in
HELP procedure’s default output:

tmp = { bullwinkle, moose:1, squirrel:0 }
STRUCT_HIDE, tmp
What’s New in IDL 5.3 STRUCT_HIDE

266 Chapter 5: New IDL Routines

e
ta
ertex
ray).

ach
.

he
TETRA_CLIP

The TETRA_CLIP function clips a tetrahedral mesh to an arbitrary plane in spac
and returns a tetrahedral mesh of the remaining portion. An auxiliary array of da
may also be passed and clipped. This array can have multiple values for each v
(the trailing array dimension must match the number of vertices in the Vertsin ar

A tetrahedral connectivity array consists of groups of four vertex index values. E
set of four index values specifies four vertices which define a single tetrahedron

Syntax

Result= TETRA_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN= array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of tetrahedra returned.

Arguments

Plane

Input four-element array describing the equation of the plane to be clipped to. T
elements are the coefficients (a,b,c,d) of the equationax+by+cz+d=0.

Vertsin

Input array of tetrahedral vertices [3,n].

Connin

Input tetrahedral mesh connectivity array.

Vertsout

Output array of tetrahedral vertices [3,n].

Connout

Output tetrahedral mesh connectivity array.
TETRA_CLIP What’s New in IDL 5.3

Chapter 5: New IDL Routines 267

ed
f

into
Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and return
through AUXDATA_OUT. The trailing array dimension must match the number o
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a named variable to contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable to contain an output array of vertex indices (
Vertsout) of the vertices which are considered to be ‘on’ the clipped surface.
What’s New in IDL 5.3 TETRA_CLIP

268 Chapter 5: New IDL Routines

e of
rray

ray,
TETRA_SURFACE

The TETRA_SURFACE function extracts a polygonal mesh as the exterior surfac
a tetrahedral mesh. The output of this function is a polygonal mesh connectivity a
that can be used with the input Verts array to display the outer surface of the
tetrahedral mesh.

Syntax

Result= TETRA_SURFACE (Verts, Connin)

Return Value

Returns a polygonal mesh connectivity array. When used with the input vertex ar
this function yields the exposed tetrahedral mesh surface.

Arguments

Verts

Array of vertices [3,n].

Connin

Tetrahedral connectivity array.
TETRA_SURFACE What’s New in IDL 5.3

Chapter 5: New IDL Routines 269

y.

ng

used
.

The
TETRA_VOLUME

The TETRA_VOLUME function computes properties of a tetrahedral mesh arra
The basic property is the volume. An auxiliary data array may be supplied which
specifies weights at each vertex which are interpolated through the volume duri
integration. Higher order moments (with respect to the X, Y, and Z axis) may be
computed as well (with or without weights).

Syntax

Result= TETRA_VOLUME (Verts, Conn [, AUXDATA= array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) volume of the tetrahedrons in the mesh.

Arguments

Verts

Array of vertices [3,n].

Conn

Tetrahedral connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are
to weight a vertex. The volume area integral will linearly interpolate these values
The volume integral will linearly interpolate these values within each tetrahedra.
default weight is 1.0 which results in a basic volume.
What’s New in IDL 5.3 TETRA_VOLUME

270 Chapter 5: New IDL Routines

or
and
MOMENT

Set this keyword to a named variable that will contain a three-element float vect
which corresponds to the first order moments computed with respect to the X, Y
Z axis. The computation is:

where v is the (weighted) volume of the tetrahedron and c is the centroid of the
tetrahedron, thus

yields the (weighted) centroid of the tetrahedral mesh.

m vi ci
ntetras
∑=

m volume⁄
TETRA_VOLUME What’s New in IDL 5.3

Chapter 5: New IDL Routines 271

r
r

al

e
(not-
VALUE_LOCATE

The VALUE_LOCATE function finds the intervals within a given monotonic vecto
that brackets a given set of one or more search values. This function is useful fo
interpolation and table-lookup, and is an adaptation of the locate() routine in
Numerical Recipes. VALUE_LOCATE uses the bisection method to locate the
interval.

Syntax

Result = VALUE_LOCATE (Vector, Value)

Return Value

Each return value, Result [i], is an index, j, into Vector, corresponding to the interv
into which the given Value [i] falls. The returned values are in the range –1≤ j ≤ N-1,
where N is the number of elements in the input vector.

If Vector is monotonically increasing, the result j is:

if j = –1 Value [i] < Vector [0]

if 0 ≤ j < N-1 Vector [j] ≤ Value [i] < Vector [j+1]

if j = N-1 Vector [N-1] ≤ Value [i]

If Vector is monotonically decreasing

if j = –1 Vector [0] ≤ Value [i]

if 0 ≤ j < N-1 Vector [j+1] ≤ Value [i] < Vector [j]

if j = N-1 Value [i] < Vector [N-1]

Arguments

Vector

A vector of monotonically increasing or decreasing values. Vector may be of typ
string, or any numeric type except complex, and may not contain the value NaN
a-number).
What’s New in IDL 5.3 VALUE_LOCATE

272 Chapter 5: New IDL Routines

e
ents
Value

The value for which the location of the intervals is to be computed. Value may b
either a scalar or an array. The return value will contain the same number of elem
as this parameter.

Keywords

None.

Example

; Define a vector of values.
vec = [2,5,8,10]

; Compute location of other values within that vector.
loc = VALUE_LOCATE(vec, [0,3,5,6,12])
PRINT, loc

IDL prints:

-1 0 1 1 3
VALUE_LOCATE What’s New in IDL 5.3

Chapter 5: New IDL Routines 273

as

en

is

r
d as
VECTOR_FIELD

The VECTOR_FIELD procedure is used to place colored, oriented vectors of
specified length at each vertex in an input vertex array. The output can be sent
directly to an IDLgrPolyline object. The generated display is generally referred to
a hedgehog display and is used to convey various aspects of a vector field.

Syntax

VECTOR_FIELD,Field, Outverts, Outconn [, ANISOTROPY=array]
[, SCALE=value] [, VERTICES=array]

Arguments

Field

Input vector field array. This can be a [3,x, y, z] array or a [2,x, y] array. The leading
dimension is the vector quantity to be displayed.

Outverts

Output vertex array ([3,N] or [2, N] array of floats). Useful if the routine is to be used
with Direct Graphics or the user wants to manipulate the data directly.

Outconn

Output polyline connectivity array to be applied to the output vertices.

Keywords

ANISOTROPY

Set this keyword to a two- or three-element array describing the distance betwe
grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

SCALE

Set this keyword to a scalar scaling factor. All vector lengths are multiplied by th
value. The default is 1.0.

VERTICES

Set this keyword to a [3,n] or [2, n] array of points. If this keyword is set, the vecto
field is interpolated at these points. The resulting interpolated vectors are displaye
What’s New in IDL 5.3 VECTOR_FIELD

274 Chapter 5: New IDL Routines

int in
line segments at these locations. If the keyword is not set, each spatial sample po
the input Field grid is used as the base point for a line segment.
VECTOR_FIELD What’s New in IDL 5.3

Chapter 5: New IDL Routines 275

eir
 can

s.
bels

d for

ss,

esult
e

f a
ity
. 8-
WATERSHED

The WATERSHED function applies the morphological watershed operator to a
grayscale image. This operator segments images into watershed regions and th
boundaries. Considering the gray scale image as a surface, each local minimum
be thought of as the point to which water falling on the surrounding region drain
The boundaries of the watersheds lie on the tops of the ridges. This operator la
each watershed region with a unique index, and sets the boundaries to zero.

Typically, morphological gradients, or images containing extracted edges are use
input to the watershed operator. Noise and small unimportant fluctuations in the
original image can produce spurious minima in the gradients, which leads to
oversegmentation. Smoothing, or manually marking the seed points are two
approaches to overcoming this problem. For further reading, see Dougherty, “An
Introduction to Morphological Image Processing”, SPIE Optical Engineering Pre
1992

Syntax

Result = WATERSHED (Image [, CONNECTIVITY={4 | 8}])

Return Value

Returns an image of the same dimensions as the input image. Each pixel of the r
will be either zero if the pixel falls along the segmentation between basins, or th
identifier of the basin in which that pixel falls.

Arguments

Image

The two-dimensional image to be segmented.Image is converted to byte type if
necessary.

Keywords

CONNECTIVITY

Set this keyword to either 4 (to select 4-neighbor connectivity) or 8 (to select 8-
neighbor connectivity). Connectivity indicates which pixels in the neighborhood o
given pixel are sampled during the segmentation process. 4-neighbor connectiv
samples only the pixels that are immediately adjacent horizontally and vertically
What’s New in IDL 5.3 WATERSHED

276 Chapter 5: New IDL Routines

he
vity.

L

 of
 of
aller
e
ged
neighbor connectivity samples the diagonally adjacent neighbors in addition to t
immediate horizontal and vertical neighbors. The default is 4-neighbor connecti

Example

The following code snippet crudely segments the grains in the data file in the ID
Demo data directory containing an magnified image of grains of pollen.

It inverts the image, because the watershed operator finds holes, and the grains
pollen are bright. Next, the morphological closing operator is applied with a disc
radius 9, contained within a 19 by 19 kernel, to eliminate holes in the image sm
than the disc. The watershed operator is then applied to segment this image. Th
borders of the watershed images, which have pixel values of zero, are then mer
with the original image and displayed as white.

;Radius of disc...
r = 9

;Create a disc of radius r
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Read the image
READ_JPEG, DEMO_FILEPATH(’pollens.jpg’, $

SUBDIR=[’examples’,’demo’,’demodata’]), a

;Invert the image
b = MAX(a) - a

TVSCL, b, 0

;Remove holes of radii less than r
c = MORPH_CLOSE(b, disc, /GRAY)

TVSCL, c, 1

;Create watershed image
d = WATERSHED(c)

;Display it, showing the watershed regions
TVSCL, d, 2

;Merge original image with boundaries of watershed regions
e = a > (MAX(a) * (d EQ 0b))

TVSCL, e, 3
WATERSHED What’s New in IDL 5.3

Chapter 5: New IDL Routines 277

, to

E

ists.

iting
per
WRITE_IMAGE

The WRITE_IMAGE procedure writes an image and its color table vectors, if any
a file of a specified type. WRITE_IMAGE can write most types of image files
supported by IDL.

