= DL

What's New
in IDL 5.3

IDL Version 5.3
RESEARCH September, 1999 Edition
SYST EMS Copyright © Research Systems, Inc.
‘ All Rights Reserved

ooooooooooooooo

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and doc-
umentation described herein are sold under license agreement. Their use, duplica-
tion, and disclosure are subject to the restrictions stated in the license agreement.
Research Systems, Inc., reserves the right to make changes to this document at any
time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any
matter not expressly set forth in the license agreement, including without limitation
the condition of the software, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other
damages suffered by the Licensee or any others resulting from use of the IDL soft-
ware package or its documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a lim-
ited, nontransferable license to reproduce this particular document provided such
copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the
computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by per-
mission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by
permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

Portions of this software are copyrighted by INTERSOLY, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

[A) Research Systems, Inc. documentation is printed on recycled paper. Our paper has a minimum
‘: 20% post-consumer waste content and meets all EPA guidelines.

Contents

Chapter 1:

Overview of New Features in IDL 5.3 ..o, 9
Visualization and Analysis EnhancementS........cccccceeviiiveeviiiniececeeice e, 10
IDL Language ENNanCeMENLS..........cuuuuiiueiiiiiieiieeeeeeeeee et a e e e e e e e e e aees 21
File 1/O ENNANCEMENES......ccvuiiiiii ettt e e e et e e e e e e e eaans 24
Development Environment Enhancements...............oooooociiiiiiiiiiieieieccceeeeeenn 27
Scientific Data Formats Enhancements...........ccooveveiiiiiiiiieeieieeeeee e, 31
IDL GUIBuUIlder ENhanCemeNtS........ccoivuuiiiiiiii e 33
IDL ActiveX Control ENhanCements..........cocuuiviiiiiii i 34
Installation and Licensing ENNaNCEeMENLS...........uviieiiiiieeeeeieeeeeeeeeeiee e 39
IDL DataMiner ENNANCEMENES.......covvuiiiii e eea e 43
Documentation ENNANCEMENLS.ciiiviiiiiieeeeeeee e 44
NEW ODJECT FEAIUIES......coieeeeeieiiiieee et e e e e e e e e e eeeeeeananas 49

What's New in IDL 5.3 3

AN 0 10 11 =S 58
New and Updated KeywordS/ArguUmeENTS.............uueuuieeieieeeeeieeeaeeaaeaeannnsneees 65
New Environment Variables. ... 80
Routines Obsoleted iN IDL 5.3... ..o 81
Platforms Supported in this Release............cccooviviiiiiiiiiciiie e, 82
Chapter 2:

Creating IDL ProjectS ...cccoviiiiiiieii et 83
OVBIVIBW ..ttt ettt et e e e e e e e e e e e e e e e s s e s bbb bbbt e e et e e e e aaaeaeeeens 84
Where to Store Source Files for @ ProjecL..........uuuueeeieeiiiiiiiiiieeeeeeee s 86
Creating @ PrOJECT.ooi ittt e e e e e 87
Opening, Closing, and Saving Projects..........coouiiiiiiiiiiiiiiiineee e 89
Adding, Moving, and Removing FileS.........cccooviiiiiiiiiii e, 90
Working with FileS in @ ProjeCL........vvuieeciiiii e 93
Setting the Options for @ ProjecCL......ccooeevie i i 96
Selecting the BUild OFAEer.........oooiieiiiiii e 99
Compiling an Application from a Project.............ooooiiiiiiiiiiiiiiiieeeeeeeeeeee 101

[T0T] (o [T o = W o o] = od U PPPSP 102
Running an Application from a Project.........ccccoviiiiiiiiiiiiiieciiiec e 104
EXPOrtiNng @ PrOJECE.o e e e e 105
About IDL Developer's Kit LICENSES.........cccvviiiieieeiiiiiiiiiss e e e e e e e e e e eeeeeeeeannnnns 107
Chapter 3:

IDL Development Environment Enhancements c.......... 109
Enhanced Breakpoint FUNCHONAILLY...........uuuruiiiiiiiiiiiiiiieeeeee e 110
New IDL Functions and Procedures Context Menu for Windows and Moliil4

New Color/Font Style Coding for Source Files on UNIX..........cccccoeeevvennnnnn. 115
Enhanced IDL MacCroS SUPPOIL......ui ittt eaaa s 117
Chapter 4:

IDL Macros for Importing Data coovveeiiiiiiiicceiicie e, 119
OVEBIVIBW ..ttt ettt e e e e e e e e e e e e e s s s s s s e bbbt et e e e e e eeeaaaaeeas 120
Using Macros to Import Image FileS..........uueeiiiiiiiiee e 121

Contents What's New in IDL 5.3

Using Macros to Import ASCI FIleS.......oooovvi e 125
Using Macros to Import Binary Files. ... 131
Using Macros to Import HDF Files.........oooviiiiiiiiiiii e 137
Chapter 5:

NEW IDL ROULINES .ovviiiiiii ettt 141
FULL_RESET_SESSION....cciiiiiiiiiiiiie ettt 142
RESET_SESSION... ..ttt ittt e e e e e e e e 143
ADAPT_HIST_EQUAL ...ttt e e 145
BINARY _TEMPLATE ..ottt e e e 147
CDF_COMPRESSION. ...ttt e e e e snneaeeeas 149
COMPILE _OPT ..ttt e e e e e et e e e e e e e nnnnaneeeas 153
CW _FILESEL....eiiiiieee ettt e e e 156
CW_LIGHT_EDITOR ..ottt 158
CW_LIGHT_EDITOR_GET......cttiiiiiiiiiiiieee e 162
CW_LIGHT _EDITOR _SET.....citiiiiiiei ittt e 164
CW_PALETTE_EDITOR....ciiiiii ittt e e e 166
CW_PALETTE_EDITOR_GET......ttiiiiiiiiiiiiie et 172
CW_PALETTE_EDITOR_SET....ii ittt 173
DIALOG_READ_IMAGE ..ottt 174
DIALOG_WRITE_IMAGE ...t 176
DLM_LOAD .ttt ettt e e e e ettt e e e e e s sttt e e e e e e nnrae e e e e e e e annnes 178
DRAW _ROI ..ttt e e e e st e e e e e e e snnbae e e e e e e e annnes 179
ENABLE_SYSRTN ..ottt e e e e e e s s ennbeneeeeeeann 181
EOS_GD_QUERY ...ttt e e e 183
EOS_PT_QUERY ...ttt 185
EOS_QUERY ...ttt e e 186
EOS_SW_QUERY ...ttt ettt et e e e e s e e e e e e e nnreees 187
GET _DRIVE _LIST ittt e e e 189
G RID T P S ettt et e e e e e e e e e e e nbrn e e e e e e e aaa 19C
IMAGE_STATISTICS ...t e e e 193
[ISOCONTOUR.....ciitte ittt e e e e e e e b e e e e e s nnnneeeeas 196

What's New in IDL 5.3 Contents

10110 = =7 o] =T 199
Yo7 I =3 1 =5 EPT TP OTTTS 201
IMESH_CLIP ettt ettt et et et e e seese et seeseeseeeeeseseeseesse s eseeeeeseeseseeees 202
MESH_DECIMATE ..ot eeeeeeeeeeeeeeeeeeeeeese et et eeeseeseeseeseeseeseeseesses e asesneenes 204
IMESH_ISSOLID c.eveveeeeeeeeeeeveeeeeeeeeee e eeee et eeteeeee s s s seseseee e eseeseseens 206
MESH_IMERGE ..o teeveeeeee ettt e et se e et e en s eses e e e e, 207
MESH_NUMTRIANGLES ... oo eeeeee e eeeeeeeneeee 209
MESH_SMOOTH ...ttt seeeee et eeeeeseeee e eeeeseeeeeeeeeeeseseeseeseeseseeeeeeeeeeeeeees 210
MESH_SURFACEAREA........oveeteeteeeeeeeeeeeeeeesseeseeseeseseseessssessessasessesssesssenees 212
MESH_VALIDATE voveeeeeeeeeeeeeeeeeeeeeeeseeessesseseeseesseeeseseesessesseseeseesseseseesesseenes 214
MESH_VOLUME ...ttt et eeeee e et ese s es e eneeeeeseseseeseeneee 216
MORPH_CLOSEeveeeeeeeeeeeeeveeeeeeeeeee et et st eteseee s es s ses s ees e eneneens 217
MORPH_DISTANCE. ...t eeeeeeeeeeeeeeeeeeee e e eeeeeeee s e eeeeeeeeeeeeeeseene e 219
MORPH_GRADIENT ...ttt ettt eeeeeeeeeeeeseeeeeeeeeeeeeseeseesesseesssseeeeeeeneeeseeeens 222
MORPH_HITORMISS. ...eveveeeeeseeeeeeseeeeeeeeeeeesessesseesessessseseseesessesseseesseseenneens 224
MORPH_OPEN.....c..veteeeeseeeeeeteeeeeeeeeeeeseeseesessesseseeseeeseseseesessesseseeseesesessseseesenes 226
IMORPH_THIN 1.ttt eeeeeeee s s et esees et eeeeseeseeseeseeseeseeseeeeeseseeseeseenes 228
MORPH_TOPHAT ..ottt eee et er st e s ee s s esse e s eeenees e 229
MSG_ CAT CLOSE ..ttt eeee e eeeeeee et eeeeeee s s e e eeeeeeeeeeeee e eneeees 231
MSG_CAT COMPILE «...eoeeeeeeeeeee oo eeeeeeeee e eese s esees e eseeeee s eeaeees 232
MSG_ CAT _OPEN ..cciveeee et eeeeeeteeeeeeeeeeeeee e s eesees et eseeeeeseeeeseeseesseseeseesenees e 234
PARTICLE_TRACE ...oeveeeeeeeeeeeeeeeeeeeeeeeeeee e teeseese et eeseeees e eseeseeseseseeneesesenees 236
QUERY _IMAGE ...ttt ettt et e e tee st s e s et eee s eseesees 239
QUERY WAV oottt n et e st n s eeer e 242
L =] 1 N7 =22 243
READ IMAGE ..ottt et eeeeee e eeese s ee e e eeee s s s eeeeseeeseseseesesseenns 245
READ WAV .ottt es et eeee e eeeeeee s es et eeees e eseeseeseese s e sseeeeerens 247
STROMP ...t eee ettt e ettt e et et ee st tee s e e e eseeeees e s et et e e ees s 248
STREAMLINE ..ottt e et e eeeeee et es et eeeeeseeees et seese et ees e e eeeeeseeseeseenes 250
STREGEX . .ceteeeeeeeeeeeeeeee e eeee ettt eeeeeeee s ee et s se e ee e eee e s s eeeeeeen e 252
STRIOIN. et e e e e e e e e e e e e eeeeeeeeeee e e e e e eee e eeeeseeeees 256
STRMATCH ..ottt e et e e e e s e et e eeee e eee s ee et eneseeeeeeeens 257

Contents What's New in IDL 5.3

YL I 55T 1 SRR 26C
STRUCT _HIDE..... ittt e e e e e e e aaaeaaeeeaeeaeaaaas 264
TETRA _CLIP et e e e e e e e e aeaeeaeaaasseeeennnnes 266
TETRA _SURFACEottt reeeaaaa e e s 268
TETRA _VOLUME ..ottt 269
VALUE_LOCATE ..ottt ettt et e e e e e e e e e e e e e e e s s s nnnnnes 271
RV =10 1 | = 0 273
WATERSHED ...ttt e e e e e e e e e aaaaaeeaaeeeeaaaans 275
WRITE_IMAGE ...ttt e e e e e e e e e e e aaaeaaeeeesenannns 277
WRITE_WAV ettt e e et e e e e e e aaaaeeaaaasananaans 278
XOBUIVIEW .ottt e bbbttt et et e e e e e e aaaeeeaeeeseaaannnnes 279
Chapter 6:

NEW ODJECES ..o 283
IDLANROI ittt e e e e e e bbbt e e e e e e e e e e e e as 284
IDLANROIGIOUP . .ttt e e et e e e e e e e e e e e eees 307
IDLFLANQUAGECAL ..o ittt e e e e e e e 324
IDLGrBUffer::GetDeVICEINTO.t 328
IDLgrClipboard::GetDevVviCelnfo...........oiie i, 330
IDLOIRON ettt e e e e e e e e e e e e et e e e e e e e e e as 332
15 Mo |4 4@ 1 1€] {011 o IO 342
IDLGrVRML::GEtDEVICEINTOuutiiiiiiiiiiiiiieie e 347
IDLGrWindow::GetDeVICEINTO.........ccoiiiiiiiiie e 349
INAEX e 351

What's New in IDL 5.3 Contents

Chapter 1.
Overview of New
Features in IDL 5.3

This chapter contains the following topics:

Visualization and Analysis Enhancementd0 IDL DataMiner Enhancements. 43
IDL Language Enhancements......... 21 Documentation Enhancements. 44
File I/O Enhancements. 24 New Object Features. 49
Development Environment Enhancement®87 New Routines 58
Scientific Data Formats Enhancements. 31 New and Updated Keywords/Arguments 65
IDL GUIBuilder Enhancements. 33 New Environment Variables. 80
IDL ActiveX Control Enhancements. ... 34 Routines Obsoleted in IDL5.3........ 81
Installation and Licensing Enhancements39 Platforms Supported in this Release. .. 82

What's New in IDL 5.3

10 Chapter 1: Overview of New Features in IDL 5.3
Visualization and Analysis Enhancements

The following enhancements have been made in the area of Visualization and
Analysis in the IDL 5.3 release:

* Image Processing Improvements

« 3D Visualization Improvements

* New Vector Output of Object Graphics

* New Sub-Rectangle Support for Image Display

* Enhanced User Control Over Axis Label Orientation

» Enhanced Query Support for Objects Graphics Devices
« Enhanced Sparse Matrix Functionality

* New Object Viewer
Image Processing Improvements

Additional image processing tools are included in the IDL 5.3 release. The new
functionality is designed to increase IDL’s capabilities in quantitative image
analyses, such as those needed to analyze images from medical scanning
technologies, satellite data, microscopes, telescopes, etc.

New Routines, Objects, and Compound Widgets

The following list describes the new functionality added in this release and the type
of image processing technique where it is used.

« ADAPT_HIST_EQUAL — Performs adaptive histogram equalization, a form
of automatic image contrast enhancement. This method of automatic contrast
enhancement has proven to be broadly applicable to a wide range of images
and to have demonstrated effectiveness.

 GRID_TPS — A geometric manipulation and interpolation technique which
uses thin plate splines to interpolate a set of values.

* IMAGE_STATISTICS — Generates sample statistics for an array of values.

e CW_PALETTE_EDITOR — Creates a compound widget to display and edit
color palettes. This compound widget facilitates displaying and editing of
color palettes used in image processing.

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 11

A set of additional morphological functions are now available in IDL for use in image
processing. The following list shows the morphological routines included in the IDL
5.3 release with a short description of the new functionality.

MORPH_CLOSE — Applies the closing operator to a binary or grayscale
image. It is simply a dilation operation followed by an erosion operation. The
result of a closing operation is that small holes and gaps within the image are
filled, yet the original sizes of the primary foreground features are maintained.

MORPH_DISTANCE — EstimatedN-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel
using a given norm. The distance map is useful for a variety of morphological
operations: thinning, erosion and dilation by discs of radius “r", and
granulometry.

MORPH_GRADIENT — Applies the morphological gradient operator to a
grayscale image. The practical result of a morphological gradient operation is
that the boundaries of features are highlighted.

MORPH_HITORMISS — Applies the hit-or-miss operator to a binary
image.

MORPH_OPEN — Applies the opening operator to a binary or grayscale
image. The result of an opening operation is that small features (e.g., noise)
within the image are removed, yet the original sizes of the primary foreground
features are maintained.

MORPH_THIN — Implements a thinning operator on binary images.

MORPH_TOPHAT — Applies the top-hat operator to a grayscale image.
Applying the top-hat operator shows the bright peaks within the image.

WATERSHED — Applies watershed segmentation to a binary image.

Four object classes have also been added for graphical and analysis capabilities on
regions of interest (ROIs). These are described ifiNles Object FeaturesSection
of this chapter.

IDLanROI — The IDLanROI object class provides an analytical
representation of a region of interest.

IDLanROIGroup — Analytical representation of a group of regions of
interest.

IDLgrROI — An Obiject Graphics representation of a region of interest.

What's New in IDL 5.3 Visualization and Analysis Enhancements

12 Chapter 1: Overview of New Features in IDL 5.3

e IDLgrROIGroup — Object Graphics representation of a group of regions of
interest.

Changes to Existing Image Processing Routines
New keywords have been added to pre-existing image processing routines:.

+ ERODE andDILATE — Added UINT, ULONG, PRESERVE_TYPE, and
THRESHOLD keywords. These keyword expand the data type support for the
functions to include the UINT and ULONG data types in addition to the
existing byte type, and also allows the output from LABEL_REGION to be
used as input to the ERODE and DILATE functions.

 DILATE — Two additional keywords, BACKGROUND and
CONSTRAINED have been added for constrained dilation support.

» LABEL_REGION — The argument for this function has been changed from
Imageto Data, and now allows-dimensional arrays to be labeled.

Two new keywords (ALL_NEIGHBORS and ULONG) have been added and
one keyword (EIGHT) has been obsoleted. The ALL_NEIGHBORS keyword
functionally replaces the obsoleted keyword, and ULONG allows the output
array to be an unsigned long integer instead of a short.

e TOTAL — The CUMULATIVE keyword has been added.
Example Program Using New Image Processing Tools

A new example is included with IDL 5.3 that show how to use the ROI
improvements. This example (roi_example.pro) is located in the
examples/objects directory and shows how you can easily create applications

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 13

using the new IDLanROI and IDLgrROI objects. You can run these examples by
simply typingroi_example at the IDL command line.

1 ROI Test [_ O] x|
File Edit

|| &

&l ROI Info [H[=] B3

Fiegions of Interest:

Arear 18261.000
Perimeter: 434.24759
Pirels: 18421
Minirmurm: ~ 11.0000
M awirum: 255.000
Mean: 120407
Std. Dev.: 304014

Mame: |FO1 #1 Delete ROI
Cloze |

Click mouse ta draw segmented ROI: double click to finish

Figure 1-1: Example of New Image Processing Tools (roi_example.pro)

3D Visualization Improvements

Additional 3D visualization functionality in included in the IDL 5.3 release. These
functions provide a suite of focused tools in the form of compound widgets in
addition to some new and consistent end-user routines.

Three new routines have been added for feature extraction functionality:

 ISOCONTOUR — Exposes the contouring algorithm found in the
IsoContour object.

* ISOSURFACE — Expands on the existing SHADE_VOLUME algorithm.
The following routines have been added for polygon mesh functionality:

* MESH_CLIP — Clips a polygonal mesh to an arbitrary plane in space and
return a polygonal mesh of the remaining portion.

What's New in IDL 5.3 Visualization and Analysis Enhancements

14

Chapter 1: Overview of New Features in IDL 5.3

MESH_DECIMATE — Deletes points in a polygonal mesh that satisfy a co-
planar or co-linear condition and replaces the resulting hole with a new
triangulation.

MESH_ISSOLID — Computes various mesh properties and enables IDL to
determine if a mesh is a solid. If the mesh can be considered a solid, routines
can compute the volume of the mesh.

MESH_MERGE — Merges two polygonal meshes.

MESH_NUMTRIANGLES — Computes various mesh properties and
enables IDL to determine the number of triangles in the mesh.

MESH_SMOOTH — Performs spatial smoothing on a polygon mesh.

MESH_SURFACEAREA — Computes various mesh properties and enables
IDL to determine the mesh surface area, including integration of other
properties interpolated on the surface of the mesh.

MESH_VALIDATE — Checks for NaN values in vertices and removes
unused vertices.

MESH_VOLUME — Computes various mesh properties and enables IDL to
determine the volume that the mesh encloses.

Three new routines have been added for tetrahedral mesh functionality:

TETRA_CLIP — Clips a tetrahedron mesh to an arbitrary plane in space and
returns a tetrahedral mesh of the remaining portion.

TETRA_SURFACE — Extracts a polygon mesh as the exterior surface of a
tetrahedral mesh.

TETRA_VOLUME — Computes properties of a tetrahedral mesh array.

The following routines have been added for field visualization functionality:

PARTICLE_TRACE — Traces the path of a mass-less particle through a
vector field and allows the user to specify a set of starting points and a vector
field.

STREAMLINE — Computes a line that traces the path of a particle through a
constant vector field.

VECTOR_FIELD — Used to place colored, orientated vectors of specified
length at each vertex in an input vertex array.

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 15

The following new compound widgets have been added for graphics functionality:

e CW_LIGHT _EDITOR — Creates a compound widget to edit properties of
existing IDLgrLight objects in a view.

e CW_PALETTE_EDITOR — Creates a compound widget to display and edit
color palettes. This compound widget facilitates displaying and editing of
color palettes used in image processing.

The following routine has been enhanced in the area of visualization through the
addition of new keywords and arguments.

e EXTRACT_SLICE — New keywords and arguments have been added to
support anisotropy, alternative forms of defining the plane for slicing, and
allows for a vertex grid to be generated without sampling the data.

Example Programs Using New 3D Visualization Tools

Two new examples are included with IDL 5.3 that show how to use the 3D
Visualization improvements. These examples are:

e decimate.pro — Shows the use of the new MESH__ routines, in particular,
the MESH_DECIMATE routine

e tetrapro — Shows the use of the TETRA _routines, in particular the
TETRA_CLIP routine

The source for these examples are included with IDL irthmples/objects
directory and show how you can easily create applications using the new features in

What's New in IDL 5.3 Visualization and Analysis Enhancements

16 Chapter 1: Overview of New Features in IDL 5.3

IDL 5.3. You can run these examples by simply typing eitfeximate ortetra at
the IDL command line.

€l Palygonal Mesh Decimation Example [[=] 3 | 1T ctzhed:al Mesh Piston Dema

wie B 25 [Ceft Mouse: Trackhall Fight Mouse: Data Picking L0000 B 1000060
Style | Wire Optiens || Animate off] || uit
o ml _*|| Modelhas 726 vertices and 1448 faces] 4 | 01| FTgET| 3 T | |
Oplions Diecimation Control (%] Clipping Plane Location 4101 D elayf=c) ~ Piston Colering

Mouise: Left: Manipulste entite modzl. Middie: Move cip plane along piston axis. Right Retate clp plane.

Figure 1-2: Examples of New 3D Visualization Tools
(decimator.pro on the left, tetra.pro on the right)

New Vector Output of Object Graphics

IDL now includes support for vector output for both the clipboard and printer. This is
to improve performance of printing as well as moving graphics from IDL into other
applications.

New keywords have been added to support the new vector output to the
IDLgrClipboard and IDLgrPrinter object classes.

» IDLgrClipboard::Draw

* FILE — Use this keyword to write the output to a file instead of the
clipboard.

» POSTSCRIPT — Use this keyword to specify that the generated output
should be in PostScript format.

» VECTOR — Use this keyword to generate the graphics primitives in
either bitmap or vector format.

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 17

» IDLgrPrinter::Draw

e VECTOR — Use this keyword to generate the graphics primitives in
either bitmap or vector format.

For more information, se®New and Updated Keywords to IDL Object Methodwi
page 53.

Vector Output vs. Bitmap Output

Using the vector output does not always ensure a better result. There are trade-offs
involved depending on the type of graphics editing you are using, and the intended
format for the final result.

When to use Vector Output for the Printer

Vector output to the printer results in faster print times for relatively simple scenes.
An increase in the scene complexity results in slower print times due to the larger file
being printed. For complex scenes, bitmap output may be faster. But for simple
scenes that contain only simpler line plots, the vector format will print much faster
and generate an identical image.

When to use Bitmap Output for the Printer

Bitmap output should always be used whenever you need to preserve image attributes
of complex 3D scenes. Again, this includes lighting and shading effects, precise
depth buffering, and other advanced graphical effects.

When to use Vector Output for the Clipboard

Vector output works very well for editing individual objects in a scene using a
graphical object editor like the one in Microsoft Word; however, if you're editing an
image with a bitmap editor, such as Microsoft Paint, vector output is not
recommended.

Use vector output for accurately resizing a pasted clipboard object. If the pasted
clipboard object is in vector format, resizing produces good results. This feature is
extremely useful for producing images to include in documents, when resizing is
often necessary to make the image fit in the document’s confined spaces. Although
bitmaps can also be resized, the quality of the image degrades as the bitmap is
enlarged or reduced in size.

Vector output provides efficiency gains by reducing the memory required for a
clipboard object, depending on the scene content. Simple images with large
dimensions require a lot of space in the clipboard.

What's New in IDL 5.3 Visualization and Analysis Enhancements

18 Chapter 1: Overview of New Features in IDL 5.3

When to use Bitmap Output for the Clipboard

Bitmap output to the clipboard is preferable when trying to preserve all image
attributes for complex 3D scenes. Image attributes you may wish to preserve using
bitmap output include lighting and shading effects, precise depth buffering, and other
advanced graphical effects. Many of these special effects are lost when a vector
representation is used instead.

New Sub-Rectangle Support for Image Display

You can now access, process, and display sub-rectangles of a given data set for
imaging by using the new SUB_RECT keyword for ifbegrimage::Initmethod.

This is useful when you have a very large image but are only interested in viewing a
sub section of the image. This keyword specifies the position of the lower left-hand
corner and the dimensions of the sub-rectangle to display.

For more information, se®New and Updated Keywords to IDL Object Methodwi
page 53.

Enhanced User Control Over Axis Label Orientation

The following new keywords have been added tdEigyrAxis::Init object method
to allow the user to specify the orientation of the text items used to label tickmarks on
the IDLgrAxis object.

» TEXTALIGNMENTS — This keyword specifies the horizontal and vertical
justification of the tick text: left- or right-, and top- or bottom-justified.

» TEXTBASELINE — This keyword describes the direction in which the
baseline of the tick text is to be oriented.

« TEXTUPDIR — This keyword describes the direction in which the up-vector
of the tick text is to be oriented.

For more information, se®New and Updated Keywords to IDL Object Methodsi
page 53.

Enhanced Query Support for Objects Graphics Devices

The following items of information are now available for query in Object Graphics:
* OpenGL renderer description string
* Maximum view port dimensions

e Maximum texture dimensions

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 19
« Approximate performance measurement (e.g., number of polygons per
second)

You can obtain this information and use it to optimize your Object Graphics code by
understanding the limitations of a device.

The following methods have been added:
e |IDLgrBuffer::GetDevicelnfo
* IDLgrClipboard::GetDevicelnfo
* IDLgrVRML::GetDevicelnfo
e |IDLgrWindow::GetDevicelnfo

For more information, se€hapter 6, “New Objects”
Enhanced Sparse Matrix Functionality

In previous versions of IDL, there was no way to create a sparse matrix without first
creating a full storage matrix. TI®RSINfunction has been enhanced to allow
conversion of a list of subscripts and values to row-indexed sparse storage mode. This
is a more efficient method than converting an array when the density of the matrix is
low. For more information, sé®ew and Updated Keywords/Argumentsi

page 65.

New Obiject Viewer

The newXOBJVIEW procedure allows you to quickly and easily view and
manipulate IDL Object Graphics on screen. This procedure displays a widget
containing buttons that allow you to rotate, pan, and scale the object using your
mouse.

SeeChapter 5, “New IDL Routinesfor complete documentation on the XOBJVIEW
procedure.

What's New in IDL 5.3 Visualization and Analysis Enhancements

20 Chapter 1: Overview of New Features in IDL 5.3

&l Xobjview M= B3
File Edit “iew

(] _[3]+]H]

Figure 1-3: The XOBJVIEW draw widget

Visualization and Analysis Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 21
IDL Language Enhancements

The following enhancements have been made in the IDL language in the IDL 5.3
release:

« Internationalization Support for IDL Applications
« New String Processing Functionality

*« New IDL Session Reset Commands

* New COMPILE_OPT Statement

¢ New Output Options for the HELP Procedure

* Raised Limits
Internationalization Support for IDL Applications

New support for internationalization provides you with the ability to create a message
catalog that you can call from within your application. This catalog can then be
translated so that you can support multiple languages. Several new procedures and al
object class have been added to support internationalizing your IDL application.

Three new procedures have been added. They are:
e MSG_CAT_COMPILE— Creates an IDL language catalog file.
e MSG_CAT_CLOSE— Closes an IDL language catalog file.

e MSG_CAT_OPEN— Returns the specified object from an IDL language
catalog file.

For more information, se€hapter 5, “New IDL Routines”

A new IDLffLanguageCat object class has been added that has the following
methods:

« |IDLffLanguageCat::IsValid— Determines whether the IDLffLanguage Cat
object has a valid catalog.

* IDLffLanguageCat::Query— Returns the language string associated with a
specified key.

« |IDLffLanguageCat::SetCatalog- Specifies a catalog to use.

For more information, se€hapter 6, “New Objects”

What's New in IDL 5.3 IDL Language Enhancements

22

Chapter 1: Overview of New Features in IDL 5.3

New String Processing Functionality

The following new string processing routines have been addedCBagter 5, “New
IDL Routines”for complete documentation on these new routines:

STRCMP — Compares two strings. Can perform case-insensitive comparison
of first N characters more easily than using the EQ operator.

STREGEX — Performs regular expression matching. Regular expressions are
a very powerful way to match arbitrary text. Regular expressions are an
integral part of many UNIX tools, including awk, egrep, lex, perl, and sed, as
well as many text editors. Regular expressions are slower than simple pattern
matching algorithms, but are vastly more powerful than simple pattern
matching, and can easily handle tasks that would be difficult or impossible
otherwise.

STRJOIN — Collapses a string scalar or array into merged strings. The
separator string used between the joined strings can be specified.

STRMATCH — Compares its search string, which can contain wild card
characters, against the input string expression.

STRSPLIT — Splits its input string argument into separate sub-strings,
according to the specified pattern

The following existing string routines have been enhanced:

STRMID
» TheFirst_CharacterandLengtharguments can now be arrays.

« REVERSE_OFFSET — This new keyword specifies fiedt Character
should be counted from the end of the string backwards. This allows
simple extraction of strings from the end.

STRPOS

» REVERSE_OFFSET — Normally, the value of fP@sargument is used
as an offset from the beginning of the expression towards the end. Set this
keyword to use it as an offset from the last character of the string moving
towards the beginning. This keyword makes it easy to position the starting
point of the search at a fixed offset from the end of the string.

» REVERSE_SEARCH — STRPOS usually start®asand moves toward
the end of the string looking for a match. If REVERSE_SEARCH is set,
the search instead moves towards the beginning of the string. This
keyword obsoletes the RSTRPOS function.

IDL Language Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 23

New IDL Session Reset Commands

The new executive commandESET_ SESSIONMNd.FULL RESET_ SESSION
allow you to reset much of the state of an IDL session without having to exit and
restart the IDL session. S€dapter 5, “New IDL Routinesfor complete
documentation on these new commands.

New COMPILE_OPT Statement

The newCOMPILE_OPTstatement allows you to provide the IDL compiler with
information that changes some of the default rules for how to compile a function or
procedure. Se€hapter 5, “New IDL Routinesfor complete documentation on this
new statement.

New Output Options for the HELP Procedure

Several new keywords to th#ELP procedure provide greater control over the
information returned by the HELP procedure. The BRIEF keyword causes terse,
summary style output, while the FULL keyword causes full, unfiltered output. The
FUNCTIONS and PROCEDURES keywords allow you to limit output produced by
the ROUTINES and SOURCE_FILES keywords to either functions or procedures.

Raised Limits

Limits for the following have been raised in IDL 5.3:

e The limit on the number of elements allowed in an array concatenation (e.g. []
operators) has been raised from 90 to 65535.

e The limit on the number of plain or keyword arguments to an IDL function or
procedure has been raised from 64 to 65535.

What's New in IDL 5.3 IDL Language Enhancements

24 Chapter 1: Overview of New Features in IDL 5.3
File I/O Enhancements

The following enhancements have been made in the IDL language in the IDL 5.3
release:

* New Support for GZIP File Compression/Decompression
* New File Input/Output/Query Functionality

* New Support for .WAV Audio Files

* Enhanced Support for Tiff Images

* Improved Macros for Importing Data
New Support for GZIP File Compression/Decompression

IDL 5.3 now has support for GZIP file compression/decompression. You can now
read and write data files that use GZIP as well as cigatefiles which can be
compressed as well. This allows you to read and write data files as well as create
.SAV files that have been compressed which greatly reduces the disk space required.

The OPENprocedures (OPENR, OPENW, and OPENU) now have a COMPRESS
keyword that allows you to read and write all data to the file in the standard GZIP
format. This means that IDL's compressed files are 100% compatible with the widely
available gzip and gunzip programs.

The SAVE procedure also has a new COMPRESS keyword that causes IDL to write
all data to the SAVE file using the ZLIB compression library to reduce its size.

IDL Demo files now use this feature so the they are compressed, resulting in a
smaller IDL installation size.

New File Input/Output/Query Functionality

Additional file input/output functionality is included in the IDL 5.3 release. This
allows you to easily read ASCII, binary, image, and audio files into IDL. The
following list describes the areas of new functionality:

» The following routines have been added for file location functionality:

* GET_DRIVE_LIST (Windows and Mac only) — Returns a string array
of the names of valid drives / volumes for the file system.

File I/O Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 25

« The following routines have been added for reading binary data:

BINARY_TEMPLATE — Allows the user to interactively generate a
template structure for a binary file. You can then use this template to read
in binary file with the READ_BINARY function.

READ_BINARY — Reads the contents of a binary file using a passed
template or basic command line keywords.

» The following routines have been added for general image functionality:

QUERY_IMAGE — Reads the header of a file and determines if it is
recognized as an image file.

READ_IMAGE — Reads the image contents of a file and returns the
image in an IDL variable.

WRITE_IMAGE — Writes an image and its color table vectors, if any, to
a file of a specified type.

e The following compound widgets and dialogs have been added for compound
widgets and dialogs functionality:

What's New in IDL 5.3

CW_FILESEL — A compound widget for file selection.

DIALOG_READ_IMAGE — A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE
writing image files.

— A graphical user interface used for

=] B3

i@l Select Image File

Drive: m k

CHRSINDLES

bin',
docsh
exanmplest,
extemalt
help'

[1:38
myprojf
resource’

Filter: | Image Files Vl Cancel
mage #{0 ot ooon [8 B

Format: 77797
Bits/Cmp: 77777
fidth: 777
Height: 77777
Pixel: 27777

Palette: 77727

Preview Images

' Color
' Grayscale

" NoFreview

Figure 1-4: DIALOG_READ_IMAGE

File /O Enhancements

26

Chapter 1: Overview of New Features in IDL 5.3

New Support for WAV Audio Files

These new routines add support for input and output of .WAV audio files.

* QUERY_WAV — Checks that the file is actually a .WAYV file and that the
READ_WAV function can read the data in the file.

« READ_WAV — Reads the audio stream from the named .WAV file.
« WRITE_WAV — Writes the audio stream from the named .WAV file.

Enhanced Support for Tiff Images

IDL now supports single or multi-channel TIFF images. The following routines have

been enhanced:

« READ_TIFF — This procedure now reads single and multi-channel images

and returns the image and color table vectors.

* WRITE_TIFF — This procedure can now write TIFF files with one or more
channels where each channel can contain 8, 16, 32, or floating point pixels.

Improved Macros for Importing Data

Items have been added to the IDL Development Environment Macros menu and the
Tool Bar to make importing of image, ASCII, binary, and HDF data into IDL even
easier by giving you dialogs that step you through the process. For more information,

seeChapter 4, “IDL Macros for Importing Data”

m Window Help
 Edt. E

Print % ar -
Help on ar E
Irmpart Image
Irmpart Az I
Irmport Binany
Import HOE
Dema

B IDL 5.3 for Windows Deme

Elle Edit Search Run Projec

B el ne) o
m AR R

Import Image Import HDF
File File

Import ASCII File Import Binary File

Figure 1-5: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

File I/O Enhancements

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 27
Development Environment Enhancements

The following enhancements have been made in the IDL language in the IDL 5.3
release:

* New IDL Projects

* Enhanced Breakpoint Functionality

* New IDL Functions/Procedures Context Menu

* New Color/Font Style Coding for Source Files on Motif
e Enhanced IDL MACRO Support

New IDL Projects

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop your
IDL application. All of your application files can be organized so that they are easier
to access and easier to export to other developers, colleagues, or users. IDL Project:
are a great benefit to development teams working on a large project as well as
individual developers managing multiple projects.

= [l myproject.prj - IDL #IDL-WIN - Evaluation Purposes Only
File Edt Seach Hun Project Macros Windoe Help

pEsEHSc s mBe(BEM | _Hs«lnryRe|an

: =
Prpjgcts ————
Window e

0 =—— myproj.prj

Groups | Buid Order

iDL Versi pment buiid of Thu Jun 24 00:51:29 MDT 1933 (Win32 x85). [¢] 1999, Research Systems, Inc

Hame Type WValue

ST

| ol

DL> |
Feady || [HUM i

Figure 1-6: Projects Window for Macintosh (left) and Windows (right)

What's New in IDL 5.3 Development Environment Enhancements

28 Chapter 1: Overview of New Features in IDL 5.3

Access to all Files in Your Application
IDL Projects have an easy to use interface for grouping:
» IDL source code files (.pro)
e GUI files (.prc) created with IDL GUIBuilder
» Data files (ASCII text or binary)
* Image files (.tif, .gif, .omp, etc.)
» Other files (help files, .sav files, etc.)

After you add all of your files to your project, you can simply double clickm@n
files to open them in the IDL editor grc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project

IDL projects make it easy to add, remove, move, edit, compile, and test files in your
project.

All of your workspace information is saved as well. If you save and exit your project
with open files, when you open your project, those same files will be opened
automatically for you.

IDL projects also store and retain breakpoint information. There is no need to reset
breakpoints every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled and
run by specifying options for your project.

Creating IDL Runtime Distributions

Once you have completed your application, you can quickly and easily create an IDL
Runtime distribution with a new automated process. If you have purchased the IDL
Developer’s Kit, your application is automatically licensed for distribution.

Exporting Your Applications

You can easily move your application to another platform or distribute your source
code to colleagues by exporting your project. All your source code, GUI files, data
files, and image files are copied to a directory you specify.

Development Environment Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 29

For more information on IDL Projects and Developer’s Kit, &d&apter 2, “Creating
IDL Projects”.

Enhanced Breakpoint Functionality

Breakpoints have been enhanced in IDL 5.3. You can now selectively create, delete,
enable, disable, and set other options for breakpoints from one dialog. Other features
include new keywords to the BREAKPOINT procedure as well as the ability to add
breakpoints to a file that has not been compiled. For more informatiofsaater 3,

“IDL Development Environment Enhancements”

Edit Breakpoints [x]

Ef’Dl Madule | Lire: | File: |Afte| | Dncl Condition |
4 a

Add Remove | HemoveAIII Goto | i Close I

Figure 1-7: New Edit Breakpoints Dialog

New IDL Functions/Procedures Context Menu

Previously only available on the Macintosh, the IDL Function/Procedure Context
Menu has been added to the Windows and Motif versions of IDL. The IDL
Function/Procedure Context Menu allows you to navigate between the different
procedures and functions you have defined in the current file you have open in the
IDL Editor. For more information, seé&hapter 3, “IDL Development Environment
Enhancements”

What's New in IDL 5.3 Development Environment Enhancements

30 Chapter 1: Overview of New Features in IDL 5.3

Elle Edt Search Bun Project Macros “Window Help
DEsHE - e : (280 [owwdle e @ Context Window

. d_surfviewT ogle0fOn = I
0 [l e | d_surfviemdnimateS urface on WIndOWS

d_surfviewaddT racePaint

- d st Ent
B3 No Project Open - T suhvicaClagnp
| C:\RSINDLS3\exampl EEIE [view.|
data[l . nCurrentPoints] = wyzVact:
data[Z . nCurrentPoints] = wyzVect:
connectivitylist [nCurrentPoints+:

anmmactivi teld shintnrrantPointe st

] d_torecast. pro
Context W|nd0W U; /?Dme/usrn_lncl:al/rsi/idl_E .E’/examplEB/dEmD/d;mDEr‘:/d_PDrE-l:ast .pro
. |_forecastAutoCorr p7 1999/01/16 01:11:47 scottm Ex)
on Motif e P
\N_Fmﬂe:astﬁutnﬂiast .
B9, Research Systems, Inc. All rights reserved.
d_forecastTslata uction prohibited.

d_forecastEvent

d_forecastCleanup

d_forecast

E CALLING SEQLENCE: d_forecast

Figure 1-8: IDL Function/Procedure Context Menu
on Windows (top) and Motif (bottom)

New Color/Font Style Coding for Source Files on Motif

Previously available on Windows and Macintosh platforms, color and font style
coding has been added to IDL for Motif. This allows you to color code and specify
different font styles for the different types of IDL statements that appear in the IDL
Editor window. For more information, s€hapter 3, “IDL Development

Environment Enhancements”

Enhanced IDL MACRO Support

New Command Stream Substitution

The %? substitution string has been added in IDL 5.3. This substitution string

displays a dialog for a user to enter a value to pass to a macro. For more information,
seeChapter 3, “IDL Development Environment Enhancements”

New Support for Command Stream Substitutions on Macintosh

Command stream substitution are now available on the Macintosh. You can use
command stream substitutions to include certain types of information into IDL

Macros. For more information, s€apter 3, “IDL Development Environment
Enhancements”

Development Environment Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 31
Scientific Data Formats Enhancements

The following enhancements have been made in the IDL language in the IDL 5.3
release:

¢ New Support for Compression of CDF and HDF SD Data Sets
« New HDF-EOS Query Routines

« New EOS_EXISTS Function

« HDF_BROWSER Enhancements

e Updated Library Versions

New Support for Compression of CDF and HDF SD Data Sets

The newCDF_COMPRESSIONrocedure allows you to set or retrieve the
compression mode of a CDF file and/or variable.

The newHDF_SD_SETCOMPRESBrocedure compresses an existing HDF SD
data set or sets the compression method of a newly created HDF SD data set.

New HDF-EOS Query Routines

The following new HDF-EQS query routines have been added:
« EOS_GD_QUERY — Returns information about a specified grid.
e EOS_PT_QUERY— Returns information about a specified point.
« EOS_QUERY — Returns information about the makeup of an HDF-EOS file.
« EOS_SW_QUERY— Returns information about a specified swath.

New EOS_EXISTS Function

The newEOS_EXISTSunction allows you to determine whether the HDF-EOS
extensions are supported on the current platform.

HDF_BROWSER Enhancements

The following new features have been added tdHiheé_ BROWSERfunction:

« VData/VGroup Data Access — This allows access to VData and VGroup data
within HDF files.

What's New in IDL 5.3 Scientific Data Formats Enhancements

32 Chapter 1: Overview of New Features in IDL 5.3

* New Show3 Preview Type — This new preview type combines an image, a
surface plot of the image data, and a contour plot of the images data in a single
tri-level display.

Updated Library Versions

IDL now supports the following library versions:
* Common Data Format (CDF) 2.6r7
» Hierarchical Data Format (HDF) 4.1r3
» Hierarchical Data Format Earth Observing System (HDF-EOS) 2.4

Scientific Data Formats Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 33
IDL GUIBuilder Enhancements

The IDL GUIBuilder has been enhanced so that the event file is no longer overwritten
when you generate it. When the event file is built, pre-existing functions and
procedures in the event file are not overwritten. The IDL GUIBuilder now appends
new event routines to the end of the file so that you can now more easily maintain
your event file.

