

Find a region where the air is ascending faster than the craft sinks with respect to the air: Where wind blows up the side of a hill Where rising air occurs as a result of surface heating Where atmospheric

- Where atmospheric waves form often in the lee of hills or in
- the vicinity of convective updrafts

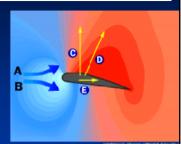
Terminology

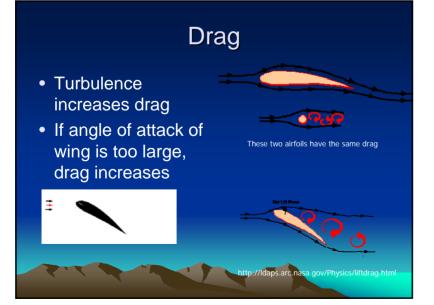
- Thermal: discrete buoyant element often caused by inequitable distribution of solar heating at the surface
- Convection: Turbulent motion resulting in transport and mixing of fluid

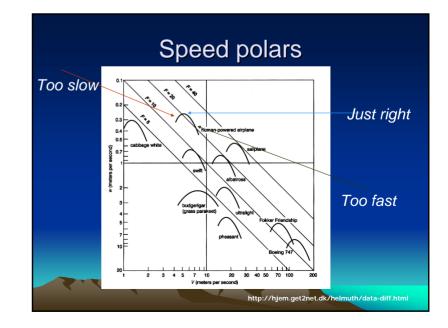
Pilots wish to know:

- When convection will begin
- How long convection will persist
- · How high the thermals will extend
- The area where thermals will occur
- The strength of the thermals
- If showers or thunderstorms will develop
- http://www.drjack.net/BLIPMAP/SW/index.html
- http://www.drjack.net/BLIPMAP/SW/first.wfpm.21z.png

Physics of Flight


- Weight- downward directed force due to mass of craft
- Lift- force of the air pushing craft upwards
- Drag- retarding force due to motion of craft through the air


Lift


- A: Air approaching wing is compressed, lifted. As wing curves downward, low pressure develops above wing
- B: Air approaching wing is compressed, sinks.
 Pressure increases slightly
- C: Lift force
- E: Drag
- D: Resultant force

http://www.howstuffworks.com/airplane3.htm

http://ldaps.arc.nasa.gov/Physics/liftdrag.htm

Motorgliders

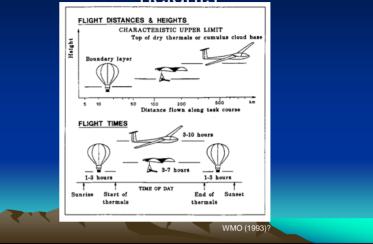
Gliders

F	Characteristic	Denge of volues	
	Characteristic	Range of values	
	Wing span	11 - 29 m	
	Empty weight	80 - 500 kg	
	Gross weight	200 - 750 kg	
	Best glide ratio	1:27 at 75 kph (46 mph) to 1:60 at 110 kph (68 mph)	
	Minimum sink rate	0.45 - 0.75 m/s (1- 2 mph)	
		WMO	/OSTIV (

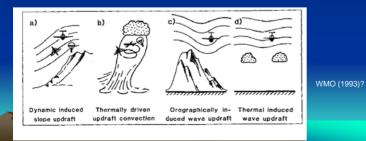
Hang gliders

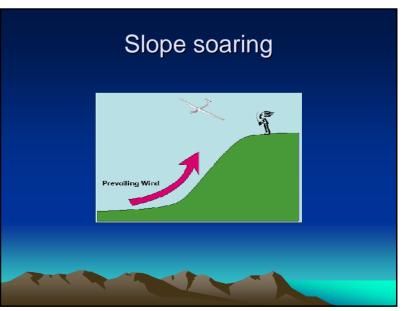
Characteristic	Typical values
Wing span	10 m
Wing area	15 m ²
Empty weight	30 kg
Loaded weight	70-100 kg
Stalling speed	25 kph
Best glide ratio	1:12
Effective maximum speed	70 kph
Terminal diving speed	90 kph
	WMO/OSTIV (1999)