Syntax

WRITE_IMAGE, Filename, Format, Data [, Red, Green, Blue] [, /APPEND]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See QUERY_IMAG
for a list of supported formats.

Data

An IDL variable containing the image data to write to the file.

Red

An optional vector containing the red channel of the color table if a color table ex

Green

An optional vector containing the green channel of the color table if a color table
exists.

Blue

An optional vector containing the blue channel of the color table if a color table
exists.

Keywords

APPEND

Set this keyword to force the image to be appended to the file instead of overwr
the file. APPEND may be used with image formats that supports multiple images
file and is ignored for formats that support only a single image per file.
What’s New in IDL 5.3 WRITE_IMAGE

278 Chapter 5: New IDL Routines

f the
e

WRITE_WAV

The WRITE_WAV function writes the audio stream to the named .WAV file.

Syntax

WRITE_WAV, Filename, Data, Rate

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to write.

Data

The array to write into the new .WAV file. The array can be a one- or two-
dimensional array. A two-dimensional array is written as a multi-channel audio
stream where the leading dimension of the IDL array is the number of channels. I
input array is in BYTE format, the data is written as 8-bit samples, otherwise, th
data is written as signed 16-bit samples.

Rate

The sampling rate for the data array in samples per second.

Keywords

None.
WRITE_WAV What’s New in IDL 5.3

Chapter 5: New IDL Routines 279

L
ar
ing
verall
ich

 two

y
tive
uses
ee

 an
ture
XOBJVIEW

The XOBJVIEW procedure is used to quickly and easily view and manipulate ID
Object Graphics on screen. It displays given objects in an IDL widget with toolb
buttons and menus providing functionality for manipulating, printing, and export
the resulting graphic. The mouse can be used to rotate, scale, or translate the o
model shown in a view, or to select atomic graphic objects (or model objects wh
have their SELECT_TARGET property set) shown in a view.

Syntax

XOBJVIEW, Obj [, /BLOCK] [, GROUP=widget_id] [, STATIONARY=objref(s)]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Obj

A reference to an atomic graphics object, an IDLgrModel, or an array of such
references. IfObj is an array, the array can contain a mixture of such references.
Also, if Obj is an array, all object references in the array must be unique (i.e. no
references in the array can refer to the same object).

Obj is not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. B
default, BLOCK is set equal to zero, providing access to the command line if ac
command line processing is available. Note that setting the BLOCK keyword ca
all widget applications to block, not just this application. For more information, s
the documentation for the NO_BLOCK keyword toXMANAGER.

GROUP

The widget ID of the widget that calls XOBJVIEW. When this ID is specified, the
death of the caller results in the death of XOBJVIEW.

STATIONARY

Set this keyword to a reference to an atomic graphics object, an IDLgrModel, or
array of such references. If this keyword is an array, the array can contain a mix
What’s New in IDL 5.3 XOBJVIEW

280 Chapter 5: New IDL Routines

rray
t).
e in
lights
via

.

of such references. Also, if this keyword is an array, all object references in the a
must be unique (i.e., no two references in the array can refer to the same objec
Objects passed to XOBJVIEW via this keyword will not scale, rotate, or translat
response to mouse events. Default stationary objects are two lights. These two
are replaced if one or more lights are supplied via this keyword. Objects specified
this keyword are not destroyed by XOBJVIEW when XOBJVIEW is quit or killed

XSIZE

The width of the drawable area in pixels. The default is 400.

YSIZE

The height of the drawable area in pixels. The default is 400.

Using XOBJVIEW

XOBJVIEW displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

Figure 5-1: The XOBJVIEW draw widget
XOBJVIEW What’s New in IDL 5.3

Chapter 5: New IDL Routines 281

ut.
The XOBJVIEW Toolbar

The XOBJVIEW toolbar contains the following buttons:

Examples

Example 1

This example displays a simple IDLgrSurface object using XOBJVIEW:

oSurf = OBJ_NEW('IDLgrSURFACE', DIST(20))
XOBJVIEW, oSurf

Example 2

In this example, an IDLgrModel object consisting of two separate objects is
displayed:

; Create contour object:
oCont = OBJ_NEW('IDLgrContour', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20, N_LEVELS=10)

; Create surface object:
oSurf = OBJ_NEW('IDLgrSurface', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20)

; Create model object:
oModel = OBJ_NEW('IDLgrModel')

; Add contour and surface objects to model:
oModel->Add, oCont
oModel->Add, oSurf

; View model:
XOBJVIEW, oModel

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or o

Select: Click on the object.The name (or class if no name) is displayed.
What’s New in IDL 5.3 XOBJVIEW

282 Chapter 5: New IDL Routines

s of
 to

sing
This code results in the following view in the XOBJVIEW widget:

Note that when you click the Select button, and then click on an object, the clas
that object appears next to the Select button. If you want the class of the model
appear when you click over any object in the model, you could set the
SELECT_TARGET property of the model as follows:

oModel->SetProperty, /SELECT_TARGET

Also note that it is not necessary to create a model to view more than one object u
XOBJVIEW. We could view the oCont and oSurf objects created in the above
example by placing them in an array as follows:

XOBJVIEW, [oCont, oSurf]

Figure 5-2: Using XOBJVIEW to view a model consisting of two objects
XOBJVIEW What’s New in IDL 5.3

Chapter 6:

New Objects
 the

This chapter provides documentation for IDL Objects introduced in IDL 5.3. Complete
documentation for IDL Objects (including enhancements to existing objects) can be found in
IDL Reference Guide.
2
IDLanROI . 284
IDLanROIGroup. 307
IDLffLanguageCat 324
IDLgrBuffer::GetDeviceInfo 328
IDLgrClipboard::GetDeviceInfo. 330

IDLgrROI . 33
IDLgrROIGroup . 342
IDLgrVRML::GetDeviceInfo 347
IDLgrWindow::GetDeviceInfo 349
What’s New in IDL 5.3 283

284 Chapter 6: New Objects

ay be
tion
IDLanROI

The IDLanROI object class represents a region of interest.

Note
The IDLan* naming convention is used for objects in the analysis domain.

Regions of interest are described as a set of vertices that may be connected to
generate a path or a polygon, or may be treated as separate points. This object m
used as a source for analytical computations on regions. (For additional informa
about display of ROIs in Object Graphics, refer to theIDLgrROI object class.)

Superclasses

None.

Subclasses

This class is a superclass ofIDLgrROI.

Creation

SeeIDLanROI::Init.

Methods

Intrinsic Methods

The IDLanROI class has the following methods.

• IDLanROI::AppendData

• IDLanROI::Cleanup

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::GetProperty

• IDLanROI::Init

• IDLanROI::RemoveData
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 285
• IDLanROI::ReplaceData

• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::SetProperty

• IDLanROI::Translate
What’s New in IDL 5.3 IDLanROI

286 Chapter 6: New Objects

ctor,
d
ell as

ctor,
d
ell as

ctor,
d

IDLanROI::AppendData

The IDLanROI::AppendData procedure method appends vertices to the region.

Syntax

Obj–>[IDLanROI::]AppendData,X [, Y] [, Z] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing theX components of the vertices to be appended. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the vertices to be appended.

Z

A vector providing theZ components of the vertices to be appended.

Keywords

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], representing theX range of the modification to the region. The reporte
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], representing theY range of the modification to the region. The reporte
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], representing theZ range of the modification to the region. The reporte
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 287

ell as
range accounts for the last vertex in the region before the append occurred, as w
all vertices appended.
What’s New in IDL 5.3 IDLanROI

288 Chapter 6: New Objects

nnot
te
the
IDLanROI::Cleanup

The IDLanROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLanROI::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 289

alue

alue
a.

alue
r 1
on. If

se

alue
IDLanROI::ComputeGeometry

The IDLanROI::ComputeGeometry function method computes the geometrical
values for area, perimeter, and/or centroid of the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeGeometry [, AREA=variable]
[, CENTROID=variable] [, PERIMETER=variable] [, SPATIAL_OFFSET=vector]
[, SPATIAL_SCALE=vector]

Return Value

Result

This function method returns a 1 for success, or a 0 for failure. Each computed v
is returned in thevariable name assigned to each keyword.

Arguments

None.

Keywords

AREA

Set this keyword to a named variable that upon return contains a floating point v
representing the area of the region. Interior regions (holes) return a negative are

CENTROID

Set this keyword to a named variable that upon return contains a floating point v
representing the centroid for the region. If the TYPE of the region is 0 (points) o
(path), the centroid is computed as the average of each of the vertices in the regi
the TYPE of the region is 2 (polygon), the centroid is computed as a weighted
average of the centroids of the polygons making up the ROI (interior centroids u
negative weights). Weights are proportional to the polygon area.

PERIMETER

Set this keyword to a named variable that upon return contains a floating point v
representing the perimeter of the region.
What’s New in IDL 5.3 IDLanROI

290 Chapter 6: New Objects

The
he

The
SPATIAL_OFFSET

Set this keyword to a two or three-element vector, [tx, ty] or [tx, ty, tz], representing
the spatial calibration offset factors to be applied for the geometry calculations.
value of SPATIAL_SCALE is applied before the spatial offset values are applied. T
default is [0.0, 0.0, 0.0].

SPATIAL_SCALE

Set this keyword to a two or three-element vector, [sx, sy] or [sx, sy, sz], representing
the spatial calibration scaling factors to be applied for the geometry calculations.
spatial calibration scale is applied first, then the value of SPATIAL_OFFSET is
applied. The default is [1.0, 1.0, 1.0].
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 291

sk

 to
sk

the

 on

rd
IDLanROI::ComputeMask

The IDLanROI::ComputeMask function method prepares a two-dimensional ma
for the region.