Because of this change, menu options that generate the event file and source code
separately are no longer needed. There is how only one menu item:

Edit Search Bun Project Macros Window Help

Ly ER N
Open... Chil+0

Close 1

Open Project... |M| 3 |'@|| .l @l
Saye Frojest — =

Save Broestiss.. ul &Y C:ARSIAIDL53\exa
[Hoze Frofect @1 GIF Yiewer

Save Chil+5 File Toolz Filters

Save fz...
Eevert o Saved

Erirt [Eil+f
Eririt Setup,..
Fiecent Files 3

-

Fiecent Projects

Freferences...

Exit Crl+3

Figure 1-9: New Menu Configuration for IDL GUIBuilder

What's New in IDL 5.3 IDL GUIBuilder Enhancements

34 Chapter 1: Overview of New Features in IDL 5.3
IDL ActiveX Control Enhancements

IDL 5.3 includes a new version of the IDLDrawX ActiveX control. The control is
now named IDLDrawX2.

Why Was a New Version of the Control Created?

One of the features of COM is that interfaces are immutable. That is to say that when
an interface is created you “contractually” agree that the interface won't change.
Changes require that a new interface (or version) be created. Since the IDL ActiveX
control is a COM object it is bound by this agreement. Because we have made
improvements to the ActiveX control interface by adding new methods and
properties, it was necessary that we create a new ActiveX control with the new
interface.

What Must You Change to Take Advantage of the Control?

If you are a Visual Basic user, you need to add the “IDLDrawX2 ActiveX Control
Module” to your project and remove the “IDLDrawX ActiveX Control Module” from
your project. The source code need not change.

Components E

Cantrals | Designersl Inzertable Dbiectsl

[IDLSplashkit RS R e

[JIE Chart | ~ | oo

TVIE Popup Menu Lo A
=l = =

Figure 1-10: IDL DrawX2 ActiveX Control

What About the Previous ActiveX Control?

While version 1.0 of the IDLDrawX control will continue to work with new versions

of IDL, it is no longer supported and will not be shipped with IDL. It is

recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

IDL ActiveX Control Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 35

Why Should You Upgrade?

The new control has a number of new features including printing support, dual
interface control, and new memory improvements. The rest of this section details the
improvements made in the new version of the IDL ActiveX control.

New Dual Interface Control

Starting in IDL 5.3, the IDLDrawX2 ActiveX control is a dual interface control. A

dual interface control is an ActiveX control that can be bound to at both compile time
through a vTable and at runtime through a dispatch interface. Scripting clients such as
java script, VB Script, and VBA use runtime binding while compiled languages such
as Visual C++ and some VB applications use compile time binding. This now gives
compiled languages the ability to call methods on the IDLDrawX2 ActiveX control
directly rather than through a dispatch interface.

New Printing Support

Applications that have printing and print preview capabilities can now take advantage
of printing support within the new IDLDrawX2 ActiveX control. This new capability

is transparent to applications that have built-in print capabilities. For applications that
do not have built-in print capabilities, you can call the new Print method to get your

output. The new enhancements that support this capability are:

¢ A new Print method
* A new Bufferld property
Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of the window at screen resolution with a Direct Graphics window. For
information about controlling print resolution of an object graphics window, see the
Bufferld property.

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.
YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of a millimeter.

What's New in IDL 5.3 IDL ActiveX Control Enhancements

36 Chapter 1: Overview of New Features in IDL 5.3

The X offset plus the width should be less than or equal to the width of a single page.
The Y offset plus the height should be less than or equal to the height of a single
page. The origin of the offset 0,0 is in the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns
BOOL: TRUE if printing succeeded.
Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

1. A value of -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. Avalue of 0 will cause the graphics to print at roughly two times the screen
resolution. This format is suitable for shaded surfaces or vertex colored mesh
surfaces. This is the default.

3. A value greater then 0 will be construed as an IDLgrBuffer object reference
whose data will be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information on IDLgrBuffer, see tHel Reference Guide
Note

You must set the GRAPHICS_TREE property of the IDLgrwindow object for these
print options to work.

The following Visual Basic example shows how to use the new Bufferld property:

‘Create an IDLgrBuffer with dimensions of 1280x1024
IDLDrawWidgetl.ExecuteStr(“buffer=OBJ_NEW(IDLgrBuffer, $
dimensions=[1280,1024])")

‘Get the object reference of the buffer we just created
buffer=IDLDrawWidget1.GetNamedData(“buffer”)

‘Set the buffer ID to the object reference
IDLDrawWidget1.Bufferld=buffer

‘Increase the size of the buffer to 2000 pixels by 2000 pixels

IDLDrawWidgetl.ExecuteStr(“buffer->SetProperty(dimensions = $
[2000,2000])")

IDL ActiveX Control Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 37

Tip
Remember to destroy the IDLgrBuffer object after it is no longer needed for
printing purposes.

Improved Error Reporting in the IDLDrawX2 ActiveX Control

The following have been added to aid developer’s in reporting errors:
Return Value Change for ExecuteStr

The BOOL return value has been replaced by a LONG return value which is 0 if
successful or the IDL error code if it fails.

Tip
This can be used in conjunction with the new LastldIError property that contains
the actual text of the error message to help you debug your program.

LastldIError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Tip
You can check the return value from the ExecuteStr method to determine if an error
occurred. For more information, see IDLgrWindow in iBe Reference Guide

Method Enhancements to the IDLDrawX2 ActiveX Control

New Parameter for SetNamedArray

BOOL: Set to TRUE if the control should free a shared array when IDL releases its
reference.

New Properties to the IDLDrawX2 ActiveX Control

Renderer

This property specifies either the software or hardware renderer for object graphics
windows is to be used. It Has no effect if the GraphicsLevel property is set to 1. Valid
values are:

What's New in IDL 5.3 IDL ActiveX Control Enhancements

38 Chapter 1: Overview of New Features in IDL 5.3

e 0 = Platform native OpenGL
« 1 =IDL’s software implementation
By default, the setting in your IDL preferences is used.

New Auto Event Properties to the IDLDrawX2 ActiveX
Control

OnDDblClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dbilclick, drawld, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid
values are:

* 1 — Left mouse button.
« 2 — Middle mouse button.
* 4 — Right mouse button.

xPos The harizontal position of the mouse when the button wals
clicked.

yPos The vertical position of the mouse when the button was
clicked.

Table 1-1: OnDblClick Parameters
IDL ActiveX Control Examples

All of the example IDL ActiveX control examples in the

rsi-director y\external\activex directory (wheresi-directoryis the

installation directory for IDL) have been updated to the new IDLDrawX2 ActiveX
control. These examples show the technigues you can use to create applications that
use the IDL ActiveX control in several different environments.

IDL ActiveX Control Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 39

Installation and Licensing Enhancements

IDL ActiveX Control Demonstration Application

The IDL ActiveX Control demonstration application or “Tstorm demo” is now an
option for installing on Windows platforms. This application shows how the IDL
ActiveX control can be used to create IDL applications. To start the application,
select Start- Programs- Research Systems IDL 5.3 TStorm.

This demonstration application shows how easy it is to create Windows applications
using the IDL ActiveX control.

% TStorm =] E3

File Edit “iew Help

X Slices . Yolume Plot Options [H[=] E3
ressue

sl lsDSurfacel
¥ Slice | Z Slice |

O Yector % Image

i~ Plane Parameters

. ."' : :] Index |3U

Tempersture

—Image Parameters

Magnituce of Wind Yelocity ‘Vector ' Pressure

' Temperature
Magnitude of Wind
Welocity Yector

- Slice Animation

Step Size |2_

™ Loop Continuously
Start

= Westorn Farameters
{* Even Sampling

Step Size |2_
= Random Sampling
-8.945 -3.445 0.055 3.5585 : Number Yectors W
P B i illi
ressure Periubation (millibars) VesarLengh 100

Figure 1-11: IDL ActiveX Control Demonstration Application
You can view the source for this demonstration application in the

rsi-directory /examples/tstorm wherersi-directoryis the installation
directory for IDL.

What's New in IDL 5.3 Installation and Licensing Enhancements

40 Chapter 1: Overview of New Features in IDL 5.3

New licensing Dialog

The IDL License Information dialog has been enhanced to ease licensing of IDL. If
you are using the HASP (or Node Locked Hardware) option, you can now add any
optional features listed on your RSI Registration/Licensing form in the Optional
Features box.

IDL License Information E

Select licenzing method
" Node-Locked (Software)

& Node-Locked [Hardware]
" Floating

Fleaze enter the license information supplied with your installation.

Installation Mumber: I

Site Matice:

|
Optional Features: I
|

Installation Key:

Ok I Lancel | Help |

Figure 1-12: IDL License Information Dialog

For more information on how to install and license IDL, sedrtb®llation Guide
for your platform.

Replacing the Licensing Dialog Image in Callable IDL
Applications

You can now specify the image for the Demo dialog that appears for an IDL callable

application. This allows you to customize the licensing of your callable IDL
application.

Installation and Licensing Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 41

The Unlicensed Application dialog displays at the startup of a callable IDL
application if it is not licensed.

Unlicensed Application

Licenze... |

Default image that
you can replace — |

Figure 1-13: Unlicensed Application Dialog for Windows

Replacing the Image for Windows Callable Applications

To replace the image in the Unlicensed Application dialog for Windows, you use the
IDL_SetValue routine:

int IDL_SetValue(int id, void* pvValue);

You must call the IDL_SetValue routine prior to the IDL_Win32Init() call which
initializes IDL. pvValue may be either a string containing the path &\P file or a
bitmap resource defined in your callable application.

For example, to specify a path taBMP file, you would use something like the
following:

/I string containing path of bitmap file
strepy(bitmapFile, "c:\\test_app\\source\\example.bmp");
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) bitmapFile);

If you are specifying a resource, you would use something like the following:

// bitmap resource
IDL_SetValue(IDL_VAL_DEMODLG_BITMAP, (void*) IDB_BITMAP1);

What's New in IDL 5.3 Installation and Licensing Enhancements

42 Chapter 1: Overview of New Features in IDL 5.3

Replacing the Image for Macintosh Callable Applications

To replace the image in the Unlicensed Application dialog for Macintosh, you need to
edit the IDL executable resource using a resource editor. In the following
instructions, ResEdit is used to modify the resource.

To replace the image for Macintosh callable applications, complete the following
steps:

1. Copy the graphic you want to add to the Unlicensed Application dialog to the
clipboard.

Start ResEdit.

Open the IDL executable.

Open the PICT resources by double-clicking on the PICT icon.
Open the 139 resource by double-clicking it.

Paste the graphic into the window. Choose EdRaste.

Save the file. Choose File Save.

Quit ResEdit. Choose Filse Quit.

© N o g M w N

Installation and Licensing Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 43
IDL DataMiner Enhancements

IDL DataMiner is now supported on the IRIX platform. The following table
describes the supported databases:

Supported Driver Name Platform Information
Databases
INFORMIX 5., INFORMIX IRIX 6.4
6., or 7x
INFORMIX 7.xor | INFORMIX 9 IRIX 6.4
9.X
Oracle 8.0 Oracle 8 IRIX 6.4 (requires Oracle N32 Client
Development Kit, Version 8.0.5.0.0
(Oracle Part Number: Z24604-02) or
later)
SQL Server 4.9.2,| Sybase IRIX 6.4
SQL Server
System 10, Systen
11, and Adaptive
Server 11.5 and
11.9

Table 1-2: Supported IRIX ODBC Drivers for DataMiner

For more information on how to install, setup, and use IDL DataMiner on IRIX, see
thelDL DataMiner manual.

What's New in IDL 5.3 IDL DataMiner Enhancements

44

Chapter 1: Overview of New Features in IDL 5.3

Documentation Enhancements

Numerous improvements have been made to the documentation for IDL 5.3,
including the printed manuals, online help, and PDF versions of each manual. This
section outlines these changes, and discusses the organization of the document set
and online help.

Here’s a summary of what has been improved and added in the IDL 5.3
documentation.

Reorganization of Core IDL Manuals

The content of the IDL 5.3 core documentation set has been reorganized to make it
easier to find the information you need. Existing IDL documentation has been
enhanced visually and organizationally to help you access the full power of IDL.

IDL Reference Guide

ThelDL Reference Guidis now a comprehensive reference for IDL that contains the
following:

* An alphabetical list of IDL routines that now includes executive commands,
IDL objects, and IDL statements, in addition to the already-existing functions
and procedures. Any IDL language element (with the exception of Scientific
Data Formats routines) that can be entered at the command prompt or in an
IDL program can now be found in theL Reference GuideéDescriptions of
Scientific Data Formats routines (CDF_*, EOS_*, HDF_*, and NCDF_*
routines) can be found in ti8zientific Data Formatmanual.

» The Syntax (formerly called “Calling Sequence”) for each function, procedure,
and object now includes all the keywords available for a routine.
Using IDL

TheUsing IDL manual now has placed a new emphasis on how to perform such
powerful IDL functionality as signal processing, image processing and mapping
among others.

Building IDL Applications

Building IDL Applicationsnow has placed a new emphasis on creating applications
in IDL. It covers such topics as how to create applications, components of IDL
applications, and programming tools that help you build IDL applications.

Documentation Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 45

Object Graphics Documentation

The Object Graphicsnanual has been eliminated, and the material has been moved
into other manuals as follows:

« Information on using IDL Object Graphics has been moved ttsiveg IDL
manual.

* The Object Graphics Class Library has been moved tlh&eference
Guide

The New Getting Started with IDL Manual

The newGetting Started with IDlmanual replaces the formHDL Basicsmanual as
your introduction into the world of IDL. As always, this book assumes beginning-
level exposure to IDL. The existing material has been revised to be more user-
friendly, following a step-by-step example-based format, and relevant new material
has been added.

Improved IDL HandiGuide

ThelDL HandiGuidenow alphabetically lists all IDL functions, procedures,
statements, objects, and executive commands, including Scientific Data Format
routines. A description and the syntax (including keywords) is listed for each routine
or object.

The New IDL Master Index

A master index to the entire IDL documentation set now exists as a PDF file and can
be accessed through the IDL Online Guide. All entries are hypertext linked to the
actual information you are looking for. The combined index in the back of each core
manual has been removed. The index in the back of each manual now applies only to
that manual.

Improved Help System

The IDL Help system has been reorganized to help you find the information you
need.

The Contents tab is no longer organized according to the individual books in the IDL
document set. Instead, all information in the entire IDL document set is presented by
topic. This allows you to find the information you need without having to know
which printed book the information resides in.

What's New in IDL 5.3 Documentation Enhancements

46 Chapter 1: Overview of New Features in IDL 5.3

The IDL online help is now contained in a singhdp file. This allows you to search
and find the information you're looking for in one source.

The IDL online help also contains a convenient navigational section in its commands

reference section to allow you to easily navigate to the routine or procedure you're
looking for.

2 [_[O[x]

Fle Edt Boskmark Oplions Mavigate Hep

Contents|_Index | Back | Pint | o | o

Alphabetical List of G i

Symbols ABCDEFGHIJKLMNOPQRSTUVWXZ

Symbols :1

COMPILE & [_[O]]
CONTINUE Fic Edi Bookmak Opions Navigate Help

Srre Conterts| Index | Back | Prnt | << | » |

.FULL_RESET SESSION Creatlng a PTOIECt

ptie] To creats a Project, complets the following steps: ii
oUT

1. Select File — New — Project (on Windows and Motif) or File —

«RESET SBSSION New Project (on Macintosh), The Save dialog displays.

RETURN

Help Topics: IDL 5.3 Online Help [Z]x]piect file. Click Save. & prj
.RNEW
- pended to the name you entet,

RUN et | Index | Find | lsplayed in the Frojects

SKIP

STEP Click & baok, and then click Open. Or click another tab, such as Index.
ahesn — Save Project.

STEPOY

only have one project open at

@ DL Fef tiple project windows open at
Ererence

@ Buiding IDL &pplications

@ Scienlific Data Fomats 'l see yout ptoject displayed

dow is where you control

Findows and Motif) of the

r project, you will see that §

hen to your project Youean x|

Open I Fint. Cancel

Figure 1-14: The IDL Help Navigator

Improved PDF System

All volumes of the IDL documentation set are now available in Adobe Acrobat
Portable Document Format (PDF). These PDF files are automatically installed on
your machine with IDL. You will need a copy of Adobe’s Acrobat Reader with
Search software (version 3.0 or later). A copy of Adobe Acrobat Reader is included

on your product CD-ROM. For more information on Adobe Acrobat Reader, visit
their World Wide Web site atww.adobe.com

Documentation Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 47

To access the IDL online manuals after you have installed IDL:

« On Windows, select Start Programs- Research Systems IDL 5.3 IDL
Online Manuals.

* On Macintosh, a shortcut can be found in teedirectory.:RSI:IDL 5.3 folder
namedDL Online Manuals

¢ On UNIX, execute the following at the UNIX prompt:
idiman

The IDL online manuals can also be found in thie directory of your product CD-

ROM.

Onling Guide
fainRage

Viewan IDL
Manual

Use the DL
Master Index

Search the IDL
Manual Set

Learn About RS
Products & Services

Internet Resources
1 Adobe Acrobat Search |]

How to Contact
Research Systems

Online
Guide

=2 1DL

IWelcome to the VIP Online Guide! From the Online
Guide you can:

+ View an DL Manual. All IDL manuals are hypertext
linked for easy navigation. Click on the “Cnline Guide”

bookmark in any manual to return to this online guide.

+ Use the IDL Master Index to find information you're
looking for. The Master Index is a combined index of
all the manuals in the IDL documentation set.

+ Search the IDL Manual Set for information you're
looking for using Acrobat Search, a full-text search
engine.

+ Learn More About Research Systems, Inc.
Products and Services including other software
products Technical Support, and Professional
Services.

+ Visit IDL Resources on the Intemet. This is alink to

Find Results Containing Text

pter 6:

1age Processing

$mage processing and display techniques using [DL.

Search | asic
LClear |
heee... 5B

~ Option oy
v ‘wiord Stemming [~ Thesaurus [Match Case
[T Sounds Like ™ Prosirity

|N0 selected indexes are available for search.

Gatting Sterted with 101

Swoothing and ShArpaming

Ceeiee... 53 Otharlage MLanipulations ...
Indexes... 62 Extracting Frofiles

.76

.69
.73

7S

77

57

Figure 1-15: The Online Guide and Search Dialog

What's New in IDL 5.3

Documentation Enhancements

48 Chapter 1: Overview of New Features in IDL 5.3

Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. The Online
Guide (onlguide.pdf) file is your guide to the IDL documentation set. It has links for
all manuals in the documentation set as well as links on how to get more information
from Research Systems.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need
within the IDL manual set. To search the IDL manual set, you can click on the
binocular/page button in the Acrobat Reader tool bar after you have opened any IDL
manual in the set including the Online Guide.

Documentation Enhancements What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 49

New Object Features

This section describes the new object classes, methods, and keywords in IDL 5.3.

New Object Classes

The following table describes the new object classes in IDL 5.3:

Object Class Description

IDLanROI The IDLanROI object class provides an analytical
representation of a region of interest.

IDLanROIGroup Analytical representation of a group of regions of
interest.

IDLffLanguageCat Provides an interface to IDL language catalog files.

IDLgrROI An Object Graphics representation of a region of
interest.

IDLgrROIGroup Object Graphics representation of a group of regiong of
interest.

Table 1-3: New Object Classes in IDL 5.3.
New Object Methods

New and existing IDL Object Graphics classes have been updated to include the
following new methods:

New Methods Description
IDLanROI::AppendData Appends vertices to the current region.
IDLanROI::Cleanup Performs all cleanup for a region of

interest object.

IDLanROI::ComputeGeometry Computes the requested geometrical
values (area, perimeter, and/or centroid
for the region.

Table 1-4: New Object Methods in IDL 5.3

What's New in IDL 5.3 New Object Features

50 Chapter 1: Overview of New Features in IDL 5.3

New Methods

Description

IDLanROI::ComputeMask

Prepares a two-dimensional mask for th
region.

is

IDLanROI::ContainsPoints

Determines whether the given data
coordinates are contained within this
region.

IDLanROI::GetProperty

Retrieves the value of a property or grot
of properties for the region.

P

IDLanROI::Init

Initializes a region of interest object.

IDLanROI::RemoveData

Removes vertices from the region.

IDLanROI::ReplaceData

Replaces vertices in the region with
alternate values.

IDLanROI::Rotate

Modifies the vertices for the region by
applying a rotation.

IDLanROI::Scale

Modifies the vertices for the region by
applying a scale.

IDLanROI::SetProperty

Sets the value of a property or group of
properties for the region.

IDLanROI::Translate

Modifies the vertices for the region by
applying a translation.

IDLanROIGroup::Add

Adds a region to the region group. Only
objects of the IDLanROI class may be
added to the group.

IDLanROIGroup::Cleanup

Performs all cleanup for a region of
interest group object.

IDLanROIGroup::ContainsPoints

Determines whether the given data
coordinates are contained within the

closed polygon regions within this group.

A point is considered to be contained if
lies within the boundary of a region.

IDLanROIGroup::ComputeMask

Prepares a two-dimensional mask for th
group of regions.

is

Table 1-4: New Object Methods in IDL 5.3

New Object Features

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 51

New Methods Description

IDLanROIGroup::ComputeMesh Triangulates a surface mesh (optionally
capped) from the stack of regions
contained within this group.

IDLanROIGroup::GetProperty Retrieves the value of a property or group
of properties for the group of regions.
IDLanROIGroup::Init Initializes a region of interest group
object.
IDLanROIGroup::Rotate Modifies the vertices for all regions within
the group by applying a rotation.
IDLanROIGroup::Scale Modifies the vertices for the region by
applying a scale.
IDLanROIGroup::Translate Modifies the vertices all regions within the
group by applying a translation.
IDLffLanguageCat::IsValid Determines whether the
IDLffLanguageCat object has a valid
catalog.
IDLffLanguageCat::Query Returns the language string associated
with the given key.
IDLffLanguageCat::SetCatalog Sets the appropriate catalog file.
IDLgrBuffer::GetDevicelnfo Returns information on OpenGL hardware
that may be installed on the computer.
IDLgrClipboard::GetDevicelnfo Returns information on OpenGL hardware
that may be installed on the computer.
IDLgrROI::Cleanup Performs all cleanup for an Object
Graphics region of interest object.
IDLgrROI::GetProperty Retrieves the value of a property or group
of properties for the Object Graphics
region.
IDLgrROI::Init Initializes an Object Graphics region of

interest object.

Table 1-4: New Object Methods in IDL 5.3

What's New in IDL 5.3 New Object Features

52

Chapter 1: Overview of New Features in IDL 5.3

New Methods

Description

IDLgrROI::PickVertex

Picks a vertex of the region that, when
projected onto the given destination

device, is nearest to the given 2D device

coordinate.

IDLgrROI::SetProperty

Sets the value of a property or group of
properties for the Object Graphics regio

=)

IDLgrROIGroup::Add

Adds a region to the region group. Only
objects of the IDLgrROI class may be
added to the group. The regions in the
group must all be of the same type (all
points, all paths, or all polygons).

IDLgrROIGroup::Cleanup

Performs all cleanup for an Object
Graphics region of interest group object

IDLgrROIGroup::Init

Initializes an Object Graphics region of
interest group object.

IDLgrROIGroup::PickRegion

Picks a region within the group that, whe
projected onto the given destination

device, is nearest to the given 2D device

coordinate.

=]

IDLgrVRML::GetDevicelnfo

Returns information on OpenGL hardwa
that may be installed on the computer.

e

IDLgrWindow:.GetDevicelnfo

Returns information on OpenGL hardwa

e

that may be installed on the computer.

Table 1-4: New Object Methods in IDL 5.3

New Object Features

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

53

New and Updated Keywords to IDL Object Methods

The following table describes the new and updated keywords to IDL objects.

Object Method

Keyword

Description

IDLffDICOM::Read

ENDIAN

Set this keyword to configure
the endian format when
reading a DICOM file.
e 1 =Implicit VR Little
Endian
» 2 = Explicit VR Little
Endian
« 3 = Implicit VR Big
Endian
» 4 = Explicit VR Big
Endian

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3

What's New in IDL 5.3

New Object Features

54

Chapter 1: Overview of New Features in IDL 5.3

Object Method

Keyword

Description

IDLgrAXxis::Init

TEXTALIGNMENTS
(Get Se)

Set this keyword to a two-
element floating point vector,
[horizontal, vertical],
specifying the horizontal and
vertical alignments for the tick
text. Each alignment value
should be a value between 0.
and 1.0. For horizontal
alignment, 0.0 left-justifies thg
text; 1.0 right-justifies the text
For vertical alignment, 0.0
bottom-justifies the text, 1.0
top-justifies the text. The
defaults are as follows:

» X-Axis: [0.5, 1.0]
(centered horizontally,
top-justified vertically)

* Y-Axis: [1.0, 0.5] (right-
justified horizontally,
centered vertically)

e Z-Axis: [1.0, 0.5] (right-
justified horizontally,
centered vertically)

TEXTBASELINE
(Get, Se)

Set this keyword to a two- or
three-element vector
describing the direction in
which the baseline of the tick
text is to be oriented. Use thig
keyword in conjunction with
the TEXTUPDIR keyword to
specify the plane on which the
tick text lies. The default is
[1,0,0].

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3

New Object Features

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

55

Object Method

Keyword

Description

IDLgrAxis::Init
(continued)

TEXTUPDIR
(Get, Sej

Set this keyword to a two- or
three-element vector
describing the direction in
which the up-vector of the tick
text is to be oriented. Use thig
keyword in conjunction with
the TEXTBASELINE
keyword to specify the plane
on which the tick text lies.
TEXTUPDIR should be
orthogonal to
TEXTBASELINE. The default
is as follows:

* X-Axis: [0, 1, O]
* Y-Axis: [0, 1, 0]
e Z-Axis: [0, 0, 1]

IDLgrClipboard::Draw

FILENAME

Set this keyword to a string
representing the name of a file
to which the output should be
written. By default, this
keyword is a null string
indicating that the output is
written to the clipboard.

POSTSCRIPT

Set this keyword to a nonzefo
value to indicate that the
generated output should be in
PostScript format. By default,
the generated output is in
Windows Enhanced Metafile
Format on Windows platforms
PICT format on Macintosh
platforms, and PostScript on
UNIX/VMS platforms.

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3

What's New in IDL 5.3

New Object Features

56 Chapter 1: Overview of New Features in IDL 5.3

Object Method Keyword

Description

IDLgrClipboard::Draw | VECTOR
(continued)

Set this keyword to indicate
the type of graphics primitives
generated. Valid values are:

* 0 — Bitmap (the default).

The Draw method renders
the scene to a buffer and
then copies the buffer to
the printer in bitmap
format. The bitmap retains
the quality of the original
image.

1 — Vector. The Draw
method renders the scen¢
using simple vector
operations that result in a
representation of the scene
that is scalable to the
printer. This representation
does not retain all the
attributes of the original
image.

IDLgrimage::Init SUB_RECT
(Get, Se)

Set this keyword to a four-
element vectory y, xdim,

ydim|, specifying the position
of the lower left-hand corner
and the dimensions of the su

rectangle to display.

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3

New Object Features

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 57
Object Method Keyword Description
IDLgrPrinter::Draw VECTOR Set this keyword to indicate

the type of graphics primitives
generated. Valid values are:

* 0 — Bitmap (the default).
The Draw method renders

the scene to a buffer and
then copies the buffer to
the printer in bitmap
format. The bitmap retains
the quality of the original
image.

1 — Vector. The Draw
method renders the sceng
using simple vector
operations that result in a
representation of the scen
that is scalable to the
printer. The vector
representation does not
retain all the attributes of
the original image. The
vector representation is
sent to the printer.

D

Table 1-5: New and Updated Keywords to IDL Object Methods in IDL 5.3

What's New in IDL 5.3

New Object Features

58

New Routines

Chapter 1: Overview of New Features in IDL 5.3

The following is a list of new functions, procedures, statements, and executive
commands added to IDL. To view documentation for new routine;sagter 5,

“New IDL Routines”

Routine

Description

.RESET_SESSION

This executive command resets much of th
state of an IDL session without requiring thg
user to exit and restart the IDL session. No
that executive commands can only be used
the IDL command prompt, not in IDL
programs.

.FULL_RESET_SESSION

This executive command does everything

.RESET_SESSION does, plus the following:

* Removes all system routines installed
LINKIMAGE or a DLM.

* Removes all structure definitions installg
via a DLM.

* Removes all message blocks added by
DLMs.

* Unloads all sharable libraries loaded into

IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

* Re-initializes all DLMs to their unloaded
initial state.

Note that executive commands can only be
used at the IDL command prompt, not in ID|
programs.

\”2Y")

at

ia

d

ADAPT_HIST_EQUAL

Performs adaptive histogram equalization,
form of automatic image contrast
enhancement.

-

Table 1-6: New Routines in IDL 5.3

New Routines

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

59

Routine

Description

BINARY_TEMPLATE

Allows the user to interactively generate a
template structure for use with
READ_BINARY.

CDF_COMPRESSION

Sets or returns the compression mode for &
CDF file and/or variables.

COMPILE_OPT

Allows the author to provide the IDL compiley
with information that changes some of the
default rules for how to compile the function
or procedure within which the

COMPILE_OPT statement appears.

CW_FILESEL

A compound widget for file selection.

CW_LIGHT_EDITOR

Creates a compound widget to edit properties
of existing IDLgrLight objects in a view.

CW_LIGHT_EDITOR_GET

Gets the CW_LIGHT_EDITOR properties.

CW_LIGHT_EDITOR_SET

Sets the CW_LIGHT_EDITOR properties.

CW_PALETTE_EDITOR

Creates a compound widget to display and
edit color palettes.

CW_PALETTE_EDITOR_GET

[

Gets the CW_PALETTE_EDITOR properties.

CW_PALETTE_EDITOR_SET

1

Sets the CW_PALETTE_EDITOR propertie

DIALOG_READ_IMAGE

A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE

A graphical user interface used for writing
image files.

DLM_LOAD

Normally, IDL system routines that reside ir
Dynamically Loadable Modules (DLMs) are
automatically loaded on demand when a
routine from a DLM is called. The
DLM_LOAD procedure can be used to
explicitly cause a DLM to be loaded.

DRAW_ROI

Draws a region to the current Direct Graphics
device.

Table 1-6: New Routines in IDL 5.3

What's New in IDL 5.3

New Routines

60

Chapter 1: Overview of New Features in IDL 5.3

Routine Description
ENABLE_SYSRTN Enables/disables IDL system routines.
EOS_EXISTS Returns success (1) if the HDF-EOS

extensions are supported on the current
platform, and fail (0) if not.

EOS_GD_QUERY

Returns information about a specified grid.

EOS_PT_QUERY

Returns information about a specified point

EOS_QUERY

Returns information about the makeup of a
HDF-EOS file.

-

EOS_SW_QUERY

Returns information about a specified swat

GET_DRIVE_LIST

Returns a string array of the names of valid
drives / volumes for the file system. (Window
/ Macintosh only)

GRID_TPS

Uses thin plate splines to interpolate a set ¢
values over a regular grid.

=4

HDF_SD_SETCOMPRESS

Compresses an existing HDF SD data set ¢
sets the compression method of a newly
created HDF SD data set.

=

IMAGE_STATISTICS

Computes sample statistics for a given arra
of values.

ISOCONTOUR

Allows for contouring on arbitrary meshes ar
returns line or orientated tessellated polygo
output.

d

=]

ISOSURFACE

Returns topologically consistent triangles b
using orientated tetrahedral decomposition
internally and allows the algorithm to
isosurface any arbitrary tetrahedral mesh.

MESH_CLIP

Clips a polygon mesh to an arbitrary plane
space and returns a polygon mesh of the

remaining portion.

New Routines

Table 1-6: New Routines in IDL 5.3

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

61

Routine

Description

MESH_DECIMATE

Accepts an additional array of auxiliary data

values which can be used together with a

weighting function to allow external data to be

considered when a particular triangle is
removed.

MESH_ISSOLID

Computes various mesh properties and

enables IDL to determine if a mesh is a sol
If the mesh can be considered a solid, routin
can compute the volume of the mesh.

es

MESH_MERGE

Merges two polygonal meshes.

MESH_NUMTRIANGLES

Computes various mesh properties and
enables IDL to determine the number of
triangles in a polygonal mesh.

MESH_SMOOTH

Performs spatial smoothing on a polygonal
mesh.

MESH_SURFACEAREA

Computes various mesh properties and
enables IDL to determine the mesh surface

area, including integration of other properties

interpolated on the surface of the mesh.

MESH_VALIDATE

Checks for NaN values in vertices and
removes unused vertices.

MESH_VOLUME

Computes various mesh properties and

enables IDL to determine the volume that the

mesh encloses.

MORPH_CLOSE

Applies the closing operator to a binary or
grayscale image.

Table 1-6: New Routines in IDL 5.3

What's New in IDL 5.3

New Routines

62

New Routines

Chapter 1: Overview of New Features in IDL 5.3

Routine

Description

MORPH_DISTANCE

EstimatesN-dimensional distance maps,
which contain for each foreground pixel the
distance to the nearest background pixel,
using a given norm. Available norms includg
Euclidean, which is exact and is also known
the Euclidean Distance Map (EDM), and tw
more efficient approximations, chessboard
and city block.

D

as

MORPH_GRADIENT

Applies the morphological gradient operato
to a grayscale image.

MORPH_HITORMISS

Applies the hit-or-miss operator to a binary
image.

MORPH_OPEN Applies the opening operator to a binary or
grayscale image.
MORPH_THIN Implements a thinning operator on binary

images.

MORPH_TOPHAT

Applies the top-hat operator to a grayscale
image.

MSG_CAT_CLOSE

Closes an IDL language catalog file from th
stored cache.

MSG_CAT_COMPILE

Creates an IDL language catalog file.

MSG_CAT_OPEN

Returns a specified object from an IDL
language catalog file.

PARTICLE_TRACE

Traces the path of a mass-less particle throd
a vector field and allows the user to specify
set of starting points and a vector field.

gh
a

QUERY_IMAGE

Reads the header of a file and determines if it

is recognized as an image file.

QUERY_WAV

Reads the header of a file and determines if it

is recognized as a .WAV file.

Table 1-6: New Routines in IDL 5.3

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

63

Routine

Description

READ_BINARY

Reads the contents of a binary file using a
passed template or basic command line
keywords.

READ_IMAGE

Reads the image contents of a file.

READ_WAV

Reads the audio stream from the named .W,
file.

STRCMP

Compares two strings. Can perform case-
insensitive comparison of first N characters
more easily than using the EQ operator.

STREAMLINE

Computes a line that traces the path of a
particle through a constant vector field.

STREGEX

Performs regular expression string matching.

STRJOIN

Collapses a string scalar or array into merg
strings. The separator string used between
joined strings can be specified.

ed
the

STRMATCH

Compares its search string, which can contz
wildcard characters, against the input string
expression.

i

n

STRSPLIT

Splits its input string argument into separats
substrings, according to the specified delimit
or regular expression.

A1

er

STRUCT_HIDE

Used by authors of large vertical applications

to prevent the IDL HELP procedure from
displaying information about structures or
objects that are not part of their public
interface.

TETRA_CLIP

Clips a tetrahedral mesh to an arbitrary pla
in space and return a tetrahedral mesh of tl
remaining portion.

ne
ne

TETRA_SURFACE

Extracts a polygonal mesh as the exterior

surface of a tetrahedral mesh.

Table 1-6: New Routines in IDL 5.3

What's New in IDL 5.3

New Routines

64 Chapter 1: Overview of New Features in IDL 5.3

Routine Description
TETRA_VOLUME Computes properties of a tetrahedral mesh
array.
VALUE_LOCATE Finds the interval(s) within a given

monotonically increasing (or monotonically
decreasing) vector that brackets a given search
value (or set of values).

VECTOR_FIELD Used to place colored, orientated vectors of
specified length at each vertex in an input
vertex array.

WATERSHED Applies watershed segmentation to a binar
image.

WRITE_IMAGE Writes an image and its color table vectors,| if
any, to a file of a specified type.

WRITE_WAV Writes the audio stream from the named
WAV file.

XOBJVIEW Allows you to quickly and easily view and

manipulate IDL Object Graphics on screen,
This procedure displays a widget containin
buttons that allow you to rotate, pan, and scile
the object using your mouse.

Table 1-6: New Routines in IDL 5.3

New Routines What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

65

New and Updated Keywords/Arguments

The following is a list of new and updated keywords and arguments to existing IDL

routines.

Routine

Keyword/
Argument

Description

BREAKPOINT

DISABLE

Disables the specified
breakpoint if it exists. The
breakpoint can be specified
using the breakpoint index or
file and line number.

ENABLE

Enables the specified
breakpoint if it exists. The
breakpoint can be specified
using the breakpoint index or
file and line number.

CALL_EXTERNAL

UNLOAD

Normally, IDL keepdmage
loaded in memory after the cal
to CALL_EXTERNAL
completes. This is done for
efficiency—Iloading a sharable
object can be a slow operatiof
Setting the UNLOAD keyword
will cause IDL to unloadmage
after the call to it is complete.

CHECK_MATH

MASK

Defines the bitmask of
exceptions to check.

NOCLEAR

If NOCLEAR is set, exceptiong
are not cleared and remain
pending.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

66

Chapter 1: Overview of New Features in IDL 5.3

Routine Keyword/ Description
Argument
DILATE BACKGROUND Set this keyword to the pixel

value that is to be considered
the background when dilation
is being performed in
constrained mode.

CONSTRAINED

If this keyword is set and
grayscale dilation has been
selected, the dilation algorithm
will operate in constrained
mode. In this mode, a pixel is
set to the value determined by
normal grayscale dilation rule
in the output image only if the
current value destination pixel
value matches the
BACKGROUND pixel value.
Once a pixel in the output
image has been set to a valug
other than the BACKGROUND,
value, it cannot change.

U7

PRESERVE_TYPE

Set this keyword to return th
same type as the input array.
This keyword only applies if
the GRAY keyword is set.

11%

UINT Set this keyword to return an
unsigned integer array. This
keyword only applies if the
GRAY keyword is set.

ULONG Set this keyword to return an

unsigned longword integer
array. This keyword only
applies if the GRAY keyword
is set.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

New and Updated Keywords/Arguments

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 67
Routine Keyword/ Description
Argument
ERODE PRESERVE_TYPE Set this keyword to return th

same type as the input array.
This keyword only applies if
the GRAY keyword is set.

D

UINT Set this keyword to return an
unsigned integer array. This
keyword only applies if the
GRAY keyword is set.

ULONG Set this keyword to return an

unsigned longword integer
array. This keyword only
applies if the GRAY keyword
is set.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

68

Chapter 1: Overview of New Features in IDL 5.3

Routine

Keyword/
Argument

Description

EXTRACT_SLICE

ANISOTROPY

Set this keyword to a three-
element array. This array
specifies the spacing betweer
the planes of the input volume
in grid units of the (isotropic)
output image.

VERTICES

Set this keyword to a named
variable in which to return a
[3,Xsize,Ysize] floating point
array. This is an array of the x|
y, z sample locations for each
pixel in the normal output.

PlaneNormal

This new argument is a 3-
element array that provides al
alternate form for the plane
specification. The values are
interpreted as the normal of th
slice plane.

Xvec

This new argument is a 3-
element array that provides al
alternate form for the plane
specification. The three value
are interpreted as the 0
dimension directional vector.
This should be a unit vector.

"2}

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

New and Updated Keywords/Arguments

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

69

Routine

Keyword/
Argument

Description

FIX

PRINT

Set this keyword to specify thg
any special-case processing
when converting between
string and byte data, or the
reverse, should be suppresse

—

TYPE

FIX normally converts its
expression to the integer type
If TYPE is specified, it is the
type code to set the type of th
conversion. This feature allow
dynamic type conversion,
where the desired type is not
known until runtime, to be
carried out without the use of
large CASE or IF...THEN
logic.

D

FSTAT

n/a

FSTAT returns two new fields
XDR (nonzero if the file was
opened with the XDR
keyword) and COMPRESS
(nonzero if the file was opene
with the COMPRESS
keyword).

HDF_BROWSER

n/a

VGroups and VData have beg
added to the display options.

n/a

A new Show3 preview type ha
been added, which combines
an image, surface plot, and
contour plot.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

70

Chapter 1: Overview of New Features in IDL 5.3

Routine

Keyword/
Argument

Description

HELP

BRIEF

BRIEF produces very terse
summary style output instead
of the output normally
displayed by the following
keywords: DLM,
HEAP_VARIABLES,
MESSAGES, OBJECTS,
ROUTINES,
SOURCE_FILES,
STRUCTURES, and
SYSTEM_VARIABLES.

FULL

By default, HELP filters its
output in an attempt to only
display information likely to be
of use to the IDL end user.
Specify FULL to see all
available information on a
given topic without any such
filtering.

FUNCTIONS

Normally, the ROUTINES or
SOURCE_FILES keywords
produce information on both
functions and procedures. If
FUNCTIONS is specified, only
output on functions is
produced.

New and Updated Keywords/Arguments

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

71

Routine

Keyword/
Argument

Description

HELP (continued

NAMES

NAMES now works with the
output from the following
keywords: DLM,
HEAP_VARIABLES,
MESSAGES, OBJECTS,
ROUTINES,
SOURCE_FILES,
STRUCTURES, and
SYSTEM_VARIABLES.

PROCEDURES

Normally, the ROUTINES or
SOURCE_FILES keywords
produce information on both
functions and procedures. If
PROCEDURES is specified,
only output on procedures is
produced.

INTERPOL

LSQUADRATIC

If set, interpolate using a leas
squares quadratic fit to the
equation y = a + bx + &for
each 4 point neighborhood (x|
1], x[i], x[i+1], x[i+2])
surrounding the interval of the|
interpolate, x[il< u < x[i+1].

QUADRATIC

If set, interpolate by fitting a
quadratic y = a + bx + éxto
the three point neighborhood
(X[i-1], x[i], x[i+1])
surrounding the interval x[g
u < x[i+1].

SPLINE

If set, interpolate by fitting a
cubic spline to the 4 point
neighborhood (x[i-1], X][i],
X[i+1], X[i+2]) surrounding the
interval, x[i] € u < x[i+1].

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

72 Chapter 1: Overview of New Features in IDL 5.3
Routine Keyword/ Description
Argument
INTERPOLATE n/a Expanded to allow for the

interpolation of quantities of
higher dimension (minimally
vectors) which allows one to
interpolate and sample many
points at once. It also allows fof
multiple dimensions to be
considered simultaneously.

LABEL_REGION

ALL_NEIGHBORS

Set this keyword to indicate
that all adjacent neighbors to
given pixel should be searchedl.
(This is sometimes called 8-
neighbor searching when the
image is 2-dimensional). The
default is to search only the
neighbors that are exactly one
unit in distance from the
current pixel (sometimes calle
4-neighbor searching when th
image is 2-dimensional).

|

('DhJ_

Data

This argument, which used td
be called Image, can now be gn
n-dimensional array.

EIGHT

This keyword is now obsolete
It has been replaced by the
ALL_NEIGHBORS keyword
(because this routine now
handles N-dimensional data).

ULONG

Set this keyword to specify that
the output array should be an
unsigned long integer.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

New and Updated Keywords/Arguments

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

73

Routine

Keyword/
Argument

Description

LMGR

EXPIRE_DATE

Set this keyword to a named
variable that will receive a

string containing the expiratior
date of the current IDL session
if the session is a trial session.
This named variable will be
undefined if the IDL session
has a permanent license.

