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4 Exploratory Multivariate Data Analysis 
 

The techniques in the previous two chapters are intended to examine a sample of data from a 

single variable independent of others. An advantage of many environmental data sets is the large 

number of simultaneous measurements available. We often want to relate how one or more 

phenomena are related to others. Besides simply measuring different quantities, we often have 

access to observations at different locations (both horizontally and vertically). Hence, our sample 

may have many dimensions: x, y, z, t, and variable, model, etc.. The number of dimensions can 

easily grow beyond that. For example, if we are dealing with forecasts, then the forecast lead 

time or perturbations of model parameterizations or initial conditions become other dimensions. 

Dealing with the dimensionality of environmental data sets in statistical analyses is of general 

concern (see Murphy 1991; Mon. Wea. Rev., 1590-1601). Obviously, we can slice such data sets 

up in a number of different ways to simplify the dimensionality of the problem depending on the 

goals of the study. Exploratory multivariate data analysis encompasses an array of tools to assess 

relationships between two or more samples.  

 

a. Linear Regression Between Two Variates 

 

The matlab program chapter_4_1.m contains all of the code for this subsection. We‟ll use a data 

set of daily precipitation collected at high elevation (SNOTEL) sites in the Wasatch Mountains. 

To keep the analysis manageable, only the time series of precipitation at the 7 stations labeled in 

Fig. 4.1 will be used and the data are preprocessed in the code to consider only the October-May 

seasonal totals or totals during January only.  

Figure 4.2 shows the time series of seasonal 

total precipitation at Ben Lomond Peak and 

Ben Lomond Trail over an eighteen year 

period. Since the stations are very close to one 

another, it is not surprising that the year-to-

year variations in precipitation at the two sites 

are very similar. However, since Ben Lomond 

Trail is at a lower elevation, then its 

precipitation is distinctly less than that at Ben 

Lomond Peak. Figure 4.2 also shows similar 

time series but for January total precipitation at 

Payson and Tony Grove. Obviously, the 

relationship between these two records is 

weaker.  The degree of similarity within the 

two pairs of time series is easier to evaluate 

after transforming the data into standardized 

anomalies (bottom panels of Fig. 4.2). You 

might expect that if we try to estimate the 

precipitation at Ben Lomond Peak from that at Ben Lomond Trail we should be able to do well, 

but we‟re not going to have an easy time estimating Tony Grove precipitation from Payson‟s 

during January. You should also recognize that the degrees of freedom in these records is fewer 

than the 18 years in the sample. 

Figure 4.1. Locations of the 7 SNOTEL sites examined 
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Scatter plots of the values associated with two variables are a convenient way to examine 

relationships between paired data. I tend to use the basic plot command but you can also use a 

stattool variant with more options, scatter. The code also demos the polytool command, which 

will become especially useful later in the course. Clustering, spread, outliers, etc. become 

apparent in scatter plots. Scatter plots can be done in terms of the raw values, anomalies, or 

standardized anomalies depending on the application. Since temporal continuity is lost when 

looking at scatter plots generated from time series of data, you need to be careful to not simply 

assume that each pair of observations is independent of the others. 

 

Figure 4.3 shows scatter plots of the original and standardized anomalies for the two sets of 

paired data. The meaning of the lines in each of the panels will become apparent below. Scatter 

plots are easier to interpret when there is a clear one-to-one association between the two 

variables, i.e., for a given value of x, the values of y in the sample are similar to one another. If 

the scatter plot looks like a blob, then that is a clear indication of a lack of one-to-one 

association. If the pairs of values tend to fall along a line, then it is appropriate to think of the 

two variables as being linearly related to one another. They may instead exhibit quadratic or 

Figure 4.2. Time series (in) of seasonal total precipitation at Ben Lomond Peak and Trail (top left  panel) and 

time series of January total precipitation at Tony Grove Lake and Payson (top right panel). Standardized 

anomalies of the time series are shown in the lower panels. 
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higher order association. The scatter plots on the left side reflect greater linear correspondence 

between the Ben Lomond stations compared to the Tony Grove/Payson pair.  

 

As part of exploratory data analysis it is common to want to estimate the values of one variable 

from that of another. I‟m going to avoid saying „predict‟ one variable from the other for the 

moment. Let‟s start by trying to estimate precipitation at Ben Lomond Peak from the values at 

Ben Lomond Trail. First, we know that there is more precipitation on average at the higher 

elevation site, so we we need to consider the differences between the two means. The simplest 

linear approach is to assume that for a given value at Ben Lomond Trail ix


, our estimate iŷ  

(where the subscript i refers to a particular year) at Ben Lomond Peak can be determined as 

follows: 

 

)ˆ(ˆ xxbyy ii   (4a.1)  

 

 

Figure 4.3. Scatter plot of seasonal total precipitation (in) at Ben Lomond Peak and Trail (top left  panel) and 

sactter plot of January total precipitation at Tony Grove Lake and Payson (top right panel). Scatter plots of 

standardized anomalies are shown in the lower panels. 
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That relationship takes into consideration the differences in the two means. We obviously need 

to figure out how to determine the coefficient, b,  and one approach is to use our sample of data 

collected over the eighteen year period. First, consider the lines in each of the top panels. They 

are particular linear estimates using specific values of b. If the Ben Lomond Trail precipitation is 

30 inches, then we would estimate Ben Lomond Peak to measure 41.5 inches. If Payson 

measured roughly an inch, then we would estimate Tony Grove to have 2 inches.  