Syntax

Result = Obj–>[IDLanROI::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }] [, PLANE_NORMAL=[x, y, z]]
[, PLANE_XAXIS=[x,y,z]])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0
255. The mask is computed by applying the following formula to the current ma
for each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

whereMroi is 255 andExt is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the region is 0 (points), a single mask pixel is set for each region
vertex that falls within the bounds of the mask.

If the TYPE of the region is 1 (path), one-pixel-wide line segments are set within
mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is
the plane of a region, and the pixel falls within the region (according to the
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keywo
What’s New in IDL 5.3 IDLanROI

292 Chapter 6: New Objects

de:

lt if

he
it

tch

iven

e

is ignored and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values inclu

• –1 = The mask is not initialized. This option is useful when updating an
already existing mask. This is the default if the MASK_IN keyword is set.

• 0 = The mask is initialized so that each pixel is set to 0. This is the defau
the MASK_IN keyword is not set.

• 1 = The mask is initialized so that each pixel is set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, t
data portion of this variable is grabbed and used in the returned value (an implic
NO_COPY). If this keyword is not provided, a mask is allocated by default to ma
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a g
pixel should be set within the mask. Valid values include:

• 0 = Boundary only. All pixels falling on a region’s boundary are set.

• 1 = Interior only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary ar
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 293

he
 PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). T
default is [1, 0, 0].
What’s New in IDL 5.3 IDLanROI

294 Chapter 6: New Objects

ata

that
IDLanROI::ContainsPoints

The IDLanROI::ContainsPoints function method determines whether the given d
coordinates are contained within the closed polygon region.

Syntax

Result = Obj–>[IDLanROI::]ContainsPoints(X [, Y [, Z]])

Return Value

Result

The return value is a vector of values, one per provided point, indicating whether
point is contained. Valid values within this return vector include:

A point is considered to be exterior if:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of the region.

• the region TYPE property is set to 0 (points) or 1 (path).

Arguments

X

A vector providing theX components of the points to be tested. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the points to be tested.

0 Exterior. The point lies strictly out of bounds of the ROI.

1 Interior. The point lies strictly inside the bounds of the ROI.

2 On edge. The point lies on an edge of the ROI boundary.

3 On vertex. The point matches a vertex of the ROI.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 295
Z

A scalar or vector providing theZ component(s) of the points to be tested. If not
provided, theZ components default to 0.0.

Keywords

None.
What’s New in IDL 5.3 IDLanROI

296 Chapter 6: New Objects

 or

ect.
not

o-

o-
IDLanROI::GetProperty

The IDLanROI::GetProperty procedure method retrieves the value of a property
group of properties for the region.

Syntax

Obj–>[IDLanROI::]GetProperty [, ALL=variable] [, ROI_XRANGE=variable]
[, ROI_YRANGE=variable] [, ROI_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword toIDLanROI::Init followed by the word(Get) can be retrieved using
IDLanROI::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this obj
State information about the object includes things like block size, type, etc., but
vertex data.

Note
The fields in this structure may change in subsequent releases of IDL.

ROI_XRANGE

Set this keyword to a named variable. Upon return, ROI_XRANGE contains a tw
element vector of the form [xmin, xmax] that specifies the range ofX data coordinates
covered by the region.

ROI_YRANGE

Set this keyword to a named variable. Upon return, ROI_YRANGE contains a tw
element vector of the form [ymin, ymax] that specifies the range ofYdata coordinates
covered by the region.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 297

o-
ROI_ZRANGE

Set this keyword to a named variable. Upon return, ROI_ZRANGE contains a tw
element vector of the form [zmin, zmax] that specifies the range ofZ data coordinates
covered by the region.
What’s New in IDL 5.3 IDLanROI

298 Chapter 6: New Objects

e the
Init
ss
IDLanROI::Init

The IDLanROI::Init function method initializes a region of interest object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLanROI::Init([X [, Y [, Z]]] [, BLOCKSIZE{Get, Set}=vertices]
[, DATA{Get, Set}=array] [, /INTERIOR{Get, Set}] [, TYPE{Get}={ 0 | 1 | 2 }])

or

Obj = OBJ_NEW('IDLanROI' [,X [, Y [, Z]]])

(In a subclass’ Init method only.)

Arguments

X

A vector providing theX components of the vertices for the region. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the vertices.

Z

A scalar or vector providing theZ component(s) of the vertices. If not provided,Z
values default to 0.0.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 299

e
he

s a

es
lues
Keywords

BLOCK_SIZE (Get, Set)

Set this keyword to the number of vertices to allocate per block as needed for th
region. When additional vertices are required, an additional block is allocated. T
default is 100.

DATA (Get, Set)

Set this keyword to a 2-by-n or 3-by-n array which defines the vertex data for the
region. DATA is equivalent to the optional arguments,X, Y, andZ.

INTERIOR (Get, Set)

Set this keyword to mark this region as an interior region (i.e., a region treated a
hole). By default, the region is treated as an exterior region.

TYPE (Get)

Set this keyword to indicate the type of the region. The TYPE keyword determin
how computational operations, such as mask generation, are performed. Valid va
include:

0 points

1 path

2 closed polygon (the default)
What’s New in IDL 5.3 IDLanROI

300 Chapter 6: New Objects

n.

oval

ctor,

just

ctor,

just

ctor,

just
IDLanROI::RemoveData

The IDLanROI::RemoveData procedure method removes vertices from the regio

Syntax

Obj–>[IDLanROI::]RemoveData[, COUNT=vertices] [, START=index]
[, XRANGE=variable] [, YRANGE=variable][, ZRANGE=variable]

Arguments

None.

Keywords

COUNT

Set this keyword to the number of vertices to remove. The default is one vertex.

START

Set this keyword to an index (into the region’s current vertex list) where the rem
is to begin. By default, the final vertex is removed.

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], that represents theX range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], that represents theY range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], that represents theZ range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex
after the removal (if any), and the removed vertices.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 301

with
r of

the

rent
IDLanROI::ReplaceData

The IDLanROI::ReplaceData procedure method replaces vertices in the region
alternate values. The number of replacement values need not match the numbe
values being replaced.

Syntax

Obj–>[IDLanROI::]ReplaceData,X[, Y[, Z]] [, START=index] [, FINISH=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing theX components of the new replacement vertices. If theYandZ
arguments are not specified,X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2, *] or [3, *]), in which case,X[0, *] represents theX
values,X[1, *] represents theY values, andX[2, *] represents theZ values.

Y

A vector providing theY components of the new replacement vertices.

Z

A vector providing theZ components of the new replacement vertices.

Keywords

FINISH

Set this keyword to the index of the region’s current subregion vertex list where
replacement ends. If the START keyword value is≥ 0, the default FINISH is given by

FINISH = ((START + N_NEW – 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the cur
subregion.

If the START keyword is not set or is negative, the default FINISH is given by

FINISH = N_OLD – 1
What’s New in IDL 5.3 IDLanROI

302 Chapter 6: New Objects

ing
new

he

rent

0

ctor,
d
 (if
tices.

ctor,
d
 (if
tices.

ctor,
d
 (if
tices.
FINISH may be less than START in which case the vertices, including and follow
START and the vertices preceding and including FINISH, are replaced with the
values.

START

Set this keyword to an index of the region’s current subregion vertex list where t
replacement begins. If the FINISH keyword value is≥ 0, the default START is given
by

START = ((FINISH – N_NEW + 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the cur
subregion.

If the FINISH keyword is not set (or negative), the default START is clamped to
and is given by

N_OLD – N_NEW

XRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[xmin, xmax], representing theX range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver

YRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[ymin, ymax], representing theY range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver

ZRANGE

Set this keyword to a named variable that upon return contains a two-element ve
[zmin, zmax], representing theZ range of the modification to the region. The reporte
range accounts for the replaced vertices, the vertex just before the replacement
any), the vertex just after the replacement (if any), and the new replacement ver
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 303
IDLanROI::Rotate

The IDLanROI::Rotate procedure method modifies the vertices for the region by
applying a rotation.

Syntax

Obj–>[IDLanROI::]Rotate,Axis, Angle [, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
is to be rotated.

Angle

The angle, measured in degrees, by which the rotation is to occur.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0].
What’s New in IDL 5.3 IDLanROI

304 Chapter 6: New Objects
IDLanROI::Scale

The IDLanROI::Scale procedure method modifies the vertices for the region by
applying a scale.

Syntax

Obj–>[IDLanROI::]Scale,Sx[, Sy[, Sz]]

Arguments

Sx

TheX scale factor. If theSy andSz arguments are not specified,Sx must be a two or
three-element vector, in which caseSx[0] represents the scale inX, Sx[1] represents
the scale inY, Sx[2] represents the scale inZ.

Sy

TheY scale factor.

Sz

TheZ scale factor.

Keywords

None.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 305

roup
IDLanROI::SetProperty

The IDLanROI::SetProperty procedure method sets the value of a property or g
of properties for the region.

Syntax

Obj–>[IDLanROI::]SetProperty

Arguments

None.

Keywords

Any keywords toIDLanROI::Init followed by the word (Set) can be set using
IDLanROI::SetProperty.
What’s New in IDL 5.3 IDLanROI

306 Chapter 6: New Objects

 by
IDLanROI::Translate

The IDLanROI::Translate procedure method modifies the vertices for the region
applying a translation.

Syntax

Obj–>[IDLanROI::]Translate,Tx[, Ty[, Tz]]

Arguments

Tx

TheX translation factor. If theTy andTz arguments are not specified,Tx must be a
two or three-element vector, in which caseTx[0] represents translation inX, Tx[1]
represents translation inY, Tx[2] represents translation inZ.

Ty

TheY translation factor.

Tz

TheZ translation factor.

Keywords

None.
IDLanROI What’s New in IDL 5.3

Chapter 6: New Objects 307

ions
IDLanROIGroup

The IDLanROIGroup object class is an analytical representation of a group of reg
of interest.

Superclasses

This class is a subclass ofIDL_Container.