INSTALL_NUM

Set this keyword to a named
variable that will receive a
string containing the
installation number of the
current IDL session. This
named variable will be
undefined if the IDL session i
unlicensed.

SITE_NOTICE

Set this keyword to a named
variable that will receive a
string containing the site notice
of the current IDL session. This
named variable will be
undefined if the IDL session ig
unlicensed.

MIN_CURVE_SURF

DOUBLE

Set this keyword to force the
computation to be done in
double-precision arithmetic.

OBJ_CLASS Arg

This argument is now optional
If specified, OBJ_CLASS
works as before, but if Arg is
omitted, OBJ_CLASS returns
an array containing the names
of all known object classes.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

74

Chapter 1: Overview of New Features in IDL 5.3

Routine

Keyword/
Argument

Description

OPENProcedures
(OPENR, OPENW,
OPENU)

COMPRESS

If COMPRESS is set, IDL
reads and writes all data to th
file in the standard GZIP
format. IDL's GZIP support is
based on the freely available
ZLIB library by Mark Adler
and Jean-loup Gailly. This
means that IDL's compressed
files are 100% compatible with
the widely available gzip and
gunzip programs.

D

RESOLVE_ROUTINE

EITHER

If set, indicates that the caller
does not know whether the
supplied routine names are
functions or procedures, and
will accept either.

NO_RECOMPILE

Normally,
RESOLVE_ROUTINE
compiles all specified routines
even if they have already bee
compiled. Setting
NO_RECOMPILE indicates
that such routines are not
recompiled.

—

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

New and Updated Keywords/Arguments

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

75

Routine

Keyword/
Argument

Description

ROUTINE_INFO

DISABLED

Set this keyword to get the
names of currently disabled
system procedures or function
(in conjunction with the
FUNCTIONS keyword). Use
of DISABLED implies
SYSTEM, since user routines
cannot be disabled.

n

ENABLED

Set this keyword to get the
names of currently enabled
system procedures or function
(in conjunction with the
FUNCTIONS keyword). Use
of ENABLED implies
SYSTEM, since user routines
cannot be disabled.

[

SOURCE

This keyword now returns the
path to the SAVE file if the
routine comes from an
SAVE/RESTORE file.

SAVE

COMPRESS

If COMPRESS is set, IDL
writes all data to the SAVE file
using the ZLIB compression
library to reduce its size.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

76

New and Updated Keywords/Arguments

Chapter 1: Overview of New Features in IDL 5.3

Routine

Keyword/
Argument

Description

SPRSIN

Columns

A vector containing the colum
subscripts of the nonzero
elements. Values must be in the
range of 0 to (N-1).

=

Rows

A vector, of the same length as
Column, containing the row
subscripts of the nonzero

elements. Values must be in the
range of 0 to (N-1).

Values

A vector, of the same length as
Column, containing the values
of the non-zero elements.

N

The size of the resulting spars
matrix.

D

STRMID

First_Character

The First_Character argument
can now be an array.

Length

The Length argument can now
be an array.

REVERSE_OFFSET

Specifies that First_Charact
should be counted from the en
of the string backwards. This
allows simple extraction of
strings from the end.

o D

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3

77

Routine Keyword/ Description
Argument
STRPOS REVERSE_OFFSET | Normally, the value of tPes

argument is used as an offset
from the beginning of the
expression towards the end. Set
REVERSE_OFFSET to use it
as an offset from the last
character of the string moving
towards the beginning. This
keyword makes it easy to
position the starting point of
the search at a fixed offset fron
the end of the string.

=}

REVERSE_SEARCH

STRPOS usually startfPas
and moves toward the end of
the string looking for a match.
If REVERSE_SEARCH is set
the search instead moves
towards the beginning of the
string.

STRUCT_ASSIGN

NOZERO

Normally, any fields found in
the destination structure that
are not found in the source
structure are zeroed. Set
NOZERQO to prevent this actior]
and leave the original content
of such fields unchanged.

U7

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

78

Chapter 1: Overview of New Features in IDL 5.3

Routine

Keyword/
Argument

Description

THIN

NEIGHBOR_COUNT

Set this keyword to select an
alternate form of output. In thig
form, output pixel values coun
the number of neighbors an
individual skeletal pixel has
(including itself). For example,
a pixel that is part of a line will
have the value 3 (two neighbofr
and itself). Terminal pixels will
have the value 2, while isolate
pixels have the value 1.

[

[72)

PRUNE

If the PRUNE keyword is set,
pixels with single neighbors ar¢
removed interactively until
only pixels with 2 or more
neighbors exist. This
effectively removes (or
“prunes”) skeleton branches,
leaving only closed paths.

A1

TOTAL

CUMULATIVE

If this keyword is set, the result
is an array of the same size a
the input, with each element,

containing the sum of the inpuf

array elements 0 to i. This
keyword also works with the
Dimension parameter, in whicl

case the sum is performed ove

the given dimension.

172}

TRIANGULATE

n/a

Extended to allow for direct
interpolation of values in an
irregular grid in multiple
dimensions.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

New and Updated Keywords/Arguments

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 79
Routine Keyword/ Description
Argument
TRIGRID n/a Extended to allow for direct

interpolation of values in an
irregular grid in multiple
dimensions.

Table 1-7: New and Updated Keywords/Arguments in IDL 5.3

What's New in IDL 5.3

New and Updated Keywords/Arguments

80

Chapter 1: Overview of New Features in IDL 5.3

New Environment Variables

The following environment variables have been added in IDL 5.3:

Environment
Variable

Description

IDL_TMPDIR

IDL, and code written in the IDL language, sometimes ne
to create temporary files. The location where these files
should be created is highly system dependent, and local
conventions are often different from “standard practice”. B
default, IDL selects a reasonable location based on opera
system and vendor conventions. Set the IDL_TMPDIR
environment variable to override this choice and explicitly
specify the location for temporary files.

The GETENYV system function handles IDL_TMPDIR as 3
special case, and can be used by code written in IDL to ob
the temporary file location.

pds

user

y
iting

\
fain

Table 1-8: New Environment Variables in IDL 5.3

New Environment Variables

What's New in IDL 5.3

Chapter 1: Overview of New Features in IDL 5.3 81
Routines Obsoleted in IDL 5.3

The following routines were present in IDL Version 5.2 but became obsolete in IDL
Version 5.3. These routines have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted routines should
not be used in new IDL code.

Routine Replaced by .pro File?
HDF_DFSD_* HDF_SD_* Routines
Routines
RSTRPOS STRPOS, /REVERSE_SEARCH,| rstrpos.pro
STR_SEP STRSPLIT for single character | str_sep.pro
delimiters
STRSPLIT, IREGEX for longer
delimiters

Table 1-9: Routines Obsoleted in IDL 5.3

What's New in IDL 5.3 Routines Obsoleted in IDL 5.3

82 Chapter 1: Overview of New Features in IDL 5.3
Platforms Supported in this Release

IDL supports the following platforms and operating systems:

Operating Supporte
Platform Vendor Hardware System d
Versions
VMS Compagq Alpha VMS 7.1
UNIX Compagq Alpha Tru64 UNIX 4.0
HP PA-RISC HP-UX 10.20, 11
IBM RS/6000 AlX 4.3
Intel Intel x86 Linux 22 1
SGI Mips Irix 6.4,6.5
SUN SPARC Solaris 2 2.6,2.7
SUN Ultra Solaris 2 2.6
SUN Intel x86 Solaris 2 2.6
Windows Microsoft Intel x86 Windows 95, 98
Microsoft Intel x86 Windows NT 4.0
Microsoft Alpha Windows NT 4.0tt
Macintosh Apple PowerPCttt] MacOS 8.1

Table 1-10: Platforms Supported in IDL 5.3

tRed Hat 6.0
tTIDL 5.3 is the last release that will support the Windows NT for Alpha platform.
t11 Includes iMac and G3

Platforms Supported in this Release What's New in IDL 5.3

Chapter 2:

Creating IDL
Projects

This chapter describes the following topics.

Ooverview. 84electing the Build Order. 99
Where to Store Source Files for a Projeci86 Running an Application from a Project . 104
CreatingaProject 87Compiling an Application from a Project101
Opening, Closing, and Saving Projects . 89 Buildinga Project................... 102
Adding, Moving, and Removing Files. .. 90 Exportinga Project. 105
Working with Files in a Project. 93 About IDL Developer’s Kit Licenses. . . . 107
Setting the Options for a Project. 96

What's New in IDL 5.3 83

84 Chapter 2: Creating IDL Projects

Overview

IDL Projects allow you to easily develop applications in IDL. You can manage,
compile, run, and create distributions of all the files you will need to develop your

IDL application. All of your application files can be organized so that they are easier

to access and easier to export to other developers, colleagues, or users. IDL Projects
are a great benefit to development teams working on a large project as well as
individual developers managing multiple projects.

Access to all Files in Your Application

IDL Projects have an easy to use interface for grouping:
» IDL source code files (.pro)
e GUI files (.prc) created with IDL GUIBuilder
» Data files (ASCII text or binary)
» Image files (.tif, .gif, .omp, etc.)
» Other files (help files, .sav files, etc.)

After you add all of your files to your project, you can simply double clickm@n
files to open them in the IDL editor grc files to open them in the IDL
GUIBuilder.

Working with Files in Your Project
IDL projects makes it easy to add, remove, move, edit, compile, and test files in your
project.

All of your workspace information is saved as well. If you save and exit your project
with open files, when you open your project, those same files will be opened
automatically for you.

IDL projects also store and retain breakpoint information. There is no need to reset
breakpoints every time you open the project.

Compiling and Running Your Application

Compiling and running applications is fast and easy. You can compile all of your
source files or just the files that you have modified and then run your application
through the Projects menu. You can customize how your application is compiled and
run by specifying options for your project.

Overview What's New in IDL 5.3

Chapter 2: Creating IDL Projects 85

Creating IDL Runtime Distributions

Once you have completed your application, you can quickly and easily create an IDL
Runtime distribution. If you have purchased the IDL Developer’s Kit, your
application is automatically licensed for distribution.

Exporting Your Applications

You can easily move your application to another platform or distribute your source
code to colleagues by exporting your project. All your source code, GUI files, data
files, and image files are copied to a directory you specify. You can also specify to
export the Runtime version of IDL with you application.

Example of a Project

A working example project has been included with IDL in templeslirectory and
is namediemo_proj.prj

What's New in IDL 5.3 Overview

86 Chapter 2: Creating IDL Projects
Where to Store Source Files for a Project

The directory structure you use for your application files is important for exporting
projects. Even though you can add any file from any path to your project, keep the
following in mind:

» Create a directory structure with all of your files in your project. For example,
you might create a directory structure similar to the following:
C:\myproject

myproj.prj

\source

\gui

\data

\bitmaps

\other
where all of your source filegpfo) are in thesource directory, IDL
GUIBuilder files (prc) are in thegui directory, data files are in thiata

directory, image files are in thitmaps directory, and any other
miscellaneous files are in theéher directory.

* Keep the project file (.prj) at the root level of all the other files in your project.
As shown in the previous example, the projectfiy@roj.prj is in the root
level directorymyproject

When a project is exported, the files will be placed according to where they are in
relation to theprj file keeping the directory structure intact whenever possible. If

for example, one of your source files exist®iwtherproj , Wwhen you export

your project it will be placed in the same directory as your project file. In this case,
C:\myproject

Note
The.prj file is not exported.

For more information on exporting a project, $&rporting a Project’on page 105.

Where to Store Source Files for a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 87

Creating a Project

To create a Project, complete the following steps:

1. Selectrile -~ New — Project (on Windows and Motif) oFile -~ New
Project (on Macintosh). The Save dialog displays.

2. Select the path and name of the project file. CBelve A .prj extension will
automatically be appended to the name you enter. You will see that your
project is displayed in thiérojects Window.

O=————wmyrojpi=—————HH8

val
cios Window Help

g
smee|2am | Sl e R e e

Projects —L:W’ -
Window e

f Thu Jun 24 D0:51:29 MDT 1339 (Win32 #86). () 1339, Resea

Name Tope Value

S

[oL |
Ready I o 1)

Figure 2-1: Projects Window for Macintosh (left) and Windows (right)

3. Save your new project. Seléile - Save Project

Note
For Windows and Motif, you can only have one project open at a time. On
Macintosh, you can have multiple project windows open at the same time.

After you have created your project, you'll see your project displayed in the Projects
Window. The Projects window is where you control your project. If you click the plus
sign (Windows and Motif) or the expand arrow (Macintosh) to expand your project,

What's New in IDL 5.3 Creating a Project

88 Chapter 2: Creating IDL Projects

you will see that 5 groups have been automatically created when you created your
project. You can then click the minus sign to collapse the listing.

#-E1 mypraject. prj

Groups | Build Order Groups | Build Order

Figure 2-2: Project Window Collapsed (Left) and Expanded (Right)

The following table describes the purpose for each group:

Group Description
Source Stores IDL source code files (.pro).
GUI Stores GUI files (.prc) created using the IDL GUIBuilder.
Data Stores any data files (ASCII or binary).
Bitmaps Stores bitmap files (.gif, .tif, .omp, etc.).
Other Stores any other files that do not apply to the other grougs.

Table 2-1: Project Group Descriptions

Creating a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 89

Opening, Closing, and Saving Projects

After you have created a project, you can open, save, and close a project.
Opening Projects

To open a project, complete the following steps:

1. For Windows and Motif, sele€ile —~ Open Project For Macintosh, select
File » Open.

2. Select the path and name of your project file.

Tip
IDL keeps track of the most recently opened projects. You can ubédahe
Recent Projectsmenu (on Windows and Motif) arkdle — Open Recent(on

Macintosh) to select projects to open.

Saving Projects

To save a project, seldéile — Save Project

Tip
IDL Projects stores information about the project’s workspace. This includes
information about which files you have open and breakpoints you have set. If you
have files that you are commonly working in all the time, leave those files open
when saving and closing your project. These files will be automatically opened in
the IDL Editor or GUIBuilder windows when you reopen your project.

Closing Projects

To close a project, seletle — Close Project

What's New in IDL 5.3 Opening, Closing, and Saving Projects

90 Chapter 2: Creating IDL Projects

Adding, Moving, and Removing Files

After you have created a project, you can add, move, and remove files in your

application.

Adding Files

To add files to your project, complete the following steps:

1. Open your project. Sele€tle — Open Project Select the path and name of

your project file.

2. Click Project — Add/Remove Files..(on Windows and Motif) oProject —

Add Files...(on Macintosh). Thédd/Remove Filesdialog displays.

Add/Remove Files

Current director
y \> Laook in: Ia myprojects

=l ﬁl s E

myproject. pri
File list in the current director

File to add/remOV\
File name: ||

Filter for listing different— | Fiee or e |
file types

Current Files in projec

L

oy |
oK |

Figure 2-3: Add/Remove Dialog

3. Select the path and name of the file you want to add to your project. Click the
Add button. You will see the file added to the list of current files in your

project.

Tip

You can also add files to your project by dragging and dropping the files from any
file manager. If you already have the file open that you want to add to your project,

Adding, Moving, and Removing Files

What's New in IDL 5.3

Chapter 2: Creating IDL Projects 91

you can right click in the editor window and seladd to Current Project from

the context menu. On the Macintosh, you can also add an open file to your project
by selectingProject - Add Window. On some Motif platforms, dragging and
dropping is not supported. In this case, usetithdyRemove...dialog.

4. Continue to add the files you want to include in your project. Then@kck

5. You can expand the listings in the Project window to see the files you have
added.

6. Save your project file by selectifrfe - Save Project
Moving Files

When you add a file to your project, it will be added to the appropriate group. If you
want the file to exist in a different group, you can move it to that group. To move a
file, complete the following steps:

1. Open your project. Seleetle — Open Project(on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file you
want to move.

3. To move the file, select the file and then drag it to a different group or right
click over the file you want to move and selgldve To...from the context
menu and then select the different group.

Note
On some Motif platforms, dragging and dropping is not supported. In this case, use
theMove To...menu item on the context menu.

4. Save your project file by selectifge — Save Project

Note
When moving a file in your project, it does not change the actual path of the file, it
only moves it with respect to which group the file appears within your project.

What's New in IDL 5.3 Adding, Moving, and Removing Files

92 Chapter 2: Creating IDL Projects

Removing Files

When you no longer want a file to be in your project, you can remove it. When you
remove a file from your project, it does not delete the file on your disk, it only deletes
the reference to the file from your project.

On Windows and Motif, to remove files from your project, complete the following
steps:

1. Open your project. SeleEtle - Open Projectand select the path and name
of your project file.

2. Click Project - Add/Remove Files..(on Windows and Motif) oProject —
Add Files...(on Macintosh). Thé&dd/Remove Filesdialog displays.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove

Tip
On Windows and Motif, you can use the context menu to remove a file. Right click
over the file and then seleRemove On Windows, you can also use the Delete key
to remove files. Select the file by left clicking over the file and then press the Delete
key.

4. Save your project file by selectifge — Save Project
On Macintosh, to remove files from your project, complete the following steps:

1. Open your projecSelect File» Openand select the path and name of your
project file.

2. Select the file you want to remove.

3. SelectProject —~ Remove Selection

Tip
On Macintosh, you can use the Cmd-Delete key sequence to remove files. Select
the file by clicking over the file and then press Cmd-Delete.

4. Save your project file by selectirge — Save Project

Adding, Moving, and Removing Files What's New in IDL 5.3

Chapter 2: Creating IDL Projects 93

Working with Files in a Project

Once you have added all of the files in your application to a project, you can access
those files through the project.

Editing a Source File

All source files that can be opened in IDL (.pro and .prc files) can be opened directly
through the project. To open a file for editing, complete the following steps:

1. Open your project. Seleetle — Open Project(on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Access the context menu by right clicking over the file you want to open.
SelectEdit from the context menu. Source files (.pro) are opened in the IDL
editor and GUIBuilder files (.prc) are opened in the IDL GUIBuilder

Tip
Double clicking on the file will also open .pro and .prc files. Also, on Windows you
can drag the file from the Projects window to the IDL Editor window to open the

file.

Compiling a File
All source files can be compiled through the project window. To compile a file,
complete the following steps:
1. Open your project. Seleetle - Open Project(on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Access the context menu by right clicking over the file you want to compile.
SelectCompile from the context menu. The file is compiled.

For more information on how to compile all the files in your project or just the files
that have been recently modified, $€empiling an Application from a Projectin

page 101.

Note
On Macintosh, you will see a red check mark to the left of each file that has not

been compiled after it has been modified.

What's New in IDL 5.3 Working with Files in a Project

94 Chapter 2: Creating IDL Projects

Testing a File

All IDL GUIBuilder files (.prc) can be run under test mode directly through a project.
To run a .prc file in test mode, complete the following steps:

1. Open your project. Selektle — Open Project(on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Access the context menu by right clicking over the file you want to test. Select
Testfrom the context menu. The file is run in test mode.

For more information on running .prc files in test mode,'Be@ning the
Application in Test ModeTn Chapter 17 of thBuilding IDL Applicationsmanual.

Setting the Properties of a File

Each file in a project has properties. The following table describes each property of a

file:
Property Description
File name The name of the file. (This field is read only.)
Path The path of the file. (This field is read only.)
Group The name of the group in which the file resides. (This field is
read only.)
File Not Found If the source file cannot be found, you can click this button to

display a dialog for finding the path to the file.

Do not Compile | Indicates whether or not to compile the file when running or
building. For example, you may have include files for youl
main program that you do not want compiled. Selecting th
check box indicates that you do not want this file compile

Note - You do not need to set this property for non-source
files such as data files, image files, etc. These types of files
will be automatically excluded from compilation.

S

p =

Export Indicates whether or not to export the file when exporting|a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not want
to export. When checked, this file will be exported.

Table 2-2: File Properties

Working with Files in a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 95

To set the properties for a file, complete the following steps:

1. Open your project. Seleetle - Open Project(on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file you
want to change.

Select the file by left clicking it.

4. Right click over the file and seldetoperties from the menu. ThEile
Properties dialog displays.

File Properties [x|

Marne: IAddT en.pro

Path: IC:\HSI\IDLES\myprograms\

Group: ISource

J¥# | Fil= Found
I~ DoMat Compile

[v| Expart

Figure 2-4: File Properties Dialog

5. Change any properties of the file.

Note
On Macintosh, the Do Not Compile option can be selected in the Project Window.
If you want the file to be compiled, make sure that the black dot to the right of the
file name is displayed. If it is not displayed, click to the right of the file to display it.

6. ClickOK.
7. Save your project file by selectiRje — Save Project

What's New in IDL 5.3 Working with Files in a Project

96 Chapter 2: Creating IDL Projects
Setting the Options for a Project

The options for a project describe how to run, compile, and build a project. To set the
options for your project, complete the following steps:

1. Open your project. Sele€tle — Open Project Select the path and name of
your project file.

2. Click Project — Options... TheProject Settingsdialog displays.

Project Settings E
MHarne:
Imyproiec:t.pri
Path:

IE:'\HSI\IDL53\myprc-ieu:ts\

Rurn Command:

Imain

Build Cammand:

Save File:

Imyproiec:t.sav

Project Type

' Source Fils [.pro)
% Save File [sav)
| lizensed Save Filelsaw)

Cancel |

Figure 2-5: Project Settings Dialog

3. Set the options based upon the information in the following table:

Option Description

Name Specifies the project name.
Note - This field is read only.

Table 2-3: Project Options

Setting the Options for a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects

97

Option

Description

Path

Specifies the path of the project.
Note - This field is read only.

Run Command

Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid I
command including .sav or .pro files (these can be files th
are included or not included in your project.) Typically this
the main program in your application.

Tip - You can use the %? command stream substitution to
a dialog to enter a value or values to pass to the called

DL
at
is

call

program. For example, if you have a program named “majin”

and it requires the argument “x” to be passed to it, then y
can enter the following for the Run Command:

main, %7?(Enter the value for X, x)

For more information on how to run your application, see
“Running an Application from a Projectih page 104.

DU

Build Command

Specifies the IDL command to build the application. The

default is blank. If left blank, the files in the project are bullt

according to th&xecution File Formasgpecified and are
compiled (if applicable) in the order specified under Build
Order. For more information, sé8electing the Build Order”
on page 99.

You can enter any valid IDL command including .sav or .g
files. You can also enter a batch file usindjl@amein order
to perform other operations (for example, running a Perl s
on your source or data files before compiling. For more
information on batch scripts, see tsing IDL manual.

ro

ript

Save File

Specifies the name of the save file to create when buildiy
your project. For more information on building a project, s
“Building a Project’on page 102.

Note - This field is grayed out if you have selected the .pr¢

"9
ee

File Project Type.

What's New in IDL 5.3

Table 2-3: Project Options

Setting the Options for a Project

98 Chapter 2: Creating IDL Projects

Option Description

Execution File Specifies how the project will run or build. The available
Format formats are:

» Source File (.pro).
» Save File (.sav).
» Licensed Save File (.sav)

Note - The Licensed Save File option is grayed out if you flo
not have an IDL Developer Kit license. For more informatign,
see“About IDL Developer’s Kit Licensesbn page 107.

For more information on building and running projects, see
“Building a Project’on page 102 ofRunning an Application
from a Project’on page 104.

Table 2-3: Project Options

4. After completing any changes, cliCK.
5. Save your project file by selectirge — Save Project
Note

In addition to setting options for a project, you can also set the properties of a file.
For more information, se&etting the Properties of a Filgh page 94.

Setting the Options for a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 99
Selecting the Build Order

Selecting the build order of a project determines the order in which the files will be
compiled. In some cases, you might not be able to run all the files in your project
because of dependencies on the order in which they are compiled. For example, if the
file main.pro contains:

Pro main
x=1
y=AddTen(x)
Print, x

End

and file AddTen.pro contains:

Function AddTen, x
x=x+10
End

IDL can'ttell if the statemeng=AddTen(x) is referring to a variable named AddTen

or a function named AddTen. Unless AddTen is compiled before main, you will get a
“Variable undefined” error message.

To select the build order for the files in your project, complete the following steps:

1. Open your project. SeleEtle -~ Open Project Select the path and name of
your project file.

2. Click theBuild Order tab in the Projects window.

3. Move the files to the order in which you want to compile them. The topmost
file listed in the Build Order window will be compiled first. On Windows and
Macintosh, you can move a file by dragging and dropping it to the desired
location. On UNIX, first select a file by left clicking it, then change the order
by using the up and down arrows located in the bottom left corner of the
Projects window. For example, using the scenario stated previously, the Build
Order would look like the following:

What's New in IDL 5.3 Selecting the Build Order

100 Chapter 2: Creating IDL Projects

-2 myprojest. pri
AddTen.pro
rmain.pro

Groups Build Order I

Figure 2-6: Build Order Window

4. Save your project file by selectiRrge — Save Project

Selecting the Build Order What's New in IDL 5.3

Chapter 2: Creating IDL Projects 101
Compiling an Application from a Project

You can compile all of your source files or just the files that you have recently
modified from your project. A modified file is one that has been modified and then
saved (on Macintosh, the file does not have to be saved).

To compile the files in your project, complete the following steps:

1. Open your project. SeleEtle -~ Open Project Select the path and name of
your project file.

2. To compileall the filesin your project on Windows and Motif, seld¢ttoject
— Compile - All Files. On Macintosh, while holding down the Option key,
selectProject -~ Compile All Files.

3. To compilgust the files that have been modifgiace the last compilation on
Windows and Motif, seled®roject — Compile — Modified Files. On
Macintosh, seled®roject — Compile Modified Files

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Orderdn page 99.

All the files in your project are now compiled. You can now run your application. For
more information, se&Running an Application from a Projectih page 104.

What's New in IDL 5.3 Compiling an Application from a Project

102 Chapter 2: Creating IDL Projects
Building a Project

Building a project creates a .sav file of your project or compiles your project based
upon the options you have set for your project. If you have specified:

e Source File— The IDL session is reset (all procedures, functions, main level
variables and common blocks are deleted from memory), all files in the project
are compiled, and all undefined but referenced functions and procedures are
resolved.

For more information on resetting an IDL session, see
.FULL_RESET_SESSIONh thelDL Reference Guidd-or more information
on resolving undefined but referenced functions REESOLVE_ALL in the
IDL Reference Guide

» Save File— The IDL session is reset (all procedures, functions, main level
variables and common blocks are deleted from memory), all files in the project
are compiled, all undefined but referenced functions and procedures are
resolved, and all the functions and procedures are saved into the file you
specified in the project’s options.

The save file is created using the XDR and COMPRESS options. For more
information, se&SAVE in thelDL Reference Guide

» Licensed Save File— The IDL session is reset (all procedures, functions,
main level variables and common blocks are deleted from memory), all files in
the project are compiled, all undefined but referenced functions and
procedures are resolved, all the functions and procedures are saved into the file
specified in the project’s options, and embedded license information is added
to the save file.

For more information on embedded license information!/Aeeut IDL
Developer’s Kit Licensesbdn page 107.

Note
For more information on project options, s&etting the Options for a Projectin
page 96.

To build your project, complete the following steps:

1. Open your project. Selektle — Open Project Select the path and name of
your project file.

Building a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 103

SelectProject — Build. A dialog display confirming that you want to reset

2.
your session. This will delete all procedures, functions, main level variables
and common blocks from memory so that they will not be saved.

3. ClickOK.

Your project has been built.

What's New in IDL 5.3 Building a Project

104 Chapter 2: Creating IDL Projects

Running an Application from a Project

After compiling your project, you can run your application. What is run depends
upon the options you have set for your project:

» If you have selected your execution file format as source file, each file in your
project is compiled and then run using the command you specified as the run
command.

» If you have selected your execution file format as save file or licensed save
file, the most recently compiled version is run using the command you
specified as the run command. You must have compiled or built your
application before running it.

For more information on setting options for your project, “&etting the Options for
a Project’on page 96.

To run your application, complete the following steps:

1. Open your project. SeleEtle — Open Project Select the path and name of
your project file.

2. SelecProject —» Run.

Running an Application from a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 105
Exporting a Project

Exporting a project allows you to create a distribution of your project to either:

« Move a project (including the project file and all of the source files associated
with a project to another machine.)

« Create a distribution of your .sav file and an IDL Runtime distribution so that
you can distribute it so that others may run your application.

Note

Exporting an IDL Runtime distribution is not supported on Windows NT for Alpha
platform.

This is dependent upon the options you have selected for the project. If you have
selected:

e Source File— Your project’s source, IDL GuiBuilder, data, bitmaps, and any
other files listed in your project will be exported to a directory you specify.

» Save File— The .sav file for your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform you
are exporting on.

* Licensed Save File— The .sav file (with an embedded license) for your
project will be exported. You will also be given the option of exporting an IDL
Runtime distribution for the platform you are exporting on.

For more information on the options for a project, $8etting the Options for
a Project’on page 96. For more information on creating a .sav file with an
embedded license, s&bout IDL Developer’s Kit Licensesbn page 107.

To export your project, complete the following steps:

1. Open your project. SeleEtle -~ Open Project Select the path and name of
your project file.

2. If you are exporting a .sav file, you must build the project before exporting.
See“Building a Project’on page 102 for more information.

SelectProject — Export. TheBrowse for Folder dialog displays.

4. Select the folder to export the project and olidk.

What's New in IDL 5.3 Exporting a Project

106

5.

Note

Chapter 2: Creating IDL Projects

If you are exporting a .sav file, a dialog displays asking if you want to export
an IDL Runtime distribution with your .sav file. Sel&eisto include the
distribution orNo to not include the distribution.

If you are exporting an IDL Runtime distribution on Windows, enter
information on where to copy the distribution files from.

For Windows platforms, you will need to insert your IDL product CD-ROM
into your CD-ROM drive. The files needed to create this distribution will be
copied from the CD-ROM. Enter the drive letter of your CD-ROM drive that
contains your IDL product CD-ROM.

You do not need to specify the path to the IDL distribution for UNIX and Macintosh
platforms.

Your project has now been exported.

If you are moving a project from one platform to another, there are a few items to be
aware of:

Project workspace information such as which files are open, etc. will not move
from platform to platform.

Problems with paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by changing
the properties of the file. For more information, ‘4&&ere to Store Source
Files for a Projectbn page 86 antBetting the Properties of a Fileh

page 94.

For information on how to customize an IDL Runtime distribution and how to
distribute it, se€hapter 3, “Distributing IDL Applicationsih theBuilding IDL
Applicationsmanual.

Exporting a Project What's New in IDL 5.3

Chapter 2: Creating IDL Projects 107
About IDL Developer’s Kit Licenses

An IDL Developer’s Kit License allows a developer to embed licensing information
into an IDL application (.sav file). This creates an application that is fully licensed to
run on an IDL Runtime distribution. When this embedded license is present, IDL
Runtime bypasses normal license checking. One example of this licensing technique
is the IDL Demo Applications. The Demo Applications can be run on an unlicensed
IDL distribution.

For more information on purchasing a Developer’s Kit License, contact your
Research Systems sales representative.

What's New in IDL 5.3 About IDL Developer’s Kit Licenses

108 Chapter 2: Creating IDL Projects

About IDL Developer’s Kit Licenses What's New in IDL 5.3

Chapter 3:

IDL Development
Environment
Enhancements

This chapter describes the following topics.

Enhanced Breakpoint Functionality. . . . 110 New Color/Font Style Coding for Source Files
New IDL Functions and Procedures Context ONUNIX, 115
Menu for Windows and Motif. 114 Enhanced IDL Macros Support 117

What's New in IDL 5.3 109

110

Chapter 3: IDL Development Environment Enhancements

Enhanced Breakpoint Functionality

Breakpoints have been enhanced in IDL 5.3. These enhancements include:

The New

New Tool Bar buttons for easily creating breakpoints, enabling/disabling
breakpoints, and displaying the Set Complex Breakpoint dialog.

You can now selectively create, delete, enable, disable, and set other options

from a single dialog (thEdit Breakpoints dialog).
Two new keywords for the BREAKPOINT routine:
» DISABLE

« ENABLE

You can now set breakpoints on a file that has not been compiled. These
breakpoints are not enabled until the file is compiled.

Breakpoint Tool Bar Buttons

There are now three buttons in the main menu bar. These are:

&

B

&

TheToggle Breakpointbutton creates or deletes a breakpoint. If you

place the cursor in the line you want to create a breakpoint in, clicking the
Toggle Breakpoint button creates the breakpoint. If a breakpoint already
exists in that line, the breakpoint is removed.

TheEnable/Disable Breakpointbutton enables or disables a breakpoint.
If a breakpoint is enabled, a solid circle appears next to the line in the IDL
Editor window. If it disabled, the circle is not filled. If a breakpoint has
been disabled, the breakpoint is ignored when running the file.

TheEdit Breakpoints button displays th&dit Breakpoints dialog. In
previous releases, this printed a listing of the current breakpoints. From
this dialog, you can list your current breakpoints, create new breakpoints,
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The New Edit Breakpoints Dialog

The newEdit Breakpoints dialog allows you to add, remove, and remove all
breakpoints in a file as well as the ability to move to the line in the source file that

Enhanced Breakpoint Functionality What's New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 111

contains the breakpoint. The following figure shows the Bdit/Breakpoints
dialog:

Edit Breakpoints []

EfDl Maodule | Line | File |Afte| | Dmcl Condition |
o~ a

Add Remove I HemUVEAIII Goto | T

Figure 3-1: Edit Breakpoints Dialog
To create a breakpoint using the nedit Breakpoints dialog, complete the
following steps:
1. Open the file you in which you want to set a breakpoint.

2. Display theEdit Breakpoints dialog by clicking theﬂ button in the
IDLDE Tool Bar or by selectinfun — Edit Breakpoints...

3. Place the cursor in the line in which you want to create the breakpoint in the
Editor window.

4. SelectAdd in theEdit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

ltem Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteria for the breakpoint jis
met.

Module Specifies the procedure or function the breakpoint is set in.

Note - This item will not be displayed until the file has bee
compiled with the new breakpoint.

Table 3-1: Edit Breakpoints Description

What's New in IDL 5.3 Enhanced Breakpoint Functionality

112

Chapter 3: IDL Development Environment Enhancements

Item

Description

Line

Specifies the line number where breakpoint has been set

File

Specifies the filename where the breakpoint has been sef.

After

Specifies how many times the execution must pass the
breakpoint before stopping execution. For example, if thig
item is set to 0, execution will stop the first time this

breakpoint is encountered. If it is set to 9, execution will n
stop until the breakpoint has been encountered for the nif
time.

Once

The breakpoint is removed after it is encountered for the
time.

ot
1th

first

Condition

Specifies a condition to be met for the execution to stop.
condition is a string containing an IDL expression. When
breakpoint is encountered, the expression is evaluated. If
expression is true (if it returns a non-zero value), progran
execution is interrupted. The expression is evaluated in th
context of the program containing the breakpoint.

The
A
the

e

Table 3-1: Edit Breakpoints Description

5. At this point, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

Your breakpoint entry is now complete.

New Keywords to the BREAKPOINT Routine

The following keywords have been added to the BREAKPOINT routine:

Keyword

Description

DISABLE

Disables the specified breakpoint if it exists. The

or file and line number.

breakpoint can be specified using the breakpoint index

Enhanced Breakpoint Functionality

Table 3-2: New BREAKPOINT Keywords

What's New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 113

Keyword

Description

ENABLE

Enables the specified breakpoint if it exists. The
breakpoint can be specified using the breakpoint ind

or file and line number.

What's New in IDL 5.3

Table 3-2: New BREAKPOINT Keywords

Enhanced Breakpoint Functionality

eX

114

Chapter 3: IDL Development Environment Enhancements

New IDL Functions and Procedures Context
Menu for Windows and Motif

Previously only available on the Macintosh, the IBinction/Procedure Context
Menu has been added to the Windows and UNIX versions of IDL 5.3. The IDL
Function/Procedure Context Menuallows you to navigate between the different
procedures and functions you have defined in the current file you have open in the
IDL Editor. On Windows, the menu is located in the main menu bar. On Motif, the
menu is located in the upper left corner of the IDL Editor window.

EH IDL mIDL-WIN

File Edit Seach HRun Project acros Window Help
EoEHSE D s mlea | B2EO |—_[d_su.fwe~-\$$|@ ;@;

. d_surfviewT oggle0fOn
=30

B3 No Project Open

Context Window
on Windows

& C:\RSIMDL53\exampl

datall,nfurrentPoints] = xyzVect:
datal2 nfurrentPoints] = wxyzVect:
connactivitylList[nCurrentPoints+:
anmmactivi beld st InCnrrantPaintas!

dﬁfulecasl.pm
(L /homesusr_local /rsisidl_5.3/exanples/denos/denosres/d_forecast .pro

Context Window | d_farecastautcCorr [1955/01/16 011147 scoim Exp$

on Motif

d_forecastAutoFCast .
B9, Research Systems, Inc. All rights reserved,
d_forecastTsData uction prohibited.

d_forecastEvent

d_forecastCleanup

d_forecast

E CALLING SEQUENCE: d_forecast

Figure 3-2: IDL Function/Procedure Context Menu
on Windows (top) and Motif (bottom)

New IDL Functions and Procedures Context Menu for Windows and Motif What's New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 115

New Color/Font Style Coding for Source Files
on UNIX

Previously available on Windows and Macintosh platforms, color and font style
coding has been added to IDL Development Environment for UNIX. This allows you
to color code and specify different font styles for the different types of IDL
statements that appear in the IDL Editor window.

d_forecast.pro M=

L. Ahomesusr_local/rsisidl_5.3/examples/demo/demosrc/d_forecas
A

pro d_forecastAutoCorr, §
event =

WIDGET_CONTROL, eventtop, GET_UVALUE=info, /INO_COPY

Figure 3-3: Example of Color/Font Coding

To change the color or font, complete the following steps:

1. Selecfile - Preferences...
2. On thePreferencesdialog, click theEdit tab.

¥ Preferences

Eenerall Laguut] Eraphic‘s] Ed]t] Startup] Funts] Paths]

7 Make backup copy of source file

Colored Syntax:

I Enable Edit

Number of spaces to indent for each tab: [4

Compiling:
A fsk to save changes hefore compiling

« Autanatically save changes before compiling

 Compile from memory (don’t save before campiling)

— will take effect in the next session

oK | Apply Save Cancel Help

Figure 3-4: Preferences Dialog Edit Tab

What's New in IDL 5.3 New Color/Font Style Coding for Source Files on UNIX

116 Chapter 3: IDL Development Environment Enhancements
3. IntheColored Syntaxsection of the dialog, make sure that Bmable Edit
button is checked.
4. Click theSet Colors...button.

5. TheSet Colorsdialog displays. In this dialog, you can choose the color or font
style for a particular statement. Make your selections and ©kck

Syntax Styles: Foreground: Styles:

User PPDCEQuPes A1 Default —'l _{ Bold
User Functions)
System Procedures | |Background: A Italic

Sgs?em Functions Default _'l I Underline
Strings

#

QK | ‘ Cancel | Help

Figure 3-5: Set Colors dialog

You should see the color and font styles you've selected in the current file you have
open in the IDL Editor window.

New Color/Font Style Coding for Source Files on UNIX What's New in IDL 5.3

Chapter 3: IDL Development Environment Enhancements 117

Enhanced IDL Macros Support

Enhancements to IDL macros include:

New %? command stream substitution to display a dialog for input.

Support for command stream substitutions on the Macintosh.

New %7? Command Stream Substitution

The %7? substitution string has been added in IDL 5.3. This substitution string
displays a dialog for a user to enter a value to pass to a macro. The syntax for the %?
substitution string is the following:

%?(Prompt_textdialog_title)

whereprompt_textdescribes the text to prompt the user for enteringdaidg_title
is the text to display in the title bar of the dialog box.

For example, if you want to create a macro that returns the sine of a number,
complete the following steps:

1.
2
3.
4

5.

SeleciMacros - Edit.

Click theAdd button.

Enter the name of the new macro. For this example, enter “Sine”.@Hick
Enter the following in theDL Command field:

print, sin(%?(Enter value:, Convert to Sine))

Enter “Sine” in théMlenu item namefield. Click OK.

When you execute the macro by selectiferro — Sine the following dialog
displays:

Enter value:

Figure 3-6: %? Example Dialog

What's New in IDL 5.3 Enhanced IDL Macros Support

118 Chapter 3: IDL Development Environment Enhancements

If you enter a value, the macro will print the sine of that value.

New Support for Command Stream Substitutions on
Macintosh
Command stream substitutions are now available on the Macintosh. You can use

command stream substitutions to include certain types of information into IDL
Macros. The following table lists the available command stream substitutions:

Command Description

%S The text of the current selection.

%F or %P The filename associated with the current IDL Editor.

%N The base name of the filename (without path and suffix).

%B The base name of the filename (without path, but with a suffix).

%L The line number with the current insertion point.

%% Inserts “%".

%? Displays a dialog for entering a value to pass. The syntax is:

%?({rompt_textdialog_title)

whereprompt_texidescribes the text to prompt the user for
entering andlialog_titleis the text to display in the title bar of the
dialog box.

Table 3-3: Command Stream Substitutions

Enhanced IDL Macros Support What's New in IDL 5.3

Chapter 4:

IDL Macros for
Importing Data

This chapter describes the following topics.

Ooverview. 12QJsing Macros to Import Binary Files . . . 131
Using Macros to Import Image Files. .. 121 Using Macros to Import HDF Files. 137
Using Macros to Import ASCII Files . .. 125

What's New in IDL 5.3 119

120 Chapter 4: IDL Macros for Importing Data
Overview

In IDL 5.3, new macros have been added to ease the importing of data into IDL. This
chapter introduces these macros and describes how to import image, ASCII, binary,
and Scientific Data Format (SDF) files. These macros are available through the
Macros menu and also through new I0bol Bar buttons.

EE window E EH IDL 5.3 for Windows Dem
Edi... =

File Edt Search Hun Projec

Print % ar -

Help an War E @ E Eﬂ H % | LTy
Irmpart Image

Irmport Az I -

Irmport Binary g ¥? fﬁ% qllﬂ E ﬁ

Irmpart HOE / \

D

==t Import Image Import HDF
File File

Import ASCII File Import Binary File

Figure 4-1: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Overview What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 121
Using Macros to Import Image Files

To import an image file into IDL, complete the following steps:

1. Select thémport Image File tool bar button. Th&elect Image Filedialog

displays.
&l Select Image File =1 E3
Drive:IE:\ 'l k
CARSIMDLES
bir',
docsh
examples’,
externalt
helph
(=38
myprof
Tesounce’
Fiter: [Image Files | L
tmage #[0of oo 25 K B3)
Fomat: 77777 Preview Images
Bits/Crmp: 79977
Width, 77777 " Color
Height: #7797 " Grapscale
Pizel: 77777
Palette: 77777 Mo Preview

Figure 4-2: Select Image File Dialog

2. Select a file to import. For example, select the
rsi-directory lexamples/muscle.jpg file wherersi-directoryis the
installation directory for IDL.

You can now see a preview of this image as well as other information about the
file in the lower section of the Select Image File dialog. You can change the
preview toColor, Grayscale or No Preview If the image file had more than
one actual image, you can see them using the arrow buttons to scroll through
the images. You can only read in one image of a multi-image file. The image in
the preview is the image that will be read.

3. ClickOpen.
4. The file has been opened into a structure variable named MUSCLE_IMAGE.

What's New in IDL 5.3 Using Macros to Import Image Files

122

Chapter 4: IDL Macros for Importing Data

Images opened with theport Image File macro are stored in structure variables
which are namefllename IMAGE wherefilenameis the name of the file you

opened without the extension. So, the file we just opened (muscle.jpg) is now in the
structure variable named MUSCLE_IMAGE. The file is a structure as follows:

IMAGE — The actual image array.

