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3. Theoretical Distributions and Hypothesis Testing 
 

a. Parametric and Empirical Probability Distributions 

 

The empirical histograms and cumulative density distributions discussed in Chapter 2 have many 

applications but they are determined from a sample of the population.  Parametric probability 

distributions are a theoretical construct using mathematical relationships to define populations 

with known properties. One or two parameters combined with the assumption that the population 

is composed of random events may be enough to define the occurrence of possible outcomes of 

an environmental phenomenon. By comparing parametric and empirical probability distributions, 

we can deduce additional information about the population from which a sample is taken. The 

advantages of applying parametric distributions include: 

 compactness- we may be able to describe a critical aspect of a large data set in terms of a 

few parameters 

 smoothing and interpolation- our data set may have gaps that can be filled using a 

theoretical distribution 

 extrapolation- because environmental events of interest may occur rarely, our sample 

may not contain extreme events that could be estimated theoretically by extending what 

we know about less extreme events 

 

Roman letters (e.g., s- sample standard deviation) are used to define sample statistics while 

Greek letters(e.g., σ- population standard deviation) are used to define the population statistics. 

Since parametric probability distributions are a theoretical construct that hopefully describes the 

population, the parameters used to define them are generally given by Greek letters.  

 

Many environmental phenomena are discrete events: it either rains at a particular location or not; 

a tornado touches down or not. There are a large number of parametric distributions (binomial, 

Poisson, etc.) appropriate for examining a data set of discrete events. Because of the limited time 

available in this course, we are not going to discuss discrete parametric distributions (see Wilks 

for further details). On the other hand, most environmental variables of interest can be defined as 

being continuous: whether it rains or not is part of a continuum of how much it rains; we can 

classify temperature above or below a threshold as a discrete event but temperature varies 

continuously over a wide range of values. There are a suite of parametric distributions (Gaussian, 

lognormal, gamma, Weibull, etc.) that are relevant to continuous distributions. 

 

It is important to recognize the steps involved in using parametric distributions: 

 generate an empirical CDF using dfittool  

 use the options in dfittool to see if there is a good match between the empirical CDF and 

a particular parametric distribution 

 use the parameters from that parametric distribution to estimate the probabilities of values 

above or below a threshold, likelihood of extreme events, etc. 

There are many examples in the sample code chapter_3.m. Traditionally, applications of 

parametric distributions required lookup tables; statistics books are full of such (e.g. Appendix B 

of Wilks). However, matlab tools are available that eliminate the need for lookup tables. 
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We begin by defining the probability density function (PDF) for a random continuous variable x 

as f(x), which is the theoretical analog of the histograms in Chapter 2.The sum of f(x) over all 

possible values of  x is 




1)( dxxf . As with the interpretation of integrals in general, think of 

the product dxxf )(  as the incremental contribution to the total probability. The shaded area 

shown in Fig. 5.1  represents 
1

5.

)( dxxf . The cumulative distribution function (CDF) is the total 

probability below a threshold, hence, the total area to the left of a particular value: 

 


X

dxxfXxXF )(}Pr{)( . For example, for the CDF in Fig. 3.2, the cumulative 

probability of negative values is 50%. Also, it is useful to define X(F) as the value of the random 

variable corresponding to a particular cumulative probability, e.g., from the figure X(75%)=.66.  

The function that defines all possible values of X(F) is referred to as the quantile function. 

 

The expected value, E, of a random variable or function of a random variable is the probability-

weighted average of that variable or function. 

 dxxfxgxgE )()()]([ 




  

Consider this intuitively as weighting the values of g(x) by the probability of each value of x. A 

reminder of a few integral properties: 

 for a constant c, ccE ][ since the sum of f(x) over all values of x is simply 1 

 for g(x)=x,  




dxxxfxE )(][ : μ is the mean of the distribution whose PDF is f(x) 

 dxxfxgcxcgE )()()]([ 




  

 The contribution to the total variance from a particular value of x is 2))(()( xExxg  . 

So, the total variance is 

Fig. 3.1. Probability density function. 

Fig. 3.2. Cumulative density function 
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We‟ll use the above relationships for several different continuous parametric distributions.  