Subclasses

This class is a superclass ofIDLgrROIGroup.

Creation

SeeIDLanROIGroup::Init.

Methods

Intrinsic Methods

The IDLanROIGroup class has the following methods:

• IDLanROIGroup::Add

• IDLanROIGroup::Cleanup

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::ComputeMesh

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Init

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale

• IDLanROIGroup::Translate

Inherited Methods

This class inherits the following methods:

• IDL_Container::Count
What’s New in IDL 5.3 IDLanROIGroup

308 Chapter 6: New Objects
• IDL_Container::Get

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 309

.
the

 of
IDLanROIGroup::Add

The IDLanROIGroup::Add procedure method adds a region to the region group
Only objects of the IDLanROI class may be added to the group. The regions in
group must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLanROIGroup::]Add,ROI

Arguments

ROI

A reference to an instance of the IDLanROI object class representing the region
interest to be added to the group.

Keywords

Accepts all keywords accepted by theIDL_Container::Add method in theIDL
Reference Guide.
What’s New in IDL 5.3 IDLanROIGroup

310 Chapter 6: New Objects

ion

nnot
te
the
IDLanROIGroup::Cleanup

The IDLanROIGroup::Cleanup procedure method performs all cleanup for a reg
of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLanROIGroup::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 311

e
ns

that
IDLanROIGroup::ContainsPoints

The IDLanROIGroup::ContainsPoints procedure method determines whether th
given points (in data coordinates) are contained within the closed polygon regio
within this group.

A point is considered to be exterior if any of the following conditions are true:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of any of the contained regions.

• the TYPE property of the contained regions is set to 0 (points) or 1 (path).

 Syntax

Result = Obj–>[IDLanROIGroup::]ContainsPoints(X[, Y[, Z]])

Return Value

Result

The return value is a vector of values, one per provided point, indicating whether
point is contained. Valid values within this return vector include:

Arguments

X

A vector providing theX components of the points to be tested. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case,X[0,*] represents theX values,
X[1,*] represents theY values, andX[2,*] represents theZ values.

Y

A vector providing theY components of the points to be tested.

0 Exterior. The point lies strictly outside the bounds of the ROI.

1 Interior. The point lies strictly inside the bounds of the ROI.

2 On Edge. The point lies on an edge of the ROI boundary.

3 On Vertex. The point matches a vertex of the ROI.
What’s New in IDL 5.3 IDLanROIGroup

312 Chapter 6: New Objects
Z

A scalar or vector providing theZ components of the points to be tested. If not
provided, theZ components default to 0.0.

 Keywords

None.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 313

al

 to
sk

ach

e

 on
the

rd
IDLanROIGroup::ComputeMask

The IDLanROIGroup::ComputeMask function method prepares a two-dimension
mask for this group of regions.

Syntax

Result = Obj–>[IDLanROIGroup::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0
255. The mask is computed by applying the following formula to the current ma
for each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

whereMroi is 255 andExt is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the contained regions is 0 (points), a single mask pixel is set for e
region vertex that falls within the bounds of the mask.

If the TYPE of the contained regions is 1 (path), each pixel along the paths of th
regions is set if it falls within the mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is
the plane of a contained region, and the pixel falls within that region (according to
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keywo
What’s New in IDL 5.3 IDLanROIGroup

314 Chapter 6: New Objects

de:

he
it

tch

iven
is ignored, and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values inclu

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, t
data portion of this variable is grabbed and used in the returned value (an implic
NO_COPY). If this keyword is not provided, a mask is allocated by default to ma
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a g
pixel should be set within the mask. Valid values include:

–1 The mask is not initialized; the default if the MASK_IN
keyword is set. This option is useful when updating an
already existing mask.

0 The mask is initialized with each pixel set to 0; the default if
the MASK_IN keyword is not set.

1 The mask is initialized with each pixel set to 255.

0 Boundary Only. All pixels falling on a region’s boundary are
set.

1 Interior Only. All pixels falling within the region’s boundary,
but not on the boundary, are set.

2 Boundary + Interior. All pixels falling on or within a region’s
boundary are set.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 315

he
PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].

PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). T
default is [1, 0, 0].
What’s New in IDL 5.3 IDLanROIGroup

316 Chapter 6: New Objects

sh

e

y
tour
x

h
d, it

the
IDLanROIGroup::ComputeMesh

The IDLanROIGroup::ComputeMesh function method triangulates a surface me
with optional capping from the stack of regions contained within this group.

Note
The contained regions may be concave. However, this method will fail under th
following conditions:

• The region group contains fewer than two regions.
• The TYPE property of the contained regions is 0 (points) or 1 (path).
• Any of the contained regions are not simple

(i.e., a region is self-intersecting).
• The region group contains interior regions (holes).
• More than one region lies on the same plane

(i.e., the region group contains branches).

Each region pair is normalized by perimeter and the triangulation is computed b
walking the contours in parallel, keeping the normalized progress along each con
in sync. The returned triangulation minimizes the mesh surface area. Each verte
may appear only once in the output, and the resulting polygon mesh is solid wit
outward facing normals computed via the right-hand rule. If capping is requeste
is computed using theIDLgrTessellator on the top and bottom regions, and/or the
regions on either side of an inter-slice gap.

Syntax

Result = Obj->[IDLanROIGroup::]ComputeMesh(Vertices, Conn
[, CAPPED={0 | 1 |2}] [, SURFACE_AREA=variable])

Return Value

Result

The return value of this function method is the number of triangles generated if
surface mesh triangulation is successful, or zero if unsuccessful.

Arguments

Vertices

An output [3,n] array of float vertices.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 317

he
t the
OR

ce
n of
Conn

An output polygon mesh connectivity array.

Keywords

CAPPED

Set this keyword to a value to indicate whether flat caps are to be computed at t
top-most or bottom-most regions (as selected by a counter-clockwise rule), or a
regions on either side of an inter-slice gap. The value of this keyword is a bit-wise
of the values shown below. For example, to cap the top-most and bottom-most
regions only, set the CAPPED keyword to 3. The default is 0 (no caps).

SURFACE_AREA

Set this keyword to a named variable that upon return contains the overall surfa
area of the computed triangulation. This value was minimized in the computatio
the triangulation.

0 no caps

1 cap the top-most region

2 cap the bottom-most region
What’s New in IDL 5.3 IDLanROIGroup

318 Chapter 6: New Objects

ins

ins
IDLanROIGroup::GetProperty

The IDLanROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj–>[IDLanROIGroup::]GetProperty[, ALL=variable]
[, ROIGROUP_XRANGE=variable] [, ROIGROUP_YRANGE=variable]
[, ROIGROUP_ZRANGE=variable]

Arguments

None.

Keywords

Any keyword toIDLanROIGroup::Init followed by the word (Get) can be retrieved
using IDLanROIGroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable. Upon return, ALL contains an anonymous
structure with the values of all of the properties associated with the state of this
object.

Note
The fields in this structure may change in subsequent releases of IDL.

ROIGROUP_XRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_XRANGE conta
a two-element vector of the form [xmin, xmax] specifying the range ofX data
coordinates covered by the regions in this group.

ROIGROUP_YRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_YRANGE conta
a two-element vector of the form [ymin, ymax] specifying the range ofY data
coordinates covered by the regions in this group.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 319

ins
ROIGROUP_ZRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_ZRANGE conta
a two-element vector of the form [zmin, zmax] specifying the range ofZ data
coordinates covered by the regions in this group.
What’s New in IDL 5.3 IDLanROIGroup

320 Chapter 6: New Objects

e the
Init
ss
IDLanROIGroup::Init

The IDLanROIGroup::Init function method initializes a region of interest group
object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLanROIGroup::Init()

or

Obj = OBJ_NEW(‘IDLanROIGroup’)

(In a subclass’ Init method only.)

Arguments

None.

Keywords

None.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 321

ions
IDLanROIGroup::Rotate

The IDLanROIGroup::Rotate procedure method modifies the vertices for all reg
within the group by applying a rotation.

Syntax

Obj–>[IDLanROIGroup::]Rotate,Axis, Angle[, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
group is to be rotated.

Angle

The angle, measured in degrees, by which to rotate the ROI group.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y] or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0].
What’s New in IDL 5.3 IDLanROIGroup

322 Chapter 6: New Objects

on
IDLanROIGroup::Scale

The IDLanROIGroup::Scale procedure method modifies the vertices for the regi
by applying a scale.

Syntax

Obj–>[IDLanROIGroup::]Scale,Sx[, Sy[, Sz]]

Arguments

Sx

TheX scale factor. If theSy andSz arguments are not specified,Sx must be a two or
three-element vector, in which caseSx[0] represents the scale inX, Sx[1] represents
the scale inY, andSx[2] represents the scale inZ.

Sy

TheY scale factor.

Sz

TheZ scale factor.

Keywords

None.
IDLanROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 323
IDLanROIGroup::Translate

The IDLanROIGroup::Translate procedure method modifies the vertices of all
regions within the group by applying a translation.

Syntax

Obj–>[IDLanROIGroup::]Translate,Tx[, Ty[, Tz]]

Arguments

Tx

TheX translation factor. If theTy andTz arguments are not specified,Tx must be a
two or three-element vector, in which caseTx[0] represents translation inX, Tx[1]
represents translation inY, andTx[2] represents translation inZ.

Ty

TheY translation factor.

Tz

TheZ translation factor.

Keywords

None.
What’s New in IDL 5.3 IDLanROIGroup

324 Chapter 6: New Objects

s.

alid
IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog file

Note
This object is not savable. Restored IDLffLanguageCat objects may contain inv
data.

Note
This object is not intended to be created with OBJ_NEW. TheMSG_CAT_OPEN
function is used to return the correct object reference.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

SeeMSG_CAT_OPEN.

Methods

• IDLffLanguageCat::IsValid

• IDLffLanguageCat::Query

• IDLffLanguageCat::SetCatalog
IDLffLanguageCat What’s New in IDL 5.3

Chapter 6: New Objects 325

e

IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether th
object has a valid catalog.