R — The red color table vectors.

G — The green color table vectors.

B — The blue color table vectors.

QUERY — Contains information about the image.

CHANNELS — The number of channels in the image.

HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your imageridy-mthe palette is usually present and
the R, G, and B color table vectors mentioned above will contain values. If
your image is 3-byr-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.

IMAGE_INDEX — The index of the image of the file. The default is O,
the first image in the file. If there are multiple images in the file that you
read, this will be the number (or index) of the image.

NUM_IMAGES — The number of images in the original file.

PIXEL_TYPE — The IDLType Codeof the image pixel format. Valid
types are:

PIXEL_TYPE returned Data Types
1 Byte
2 Integer
3 Longword Integer
4 Floating Point
5 Double-precision Floating Point
12 Unsigned Integer
13 Unsigned Longword Integer

Table 4-1: Values for PIXEL _TYPE in the Structure

Using Macros to Import Image Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 123

PIXEL_TYPE returned Data Types
14 64-bit Integer
15 Unsigned 64-bit Integer

Table 4-1: Values for PIXEL _TYPE in the Structure

* TYPE — The image type. Valid return values are:
BMP, GIF, JPEG, PNG, PPM, SRF, TIFF, DICOM

The structure can be viewed in tariable Watch Window.

Hame L\ | Type ‘ Walue =
B MUSCLE_IMAGE STRUCT { <Anonpmouss
IMAGE BYTE Amrap[EB2, 444
R BYTE Array[256]
G BYTE Array(256]
B BYTE Aray(256]
B | QUERY STRUCT { <Anonpmouss
= | CHAMMELS LOMG 1
CIMENSIONS LOMG Array(2]
= HAS_PALETTE INT 0
IMAGE_INDE= LOMG 0
MHUM_IMAGES LOMG 1 —
Fi<EL_TwPE INT 1
= TYPE STRING JPEG -
4 I I\ Locals .(ParamsS Commong System | A4 | | LI_I

Figure 4-3: Variable Watch Window Showing MUSCLE IMAGE Structure

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_nameslement_nanjeelement_nanje

For example, if you want to view the image, enter the following:
TV, MUSCLE_IMAGE.IMAGE

What's New in IDL 5.3 Using Macros to Import Image Files

124 Chapter 4: IDL Macros for Importing Data

This displays the following:

Figure 4-4: MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:
PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:
JPEG

Using Macros to Import Image Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 125
Using Macros to Import ASCII Files

To import an ASCI! file into IDL, complete the following steps:

1. Select thémport ASCII File tool bar button. Th&elect an ASCII file to
read dialog displays.

Select an ASCII file to read. EHE|
Lookin: |3 dats = £k
ahnarmdat clouds3d.dat data.but galawy. dat
alie.dat convec.dat dirty_zine.dat head.dat
ascii dat (=R @' endocell. jpg @ heart, dsf
% S5Cil. bt ctacan, dat @ erarmples.tif buarric. dat
cereh.dat darmp_sh.dat flowvwdatad. dat @ image. tif
chirp.dat damp_sn. dat flovwd atad. dat indes. ket
<] | i

File name: I Open I
Files of type: I j Cancel |

Figure 4-5: Select an ASCI! file to read Dialog

2. Select a file to import. For example, select the
rsi-directory lexamples/ascii.txt file wherersi-directoryis the
installation directory for IDL. CliclOpen.

3. IntheDefine Data Type/Rangalialog, you specify information about your
file. The first few lines of the file are displayed to help you find the
information you need to specify.

First, select the type of field which best describes your data. You can either
chooserixed Width which specifies that the data is aligned in columns, or
Delimited which specifies that the data is separated by commas, whitespace,
etc. In this example, the data is delimited by commas so we’ll select the
Delimited radio button.

Next, enter a character or string that is used to comment lines within the file in
the Comment String to Ignore: field. In this example, if we read the first few

What's New in IDL 5.3 Using Macros to Import ASCII Files

126 Chapter 4: IDL Macros for Importing Data

lines of this file, it defines the % character as the comment character. Enter the
% sign in theComment String to Ignore: field.

Next, enter the line number in which the data starts ildh&a Starts at Line:
field. In this example, the data starts on line 6 so we’ll enter that value in the

field.
Click Next.

Chooze the field type which best describes your data:
' Fixed'width (fields are aligned in columns)

& Delimited [commas, whitespace, etc. separate each field)

Comment String ta lgnare: |%
D1ata Starts at Line: |8

Selected Text File: ity Es: Sl e |

Thiz file contains ASCII format weather data in a comma delimited table -

Text I |

with comments prefaced by the "%" character. The columns represent:

Longitude, latitude, elevation (in feet), temperature (in degrees F),

dew point (in degrees F), wind speed (knots), wind direction (degrees)

-116.9667, 33_.9333, 692, 77, 50, &, 270
-104_2545, 32.3340, 1003, &7, 50, 10, 340
-114.5225, 37.6073, 1333, 66, 35, 0, 0

£ -10g 9418, 47 32222, 211. €8. S57. 8. 140 _ILI
4 3

‘ Cancel | < Hack | Mest > | Eitiisk ”

wlw|alo|m|w|wlefe

Figure 4-6: Define Data Type/Range Dialog

4. IntheDefine Delimiter/Fieldsdialog, we’'ll specify the information about the
actual data in the file.

First, we'll enter the number of columns or fields in fdember of Fields Per
Line: field. In this example, there are 7 fields.

Next, we’ll enter the how the data is delimited. You can chidisike Space
Comma, Colon, Semicolon Tab, or Other. If you specifyOther, you must
then enter the characters in the field. In this example, we’'ll Setaotma
since the data is delimited by commas.

Using Macros to Import ASCII Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 127

5.

Click Next.

Mumber of Fields Per Line:

Delimiter Between Data Elements:

" hite Space ¢ Comma ¢ Colon
" Semicolon ¢ Tab € Other: |:|

Selected Records:

Text

1

2 -116.9667, 33.9333, 692, 77, S0, &, 270

El -104_2545, 32.3340, 1003, &7, 50, 10, 340
4 -114.5225, 37.6073, 1333, 66, 35, 0, 0

5 -106.941%8, 47.3222, 811, &8, 57, &, 140
[

7

g

9

-94_7500, 31.2335, 90, &9, 73, 10, 250
-13.6063, 43.3362, 100, 75, &4, 3, 180
-117.1765, 32.7335, 4, 64, 62, 5, 200
-116.0930, 44_8833, 1530, 55, 51, 0, 0

-106 3722. 31_8067. 1206, 82. 57. 9. 10
A4 3

-

‘ Cancel | < Back | Mest > | Eitiisk ”

Figure 4-7: Define Delimiter/Fields Dialog

In theField Specificationdialog, we’ll enter information about the contents of
each column or field in the data.

First, select the first field in the data in the box in the upper left of the dialog.
Enter the name of the field in theamefield and the type of data represented

in the Type field. In this example we’ll specifiyongitude andFloating for

the this field. Continue naming all the fields in the data using this procedure. In
this example, we’ll use Latitude — Floating; Elevation — Long; Temperature —
Long; DewPoint — Long; WindSpeed — Long; WindDir — Long for the other
field pairs.

You can also group some or all of the fields into one field by usingringp
or Group All buttons. In this example, there is no need to group any of the
fields.

What's New in IDL 5.3 Using Macros to Import ASCII Files

128

Chapter 4: IDL Macros for Importing Data

Next, select the value to assign missing data. You can select the IEEE standard
for NaN or a custom value. In this example, we’ll cho&teE NaN.

&l|STEP 3 of 3: Field Specification E

Mame: |Longitude
Tupe: IFlDating Paint 'l

[rata Type

Longitude |Floating
Latitude Floating
Elevation Laong
Temperature | Long
DewPoint Laong
n WindSpeed Long

Group [rEraup

Group Al Ungroup Al

Walue to Azsign to Missing Data: % [EEE NaM ¢ l:l

Sample Record:

Longitude Latitude | Elevation IT‘emperatur4 DewPoint | windspeed winDir
1 20,7832 300 &2 64 in &0 -

-
A4 3

‘ Cancel | < Back | [EREs | Finizh ”

Figure 4-8: Field Specification Dialog

6. Click Finish.

ASCII files opened with themport ASCII File macro are stored in structure
variables which are namditbtname ASCII wherefilenameis the name of the file

you opened without the extension. So, the file we just opened (ascii.txt) is now in the
structure variable named ASCII_ASCII. The variable is a structure with each field
name being an element of the structure.

Using Macros to Import ASCII Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 129

The structure can be viewed in tariable Watch Window.

Mame | Type | Walue ;I

3 ASCI_ASCH STRUCT { ¢hnonymouss

LOMGITUDE FLOAT Arrap[19]

LATITUDE FLOAT Anay[15]

ELEVATION LOMG Arrap[19]

TEMPERATURE LOMG Arrap[15]

DEWPOINT LONG Anay[15]

WINDSPEED LOMG Arrap[15]

WINDIR LONG Anay[15]

< [+] Locals {Params, Common 'y System, | 4] | »

Figure 4-9: Variable Watch Window Showing ASCIl_ASCII Structure
You can specify which part of the structure variable you want to access by using the
following syntax:
variable_namelement_name
For example, if you want to view the Longitude field, enter the following:
Print, ASCII_ASCII.LONGITUDE
IDL prints:

-156.950 -116.967 -104.255 -114.522 -106.942
-94.7500 -73.6063 -117.176 -116.093 -106.372
-93.2237 -109.635 -76.0225 -93.1535 -118.721

If you want to plot Temperature, enter the following:
PLOT, ASCII_ASCII.TEMPERATURE

What's New in IDL 5.3 Using Macros to Import ASCII Files

130 Chapter 4: IDL Macros for Importing Data

The following figure results.

a0+ a

20 -

Figure 4-10: Plot of ASCII_ASCII. TEMPERATURE

Using Macros to Import ASCII Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 131
Using Macros to Import Binary Files

Sometimes, data is stored in files as arrays of bytes instead of a known format like
JPEG or TIFF. These files are referred to as binary files.

Note
Thelmport Binary File macro is intended for use in loading raw binary data from
files into IDL. Such data is comprised of bits that are meaningful — as integers or
floating-point numbers for example — with no special processing (except possibly
byte-order swapping) required. Commercial spreadsheet or word processing files,
for example, are binary but they are not raw in the above sense, and thus are not
good candidates for use with this macro.

Also note that thémport Binary File macro is intended for use in loading data

from files the contents of which you have some knowledge about. To effectively
read data with this macro, you must be able to supply literal values or expressions
that specify the type and location of the data in the file you wish to read.

To import a binary file into IDL, complete the following steps:

1. Select thémport Binary File tool bar button. Th&elect a binary file to
read dialog displays.

Select a binary file to read. EE
Laok jn: I 4 data j gl E =
abnorm.dat cloudz3d dat data.txt galawxy. dat
alie.dat convec.dat dirty_zine.dat head.dat
gzci.dat cow.smf @ endocel.jpg E] heart.dsf

asoil.tat ctzcan. dat @ examples. tif hurric. dat
cereb.dat damp_sn.dat flowsdatad. dat image. tif
chirp.dat damp_sn2.dat flowsdatad. dat index. txt
4] | I

File: name: | Open I
Files of type: | j Cancel |

Figure 4-11: Select a binary file to read Dialog

What's New in IDL 5.3 Using Macros to Import Binary Files

132 Chapter 4: IDL Macros for Importing Data

2. Select afile to import. For example, select the
rsi-directory /examples/surface.dat file wherersi-directoryis the
installation directory for IDL. CliclOpen.

3. IntheBinary Template dialog box, specify information about your file.

&l Binary Template

Template name:|marbelistemplats File's byte ordering: I Native i

Fields:

Name Offset | # Dims Size Type Retun | Werfy

Mew Field. | rodify Field). | - Femaye Freld

&I Cancel

Figure 4-12: The Binary Template dialog

First, enter the name of the template you are going to createTertipate
name: field. For this example, “marbellstemplate” is used.

Next, select the byte order in the file in #ik’s byte ordering: pull-down
menu. The choices are:

* Native — The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines
and Big Endian for Motorola microprocessor-based machines. No byte
swapping will be performed.

» Little Endian — A method of storing numbers so that the least significant
byte appears first in the number. For example, given the hexadecimal
number A02B, the little endian method specifies the number to be stored
as 2BAO0. Specify this if the original file was created on a machine that
uses an Intel microprocessor.

» Big Endian — A method of storing numbers so that the most significant
byte appears first in the number. For example, given the hexadecimal
number A02B, the big endian method specifies the number to be stored as
AO02B. Specify this if the original file was created on a machine that uses a
Motorola microprocessor.

Using Macros to Import Binary Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 133

The filesurface.dat ~ was created on a machine that uses an Intel
microprocessor. For this example, seldtite Endian for the byte order.

4. Now we are ready to enter the field values for the file. You can have multiple
fields within a binary file. Click thdlew Field...button in the lower-left
corner of theBinary Template dialog box.

In theNew Field dialog (shown at the end of these example steps), enter the
name of the field in th€&ield name:text box. In this example, enter “A” as the
field name.

Next, you need to specify where in the file to start reading. The options are:

» Offset — Specifies the byte offset or where to begin reading the file. This
is always a decimal integer unless Ailw an expression for the offset
checkbox is checked. Thesymbol specifies to offset forward from a byte
position, the< symbol specifies to offset backward from a byte position.

« From beginning of file — Specifies to start reading this field starting with
the first byte of the file plus ar®yffset specified.

* From initial position in file/From end of previous field — This field
changes depending upon if this is the first field or any other field besides
the first. If this is the first field you are defining, this option specifies to
read from the beginning of the file plus dbffset specified. If this is not
the first field, this option changesRoom end of previous fieldand
specifies to begin reading the field where the previous field ended plus any
Offset specified.

» Allow an expression for the Offset— If this is checked, you can enter
any valid IDL expression in theffset field. You can use any previously
defined field in the expression.

In this example, since this is the first field in the file and we don’t have any
header information in the file, speciRrom the beginning of file without any
offset.

Next, select whether or not you want this field to be returned to IDL when a
file is read. For example, you may have a section of your binary file that
contains header information. If you create a field for this section, you do not
want it returned to IDL. In this case, you would not seRsturned in the

result. You must specify at least one field to be returned to IDL. In this
example, we want to return the field we're creating so we’ll check the box in
the upper-right corner markdéeturned in the result

What's New in IDL 5.3 Using Macros to Import Binary Files

134

Chapter 4: IDL Macros for Importing Data

Next, you need to specify whether or not you want to verify any of the data you
are returning in th¥erified equal to field. This field is only available if the

field is a scalar. This can be any valid IDL expression that evaluates to a scalar.
For this example, we won't verify any of the data.

Next, you need to specify the type of data that is in this field. In this example,
the data is integer type data so select the Integer (16 bits) Btpheull-
down menu. The valid values féype are:

* Byte (unsigned 8-bits)

* Integer (16-bits)

* Long (32-hits)

* Long64 (64 bits)

* Float (32 bits)

* Double-Precision (64-bits)

* Unsigned Integer (16 bits)

* Unsigned Long (32-bits)

* Unsigned Long64 (64-bits)

» Complex (real-imaginary pair of floats)
» Double-Precision Complex (pair of doubles)

Next, specify the number of dimensions contained in the data Muimder

of dimensions:pull-down menu. This will activate a corresponding number of
boxes in the dimensions section of the dialog. In this example, the data is two-
dimensional.

Finally, enter the size of each dimension in the field. If you seleétlkn
expressions for dimension sizesheck box, you enter any valid IDL

expression that returns the size of the dimension. You can also choose to
reverse the order of the data by selectingRbeersecheck box for each
dimension. This can be useful when image data is returned in the reverse order
and appears upside down. In this example, the data is contained in a 350-by-
450 array, so enter 350 for the size of ttet dimensionand 450 for the size of
the2nd dimensionin the text fields marke8ize.

Click OK.

Using Macros to Import Binary Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 135

@l Hew Field [
Field narme: |A |
Oftset bytes ‘wihen a file is read with

. » this template, this field shall be:
" From beginning of file

X . ¥ Rietuimed in the result
" From initial position in fils

™ Verified equal to:
I Allow an expression for the offsst I:I
Type: | Integer (16 bits) =l

Dimensions: Number of dimensions: |2 i

™ Allow expressions for dimension sizes

13t dimension: B Fisvisis Gthy dimersia:
2nd dimensior: B e Etf dirmiersiar:
Srddimension: 0 Favems Tty dimersiar:
Aty dimensiat Bt dimersiar:

&I Cancel |

Figure 4-13: Modifying fields in Binary Template

5. You can now see the information that you entered iBih&y Template
dialog. If you need to enter more fields, selectNbe Field button. Repeat
the steps until you have entered all the fields in the binary file.

In this example, there is only one field. ClioK .

Binary files opened with thienport Binary File macro are stored in structure
variables which are namditename BINARY wherefilenameis the name of the file
you opened without the extension. So, the file we just openeedoe.dat) is

now in the structure variable named SURFACE_BINARY. The variable is a structure
with each field name being an element of the structure.

What's New in IDL 5.3 Using Macros to Import Binary Files

136 Chapter 4: IDL Macros for Importing Data

The structure can be viewed in tHariable Watch Window.

Marme | Type | Walue

B SURFACE_BINARY STRUCT { ¢tnonymoussy
= A INT Amap[350. 450]
[0.0] INT 3198

 [[+] Locals {Params), Comman j system, | 4] | i

Figure 4-14: Variable Watch Window Showing MARBELLS BINARY Structure
You can specify which part of the structure variable you want to access by using the
following syntax:
variable_nameslement_name
For example, display the image by entering:
TVSCL, SURFACE_BINARY.A

Figure 4-15: Surface.dat displayed using TVSCL

Using Macros to Import Binary Files What's New in IDL 5.3

Chapter 4: IDL Macros for Importing Data 137

Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EQOS, or NETCDF file into IDL,
complete the following steps:

1. Select thémport HDF File tool bar button. Th&elect a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

Select a valid HDF, NETCDF or HDF-EOS file HE
Look jr: I 5 data j il IE_E =
abnormdat clouds3d. dat data.tat galaxy.dat
alie. dat convec.dat dirty_sine. dat head.dat
g8l dat cow. gmf @' endocell.jpg |§| heart. dxf

&5l bt ctzcan, dat @ examples. tif huaric. dat
cersh.dat damip_zn. dat flowsdatad. dat image:. tif
chirp.dat damp_sn2.dat flowsdatad. dat inde. bt
1] |

Files of twpe: | j Cancel

10
File: name: I Open I

Figure 4-16: Select a valid HDF, NETCDF or HDF-EQS file Dialog

2. Select a file to import. Clickpen.

3. TheHDF Browser window is displayed (shown at the end of these example
steps). In thédDF Browser window, select the data in the file you want to
import into IDL.

In the Display pull-down menu, select the type of file you are reading. The two

options are:
« HDF/NETCDF
« HDF-EOS

What's New in IDL 5.3 Using Macros to Import HDF Files

Chapter 4: IDL Macros for Importing Data

Next, select the type of data you want to import. The following tables describe
the options available for the two display choices from the pull-down menu.

Menu Selection

Description

HDF/NetCDF Summary

DF24 (24-bit Images)

24-bit images and their attribute

DFR8 (8-bit Images)

8-bit images and their attributes

DFP (Palettes)

Image palettes

[

72

SD (Variables/Attributes) Scientific Datasets and attribute
AN (Annotations) Annotations
GR (Generic Raster) Images

GR Global (File) Attributes

Image attributes

VGroups

Generic data groups

VData

Generic data and attributes

Table 4-2: Menu Options for HDF/NetCDF Data Types

Menu Selection

Description

HDF-EOS Summary

Point

EOS point data and attributes

Swath

EOS swath data and attributes

Grid

EOS grid data and attributes

Table 4-3: Menu Options for HDF-EOS Data Types

Once you have selected the type of data, information is displayed that shows
the different elements of data available in the file you are opening. For
example, if it is an image file, you will see the names of the images displayed.

Select the item to import.

If you have selected an image, 2D data set, or 8-by-m data set from the
pull-down menu, you can click on tieview button to view the image. If

Using Macros to Import HDF Files

What's New in

IDL 5.3

Chapter 4: IDL Macros for Importing Data 139

you have selected a data item that can be plotted in two dimensions, click on
thePreview button to view a 2D plot of the data (the default); or click on the
Preview Surfaceradio button to display a surface plot; click on Breview
Contour radio button to display a contour plot; or click on tAeeview Show3

radio button for an image, surface, and contour display. You can also select the
Fit to Window check box to fit the image to the window.

Next, if you want the data or metadata item you are previewing to be imported
into IDL, select thdRead check box to extract the current data or metadata
item from the HDF file.

Next, specify a name for the extracted data or metadata item.
Note

TheReadcheck box must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

&l HDF Browser E

Display: IHDF /METCDF Vl
Preview

I DFRE [8-bit Images) - l

IMAGE # 0
PALETTE

S-bit IMAGE ATTRIBUTES

¥ Read Ewtract s Hydrogen_Image

HEIGHT = 204
REFNO =3 ¥ Fit to window

WIDTH = 204
& Preview Image

7 Presiew Surface
7 Presview Contour

7 Presview Show3

()8 | Calar Table Cancel |

Figure 4-17: HDF Browser Window

What's New in IDL 5.3 Using Macros to Import HDF Files

140

Chapter 4: IDL Macros for Importing Data

4. Continue selecting to read and name the data or metadata items you want to
import into IDL.

5. Click OK.

HDF, NETCDF, or HDF-EOS files read with thmport Binary File macro are

stored in structure variables which are narfiledame DF wherefilenameis the

name of the file you opened without the extension. The variable is a structure with
each data or metadata name being an element of the structure.

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_namealata_name

For example, if you imported two data elements out of a file named hydrogen.hdf and
you named the elements IMAGEL and IMAGEZ2, you could access each individual
data element using the following:

HYDROGEN_DF.IMAGE1
HYDROGEN_DF.IMAGE?2
If you wanted to view IMAGE1, you would enter:
TV, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formatsanual.

Using Macros to Import HDF Files What's New in IDL 5.3

Chapter 5:

New IDL Routines

This chapter contains documentation for IDL Routines introduced in IDL version 5.3.
Complete documentation for IDL Routines (including enhancements to existing
routines) can be found in thBL Reference Guider in the IDL Online Help.
Documentation for the new SDF routines documented in this chapter can also be
found in theScientific Data Formatsanual.

What's New in IDL 5.3 141

142 Chapter 5: New IDL Routines
FULL RESET SESSION

The .FULL_RESET_SESSION command does everythiRigSET SESSIOMoes,
plus the following:

* Removes all system routines installed via LINKIMAGE or a DLM.
* Removes all structure definitions installed via a DLM.
* Removes all message blocks added by DLMs.

* Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

* Re-initializes all DLMs to their unloaded initial state.

Note

The VMS operating system does not support unloading sharable libraries.
Therefore, .FULL _RESET_SESSION is identical to .RESET_SESSION under
VMS, and these extra steps are not performed.

Note
.FULL_RESET_SESSION is an executive command. Executive commands can
only be used at the IDL command prompt, not in programs.

Syntax

FULL_RESET_SESSION

.FULL_RESET_SESSION What's New in IDL 5.3

Chapter 5: New IDL Routines 143
RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session without
requiring the user to exit and restart the IDL session.

.RESET_SESSION does the following:
* Returns current execution point to $SMAINS$ (RETALL).
* Removes all breakpoints.

» Closes all files except the standard 3 units, the JOURNAL file (if any), and any
files in use by graphics drivers.

» Destroys/Removes the following:
e Alllocal variables in $MAINS.
« All widgets. Exit handlers are not called.

e All windows and pixmaps for the current window system graphics device
are closed. No other graphics state is reset.

* All common blocks.

e All handles

e All user defined system variables

« All pointer and object reference heap variables.
e Obiject destructors are not called.

e All user defined structure definitions.

» All user defined object definitions.

e All compiled user functions and procedures, including the main program
(SMAINS), if any.

The following are not reset:
e The current values of intrinsic system variables are retained.
e The saved commands and output log are preserved.

e Graphics drivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

» The following files are not closed:

What's New in IDL 5.3 .RESET_SESSION

144

Note

Chapter 5: New IDL Routines

e Stdin (LUN 0)

« Stdout (LUN -1)

» Stderr (LUN -2)

e The journal file ({JOURNAL) if one is open.

* Any files in use by graphics drivers (e.g. PostScript).

Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor are
any dynamic sharable libraries containing such drivers, even if the same library
was also used for another purpose such as CALL_EXTERNAL, LINKIMAGE
system routines, or DLMs. See th@JLL RESET_ SESSIONXxecutive
command to unload dynamic libraries.

.RESET_SESSION is an executive command. Executive commands can only be
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION

.RESET_SESSION

What's New in IDL 5.3

Chapter 5: New IDL Routines 145
ADAPT HIST EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization, a
form of automatic image contrast enhancement. The algorithm is described in Pizer
et. al., "“Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding each
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement has
proven to be broadly applicable to a wide range of images and to have demonstratec
effectiveness.

Syntax

Result= ADAPT_HIST_EQUAL {mage[, CLIP=valud [, NREGIONS=nregion$
[, TOP=valug)

Return Value

The result of the function is a byte image with the same dimensions as the input
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit data
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords
CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to the
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is not
limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.

What's New in IDL 5.3 ADAPT_HIST_EQUAL

146

Chapter 5: New IDL Routines

NREGIONS

Set this keyword to the size of the overlapped tiles, as a fraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the size
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is 255.
Example

The following code snippet reads a data file in the IDL Demo data directory
containing a cerebral angiogram, and then displays both the original image and the
adaptive histogram equalized image:

OPENR, 1, DEMO_FILEPATH(cereb.dat’, &
SUBDIRECTORY=['examples’,’data’])

;Image size =512 x 512
a=BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

;Show original
TVSCL, a,0

;Show processed
TV, ADAPT_HIST_EQUAL(a, TOP=ID.TABLE_SIZE-1), 1

ADAPT_HIST_EQUAL What's New in IDL 5.3

Chapter 5: New IDL Routines 147
BINARY TEMPLATE

The BINARY_TEMPLATE function presents a graphical user interface which allows
the user to interactively generate a template structure for use with READ_BINARY.

The graphical user interface allows the user to define one or more fields in the binary
file. The file may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type of
data to be read. Where necessary, fields can be defined in terms of other previously
defined fields using IDL expressions. Fields can also be designated as “Verify”.
When a file is read using a template with “Verify” fields, those fields will be checked
against a user defined value supplied via the template.

Syntax

Template= BINARY_TEMPLATE ([Filenamé [, CANCEL=variablg
[, GROUP=widget_id [, N_ROWS=owg [, TEMPLATE=filenam¢)

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test the
template. As the user interacts with the BINARY_TEMPLATE graphical user
interface, the user’s input will be tested for correctness against the binary data in the
file. If filenameis not specified, a dialog allows the user to choose the file.

Keywords
CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader is killed, for any reason, all
widgets in the group are also destroyed.

What's New in IDL 5.3 BINARY_TEMPLATE

148 Chapter 5: New IDL Routines

N_ROWS

Set this keyword to the number of rows to be visible in the BINARY_TEMPLATE’s
table of fields.

Note

The N_ROWS keyword is analogous to the WIDGET_TABLE and the
Y_SCROLL_SIZE keywords.

TEMPLATE

Use this keyword to specify an initial template for viewing and editing via the
BINARY_TEMPLATE graphical user interface.

Note
A greater than (“>”) or less than (“<") symbol can appear in the
BINARY_TEMPLATE’s “New Field” and the “Modify Field” dialogs where the
offset value is displayed. The presence of either symbol indicates that the supplied
offset value is “relative” from the end of the previous field or from the initial
position in the file. Greater than means offset forward. Less than means offset
backward. “>0" and “<0” are synonymous and mean “offset zero bytes”. The user
can delete these special symbols (thereby indicating that their corresponding offset
value is not “relative”) by typing over them in the “New Field” or “Modify Field”
dialogs where the offset value is displayed.

BINARY_TEMPLATE What's New in IDL 5.3

Chapter 5: New IDL Routines 149

CDF_COMPRESSION

Note
This is a new SDF routine, and is documented irSitientific Data Formats
manual.

The CDF_COMPRESSION procedure sets or returns the compression mode for a
CDF file and/or variables. Compression parameters should be set before values are

written to the CDF file.
Syntax

CDF_COMPRESSIONd [, GET_COMPRESSIONwariablé

[, GET_GZIP_LEVEL=ariabld [, GET_VAR_COMPRESSIONvariable]

[, GET_VAR_GZIP_LEVEL=ariablg] [, SET_COMPRESSION={0|1|2]|3]|5}]
[SET_GZIP_LEVEL=ntegef1 to 9}] [SET_VAR_COMPRESSION={0|1| 2|
3|5} [, SET_VAR_GZIP_LEVELntegefl to 9}] [, VARIABLE= variable name
or indey [, /ZZVARIABLE]

Arguments
Id

The CDF ID of the file being compressed or queried, as returned from a previous call
to CDF_OPEN or CDF_CREATE. Note that CDF compression only works for
single-file CDF files.

Keywords
GET_COMPRESSION

Set this keyword to a named variable to retrieve the compression type used for the
single-file CDF file. Note that individual CDF variables may have compression types
different than the one for the rest of the CDF file.

GET_GZIP_LEVEL

Set this keyword to a named variable in which the current GZIP effort level (1-9) for
the CDF file is returned. If the compression type for the file is not GZIP (5), then a
value of zero is returned.

What's New in IDL 5.3 CDF_COMPRESSION

150

Chapter 5: New IDL Routines

GET_VAR_COMPRESSION

Set this keyword to a named variable to retrieve the compression type for the variable
identified by the VARIABLE keyword.

GET_VAR_GZIP_LEVEL

Set this keyword to a named variable in which the GZIP effort level (1-9) for the
variable specified by the VARIABLE keyword is returned. If the compression type
for the variable is not GZIP (5), then a value of zero is returned.

SET_COMPRESSION

Set this keyword to the compression type to be used for the single-file CDF file. Note
that individual CDF variables may use compression types different than the one for
the rest of the CDF file. Valid compression types are:

0 =No Compression

* 1 =Run-Length Encoding

* 2 =Huffman

» 3 = Adaptive Huffman

* 5 =GZIP (see the optional GZIP_LEVEL keyword)
SET_GZIP_LEVEL

This keyword is used to indicate the desired effort for the GZIP compression. This
effort must be expressed as a scalar in the range (1-9). If GZIP_LEVEL is not
specified upon entry, then the default effort level is taken to be 5. If the
SET_GZIP_LEVEL keyword is set to a valid value, and the keyword
SET_COMPRESSION is not specified, SET_COMPRESSION is set to GZIP (5).

SET_VAR_COMPRESSION

Set this keyword to the compression type for the variable identified by the
VARIABLE keyword. If the variable is a zVariable, and is referred to by index in the
VARIABLE keyword, then the keyword ZVARIABLE must be set. The desired
variable compression should be set before variable data is added with
CDF_VARPUT. Valid compression types are:

* 0= No Compression
* 1 =Run-Length Encoding

e 2 =Huffman

CDF_COMPRESSION What's New in IDL 5.3

Chapter 5: New IDL Routines 151

e 3 = Adaptive Huffman
e 5 =GZIP (see the optional GZIP_LEVEL keyword)
SET_VAR_GZIP_LEVEL

Set this keyword to the GZIP effort level (1-9). If the compression type for the
variable is not GZIP (5), no action is performed.

VARIABLE

Set this keyword to the name of a variable or a variable index to set the current
variable. This keyword is mandatory when querying/setting the compression
parameters of an rVariable or zVariable. Note that if VARIABLE is set to the index of
a zZVARIABLE, the ZVARIABLE keyword must also be set. If ZVARIABLE is not
set, the variable is assumed to be an rVariable.

ZVARIABLE

Set this keyword if the current variable is a zZVARIABLE and is referred to by index
in the VARIABLE keyword. For example:

CDF_COMPRESSION, id, VARIABLE=0, /ZVARIABLE,$
GET_VAR_COMPRESSION=vComp

Special Note About Temporary File Location

CDF creates temporary files whenever files/variables are compressed or
uncompressed. By default, these files are created in the current directory. UNIX users
can set the environment variable CDF_TMP to set the temporary directory explicitly.
VMS users can similarly set the logical name CDF$TMP to an alternate scratch file
directory.

Example

; Create a CDF file and define the compression.

; Compression only works on Single-File CDFs:
id=CDF_CREATE('demo.cdf',[10,20],/CLOBBER,/SINGLE_FILE)
CDF_COMPRESSION,id,SET_COMPRESSION=1 ; (Run-length encoding)
att_id=CDF_ATTCREATE(id, 'Date',/GLOBAL)
CDF_ATTPUT,id,'Date’,att_id,systime()

; Change the compression type for the file to GZIP by using
: SET_GZIP_LEVEL:
CDF_COMPRESSION,id,SET_GZIP_LEVEL=7

; Retrieve compression information:
CDF_COMPRESSION,id,GET_GZIP_LEVEL=glevel, GET_COMPRESSION=gcomp

What's New in IDL 5.3 CDF_COMPRESSION

152 Chapter 5: New IDL Routines

HELP,glevel,gcomp

; Create and compress an rVariable:

rid=CDF_VARCREATE(id,'rvar0',[1,1],/CDF_FLOAT)

CDF_COMPRESSION,id,SET_VAR_COMPRESSION=2,VARIABLE="rvarQ'

CDF_VARPUT,id,'rvar0',findgen(10,20,5)

CDF_COMPRESSION,id,GET_VAR_COMPRESSION=v_comp,VARIABLE=rid,$

GET_VAR_GZIP_LEVEL=v_glevel

HELP,v_comp,v_glevel

; Create and compress a zVariable:

zid=CDF_varcreate(id,'zvar0',[1,1,1],DIM=[10,20,30],/ZVARIABLE,$
/CDF_DOUBLE)

; You can set a compression and check it in the same call:

CDF_COMPRESSION,id,SET_VAR_GZIP_LEVEL=9,VARIABLE=zid,/ZVARIABLE,$
GET_VAR_GZIP_LEVEL=v_gzip

HELP,v_gzip

CDF_VARPUT,id,zid,dindgen(10,20,30),/ZVARIABLE

; File and variable keywords can be combined in the same call

; (Set calls are processed before Get calls)

CDF_COMPRESSION,id,GET_VAR_COMPRESSION=v_comp,VARIABLE="zvar0",$
[ZVARIABLE, SET_COMPRESSION=2,GET_COMPRESSION=file_comp

HELP file_comp,v_comp

CDF_DELETE,id

IDL Output
GLEVEL LONG = 7
GCOMP LONG = 5
V_COMP LONG = 2
V_GLEVEL LONG = 0

(Note that V_GLEVEL is 0, since the variable compression is not GZIP.)

V_GzIP LONG = 9
FILE_.COMP LONG = 2
V_COMP LONG = 5

CDF_COMPRESSION What's New in IDL 5.3

Chapter 5: New IDL Routines 153
COMPILE_OPT

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appeatrs.

Research Systems recommends the use of
COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the use
of

COMPILE_OPT idI2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of a larger package).

Note

COMPILE_OPT is an IDL statement. For information on using statements, see
Chapter 10, “Statementgi Building IDL Applcations

Syntax
COMPILE_OPTopt, [, opb, ...,0pt]

Arguments

opt,
This argument can be any of the following:
* IDL2 — A shorthand way of saying:
COMPILE_OPT DEFINT32, STRICTARR

e DEFINT32 — IDL should assume that lexical integer constants default to the
32-hit type rather than the usual default of 16-bit integers. This takes effect
from the point where the COMPILE_OPT statement appears in the routine
being compiled and remains in effect until the end of the routine. The

What's New in IDL 5.3 COMPILE_OPT

154

Chapter 5: New IDL Routines

following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants:

Constant Normal Type DEFINT32 Type
Without type specifier:
42 INT LONG
'2a'x INT LONG
42u UINT ULONG
'2a'xu UINT ULONG
With type specifier:
Ob BYTE BYTE
Os INT INT
ol LONG LONG
42.0 FLOAT FLOAT
42d DOUBLE DOUBLE
42us UINT UINT
42ul ULONG ULONG
42l LONG64 LONG64
42ull ULONG64 ULONG64

COMPILE_OPT

Table 1: Examples of the effect of the DEFINT32 argument

HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines

that regular IDL users are not interested in seeing.

A side-effect of making a routine hidden is that IDL will not print a “Compile
module” message for it when it is compiled from the library to satisfy a call to

it. This makes hidden routines appear built-in to the user.

OBSOLETE — If the user has 'WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
this routine is obsolete. This directive can be used to warn people that there

may be better ways to perform the desired task.

What's New in IDL 5.3

Chapter 5: New IDL Routines 155

e« STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.

What's New in IDL 5.3 COMPILE_OPT

156 Chapter 5: New IDL Routines
CW_FILESEL

The CW_FILESEL function is a compound widget for file selection.
Syntax

Result= CW_FILESEL Parent[, /FILENAME] [, FILTER=string arrayj
[, /FIX_FILTER] [, /FRAME] [, /IMAGE_FILTER] [, /MULTIPLE] [, PATH=string]
[, UNAME=string] [, UVALUE=valuq)

Arguments

Parent

The widget ID of the parent.
Keywords
FILENAME

Set this keyword to have the initial filename filled in the filename text area.
FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is “All Files”. All files containing the chosen filter string will be displayed as
possible selections. “All Files” is a special filter which returns all files in the current
directory.

Example:
FILTER=["All Files", ".gif", ".txt"]
Multiple filter types may be used per filter entry, using a comma as the separator.
Example:
FILTER=[".jpg, .jpeg", ".txt, .text"]
FIX_FILTER
If set, the user can not change the file filter.

FRAME

If set, a frame is drawn around the widget.

CW_FILESEL What's New in IDL 5.3

Chapter 5: New IDL Routines 157

IMAGE_FILTER

If set, the filter “Image Files” will be added to the end of the list of filters. If set, and
FILTER is not set, “Image Files” will be the only filter displayed. Valid image files
are determined from QUERY_IMAGE.

MULTIPLE

If set, the file selection list will allow multiple filenames to be selected. The filename
text area will not be editable in this case.

PATH

Set this keyword to the initial path the widget is to start in. The default is the current
directory.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget.

What's New in IDL 5.3 CW_FILESEL

158 Chapter 5: New IDL Routines

CW_LIGHT EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties of
existing IDLgrLight objects in a view. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property). The returned value of this function is the widget
ID of a newly-created light editor.

Syntax

Result= CW_LIGHT_EDITOR parent[, /DIRECTION_DISABLED]

[, /DRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED]

[, LIGHT=0bjref(s] [, /LOCATION_DISABLED] [, /TYPE_DISABLED]
[UVALUE=valug [, XSIZE=pixelq [, YSIZE=pixeld [, XRANGE=vectof
[, YRANGE=vectol [, ZRANGE=vectol)

Arguments

Parent
The widget ID of the parent widget for the new light editor.

Keywords
DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comes to rest at its final position and the mouse button is
released.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

CW_LIGHT_EDITOR What's New in IDL 5.3

Chapter 5: New IDL Routines 159

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a ‘hint’ to the toolkit,
and may be ignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

What's New in IDL 5.3 CW_LIGHT_EDITOR

160

Chapter 5: New IDL Routines

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE is
not present, the widget's initial user value is undefined.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties

XSIZE
The width of the drawable area in pixels. The default width is 180.
YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE
The height of the drawable area in pixels. The default height is 180.
ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties

Light Editor Events

There are variations of the light editor event structure depending on the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER). The different light editor event structures are described below.

Light Selected

This is the type of structure returned when the light selected in the light list box is
modified by a user.

{ CW_LIGHT_EDITOR_LS, ID:0L, TOP:0L, HANDLER:OL, LIGHT:OBJ_NEW()}
LIGHT specifies the object ID of the new light selection.

CW_LIGHT_EDITOR What's New in IDL 5.3

Chapter 5: New IDL Routines 161

Light Modified

This is the type of structure returned when the user has modified a light property. This
event maybe generated continuously if the DRAG_EVENTS keyword was set. See
DRAG_EVENTS above.

{ CW_LIGHT_EDITOR_LM, ID:OL, TOP:0OL, HANDLER:OL}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET _INFO routines that affect or return information on base widgets can

be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. An
IDLgrLight object reference of the currently selected light is returned. The value of a
widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified light editor compound widget. This widget accepts an
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light editor
controls are updated to reflect those properties.

What's New in IDL 5.3 CW_LIGHT_EDITOR

162 Chapter 5: New IDL Routines

CW_LIGHT EDITOR GET

The CW_LIGHT_EDITOR_GET procedure gets the CW_LIGHT_EDITOR
properties.

Syntax

CW_ LIGHT_EDITOR_GETWidgetID[, DIRECTION_DISABLED=variable]

[, DRAG_EVENTS=variable] [, HIDE_DISABLED=variable] [, LIGHT=variable]
[, LOCATION_DISABLED=variable] [, TYPE_DISABLED=variable]

[, XSIZE=variablg [, YSIZE=variableg] [, XRANGE=variabl¢

[, YRANGE-=variablel[, ZRANGE=variabl¢g

Arguments

WidgetID
The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords
DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will not
generate an event.

DRAG_ EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously while a
slider in the compound widget is being dragged or when the mouse cursor is being
dragged across the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.

CW_LIGHT_EDITOR_GET What's New in IDL 5.3

Chapter 5: New IDL Routines 163

HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compound
widget unchangeable by the user.

LIGHT

Set this keyword to a nhamed variable that will contain one or more object references
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compound
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable area
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the y direction.

YSIZE

Set this keyword to a named variable that will contain the height of the drawable area
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the z direction.

What's New in IDL 5.3 CW_LIGHT_EDITOR_GET

164 Chapter 5: New IDL Routines

CW_LIGHT EDITOR SET

The CW_LIGHT_EDITOR_SET procedure sets the CW_LIGHT_EDITOR
properties.

Syntax

CW_ LIGHT_EDITOR_SETWidgetID[, /DIRECTION_DISABLED]

[, /DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=objref(s}

[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixeld

[, YSIZE=pixeld [, XRANGE=vectoil [, YRANGE=vectoi] [, ZRANGE=vectoli

Arguments

WidgetID
The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

DRAG_ EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows and Macintosh, sliders do not generate these events, but
behave just like regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

CW_LIGHT_EDITOR_SET What's New in IDL 5.3

Chapter 5: New IDL Routines 165

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties.

XSIZE
The width of the drawable area in pixels.
YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE
The height of the drawable area in pixels.
ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties.

What's New in IDL 5.3 CW_LIGHT_EDITOR_SET

166 Chapter 5: New IDL Routines

CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display and
edit color palettes. The palette editor is a base that contains a drawable area to display
the color palette, a set of vectors that represent the palette and an optional histogram.

Syntax

Result= CW_PALETTE_EDITOR Parent[, DATA=array] [, FRAME=width]|
[, HISTOGRAM=vectol [, HORIZONTAL] [, SELECTIONSstart, end]|
[, UNAME-=string] [, UVALUE=valug [, XSIZE=width] [, YSIZE=heigh{)

Return Value

The returned value of this function is the widget ID of the newly created palette
editor.

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing a display of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red
channel is displayed in red, the Green channel in green, the Blue channel in blue, and
the optional Alpha channel in purple. The optional Histogram vector is displayed in
Cyan.