 

b. Gaussian parametric distribution 

 

Each parametric distribution that you are likely to use has a rich tradition in statistics, none more 

so than the Gaussian distribution. The PDF in the previous subsection is that of the Gaussian 

distribution defined by: 
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The two parameters that define the Gaussian distribution are μ and σ. Confusion often crops up 

as a result of outdated statistical terminology; the Gaussian distribution is often referred to as the 

normal distribution. However, that does not mean that the Gaussian distribution is what 

everything should follow- it is just one possibility of many.   

 

Let‟s return to the GSL level annual record. Using dfittool, the histogram is plotted in Fig 3.3 

and a Gaussian (normal) distribution is fit using the sample mean and variance. Visually, you 

should be able to tell that the Gaussian fit in this instance is not particularly good, since the lake 

level is skewed (i.e., there are a few events of high water levels that would not be expected given 

the typical values of lake level and its spread about the sample mean). Also, there are fewer low 

water years than expected from the Gaussian distribution. A plot of the quantile function for lake 

level shown in Fig. 3.4 affirms that empirically we observe more high water years and fewer low 

water years than would be expected according to a Gaussian distribution with the sample mean 

and variance.  

Figure 3.3. Gaussian fit to the annual level of the 

Great Salt Lake.  
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Let‟s now examine the hourly temperature values at Collins (CLN) near Alta during winter as 

shown in Fig. 3.5. Although the Gaussian distribution underestimates the occurrence of 

temperature near the mean value, it appears that Collins winter temperature can be approximated 

by a Gaussian parametric distribution defined by the sample mean and variance.   

Now, let‟s return to generic Gaussian distributions. Every variable can be transformed into 

standardized anomalies with mean 0 and variance 1. The matlab function normspec can  

be used to examine the total probability between specified limits, e.g., p = normspec([-1,1],0,1). 

 

The leftmost panel of Fig. 3.6 indicates that for an environmental variable for which the 

Gaussian is a good fit to its empirical PDF, then 68.3% of the total variance is within 1 standard 

deviation of the mean. The middle figure (p = normspec([-2,2],0,1)) indicates that 95.5% of the 

total variance is within 2 standard deviations of the mean while the right figure (p= normspec 

([2,Inf],0,1)) defines that 2.3% of the time we would expect that a variable explained by a 

Gaussian distribution would be larger than 2 standard deviations of the mean. Alternatively, we 

can use the quantile function to determine the x values that correspond to a particular probability. 

For example, if we are interested in the limits corresponding to 90% of the total variance, then x 

= norminv([0.05 0.95],0,1) returns ±1.65σ of the mean. 

 

 

 

 

Figure 3.5.  PDF and CDF of Alta-Collins hourly temperature data with Gaussian fit defined by the sample mean and 

variance 

Figure 3.6. PDF’s for the case when the sample mean is 0 and variance  is 1.  
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c. Other parametric distributions 

 

Many environmental variables (e.g., wind speed and 

rainfall) are decidedly skewed to the right in part 

because values are nonnegative. The gamma 

distribution with 3 parameters is quite versatile for such 

situations. Other variables (e.g., wind direction, relative 

humidity) are constrained at both ends for which the 

beta distribution with 2 parameters is an appropriate 

choice. 

 

Of interest for many applications, is to examine parametric 

distributions of extreme values, i.e., the rare events for 

continuous variables. There are a number of variants of theoretical distributions to describe 

extreme events: Gumbell, Fischer-Tippet, and Weibull, among others. However, these theoretical 

distributions assume random events that may not be appropriate for environmental events that 

often occur serially, e.g., an extreme heat wave typically will last several days in succession. If 

sufficient data are available, then the empirical PDF can be used to estimate the probability of 

rare events.  

 

Extreme values are often defined to estimate the annual probabilities of damaging events such as 

heavy rains or high winds. The recurrence of extreme events is frequently defined in terms of the 

return period, i.e., 100 year floods, etc. However, there is no guarantee that a 100-year event will 

happen in the next 100 years. The probability of a 1 in a 100 year random event is Pr{0.01}. The 

geometric distribution specifies probabilities for the number of trials required until the next 

success (see Wilks). Using the following x=0:300; y=geocdf(x,0.01); stairs(x,y); yields Fig. 3.7, 

the cumulative probability of the period until the next 100 year event. In other words, if the 

probability of a 100-year event is 0.01, then there is only a 63% chance that it will happen in the 

next 100 years after the last event and there is still a 12% chance that it will not happen  in 200 

years. If the probability of a rare event increases to 2%, then there is a 12% chance that it will not 

happen in 100 years. 