Syntax

Result = Obj -> [IDLffLanguageCat::]IsValid()

Arguments

None

Keywords

None
What’s New in IDL 5.3 IDLffLanguageCat

326 Chapter 6: New Objects

ge
the

f key

d in
IDLffLanguageCat::Query

The IDLffLanguageCatalog::Query function method is used to return the langua
string associated with the given key. If the key is not found in the given catalog,
default string is returned.

Syntax

Result = Obj -> [IDLffLanguageCat::]Query(Key [, DEFAULT_STRING=string])

Arguments

Key

The scalar, or array of (string) keys associated with the desired language string. I
is an array,Result will be a string array of the associated language strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be foun
the catalog file. The default value is the empty string.
IDLffLanguageCat What’s New in IDL 5.3

Chapter 6: New Objects 327

te

log

ale

talog
IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropria
catalog file. This function returns 1 upon success, and 0 on failure.

Syntax

Result = Obj -> [IDLffLanguageCat::]SetCatalog(Application
[, FILENAME=string] [, LOCALE=string] [, PATH=string])

Arguments

Application

A scalar string representing the name of the desired application’s catalog file.

Keywords

FILENAME

Set this keyword to a scalar string containing the full path and filename of the cata
file to open. If this keyword is set,application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current loc
is used.

PATH

Set this keyword to a scalar string containing the path to search for language ca
files. The default is the current directory.
What’s New in IDL 5.3 IDLffLanguageCat

328 Chapter 6: New Objects

s

the

me
IDLgrBuffer::GetDeviceInfo

The IDLgrBuffer::GetDeviceInfo function method returns information which allow
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrBuffer::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two-element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two-element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
IDLgrBuffer::GetDeviceInfo What’s New in IDL 5.3

Chapter 6: New Objects 329

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
What’s New in IDL 5.3 IDLgrBuffer::GetDeviceInfo

330 Chapter 6: New Objects

or

the

me
IDLgrClipboard::GetDeviceInfo

The IDLgrClipboard::GetDeviceInfo function method returns information which
allows IDL applications to intelligently make decisions for optimal performance. F
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrClipboard::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
IDLgrClipboard::GetDeviceInfo What’s New in IDL 5.3

Chapter 6: New Objects 331

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
What’s New in IDL 5.3 IDLgrClipboard::GetDeviceInfo

332 Chapter 6: New Objects

rest.
IDLgrROI

The IDLgrROI object class is an object graphics representation of a region of inte

Superclasses

This class is a subclass ofIDLanROI.

Subclasses

None.

Creation

SeeIDLgrROI::Init.

Methods

Intrinsic Methods

The IDLgrROI object class has the following methods:

• IDLgrROI::Cleanup

• IDLgrROI::GetProperty

• IDLgrROI::Init

• IDLgrROI::PickVertex

• IDLgrROI::SetProperty

Inherited Methods

This class inherits the following methods:

• IDLanROI::AppendData

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::RemoveData

• IDLanROI::ReplaceData
IDLgrROI What’s New in IDL 5.3

Chapter 6: New Objects 333
• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::Translate
What’s New in IDL 5.3 IDLgrROI

334 Chapter 6: New Objects

nnot
te
the
IDLgrROI::Cleanup

The IDLgrROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLgrROI::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLgrROI What’s New in IDL 5.3

Chapter 6: New Objects 335

or

e

t

IDLgrROI::GetProperty

The IDLgrROI::GetProperty procedure method retrieves the value of a property
group of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]GetProperty [, ALL=variable]

Arguments

None.

Keywords

Note
All keywords accepted byIDLanROI::GetProperty are also accepted by this
method. Furthermore, any keyword toIDLgrROI::Init followed by the word (Get)
can be retrieved using IDLgrROI::GetProperty.

The following keywords are also accepted:

ALL

Set this keyword to a named variable to contain an anonymous structure with th
values of all of the properties associated with the state of this object. State
information about the object may include things like color, line style, etc., but no
vertex data or user values.

Note
The fields in this structure may change in subsequent releases of IDL.
What’s New in IDL 5.3 IDLgrROI

336 Chapter 6: New Objects

st.

e the
Init
ss
IDLgrROI::Init

The IDLgrROI::Init function method initializes an Object Graphics region of intere

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLgrROI::Init([X[, Y[, Z]]] [, COLOR{Get, Set}=vector]
[, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=value] [, NAME{Get, Set}=string]
[, PALETTE{Get, Set}=objref] [, STYLE{Get, Set}={ 0 | 1 | 2 }]
[, SYMBOL{Get, Set}=objref] [, THICK{Get, Set}=points {1.0 to 10.0}]
[, UVALUE{Get, Set}=uvalue] [, XCOORD_CONV{Get, Set}=[s0, s1]]
[, YCOORD_CONV{Get, Set}=[s0, s1]] [, ZCOORD_CONV{Get, Set}=[s0, s1]])

or

Obj = OBJ_NEW(‘IDLgrROI’[, X[, Y[, Z]]])

(In a subclass’ Init method only.)

Arguments

X

A vector providing theX components of the vertices for the region. If theY andZ
arguments are not specified,X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2, *] or [3, *]), in which case,X[0, *] represents theX
values,X[1, *] represents theY values, andX[2, *] represents theZ values.

Y

A vector providing theY components of the vertices.

Z

A scalar or vector providing theZ components of the vertices. If not provided,Z
values default to 0.0.
IDLgrROI What’s New in IDL 5.3

Chapter 6: New Objects 337

wn:

e
or
Keywords

Note
All keywords accepted byIDLanROI::Init are accepted by this method as well.

In addition, the following keywords are accepted:

COLOR (Get, Set)

Set this keyword to an RGB or indexed color for drawing the region. The default
color is [0, 0, 0].

HIDE (Get, Set)

Set this keyword to a Boolean value indicating whether this region should be dra

LINESTYLE (Get, Set)

Set this keyword to the line style to be used to draw the region. The value can b
either an integer value specifying a pre-defined line style, or a two-element vect
specifying a stippling pattern.

The valid values for the pre-defined line styles are:

NAME (Get, Set)

Set this keyword to a string to use as the name for this region.

0 draw the region (the default)

1 do not draw the region

0 solid (the default)

1 dotted

2 dashed

3 dash dot

4 dash dot dot dot

5 long dash

6 no line drawn
What’s New in IDL 5.3 IDLgrROI

338 Chapter 6: New Objects

ion
e

ion

s, or

.
must

:

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPalette object class). This keyword is only used for Object Graphics
destinations using the RGB color model. In this case, if the color value for the reg
is specified as a color index value, this palette is used to look up the color for th
region. If the PALETTE keyword is not set, the destination object PALETTE
property is used, which defaults to a gray scale ramp.

STYLE (Get, Set)

Set this keyword to indicate the geometrical primitive to use to represent the reg
when displayed. Valid values include:

SYMBOL (Get, Set)

Set this keyword to reference anIDLgrSymbolobject for the symbol used for display
when STYLE = 0 (points). By default, a dot is used.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the size of the point
the thickness of the lines, measured in points. The default is one point.

UVALUE (Get, Set)

Set this keyword to a user value of any type to contain any information you wish
Remember if you set this user value equal to a pointer or object reference, you
destroy the pointer or object reference explicitly when destroying this region.

XCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertX coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedX = s0 + s1*DataX

Recommended values are:

[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]

0 points

1 open polyline

2 closed polyline (the default)
IDLgrROI What’s New in IDL 5.3

Chapter 6: New Objects 339

:

:

YCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertY coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedY = s0 + s1*DataY

Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

ZCOORD_CONV (Get, Set)

Set this keyword to a vector, [s0, s1], of scaling factors used to convertZ coordinates
from data units to normalized units. The formula for the conversion is as follows

NormalizedZ = s0 + s1*DataZ

Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]
What’s New in IDL 5.3 IDLgrROI

340 Chapter 6: New Objects

en

s are

is
to a
this

f the
IDLgrROI::PickVertex

The IDLgrROI::PickVertex function method picks a vertex of the region which, wh
projected onto the given destination device, is nearest to the given 2D device
coordinate.

Syntax

Result = Obj–>[IDLgrROI::]PickVertex(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the index of the nearest region vertex. If two or more vertice
equally nearest to the point, the smallest index of those vertices is returned.

Arguments

Dest

An object reference to anIDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to theIDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location used for picking a
nearest vertex.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
location in the data space of the region. Each path object reference specified with
keyword must contain an alias. The selected vertex is computed for the version o
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROI What’s New in IDL 5.3

Chapter 6: New Objects 341

oup
IDLgrROI::SetProperty

The IDLgrROI::SetProperty procedure method sets the value of a property or gr
of properties for the Object Graphics region.

Syntax

Obj–>[IDLgrROI::]SetProperty

Arguments

None.

Keywords

Note
Any keywords accepted byIDLanROI::SetProperty are also accepted by this
method. Furthermore, any keywords toIDLgrROI::Init followed by the word(Set)
can be set using IDLgrROI::SetProperty as well.
What’s New in IDL 5.3 IDLgrROI

342 Chapter 6: New Objects

p of
IDLgrROIGroup

The IDLgrROIGroup object class is an Object Graphics representation of a grou
regions of interest.

Superclasses

This class is a subclass ofIDLanROIGroup.

Subclasses

None.

Creation

SeeIDLgrROIGroup::Init.

Methods

Intrinsic Methods

The IDLgrROIGroup class has the following methods:

• IDLgrROIGroup::Add

• IDLgrROIGroup::Cleanup

• IDLgrROIGroup::Init

• IDLgrROIGroup::PickRegion

Inherited Methods

This class inherits the following methods:

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Rotate

• IDLanROIGroup::Scale

• IDLanROIGroup::Translate
IDLgrROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 343

nly
oup

 of
IDLgrROIGroup::Add

The IDLgrROIGroup::Add procedure method adds a region to the region group. O
objects of the IDLgrROI class may be added to the group. The regions in the gr
must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj–>[IDLgrROIGroup::]Add,ROI

Arguments

ROI

A reference to an instance of the IDLgrROI object class representing the region
interest to add to the group.