An area with a white background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X,Y
values and channel pixel values at the cursor location are displayed in a status area
below the graphics area.

CW_PALETTE_EDITOR What's New in IDL 5.3

Chapter 5: New IDL Routines 167

Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HLS color spaces. RGB is the default
color space. Note that regardless of the color space in use, the color vectors retrieved
with the GET_VALUE keyword to widget control are always in the RGB color space.

Editing Mode
A droplist allows selection of the editing mode. Freehand is the default editing mode.

Unless noted below, editing operations apply only to the channel vectors currently
selected for editing. Unless noted below, editing operations apply only to the portion
of the vectors within the selection indicators.

In Freehandediting mode the user can click and drag in the graphics area to draw a
new curve. Editable channel vectors will be modified to use the new curve for that
part of the X range within the selection that was drawn in Freehand mode.

In Line Segmergditing mode a click, drag and release operation defines the start
point and end point of a line segment. Editable channel vectors will be modified to
use the new curve for that part of the X range within the selection that was drawn in
Line Segment mode.

In Barrel Shiftediting mode click and drag operations in the horizontal direction
cause the editable curves to be shifted right or left, with the portion which is shifted
off the end of selection area wrapping around to appear on the other side of the
selection area. Only the horizontal component of drag movement is used.

In Slideediting mode click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left. Unlike the Barrel Shift mode, the portion of
the curves shifted off the end of the selection area does not wrap around. Only the
horizontal component of drag movement is used.

In Stretchediting mode click and drag operations in the horizontal direction cause the
editable curves to be compressed or expanded. Only the horizontal component of
drag movement is used.

A number of buttons provide editing operations which do not require cursor input:

The Rampoperation causes the selected part of the editable curves to be replaced
with a linear ramp from 0 to 255.

The Smoothoperation causes the selected part of the editable curves to be smoothed

What's New in IDL 5.3 CW_PALETTE_EDITOR

168 Chapter 5: New IDL Routines
The Posterizeoperation causes the selected part of the editable curves to be replaced
with a series of steps.

TheRevers@peration causes the selected part of the editable curves to be reversed in
the horizontal direction.

Thelnvertoperation causes the selected part of the editable curves to be flipped in the
vertical direction.

TheDuplicateoperation causes the selected part of the editable curves to be
compressed by 50% and duplicated to produce two contiguous copies of the channel
vectors within the initial selection.

TheLoad PreDefinedlroplist choice leads to additional choices of pre-defined
palettes. Loading a pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the selection endpoints and
editable checkboxes. This allows loading only a single channel or only a portion of a
pre-defined palette.

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, Blue
and the optional Alpha channel should be displayed. A second row of checkboxes
allows the user to indicate which channels should be edited by the current editing
operation. The checkboxes for the Alpha channel will be sensitive only if an Alpha
channel is loaded.

Zoom

Four buttons allow the user to zoom the display of the palette.
The “| |” button zooms to show the current selection.

The “+” button zooms in 50%.

The “-” button zooms out 100%.

The “1:1” button returns the display to the full palette.
Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bottom of
the graphics area can be used to view a different part of the palette.

CW_PALETTE_EDITOR What's New in IDL 5.3

Chapter 5: New IDL Routines 169

Arguments

Parent

The widget ID of the parent widget for the new palette editor.
Keywords

DATA

A 3x256 byte array containing the initial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the initial
color values and the optional Alpha channel. The value supplied can also be an
IDLgrPalette object reference. If an IDLgrPalette object reference is supplied it is
used internally and is not destroyed on exit. If an object reference is supplied the
ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a “hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM
A 256 element byte vector containing the values for the optional histogram curve.
HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists of
the controls to the right of the display area. The default is a vertical layout with the
controls below the display area.

SELECTION

The selection is a two element vector defining the starting and ending point of the
selection region of color indexes. The default is [0,255].

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

What's New in IDL 5.3 CW_PALETTE_EDITOR

170

Chapter 5: New IDL Routines

hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE is
not present, the widget's initial user value is undefined.

XSIZE

The width of the drawable area in pixels. The default width is 256.
YSIZE

The height of the drawable area in pixels. The default height is 256.

Palette Editor Events

There are variations of the palette editor event structure depending on the specific
event being reported. All of these structures contain the standard three fields (ID,
TOP, and HANDLER). The different palette editor event structures are described
below.

Selection Moved

This is the type of structure returned when one of the vertical bars that define the
selection region is moved by a user.

{ CW_PALETTE_EDITOR_SM, ID:0L, TOP:0L, HANDLER:OL,
SELECTION:[0,255]}

SELECTION indicates a two element vector defining the starting and ending point of
the selection region of color indexes.

Palette Edited
This is the type of structure returned when the user has modified the color palette.
{ CW_PALETTE_EDITOR_PM, ID:0L, TOP:0OL, HANDLER:OL}

The value of the palette editor will need to be retrieved (i.e., WIDGET_CONTROL,
GET_VALUE) in order to determine the extent of the actual user modification.

CW_PALETTE_EDITOR What's New in IDL 5.3

Chapter 5: New IDL Routines 171

WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET_INFO routines that affect or return information on base widgets can

be used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. A
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returned.

The value of a widget can be set with the SET_VALUE keyword to this routine.
SET_VALUE

Sets the value of the specified palette editor compound widget. This widget accepts a
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array representing the value of the palette
to be set. Another type of argument accepted is an IDLgrPalette object reference. If
an IDLgrPalette object reference is supplied it is used internally and is not destroyed
on exit.

What's New in IDL 5.3 CW_PALETTE_EDITOR

172

CW_PALETTE _EDITOR_GET

Chapter 5: New IDL Routines

The CW_PALETTE_EDITOR_GET procedure gets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GETWidgetID[, ALPHA=variable]
[, HISTOGRAM=variabl€g)

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.
Keywords

ALPHA

Set this keyword to a named variable that will contains the optional alpha curve.
HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram curve.

CW_PALETTE_EDITOR_GET What's New in IDL 5.3

Chapter 5: New IDL Routines 173
CW_PALETTE_EDITOR SET

The CW_PALETTE_EDITOR_SET procedure sets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SETWidgetID[, ALPHA=byte_vectdr
[, HISTOGRAM=byte vectol)

Arguments

WidgetID
The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords
ALPHA

A 256 element byte vector that describes the alpha component of the color palette.
The alpha value may also be set to the scalar value zero to remove the alpha curve
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword can be
used to display a distribution of color index values to facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove the
histogram curve from the display.

What's New in IDL 5.3 CW_PALETTE_EDITOR_SET

174 Chapter 5: New IDL Routines
DIALOG READ IMAGE

The DIALOG_READ_IMAGE function is a graphical interface used for reading
image files.

Syntax

Result= DIALOG_READ_IMAGE ([Filenamé [, BLUE=variabl€

[, DIALOG_PARENT=widget _iq [, FILE=variablg [, FILTER=string]

[, /[FIX_FILTER] [, GREEN=variablg [, IMAGE=variablg [, PATH=string]
[, QUERY=variablg [, RED=variablg [,TITLE=string])

Return Value

This routine returns 1 if the “Open” button was clicked, and 0 if the “Cancel” button
is clicked.

Arguments

Filename

An optional scalar string containing the full pathname of the file to be highlighted.
Keywords
BLUE

Set this keyword to a named variable that will contain the blue channel vector (if
any).
DIALOG_PARENT

The widget ID of a widget that calls DIALOG_READ_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_READ_IMAGE
dialog.

FILE

Set this keyword to a named variable that will contain the selected filename with full
path when the dialog is created.

FILTER

Set this keyword to a scalar string containing the format type the dialog filter should
begin with. The default is “Image Files”. The user cannot modify the filter if the

DIALOG_READ_IMAGE What's New in IDL 5.3

Chapter 5: New IDL Routines 175

FIX_FILTER keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. In addition, there is also the “All Files”
type. If set to “All Files”, queries will only happen on filename clicks, making the
dialog much more efficient.

Example:
FILTER=".jpg, .gif, .tiff’
FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The user has
no ability to modify the filter.

GREEN

Set this keyword to a named variable that will contain the green channel vector (if
any).

IMAGE

Set this keyword to a named variable that will contain the image array read. If Cancel
was clicked, no action is taken.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

QUERY

Set this keyword to a named variable that will return the QUERY _IMAGE structure
associated with the returned image. If the “Cancel” button was pressed, the variable
set to this keyword is not changed. If an error occurred during the read, the
FILENAME field of the structure will be a null string.

RED
Set this keyword to a named variable that will contain the red channel vector (if any).
TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Select Image File”.

What's New in IDL 5.3 DIALOG_READ_IMAGE

176 Chapter 5: New IDL Routines

DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function is a graphical user interface used for
writing image files.

Syntax

Result= DIALOG_WRITE_IMAGE (magel[, R, G, B]

[, DIALOG_PARENT=widget_id [, FILENAME=string] [, /FIX_TYPE]
[, INOWRITE] [, OPTIONS=ariablg [, PATH=string] [, TITLE=string]
[, TYPE=variablg)

Return Value

This routine returns 1 if the “Save” button was clicked, and 0 if the “Cancel” button
was clicked.

Arguments

Image
The array to be written to the image file.
R, G, B (optional)

These are optional arguments defining the Red, Green, and Blue color tables to be
associated with the image array.

Keywords

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_WRITE_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_WRITE_IMAGE
dialog.

FILENAME

Set this keyword to a scalar string that contains the name of the initial file selection.
This keyword is useful for specifying a default filename.

FIX_TYPE

When this keyword is set, only files that satisfy the type can be selected. The user has
no ability to modify the type.

DIALOG_WRITE_IMAGE What's New in IDL 5.3

Chapter 5: New IDL Routines 177

NOWRITE

Set this keyword to prevent the dialog from writing the file when “Save” is clicked.
No data conversions will take place when the save type is chosen.

OPTIONS

Set this keyword to a named variable to contain a structure of the chosen options by
the user, including the filename and image type chosen.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Save Image File”.

TYPE

Set this keyword to a scalar string containing the format type the “Save as type” field
should begin with. The default is “TIFF”. The user can modify the type unless the
FIX_TYPE keyword is set. Valid values are obtained from the list of supported image
types returned from QUERY_IMAGE. The “Save as type” field will reflect the type
of the selected file (if one is selected).

What's New in IDL 5.3 DIALOG_WRITE_IMAGE

178 Chapter 5: New IDL Routines

DLM_LOAD

Normally, IDL system routines that reside in Dynamically Loadable Modules
(DLMs) are automatically loaded on demand when a routine from a DLM is called.
The DLM_LOAD procedure can be used to explicitly cause a DLM to be loaded.

Syntax
DLM_LOAD, DLMNameSt [, DLMNameSt,..., DLMNameSty]
Arguments

DLMNameStr

A string giving the name of the DLM to be loaded. DLM_LOAD causes each named
DLM to be immediately loaded.

Keywords
None.
Example

Force the JPEG DLM to be loaded:
DLM_LOAD, 'jpeg’
IDL Output

% Loaded DLM: JPEG.

DLM_LOAD What's New in IDL 5.3

Chapter 5: New IDL Routines 179
DRAW_ ROI

The DRAW_ROI procedure draws a region or group of regions to the current Direct
Graphics device. The primitives used to draw each ROI are based on the TYPE
property of the given IDLanROI object. The TYPE property selects between points,
polylines, and filled polygons.

Syntax

DRAW_ROI, 0ROI[, /LINE_FILL] [, SPACING=valug

Graphics Keywords: [, CLIP=[X, Yg, X1, Y111 [COLOR=valug [, /DATA |,
IDEVICE |, INORMAL] [, LINESTYLE={0 | 1| 2| 3| 4| 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_hofig PSYM=integef0 to 10}]

[, SYMSIZE=valuqg [, /T3D] [, THICK=valud

Arguments

oROI

A reference to an IDLanROI object to be drawn.
Keywords
LINE_FILL

Set this keyword to indicate that polygonal regions are to be filled with parallel lines,
rather than using the default solid fill. When using a line fill, the thickness, linestyle,
orientation, and spacing of the lines may be specified by keywords.

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

Graphics Keywords Accepted

CLIP, COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NORMAL,
ORIENTATION, PSYM, SYMSIZE, T3D, THICK

Example

The following example displays an image and collects data for a region of interest.
The resulting ROI is displayed as a filled polygon.

What's New in IDL 5.3 DRAW_ROI

180

DRAW_ROI

Chapter 5: New IDL Routines

PRO roi_ex
; Load and display an image.

img=READ_DICOM(FILEPATH(‘mr_knee.dcm’,SUBDIR=['examples’,’data’]))

TV, img

; Create a polygon region object.
oROI = OBJ_NEW(‘IDLanROI', TYPE=2)

: Print instructions.

PRINT, To create a region:’

PRINT, Left mouse: select points for the region.’
PRINT,” Right mouse: finish the region.’

; Collect first vertex for the region.
CURSOR, xOirig, yOrig, /UP, IDEVICE
oROI->AppendData, xOrig, yOrig
PLOTS, xOrig, yOrig, PSYM=1, /DEVICE

;Continue to collect vertices for region until right mouse button.
x1 = xOrig
y1 = yOrig
while IMOUSE.BUTTON ne 4 do begin
x0 =x1
y0o=yl
CURSOR, x1, y1, /UP, /DEVICE
PLOTS, [x0,x1], [yO,y1], /IDEVICE
oROI->AppendData, x1, y1
endwhile
PLOTS, [x1,xOrig], [y1,yOrig], /IDEVICE

; Draw the the region with a line fill.

DRAW_ROI, oROI, /LINE_FILL, SPACING=0.2, ORIENTATION=45, /DEVICE

END

What's New in IDL 5.3

Chapter 5: New IDL Routines 181
ENABLE _SYSRTN

The ENABLE_SYSRTN procedure enables/disables IDL system routines. This
procedure is intended for use by runtime and callable IDL applications, and is not
generally useful for interactive use.

Syntax
ENABLE_SYSRTN [,Routined [, /DISABLE] [, /EXCLUSIVE] [, /FUNCTIONS]
Arguments

Routines

A string scalar or array giving the names of routines to be enabled or disabled. By
default, these are procedures, but this can be changed by setting the FUNCTIONS
keyword.

Keywords

DISABLE

By default, the Routines are enabled. Setting this keyword causes them to be disabled
instead.

EXCLUSIVE

By default, ENABLE_SYSRTN does not alter routines not listed in Routines. If
EXCLUSIVE is set, the specified routines are taken to be the only routines that
should be enabled or disabled, and all other routines have the opposite action applied

Therefore, setting EXCLUSIVE and not DISABLE means that the routines in the
Routines argument are enabled and all other system routines of the same type
(function or procedure) are disabled. Setting EXCLUSIVE and DISABLE means that
all listed routines are disabled and all others are enabled.

FUNCTIONS

Normally, ROUTINES specifies the names of procedures. Set the FUNCTIONS
keyword to manipulate functions instead.

What's New in IDL 5.3 ENABLE_SYSRTN

182 Chapter 5: New IDL Routines

Special Cases

The following is a list of cases in which ENABLE_SYSRTN is unable to enable or
disable a requested routine. All such attempts are simply ignored without issuing an
error, allowing the application to run without error in different IDL environments:

» Attempts to enable/disable non-existent system routines.

« Attempts to enable a system routine disabled due to the mode in which IDL is
licensed, as opposed to being disabled via ENABLE_SYSRTN, are quietly
ignored (e.g. demo mode).

* The routines CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE,
and EXECUTE cannot be disabled via ENABLE_SYSRTN. However,
anything that can be called from theambe disabled, so this is not a
significant drawback.

Examples

To disable the PRINT procedure:
ENABLE_SYSRTN, /DISABLE, 'PRINT'

To enable the PRINT procedure and disable all other procedures:
ENABLE_SYSRTN, /EXCLUSIVE, 'PRINT'

To ensure all possible functions are enabled:
ENABLE_SYSRTN, /DISABLE, /EXCLUSIVE, /FUNCTIONS

In the last example, all named functions should be disabled and all other functions
should be enabled. Since Routinesargument is provided, this means that all
routines become enabled.

ENABLE_SYSRTN What's New in IDL 5.3

Chapter 5: New IDL Routines 183

EOS GD QUERY

Note

This is a new SDF routine, and is documented irSitientific Data Formats
manual.

The EOS_GD_QUERY function returns information about a specified grid.
Syntax

Result= EOS_GD_QUERYFKilename GridName Info)
Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS GRID
extensions, and O otherwise.

Arguments

Filename

A string containing the name of the file to query.
GridName

A string containing the name of the grid to query.

Info

Returns an anonymous structure containing information about the specified grid. The
returned structure contains the following fields:

Field IDL Data Type Description
ATTRIBUTES String array Array of attribute names
DIMENSION_NAMES String array Names of dimensions
DIMENSION_SIZES Long array Sizes of dimensions
FIELD_NAMES String array Names of fields

Table 5-1: Fields of the Info Structure

What's New in IDL 5.3 EOS_GD_QUERY

184

Chapter 5: New IDL Routines

Field IDL Data Type Description
FIELD_RANKS Long array Ranks (dimensions) of fields
FIELD_TYPES Long array IDL types of fields
GCTP_PROJECTION Long GCTP projection code
GCTP_PROJECTION_PARM Double array GCTP projection parameters
GCTP_SPHEROID Long GCTP spheroid code
GCTP_ZONE Long GCTP zone code (for UTM
projection)

IMAGE_LOWRIGHT Double[2] Location of lower right
corner (meters)

IMAGE_UPLEFT Double[2] Location of upper left corner
(meters)

IMAGE_X_DIM Long Number of columns in grid
image

IMAGE_Y_DIM Long Number of rows in grid
image

NUM_ATTRIBUTES Long Number of attributes

NUM_DIMS Long Number of dimensions

NUM_IDX_MAPS Long Number of indexed
dimension mapping entries

NUM_MAPS Long Number of dimension
mapping entries

NUM_FIELDS Long Number of fields

NUM_GEO_FIELDS Long Number of geolocation field
entries

ORIGIN_CODE Long Origin code

PIX_REG_CODE Long Pixel registration code

Table 5-1: Fields of the Info Structure

EOS_GD_QUERY

What's New in IDL 5.3

Chapter 5: New IDL Routines 185

EOS PT_QUERY

Note
This is a new SDF routine, and is documented irSitientific Data Formats
manual.

The EOS_PT_QUERY function returns information about a specified point.

Syntax
Result= EOS_PT_QUERYHilename PointNameInfo)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS POINT
extensions, and O otherwise.

Arguments

Filename

A string containing the name of the file to query.
PointName

A string containing the name of the point to query.
Info

Returns an anonymous structure containing information about the specified point.
The returned structure contains the following fields:

Field IDL Data Type Description
ATTRIBUTES String array Array of attribute names
NUM_ATTRIBUTES | Long Number of attributes
NUM_LEVELS Long Number of levels

Table 5-2: Fields of the Info Structure

What's New in IDL 5.3 EOS_PT_QUERY

186 Chapter 5: New IDL Routines

EOS QUERY

Note
This is a new SDF routine, and is documented irSitientific Data Formats

manual.

The EOS_QUERY function returns information about the makeup of an HDF-EOS
file.

Syntax
Result= EOS_QUERY Filename Info)

Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS
extensions, and 0 otherwise.

Arguments
Filename

A scalar string containing the name of the file to query.

Info

Returns an anonymous structure containing information about the contents of the file.
The returned structure contains the following fields:

Field IDL Data Type Description
GRID_NAMES String array Names of grids
NUM_GRIDS Long Number of grids in file
NUM_POINTS Long Number of points in file
NUM_SWATHS Long Number of swaths in file
POINT_NAMES String array Names of points
SWATH_NAMES String array Names of swaths

Table 5-3: Fields of the Info Structure

EOS_QUERY What's New in IDL 5.3

Chapter 5: New IDL Routines 187

EOS SW_QUERY

Note
This is a new SDF routine, and is documented irSitientific Data Formats
manual.

The EOS_SW_QUERY function returns information about a specified swath.
Syntax

Result= EOS_SW_QUERYHilename SwathNamgnfo)
Return Value

This function returns an integer value of 1 if the file is an HDF file with EOS SWATH
extensions, and O otherwise.

Arguments

Filename

A string containing the name of the file to be queried.
SwathName

A string containing the name of the swath to be queried.
Info

Returns an anonymous structure containing information about the specified swath.
The returned structure contains the following fields:

Field IDL Data Type Description
ATTRIBUTES String array Array of attribute names
DIMENSION_NAMES | String array Names of dimensions
DIMENSION_SIZES Long array Sizes of dimensions
FIELD_NAMES String array Names of fields

Table 5-4: Fields of the Info Structure

What's New in IDL 5.3 EOS_SW_QUERY

188

Chapter 5: New IDL Routines

Field IDL Data Type Description
FIELD_RANKS Long array Ranks (dimensions) of fields
FIELD_TYPES Long array IDL types of fields

GEO_FIELD_NAMES

String array

Names of geolocation fields

GEO_FIELD_RANKS | Long array Ranks (dimensions) of
geolocation fields
GEO_FIELD_TYPES Long array IDL types of geolocation fields

IDX_MAP_NAMES

String array

Names of index maps

IDX_MAP_SIZES Long array Sizes of index map arrays
NUM_ATTRIBUTES Long Number of attributes
NUM_DIMS Long Number of dimensions
NUM_FIELDS Long Number of fields
NUM_GEO_FIELDS Long Number of geolocation fields
NUM_IDX_MAPS Long Number of indexed dimension
mapping entries
NUM_MAPS Long Number of mapping entries
MAP_INCREMENTS Long array Increment of each geolocation

relation

MAP_NAMES

String array

Names of maps

MAP_OFFSETS

Long array

Offset of each geolocation
relation

Table 5-4: Fields of the Info Structure

EOS_SW_QUERY

What's New in IDL 5.3

Chapter 5: New IDL Routines 189
GET DRIVE LIST

The GET_DRIVE_LIST function returns a string array of the names of valid drives /
volumes for the file system (Windows / Macintosh only).

Syntax
Result= GET_DRIVE_LIST()
Return Value

This function returns a string array of the names of valid drives/volumes for the file
system.

Arguments
None.
Keywords

None.

What's New in IDL 5.3 GET_DRIVE_LIST

190 Chapter 5: New IDL Routines

GRID _TPS

The GRID_TPS function uses thin plate splines to interpolate a set of values over a
regular two dimensional grid, from irregularly sampled data values. Thin plate
splines are ideal for modeling functions with complex local distortions, such as
warping functions, which are too complex to be fit with polynomials.

Givenn points, §;, y;) in the plane, a thin plate spline can be defined as:
n-1
F(xy) = ag+ ax+ay+= S brllogr?
(X, y) = ag+ ax+ay éz ilj 109r;
i=0

with the constraints:

n-1 n-1 n-1
Z b, = Z b;x,= z byy,= 0
i=1 i=1 i=0

wherer;? = (x-x)? + (y-y;)%. A thin plate spline (TPS) is a smooth function, which
implies that it has continuous first partial derivatives. It also grows almost linearly
when far away from the pointg;(y;). The TPS surface passes through the original

points:f(x;, y;) = z.

Note
GRID_TPS requires at least 7 noncolinear points.

Syntax

Interp= GRID_TPS Xp, Yp, Values[, COEFFICIENTSwariable
[, NGRID =[nx, ny]] [, START =[x0, yO]] [, DELTA = [dx, dy]])

Return Value

The function returns an array of dimensior, f1y) of interpolated values. If the
values argument is a two-dimensional array, the output array has dimengjons (
ny), wherenzis the leading dimension of the values array allowing for the
interpolation of arbitrarily sized vectors in a single call. Keywords can be used to
specify the grid dimensions, size, and location.

GRID_TPS What's New in IDL 5.3

Chapter 5: New IDL Routines 191

Arguments

Xp

A vector ofx points.

Yp

A vector ofy points, with the same number of elements axXfhargument.
Values

A vector or two-dimensional array of values to interpolate. If values are a two-
dimensional array, the leading dimension is the number of values for which
interpolation is performed.

Keywords

COEFFICIENTS

A named variable in which to store the resulting coefficients of the thin plate spline
function for the last set of Values. The fikselements, wherl is the number of

input points, contain the coefficiertis in the previous equation. Coefficients with
subscript:, n+1, andn+2, contain the values @k, a;, anda,, in the above equation.

DELTA

A two-element array of the distance between grid poidgsdy). If a scalar is passed,
the value is used for bothx anddy. The default is the range of thp andyp arrays
divided by €y — 1,n, — 1).

NGRID

A two-element array of the size of the grid to interpolatg (y). If a scalar is passed,
the value is used for botly andny. The default value is [25, 25].

START

A two-element array of the location of grid poirg,(yg). If a scalar is passed, the
value is used for botk, andyy. The default is the minimum values in tkggandyp
arrays.

References

|. Barrodale, et al, “Note: Warping digital images using thin plate splines”, Pattern
Recognition, Vol 26, No. 2, pp 375-376, 1993.

What's New in IDL 5.3 GRID_TPS

192 Chapter 5: New IDL Routines

M. J. D. Powell, “Tabulation of thin plate splines on a very fine two-dimensional
grid”, Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
(1992).

Example

The following example creates a set of 25 random values defining a surface on a
square, 100 units on a side, starting at the origin. Then, we use GRID_TPS to create a
regularly gridded surface, with dimensions of 101 by 101 over the square, which is
then displayed. The same data set is then interpolated using TRIGRID, and the two
results are displayed for comparison.

;X values
x = RANDOMU(seed, 25) * 100

;Y values
y = RANDOMU(seed, 25) * 100

:Z values
z = RANDOMU(seed, 25) * 10

z1 = GRID_TPS(x, y, z, NGRID=[101, 101], START=[0,0], DELTA=[1,1])

;Show the result
LIVE_SURFACE, z1, TITLE="TPS’

;Grid using TRIGRID
TRIANGULATE, x, y, tr, bounds

z2 = TRIGRID(x, v, z, tr, [1,1], [0,0,100, 100], $
EXTRAPOLATE=bounds)

;Show triangulated surface
LIVE_SURFACE, z2, TITLE="TRIGRID - Quintic’

GRID_TPS What's New in IDL 5.3

Chapter 5: New IDL Routines 193
IMAGE_STATISTICS

The IMAGE_STATISTICS procedure computes sample statistics for a given array of
values. An optional mask may be specified to restrict computations to a spatial subset
of the input data.

Syntax

IMAGE_STATISTICS,Data

[, /LABELED | [, /WEIGHTED] [, WEIGHT_SUM=variabld] [, /VECTOR]

[, LUT=array] [, MASK=array] [, COUNT=variableg [, MEAN=variable

[, STDDEV=variablg [, DATA_SUM=variablg [, SUM_OF_SQUARESwariablg
[, MINIMUM= variablg [, MAXIMUM= variablg [, VARIANCE=variable

Arguments

Data

An N-dimensional input data array.
Keywords
COUNT

Set this keyword to a named variable to contain the number of samples that
correspond to nonzero values within the mask.

DATA_SUM

Set this keyword to a named variable to contain the sum of the samples that lie within
the mask.

LABELED

When set, this keyword indicates values in the mask representing region labels,
where each pixel of the mask is set to the index of the region in which that pixel
belongs (see the LABEL_REGION function in titd. Reference Guidelf the

LABELED keyword is set, each statistic’s value is computed for each region index.
Thus, a vector containing the results is provided for each statistic with one element
per region. By default, this keyword is set to zero, indicating that all samples with a
corresponding nonzero mask value are used to form a scalar result for each statistic.

What's New in IDL 5.3 IMAGE_STATISTICS

194

Chapter 5: New IDL Routines

Note
The LABELED keyword cannot be used with either the WEIGHT _SUM or the
WEIGHTED keywords.

LUT

Set this keyword to a one-dimensional array. For non-floating point Dgtat the

pixel values are looked up through this table before being used in any of the statistical
computations. This allows an integer image array to be calibrated to any user
specified intensity range for the sake of calculations. The length of this array must
include the range of the input array. This keyword may not be set with floating point
input data. When signed input data types are used, they are first cast to the
corresponding IDL unsigned type before being used to access this array. For
example, the integer value —1 looks up the value 65535 in the LUT array.

MASK

An array ofN, orN-1 (when the VECTOR keyword is used) dimensions representing
the mask array. If the LABELED keyword is set, MASK contains the region indices
of each pixel; otherwise statistics are only computed for data values where the
MASK array is non-zero.

MAXIMUM

Set this keyword to a named variable to contain the maximum value of the samples
that lie within the mask.

MEAN

Set this keyword to a named variable to contain the mean of the samples that lie
within the mask.

MINIMUM

Set this keyword to a named variable to contain the minimum value of the samples
that lie within the mask.

STDDEV

Set this keyword to a named variable to contain the standard deviation of the samples
that lie within the mask.

SUM_OF SQUARES

Set this keyword to a named variable to contain the sum of the squares of the samples
that lie within the mask.

IMAGE_STATISTICS What's New in IDL 5.3

Chapter 5: New IDL Routines 195

VARIANCE

Set this keyword to a named variable to contain the variance of the samples that lie
within the mask.

VECTOR

Set this keyword to specify that the leading dimension of the input array is not to be
considered spatial but consists of multiple data values at each pixel location. In this
case, the leading dimension is treated as a vector of samples at the spatial location
determined by the remainder of the array dimensions.

WEIGHT_SUM

Set the WEIGHT_SUM keyword to a named variable to contain the sum of the
weights in the mask.

Note
The WEIGHT_SUM keyword cannot be used if the LABELED keyword is
specified.

WEIGHTED

If the WEIGHTED keyword is set, the values in the MASK array are used to weight
individual pixels with respect to their count value. If a MASK array is not provided,
all pixels are assigned a weight of 1.0.

Note
The WEIGHTED keyword cannot be used if the LABELED keyword is specified.

What's New in IDL 5.3 IMAGE_STATISTICS

196 Chapter 5: New IDL Routines

ISOCONTOUR

The ISOCONTOUR procedure interprets the contouring algorithm found in the
IDLgrContour object. The algorithm allows for contouring on arbitrary meshes and
returns line or orientated tessellated polygonal output. The interface will also allow
secondary data values to be interpolated and returned at the output vertices as well.

Syntax

ISOCONTOUR Values Outconn Outverts

[, AUXDATA IN=array, AUXDATA OUT=variablg [, C_VALUE=vectoj

[, GEOMX=vectolf [GEOMY=vectoi [, GEOMZ=vectof [, /FILL]

[, LEVEL_VALUES=variablg [, N_LEVELS=leveld [, /OUTCONN_INDICES]
[, POLYGONS=rray of polygon descriptiohs

Arguments

Values
An input vector or a two-dimensional array specifying the values to be contoured.
Outconn

Output variable to contain the connectivity information of the contour geometry in
the form: [nO, i(0, 0), i(0, 1)..., i(0, n0-1), n1, i(1, 0), ...].

Outverts

Output variable to contain the contour vertices.
Keywords
AUXDATA_IN

The auxiliary values to be interpolated at contour verticgsisithe dimensionality
of the auxiliary values, set this argument tp-by-n array (if theValuesargument is a
vector of lengtin), or to ap-by-m-by-n array (if theValuesargument is am-by-n
two-dimensional array).

AUXDATA_OUT

If the AUXDATA IN keyword was specified, set this keyword to a named output
variable to contain the interpolated auxiliary values at the contour verticess the

ISOCONTOUR What's New in IDL 5.3

Chapter 5: New IDL Routines 197

dimensionality of the auxiliary values, the output ig-ay-n array of values, whena
is the number of vertices @utverts

C_VALUE

Set this keyword to a vector of values for which contour levels are to be generated. If
this keyword is set to 0, contour levels will be evenly sampled across the range of the
Valuesargument, using the value of the N_LEVELS keyword to determine the
number of samples.

FILL

Set this keyword to generate an output connectivity as a set of polygons (Outconn is
in the form used by the IDLgrPolygon POLYGONS keyword). The resulting
representation is as a set of filled contours. The default is to generate line contours
(Outconn is in the form used by the IDLgrPolyline POLYLINES keyword).

GEOMX

Set this keyword to a vector or two-dimensional array specifyingttbeordinates of
the geometry with which the contour values corresporXiidfa vector, it must
match the number of elements in t@luesargument, or it must match the first of the
two dimensions of the¥aluesargument (in which case tixecoordinates will be
repeated for each column of data values).

GEOMY

Set this keyword to a vector or two-dimensional array specifyingrtbeordinates of
the geometry with which the contour values correspondidfa vector, it must
match the number of elements in t@luesargument, or it must match the first of the
two dimensions of thealuesargument (in which case tivecoordinates will be
repeated for each column of data values).

GEOMZ

Set this keyword to a vector or two-dimensional array specifyingtbeordinates of
the geometry with which the contour values correspond.

If GEOMZ is a vector or an array, it must match the number of elements ahes
argument.

If GEOMZ is not set, the geometry will be derived from Waduesargument (if it is

set to a two-dimensional array). In this case connectivity is implied. The X and Y
coordinates match the row and column indices of the array, and the Z coordinates
match the data values.

What's New in IDL 5.3 ISOCONTOUR

198

Chapter 5: New IDL Routines

LEVEL_VALUES

Set this keyword to a named output variable to receive a vector of values
corresponding to the values used to generate the contours. The length of this vector is
equal to the number of contour levels generated.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_LEVELS keyword is set to a vector, in which case the number of levels is
derived from the number of elements in that vector. Set this keyword to 0 to indicate
that IDL should compute a default number of levels based on the range of data
values. This is the default.

OUTCONN_INDICES

Set this keyword to a named output variable to receive an array of beginning and
ending indices of connectivity for each contour level.

The output array is of the form: [sigreng), starg, end, ..., start._;, eng,c_4,
wherenc is the number of contour levels.

POLYGONS

Set this keyword to an array of polygonal descriptions that represents the connectivity
information for the data to be contoured (as specified ivdheesargument). A
polygonal description is an integer or long array of the form:dni4i ..., i,_1], where

n is the number of vertices that define the polygon, @ng,i,; are indices into the
GEOMX, GEOMY, and GEOMZ keywords that represent the polygonal vertices. To
ignore an entry in the POLYGONS array, set the vertex count, n to 0. To end the
drawing list, even if additional array space is availablen set-1.

ISOCONTOUR What's New in IDL 5.3

Chapter 5: New IDL Routines 199
ISOSURFACE

The ISOSURFACE procedure algorithm expands on the existing SHADE_VOLUME
algorithm. It returns topologically consistent triangles by using oriented tetrahedral
decomposition internally. This also allows the algorithm to isosurface any arbitrary
tetrahedral mesh. If the user provides an optional auxiliary array, the data in this array
is interpolated onto the output vertices and is returned as well. This auxiliary data
array is allowed to have more than one value at each vertex. Any size leading
dimension is allowed as long as the number of values in the subsequent dimensions
matches the number of elements in the input Data array.

Syntax

ISOSURFACE Data, Valug Outverts Outconn
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, AUXDATA IN= array, AUXDATA OUT=variablg

Arguments

Data
Input three-dimensional array of scalars which are to be contoured.
Value

Input scalar contour value. This value specifies the constant-density surface (also
called an iso-surface) to be extracted.

Outverts
Output [3,n] array of floating point vertices making up the triangle surfaces.
Outconn

Output array of polygonal connectivity values (see IDLgrPolygon, POLYGONS
keyword). If no polygons were extracted, this argument returns the array [-1].

Keywords
AUXDATA_IN

Input array of auxiliary data with trailing dimensions being the number of values in
Data.

What's New in IDL 5.3 ISOSURFACE

200 Chapter 5: New IDL Routines

Note
If AUXDATA IN is specified then AUXDATA OUT must also be specified.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If AUXDATA_OUT is specified then AUXDATA _IN must also be specified.

GEOM_XYZ

A [3,n] input array of vertex coordinates (one for each value in the Data array). This
array is used to define the spatial location of each scalar. If this keyword is omitted,
Data must be a three-dimensional array and the scalar locations are assumed to be on
a uniform grid.

Note

If GEOM_XYZ is specified then TETRAHEDRA must also be specified if either is
to be specified.

TETRAHEDRA

An input array of tetrahedral connectivity values. If this array is not specified, the
connectivity is assumed to be a rectilinear grid over the input three-dimensional
array. If this keyword is specified, the input data array need not be a three-
dimensional array. Each tetrahedron is represented by four values in the connectivity
array. Every four values in the array correspond to the vertices of a single tetrahedron.

ISOSURFACE What's New in IDL 5.3

Chapter 5: New IDL Routines 201
LOCALE_GET

The LOCALE_GET function returns the current locale (string) of the operating
platform.

Syntax

Result= LOCALE_GET()
Arguments

None
Keywords

None

What's New in IDL 5.3 LOCALE_GET

202

Chapter 5: New IDL Routines

MESH_CLIP

MESH_CLIP

The MESH_CLIP function clips a polygonal mesh to an arbitrary plane in space and
returns a polygonal mesh of the remaining portion. An auxiliary array of data may
also be passed and clipped. This array can have multiple values for each vertex.

Syntax

Result= MESH_CLIP Plane Vertsin Connin Vertsout Connout
[, AUXDATA IN=array, AUXDATA OUT=variablg [, CUT_VERTS=variablg)

Return Value

The return value is the number of triangles in the returned mesh.

Arguments

Plane

Input four element array describing the equation of the plane to be clipped to. The
elements are the coefficientgslf,c,d of the equatiomx+by+cz+d=0.

Vertsin

Input array of polygonal vertices [8].
Connin

Input polygonal mesh connectivity array.
Vertsout

Output array of polygonal vertices.
Connout

Output polygonal mesh connectivity array.

Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.

What's New in IDL 5.3

Chapter 5: New IDL Routines 203

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of interpolated
auxiliary data.

CUT_VERTS

Output array of vertex indices (into Vertsout) of the vertices which are considered to
be “on” the clipped surface.

What's New in IDL 5.3 MESH_CLIP

204 Chapter 5: New IDL Routines

MESH_DECIMATE

The MESH_DECIMATE function reduces the density of geometry while preserving
as much of the original data as possible. The classic case is to thin out a polygonal
mesh to use fewer polygons while preserving the mesh form. The decimation
algorithm removes triangles from the mesh. This is done in such a way as to preserve
the mesh edges and to remove roughly planar polygons.

Decimation is a memory and CPU intensive process. Expect the decimation of large
models to require large amounts of memory and dozens of seconds to complete. As a
reference, a model with approximately 36,000 vertices and 70,000 faces requires 20-
30 seconds to decimate to 10% of its original size on a typical NT PC with 64Mb
RAM and 333MHz Pentium processor.

If the input polygons are not all triangles, IDL converts the polygons to triangles
before decimating. For best results, the polygons should all be convex. Note that if
the input polygons are not all triangles, then IDL may return more polygons (as
triangles) than were submitted as input, even after decimating a percentage of the
polygons. IDL applies the PERCENT_POLYGONS keyword value to the polygon
list after converting the list to triangles to approximate the same visual effect of
decimating the requested percentage of polygons.

IDL takes steps to deal with input data with a wide variation in magnitude. For
example, a troublesome input polygon list may have X and Y values in the 10"1 to
1072 range, while the Z values may have magnitudes of about 10720. If the results of
the decimation are unacceptable, consider scaling the input data so that the
magnitudes of the data are closer together.

Syntax

Result= MESH_DECIMATE {erts Conn Connout|, /VERTICES]
[, PERCENT_VERTICESpercent] , PERCENT_POLYGONSsercent)

Return Value
The return value is the number of triangles in the output connectivity array.
Arguments

Verts

Input array of polygonal vertices [8].

MESH_DECIMATE What's New in IDL 5.3

Chapter 5: New IDL Routines 205

Conn
Input polygonal mesh connectivity array.
Connout

Output polygonal mesh connectivity array.

Note
Some of the vertices in the Verts array may not be referenced by the Connout array

Keywords
PERCENT_VERTICES

Set this keyword to the percent of the original vertices to be returned in the Connout
array. It specifies the amount of decimation to perform.

PERCENT_POLYGONS

Set this keyword to the percent of the original polygons to be returned in the Connout
array. It specifies the amount of decimation to perform.

Note
PERCENT_VERTICES and PERCENT_POLYGONS are mutually exclusive
keywords.

VERTICES

If this keyword is set, the decimation is allowed to add or remove vertices. By default,
the output connectivity array is restricted to the set of original input vertices.

What's New in IDL 5.3 MESH_DECIMATE

206 Chapter 5: New IDL Routines

MESH_ISSOLID

The MESH_ISSOLID function computes various mesh properties and enables IDL to
determine if a mesh encloses space (is a solid). If the mesh can be considered a solid,
routines can compute the volume of the mesh.

Syntax
Result= MESH_ISSOLID Conn

Return Value

Returns 1 if the input mesh fully encloses space (assuming no polygonal
interpenetration) or 0 otherwise. A mesh is defined to fully enclose space if each edge
in the input mesh appears an even number of times in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Conn

This is an integer or longword array that represents a series of polygon descriptions.
Each polygon description takes the fommig, iy, ...,i.1], wheren is the number of
vertices that define the polygon, agd.i,_; are indices into the vertex array.

Keywords

None.

MESH_ISSOLID What's New in IDL 5.3

Chapter 5: New IDL Routines 207
MESH_ MERGE

The MESH_MERGE function merges two polygonal meshes.

Syntax

Result= MESH_MERGE Verts Conn Vertsl Connl[, /COMBINE_VERTICES]
[, TOLERANCE=valuqg)

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [§, These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Vertsl

Additional input polygonal vertex array [].

Connl

Additional input polygonal mesh connectivity array.

Keywords
COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

max(|% =X, 4 1|s|V; = Vi + 1|,z =7 + 1|) <tolerance

What's New in IDL 5.3 MESH_MERGE

208 Chapter 5: New IDL Routines
is true, the points) and {+1) can be collapsed into a single vertex. The result is
returned as a modification of thertsargument.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTICES keyword. The default value is 0.0.

MESH_MERGE What's New in IDL 5.3

Chapter 5: New IDL Routines 209
MESH_NUMTRIANGLES

The MESH_NUMTRIANGLES function computes the number of triangles in a
polygonal mesh.

Syntax

Result= MESH_NUMTRIANGLES Conn
Return Value

Returns the number of triangles in the mesh (a quad is considered two triangles).
Arguments

Conn

Polygonal mesh connectivity array.
Keywords

None.

What's New in IDL 5.3 MESH_NUMTRIANGLES

210 Chapter 5: New IDL Routines

MESH_SMOOTH

The MESH_SMOOTH function performs spatial smoothing on a polygon mesh. This
function smooths a mesh by applying Laplacian smoothing to each vertex, as
described by the following formula:

9

— 9.
I(n+1) - X|n+

Z|>

M

> >
> (X, =%i)
i=0
where:

% is vertexi for iterationn
A is the smoothing factor

M is the number of vertices that share a common edgexw.ith

Syntax

Result= MESH_SMOOTH Yerts Conn[, ITERATIONS=valug
[, FIXED_VERTICES=array] [, /[FIXED_EDGE_VERTICES] [, LAMBDA=valud)

Return Value
The output of this function is resulting [§, array of modified vertices.
Arguments

Verts
Input array of polygonal vertices [8].
Conn

Input polygonal mesh connectivity array.
Keywords

ITERATIONS

Number of iterations to smooth. The default value is 50.

MESH_SMOOTH What's New in IDL 5.3

Chapter 5: New IDL Routines 211

FIXED_VERTICES

Set this keyword to an array of vertex indices which are not to be modified by the
smoothing.