 

Figure 3.7 CDF as a function of 

years into the future for a 1 in a 

hundred year event  assuming a 

geometric distribution. 

Figure 3.8. Peak streamflow (right panel) during the water year for the Klamath River, CA. The “100 

year” flow was observed in December 1964 (1965 water year). PDF of peak streamflow and Weibull 

parametric fit to the data (center panel). Probability plot and Weibull parametric fit to the data (right 

panel). 
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As an example of evaluating the return period of extreme events, let‟s examine the peak 

streamflow record from the Klamath River for the 1910 to 2007 water years (Oct.-Sept.; hence 

December floods such as those in December 2005 are part of the 2006 water year) as shown in 

chapter_3.m. You should experiment with various fits- the Weibull fit to the data is shown 

here..  

  

To what extent can we “predict” the occurrence of the peak in December 1964? Obviously, 

during this nearly 100 year record, that event was the “one in a hundred year” event, since its 

value is at the 99
th

 percentile in the right panel. More apparent in the right panel is that the 1977 

drought  was very anomalous with much lower peak flow than would be expected by the Weibull 

fit. 

 

d. Hypothesis testing and confidence intervals 

 

People‟s perception of what is unusual often is heavily 

weighted by what has happened recently. “This storm 

was much stronger than anything before” or “I‟ve never 

felt it be so cold”. How can we provide information on 

whether something is truly extreme? Consider the 

Collins temperature record again (use dfittool on the cln 

record) and create a quantile plot as shown in Fig. 3.9.  

Empirically, we could state that when the temperature 

is less than -15C, then that is “unusually” cold, since 

that is only observed to happen about 5% of the time. 

We can also use the information from the Gaussian fit, 

in this case the parameter estimates are μ = -5.1C and 

σ=5.9C. Then, using normspec([μ-1.96σ, μ+1.96σ], μ, 

σ); then the lower panel in Fig. 3.9 indicates that  95% 

of the time, temperatures randomly selected from a 

Gaussian distribution with that mean and standard 

deviation would  fall between -16 and 6C. So, today‟s 

temperature at Collins is -20C. Your ski buddy says 

“Gee, it‟s really cold”. Time for some hypothesis 

testing. Can you tell him it is unusually cold or not?  

 

So, we define a null hypothesis that we hope to reject: 

today‟s temperature does not differ significantly from 

the mean temperature at Collins, namely -5.1C. The temperatures associated with the shaded area 

(-16C to -6C) contain the range of values for which we cannot reject the null hypothesis. Based 

on our sample of temperature at Collins and today‟s temperature, we can reject the null 

hypothesis accepting a 5% (1 in 20) risk that we are rejecting the null hypothesis incorrectly 

since -20C is outside of the shaded region. 

 

As shown in Fig. 3.10, time series of environmental data, such as Collins‟ temperature, are often 

depicted with upper and lower limits or “confidence intervals”. These confidence intervals can 

be defined by the parameter estimates of Gaussian fits to the sample data, i.e., each specific value 

Figure 3.9. Top panel. Quantile plot of Alta-

Collins temperature data. Bottom panel. 

Gaussian estimate using sample mean and 

standard deviation. 
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is shown relative to 

μ±1.96σ in Fig. 

3.10. We are 

assuming then that 

a random 

distribution with 

that mean and 

standard deviation 

would have 95% of 

the values between 

the red and green 

lines. In this 

instance, plotting 

all of the Collins 

data from 

November to 

April immediately tells us that the way we set up the hypothesis test is not very good. The high 

temperatures only occur at certain times of the year, when your buddy is less likely to be skiing. 

We should have limited our sample perhaps to only temperature during the core winter months- 

for that sample, the -20C might not be so unusual. Confidence intervals can be defined from 

other parametric fits as well, to express the degree to which specific data compares to the 

theoretical distributions. 