Keywords

Accepts all keywords accepted by theIDLanROIGroup::Add method.
What’s New in IDL 5.3 IDLgrROIGroup

344 Chapter 6: New Objects

ject

nnot
te
the
IDLgrROIGroup::Cleanup

The IDLgrROIGroup::Cleanup procedure method performs all cleanup for an Ob
Graphics region of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you ca
call the Cleanup method directly. There is one exception to this rule: If you wri
your own subclass of this class, you can call the Cleanup method from within
Cleanup method of the subclass.

Syntax

Obj–>[IDLgrROIGroup::]Cleanup

or

OBJ_DESTROY,Obj

(In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.
IDLgrROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 345

f

e the
Init
ss
IDLgrROIGroup::Init

The IDLgrROIGroup::Init function method initializes an Object Graphics region o
interest group object.

Note
Init methods are special life cycle methods, and as such cannot be called outsid
context of object creation. This means that in most cases, you cannot call the
method directly. There is one exception to this rule: If you write your own subcla
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = IDLgrROIGroup::Init()

or

Obj = OBJ_NEW('IDLgrROIGroup')

(In a subclass’ Init method only.)

Arguments

None.

Keywords

None.
What’s New in IDL 5.3 IDLgrROIGroup

346 Chapter 6: New Objects

p
 2D

ions
t is

is
to a
this

f the
IDLgrROIGroup::PickRegion

The IDLgrROIGroup::PickRegion function method picks a region within the grou
which, when projected onto the given destination device, is nearest to the given
device coordinate.

Syntax

Result = Obj–>[IDLgrROIGroup::]PickRegion(Dest, View, Point [, PATH=objref])

Return Value

Result

The return value is the object reference of the nearest region. If two or more reg
are equally nearest to the point, the one that was added to the region group firs
returned.

Arguments

Dest

An object reference to anIDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to theIDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location to use for picking a
nearest region.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. Th
keyword specifies the path in the graphics hierarchy to map the device position
location in the data space of the region. Each path object reference specified with
keyword must contain an alias. The selected region is computed for the version o
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROIGroup What’s New in IDL 5.3

Chapter 6: New Objects 347

s

the

s

s

IDLgrVRML::GetDeviceInfo

The IDLgrVRML::GetDeviceInfo function method returns information which allow
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result = Obj–>[IDLgrVRML::]GetDeviceInfo([, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable])

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that specifie
the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONScontains a two element integer array that specifie
the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return,NAMEcontains the name of
the rendering device as a string.
What’s New in IDL 5.3 IDLgrVRML::GetDeviceInfo

348 Chapter 6: New Objects

L.

rix,

the
NUM_CPUS

Set this keyword equal to a named variable. Upon return,NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return,VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return,VERSION contains the
version of the rendering device driver as a string.
IDLgrVRML::GetDeviceInfo What’s New in IDL 5.3

Chapter 6: New Objects 349

or

the

me
IDLgrWindow::GetDeviceInfo

The IDLgrWindow::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. F
example, it allows an application to determine if RENDERER=0 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj–>[IDLgrWindow::]GetDeviceInfo [, ALL=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None.

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the na
of the rendering device as a string.
What’s New in IDL 5.3 IDLgrWindow::GetDeviceInfo

350 Chapter 6: New Objects

 an
L.

rix,

the

e

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains
integer that specifies the number of CPUs that are known to, and available to ID

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI I
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains th
version of the rendering device driver as a string.
IDLgrWindow::GetDeviceInfo What’s New in IDL 5.3

Index

Symbols
%?, 117
.FULL_RESET_SESSION command, 142
.prc file

testing in a project, 94
.prj files, 87
.RESET_SESSION command, 143

Numerics
3D visualization

improvements, 13

A
ADAPT_HIST_EQUAL function, 145

Add method
IDLanROIGroup, 309
IDLgrROIGroup, 343

adding
files to a project, 90

Adobe Acrobat Portable Document Format
(PDF), 46
analysis objects

IDLanRIOGroup, 307
IDLanROI class, 284

AppendData method
IDLanROI, 286

ASCII
importing using macros, 125

audio file support, 26
axis label

orientation of text, 18
What’s New in IDL 5.3 351

352
B
BINARY, 25
binary data

importing using macros, 131
BINARY_TEMPLATE function, 147
breakpoint enhancements, 110
building

a project, 102
order in project, 99

byte ordering
big endian, 132
binary data, 132
little endian, 132
native method, 132

C
CALL, 182, 182
CDF, 149
CDF compression, 31
CDF version, 32
CDF_COMPRESSION function, 149
Cleanup method

IDLanROI, 288
IDLanROIGroup, 310
IDLgrROI, 334
IDLgrROIGroup, 344

clipboard
vector output support, 16

closing
projects, 89

color coding, 115
command stream substitution, 117
command stream substitutions

%?, 30, 117
for Macintosh, 30, 118

COMPILE_OPT statement, 153
compiler options, 23
compiling

a file from a project, 93

all files in a project, 101
modified files in a project, 101

complex breakpoints, 110
compression for files, 24
ComputeGeometry method

IDLanROI, 289
ComputeMask method

IDLanROI, 291
IDLanROIGroup, 313

ComputeMesh method
IDLanROIGroup, 316

ContainsPoints method
IDLanROI, 294
IDLanROIGroup, 311

creating
.sav file from a project, 102
IDL Runtime distribution, 106
projects, 87

CW, 156, 162, 164, 166, 172
CW_FILESEL function, 156
CW_LIGHT_EDITOR function, 158
CW_LIGHT_EDITOR_GET procedure, 162
CW_LIGHT_EDITOR_SET procedure, 164
CW_PALETTE_EDITOR function, 166
CW_PALETTE_EDITOR_GET procedure,
172
CW_PALETTE_EDITOR_SET procedure,
173

D
deleting

files in a project, 92
developer’s kit license, 107
DIALOG, 174, 176
DIALOG_READ_IMAGE function, 174
DIALOG_WRITE_IMAGE function, 176
distribution

creating, 106
DLM, 178
DLM_LOAD procedure, 178
Index What’s New in IDL 5.3

353
DRAW, 179

E
editing

a source file from a project, 93
editor

color/font coding, 115
ENABLE, 181
ENABLE_SYSRTN procedure, 181
endian

big, 132
byte ordering, 132
little, 132

EOS, 183, 185, 186, 187
EOS_GD_QUERY function, 183
EOS_PT_QUERY function, 185
EOS_QUERY function, 186
EOS_SW_QUERY function, 187
EXECUTE, 182
exporting

projects, 105

F
file

adding to a project, 90
compiling from a project, 93
compiling in a project, 101
compression, 24
editing from a project, 93
moving in a project, 91
removing from a project, 92
setting properties for a project, 94

file I/O improvements, 24
font coding, 115

G
GET, 24, 189

GET_DRIVE_LIST function, 189
GetDeviceInfo method

IDLgrBuffer, 328
IDLgrClipboard, 330
IDLgrVRML , 347
IDLgrWindow, 349

GetProperty method
IDLanROI, 296
IDLanROIGroup, 318
IDLgrROI, 335

GRID, 190
GRID_TPS function, 190
group

moving files in a project, 91
GZIP compression, 24

H
HDF files

importing using macros, 137
HDF improvements, 31
HDF SD compression, 31
HDF version, 32
HDF-EOS files

importing using macros, 137
HDF-EOS improvements, 31
HDF-EOS version, 32
HELP enhancements, 23

I
IDL, resetting the session, 23
IDLanROI

AppendData method, 286
Cleanup method, 288
ComputeGeometry method, 289
ComputeMask method, 291
ContainsPoints method, 294
GetProperty method, 296
Init method, 298
What’s New in IDL 5.3 Index

354
RemoveData method, 300
ReplaceData method, 301
Rotate method, 303
Scale method, 304
SetProperty method, 305
Translate method, 306

IDLanROI object class, 284
IDLanROIGroup

Add method, 309
Cleanup method, 310
ComputeMask method, 313
ComputeMesh method, 316
ContainsPoints method, 311
GetProperty method, 318
Init method, 320
Rotate method, 321
Scale method, 322
Translate method, 323

IDLanROIGroup object class, 307
IDLffLanguageCat

IsValid method, 325
SetCatalog method, 327

IDLffLanguageCat object, 324
IDLffLanguageCatalog

Query method, 326
IDLgrBuffer

GetDeviceInfo method, 328
IDLgrClipboard

GetDeviceInfo method, 330
IDLgrROI

Cleanup method, 334
GetProperty method, 335
Init method, 336
PickVertex method, 340
SetProperty method, 341

IDLgrROI object class, 332
IDLgrROIGroup

Add method, 343
Cleanup method, 344
Init method, 345
PickRegion method, 346

IDLgrROIGroup object class, 342
IDLgrVRML

GetDeviceInfo method, 347
IDLgrWindow

GetDeviceInfo method, 349
IMAGE, 193, 193
image processing

improvements, 10
morphological functions, 11
ROI improvements, 11

IMAGE_STATISTICS procedure, 193
images

macros for importing, 121
import macro

ASCII files, 125
binary files, 131
image files, 121
scientific data formats, 137

Init method
IDLanROI, 298
IDLanROIGroup, 320
IDLgrROI, 336
IDLgrROIGroup, 345

ISOCONTOUR, 196
ISOCONTOUR procedure, 196
ISOSURFACE procedure, 199
IsValid method