FIXED_EDGE_VERTICES

Set this keyword to specify that mesh outer edge vertices are not to be modified by
the smoothing.

LAMBDA

Smoothing factor. The default value is 0.05.

What's New in IDL 5.3 MESH_SMOOTH

212 Chapter 5: New IDL Routines
MESH_ SURFACEAREA

The MESH_SURFACEAREA function computes various mesh properties to
determine the mesh surface area, including integration of other properties
interpolated on the surface of the mesh.

Syntax

Result= MESH_SURFACEAREA {erts Conn[, AUXDATA= array]
[, MOMENT=variablg)

Return Value

Returns the cumulative (weighted) surface area of the polygons in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts
Array of polygonal vertices [3)).
Conn

Polygonal mesh connectivity array.
Keywords
AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex for the purpose of the area computation. The surface area integral
will linearly interpolate these values over the surface of each triangle. The default
weight is 1.0 which results in the basic polygon area.

MESH_SURFACEAREA What's New in IDL 5.3

Chapter 5: New IDL Routines 213

MOMENT

If this keyword is present, it will return a three element float vector which
corresponds to the first order moments computed with respect to the X, Y and Z axis.

The computation is:
m = Z &g
ntris

wherea is the (weighted) area of the triangle anis the centroid of the triangle, thus
m/ sarea

yields the (weighted) centroid of the polygon mesh.

What's New in IDL 5.3 MESH_SURFACEAREA

214 Chapter 5: New IDL Routines

MESH_VALIDATE

The MESH_VALIDATE function checks for NaN values in vertices, removes unused
vertices, and combines close vertices.

Syntax

Result= MESH_VALIDATE (Verts Conn[, /REMOVE_NAN]
[, /IPACK_VERTICES] [, /COMBINE_VERTICES] [, TOLERANCEw®aluq)

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [8, These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

max(|% —X; 1 1:|Y; = Vi + 1/|% —7 + 4|) <tolerance

is true, the pointsg) and {+1) can be collapsed into a single vertex. The result is
returned as a modification of thertsargument.

MESH_VALIDATE What's New in IDL 5.3

Chapter 5: New IDL Routines 215

PACK_VERTICES

If this keyword is set, the Verts input array will be packed to exclude any non-
referenced vertices. The result is returned in the Verts argument.

REMOVE_NAN

If this keyword is set, the function will remove any polygons from CONN which
reference vertices containing NaN values.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTS keyword. The default value is 0.0.

What's New in IDL 5.3 MESH_VALIDATE

216

MESH_VOLUME

Chapter 5: New IDL Routines

The MESH_VOLUME function computes the volume that the mesh encloses.

Syntax

Result= MESH_VOLUME (Verts, Conr{, /SIGNED])
Return Value

Returns the volume that the mesh encloses. If the mesh does not enclose space (i.e.
MESH_ISSOLID() would return 0), this function returns 0.0.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts

Array of polygonal vertices [3)).
Conn

Polygonal mesh connectivity array.
Keywords
SIGNED

Set this keyword to compute the signed volume. The sign will be negative for a mesh
consisting of inward facing polygons.

MESH_VOLUME What's New in IDL 5.3

Chapter 5: New IDL Routines 217
MORPH_CLOSE

The MORPH_CLOSE function applies the closing operator to a binary or grayscale
image. MORPH_CLOSE is simply a dilation operation followed by an erosion
operation. The result of a closing operation is that small holes and gaps within the
image are filled, yet the original sizes of the primary foreground features are
maintained. The closing operation is an idempotent operator, applying it more than
once produces no further effect.

Both the opening and the closing operators have the effect of smoothing the image,
with the opening operation removing pixels, and the closing operation adding pixels.

Syntax

Result= MORPH_CLOSEIfmage Structure[, /GRAY]
[, PRESERVE_TYPEbytearray| /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the closing operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions &sdlgeargument.

Keywords
GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of th&tructureparameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of UINT and ULONG.

What's New in IDL 5.3 MORPH_CLOSE

218 Chapter 5: New IDL Routines

UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations, and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensionsStsuctureproviding the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and a
morphological closing operator with a 3 by 3 square kernel to the original image.
Notice that most of the holes in the pollen grains have been filled by the closing
operator.

;Read the image

READ_JPEG, DEMO_FILEPATH(pollens.jpg’, $
SUBDIR=['examples’,’”demo’,’”demodata’]), a

;Apply the threshold creating a binary image
b =age 140b

;Load a simple color table
TEK_COLOR
TV, b, 0

;Apply closing operator
¢ = MORPH_CLOSE(b, REPLICATE(1,3,3))

:Show the result
TV,c, 1

;Show added pixels in white
TV,b+¢c, 2

MORPH_CLOSE What's New in IDL 5.3

Chapter 5: New IDL Routines 219
MORPH_DISTANCE

The MORPH_DISTANCE function estimatBsdimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel, using
a given norm. Available norms include: Euclidean, which is exact and is also known
as the Euclidean Distance Map (EDM), and two more efficient approximations,
chessboard and city block.

The distance map is useful for a variety of morphological operations: thinning,
erosion and dilation by discs of radius “r", and granulometry.

Syntax

Result= MORPH_DISTANCE Data[, /BACKGROUND]
[, NEIGHBOR_SAMPLING={1| 2| 3}] [, /NO_COPY])

Return Value
The returned variable is an array of the same dimension as the input array.
Arguments

Data

An input binary array. Zero-valued pixels are considered to be part of the
background.

Keywords

BACKGROUND

By default, the EDM is computed for the foreground (non-zero) features ethae
argument. Set this keyword to compute the EDM of the background features instead
of the foreground features.

What's New in IDL 5.3 MORPH_DISTANCE

220

Chapter 5: New IDL Routines

NEIGHBOR_SAMPLING

Set this keyword to indicate how the distance of each neighbor from a given pixel is
determined. The following table describes the valid values:

Setting

Action Taken

0 - default

No diagonal neighbors. Each neighbor is assigned a
distance of 1.

1 - chessboard

Each neighbor is assigned a distance of 1.

2 - city block

Each neighbor is assigned a distance corresponding t
number of pixels to be visited when travelling from the
current pixel to the neighbor. (The path can only take 9
degree turns; no diagonal paths are allowed.)

D the

3 - actual distance

Each neighbor is assigned its actual distance from th
current pixel (within the limitations of floating point

e

representations).

Table 5-5: NEIGHBOR_SAMPLING Settings

Default Two Dimensional Example

1
1 X 1
1

Chessboard Two-Dimensional Example

1 1 1
1 X 1
1 1 1

City Block Two-Dimensional Example:

2 1 2
1 X 1
2 1 2

Actual Distance Two-Dimensional Example

sqart(2) 1 sart(2)
1 X 1
sqrt(2) 1 sart(2)

MORPH_DISTANCE

What's New in IDL 5.3

Chapter 5: New IDL Routines 221

NO_COPY

Set this keyword to request that the input array be reused, if possible. If this keyword
is set, the input argument is undefined upon return.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then applies a threshold and the
morphological distance operator. Thresholding the result distance operator with a
value of “n”, produces the equivalent of eroding the thresholded image with a disc of
radius “n”.

;Read the image

READ_JPEG, 'lusr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Apply the threshold
b =age 140b

;Show thresholded image
TVSCL, b, 0

:Create Euclidean distance function
¢ = MORPH_DISTANCE(b, NEIGHBOR_SAMPLING = 3)

:Show distance function
TVSCL,c, 1

;Show image after erosion with a disc of radius 5
TVSCL,cGT5, 2

What's New in IDL 5.3 MORPH_DISTANCE

222 Chapter 5: New IDL Routines

MORPH_GRADIENT

The MORPH_GRADIENT function applies the morphological gradient operator to a
grayscale image. MORPH_GRADIENT is the subtraction of an eroded version of the
original image from a dilated version of the original image. The practical result of a
morphological gradient operation is that the boundaries of features are highlighted.

Syntax

Result=MORPH_GRADIENT (mage Structure[, PRESERVE_TYPEbytearray|
/UINT | /JULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological gradient
operation is to be performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions &ndlgeargument.

Keywords
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.

MORPH_GRADIENT What's New in IDL 5.3

Chapter 5: New IDL Routines 223

VALUES

An array of the same dimensions as$wictureargument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are O.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing a magnified image of grains of pollen. It then creates disc of radius 2, in a
5 by 5 array, with all elements within a radius of 2 from the center set to 1. This disc
is used as the structuring element for the morphological gradient which is then
displayed as both a gray scale image, and as a thresholded image.

:Radius of disc
r=2

;Read the image
READ_JPEG, 'lusr/local/rsi/idl/examples/demo/demodata/pollens*’, a

;Show original image
TVSCL, a, 0

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), 1, 1) LEr

b = MORPH_GRADIENT(a, disc)

;Show edges
TVSCL, b, 1

;Show thresholded edges
TVSCL, b ge 100, 2

What's New in IDL 5.3 MORPH_GRADIENT

224 Chapter 5: New IDL Routines

MORPH_HITORMISS

The MORPH_HITORMISS function applies the hit-or-miss operator to a binary
image. The hit-or-miss operator is implemented by first applying an erosion operator
with ahit structuring element to the original image. Then an erosion operator is
applied to the complement of the original image with a secomdessstructuring
element. The result is the intersection of the two results.

The resulting image corresponds to the positions where the hit structuring element
lies within the image, and the miss structure lies completely outside the image. The
two structures must not overlap.

Syntax
Result= MORPH_HITORMISS Ifnage, HitStructure, MissStructyre
Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological operation is
to be performed. The image is treated as a binary image with all nonzero pixels
considered as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensionslamtie

argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensionsiamtie

argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoint.

MORPH_HITORMISS What's New in IDL 5.3

Chapter 5: New IDL Routines 225

Keywords
None.
Example

The following code snippet identifies blobs with a radius of at least 2, but less than 4
in the pollen image. These regions totally enclose a disc of radius 2, contained in the
5 x 5 kernel named “hit”, and in turn, fit within a hole of radius 4, contained in the 9 x

9 array named “miss”. Executing this specific example identifies four blobs in the
image with these attributes.

:Radius of hit disc
rh=2

:Radius of miss disc
rm=4

;Create a binary disc of given radius.
hit = SHIFT(DIST(2*rh+1), rh, rh) LE rh

;Complement of disc for miss
miss = SHIFT(DIST(2*rm+1), rm, rm) GT rm

;:Load discrete color table
TEK_COLOR

;Read the image
READ_JPEG, DEMO_FILEPATH(pollens.jpg’, $
SUBDIR=['examples’,’demo’,’demodata’]), a

;Apply the threshold
b = a GE 140b

;Show thresholded image
TV, b, 0

;Compute matches
¢ = MORPH_HITORMISS(b, hit, miss)

;Expand matches to size of hit disc
¢ = DILATE(c, hit)

:Show matches.
TV,c, 1

;Superimpose, showing hit regions in blue.
;(Blue = color index 4 for tek_color.)
TV, b + 3*c, 2

What's New in IDL 5.3 MORPH_HITORMISS

226 Chapter 5: New IDL Routines
MORPH_OPEN

The MORPH_OPEN function applies the opening operator to a binary or grayscale
image. MORPH_OPEN is simply an erosion operation followed by a dilation
operation. The result of an opening operation is that small features (e.g., noise) within
the image are removed, yet the original sizes of the primary foreground features are
maintained. The opening operation is an idempotent operator, applying it more than
once produces no further effect.

An alternative definition of the opening, is that it is the union of all sets containing the
structuring element in the original image. Both the opening and the closing operators
have the effect of smoothing the image, with the opening operation removing pixels,
and the closing operation adding pixels.

Syntax

Result= MORPH_OPENIMmage, Structurg, /|GRAY]
[, PRESERVE_TYPEbytearray| /UINT | /ULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the opening operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions &sdlgeargument.

Keywords
GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of th&tructureparameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.

MORPH_OPEN What's New in IDL 5.3

Chapter 5: New IDL Routines 227

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensionsStsuctureproviding the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Example

The following code snippet reads a data file in the IDL Demo data directory
containing an magnified image of grains of pollen. It then applies a threshold and a
morphological opening operator with a 3 by 3 square kernel to the original image.
Notice that much of the irregular borders of the grains have been smoothed by the
opening operator.

;Read the image

READ_JPEG, DEMO_FILEPATH(pollens.jpg’, $
SUBDIR=['examples’,’demo’,'”demodata’]), a

;Apply the threshold

b =age 140b

;Load a simple color table

TEK_COLOR

TV, b, 0

;Apply opening operator

¢ = MORPH_OPEN(b, REPLICATE(1,3,3))

;Show the result

TV,c, 1

;Show pixels that have been removed in white

TV,c+b, 2

What's New in IDL 5.3 MORPH_OPEN

228 Chapter 5: New IDL Routines
MORPH_THIN

The MORPH_THIN function performs a thinning operation on binary images. The
thinning operator is implemented by first applying a hit or miss operator to the
original image with a pair of structuring elements, and then subtracting the result
from the original image.

In typical applications, this operator is repeatedly applied with the two structuring
elements, while rotating them after each application, until the result remains
unchanged.

Syntax
Result= MORPH_THIN (Image, HitStructure, MissStructuye
Arguments

Image

A one-, two-, or three-dimensional array upon which the thinning operation is to be
performed. The image is treated as a binary image with all nonzero pixels considered
as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensionslasmtge

argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions|amtie

argument.

Note
It is assumed that theitStructureand theMissStructurearguments are disjoint.

Keywords

None.

MORPH_THIN What's New in IDL 5.3

Chapter 5: New IDL Routines 229
MORPH_TOPHAT

The MORPH_TOPHAT function applies the top-hat operator to a grayscale image.
The top-hat operator is implemented by first applying the opening operator to the
original image, then subtracting the result from the original image. Applying the top-
hat operator provides a result that shows the bright peaks within the image.

Syntax

Result= MORPH_TOPHAT (mage, Structur¢, PRESERVE_TYPEbytearray|
/UINT | /JULONG] [, VALUES=array])

Arguments

Image

A one-, two-, or three-dimensional array upon which the top-hat operation is to be
performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions &sdlgeargument.

Keywords
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.

What's New in IDL 5.3 MORPH_TOPHAT

230 Chapter 5: New IDL Routines

VALUES

An array of the same dimensions as$ftreictureargument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are 0.

Example

The following example illustrates an application of the top-hat operator to an image
in theexamples/demo/demodata directory:

;Read the image
READ_JPEG, DEMO_FILEPATH(pollens.jpg’, $
SUBDIR=['examples’,’demo’,’demodata’]), a

;Show original
TVSCL, a, 0

;Radius of disc
r=2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, 1) LE r

;Apply top-hat operator
b = MORPH_TOPHAT(a, disc)

;Display stretched result.
tvscl, b <50, 1

MORPH_TOPHAT What's New in IDL 5.3

Chapter 5: New IDL Routines 231
MSG_CAT CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.
Syntax

MSG_CAT_CLOSEpbject
Arguments

object
The object reference returned from MSG_CAT_OPEN.

Keywords

None

What's New in IDL 5.3 MSG_CAT_CLOSE

232 Chapter 5: New IDL Routines
MSG_CAT COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation takes
place.

Syntax
MSG_CAT_COMPILE nput], outpui [, LOCALE_ALIAS=string] [, /MBCS]
Arguments

input

The input file with which to create the catalog. The file is a text representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:
VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file.
APPLICATION (required)
SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:
idl_ + "Application name" + _ + "Locale" + .cat

For example:
idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat

MSG_CAT_COMPILE What's New in IDL 5.3

Chapter 5: New IDL Routines 233

Keywords
LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE, input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

What's New in IDL 5.3 MSG_CAT_COMPILE

234 Chapter 5: New IDL Routines
MSG_CAT OPEN

The MSG_CAT_OPEN function returns a catalog object for the given parameters if
found. If a match is not found, an unset catalog object is returned. If unset, the
IDLffLanguageCat::Querynethod will always return the empty string unless a
default catalog is provided.

Syntax

Result= MSG_CAT_OPEN@pplication[, DEFAULT _FILENAME=filenamé
[, FILENAME=string] [, FOUND=variablg [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=valug)

Arguments

application

A scalar string representing the name of the desired application's catalog file.
Keywords
DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is setpplication PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, O
otherwise.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

MSG_CAT_OPEN What's New in IDL 5.3

Chapter 5: New IDL Routines 235

SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against. If a
match is found, it is used to further sub-set the possible return catalog choices.

What's New in IDL 5.3 MSG_CAT_OPEN

236 Chapter 5: New IDL Routines
PARTICLE_TRACE

The PARTICLE_TRACE procedure traces the path of a massless patrticle through a
vector field. The function allows the user to specify a set of starting points and a
vector field. The input seed points can come from any vertex-producing process. The
points are tracked by treating the vector field as a velocity field and integrating. Each
path is tracked until the path leaves the input volume or a maximum number of steps
is reached. The vertices generated along the paths are returned packed into a single
array along with a polyline connectivity array. The polyline connectivity array
organizes the vertices into separate paths (one per seed). Each path has an orientation.
The initial orientation may be set using the SEED_NORMAL keyword. As a path is
tracked, the change in the normal is also computed and may be returned to the user as
an optional argument. Path output can be passed directly to an IDLgrPolyline object
or passed to the STREAMLINE procedure for generation of orientated ribbons.
Control over aspects of the integration (e.g. method or stepsize) is also provided.

Syntax

PARTICLE_TRACE Data, SeedsVerts Conn[, Normalg

[, MAX_ITERATIONS=valug [, ANISOTROPY=array]

[, INTEGRATION={0 | 1}] [, SEED_NORMAL=vectol [, TOLERANCE=valug
[, MAX_STEPSIZE=valug [, /UNIFORM]

Arguments

Data

Input data array. This array can be of dimensiondxXaly] for two-dimensional
vector fields or [3¢x, dy, dZ for three-dimensional vector fields.

Seeds

Input array of seed points ([B] or [2, n].

Verts

Array of output path vertices ([8] or [2, n] array of floats).
Conn

Output path connectivity array in IDLgrPolyline POLYLINES keyword format.
There is one set of line segments in this array for each input seed point.

PARTICLE_TRACE What's New in IDL 5.3

Chapter 5: New IDL Routines 237

Normals

Output normal estimate at each output vertexr{[3yray of floats).
Keywords
ANISOTROPY

Set this input keyword to a two- or three- element array describing the distance
between grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

INTEGRATION

Set this keyword to one of the following values to select the integration method:
¢ 0= 2nd order Runge-Kutta
e 1 = 4th order Runge-Kutta

The default is zero.

SEED_NORMAL

Set this keyword to a three-element vector which selects the initial normal for the
paths. The default value is [0.0, 0.0, 1.0]. This keyword is ignored for two-
dimensional data.

TOLERANCE

This keyword is used with adaptive step-size control in the 4th order Runge-Kutta
integration scheme. It is ignored if the UNIFORM keyword is set or the 2nd order
Runge-Kutta scheme is selected.

MAX_ITERATIONS

This keyword specifies the maximum number of line segments to return for each
path. The default value is 200.

MAX_STEPSIZE
This keyword specifies the maximum path step size. The default value is 1.0.
UNIFORM

If this keyword is set, the step size will be set to a fixed value, set via the
MAX_STEPSIZE keyword. If this keyword is not specified, and TOLERANCE is
either unspecified or inapplicable, then the step size is computed based on the
velocity at the current point on the path according to the formula:

What's New in IDL 5.3 PARTICLE_TRACE

238 Chapter 5: New IDL Routines

stepsize = MIN(MaxStepSize, MaxStepSize/MAX(ABS(U), ABS(V), ABS(W)))

where (U,V,W) is the local velocity vector.

PARTICLE_TRACE What's New in IDL 5.3

Chapter 5: New IDL Routines 239
QUERY_IMAGE

The QUERY_IMAGE function reads the header of a file and determines if it is
recognized as an image file. If it is an image file, an optional structure containing
information about the image is returned.

Syntax

Result= QUERY_IMAGE (Filenamg, Info] [, CHANNELS=variable

[, DIMENSIONS=variableg] [, HAS _PALETTE=variable

[, IMAGE_INDEX=indeX [, NUM_IMAGES=variablg [, PIXEL_TYPE=variable]
[, SUPPORTED_READwariablgl [, SUPPORTED_WRITEwariabl¢

[, TYPE=variabld)

Return Value

Result is a long with the value of 1 if the query was successful (the file was
recognized as an image file) or 0 on failure. The return status will indicate failure for
files that contain formats that are not supported by the corresponding READ _
routine, even though the file may be valid outside the IDL environment.

Arguments

Filename
A scalar string containing the name of the file to query.
Info

An optional anonymous structure containing information about the image. This
structure is valid only when the return value of the function is 1. The Info structure
for all image types has the following fields:

Tag Type
CHANNELS Long
DIMENSIONS Two-dimensional long array
FILENAME Scalar string
HAS_PALETTE Integer

Table 2: The Info Structure for All Image Types

What's New in IDL 5.3 QUERY_IMAGE

240 Chapter 5: New IDL Routines

Tag Type

IMAGE_INDEX Long
NUM_IMAGES Long
PIXEL_TYPE Integer
TYPE Scalar string

Table 2: The Info Structure for All Image Types
Keywords
CHANNELS

Set this keyword to a named variable to retrieve the number of channels in the image.
DIMENSIONS

Set this keyword to a named variable to retrieve the image dimensions as a two-
dimensional array.

HAS PALETTE
Set this keyword to a named variable to equal to 1 if a palette is present, else 0.
IMAGE_INDEX

Set this keyword to the index of the image to query from the file. The default is 0, the
first image.

NUM_IMAGES
Set this keyword to a named variable to retrieve the number of images in the file.
PIXEL_TYPE

Set this keyword to a named variable to retrieve the IDL Type Code of the image
pixel format. See the documentation for the SIZE routine for a complete list of IDL
Type Codes.

The valid types for PIXEL_TYPE are:
e 1=DByte
* 2= Integer

* 3 =Longword Integer

QUERY_IMAGE What's New in IDL 5.3

Chapter 5: New IDL Routines 241

4 = Floating Point

5 = Double-precision Floating Point
12 = Unsigned Integer

13 - Unsigned Longword Integer
14 - 64-bit Integer

15 - Unsigned 64-bit Integer

SUPPORTED_READ

Set this keyword to a named variable to retrieve a string array of image types
recognized by READ_IMAGE. If the SUPPORTED_READ keyword is used the
filename and info arguments are optional.

SUPPORTED_WRITE

Set this keyword to a named variable to retrieve a string array of image types
recognized by WRITE_IMAGE. If the SUPPORTED_WRITE keyword is used the
filename and info arguments are optional.

TYPE

Set this keyword to a named variable to retrieve the image type as a scalar string.
Valid return values are:

BMP
GIF
JPEG
PNG
PPM
SRF
TIFF
DICOM

What's New in IDL 5.3 QUERY_IMAGE

242 Chapter 5: New IDL Routines
QUERY_ WAV

The QUERY_WAV function checks that the file is actually a .WAV file and that the
READ_WAV function can read the data in the file. Optionally, it can return additional
information about the data in the file. This function returns the value of 1 if the query
was successful (and the file type was correct) or 0 on failure.

Syntax
Result= QUERY_WAV (Filename, Info)
Arguments
Filename
A scalar string containing the full pathname of the .WAV file to read.

Info

An anonymous structure containing information about the data in the file. The fields
are defined as:

Tag Type Definition
CHANNELS INT Number of data channels in the file.
SAMPLES PER_SEC| LONG Data sampling rate in samples per secpnd.
BITS_PER_SAMPLE | INT Number of valid bits in the data.

Table 5-6: The Info Structure for Info Fields

Keywords

None.

QUERY_WAV What's New in IDL 5.3

Chapter 5: New IDL Routines 243

READ_BINARY

The READ_BINARY function reads the contents of a binary file using a passed
template or basic command line keywords. The result is an array or anonymous
structure containing all of the entities read from the file. Data is read from the given
filename or from the current file position in the open file pointed to by FileUnit. If no
template is provided, keywords can be used to read a single IDL array of data.

Note
The READ_BINARY function does not work on VMS platforms due to limitations
in the POINT_LUN procedure. For more information, BEENT_LUN.

Syntax

Result= READ_BINARY ([Filenamé | FileUnit [, TEMPLATE=templaté |
[[, DATA_START=valuq [, DATA_TYPE=typecodef[, DATA DIMS=array]
[, ENDIAN=string]])

Arguments

Filename

A scalar string containing the name of the binary file to reafildhameand file unit
are not specified, a dialog allows the user to choose a file.

FileUnit

A scalar containing an open IDL file unit number to read from.
Keywords
DATA_DIMS

Set this keyword to a scalar or array of up to eight elements specifying the size of the
data to be read and returned. For example, DATA DIMS=[512,512] specifies that a
two-dimensional, 512 by 512 array be read and returned. DATA_DIMS=0 specifies
that a single, scalar value be read and returned. Default is -1, which, if a TEMPLATE
is not supplied that specifies otherwise, indicates that READ_BINARY will read to
end-of-file and store the result in a 1D array.

What's New in IDL 5.3 READ_BINARY

244

Chapter 5: New IDL Routines

DATA_START

Set this keyword to specify where to begin reading in a file. This value is as an offset,
in bytes, that will be applied to the initial position in the file. Default is 0.

DATA_TYPE

Set this keyword to an IDL typecode of the data to be read. See documentation for the
IDL SIZE function for a listing of typecodes. Defaultis 1 (IDL's BYTE typecode).

ENDIAN

Set this keyword to one of three string values: ‘big”, “little” or “native” which
specifies the byte ordering of the file to be read. If the computer running
READ_BINARY uses byte ordering that is different than that of the file,
READ_BINARY will swap the order of bytes in multi-byte data types read from the
file. (Default: “native” = perform no byte swapping.)

TEMPLATE

Set this keyword to a template structure describing the file to be read. A template can
be created using BINARY_TEMPLATE. The TEMPLATE keyword cannot be used
simultaneously with keywords DATA_START, DATA_TYPE, DATA_DIMS, or
ENDIAN.

When a template is used with READ_BINARY, the result of a successful call to
READ_BINARY is a structure containing fields specified by the template.

If a template is not used with READ_BINARY, the result of a successful call to
READ_BINARY is an array.

READ_BINARY What's New in IDL 5.3

Chapter 5: New IDL Routines 245
READ_ IMAGE

The READ_IMAGE function reads the image contents of a file and returns the image
in an IDL variable. If the image contains a palette it can be returned as well in three
IDL variables. READ_IMAGE returns the image in the form of a two-dimensional
array (for grayscale images) or a (3, n, m) array (for TrueColor images).
READ_IMAGE can read most types of image files supported by IDL. See
QUERY_IMAGE for a list of supported formats.

Syntax

Result= READ_IMAGE (Filename[, Red Green Blug]
[, ALLOWED_FORMATS=string] [, FORMAT=string] [, IMAGE_INDEX=indeX)

Return Value

Result is the image array read from the file or scalar value of -1 if the file could not be
read.

Arguments

Filename
A scalar string containing the name of the file to read.
Red

An optional named variable to receive the red channel of the color table if a color
table exists.

Green

An optional named variable to receive the green channel of the color table if a color
table exists.

Blue

An optional named variable to receive the blue channel of the color table if a color
table exists.

What's New in IDL 5.3 READ_IMAGE

246 Chapter 5: New IDL Routines

Keywords

ALLOWED_FORMATS

Set this keyword to a scalar or array of format types READ_IMAGE will be allowed
to read. The default is all known image types.

FORMAT

Set this keyword to a scalar string of the image type to read. This will force
READ_IMAGE to attempt to read the file as the given format type.

IMAGE_INDEX

Set this keyword to the index of the image to read from the file. The default is 0, the
first image.

READ_IMAGE What's New in IDL 5.3

Chapter 5: New IDL Routines 247
READ WAV

The READ_WAV function reads the audio stream from the named .WAV file.
Optionally, it can return the sampling rate of the audio stream.

Syntax
Result= READ_WAV (Filename[, Ratg)
Return Value

In the case of a single channel stream, the returned variable is a BYTE or INT
(depending on the number of bits per sample) one-dimensional array. In the case of a
file with multiple channels, a similar two-dimensional array is returned, with the
leading dimension being the channel number.

Arguments

Filename
A scalar string containing the full pathname of the .WAV file to read.

Rate

Returns an IDL long containing the sampling rate of the stream in samples per
second.

Keywords

None.

What's New in IDL 5.3 READ_WAV

248 Chapter 5: New IDL Routines

STRCMP

The STRCMP function performs string comparisons between its two String
arguments, returning True (1) for those that match and False (0) for those that do not.
Normally, the IDL equality operator (EQ) is used for such comparisons, but
STRCMP can optionally perform case-insensitive comparisons and can be limited to
compare only the first N characters of the two strings, both of which require extra
steps using the EQ operator.

Syntax
Result= STRCMP 6&tringl, String2[, N] [, /FOLD_CASE])
Return Value

If all of the arguments are scalar, the result is scalar. If one of the arguments is an
array, the result is an integer with the same structure. If more than one argument is an
array, the result has the structure of the smallest array. Each element of the result
contains True (1) if the corresponding elements of Stringl and String2 are the same,
and False (0) otherwise.

Arguments

Stringl, String2
The strings to be compared.
N

Normally String1 and String2 are compared in their entirety. If N is specified, the
comparison is made on at most the first N characters of each string.

Keywords

FOLD_CASE

String comparison is normally a case-sensitive operation. Set FOLD_CASE to
perform case-insensitive comparisons instead.

Example

Compare two strings in a case-insensitive manner, considering only the first 3
characters:

STRCMP What's New in IDL 5.3

Chapter 5: New IDL Routines 249

Result = STRCMP('Moose’, 'moo’, 3, /[FOLD_CASE)
PRINT, Result

IDL Output

What's New in IDL 5.3 STRCMP

250 Chapter 5: New IDL Routines
STREAMLINE

The STREAMLINE procedure generates the visualization graphics from a path. The
output is a polygonal ribbon which is tangent to a vector field along its length. The
ribbon is generated by placing a line at each vertex in the direction specified by each
normal value multiplied by the anisotropy factor. The input normal array is not
normalized before use, making it possible to vary the ribbon width as well.

Syntax

STREAMLINE, Verts Conn Normals Outverts Outconn[, ANISOTROPY=array]
[, SIZE=vectol [, PROFILE=array]

Arguments

Verts
Input array of path vertices ([8] array).
Conn

Input path connectivity array in IDLgrPolyline POLYLINES keyword format. There
is one set of line segments in this array for each streamline.

Normals
Normal estimate at each input vertex (iBarray).
Outverts

Output vertices ([3xM] float array). Useful if the routine is to be used with Direct
Graphics or the user wants to manipulate the data directly.

Outconn

Output polygonal connectivity array to match the output vertices.
Keywords

ANISOTROPY

Set this input keyword to a three-element array describing the distance between grid
points in each dimension. The default value is [1.0, 1.0, 1.0]

STREAMLINE What's New in IDL 5.3

Chapter 5: New IDL Routines 251

SIZE

Set this keyword to a vector of values (one for each path point). These values are used
to specify the width of the ribbon or the size of profile at each point along its path.
This keyword is generally used to convey additional data parameters along the
streamline.

PROFILE

Set this keyword an array of two-dimensional points which are treated as the cross
section of the ribbon instead of a line segment. If the first and last points in the array
are the same, a closed profile is generated. The profile is placed at each path vertex ir
the plane perpendicular to the line connecting each path vertex with the vertex normal
defining the up direction. This allows for the generation of streamtubes and other
geometries.

What's New in IDL 5.3 STREAMLINE

252

Chapter 5: New IDL Routines

STREGEX

The STREGEX procedure performs regular expression matching against the strings
contained in StringExpression. STREGEX can perform either a simple boolean
True/False evaluation of whether a match occurred, or it can return the position and
offset within the strings for each match. The regular expressions accepted by this
routine, which correspond to “Posix Extended Regular Expressions”, are similar to
those used by such UNIX tools as egrep, lex, awk, and Perl.

For more information about regular expressions,‘lsearning About Regular
Expressionsin Chapter 9 oBuilding IDL Applcations

STREGEX is based on the regex package written by Henry Spencer, modified by RSI
only to the extent required to integrate it into IDL. This package is freely available at
ftp://zoo.toronto.edu/pub/regex.shar .

Syntax

Result= STREGEX G&tringExpressioyRegularExpressiofy /BOOLEAN |
, [IEXTRACT | , LENGTH=variable[, /SUBEXPR]] [, /FOLD_CASE])

Return Value

By default, STREGEX returns the position and length of the matched string within
StringExpressionf no match is found, -1 is returned for both of these. Optionally, it
can return a boolean True/False result of the match, or the matched strings.

Arguments

STREGEX

StringExpression
String to be matched.
RegularExpression

A scalar string containing the regular expression to match'L8aening About
Regular Expressiongh Chapter 9 oBuilding IDL Applcationdor a description of
the meta characters that can be used in a regular expression.

What's New in IDL 5.3

Chapter 5: New IDL Routines 253

Keywords
BOOLEAN

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting BOOLEAN modifies this behavior to
simply return a True/False value indicating if a match occurred or not.

EXTRACT

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting EXTRACT maodifies this behavior to simply
return the matched substrings. The EXTRACT keyword cannot be used with either
BOOLEAN or LENGTH.

FOLD_CASE

Regular expression matching is normally a case-sensitive operation. Set
FOLD_CASE to perform case-insensitive matching instead.

LENGTH

If present, specifies a variable to receive the lengths of the matches. Together with
this result of this function, which contains the starting points of the matches in
StringExpression, LENGTH can be used with the STRMID function to extract the
matched substrings. The LENGTH keyword cannot be used with either BOOLEAN
or EXTRACT.

SUBEXPR

By default, STREGEX only reports the overall match. Setting SUBEXPR causes it to
report the overall match as well as any subexpression matches. A subexpression is
any part of a regular expression written within parentheses. For example, the regular
expression ‘(a)(b)(c+)’ has 3 subexpressions, whereas the functionally equivalent
‘abc+' has none. The SUBEXPR keyword cannot be used with BOOLEAN.

If a subexpression participated in the match several times, the reported substring is
the last one it matched. Note, as an example in particular, that when the regular
expression ‘(b*)+' matches ‘bbb’, the parenthesized subexpression matches the three
'b's and then an infinite number of empty strings following the last ‘b’, so the reported
substring is one of the empties. This occurs because the * mateteesr more
instances of the character that precedes it.

In order to return multiple positions and lengths for each input, the result from
SUBEXPR has a new first dimension added compared to StringExpression.

What's New in IDL 5.3 STREGEX

254

Chapter 5: New IDL Routines

Examples

STREGEX

Example 1
To match a string starting with an “a”, followed by a “b”, followed by 1 or more “c”:

pos = STREGEX(‘aaabccc', 'abc+', length=len)
PRINT, STRMID(‘aaabccc', pos, len)

IDL Prints:
abccc
To perform the same match, and also find the locations of the three parts:

pos = STREGEX(‘aaabccc', '(a)(b)(c+)', length=len, /ISUBEXPR)
print, STRMID(‘aaabccc', pos, len)

IDL Prints:
abccc a b ccc
Or more simply:
print, STREGEX(‘aaabccc','(a)(b)(c+)',/SUBEXPR,/EXTRACT)
IDL Prints:
abccc a b cce
Example 2

This example searches a string array for words of any length beginning with “f” and
ending with “t” without the letter “0” in between:

str = ['foot', 'Feet’, 'fate’, 'FAST', 'ferret’, 'affluent’]
PRINT, STREGEX(str, '"M["0]*t$', [EXTRACT, /[FOLD_CASE)

This statement results in:
Feet FAST ferret
Note the following about this example:

* Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[*o], meaning “any character except the letter ‘0’ ”. Therefore, [*0]* means
“zero or more characters that are not ‘0’ ", whereas the following statement
would find only words whose second character is not “0”:

PRINT, strWHERE(STRMATCH(str, 'f[lo]*t’, /FOLD_CASE) EQ 1)]

What's New in IDL 5.3

Chapter 5: New IDL Routines 255

* The anchors (" and $) tell STREGEX to find only words that begin with “f’
and end with “t”. If we left out the * anchor in the above example, STREGEX
would also return “ffluent” (a substring of “affluent”). Similarly, if we left out
the $ anchor, STREGEX would also return “fat” (a substring of “fate”).

What's New in IDL 5.3 STREGEX

256 Chapter 5: New IDL Routines

STRJOIN

The STRJOIN function collapses a string scalar or array into merged strings. This
function reduces the rank of its input array by one dimension. The strings in the
removed first dimension are concatenated into a single string using the string in
Delimiter to separate them.

Syntax

Result= STRJOIN 8&tring[, Delimiter] [, /SINGLE])
Arguments

String

A string scalar or array to be collapsed into merged strings.

Delimiter

The separator string to use between the joined strings. If Delimiter is not specified, an
empty string is used.

Keywords

SINGLE

If SINGLE is set, the entire String is joined into a single scalar string result.
Example

Replace all the blanks in a sentence with colons:

str = 'Out, damned spot! Out | say!
print, (STRIOIN(STRSPLIT(str, /EXTRACT),)

IDL Output

Out,:damned:spot!:Out:l:say!

STRJOIN What's New in IDL 5.3

Chapter 5: New IDL Routines 257
STRMATCH

The STRMATCH function compares its search string, which can contain wildcard
characters, against the input string expression. The result is an array with the same
structure as the input string expression. Those elements that match the corresponding
input string are set to True (1), and those that do not match are set to False (0).

The wildcards understood by STRMATCH are similar to those used by the standard

UNIX shell:
Wildcard Description
Character P

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by “-” matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard| it
can be quoted by preceding it with a backslash character (e.g.
“*’ matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
“\a” is the same as “a”).

Table 5-7: Wilcard Characters used by STRMATCH
Syntax
Result= STRMATCH(String SearchString, /FOLD_CASE])
Arguments
String

The String to be matched.
SearchString

The search string, which can contain wildcard characters as discussed above.

What's New in IDL 5.3 STRMATCH

258 Chapter 5: New IDL Routines

Keywords
FOLD_CASE

The comparison is usually case sensitive. Setting the FOLD _CASE keyword causes a
case insensitive match to be done instead.

Examples

Example 1

Find all 4-letter words in a string array that begin with “f” or “F” and end with “t” or
“T™

str = ['foot', 'Feet’, 'fate’, 'FAST', 'ferret’, 'fort']
PRINT, stfWHERE(STRMATCH(str, 'f??t', [FOLD_CASE) EQ 1)]

This results in:
foot Feet FAST fort
Example 2
Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet’, 'fate’, 'FAST', 'ferret’, 'fort']
PRINT, stfWHERE(STRMATCH(str, 'f*t', [FOLD_CASE) EQ 1)]

This results in:
foot Feet FAST ferret fort

Example 3

Find 4-letter words beginning with “f* and ending with “t”, with any combination of
“0” and “e” in between:

str = ['foot', 'Feet', 'fate’, 'FAST', 'ferret’, 'fort']
PRINT, stfWHERE(STRMATCH(str, ‘fleo][eo]t', /FOLD_CASE) EQ 1)]

This results in:
foot Feet

Example 4

Find all words beginning with “f” and ending with “t” whose second character is not
the letter “0™:

str = ['foot', 'Feet’, 'fate’, 'FAST', 'ferret’, 'fort']
PRINT, strWHERE(STRMATCH(str, 'f[lo]*t', /FOLD_CASE) EQ 1)]

STRMATCH What's New in IDL 5.3

Chapter 5: New IDL Routines 259

This results in:

Feet FAST ferret

What's New in IDL 5.3 STRMATCH

260

Chapter 5: New IDL Routines

STRSPLIT

The STRSPLIT function splits its inp8tringargument into separate substrings,
according to the specified delimiter or regular expression. By default, the position of
the substrings is returned. The EXTRACT keyword can be used to cause STRSPLIT
to return an array containing the substrings.

Syntax

Result= STRSPLIT (String[, Patterr [, ESCAPE=string | , /REGEX
|, FOLD_CASE] [, /EXTRACT | , LENGTHwariablg [, /PRESERVE_NULL])

Arguments

String

A scalar string to be split into substrings.

Pattern

Pattern can contain one of two types of information:

e A string containing the character codes that are considered to be separators. In
this case, IDL performs a simple string search for those characters. This
method is simple and fast.

* Aregular expression, as implemented by the STREGEX function, which is
used by IDL to match the separators. This method is slower and more
complex, but can handle extremely complicated input strings.

Patternis an optional argument. If it is not specified, STRSPLIT defaults to splitting
on spans of whitespace (space or tab charactessjing

Keywords

STRSPLIT

ESCAPE

When doing simple pattern matching, the ESCAPE keyword can be used to specify
any characters that should be considered to be “escape” characters. Preceding any
character with an escape character prevents STRSPLIT from treating it as a separator
character even if it is found iPattern

Note that if the EXTRACT keyword is set, STRSPLIT will automatically remove the
escape characters from the resulting substrings. If EXTRACT is not specified,

What's New in IDL 5.3

Chapter 5: New IDL Routines 261

STRSPLIT cannot perform this editing, and the returned position and offsets will
include the escape characters.

For example:
print, STRSPLIT(a\b", ', ESCAPE="', [EXTRACT)
IDL prints:
a,b
ESCAPE cannot be specified with the FOLD_CASE or REGEX keywords.
EXTRACT

By default, STRTRIM returns an array of character offsetsSiiong that indicate

where the substrings are located. These offsets, along with the lengths available from
the LENGTH keyword can be used later with STRMID to extract the substrings. Set
EXTRACT to bypass this step, and cause STRSPLIT to return the substrings.
EXTRACT cannot be specified with the LENGTH keyword.

FOLD_CASE

Indicates that the regular expression matching should be done in a case-insensitive
fashion. FOLD_CASE can only be specified if the REGEX keyword is set, and
cannot be used with the ESCAPE keyword.

LENGTH

Set this keyword to a hamed variable to receive the lengths of the substrings.
Together with this result of this function, LENGTH can be used with the STRMID
function to extract the matched substrings. The LENGTH keyword cannot be used
with the EXTRACT keyword.

PRESERVE_NULL

Normally, STRSPLIT will not return null length substrings unless there are no non-
null values to report, in which case STRSPLIT will return a single null string. Set
PRESERVE_NULL to cause all null substrings to be returned.

REGEX

For complex splitting tasks, the REGEX keyword can be specified. In this case,
Patternis taken to be a regular expression to be matched a@aimgjto locate the
separators. If REGEX is specified aRdtternis not, the defaulPatternis the regular
expression:

What's New in IDL 5.3 STRSPLIT

262

Chapter 5: New IDL Routines

'+ STRING(9B) + T+

which means “any series of one or more space or tab characters” (9B is the byte value
of the ASCII TAB character).

Note that the defauRatterncontains a space after the [character.
The REGEX keyword cannot be used with the ESCAPE keyword.

Examples

STRSPLIT

Example 1

To split a string on spans of whitespace and replace them with hyphens:

Str = 'STRSPLIT chops up strings.'
print, STRIOIN(STRSPLIT(Str, [EXTRACT), -)

IDL Output
STRSPLIT-chops-up-strings.
Example 2

As an example of a more complex splitting task that can be handled with the simple
character-matching mode of STRSPLIT, consider a sentence describing different
colored ampersand characters. For unknown reasons, the author used commas to
separate all the words, and used ampersands or backslashes to escape the commas
that actually appear in the sentence (which therefore should not be treated as
separators). The unprocessed string looks like:

Str = 'There,was,a,red,&&&,,a,yellow,&&\,,and,a,blue \&.'