 

e. Hypothesis testing of means 

 

Let‟s return to the annual precipitation in Utah. You‟ll examine as part of the homework some of 

the ways droughts are defined, but let‟s use here a completely arbitrary definition of a drought: 

that the average annual precipitation anomaly over a 5 year period differs substantively from 

zero. Consider the last 5 years with precipitation anomaly values of 3.9, -3.9, -3.8, -2.9, 2.4, 

which has a mean value of -.9 and a standard deviation among the 5 members of 3.9 cm. The 

standard deviation within the entire 6 year sample is 5.8 cm. 

 

One expectation might be that the mean precipitation anomaly during  the 5 years is 0 - this 

would be the null hypothesis. The null hypothesis, H0, defines a frame of reference against which 

to judge an alternative hypothesis, HA, which in this instance could be “the mean precipitation 

anomaly during  the past five years is not zero”.  

 

The steps required for a hypothesis test are: 

 

 identify a test statistic that is appropriate to the data and question at hand. The test 

statistic is computed from the sample data values. In this example, the 5-year sample 

mean will be the test statistic, but we‟ll also need to use the sample variance as well. 

 Define a null hypothesis that we hope to reject. In this case, the null hypothesis is that the 

sample mean is 0. 

 Define an alternative hypothesis. In this case, the sample mean is negative. 

Figure 3.10 Time series of Alta Collins temperature (Nov-Apr) with confidence intervals 
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 Estimate the null distribution, which is the sampling distribution of the test statistic if the 

null hypothesis is true. It is very important to recognize that we need to know the 

sampling properties of the test statistic. That is, the sample mean could be drawn from a 

Gaussian parametric distribution, another parametric distribution or even we could define 

the sampling distribution of the mean empirically by randomly sampling over and over 

taking five years within the past 116 years.  

 Compare the observed test statistic (the composite mean value of  -.9 cm to the null 

distribution. Either: 

o the null hypothesis is rejected as too unlikely to have been true if the test statistic 

falls in an improbable region of the null distribution, i.e., the probability that the 

test statistic has that particular value in the null distribution is small, or, 

o the null hypothesis is not rejected since the test statistic falls within the values that 

are relatively common to the null distribution.  

 

Not rejecting H0 does not mean that the null hypothesis is true; rather, there is insufficient 

evidence to reject H0. The null hypothesis is rejected if the probability, p, of the observed test 

statistic in the null distribution is less than or equal to a specified significance (or rejection) level 

denoted as the α level. Usually, 1% or 5% significance levels are used, i.e., if the odds of the test 

statistic occurring in the null distribution are less than 1% or 5%, then we often reject the null 

hypothesis. Depending on how the alternative 

hypothesis is framed, rejecting the null 

hypothesis may be equivalent to accepting 

the alternative hypothesis; however, there 

may be many possible alternative hypotheses. 

The first step of any significance testing is to 

set an appropriate α level to reject the null 

hypothesis. In other words, you must first set 

a threshold, such as 1% that denotes a 1 in 

100 chance that you are accepting the risk of 

rejecting the null hypothesis incorrectly. This 

1% risk is a Type I category error of a false 

rejection of the null hypothesis.  

 

 

f. Central limit theorem and student-t test 

 

Now we have to consider one of the reasons the 

Gaussian distribution is used so much. Run the 

java applet available from 

http://www.stat.sc.edu/~west/javahtml/CLT.htm

l . First, roll 1 die 10,000 times. The red bars of 

roughly equal height show that the chance of 

getting any one number from 1-6 is roughly the 

same. Now roll 5 dice 10,000 times. In other 

words, we are taking the sum (or it could be the 

average) of 5 events.  Note that we end up with a 

Figure 3.11. Top panel. Histogram based on 

rolling 1 die 10000 times. Bottom panel. 

Histogram based on rolling 5 dice 10000 times.  

http://www.stat.sc.edu/~west/javahtml/CLT.html
http://www.stat.sc.edu/~west/javahtml/CLT.html
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Gaussian distribution. The odds of getting only a total count of 5 or 30 are small; most frequently 

we will get something around 17-18. The central limit theorem states that the sum (or mean) of a 

sample (5 dice) will have a Gaussian distribution even if the original distribution (one die) does 

not have a Gaussian distribution, especially as the sample size increases. In other words, 

nx /  where x is the standard deviation of the sample means, σ is the standard deviation 

of the original population, and n is the sample size. 