IDLffLanguageCat, 325

K
keywords, new and updated, 53

L
libraries, updated versions, 32
license

developer’s kit, 107
Index What’s New in IDL 5.3

355
LOCALE_GET function, 201

M
macro

importing
ASCII data, 125
binary data, 131
HDF files, 137
HDF-EOS files, 137
image files, 121
NETCDF files, 137

macros support, 117
main menu bar enhancements, 110
MESH, 202, 204, 206, 207, 209, 210, 212,
214, 214, 216
MESH_CLIP function, 202
MESH_DECIMATE function, 204
MESH_ISSOLID function, 206
MESH_MERGE function, 207
MESH_NUMTRIANGLES function, 209
MESH_SMOOTH function, 210
MESH_SURFACEAREA function, 212
MESH_VALIDATE function, 214
MESH_VOLUME function, 216
MORPH, 217, 222, 224, 226, 228, 229
MORPH_CLOSE function, 217
MORPH_DISTANCE function, 219
MORPH_GRADIENT function, 222
MORPH_HITORMISS function, 224
MORPH_OPEN function, 226
MORPH_THIN function, 228
MORPH_TOPHAT function, 229
morphological functions, 11
moving

files in a project, 91
MSG_CAT_CLOSE procedure, 231
MSG_CAT_COMPILE procedure, 232
MSG_CAT_OPEN function, 234

N
NETCDF files

importing using macros, 137

O
object class

IDLanROI, 284
IDLanROIGroup, 307
IDLffLanguageCat, 324
IDLgrROI, 332
IDLgrROIGroup, 342

OpenGL
querying for information, 18

opening
projects, 89

options
setting for project, 96

P
PARTICLE, 236
PARTICLE_TRACE procedure, 236
PDF files, 46
PickRegion method

IDLgrROIGroup, 346
PickVertex method

IDLgrROI, 340
platforms supported, 82
printer

vector output support, 16
project

adding files, 90
building, 102
closing, 89
compiling a file, 93
compiling all files, 101
compiling modified files, 101
creating, 87
creating a .sav file, 102
What’s New in IDL 5.3 Index

356
editing source files, 93
exporting, 105
moving files, 91
opening, 89
removing files, 92
running an application, 104
saving, 89
setting build order, 99
setting file properties, 94
setting options, 96
storing source files, 86
testing a .prc file, 94

projects
overview, 27, 84

Q
QUERY, 25, 239, 242
Query method

IDLffLanguageCat, 326
QUERY_IMAGE function, 239
QUERY_WAV function, 242
querying

for OpenGL information, 18

R
READ, 25, 25, 147, 243, 243, 245, 247
READ_IMAGE function, 245
READ_WAV function, 247
reading

ASCII data, 125
binary data, 131
data using macros, 121, 125, 131
HDF files, 137
HDF-EOS files, 137
image files, 121
NETCDF files, 137
scientific format data, 137

recomendations
storing files in a project, 86

region of interest
IDLanROI, 284
improvements, 11

RemoveData method
IDLanROI, 300

removing
files in a project, 92

ReplaceData method
IDLanROI, 301

resetting and IDL session, 23
ROI

improvements, 11
Rotate method

IDLanROI, 303
IDLanROIGroup, 321

running
application from a project, 104

S
saving

projects, 89
Scale method

IDLanROI, 304
IDLanROIGroup, 322

scientific data format
importing using macros, 137

SetCatalog method
IDLffLanguageCat, 327

SetProperty method
IDLanROI, 305
IDLgrROI, 341

setting
options for a project, 96
properties of a file in a project, 94

sparse matrix, 19
storing

file in a project, 86
STRCMP, 248
Index What’s New in IDL 5.3

357
STRCMP function, 248
STREAMLINE, 250
STREAMLINE procedure, 250
STREGEX, 252
STREGEX procedure, 252
string processing, 22
STRJOIN, 256
STRJOIN function, 256
STRMATCH function, 257
STRSPLIT, 260
STRSPLIT function, 260
STRUCT, 264
STRUCT_HIDE procedure, 264
sub-rectangles support, 18
substitution, command stream, 117
supported platforms, 82

T
testing

.prc file from a project, 94
TETRA, 266, 268, 269
TETRA_CLIP function, 266, 266
TETRA_SURFACE function, 268
TETRA_VOLUME function, 269
text

orientation for axis label, 18

Translate method
IDLanROI, 306
IDLanROIGroup, 323

V
VALUE, 271
VALUE_LOCATE function, 271
VData acess, 31
vector output of Object Graphics, 16
VECTOR_FIELD procedure, 273
VGroup access, 31

W
WATERSHED, 275
WATERSHED function, 275
WAV support, 26
WRITE, 25, 277, 278, 278
WRITE_IMAGE procedure, 277
WRITE_WAV function, 278

X
XOBJVIEW procedure, 279
What’s New in IDL 5.3 Index

358
Index What’s New in IDL 5.3

	Online Guide
	Contents
	Overview of New Features in IDL 5.3
	Visualization and Analysis Enhancements
	Image Processing Improvements
	New Routines, Objects, and Compound Widgets
	Changes to Existing Image Processing Routines
	Example Program Using New Image Processing Tools

	3D Visualization Improvements
	Example Programs Using New 3D Visualization Tools

	New Vector Output of Object Graphics
	Vector Output vs. Bitmap Output
	When to use Vector Output for the Printer
	When to use Bitmap Output for the Printer
	When to use Vector Output for the Clipboard
	When to use Bitmap Output for the Clipboard

	New Sub-Rectangle Support for Image Display
	Enhanced User Control Over Axis Label Orientation
	Enhanced Query Support for Objects Graphics Devices
	Enhanced Sparse Matrix Functionality
	New Object Viewer

	IDL Language Enhancements
	Internationalization Support for IDL Applications
	New String Processing Functionality
	New IDL Session Reset Commands
	New COMPILE_OPT Statement
	New Output Options for the HELP Procedure
	Raised Limits

	File I/O Enhancements
	New Support for GZIP File Compression/Decompression
	New File Input/Output/Query Functionality
	New Support for .WAV Audio Files
	Enhanced Support for Tiff Images
	Improved Macros for Importing Data

	Development Environment Enhancements
	New IDL Projects
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Creating IDL Runtime Distributions
	Exporting Your Applications

	Enhanced Breakpoint Functionality
	New IDL Functions/Procedures Context Menu
	New Color/Font Style Coding for Source Files on Motif
	Enhanced IDL MACRO Support
	New Command Stream Substitution
	New Support for Command Stream Substitutions on Macintosh

	Scientific Data Formats Enhancements
	New Support for Compression of CDF and HDF SD Data Sets
	New HDF-EOS Query Routines
	New EOS_EXISTS Function
	HDF_BROWSER Enhancements
	Updated Library Versions

	IDL GUIBuilder Enhancements
	IDL ActiveX Control Enhancements
	Why Was a New Version of the Control Created?
	What Must You Change to Take Advantage of the Control?
	What About the Previous ActiveX Control?
	Why Should You Upgrade?
	New Dual Interface Control
	New Printing Support
	Print
	Parameters
	Returns

	BufferId

	Improved Error Reporting in the IDLDrawX2 ActiveX Control
	Return Value Change for ExecuteStr
	LastIdlError (Runtime)

	Method Enhancements to the IDLDrawX2 ActiveX Control
	New Parameter for SetNamedArray

	New Properties to the IDLDrawX2 ActiveX Control
	Renderer

	New Auto Event Properties to the IDLDrawX2 ActiveX Control
	OnDblClick

	IDL ActiveX Control Examples

	Installation and Licensing Enhancements
	IDL ActiveX Control Demonstration Application
	New licensing Dialog
	Replacing the Licensing Dialog Image in Callable IDL Applications
	Replacing the Image for Windows Callable Applications
	Replacing the Image for Macintosh Callable Applications

	IDL DataMiner Enhancements
	Documentation Enhancements
	Reorganization of Core IDL Manuals
	IDL Reference Guide
	Using IDL
	Building IDL Applications
	Object Graphics Documentation

	The New Getting Started with IDL Manual
	Improved IDL HandiGuide
	The New IDL Master Index
	Improved Help System
	Improved PDF System
	Navigation of the IDL Online Manuals
	Searching within the Online Manual Set

	New Object Features
	New Object Classes
	New Object Methods
	New and Updated Keywords to IDL Object Methods

	New Routines
	New and Updated Keywords/Arguments
	New Environment Variables
	Routines Obsoleted in IDL 5.3
	Platforms Supported in this Release

	Creating IDL Projects
	Overview
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Creating IDL Runtime Distributions
	Exporting Your Applications
	Example of a Project

	Where to Store Source Files for a Project
	Creating a Project
	Opening, Closing, and Saving Projects
	Opening Projects
	Saving Projects
	Closing Projects

	Adding, Moving, and Removing Files
	Adding Files
	Moving Files
	Removing Files

	Working with Files in a Project
	Editing a Source File
	Compiling a File
	Testing a File
	Setting the Properties of a File

	Setting the Options for a Project
	Selecting the Build Order
	Compiling an Application from a Project
	Building a Project
	Running an Application from a Project
	Exporting a Project
	About IDL Developer’s Kit Licenses

	IDL Development Environment Enhancements
	Enhanced Breakpoint Functionality
	The New Breakpoint Tool Bar Buttons
	The New Edit Breakpoints Dialog
	New Keywords to the BREAKPOINT Routine

	New IDL Functions and Procedures Context Menu for Windows and Motif
	New Color/Font Style Coding for Source Files on UNIX
	Enhanced IDL Macros Support
	New %? Command Stream Substitution
	New Support for Command Stream Substitutions on Macintosh

	IDL Macros for Importing Data
	Overview
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	New IDL Routines
	.FULL_RESET_SESSION
	.RESET_SESSION
	ADAPT_HIST_EQUAL
	Image
	CLIP
	NREGIONS
	TOP

	BINARY_TEMPLATE
	Filename
	CANCEL
	GROUP
	N_ROWS
	TEMPLATE

	CDF_COMPRESSION
	Id
	GET_COMPRESSION
	GET_GZIP_LEVEL
	GET_VAR_COMPRESSION
	GET_VAR_GZIP_LEVEL
	SET_COMPRESSION
	SET_GZIP_LEVEL
	SET_VAR_COMPRESSION
	SET_VAR_GZIP_LEVEL
	VARIABLE
	ZVARIABLE
	IDL Output