We use STRSPLIT to break this line apart, and STRJOIN to reassemble it as a
standard blank-separated sentence:

S = STRSPLIT(Str, ',', ESCAPE='&\", [EXTRACT)
PRINT, STRJOIN(S, ')

IDL Output
There was a red &, a yellow &, and a blue &.
Example 3

Finally, suppose you had a complicated string, in which every token was preceded by
the count of characters in that token, with the count enclosed in angle brackets:

str = '<4>What<1>a<7>tangled<3>web<2>we<6>weave.'

What's New in IDL 5.3

Chapter 5: New IDL Routines 263

This is too complex to handle with simple character matching, but can be easily
handled using the regular expression '<[0-9]+>' to match the separators. This regular
expression can be read as “an opening angle bracket, followed by one or more
numeric characters between 0 and 9, followed by a closing angle bracket.” The
STRJOIN function is used to glue the resulting substrings back together:

S = STRSPLIT(str,'<[0-9]+>' /[EXTRACT /REGEX)
PRINT, STRJOIN(S, ')

IDL Output

What a tangled web we weave.

What's New in IDL 5.3 STRSPLIT

264 Chapter 5: New IDL Routines
STRUCT_HIDE

The IDL HELP procedure displays information on all known structures or object
classes when used with the STRUCTURES or OBJECTS keywords. Although this is
usually the desired behavior, authors of large vertical applications or library routines
may wish to prevent IDL from displaying information on structures or objects that
are not part of their public interface, but which exist solely in support of the internal
implementation. The STRUCT_HIDE procedure is used to mark such structures or
objects as “hidden”. Items so marked are not displayed by HELP unless the user sets
the FULL keyword, but are otherwise unaltered.

Note
STRUCT_HIDE is primarily intended for use with named structures or objects.
Although it can be safely used with anonymous structures, there is no visible benefit
to doing so as anonymous structures are hidden by default.

Tip
Authors of objects will often place a call to STRUCT_HIDE in the _ _DEFINE
procedure that defines the structure.

Syntax

STRUCT_HIDE,Arg; [, Argy, ...,Argy]
Arguments

Argq, ..., Arg,

If an argument is a variable of one of the following types, its underlying structure
and/or object definition is marked as being hidden from the HELP procedure’s
default output:

e Structure
» Pointer that refers to a heap variable of structure type
* Object Reference

Any arguments that are not one of these types are quietly ignored. No change is made
to the value of any argument.

STRUCT_HIDE What's New in IDL 5.3

Chapter 5: New IDL Routines 265

Keywords
None.
Example

To create a named structure called “bullwinkle” and prevent it from appearing in the
HELP procedure’s default output:

tmp = { bullwinkle, moose:1, squirrel:0 }
STRUCT_HIDE, tmp

What's New in IDL 5.3 STRUCT_HIDE

266 Chapter 5: New IDL Routines

TETRA_CLIP

The TETRA_CLIP function clips a tetrahedral mesh to an arbitrary plane in space
and returns a tetrahedral mesh of the remaining portion. An auxiliary array of data
may also be passed and clipped. This array can have multiple values for each vertex
(the trailing array dimension must match the number of vertices in the Vertsin array).

A tetrahedral connectivity array consists of groups of four vertex index values. Each
set of four index values specifies four vertices which define a single tetrahedron.

Syntax

Result= TETRA_CLIP (Plang Vertsin Connin Vertsouf Connout
[, AUXDATA_IN= array, AUXDATA_OUT=variablg [, CUT_VERTS=variablg)

Return Value
The return value is the number of tetrahedra returned.
Arguments

Plane

Input four-element array describing the equation of the plane to be clipped to. The
elements are the coefficientslf,c,d of the equatiomx+by+cz+d=0.

Vertsin

Input array of tetrahedral vertices [,
Connin

Input tetrahedral mesh connectivity array.
Vertsout

Output array of tetrahedral vertices [},
Connout

Output tetrahedral mesh connectivity array.

TETRA_CLIP What's New in IDL 5.3

Chapter 5: New IDL Routines 267

Keywords
AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a hamed variable to contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable to contain an output array of vertex indices (into
Vertsout) of the vertices which are considered to be ‘on’ the clipped surface.

What's New in IDL 5.3 TETRA_CLIP

268 Chapter 5: New IDL Routines
TETRA_SURFACE

The TETRA_SURFACE function extracts a polygonal mesh as the exterior surface of
a tetrahedral mesh. The output of this function is a polygonal mesh connectivity array
that can be used with the input Verts array to display the outer surface of the
tetrahedral mesh.

Syntax
Result= TETRA_SURFACE Yerts Connin
Return Value

Returns a polygonal mesh connectivity array. When used with the input vertex array,
this function yields the exposed tetrahedral mesh surface.

Arguments
Verts
Array of vertices [3n].

Connin

Tetrahedral connectivity array.

TETRA_SURFACE What's New in IDL 5.3

Chapter 5: New IDL Routines 269
TETRA _VOLUME

The TETRA_VOLUME function computes properties of a tetrahedral mesh array.
The basic property is the volume. An auxiliary data array may be supplied which
specifies weights at each vertex which are interpolated through the volume during
integration. Higher order moments (with respect to the X, Y, and Z axis) may be
computed as well (with or without weights).

Syntax

Result="TETRA_ VOLUME (Verts Conn[, AUXDATA= array]
[, MOMENT=variable)

Return Value

Returns the cumulative (weighted) volume of the tetrahedrons in the mesh.
Arguments

Verts

Array of vertices [3n].

Conn

Tetrahedral connectivity array.
Keywords
AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex. The volume area integral will linearly interpolate these values.
The volume integral will linearly interpolate these values within each tetrahedra. The
default weight is 1.0 which results in a basic volume.

What's New in IDL 5.3 TETRA_VOLUME

270

Chapter 5: New IDL Routines

MOMENT

Set this keyword to a named variable that will contain a three-element float vector
which corresponds to the first order moments computed with respect to the X, Y and
Z axis. The computation is:

m = Z vt
ntetras

where v is the (weighted) volume of the tetrahedron and c is the centroid of the
tetrahedron, thus

m/ volume

yields the (weighted) centroid of the tetrahedral mesh.

TETRA_VOLUME What's New in IDL 5.3

Chapter 5: New IDL Routines 271
VALUE LOCATE

The VALUE_LOCATE function finds the intervals within a given monotonic vector
that brackets a given set of one or more search values. This function is useful for
interpolation and table-lookup, and is an adaptation of the locate() routine in
Numerical Recipes. VALUE_LOCATE uses the bisection method to locate the
interval.

Syntax
Result= VALUE_LOCATE (Vectot Value)

Return Value

Each return value, Resull,[is an index, j, into Vector, corresponding to the interval
into which the given Valuei] falls. The returned values are in the ranges{Xk N-1,
where N is the number of elements in the input vector.

If Vector is monotonically increasing, the result j is:

ifj=-1 Value |] < Vector 0]
ifO<j<N-1 Vector|] < Value |] < Vector [+1]
if j = N-1 Vector [N-1] < Value |]

If Vector is monotonically decreasing
ifj=-1 Vector Q] < Value |]
ifO<j<N-1 Vector[+1] < Value |i] < Vector []
if j = N-1 Value [i] < Vector N-1]

Arguments
Vector

A vector of monotonically increasing or decreasing values. Vector may be of type

string, or any numeric type except complex, and may not contain the value NaN (not-
a-number).

What's New in IDL 5.3 VALUE_LOCATE

272 Chapter 5: New IDL Routines

Value

The value for which the location of the intervals is to be computed. Value may be

either a scalar or an array. The return value will contain the same number of elements
as this parameter.

Keywords
None.
Example

; Define a vector of values.
vec =[2,5,8,10]

; Compute location of other values within that vector.
loc = VALUE_LOCATE(vec, [0,3,5,6,12])
PRINT, loc

IDL prints:

-1 0 1 1 3

VALUE_LOCATE What's New in IDL 5.3

Chapter 5: New IDL Routines 273
VECTOR_FIELD

The VECTOR_FIELD procedure is used to place colored, oriented vectors of
specified length at each vertex in an input vertex array. The output can be sent
directly to an IDLgrPolyline object. The generated display is generally referred to as
a hedgehog display and is used to convey various aspects of a vector field.

Syntax

VECTOR_FIELD,Field, Outverts Outconn[, ANISOTROPY=array]
[, SCALE=valuq [, VERTICES=array]

Arguments

Field

Input vector field array. This can be a j8y, Z] array or a [2, y] array. The leading
dimension is the vector quantity to be displayed.

Outverts

Output vertex array ([3\] or [2, N] array of floats). Useful if the routine is to be used
with Direct Graphics or the user wants to manipulate the data directly.

Outconn

Output polyline connectivity array to be applied to the output vertices.
Keywords

ANISOTROPY

Set this keyword to a two- or three-element array describing the distance between
grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

SCALE

Set this keyword to a scalar scaling factor. All vector lengths are multiplied by this
value. The default is 1.0.

VERTICES

Set this keyword to a [3)] or [2, n] array of points. If this keyword is set, the vector
field is interpolated at these points. The resulting interpolated vectors are displayed as

What's New in IDL 5.3 VECTOR_FIELD

274 Chapter 5: New IDL Routines

line segments at these locations. If the keyword is not set, each spatial sample pointin
the input Field grid is used as the base point for a line segment.

VECTOR_FIELD What's New in IDL 5.3

Chapter 5: New IDL Routines 275
WATERSHED

The WATERSHED function applies the morphological watershed operator to a
grayscale image. This operator segments images into watershed regions and their
boundaries. Considering the gray scale image as a surface, each local minimum can
be thought of as the point to which water falling on the surrounding region drains.
The boundaries of the watersheds lie on the tops of the ridges. This operator labels
each watershed region with a unique index, and sets the boundaries to zero.

Typically, morphological gradients, orimages containing extracted edges are used for
input to the watershed operator. Noise and small unimportant fluctuations in the
original image can produce spurious minima in the gradients, which leads to
oversegmentation. Smoothing, or manually marking the seed points are two
approaches to overcoming this problem. For further reading, see Dougherty, “An
Introduction to Morphological Image Processing”, SPIE Optical Engineering Press,
1992

Syntax
Result= WATERSHED (Image[, CONNECTIVITY={4 | 8}])
Return Value

Returns an image of the same dimensions as the input image. Each pixel of the result
will be either zero if the pixel falls along the segmentation between basins, or the
identifier of the basin in which that pixel falls.

Arguments

Image

The two-dimensional image to be segmenkexgeis converted to byte type if
necessary.

Keywords

CONNECTIVITY

Set this keyword to either 4 (to select 4-neighbor connectivity) or 8 (to select 8-
neighbor connectivity). Connectivity indicates which pixels in the neighborhood of a
given pixel are sampled during the segmentation process. 4-neighbor connectivity
samples only the pixels that are immediately adjacent horizontally and vertically. 8-

What's New in IDL 5.3 WATERSHED

276 Chapter 5: New IDL Routines

neighbor connectivity samples the diagonally adjacent neighbors in addition to the
immediate horizontal and vertical neighbors. The default is 4-neighbor connectivity.

Example

The following code snippet crudely segments the grains in the data file in the IDL
Demo data directory containing an magnified image of grains of pollen.

It inverts the image, because the watershed operator finds holes, and the grains of
pollen are bright. Next, the morphological closing operator is applied with a disc of
radius 9, contained within a 19 by 19 kernel, to eliminate holes in the image smaller
than the disc. The watershed operator is then applied to segment this image. The
borders of the watershed images, which have pixel values of zero, are then merged
with the original image and displayed as white.

:Radius of disc...
r=9

;Create a disc of radius r
disc = SHIFT(DIST(2*r+1), r,r) LE r

;Read the image
READ_JPEG, DEMO_FILEPATH(pollens.jpg’, $
SUBDIR=['examples’,’demo’,’”demodata’]), a

;Invert the image
b =MAX(a) - a

TVSCL, b, 0

;Remove holes of radii less than r
¢ = MORPH_CLOSE(b, disc, /GRAY)

TVSCL, c, 1

;Create watershed image
d = WATERSHED(c)

;Display it, showing the watershed regions
TVSCL, d, 2

;Merge original image with boundaries of watershed regions
e =a > (MAX(a) * (d EQ 0b))

TVSCL, e, 3

WATERSHED What's New in IDL 5.3

Chapter 5: New IDL Routines 277
WRITE_IMAGE

The WRITE_IMAGE procedure writes an image and its color table vectors, if any, to
a file of a specified type. WRITE_IMAGE can write most types of image files
supported by IDL.

Syntax
WRITE_IMAGE, Filename Format, Data [, Red Green Blug] [, /APPEND]
Arguments

Filename
A scalar string containing the name of the file to write.
Format

A scalar string containing the name of the file format to write. See QUERY_IMAGE
for a list of supported formats.

Data

An IDL variable containing the image data to write to the file.

Red

An optional vector containing the red channel of the color table if a color table exists.
Green

An optional vector containing the green channel of the color table if a color table
exists.

Blue

An optional vector containing the blue channel of the color table if a color table
exists.

Keywords
APPEND

Set this keyword to force the image to be appended to the file instead of overwriting
the file. APPEND may be used with image formats that supports multiple images per
file and is ignored for formats that support only a single image per file.

What's New in IDL 5.3 WRITE_IMAGE

278 Chapter 5: New IDL Routines

WRITE_WAV

The WRITE_WAV function writes the audio stream to the named .WAV file.
Syntax

WRITE_WAV, Filename Data, Rate
Arguments

Filename
A scalar string containing the full pathname of the .WAV file to write.
Data

The array to write into the new .WAV file. The array can be a one- or two-
dimensional array. A two-dimensional array is written as a multi-channel audio
stream where the leading dimension of the IDL array is the number of channels. If the
input array is in BYTE format, the data is written as 8-bit samples, otherwise, the
data is written as signed 16-bit samples.

Rate

The sampling rate for the data array in samples per second.
Keywords

None.

WRITE_WAV What's New in IDL 5.3

Chapter 5: New IDL Routines 279
XOBJVIEW

The XOBJVIEW procedure is used to quickly and easily view and manipulate IDL
Object Graphics on screen. It displays given objects in an IDL widget with toolbar
buttons and menus providing functionality for manipulating, printing, and exporting
the resulting graphic. The mouse can be used to rotate, scale, or translate the overal
model shown in a view, or to select atomic graphic objects (or model objects which
have their SELECT_TARGET property set) shown in a view.

Syntax

XOBJVIEW, Obj [, /BLOCK] [, GROUP=widget_id [, STATIONARY=objref(s})
[, XSIZE=pixelq [, YSIZE=pixeld

Arguments

Obj

A reference to an atomic graphics object, an IDLgrModel, or an array of such
references. 1Dbjis an array, the array can contain a mixture of such references.
Also, if Objis an array, all object references in the array must be unique (i.e. no two
references in the array can refer to the same object).

Obj is not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.
Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keywordtmMANAGER.

GROUP

The widget ID of the widget that calls XOBJVIEW. When this ID is specified, the
death of the caller results in the death of XOBJVIEW.

STATIONARY

Set this keyword to a reference to an atomic graphics object, an IDLgrModel, or an
array of such references. If this keyword is an array, the array can contain a mixture

What's New in IDL 5.3 XOBJVIEW

280

XOBJVIEW

Chapter 5: New IDL Routines

of such references. Also, if this keyword is an array, all object references in the array
must be unique (i.e., no two references in the array can refer to the same object).
Objects passed to XOBJVIEW via this keyword will not scale, rotate, or translate in
response to mouse events. Default stationary objects are two lights. These two lights
are replaced if one or more lights are supplied via this keyword. Objects specified via
this keyword are not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.

XSIZE

The width of the drawable area in pixels. The default is 400.
YSIZE

The height of the drawable area in pixels. The default is 400.

Using XOBJVIEW

XOBJVIEW displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

&l Xobjview M= E3
File Edit iew

(2] _[x]#] 5]

Figure 5-1: The XOBJVIEW draw widget

What's New in IDL 5.3

Chapter 5: New IDL Routines 281

The XOBJVIEW Toolbar
The XOBJVIEW toolbar contains the following buttons:

lou Reset: Resets rotation, scaling, and panning.

Cj Rotate: Click the left mouse button on the object and drag to rotate.

4—}; Pan: Click the left mouse button on the object and drag to pan.

Q Zoom: Click the left mouse button on the object and drag to zoom in or out.

rTan Select: Click on the object.The name (or class if no name) is displayed.

Examples

Example 1
This example displays a simple IDLgrSurface object using XOBJVIEW:

oSurf = OBJ_NEW('IDLgrSURFACE', DIST(20))
XOBJVIEW, oSurf

Example 2
In this example, an IDLgrModel object consisting of two separate objects is
displayed:

; Create contour object:
oCont = OBJ_NEW('IDLgrContour’, $
DIST(20),INDGEN(20)+20, INDGEN(20)+20, N_LEVELS=10)

; Create surface object:
oSurf = OBJ_NEW('IDLgrSurface', $
DIST(20),INDGEN(20)+20, INDGEN(20)+20)

; Create model object:
oModel = OBJ_NEW('IDLgrModel’)

; Add contour and surface objects to model:
oModel->Add, oCont
oModel->Add, oSurf

: View model:
XOBJVIEW, oModel

What's New in IDL 5.3 XOBJVIEW

282 Chapter 5: New IDL Routines

This code results in the following view in the XOBJVIEW widget:

&l Xobjview M= E3
File Edit iew

(2] _[x]#] 5] |

Figure 5-2: Using XOBJVIEW to view a model consisting of two objects

Note that when you click the Select button, and then click on an object, the class of
that object appears next to the Select button. If you want the class of the model to
appear when you click over any object in the model, you could set the
SELECT_TARGET property of the model as follows:

oModel->SetProperty, /ISELECT_TARGET

Also note that it is not necessary to create a model to view more than one object using
XOBJVIEW. We could view the oCont and oSurf objects created in the above
example by placing them in an array as follows:

XOBJVIEW, [oCont, oSurf]

XOBJVIEW What's New in IDL 5.3

Chapter 6.

New Objects

This chapter provides documentation for IDL Objects introduced in IDL 5.3. Complete
documentation for IDL Objects (including enhancements to existing objects) can be found in the
IDL Reference Guide

IDLanROI 284DLgrROIo 332
IDLanROIGroup.o co oo 307IDLgrROIGroupo 342
IDLffLanguageCat.................. 3241DLgrVRML::GetDevicelnfo 347
IDLgrBuffer::GetDevicelnfo 328 IDLgrWindow::GetDevicelnfo......... 349
IDLgrClipboard::GetDevicelnfo 330

What's New in IDL 5.3 283

284

Chapter 6: New Objects

IDLanROI

The IDLanROI object class represents a region of interest.

Note
The IDLan* naming convention is used for objects in the analysis domain.

Regions of interest are described as a set of vertices that may be connected to
generate a path or a polygon, or may be treated as separate points. This object may be
used as a source for analytical computations on regions. (For additional information
about display of ROIs in Object Graphics, refer tolblegrROI object class.)

Superclasses

None.

Subclasses

This class is a superclassIDLgrROl.

Creation

SeelDLanROIl::Init.

Methods

IDLanROI

Intrinsic Methods

The IDLanROI class has the following methods.
* |IDLanROI::AppendData

IDLanROI::Cleanup

e IDLanROI::ComputeGeometry
* IDLanROI::ComputeMask

* IDLanROI::ContainsPoints

e IDLanROI::GetProperty

* |IDLanROIl::Init

* IDLanROIl::RemoveData

What's New in IDL 5.3

Chapter 6: New Objects 285

« IDLanROIl::ReplaceData
* |DLanROIl::Rotate

* IDLanROIl::Scale

¢ |IDLanROI::SetProperty
* |IDLanROIl::Translate

What's New in IDL 5.3 IDLanROI

286

Chapter 6: New Objects

IDLanROIl::AppendData

The IDLanROI::AppendData procedure method appends vertices to the region.

Syntax

Obj—>[IDLanROI::]JAppendDataX [, Y] [, Z] [, XRANGE=variabl€
[, YRANGE=variabl€] [, ZRANGE=variabl¢g]

Arguments

X

A vector providing theX components of the vertices to be appended. IYttedZ
arguments are not specifieimust be a two-dimensional array with the leading
dimensions either 2 or 3 ([2,*] or [3,*]), in which cas€[0,*] represents th& values,
X[1,*] represents th& values, an[2,*] represents th& values.

Y
A vector providing thér components of the vertices to be appended.
Z

A vector providing th& components of the vertices to be appended.

Keywords

IDLanROI

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin xmay, representing thX range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin ymay, representing th& range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin zma}, representing th& range of the modification to the region. The reported

What's New in IDL 5.3

Chapter 6: New Objects 287

range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended.

What's New in IDL 5.3 IDLanROI

288 Chapter 6: New Objects

IDLanROI::Cleanup

The IDLanROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

Obj—>[IDLanROI::]Cleanup
or
OBJ_DESTROYQbj

(In a subclass’ Cleanup method only.)
Arguments

None.
Keywords

None.

IDLanROI What's New in IDL 5.3

Chapter 6: New Objects 289

IDLanROI::ComputeGeometry

The IDLanROI::ComputeGeometry function method computes the geometrical
values for area, perimeter, and/or centroid of the region.

Syntax

Result= Obj—>[IDLanROI::]ComputeGeometry [, AREAAriable
[, CENTROID=variable) [, PERIMETER=variablg [, SPATIAL_OFFSET=ecto|
[, SPATIAL_SCALE=vectoi

Return Value

Result

This function method returns a 1 for success, or a 0 for failure. Each computed value
is returned in the@ariable name assigned to each keyword.

Arguments
None.

Keywords
AREA

Set this keyword to a named variable that upon return contains a floating point value
representing the area of the region. Interior regions (holes) return a negative area.

CENTROID

Set this keyword to a named variable that upon return contains a floating point value
representing the centroid for the region. If the TYPE of the region is O (points) or 1
(path), the centroid is computed as the average of each of the vertices in the region. If
the TYPE of the region is 2 (polygon), the centroid is computed as a weighted
average of the centroids of the polygons making up the ROI (interior centroids use
negative weights). Weights are proportional to the polygon area.

PERIMETER

Set this keyword to a named variable that upon return contains a floating point value
representing the perimeter of the region.

What's New in IDL 5.3 IDLanROI

290

IDLanROI

Chapter 6: New Objects

SPATIAL_OFFSET

Set this keyword to a two or three-element vectryty] or [tx, ty, tZ], representing

the spatial calibration offset factors to be applied for the geometry calculations. The
value of SPATIAL_SCALE is applied before the spatial offset values are applied. The
default is [0.0, 0.0, 0.0].

SPATIAL_SCALE

Set this keyword to a two or three-element vectsx, §yj or [SX Sy, S4, representing

the spatial calibration scaling factors to be applied for the geometry calculations. The
spatial calibration scale is applied first, then the value of SPATIAL_OFFSET is
applied. The default is [1.0, 1.0, 1.0].

What's New in IDL 5.3

Chapter 6: New Objects 291

IDLanROI::ComputeMask

The IDLanROI::ComputeMask function method prepares a two-dimensional mask
for the region.

Syntax

Result= Obj—>[IDLanROI::]ComputeMask([, INITIALIZE={1 |0 | 1}]

[, DIMENSIONSHxdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y[, Z]]
[, MASK_RULE={0|1]|2}] [, PLANE_NORMALSX, Y, Z]|

[, PLANE_XAXIS=[x,y,z]])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to
255. The mask is computed by applying the following formula to the current mask
for each mask point contained within the ROI:

Moyt = MAX(MIN(0, (Moi*Ext) + M;,), 255)

whereM,,; is 255 andExtis 1 for points within an exterior region and —1 for points
within an interior region.

If the TYPE of the region is O (points), a single mask pixel is set for each region
vertex that falls within the bounds of the mask.

If the TYPE of the region is 1 (path), one-pixel-wide line segments are set within the
mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a region, and the pixel falls within the region (according to the
MASK_RULE).

Arguments
None.

Keywords

DIMENSIONS

Set this keyword to a two-element vectadifn ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword

What's New in IDL 5.3 IDLanROI

292

IDLanROI

Chapter 6: New Objects
is ignored and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].
INITIALIZE
Set this keyword to indicate how the mask should be initialized. Valid values include:

« -1 =The mask is not initialized. This option is useful when updating an
already existing mask. This is the default if the MASK_IN keyword is set.

« 0 =The mask is initialized so that each pixel is set to 0. This is the default if
the MASK_IN keyword is not set.

. 1 = The mask is initialized so that each pixel is set to 255.
LOCATION

Set this keyword to a vector of the forX [Y], Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, the
data portion of this variable is grabbed and used in the returned value (an implicit
NO_COPY). If this keyword is not provided, a mask is allocated by default to match
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

« 0= Boundary only. All pixels falling on a region’s boundary are set.

» 1 =Interior only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

e 2 =Boundary + Interior. All pixels falling on or within a region’s boundary are
set.

PLANE_NORMAL

Set this keyword to a three-element vectary|[Z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].

What's New in IDL 5.3

Chapter 6: New Objects 293

PLANE_XAXIS

Set this keyword to a three-element vectary,[z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). The
defaultis [1, 0, O].

What's New in IDL 5.3 IDLanROI

294 Chapter 6: New Objects

IDLanROI::ContainsPoints

The IDLanROI::ContainsPoints function method determines whether the given data
coordinates are contained within the closed polygon region.

Syntax
Result= Obj—>[IDLanROI::]ContainsPointsX [, Y [, Z]])
Return Value

Result
The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

0 Exterior. The point lies strictly out of bounds of the ROI.

1 Interior. The point lies strictly inside the bounds of the ROI.
2 On edge. The point lies on an edge of the ROI boundary.
3

On vertex. The point matches a vertex of the ROI.

A point is considered to be exterior if:
» the point falls within the boundary of an interior region (hole).
» the point does not lie in the plane of the region.

» theregion TYPE property is set to O (points) or 1 (path).
Arguments

X

A vector providing theX components of the points to be tested. IftteandZ
arguments are not specifieéimust be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which cas¥[0,*] represents th&X values,
X[1,*] represents th¥ values, anc[2,*] represents th& values.

Y

A vector providing théf components of the points to be tested.

IDLanROI What's New in IDL 5.3

Chapter 6: New Objects 295

V4

A scalar or vector providing th&component(s) of the points to be tested. If not
provided, theZ components default to 0.0.

Keywords

None.

What's New in IDL 5.3 IDLanROI

296

Chapter 6: New Objects

IDLanROI::GetProperty

The IDLanROI::GetProperty procedure method retrieves the value of a property or
group of properties for the region.

Syntax

Obj—>[IDLanROI::]GetProperty [, ALLwariablg [, ROl_XRANGE=variabl€g
[, ROl_YRANGE=variablg [, ROl_ZRANGE=variabl€e

Arguments

None.

Keywords

IDLanROI

Any keyword tolDLanROI::Init followed by the wordGet) can be retrieved using
IDLanROI::GetProperty. In addition, the following keywords are available:

ALL

Set this keyword to a named variable that will contain an anonymous structure
containing the values of all of the properties associated with the state of this object.
State information about the object includes things like block size, type, etc., but not
vertex data.

Note
The fields in this structure may change in subsequent releases of IDL.

ROI_XRANGE

Set this keyword to a named variable. Upon return, ROlI_XRANGE contains a two-
element vector of the fornxin xmax that specifies the range ¥fdata coordinates
covered by the region.

ROI_YRANGE

Set this keyword to a named variable. Upon return, ROl_YRANGE contains a two-
element vector of the fornyfmin ymay that specifies the range ¥fdata coordinates
covered by the region.

What's New in IDL 5.3

Chapter 6: New Objects 297
ROI_ZRANGE

Set this keyword to a named variable. Upon return, ROI_ZRANGE contains a two-
element vector of the formezmin zmay that specifies the range @fdata coordinates

covered by the region.

What's New in IDL 5.3 IDLanROI

298 Chapter 6: New Objects

IDLanROI::Init

The IDLanROI::Init function method initializes a region of interest object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result= IDLanROIl::Init(X[, Y[, Z]]] [, BLOCKSIZE{Get, Set}=vertice$
[, DATA{Get, Set}=array] [, INTERIOR{Get, Set}] [, TYPE{Get}={0]1]|2]}])

or
Obj= OBJ_NEW('IDLanROI' [X[, Y[, Z1])

(In a subclass’ Init method only.)
Arguments

X

A vector providing theX components of the vertices for the region. IfYrendZ
arguments are not specifieimust be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which casK[0,*] represents th& values,
X[1,*] represents th& values, an[2,*] represents th& values.

Y
A vector providing thé components of the vertices.
Z

A scalar or vector providing th&component(s) of the vertices. If not providgd,
values default to 0.0.

IDLanROI What's New in IDL 5.3

Chapter 6: New Objects 299

Keywords
BLOCK_SIZE (Get, Set)

Set this keyword to the number of vertices to allocate per block as needed for the
region. When additional vertices are required, an additional block is allocated. The
default is 100.

DATA (Get, Set)

Set this keyword to a 2-by-or 3-byh array which defines the vertex data for the
region. DATA is equivalent to the optional argumetsy, andZ.

INTERIOR (Get, Set)

Set this keyword to mark this region as an interior region (i.e., a region treated as a
hole). By default, the region is treated as an exterior region.

TYPE (Get)

Set this keyword to indicate the type of the region. The TYPE keyword determines
how computational operations, such as mask generation, are performed. Valid values
include:

0 points
1 path
2 closed polygon (the default)

What's New in IDL 5.3 IDLanROI

300

Chapter 6: New Objects

IDLanROI::RemoveData

The IDLanROI::RemoveData procedure method removes vertices from the region.

Syntax

Obj—>[IDLanROI::]RemoveData], COUNTerticed [, START=indeX
[, XRANGE=variabld) [, YRANGE=variablg[, ZRANGE=variabl€g

Arguments

None.

Keywords

IDLanROI

COUNT
Set this keyword to the number of vertices to remove. The default is one vertex.
START

Set this keyword to an index (into the region’s current vertex list) where the removal
is to begin. By default, the final vertex is removed.

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmay, that represents thérange of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin ymay, that represents thérange of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin zmay, that represents thierange of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices.

What's New in IDL 5.3

Chapter 6: New Objects 301

IDLanROI::ReplaceData

The IDLanROI::ReplaceData procedure method replaces vertices in the region with
alternate values. The number of replacement values need not match the number of
values being replaced.

Syntax

Obj—>[IDLanROI::]ReplaceDataX], Y[, Z]] [, START=indeX [, FINISH=indeX
[, XRANGE=variablg [, YRANGE=variable| [, ZRANGE=variable

Arguments

X

A vector providing theX components of the new replacement vertices. IfftlaadZ
arguments are not specifieéimust be a two-dimensional array with the leading
dimensions either 2 or 3 ([2, *] or [3, *]), in which ca%§0), *] represents thX
values X[1, *] represents th¥ values, an&[2, *] represents th& values.

Y
A vector providing thér components of the new replacement vertices.
Z

A vector providing th&Z components of the new replacement vertices.
Keywords
FINISH

Set this keyword to the index of the region’s current subregion vertex list where the
replacement ends. If the START keyword value 8, the default FINISH is given by

FINISH = ((START + N_NEW — 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided viXthe/]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the START keyword is not set or is negative, the default FINISH is given by
FINISH=N_OLD -1

What's New in IDL 5.3 IDLanROI

302

IDLanROI

Chapter 6: New Objects

FINISH may be less than START in which case the vertices, including and following
START and the vertices preceding and including FINISH, are replaced with the new
values.

START

Set this keyword to an index of the region’s current subregion vertex list where the
replacement begins. If the FINISH keyword valug & the default START is given

by
START = ((FINISH — N_NEW + 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided viXthed]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the FINISH keyword is not set (or negative), the default START is clamped to 0
and is given by

N_OLD — N_NEW
XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin xmay, representing thX range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin ymay, representing th& range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin zma}, representing th& range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.

What's New in IDL 5.3

Chapter 6: New Objects 303

IDLanROI::Rotate

The IDLanROI::Rotate procedure method modifies the vertices for the region by
applying a rotation.

Syntax

Obj—>[IDLanROI::]Rotate Axis Angle[, CENTERHX, y[, 4]]
Arguments

Axis

A three-element vector of the form, [y, z] describing the axis about which the region
is to be rotated.

Angle
The angle, measured in degrees, by which the rotation is to occur.

Keywords
CENTER

Set this keyword to a two or three-element vector of the fayg,[or [, Y, Z]
specifying the center of rotation. The default is [0, 0, 0].

What's New in IDL 5.3 IDLanROI

304 Chapter 6: New Objects

IDLanROl::Scale

The IDLanROI::Scale procedure method modifies the vertices for the region by
applying a scale.

Syntax

Obj—>[IDLanROI::]Scale S¥, Sy, S4]
Arguments

SX

The X scale factor. If th&yandSzarguments are not specifi&&kmust be a two or
three-element vector, in which ca8§0] represents the scale Xy S{1] represents
the scale inY, S¥2] represents the scalen

Sy
TheY scale factor.
Sz
TheZ scale factor.

Keywords

None.

IDLanROI What's New in IDL 5.3

Chapter 6: New Objects 305

IDLanROI::SetProperty

The IDLanROI::SetProperty procedure method sets the value of a property or group
of properties for the region.

Syntax
Obj—>[IDLanROI::]SetProperty
Arguments
None.
Keywords

Any keywords tdDLanROI::Init followed by the word$e) can be set using
IDLanROI::SetProperty.

What's New in IDL 5.3 IDLanROI

306 Chapter 6: New Objects

IDLanROIl::Translate

The IDLanROI::Translate procedure method modifies the vertices for the region by
applying a translation.

Syntax
Obj—>[IDLanROl::]TranslateTx, Ty{, T4]
Arguments

Tx

The X translation factor. If th@y andTzarguments are not specifik must be a
two or three-element vector, in which cds¢0] represents translation X Tx1]
represents translation 1 TX2] represents translation ih

Ty
TheY translation factor.
Tz
TheZ translation factor.

Keywords

None.

IDLanROI What's New in IDL 5.3

Chapter 6: New Objects

IDLanROIGroup

The IDLanROIGroup object class is an analytical representation of a group of regions

of interest.

Superclasses

This class is a subclassl@fL_Container

Subclasses

This class is a superclassIBLgrROIGroup

Creation

SeelDLanROIGroup::Init

Methods

Intrinsic Methods

The IDLanROIGroup class has the following methods:
IDLanROIGroup:
IDLanROIGroup:
IDLanROIGroup::
IDLanROIGroup:
IDLanROIGroup:
IDLanROIGroup:
IDLanROIGroup::
IDLanROIGroup::
IDLanROIGroup:
IDLanROIGroup:

Inherited Methods

This class inherits the following methods:

:Add

:Cleanup

ContainsPoints

:ComputeMask
:ComputeMesh
:GetProperty

Init

Rotate

:Scale

‘Translate

IDL_Container::Count

What's New in IDL 5.3

307

IDLanROIGroup

308 Chapter 6: New Objects

» IDL_Container::Get
« |IDL_Container::IsContained
» IDL_Container::Move

» IDL_Container::Remove

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 309

IDLanROIGroup::Add

The IDLanROIGroup::Add procedure method adds a region to the region group.
Only objects of the IDLanROI class may be added to the group. The regions in the
group must all be of the same type: all points, all paths, or all polygons.

Syntax
Obj—>[IDLanROIGroup::JAdd ROI
Arguments

ROI

A reference to an instance of the IDLanROI object class representing the region of
interest to be added to the group.

Keywords

Accepts all keywords accepted by tbd._Container::Addmethod in théDL
Reference Guide

What's New in IDL 5.3 IDLanROIGroup

310 Chapter 6: New Objects

IDLanROIGroup::Cleanup

The IDLanROIGroup::Cleanup procedure method performs all cleanup for a region
of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

Obj—>[IDLanROIGroup::]Cleanup
or
OBJ_DESTROYQbj

(In a subclass’ Cleanup method only.)
Arguments

None.
Keywords

None.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 311

IDLanROIGroup::ContainsPoints

The IDLanROIGroup::ContainsPoints procedure method determines whether the
given points (in data coordinates) are contained within the closed polygon regions
within this group.

A point is considered to be exterior if any of the following conditions are true:
» the point falls within the boundary of an interior region (hole).
» the point does not lie in the plane of any of the contained regions.

» the TYPE property of the contained regions is set to 0 (points) or 1 (path).
Syntax
Result= Obj—>[IDLanROIGroup::]ContainsPoints(, Y[, Z]])
Return Value

Result
The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

0 Exterior. The point lies strictly outside the bounds of the ROI.
1 Interior. The point lies strictly inside the bounds of the ROI.

2 On Edge. The point lies on an edge of the ROI boundary.
3

On Vertex. The point matches a vertex of the ROI.

Arguments

X

A vector providing theX components of the points to be tested. Iffl@ndZ
arguments are not specifieéimust be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which casK[0,*] represents th& values,
X[1,*] represents th¥ values, and[2,*] represents th& values.

Y

A vector providing thér components of the points to be tested.

What's New in IDL 5.3 IDLanROIGroup

312 Chapter 6: New Objects

Z

A scalar or vector providing th&components of the points to be tested. If not
provided, theZ components default to 0.0.

Keywords

None.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 313

IDLanROIGroup::ComputeMask

The IDLanROIGroup::ComputeMask function method prepares a two-dimensional
mask for this group of regions.

Syntax

Result= Obj—>[IDLanROIGroup::]ComputeMask([, INITIALIZE={Z2 | 0| 1}]
[, DIMENSIONSHxdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y[, Z]]
[, MASK RULE={0]|1]|2}])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to

255. The mask is computed by applying the following formula to the current mask
for each mask point contained within the ROI:

Moyt = MAX(MIN(O, (Moi* Ext) + M;,), 255)

whereM,,; is 255 andExtis 1 for points within an exterior region and —1 for points
within an interior region.

If the TYPE of the contained regions is 0 (points), a single mask pixel is set for each
region vertex that falls within the bounds of the mask.

If the TYPE of the contained regions is 1 (path), each pixel along the paths of the
regions is set if it falls within the mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a contained region, and the pixel falls within that region (according to the
MASK_RULE).

Arguments
None.

Keywords
DIMENSIONS

Set this keyword to a two-element vectadifn ydim|, specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword

What's New in IDL 5.3 IDLanROIGroup

314 Chapter 6: New Objects

is ignored, and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values include:

-1 The mask is not initialized; the default if the MASK_IN
keyword is set. This option is useful when updating an
already existing mask.

0 The mask is initialized with each pixel set to 0; the default if
the MASK_IN keyword is not set.

1 The mask is initialized with each pixel set to 255.

LOCATION

Set this keyword to a vector of the forX [Y], Z]] specifying the location of the
origin of the mask. The default is [0, O, O].

MASK_IN

Set this keyword to a two or three-dimensional array representing a mask that is
already allocated and to be updated for this region. If this keyword is provided, the
data portion of this variable is grabbed and used in the returned value (an implicit
NO_COPY). If this keyword is not provided, a mask is allocated by default to match
the dimensions specified via the DIMENSIONS keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

0 Boundary Only. All pixels falling on a region’s boundary are
set.

1 Interior Only. All pixels falling within the region’s boundary,
but not on the boundary, are set.

2 Boundary + Interior. All pixels falling on or within a region’s
boundary are set.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 315

PLANE_NORMAL

Set this keyword to a three-element vectary,[z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, O, 1].

PLANE_XAXIS

Set this keyword to a three-element vectary,[z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). The
defaultis [1, 0, O].

What's New in IDL 5.3 IDLanROIGroup

316 Chapter 6: New Objects

IDLanROIGroup::ComputeMesh

The IDLanROIGroup::ComputeMesh function method triangulates a surface mesh
with optional capping from the stack of regions contained within this group.

Note
The contained regions may be concave. However, this method will fail under the
following conditions:

» The region group contains fewer than two regions.
» The TYPE property of the contained regions is 0 (points) or 1 (path).
» Any of the contained regions are not simple
(i.e., aregion is self-intersecting).
» The region group contains interior regions (holes).
» More than one region lies on the same plane
(i.e., the region group contains branches).

Each region pair is normalized by perimeter and the triangulation is computed by
walking the contours in parallel, keeping the normalized progress along each contour
in sync. The returned triangulation minimizes the mesh surface area. Each vertex
may appear only once in the output, and the resulting polygon mesh is solid with
outward facing normals computed via the right-hand rule. If capping is requested, it
is computed using th®LgrTessellatoron the top and bottom regions, and/or the
regions on either side of an inter-slice gap.

Syntax

Result= Obj->[IDLanROIGroup::]ComputeMesh{ertices Conn
[, CAPPED={0 |1 |2}] [, SURFACE_AREA=variablg)

Return Value

Result

The return value of this function method is the number of triangles generated if the
surface mesh triangulation is successful, or zero if unsuccessful.

Arguments

Vertices

An output [3,n] array of float vertices.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 317

Conn

An output polygon mesh connectivity array.
Keywords
CAPPED

Set this keyword to a value to indicate whether flat caps are to be computed at the
top-most or bottom-most regions (as selected by a counter-clockwise rule), or at the
regions on either side of an inter-slice gap. The value of this keyword is a bit-wise OR
of the values shown below. For example, to cap the top-most and bottom-most
regions only, set the CAPPED keyword to 3. The default is 0 (no caps).

0 nocaps
1 cap the top-most region

2 cap the bottom-most region

SURFACE_AREA

Set this keyword to a hamed variable that upon return contains the overall surface
area of the computed triangulation. This value was minimized in the computation of
the triangulation.

What's New in IDL 5.3 IDLanROIGroup

318

Chapter 6: New Objects

IDLanROIGroup::GetProperty

The IDLanROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj—>[IDLanROIGroup::]GetProperty[, ALLwariablg
[, ROIGROUP_XRANGEwariablg [, ROIGROUP_YRANGEwariable
[, ROIGROUP_ZRANGEwariabl¢g

Arguments

None.

Keywords

Any keyword tolDLanROIGroup::Initfollowed by the wordGef) can be retrieved
using IDLanROIGroup::GetProperty. In addition, the following keywords are
available:

ALL

Set this keyword to a named variable. Upon return, ALL contains an anonymous
structure with the values of all of the properties associated with the state of this
object.

Note
The fields in this structure may change in subsequent releases of IDL.

ROIGROUP_XRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_XRANGE contains
a two-element vector of the formrin xmay specifying the range of data
coordinates covered by the regions in this group.

ROIGROUP_YRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_YRANGE contains
a two-element vector of the formriin ymax specifying the range of data
coordinates covered by the regions in this group.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 319

ROIGROUP_ZRANGE

Set this keyword to a named variable. Upon return, ROIGROUP_ZRANGE contains
a two-element vector of the formrhin zmay specifying the range of data
coordinates covered by the regions in this group.

What's New in IDL 5.3 IDLanROIGroup

320 Chapter 6: New Objects

IDLanROIGroup::Init

The IDLanROIGroup::Init function method initializes a region of interest group
object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the

context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the

subclass.

Syntax

Result= IDLanROIGroup::Init()
or
Obj = OBJ_NEW('IDLanROIGroup’)

(In a subclass’ Init method only.)
Arguments

None.
Keywords

None.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 321

IDLanROIGroup::Rotate

The IDLanROIGroup::Rotate procedure method modifies the vertices for all regions
within the group by applying a rotation.

Syntax

Obj—>[IDLanROIGroup::]RotateAxis Angld, CENTERS x, y[, z]]]
Arguments

Axis

A three-element vector of the form, [y, z] describing the axis about which the region
group is to be rotated.