 

Assume that the height anomalies have the distribution 

shown in the upper panel of Fig. 5.15, which corresponds 

to an assumed population standard deviation of 5.8 cm 

(which corresponds to the  116-year sample standard 

deviation).  There is a 95% chance that the precipitation 

anomaly will lie between ±11.5 cm. We now take 5 

values and average them.  If we selected 5 years at 

random from the population many times, then according 

to the central limit theorem, we‟d end up with the bottom 

panel. There is a 95% chance that the 5-year sample 

mean would lie between ±5.6 cm.  In other words, it 

becomes less likely to have an extreme 5-year mean (“a 

drought” according to this lame definition)  than just to 

have one extreme dry year.  

 

We use the central limit theorem as a way to determine 

whether a mean from a particular sample differs 

significantly from the mean we specify as being appropriate 

for the null hypothesis assuming that we know something 

about the population variance. If we truly knew that the 

population standard deviation was 5.8 cm as assumed in the 

top panel of Fig. 3.12, then we would determine that we 

could NOT reject the null hypothesis at the 5% level, since the sample mean during the last 5 

years of -.9 cm  lies within the shaded area in the lower panel.  

 

Usually we only have an estimate of the population variance from our sample. Then, as already 

discussed in Chapter 2, the sample standard deviation 
n

n
sx

1
 or 1/  nsxx . The 

degrees of freedom is n-1, which is a reminder that the sample can be described by the mean (1 

value)  plus n-1 others. 

 

The Student‟s t test is a way to determine whether the null hypothesis can be rejected. The name 

“Student‟s t” comes from an employee of the Guiness brewery who had to submit his paper as 

“Student” anonymously to a journal.  The t value is defined as: xsnxt /1)(   , which can 

be shown to be normally distributed for large numbers of degrees of freedom (n-1  greater than 

30 or so). There are a variety of ways to grasp the meaning of the t statistic. Perhaps the simplest 

is to visualize the numerator as the „signal‟, the difference between the sample and null 

hypothesis means times the number of members of the sample,  and the denominator as the 

Figure 3.12. Gaussian distribution with 

standard deviation equal to 5.8 cm (top 

panel) and 2.6 cm (bottom panel). 
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„noise‟, the variability within the sample. As the value of t gets larger, our confidence in 

rejecting the null hypothesis that the mean of the sample is zero gets higher. The t value is large 

if: (1) the spread between the sample mean and the null value mean is large, (2) the number of 

members in the sample is large, (3) the variability in the sample is small.  

 

The chapter_3.m code loops over all 5-year samples in our record to see which periods might be 

considered droughts.  Within the loop is the statement:  

 

 [h,p,ci,stat]= ttest(valy,0,.05,'left'); 

 where on input valy is the vector of values in each 5-year sample 

 0 is the mean value for the null hypothesis 

 .05 is the significance level chosen (5%)  

 and „left‟ indicates that we are assuming that we have ruled out that large positive 

anomalies are relevant (the other options are „both‟ a two-tailed test and „right‟ where we 

rule out large negative anomalies, i.e., look for wet periods) 

 where on output h is a flag, 0 means the null hypothesis can not be rejected, 1 means it 

can be rejected 

 p is the significance level corresponding to the t value, the smaller the number the better. 

 ci is the confidence interval 

 stat- is an array that returns the value of the t statistic, the number of degrees of freedom, 

and the estimated population standard deviation.  

 

The top panel of Fig. 3.13 shows the center year of 5-year periods for which h = 1, i.e., the null  

 Figure 3.13. Top panel. 5-year periods which by the definition used here would be 

defined as droughts. Lower panel. Values of 1-p, which shows the 5-year periods when 

the null-hypothesis can be rejected at the 5% level.  
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hypothesis could be rejected at the 5% confidence level. The lower panel shows 1-p, which 

simply confirms why the 5-year periods identified in the upper panel can be assumed to differ 

from the population mean of 0 cm- only those years have values of 1-p greater than 0.95. If we 

are willing to accept a higher risk of falsely rejecting the null hypothesis, then we could use an α 

value of say 0.10 and thereby identify more drought episodes.  