	COMPILE_OPT
	optn

	CW_FILESEL
	Parent
	FILENAME
	FILTER
	FIX_FILTER
	FRAME
	IMAGE_FILTER
	MULTIPLE
	PATH
	UNAME
	UVALUE

	CW_LIGHT_EDITOR
	Parent
	DIRECTION_DISABLED
	DRAG_ EVENTS
	FRAME
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	UNAME
	UVALUE
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE
	GET_VALUE
	SET_VALUE

	CW_LIGHT_EDITOR_GET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_LIGHT_EDITOR_SET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_PALETTE_EDITOR
	Reference Color bar
	Palette Colorbar
	Channel and Histogram Display
	Color Space
	Editing Mode
	Channel Display and Edit
	Zoom
	Scrolling of the Palette Window
	Parent
	DATA
	FRAME
	HISTOGRAM
	HORIZONTAL
	SELECTION
	UNAME
	UVALUE
	XSIZE
	YSIZE
	Selection Moved
	Palette Edited
	GET_VALUE
	SET_VALUE

	CW_PALETTE_EDITOR_GET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PALETTE_EDITOR_SET
	WidgetID
	ALPHA
	HISTOGRAM

	DIALOG_READ_IMAGE
	Filename
	BLUE
	DIALOG_PARENT
	FILE
	FILTER
	FIX_FILTER
	GREEN
	IMAGE
	PATH
	QUERY
	RED
	TITLE

	DIALOG_WRITE_IMAGE
	Image
	R, G, B (optional)
	DIALOG_PARENT
	FILENAME
	FIX_TYPE
	NOWRITE
	OPTIONS
	PATH
	TITLE
	TYPE

	DLM_LOAD
	DLMNameStrn
	IDL Output

	DRAW_ROI
	oROI
	LINE_FILL
	SPACING

	ENABLE_SYSRTN
	Routines
	DISABLE
	EXCLUSIVE
	FUNCTIONS

	EOS_GD_QUERY
	Filename
	GridName
	Info

	EOS_PT_QUERY
	Filename
	PointName
	Info

	EOS_QUERY
	Filename
	Info

	EOS_SW_QUERY
	Filename
	SwathName
	Info

	GET_DRIVE_LIST
	GRID_TPS
	Xp
	Yp
	Values
	COEFFICIENTS
	DELTA
	NGRID
	START

	IMAGE_STATISTICS
	Data
	COUNT
	DATA_SUM
	LABELED
	LUT
	MASK
	MAXIMUM
	MEAN
	MINIMUM
	STDDEV
	SUM_OF_SQUARES
	VARIANCE
	VECTOR
	WEIGHT_SUM
	WEIGHTED

	ISOCONTOUR
	Values
	Outconn
	Outverts
	AUXDATA_IN
	AUXDATA_OUT
	C_VALUE
	FILL
	GEOMX
	GEOMY
	GEOMZ
	LEVEL_VALUES
	N_LEVELS
	OUTCONN_INDICES
	POLYGONS

	ISOSURFACE
	Data
	Value
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	TETRAHEDRA

	LOCALE_GET
	MESH_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	MESH_DECIMATE
	Verts
	Conn
	Connout
	PERCENT_VERTICES
	PERCENT_POLYGONS
	VERTICES

	MESH_ISSOLID
	Conn

	MESH_MERGE
	Verts
	Conn
	Verts1
	Conn1
	COMBINE_VERTICES
	TOLERANCE

	MESH_NUMTRIANGLES
	Conn

	MESH_SMOOTH
	Verts
	Conn
	ITERATIONS
	FIXED_VERTICES
	FIXED_EDGE_VERTICES
	LAMBDA

	MESH_SURFACEAREA
	Verts
	Conn
	AUXDATA
	MOMENT

	MESH_VALIDATE
	Verts
	Conn
	COMBINE_VERTICES
	PACK_VERTICES
	REMOVE_NAN
	TOLERANCE

	MESH_VOLUME
	Verts
	Conn
	SIGNED

	MORPH_CLOSE
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_DISTANCE
	Data
	BACKGROUND
	NEIGHBOR_SAMPLING
	Default Two Dimensional Example
	Chessboard Two-Dimensional Example
	City Block Two-Dimensional Example:
	Actual Distance Two-Dimensional Example

	NO_COPY

	MORPH_GRADIENT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_HITORMISS
	Image
	HitStructure
	MissStructure

	MORPH_OPEN
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_THIN
	Image
	HitStructure
	MissStructure

	MORPH_TOPHAT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MSG_CAT_CLOSE
	object

	MSG_CAT_COMPILE
	input
	output
	LOCALE_ALIAS
	MBCS

	MSG_CAT_OPEN
	application
	DEFAULT_FILENAME
	FILENAME
	FOUND
	LOCALE
	PATH
	SUB_QUERY

	PARTICLE_TRACE
	Data
	Seeds
	Verts
	Conn
	Normals
	ANISOTROPY
	INTEGRATION
	SEED_NORMAL
	TOLERANCE
	MAX_ITERATIONS
	MAX_STEPSIZE
	UNIFORM

	QUERY_IMAGE
	Filename
	Info
	CHANNELS
	DIMENSIONS
	HAS_PALETTE
	IMAGE_INDEX
	NUM_IMAGES
	PIXEL_TYPE
	SUPPORTED_READ
	SUPPORTED_WRITE
	TYPE

	QUERY_WAV
	Filename
	Info

	READ_BINARY
	Filename
	FileUnit
	DATA_DIMS
	DATA_START
	DATA_TYPE
	ENDIAN
	TEMPLATE

	READ_IMAGE
	Filename
	Red
	Green
	Blue
	ALLOWED_FORMATS
	FORMAT
	IMAGE_INDEX

	READ_WAV
	Filename
	Rate

	STRCMP
	String1, String2
	N
	FOLD_CASE
	IDL Output

	STREAMLINE
	Verts
	Conn
	Normals
	Outverts
	Outconn
	ANISOTROPY
	SIZE
	PROFILE

	STREGEX
	StringExpression
	RegularExpression
	BOOLEAN
	EXTRACT
	FOLD_CASE
	LENGTH
	SUBEXPR
	Example 1
	Example 2

	STRJOIN
	String
	Delimiter
	SINGLE
	IDL Output

	STRMATCH
	String
	SearchString
	FOLD_CASE
	Example 1
	Example 2
	Example 3
	Example 4

	STRSPLIT
	String
	Pattern
	ESCAPE
	EXTRACT
	FOLD_CASE
	LENGTH
	PRESERVE_NULL
	REGEX
	Example 1
	IDL Output

	Example 2
	IDL Output

	Example 3
	IDL Output

	STRUCT_HIDE
	Arg1, ..., Argn

	TETRA_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	TETRA_SURFACE
	Verts
	Connin

	TETRA_VOLUME
	Verts
	Conn
	AUXDATA
	MOMENT

	VALUE_LOCATE
	Vector
	Value

	VECTOR_FIELD
	Field
	Outverts
	Outconn
	ANISOTROPY
	SCALE
	VERTICES

	WATERSHED
	Image
	CONNECTIVITY
	Example

	WRITE_IMAGE
	Filename
	Format
	Data
	Red
	Green
	Blue
	APPEND

	WRITE_WAV
	Filename
	Data
	Rate

	XOBJVIEW
	Obj
	BLOCK
	GROUP
	STATIONARY
	XSIZE
	YSIZE
	Using XOBJVIEW
	The XOBJVIEW Toolbar
	Example 1
	Example 2

	New Objects
	IDLanROI
	Intrinsic Methods
	IDLanROI::AppendData
	X
	Y
	Z
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Cleanup
	IDLanROI::ComputeGeometry
	Result
	AREA
	CENTROID
	PERIMETER
	SPATIAL_OFFSET
	SPATIAL_SCALE

	IDLanROI::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROI::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROI::GetProperty
	ALL
	ROI_XRANGE
	ROI_YRANGE
	ROI_ZRANGE

	IDLanROI::Init
	X
	Y
	Z
	BLOCK_SIZE (Get, Set)
	DATA (Get, Set)
	INTERIOR (Get, Set)
	TYPE (Get)

	IDLanROI::RemoveData
	COUNT
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::ReplaceData
	X
	Y
	Z
	FINISH
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Rotate
	Axis
	Angle
	CENTER

	IDLanROI::Scale
	Sx
	Sy
	Sz

	IDLanROI::SetProperty
	IDLanROI::Translate
	Tx
	Ty
	Tz

	IDLanROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLanROIGroup::Add
	ROI

	IDLanROIGroup::Cleanup
	IDLanROIGroup::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROIGroup::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROIGroup::ComputeMesh
	Result
	Vertices
	Conn
	CAPPED
	SURFACE_AREA

	IDLanROIGroup::GetProperty
	ALL
	ROIGROUP_XRANGE
	ROIGROUP_YRANGE
	ROIGROUP_ZRANGE

	IDLanROIGroup::Init
	IDLanROIGroup::Rotate
	Axis
	Angle
	CENTER

	IDLanROIGroup::Scale
	Sx
	Sy
	Sz

	IDLanROIGroup::Translate
	Tx
	Ty
	Tz

	IDLffLanguageCat
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	Key
	DEFAULT_STRING

	IDLffLanguageCat::SetCatalog
	Application
	FILENAME
	LOCALE
	PATH

	IDLgrBuffer::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrClipboard::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrROI
	Intrinsic Methods
	Inherited Methods
	IDLgrROI::Cleanup
	IDLgrROI::GetProperty
	ALL

	IDLgrROI::Init
	X
	Y
	Z
	COLOR (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	STYLE (Get, Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrROI::PickVertex
	Result
	Dest
	View
	Point
	PATH

	IDLgrROI::SetProperty

	IDLgrROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLgrROIGroup::Add
	ROI

	IDLgrROIGroup::Cleanup
	IDLgrROIGroup::Init
	IDLgrROIGroup::PickRegion
	Result
	Dest
	View
	Point
	PATH

	IDLgrVRML::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrWindow::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X