 

Alternatively, we can use another coefficient, r, to estimate the standardized anomalies at Ben 

Lomond Peak from the standardized anomalies at Ben Lomond Trail as ii xry ** ˆˆ   where the 

asterisk indicates a standardized anomaly and r again needs to be determined from the pairs of 

values in the samples. Linear estimates for particular values of r are shown by the lines in the 

lower panels. If r is 1, then the standardized anomalies at the two sites would be estimated to be 

exactly the same. If r is -1, then they would have the same magnitudes but opposite signs of 

anomalies. If r is 0, then for any x standardized anomaly, the estimate for y would be 0. 

 

How good are those estimates? We can use our sample of data to compute the errors for these 

specific choices of b (the slope of the line). For example, we have two observations of Ben 

Lomond Trail precipitation of roughly 31 inches and during those years, Ben Lomond Peak 

measured 30 inches in one year and 48 inches in the other. Obviously, our linear estimate didn‟t 

do particularly well in those cases, but most of the other years had closer estimates to those 

observed. When Payson‟s precipitation is high (above 5 inches), we don‟t have a lot of 

confidence that we can estimate the precipitation at Tony Grove, since our linear estimate is 

quite different from the two observed January totals at Tony Grove. 

 

Any particular error in the estimate can be written as iii yye ˆ , which is the distance between 

the line and the specific observation. The best line will be the one which minimizes all the 

distances ie , so we want 


n

i

ie
1

2 to be a minimum. For our sample values iii exby  , where the 

primes denote deviations from the respective means. Then if we use the entire sample:  

 
2222

2 iiiii eexbxby   (4.a.2) 

 

The term on the left is the sample variance of y about the mean and is given as the sum of the 

variance explained by the linear fit + how the errors and the deviations of x are related over the 

entire sample + the variance that is not explained by the linear fit, which is what we want to be 

small. The middle term on the right is assumed to be zero, because ie  is assumed to be random if 

our sample is large enough.  

 Then 2222

ixy esbs   (4.a.3) 

We want to choose b so that the explained variance of the linear fit (the first term on the right) is 

as big as possible and the last term is as small as possible.  

To minimize 


n

i

ie
1

2  means to determine 0
1

2 






n

i

ie
b

, which by substituting in for ie  yields 
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iii xbyx
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2)( . Dividing through by n, using the definition for a mean, and rearranging 

yields 

 22 /)(/ xiiiii syxxyxb   (4.a.4) 

where ii yx   is called the covariance and relates how departures from the mean of x and y are 

related. The covariance has units of the quantity squared, like a variance. Covariances are used in 

many disciplines: turbulence, planetary-scale dynamics, etc.  The covariance is: 

  large and positive if there is a general tendency in the sample for large and positive 

(and/or negative) anomalies of x occurring when large positive (negative) anomalies of y 

are observed  

  large and negative when there is a general tendency for large and positive (and/or 

negative) anomalies of x to occur  at the same time as large negative (positive) anomalies 

of y when aggregated over the entire sample 

 near zero when there is a general tendency for cancellation within the sample, i.e., 

sometimes large positive anomaly values of x are associated with large positive anomaly 

values of y and other times large positive anomaly values of x are associated with large 

negative anomaly values of y. 

 

Returning to 4.a.2, and dividing through by y‟s sample variance, then we have: 
2

2

2

22

1
y

i

y

x

s

e

s

sb
 , 

which simply says that a fraction of y‟s variance is due to the variance estimated by our linear 

regression estimate and the remaining fraction is due to random (or unexplained) errors. Defining 

r
2
 as the squared linear correlation coefficient: 

 )/()(/
2222222

yxiiyx ssyxssbr   (4.a.5) or 

 
22

/)( iiii yxyxr         -1≤r≤1 (4.a.6) 

 

In addition, if we standardize the anomalies of x and y by dividing the anomalies by their 

respective standard deviations: 

 )(,/,/ ****

iiyiixii yxrsyysxx   (4.a.7)  

Then, y‟s sample variance can be described alternatively as: 
2

2

21
y

i

s

e
r  where the squared 

correlation coefficient is the fraction of the total variance of y estimated from x. While the 

covariance is not bounded, 11  r and when: 

 r = 1 - the linear fit estimates all of the variability of the y anomalies and the standardized 

anomalies of x and y vary identically 

 r = -1 - the linear fit estimates all of the variability of the y anomalies in the sample but 

when the standardized x anomaly is positive, then the standardized y anomaly is negative 
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 r = 0 - the linear fit explains none of the variability of the y anomalies in the sample and 

the standardized anomalies of x and y have no relationship to one another in the sample.  