 

In the simple example used here, the test of the sample mean is a one-sided „left‟ test (we‟re only 

interested in droughts). A two-sided test would require the alternative hypothesis to be that the 

composite mean anomaly is simply nonzero (either positive or negative). This weaker alternative 

hypothesis implies that the sample value of -.9 cm must be even further from 0 in the null 

distribution (a smaller p value), since we can reject the null hypothesis only if the rejection level 

(α level) is smaller by a factor of two as a result of the area on both sides of the null 

distribution‟s mean.  

 

k. Summary 

 

The exploratory data techniques developed in Chapter 2 are simply that: exploratory. Research 

involves defining a testable hypothesis and demonstrating that any statistical test of that 

hypothesis meets basic standards. Typical failings of many studies include: (1) ignoring serial 

correlation in environmental time series that reduces the estimates of the number of degrees of 

freedom and (2) ignoring spatial correlation in environmental fields that increases the number of 

trials that are being determined simultaneously. The latter inflates the opportunities for the null 

hypothesis to be rejected falsely. Use common sense. Be very conservative in estimating the 

degrees of freedom temporally and spatially. Avoid attributing confidence to a desired result 

when similar relationships are showing up far removed from your area of interest for no obvious 

reason. The best methods for testing a hypothesis rely heavily on independent evaluation using 

additional data not used in the original statitiscal analysis.  

 

Check Your Understanding 

 

1. Run the chapter_3.m code and carefully go through what each part is doing.  

2. Assume that the situation is a bit unusual and that the probability of any temperature from 

0 to 29C being observed is exactly the same (i.e., there are 30 possible outcomes and the 

likelihood that any particular one is observed is identical). Determine f(x) in this instance 

and plot its PDF. Determine F(X) in this instance and plot the CDF.  

3. Assuming that a population can be described by a Gaussian distribution, determine the 

cumulative probability of the values greater than 1, 2, 3, 4, and 5 standard deviations 

from the mean (hint use normspec).  

4. Use the matlab widget randtool to explore parametric fits. (a) use the Normal (Gaussian) 

parametric fit and increase the sample size by powers of 10 from 10 to 1000000. 

Resample several times at each setting to get a sense of how sensitive the distribution is 

to sample size. At what point do you consistently get a smooth distribution of values? 

What does that tell you about the likelihood that any particular sample of say a hundred 

values will conform exactly to a Gaussian distribution? (b) Using a sample size of 10000, 

cycle through six of the possible parametric fits (there are 22 of them) and describe in a 

couple sentences what the PDFs look like for the default settings AND what sort of 
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environmental parameter might be described by this parametric fit (say don‟t know if you 

can‟t think of one, some are easier than others, i.e., if the parametric fit looks positively 

skewed then what environmental parameters are frequently like that, etc.).  

5. The chapter_3.m code provides access to observations of temperature at Alta from five 

different stations (only CLN was used in the notes and in the code). You now will 

examine all five temperature records. Begin by loading all five records into the dfittool. 

Note that the AGD record appears to be affected by unrealistically high temperature 

values. Create an exclusion rule to eliminate temperature >15C and use that exclusion 

rule in all subsequent fits. a) Create a normal distribution fit to each of the five PDFs. 

Label them fit AGD, fit ALT, etc. b) Create a table of the estimated population mean and 

standard deviation from the normal parametric fits. c) Determine the temperature values 

that bracket 95% of the Gaussian distribution for each of the five samples using the 

function norminv. Include these values in your table begun in part b. d) Using the 

estimated population means and standard deviations for ATB and AGD only, use 

normspec to plot the areas in the histograms for temperatures above freezing. What is the 

probability of the temperature being greater than 0C at ATB and AGD based on their 

parametric fit? 

6. Read the article by Cerveny et al. (June 2007, BAMS, 

http://ams.allenpress.com/archive/1520-0477/88/6/pdf/i1520-0477-88-6-853.pdf) on 

extreme weather records. Describe briefly some of the issues associated with reporting 

extreme weather records and the recommendations the authors have for how to improve 

that reporting (other than creating a committee, ugh). 

7. The definition of drought used in this Chapter is not a good one. Defining drought 

episodes has scientific, economic, and societal impacts. Using online resources (such as 

http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/) discuss briefly at least one 

metric used to define droughts. Be sure to discuss the strengths and weaknesses of that 

metric discussed by the source. 

 

http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/

