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Ensemble filters are:

1. Easy to apply to complicated models and observations

2. Computationally competitive with variational methods

3. Able to extract information about all state variables usin

4. Can be augmented to deal with model bias and nasty re
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1. Filters are Easy to Apply

All one needs is:

A. Ability to integrate a model forward in tim

B. Ability to compute forward observation op

Collaborators have put GCMs in our framework in <
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 m is number of obs
acted by given ob.

ensemble size
2. Filters are computationally com

A. Model integrations required
Filter requires N forward integrations of model; O(10) 

4D-var requires K*L forward and backward integration
K - number of observation intervals over which opt
L - average number of iterations of minimization so
K*L at least O(10) for any envisioned application

B. Assimilation algorithm cost
Filter: O(αNnm): N is ensemble size, n is model size,

α related to what fraction of state variables are imp
In certain scenarios this may reduce order of cost

4D-var: O(nm) in best of all possible cases
Relation of constant factors not clear, depends on 
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arlier version
Data Assimilation Research Testbed (

Basic framework implemented
Primarily implementing ensemble (Kalman) filters
Variational for low-order models only
Plans MAY include a variational (4D-Var) capability

DART compliant models (largest collection ever with as

CGD’s CAM 2.0
GFDL FMS B-grid GCM
Many low-order models available
MMM’s WRF model
NCEP MRF (GFS)
GFDL MOM ocean model partially incorporated in e
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3. Extract amazing amounts of information in

WARNING: View Perfect Model Results w
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...)
4. Can handle real (biased) model and real

Model:
CAM 2.0 T42L26
U,V, T, Q and PS state variables impacted
Land model (CLM 2.0) not impacted by ob
Observed SSTs

Assimilation / Prediction Experiments:
Uses observations used in reanalysis

(Radiosondes, ACARS, Satellite Winds
Initial tests for first week of January, 2003
Assimilated every 6 hours
Run on CGD linux cluster Anchorage
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Conclusions

1. Ensemble filters can do complex, real-data

2. Implementing filters is extremely simple
(compared to most assimilation technique

3. Filters are powerful in extracting multi-varia

4. Filters can deal with tracers, observed or u

5. Assimilation is relatively cheap, but ensemb