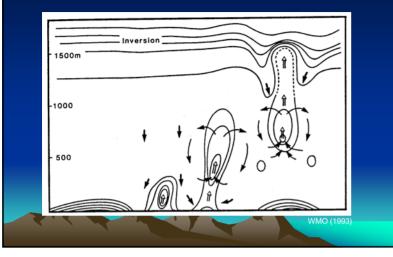
<section-header>


Hot air balloons

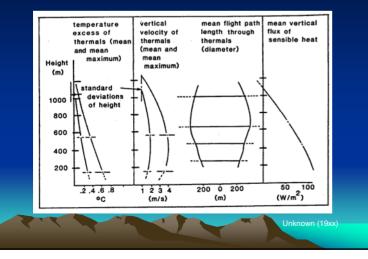
Hot air balloons

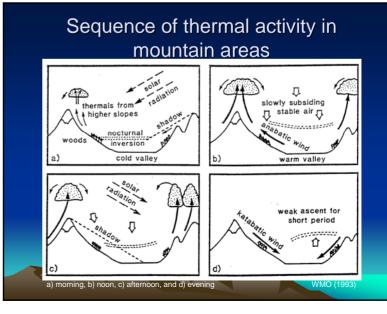

Characteristic	Range of values
Envelope volume	1600 - 8500 m ³
Height (top to bottom)	20 - 40 m
Weight	1.5 - 10 tonnes (1500 - 10000 kg)
Free lift	850 - 2000 kg
Maximum rate of ascent	5 m s ⁻¹
Terminal descent rate	3.5 - 4 m s ⁻¹
	WMO/OSTIV (1999


Flight distances, times and heights

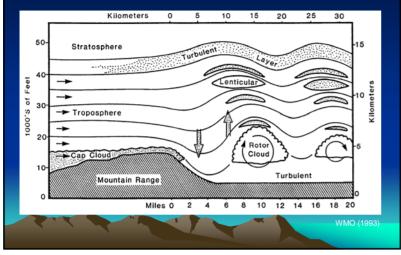

Good lift conditions

- Dynamically induced slope updraft (slope soaring)
- Thermally driven updraft (convection)
- Orographically induced waves
- Thermally induced waves
- Other forms of convergence

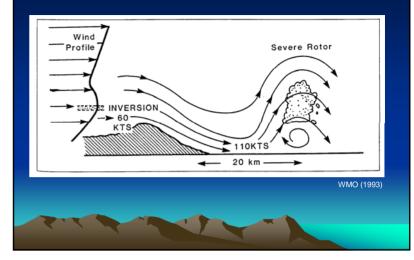

Convective bubbles

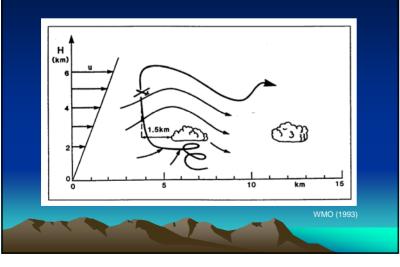


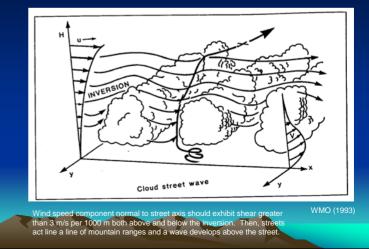
Bubbles in the bubble



Thermal characteristics




Flow over mountains


Severe rotor

Soaring in cumulus waves

Wave above convection streets

Sources

- Irving, F., 1999: The Paths of Soaring Flight. Imperial College Press. London. 131 pp. (TL 765 I78 1999)
- Whiteman, David. Class notes.
- World Meteorological Organization, 1993: Handbook of Meteorological Forecasting for Soaring Flight, Second Edition. WMO No. 495, Tech. Note 158, Geneva. (QC 851 W6445 no. 495)