Angle

The angle, measured in degrees, by which to rotate the ROI group.
Keywords

CENTER

Set this keyword to a two or three-element vector of the faygj pr [x, v, Z
specifying the center of rotation. The default is [0, 0, 0].

What's New in IDL 5.3 IDLanROIGroup

322 Chapter 6: New Objects

IDLanROIGroup::Scale

The IDLanROIGroup::Scale procedure method modifies the vertices for the region
by applying a scale.

Syntax

Obj—>[IDLanROIGroup::]ScaleSX, Sy, S4]
Arguments

Sx

The X scale factor. If th&yandSzarguments are not specifi&&kmust be a two or
three-element vector, in which ca8§0] represents the scale Xy S{1] represents
the scale ir¥, andSX2] represents the scalein

Sy
TheY scale factor.
Sz
TheZ scale factor.

Keywords

None.

IDLanROIGroup What's New in IDL 5.3

Chapter 6: New Objects 323

IDLanROIGroup::Translate

The IDLanROIGroup::Translate procedure method modifies the vertices of all
regions within the group by applying a translation.

Syntax
Obj—>[IDLanROIGroup::]Translatelq, Ty{, TZ]
Arguments

Tx

The X translation factor. If th&y andTzarguments are not specifiditk must be a
two or three-element vector, in which cds¢0] represents translation Xy Tx{1]
represents translation ¥ andTX2] represents translation ih

Ty
TheY translation factor.
Tz
TheZ translation factor.

Keywords

None.

What's New in IDL 5.3 IDLanROIGroup

324 Chapter 6: New Objects
IDLffLanguageCat

The IDLfflLanguageCat object provides an interface to IDL language catalog files.

Note

This object is not savable. Restored IDLffLanguageCat objects may contain invalid
data.

Note
This object is not intended to be created with OBJ_NEW.M86&_CAT_OPEN
function is used to return the correct object reference.

Superclasses

This class has no superclasses.
Subclasses

This class has no subclasses.
Creation

SeeMSG_CAT_OPEN
Methods

» |DLffLanguageCat::IsValid
e |IDLffLanguageCat::Query
« |DLffLanguageCat::SetCatalog

IDLffLanguageCat What's New in IDL 5.3

Chapter 6: New Objects 325

IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether the
object has a valid catalog.

Syntax

Result= Obj -> [IDLffLanguageCat::]IsValid()
Arguments

None
Keywords

None

What's New in IDL 5.3 IDLffLanguageCat

326

Chapter 6: New Objects

IDLffLanguageCat::Query

The IDLffLanguageCatalog::Query function method is used to return the language
string associated with the given key. If the key is not found in the given catalog, the

default string is returned.
Syntax

Result= Obj -> [IDLffLanguageCat::]QueryKey[, DEFAULT STRING=string])
Arguments

Key
The scalar, or array of (string) keys associated with the desired language string. If key
is an arrayResultwill be a string array of the associated language strings.

Keywords
DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be found in
the catalog file. The default value is the empty string.

IDLffLanguageCat What's New in IDL 5.3

Chapter 6: New Objects 327

IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropriate
catalog file. This function returns 1 upon success, and 0 on failure.

Syntax

Result= Obj -> [IDLffLanguageCat::]SetCatalog{pplication
[, FILENAME=string] [, LOCALE=string] [, PATH=string])

Arguments

Application

A scalar string representing the name of the desired application’s catalog file.
Keywords
FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is setpplication PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

What's New in IDL 5.3 IDLffLanguageCat

328 Chapter 6: New Objects
|IDLgrBuffer::GetDevicelnfo

The IDLgrBuffer::GetDevicelnfo function method returns information which allows
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result= Obj—>[IDLgrBuffer::]JGetDevicelnfo([, ALL=variablg

[, MAX_TEXTURE_DIMENSIONS=variabl¢]

[, MAX_VIEWPORT_DIMENSIONS=variablg [, NAME=variabl€

[, NUM_CPUS=variablg [, VENDOR=variabld [, VERSION=variablg)

Arguments
None.
Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with the
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two-element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two-element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

IDLgrBuffer::GetDevicelnfo What's New in IDL 5.3

Chapter 6: New Objects 329

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

What's New in IDL 5.3 IDLgrBuffer::GetDevicelnfo

330 Chapter 6: New Objects

IDLgrClipboard::GetDevicelnfo

The IDLgrClipboard::GetDevicelnfo function method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result= Obj—>[IDLgrClipboard::]GetDevicelnfo([, ALLvariablg

[, MAX_TEXTURE_DIMENSIONS-=variabl¢]

[, MAX_VIEWPORT_DIMENSIONS=variablg [, NAME=variabl€

[, NUM_CPUS=variablg [, VENDOR=variabld [, VERSION=variablg)

Arguments
None.
Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with the
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

IDLgrClipboard::GetDevicelnfo What's New in IDL 5.3

Chapter 6: New Objects 331

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

What's New in IDL 5.3 IDLgrClipboard::GetDevicelnfo

332 Chapter 6: New Objects

IDLgrROI

The IDLgrROI object class is an object graphics representation of a region of interest.
Superclasses

This class is a subclassl@fLanROl.
Subclasses

None.
Creation

SeelDLgrROl::Init.

Methods

Intrinsic Methods
The IDLgrROI object class has the following methods:
e IDLgrROIl::Cleanup
* IDLgrROI::GetProperty
e IDLgrROl::Init
* IDLgrROI::PickVertex
* IDLgrROI::SetProperty
Inherited Methods
This class inherits the following methods:
* IDLanROIl::AppendData

IDLanROI::ComputeGeometry
e IDLanROI::ComputeMask

* |IDLanROI::ContainsPoints

* |IDLanROIl::RemoveData

* IDLanROI::ReplaceData

IDLgrROI What's New in IDL 5.3

Chapter 6: New Objects 333

e |DLanROIl::Rotate
« |DLanROIl::Scale
* |DLanROI::Translate

What's New in IDL 5.3 IDLgrROI

334 Chapter 6: New Objects

IDLgrROI::Cleanup

The IDLgrROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

Obj—>[IDLgrROI::]Cleanup
or
OBJ_DESTROYQbj

(In a subclass’ Cleanup method only.)
Arguments

None.
Keywords

None.

IDLgrROI What's New in IDL 5.3

Chapter 6: New Objects 335

IDLgrROI::GetProperty

The IDLQrROI::GetProperty procedure method retrieves the value of a property or
group of properties for the Object Graphics region.

Syntax

Obj—>[IDLgrROI::]GetProperty [, ALL=variabl€
Arguments

None.

Keywords

Note
All keywords accepted b\pLanROI::GetPropertyare also accepted by this
method. Furthermore, any keyword BLgrROI::Init followed by the wordGel)
can be retrieved using IDLgrROI::GetProperty.

The following keywords are also accepted:
ALL

Set this keyword to a named variable to contain an anonymous structure with the
values of all of the properties associated with the state of this object. State
information about the object may include things like color, line style, etc., but not
vertex data or user values.

Note
The fields in this structure may change in subsequent releases of IDL.

What's New in IDL 5.3 IDLgrROI

336 Chapter 6: New Objects

IDLgrROI::Init

The IDLgrROI::Init function method initializes an Object Graphics region of interest.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result= IDLgrROL::Init([X[, Y, Z]]] [, COLOR{Get, Set}=vectoi

[, /HIDE{Get, Set}] [, LINESTYLE{Get, Set}=valug [, NAME{Get, Set}=string]
[, PALETTE{Get, Set}=objref] [, STYLE{Get, Set}={0|1|2}]

[, SYMBOL{Get, Set}=objref] [, THICK{Get, Set}=points{1.0 to 10.0}]

[, UVALUE{Get, Set}=uvalug [XCOORD_CONV{Get, Set}fsq, 511]

[, YCOORD_CONV{Get, Set}fsq, s1]] [ZCOORD_CONV{Get, Set}fsg, 511 1)

or
Obj= OBJ_NEW(‘IDLgrROI'[, X[, Y, Z]11)

(In a subclass’ Init method only.)
Arguments

X

A vector providing theX components of the vertices for the region. IfYtendZ
arguments are not specifiedimust be a two-dimensional array with the leading
dimension either 2 or 3 ([2, *] or [3, *]), in which cas40, *] represents thX
values X[1, *] represents th& values, and[2, *] represents th& values.

Y
A vector providing thé components of the vertices.
Z

A scalar or vector providing th&components of the vertices. If not providgd,
values default to 0.0.

IDLgrROI What's New in IDL 5.3

Chapter 6: New Objects 337

Keywords

Note
All keywords accepted b\pDLanROI::Init are accepted by this method as well.

In addition, the following keywords are accepted:
COLOR (Get, Set)

Set this keyword to an RGB or indexed color for drawing the region. The default
coloris [0, 0, Q].

HIDE (Get, Set)

Set this keyword to a Boolean value indicating whether this region should be drawn:

0 draw the region (the default)

1 do not draw the region

LINESTYLE (Get, Set)

Set this keyword to the line style to be used to draw the region. The value can be
either an integer value specifying a pre-defined line style, or a two-element vector
specifying a stippling pattern.

The valid values for the pre-defined line styles are:

solid (the default)
dotted

dashed

dash dot

dash dot dot dot
long dash

o 01~ WO N B O

no line drawn

NAME (Get, Set)

Set this keyword to a string to use as the name for this region.

What's New in IDL 5.3 IDLgrROI

338

IDLgrROI

Chapter 6: New Objects

PALETTE (Get, Set)

Set this keyword to the object reference of a palette object (an instance of the
IDLgrPaletteobject class). This keyword is only used for Object Graphics
destinations using the RGB color model. In this case, if the color value for the region
is specified as a color index value, this palette is used to look up the color for the
region. If the PALETTE keyword is not set, the destination object PALETTE
property is used, which defaults to a gray scale ramp.

STYLE (Get, Set)
Set this keyword to indicate the geometrical primitive to use to represent the region
when displayed. Valid values include:

0 points

1 open polyline

2 closed polyline (the default)

SYMBOL (Get, Set)

Set this keyword to reference #@dLgrSymbolobject for the symbol used for display
when STYLE = 0 (points). By default, a dot is used.

THICK (Get, Set)

Set this keyword to a value between 1.0 and 10.0, specifying the size of the points, or
the thickness of the lines, measured in points. The default is one point.

UVALUE (Get, Set)

Set this keyword to a user value of any type to contain any information you wish.
Remember if you set this user value equal to a pointer or object reference, you must
destroy the pointer or object reference explicitly when destroying this region.

XCOORD_CONV (Get, Set)

Set this keyword to a vectogy[s;], of scaling factors used to convé&rtoordinates
from data units to normalized units. The formula for the conversion is as follows:

NormalizeX = 5 + s;*DataX

Recommended values are:
[(_Xmin)/(xmax_ Xmin)' 1-0/(Xmax_xmin)]

What's New in IDL 5.3

Chapter 6: New Objects 339

YCOORD_CONV (Get, Set)

Set this keyword to a vectogy[s;], of scaling factors used to conv&rtoordinates
from data units to normalized units. The formula for the conversion is as follows:

Normalizedr = 55 + s;*DataYy
Recommended values are:

[Ymin/(Ymax—Ymin)» 1.0/(Fmax—Ymin)]
ZCOORD_CONYV (Get, Set)

Set this keyword to a vectogy[s;], of scaling factors used to conv&rtoordinates
from data units to normalized units. The formula for the conversion is as follows:

Normalized = 5 + s;*DataZ

Recommended values are:
[(_Zmin)/(zmax_zmin)' 1-0/Zmax_zmin)]

What's New in IDL 5.3 IDLgrROI

340

Chapter 6: New Objects

IDLgrROI::PickVertex

The IDLgrROI::PickVertex function method picks a vertex of the region which, when
projected onto the given destination device, is nearest to the given 2D device
coordinate.

Syntax
Result= Obj—>[IDLgrROI::]PickVertex(Dest View Point[, PATH=0bjref])
Return Value

Result

The return value is the index of the nearest region vertex. If two or more vertices are
equally nearest to the point, the smallest index of those vertices is returned.

Arguments
Dest
An object reference to dBLgrwindow or IDLgrBuffer for which the pick is to
occur.
View

An object reference to tHBLgrView containing this region.
Point

A two-element vector X y], representing the device location used for picking a
nearest vertex.

Keywords
PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected vertex is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.

IDLgrROI What's New in IDL 5.3

Chapter 6: New Objects 341

IDLgrROI::SetProperty

The IDLQrROI::SetProperty procedure method sets the value of a property or group
of properties for the Object Graphics region.

Syntax
Obj—>[IDLgrROI::]SetProperty
Arguments
None.

Keywords

Note
Any keywords accepted BpLanROI::SetPropertare also accepted by this
method. Furthermore, any keyworddBa.grROI::Init followed by the wordSet)
can be set using IDLgrROI::SetProperty as well.

What's New in IDL 5.3 IDLgrROI

342 Chapter 6: New Objects
IDLgrROIGroup

The IDLgrROIGroup object class is an Object Graphics representation of a group of
regions of interest.

Superclasses

This class is a subclassléfLanROIGroup
Subclasses

None.
Creation

SeelDLgrROIGroup::Init

Methods

Intrinsic Methods
The IDLgrROIGroup class has the following methods:
* IDLgrROIGroup::Add
e IDLgrROIGroup::Cleanup
e IDLgrROIGroup::Init
* IDLgrROIGroup::PickRegion
Inherited Methods
This class inherits the following methods:

* |IDLanROIGroup::ContainsPoints

IDLanROIGroup::ComputeMask
e IDLanROIGroup::GetProperty

* |IDLanROIGroup::Rotate

* |IDLanROIGroup::Scale

e |IDLanROIGroup::Translate

IDLgrROIGroup What's New in IDL 5.3

Chapter 6: New Objects 343

IDLgrROIGroup::Add

The IDLgrROIGroup::Add procedure method adds a region to the region group. Only
objects of the IDLgrROI class may be added to the group. The regions in the group
must all be of the same type: all points, all paths, or all polygons.

Syntax
Obj—>[IDLgrROIGroup::]Add,ROI
Arguments

ROI

A reference to an instance of the IDLgrROI object class representing the region of
interest to add to the group.

Keywords

Accepts all keywords accepted by tBdanROIGroup::Addmethod.

What's New in IDL 5.3 IDLgrROIGroup

344 Chapter 6: New Objects

IDLgrROIGroup::Cleanup

The IDLgrROIGroup::Cleanup procedure method performs all cleanup for an Object
Graphics region of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

Obj—>[IDLgrROIGroup::]Cleanup
or
OBJ_DESTROYQbj

(In a subclass’ Cleanup method only.)
Arguments

None.
Keywords

None.

IDLgrROIGroup What's New in IDL 5.3

Chapter 6: New Objects 345

IDLgrROIGroup::Init

The IDLgrROIGroup::Init function method initializes an Object Graphics region of
interest group object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result= IDLgrROIGroup::Init()
or
Obj = OBJ_NEW('IDLgrROIGroup')

(In a subclass’ Init method only.)
Arguments

None.
Keywords

None.

What's New in IDL 5.3 IDLgrROIGroup

346

Chapter 6: New Objects

IDLgrROIGroup::PickRegion

The IDLgrROIGroup::PickRegion function method picks a region within the group
which, when projected onto the given destination device, is nearest to the given 2D
device coordinate.

Syntax

Result= Obj—>[IDLgrROIGroup::]PickRegionDest View Point [, PATH=0bjref])

Return Value

Result

The return value is the object reference of the nearest region. If two or more regions
are equally nearest to the point, the one that was added to the region group first is
returned.

Arguments

Dest

An object reference to dBLgrWindow or IDLgrBuffer for which the pick is to
occur.

View
An object reference to tHBLgrView containing this region.
Point

A two-element vector)X y], representing the device location to use for picking a
nearest region.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected region is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.

IDLgrROIGroup What's New in IDL 5.3

Chapter 6: New Objects 347
IDLgrVRML.::GetDevicelnfo

The IDLgrVRML::GetDevicelnfo function method returns information which allows
IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=L1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Result= Obj—>[IDLgrVRML.::]GetDevicelnfo([, ALL=variablg

[, MAX_TEXTURE_DIMENSIONS-=variabl€

[, MAX_VIEWPORT_DIMENSIONS=variableg [, NAME=variable

[, NUM_CPUS=variablg [, VENDOR=variablg [, VERSION=variabld)

Arguments
None.
Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with the
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSION&ntains a two element integer array that specifies
the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONSnNtains a two element integer array that specifies
the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon relNAME contains the name of
the rendering device as a string.

What's New in IDL 5.3 IDLgrVRML::GetDevicelnfo

348

Chapter 6: New Objects

NUM_CPUS

Set this keyword equal to a named variable. Upon reiloh_CPUScontains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon re{tENDORcontains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon re{ERSIONcontains the
version of the rendering device driver as a string.

IDLgrVRML.::GetDevicelnfo What's New in IDL 5.3

Chapter 6: New Objects 349
IDLgrWindow::GetDevicelnfo

The IDLgrWindow::GetDevicelnfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=0 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj—>[IDLgrWindow::]GetDevicelnfo [, ALL=variablg]

[, MAX_TEXTURE_DIMENSIONS-=variabl€

[, MAX_VIEWPORT_DIMENSIONS=variableg [, NAME=variable

[, NUM_CPUS=variablg [, VENDOR=variablg [, VERSION=variablg

Arguments
None.
Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with the
values of all the device information keywords as fields.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.

MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

What's New in IDL 5.3 IDLgrWindow::GetDevicelnfo

350

Chapter 6: New Objects

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI Irix,
SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

IDLgrWindow::GetDevicelnfo What's New in IDL 5.3

Index

Symbols

%7, 117
FULL_RESET_SESSION commani42
.prc file
testing in a proje¢i94
.prj files, 87
.RESET_SESSION commanti43

Numerics

3D visualization
improvements13

A
ADAPT_HIST_EQUAL function 145

What's New in IDL 5.3

Add method
IDLanROIGroup 309
IDLgrROIGroup 343

adding
files to a projeGt90

Adobe Acrobat Portable Document Format

(PDF), 46

analysis objects
IDLanRIOGroup 307
IDLanROI class284

AppendData method
IDLanROI, 286

ASCII
importing using macrqd 25

audio file support26

axis label
orientation of text18

351

352

B

BINARY, 25
binary data

importing using macrqd31
BINARY_TEMPLATE function 147
breakpoint enhancementisl0
building

a project 102

order in project99
byte ordering

big endian 132

binary datal132

little endian 132

native method132

C

CALL, 182 182
CDF, 149
CDF compressigri3l
CDF version 32
CDF_COMPRESSION functiqri49
Cleanup method
IDLanROI, 288
IDLanROIGroup 310
IDLgrROI, 334
IDLgrROIGroup 344
clipboard
vector output suppaqriL6
closing
projects 89
color coding 115
command stream substitutiohl 7
command stream substitutions
%7, 30, 117
for Macintosh 30, 118
COMPILE_OPT statemen153
compiler options23
compiling
a file from a projecto3

Index

all files in a projegt101

modified files in a proje¢tl01
complex breakpointsl10
compression for file24
ComputeGeometry method

IDLanROI, 289
ComputeMask method

IDLanROI, 291

IDLanROIGroup 313
ComputeMesh method

IDLanROIGroup 316
ContainsPoints method

IDLanROI, 294

IDLanROIGroup 311
creating

.sav file from a proje¢tl02

IDL Runtime distribution 106

projects 87
CW, 156, 162, 164, 166, 172
CW_FILESEL function 156
CW_LIGHT_EDITOR function 158
CW_LIGHT_EDITOR_GET procedurd.62
CW_LIGHT_EDITOR_SET proceduyd 64
CW_PALETTE_EDITOR function166
CW_PALETTE_EDITOR_GET procedure
172
CW_PALETTE_EDITOR_SET procedure
173

D

deleting

files in a project92
developer’s kit licensel07
DIALOG, 174, 176
DIALOG_READ_IMAGE function 174
DIALOG_WRITE_IMAGE function 176
distribution

creating 106
DLM, 178
DLM_LOAD procedure 178

What's New in IDL 5.3

DRAW, 179

E

editing

a source file from a projec®3
editor

color/font coding 115
ENABLE, 181
ENABLE_SYSRTN procedurel81
endian

big, 132

byte ordering132

little, 132
EOS 183 185, 186, 187
EOS_GD_QUERY functionl83
EOS_PT_QUERY functignl85
EOS_QUERY function186
EOS_SW_QUERY functianl87
EXECUTE, 182
exporting

projects 105

F

file
adding to a proje¢B0
compiling from a projecto3
compiling in a projegt101
compression24
editing from a proje¢to3
moving in a project9l
removing from a proje¢B2
setting properties for a proje@4
file /0O improvements24
font coding 115

G
GET, 24, 189

What's New in IDL 5.3

GET_DRIVE_LIST function 189

GetDevicelnfo method
IDLgrBuffer, 328
IDLgrClipboard 330
IDLgrVRML , 347
IDLgrWindow, 349

GetProperty method
IDLanROI, 296
IDLanROIGroup 318
IDLgQrROI, 335

GRID, 190

GRID_TPS function190

group
moving files in a project9ol

GZIP compressiar24

H

HDF files

importing using macrqd.37
HDF improvements31
HDF SD compressiqr81
HDF version 32
HDF-EOS files

importing using macrqs.37
HDF-EOS improvements881
HDF-EOS version32
HELP enhancement23

/

IDL, resetting the sessipB3
IDLanROI
AppendData methqd®86
Cleanup method288
ComputeGeometry methpa89
ComputeMask methq@91
ContainsPoints metho@94
GetProperty methqd96
Init method 298

353

Index

354

RemoveData metho&00

ReplaceData metho801

Rotate method303

Scale method304

SetProperty methqg®05

Translate methaqdB06
IDLanROI object clags284
IDLanROIGroup

Add methodg 309

Cleanup methgd310

ComputeMask method®13

ComputeMesh metho®16

ContainsPoints methe811

GetProperty methq®18

Init method 320

Rotate method321

Scale method322

Translate methad23
IDLanROIGroup object clas807
IDLffLanguageCat

IsValid methodg 325

SetCatalog methq®27
IDLffLanguageCat obje¢t324
IDLffLanguageCatalog

Query method326
IDLgrBuffer

GetDevicelnfo method328
IDLgrClipboard

GetDevicelnfo methaod330
IDLgrROI

Cleanup method334

GetProperty methq®35

Init method 336

PickVertex method340

SetProperty methg®41
IDLgrROI object class332
IDLgrROIGroup

Add method 343

Cleanup method344

Init method 345

PickRegion method346

Index

IDLgrROIGroup object clas842
IDLgrVRML

GetDevicelnfo method347
IDLgrWindow

GetDevicelnfo method349
IMAGE, 193 193
image processing
improvements10
morphological functionsl1
ROI improvementsll

IMAGE_STATISTICS procedurel93

images

macros for importingl21
import macro

ASCII files, 125

binary fileg 131

image files 121

scientific data formatsl37
Init method

IDLanROI, 298

IDLanROIGroup 320

IDLgrROI, 336

IDLgrROIGroup 345
ISOCONTOUR 196
ISOCONTOUR procedurel 96
ISOSURFACE procedurd 99
IsValid method

IDLffLanguageCat325

K
keywords, new and updatesiB

L

libraries, updated version32
license
developer’s kit 107

What's New in IDL 5.3

LOCALE_GET function 201

M

macro
importing

ASCI| datg 125

binary datal131

HDF files, 137

HDF-EOS files 137

image files 121

NETCDF files 137
macros suppoytL17
main menu bar enhancemerits0
MESH, 202, 204, 206, 207, 209, 210, 212,
214, 214, 216
MESH_ CLIP function 202
MESH_DECIMATE function 204
MESH_ISSOLID function206
MESH_MERGE function207
MESH_NUMTRIANGLES function 209
MESH_SMOOTH function210
MESH_SURFACEAREA function212
MESH_VALIDATE function, 214
MESH_VOLUME function 216
MORPH, 217, 222, 224, 226, 228 229
MORPH_CLOSE function217
MORPH_DISTANCE function219
MORPH_GRADIENT function222
MORPH_HITORMISS function224
MORPH_OPEN function226
MORPH_THIN function 228
MORPH_TOPHAT function229
morphological functionsl1
moving

files in a project9l

MSG_CAT_CLOSE proceduy@31
MSG_CAT_COMPILE procedure32
MSG_CAT_OPEN function234

What's New in IDL 5.3

355

N

NETCDF files
importing using macrqQd.37

(@)

object class
IDLanROI, 284
IDLanROIGroup 307
IDLffLanguageCat324
IDLgQrROI, 332
IDLgrROIGroup 342
OpenGL
querying for information18
opening
projects 89
options
setting for project96

P

PARTICLE, 236
PARTICLE_TRACE procedure236
PDF files 46
PickRegion method
IDLgrROIGroup 346
PickVertex method
IDLgrROI, 340
platforms supported?2
printer
vector output suppqriL6
project
adding files 90
building, 102
closing 89
compiling a filg 93
compiling all files 101
compiling modified files101
creating 87
creating a .sav filel02

Index

356

editing source files93

exporting 105

moving files 91

opening 89

removing files 92

running an applicatiqriL04

saving 89

setting build order99

setting file properties94

setting options96

storing source files86

testing a .prc file94
projects

overview, 27, 84

Q

QUERY, 25, 239, 242
Query method
IDLffLanguageCat 326
QUERY_IMAGE function 239
QUERY_WAV function 242
querying
for OpenGL information18

R

READ, 25, 25, 147, 243 243, 245, 247
READ_IMAGE function 245
READ_WAV function 247
reading

ASCII datg 125

binary datal31

data using macrgd 21, 125 131

HDF files, 137

HDF-EOS files 137

image files 121

NETCDF files 137

scientific format datal37

Index

recomendations
storing files in a proje¢cB6
region of interest
IDLanROI, 284
improvementsl1l
RemoveData method
IDLanROI, 300
removing
files in a project92
ReplaceData method
IDLanROI, 301
resetting and IDL sessip83
ROI
improvementsll
Rotate method
IDLanROI, 303
IDLanROIGroup 321
running
application from a projecil04

S

saving
projects 89
Scale method
IDLanROI, 304
IDLanROIGroup 322
scientific data format
importing using macrqd.37
SetCatalog method
IDLffLanguageCat327
SetProperty method
IDLanROI, 305
IDLgrROI, 341
setting
options for a proje¢t96
properties of a file in a projecd4
sparse matrix19
storing
file in a project 86
STRCMRB 248

What's New in IDL 5.3

STRCMP function248
STREAMLINE, 250
STREAMLINE procedure250
STREGEX 252

STREGEX procedure52
string processing22

STRJOIN 256

STRJOIN function256
STRMATCH function 257
STRSPLIT, 260

STRSPLIT function260
STRUCT, 264
STRUCT_HIDE procedure264
sub-rectangles suppolit8
substitution, command streadil 7
supported platforms32

T

testing

.prc file from a projegt94
TETRA, 266, 268, 269
TETRA_CLIP function 266, 266
TETRA_SURFACE function268
TETRA_VOLUME function 269
text

orientation for axis labell8

What's New in IDL 5.3

357

Translate method
IDLanROlI, 306
IDLanROIGroup 323

%4

VALUE, 271

VALUE_LOCATE function 271
VData acess31

vector output of Object Graphick6
VECTOR_FIELD procedure273
VGroup access31

w

WATERSHED, 275
WATERSHED function 275
WAV support 26

WRITE, 25, 277, 278 278
WRITE_IMAGE procedure277
WRITE_WAV function, 278

X
XOBJVIEW procedurg279

Index

	Online Guide
	Contents
	Overview of New Features in IDL 5.3
	Visualization and Analysis Enhancements
	Image Processing Improvements
	New Routines, Objects, and Compound Widgets
	Changes to Existing Image Processing Routines
	Example Program Using New Image Processing Tools

	3D Visualization Improvements
	Example Programs Using New 3D Visualization Tools

	New Vector Output of Object Graphics
	Vector Output vs. Bitmap Output
	When to use Vector Output for the Printer
	When to use Bitmap Output for the Printer
	When to use Vector Output for the Clipboard
	When to use Bitmap Output for the Clipboard

	New Sub-Rectangle Support for Image Display
	Enhanced User Control Over Axis Label Orientation
	Enhanced Query Support for Objects Graphics Devices
	Enhanced Sparse Matrix Functionality
	New Object Viewer

	IDL Language Enhancements
	Internationalization Support for IDL Applications
	New String Processing Functionality
	New IDL Session Reset Commands
	New COMPILE_OPT Statement
	New Output Options for the HELP Procedure
	Raised Limits

	File I/O Enhancements
	New Support for GZIP File Compression/Decompression
	New File Input/Output/Query Functionality
	New Support for .WAV Audio Files
	Enhanced Support for Tiff Images
	Improved Macros for Importing Data

	Development Environment Enhancements
	New IDL Projects
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Creating IDL Runtime Distributions
	Exporting Your Applications

	Enhanced Breakpoint Functionality
	New IDL Functions/Procedures Context Menu
	New Color/Font Style Coding for Source Files on Motif
	Enhanced IDL MACRO Support
	New Command Stream Substitution
	New Support for Command Stream Substitutions on Macintosh

	Scientific Data Formats Enhancements
	New Support for Compression of CDF and HDF SD Data Sets
	New HDF-EOS Query Routines
	New EOS_EXISTS Function
	HDF_BROWSER Enhancements
	Updated Library Versions

	IDL GUIBuilder Enhancements
	IDL ActiveX Control Enhancements
	Why Was a New Version of the Control Created?
	What Must You Change to Take Advantage of the Control?
	What About the Previous ActiveX Control?
	Why Should You Upgrade?
	New Dual Interface Control
	New Printing Support
	Print
	Parameters
	Returns

	BufferId

	Improved Error Reporting in the IDLDrawX2 ActiveX Control
	Return Value Change for ExecuteStr
	LastIdlError (Runtime)

	Method Enhancements to the IDLDrawX2 ActiveX Control
	New Parameter for SetNamedArray

	New Properties to the IDLDrawX2 ActiveX Control
	Renderer

	New Auto Event Properties to the IDLDrawX2 ActiveX Control
	OnDblClick

	IDL ActiveX Control Examples

	Installation and Licensing Enhancements
	IDL ActiveX Control Demonstration Application
	New licensing Dialog
	Replacing the Licensing Dialog Image in Callable IDL Applications
	Replacing the Image for Windows Callable Applications
	Replacing the Image for Macintosh Callable Applications

	IDL DataMiner Enhancements
	Documentation Enhancements
	Reorganization of Core IDL Manuals
	IDL Reference Guide
	Using IDL
	Building IDL Applications
	Object Graphics Documentation

	The New Getting Started with IDL Manual
	Improved IDL HandiGuide
	The New IDL Master Index
	Improved Help System
	Improved PDF System
	Navigation of the IDL Online Manuals
	Searching within the Online Manual Set

	New Object Features
	New Object Classes
	New Object Methods
	New and Updated Keywords to IDL Object Methods

	New Routines
	New and Updated Keywords/Arguments
	New Environment Variables
	Routines Obsoleted in IDL 5.3
	Platforms Supported in this Release

	Creating IDL Projects
	Overview
	Access to all Files in Your Application
	Working with Files in Your Project
	Compiling and Running Your Application
	Creating IDL Runtime Distributions
	Exporting Your Applications
	Example of a Project

	Where to Store Source Files for a Project
	Creating a Project
	Opening, Closing, and Saving Projects
	Opening Projects
	Saving Projects
	Closing Projects

	Adding, Moving, and Removing Files
	Adding Files
	Moving Files
	Removing Files

	Working with Files in a Project
	Editing a Source File
	Compiling a File
	Testing a File
	Setting the Properties of a File

	Setting the Options for a Project
	Selecting the Build Order
	Compiling an Application from a Project
	Building a Project
	Running an Application from a Project
	Exporting a Project
	About IDL Developer’s Kit Licenses

	IDL Development Environment Enhancements
	Enhanced Breakpoint Functionality
	The New Breakpoint Tool Bar Buttons
	The New Edit Breakpoints Dialog
	New Keywords to the BREAKPOINT Routine

	New IDL Functions and Procedures Context Menu for Windows and Motif
	New Color/Font Style Coding for Source Files on UNIX
	Enhanced IDL Macros Support
	New %? Command Stream Substitution
	New Support for Command Stream Substitutions on Macintosh

	IDL Macros for Importing Data
	Overview
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	New IDL Routines
	.FULL_RESET_SESSION
	.RESET_SESSION
	ADAPT_HIST_EQUAL
	Image
	CLIP
	NREGIONS
	TOP

	BINARY_TEMPLATE
	Filename
	CANCEL
	GROUP
	N_ROWS
	TEMPLATE

	CDF_COMPRESSION
	Id
	GET_COMPRESSION
	GET_GZIP_LEVEL
	GET_VAR_COMPRESSION
	GET_VAR_GZIP_LEVEL
	SET_COMPRESSION
	SET_GZIP_LEVEL
	SET_VAR_COMPRESSION
	SET_VAR_GZIP_LEVEL
	VARIABLE
	ZVARIABLE
	IDL Output

	COMPILE_OPT
	optn

	CW_FILESEL
	Parent
	FILENAME
	FILTER
	FIX_FILTER
	FRAME
	IMAGE_FILTER
	MULTIPLE
	PATH
	UNAME
	UVALUE

	CW_LIGHT_EDITOR
	Parent
	DIRECTION_DISABLED
	DRAG_ EVENTS
	FRAME
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	UNAME
	UVALUE
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE
	GET_VALUE
	SET_VALUE

	CW_LIGHT_EDITOR_GET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_LIGHT_EDITOR_SET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_PALETTE_EDITOR
	Reference Color bar
	Palette Colorbar
	Channel and Histogram Display
	Color Space
	Editing Mode
	Channel Display and Edit
	Zoom
	Scrolling of the Palette Window
	Parent
	DATA
	FRAME
	HISTOGRAM
	HORIZONTAL
	SELECTION
	UNAME
	UVALUE
	XSIZE
	YSIZE
	Selection Moved
	Palette Edited
	GET_VALUE
	SET_VALUE

	CW_PALETTE_EDITOR_GET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PALETTE_EDITOR_SET
	WidgetID
	ALPHA
	HISTOGRAM

	DIALOG_READ_IMAGE
	Filename
	BLUE
	DIALOG_PARENT
	FILE
	FILTER
	FIX_FILTER
	GREEN
	IMAGE
	PATH
	QUERY
	RED
	TITLE

	DIALOG_WRITE_IMAGE
	Image
	R, G, B (optional)
	DIALOG_PARENT
	FILENAME
	FIX_TYPE
	NOWRITE
	OPTIONS
	PATH
	TITLE
	TYPE

	DLM_LOAD
	DLMNameStrn
	IDL Output

	DRAW_ROI
	oROI
	LINE_FILL
	SPACING

	ENABLE_SYSRTN
	Routines
	DISABLE
	EXCLUSIVE
	FUNCTIONS

	EOS_GD_QUERY
	Filename
	GridName
	Info

	EOS_PT_QUERY
	Filename
	PointName
	Info

	EOS_QUERY
	Filename
	Info

	EOS_SW_QUERY
	Filename
	SwathName
	Info

	GET_DRIVE_LIST
	GRID_TPS
	Xp
	Yp
	Values
	COEFFICIENTS
	DELTA
	NGRID
	START

	IMAGE_STATISTICS
	Data
	COUNT
	DATA_SUM
	LABELED
	LUT
	MASK
	MAXIMUM
	MEAN
	MINIMUM
	STDDEV
	SUM_OF_SQUARES
	VARIANCE
	VECTOR
	WEIGHT_SUM
	WEIGHTED

	ISOCONTOUR
	Values
	Outconn
	Outverts
	AUXDATA_IN
	AUXDATA_OUT
	C_VALUE
	FILL
	GEOMX
	GEOMY
	GEOMZ
	LEVEL_VALUES
	N_LEVELS
	OUTCONN_INDICES
	POLYGONS

	ISOSURFACE
	Data
	Value
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	TETRAHEDRA

	LOCALE_GET
	MESH_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	MESH_DECIMATE
	Verts
	Conn
	Connout
	PERCENT_VERTICES
	PERCENT_POLYGONS
	VERTICES

	MESH_ISSOLID
	Conn

	MESH_MERGE
	Verts
	Conn
	Verts1
	Conn1
	COMBINE_VERTICES
	TOLERANCE

	MESH_NUMTRIANGLES
	Conn

	MESH_SMOOTH
	Verts
	Conn
	ITERATIONS
	FIXED_VERTICES
	FIXED_EDGE_VERTICES
	LAMBDA

	MESH_SURFACEAREA
	Verts
	Conn
	AUXDATA
	MOMENT

	MESH_VALIDATE
	Verts
	Conn
	COMBINE_VERTICES
	PACK_VERTICES
	REMOVE_NAN
	TOLERANCE

	MESH_VOLUME
	Verts
	Conn
	SIGNED

	MORPH_CLOSE
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_DISTANCE
	Data
	BACKGROUND
	NEIGHBOR_SAMPLING
	Default Two Dimensional Example
	Chessboard Two-Dimensional Example
	City Block Two-Dimensional Example:
	Actual Distance Two-Dimensional Example

	NO_COPY

	MORPH_GRADIENT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_HITORMISS
	Image
	HitStructure
	MissStructure

	MORPH_OPEN
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_THIN
	Image
	HitStructure
	MissStructure

	MORPH_TOPHAT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MSG_CAT_CLOSE
	object

	MSG_CAT_COMPILE
	input
	output
	LOCALE_ALIAS
	MBCS

	MSG_CAT_OPEN
	application
	DEFAULT_FILENAME
	FILENAME
	FOUND
	LOCALE
	PATH
	SUB_QUERY

	PARTICLE_TRACE
	Data
	Seeds
	Verts
	Conn
	Normals
	ANISOTROPY
	INTEGRATION
	SEED_NORMAL
	TOLERANCE
	MAX_ITERATIONS
	MAX_STEPSIZE
	UNIFORM

	QUERY_IMAGE
	Filename
	Info
	CHANNELS
	DIMENSIONS
	HAS_PALETTE
	IMAGE_INDEX
	NUM_IMAGES
	PIXEL_TYPE
	SUPPORTED_READ
	SUPPORTED_WRITE
	TYPE

	QUERY_WAV
	Filename
	Info

	READ_BINARY
	Filename
	FileUnit
	DATA_DIMS
	DATA_START
	DATA_TYPE
	ENDIAN
	TEMPLATE

	READ_IMAGE
	Filename
	Red
	Green
	Blue
	ALLOWED_FORMATS
	FORMAT
	IMAGE_INDEX

	READ_WAV
	Filename
	Rate

	STRCMP
	String1, String2
	N
	FOLD_CASE
	IDL Output

	STREAMLINE
	Verts
	Conn
	Normals
	Outverts
	Outconn
	ANISOTROPY
	SIZE
	PROFILE

	STREGEX
	StringExpression
	RegularExpression
	BOOLEAN
	EXTRACT
	FOLD_CASE
	LENGTH
	SUBEXPR
	Example 1
	Example 2

	STRJOIN
	String
	Delimiter
	SINGLE
	IDL Output

	STRMATCH
	String
	SearchString
	FOLD_CASE
	Example 1
	Example 2
	Example 3
	Example 4

	STRSPLIT
	String
	Pattern
	ESCAPE
	EXTRACT
	FOLD_CASE
	LENGTH
	PRESERVE_NULL
	REGEX
	Example 1
	IDL Output

	Example 2
	IDL Output

	Example 3
	IDL Output

	STRUCT_HIDE
	Arg1, ..., Argn

	TETRA_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	TETRA_SURFACE
	Verts
	Connin

	TETRA_VOLUME
	Verts
	Conn
	AUXDATA
	MOMENT

	VALUE_LOCATE
	Vector
	Value

	VECTOR_FIELD
	Field
	Outverts
	Outconn
	ANISOTROPY
	SCALE
	VERTICES

	WATERSHED
	Image
	CONNECTIVITY
	Example

	WRITE_IMAGE
	Filename
	Format
	Data
	Red
	Green
	Blue
	APPEND

	WRITE_WAV
	Filename
	Data
	Rate

	XOBJVIEW
	Obj
	BLOCK
	GROUP
	STATIONARY
	XSIZE
	YSIZE
	Using XOBJVIEW
	The XOBJVIEW Toolbar
	Example 1
	Example 2

	New Objects
	IDLanROI
	Intrinsic Methods
	IDLanROI::AppendData
	X
	Y
	Z
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Cleanup
	IDLanROI::ComputeGeometry
	Result
	AREA
	CENTROID
	PERIMETER
	SPATIAL_OFFSET
	SPATIAL_SCALE

	IDLanROI::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROI::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROI::GetProperty
	ALL
	ROI_XRANGE
	ROI_YRANGE
	ROI_ZRANGE

	IDLanROI::Init
	X
	Y
	Z
	BLOCK_SIZE (Get, Set)
	DATA (Get, Set)
	INTERIOR (Get, Set)
	TYPE (Get)

	IDLanROI::RemoveData
	COUNT
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::ReplaceData
	X
	Y
	Z
	FINISH
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Rotate
	Axis
	Angle
	CENTER

	IDLanROI::Scale
	Sx
	Sy
	Sz

	IDLanROI::SetProperty
	IDLanROI::Translate
	Tx
	Ty
	Tz

	IDLanROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLanROIGroup::Add
	ROI

	IDLanROIGroup::Cleanup
	IDLanROIGroup::ContainsPoints
	Result
	X
	Y
	Z

	IDLanROIGroup::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS

	IDLanROIGroup::ComputeMesh
	Result
	Vertices
	Conn
	CAPPED
	SURFACE_AREA

	IDLanROIGroup::GetProperty
	ALL
	ROIGROUP_XRANGE
	ROIGROUP_YRANGE
	ROIGROUP_ZRANGE

	IDLanROIGroup::Init
	IDLanROIGroup::Rotate
	Axis
	Angle
	CENTER

	IDLanROIGroup::Scale
	Sx
	Sy
	Sz

	IDLanROIGroup::Translate
	Tx
	Ty
	Tz

	IDLffLanguageCat
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	Key
	DEFAULT_STRING

	IDLffLanguageCat::SetCatalog
	Application
	FILENAME
	LOCALE
	PATH

	IDLgrBuffer::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrClipboard::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrROI
	Intrinsic Methods
	Inherited Methods
	IDLgrROI::Cleanup
	IDLgrROI::GetProperty
	ALL

	IDLgrROI::Init
	X
	Y
	Z
	COLOR (Get, Set)
	HIDE (Get, Set)
	LINESTYLE (Get, Set)
	NAME (Get, Set)
	PALETTE (Get, Set)
	STYLE (Get, Set)
	SYMBOL (Get, Set)
	THICK (Get, Set)
	UVALUE (Get, Set)
	XCOORD_CONV (Get, Set)
	YCOORD_CONV (Get, Set)
	ZCOORD_CONV (Get, Set)

	IDLgrROI::PickVertex
	Result
	Dest
	View
	Point
	PATH

	IDLgrROI::SetProperty

	IDLgrROIGroup
	Intrinsic Methods
	Inherited Methods
	IDLgrROIGroup::Add
	ROI

	IDLgrROIGroup::Cleanup
	IDLgrROIGroup::Init
	IDLgrROIGroup::PickRegion
	Result
	Dest
	View
	Point
	PATH

	IDLgrVRML::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrWindow::GetDeviceInfo
	ALL
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X

