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Ensemble filters are:
1. Easy to apply to complicated models and observations
2. Computationally competitive with variational methods
3. Able to extract information about all state variables using multivariate relations

4. Can be augmented to deal with model bias and nasty real observations



How an Ensemble Filter Wks

1. Use model to advance (3 members here) to time
at which next observation becomes available
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How an Ensemble Filter Wks

2. Get prior ensemble sample of observation, y=H(x), by
applying forward operator H to each ensemble member

y ﬂl’heory: observations
from instruments with
uncorrelated errors can
be done sequentially.
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How an Ensemble Filter Wks

3. Getobserved valuandobservational error distribution
from observing system




How an Ensemble Filter Wks

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors)

H H Note: Difference between
different flavors of ensemble
filters is primarily in
observation increment
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How an Ensemble Filter Wks

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments

ﬂl‘heory: Impact of A
observation increments gn
each state variable can he

handled sequentially!
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How an Ensemble Filter Wks

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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1. Filters are Easy to Apply

All one needs is:
A. Ability to integrate a model forward in time

B. Ability to compute forward observation operators

Collaborators hae put GCMs in our franveork in < 1 person month




2. Filters are computationally competéi

A. Model integrations required
Filter requiredN forward integrations of model; O(10) sufficient?

4D-var requireK*L forward and backward integrations
K - number of observation intervals over which optimization is performed
L - average number of iterations of minimization solver
K*L at least O(10) for any envisioned application

B. Assimilation algorithm cost
Filter: O(@Nnm): N is ensemble size, n is model size, m is number of obs
a related to what fraction of state variables are impacted by given ob.
In certain scenarios this may reduce order of cost

4D-var. O(nm) in best of all possible cases
Relation of constant factors not clear, depends on ensemble size



Data Assimilation Researcle3tbed ([ART)

Basic framework implemented

Primarily implementing ensemble (Kalman) filters
Variational for low-order models only

Plans MAY include a variational (4D-Var) capability

DART compliant models (laest collection wer with assim system)

CGD’'s CAM 2.0

GFDL FMS B-grid GCM

Many low-order models available

MMM’s WRF model

NCEP MRF (GFS)

GFDL MOM ocean model partially incorporated in earlier version



3. Extract amazing amounts of information in perfect model cases

WARNING: View Perfect Model Results with 8kticism




Predictability in an Idealized @CM: GFDL FMS B-Grid Dynamical Core (idana)

Held-Suarez Configuration (no zonal variation, fixed forcing)
Low-Resolution (60 lons, 30 lats, 5 levels); Timestep 1 hour (less for frequent observations)
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Baseline Case: 1800 PS Oh®iy 24 hours

Min = -185.1243 Max = 244.9236 RMS ERROR = 37.5623
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Baseline Case: 1800 PS Oh®iy 24 hours

Largest T error in trop- %0

ics for interior levels
(level 3, day 400 shown)ss

Min = -1.9012 Max = 2.3893 RMS ERROR = 0.24305
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Impacts of frequencof PS obsemtions on PS assimilation error
Cases with 1800 obs. every 24, 12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes
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Impacts of frequencof PS obsemtions on T assimilation error

Temperature (and U
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4. Can handle real (biased) model and real (ugly) obgsens

Model:
CAM 2.0 T42L26
U,V, T, Q and PS state variables impacted by observations
Land model (CLM 2.0) not impacted by observations
Observed SSTs

Assimilation / Prediction Experiments:
Uses observations used in reanalysis
(Radiosondes, ACARS, Satellite Winds...)
Initial tests for first week of January, 2003
Assimilated every 6 hours
Run on CGD linux cluster Anchorage




CAM RESULTS: ENSEMBLE MEAN RMS TEMP. ERROR
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CAM RESULTS: Ensemble Mean Time Mean Temperature BIAS
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NCEP GFS BIAS (Left), RMS (right): Black AnalysiBed Guess
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500mb Height Comparison to NCEP &9 Analysis; Jan. 7, 2003

NCEP reanalyses, 500mb GPH, Jan 07 00Z
Geopotential height gpm DART/CAM analyses, 500mb GPH
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Captures detalls of g without q obs; g increments from other obs!
Specific Humidity (kg/kg)
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Conclusions

1. Ensemble filters can do complex, real-data assimilation problems

2. Implementing filters is extremely simple
(compared to most assimilation techniques)

3. Filters are powerful in extracting multi-variate relations
4. Filters can deal with tracers, observed or unobserved

5. Assimilation is relatively cheap, but ensembles are required