 

If r=0, then the only thing we can say is that the best linear estimation for y is its mean value. If 

the scatter plot looks like a blob, then the linear correlation coefficient is likely to be close to 

zero, as there is no linear fit to the data that is going to explain any of the variability of y. As r 

approaches 1 (or -1), then we gain confidence that we can estimate the behavior of the second 

variable from the first, and vice versa. The squared correlation coefficient defines the fraction of 

variance that the two variables have “in common”.  

 

Examine carefully the supplied program, chapter_4_1.m. The coefficients b and r are computed 

using several different approaches.The first approach uses (2.c.7) and requires that the sums of 

the product xiyi be computed as well as the sum of squares and sums of the two variables. i.e., 

yxxy cov . This is a useful approach when processing large data sets. The second and third 

approaches uses linear algebra. Define the column vector 'X


 for the x anomalies (BLT or PAY) 

and the column vector 'Y


 for the y anomalies (BLP or TGL), then 
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 and the covariance nYXyx T
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   (3.a.7) 

where the superscript T denotes the transpose of the column vector (i.e., the column vector is 

switched to a row vector). The resulting matrix multiplication of the 1xn row vector times the 

nx1 column vector yields a scalar number, which divided by the total number of elements, is the 

average of the vector product. Similar matrix multiplications can be done to obtain the sample 

variances.  

 

Using the example programs, you should verify that the linear fits are as shown in the above 

figures and that the linear correlation between the seasonal precipitation anomalies at Ben 

Lomond Peak and Trail is 0.95 while the linear correlation between the January precipitation 

anomalies at Payson and Tony Grove is 0.38. Hence, 90% of the variance of seasonal total 

precipitation at Ben Lomond Peak can be explained by the variability of seasonal total 

precipitation at Ben Lomond Trail. In contrast, only 14% of the variance of Tony Grove seasonal 

precipitation totals can be estimated from that of Payson‟s. 

 

The Pearson correlation coefficient is another name for the linear correlation coefficient defined 

here. You can compute the Pearson correlation coefficient in matlab by using the function 

corr(x,y), i.e., it is not necessary to subtract out the mean value or any other intermediate steps. 

The linear correlation coefficient is not a robust and reliant statistical measure, because the 

covariance and variance terms are quite sensitive to outliers. The Spearman rank correlation 

coefficient (corr(x,y,’type’,’Spearman’)) is a more robust measure and it is determined by 

sorting the data for the two variables in order from least to greatest and then computing the 

covariance as a function of rank, i.e., the correlation would be high if the highest (and lowest) 

values occur at the same time in both records.  The Spearman approach is particularly 
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appropriate for analyzing variables with skewed distributions, e.g., precipitation and wind speed. 

Verify in the case of the pairs of precipitation records that the value of the Spearman correlation 

is not substantially different from that of the Pearson correlation. 

 

There are a number of limitations of linear correlation coefficients that must be recognized: 

 First, there is a widespread tendency to use correlation coefficients of 0.5-0.6 to be 

indicators of “useful” association. However, 75%-64% of the total variance is 

unexplained by a linear relationship if the correlation is in that range.  

 Second, linear correlations can be made large by leaving in signals that may be irrelevant 

to the analysis. For example, if we correlate over many years two temperature records 

from opposite sides of the earth, the linear correlation will be large if we do not remove 

the annual cycle. Perhaps we may be interested in knowing that the annual cycle in Great 

Britain is similar to that in North Dakota, but usually we are more interested in examining 

departures from the seasonal cycle. 

 Third, large linear correlations between two variates may occur simply at random, 

especially if we try to correlate one variate with many, many others. This situation arises 

frequently when we relate interannual or intraseasonal anomalies in one part of the globe 

to those over the entire globe. Tests are available to weed out some of these situations. 

We will formalize later what steps should be taken when an unexpected strong 

association crops up vs. one that we have hypothesized to exist. 

 Fourth, relationships in the data that are inherently nonlinear will not be handled well.  

 Fifth, when two time series are in quadrature with one another (e.g., one time series 

corresponds to a cosine and another corresponds to a sine) as shown in the figure to the 

left below, then the linear correlation is 0 (verify that using matlab and/or analytically). 

You should be able to recognize that as the relative phase of two sinusoidal time series 

progresses from 0 to 90 to 180, then the linear correlation changes from 1 to 0 to -1. 

Since the environment is filled with propagating features, the limitations of the use of 

linear correlations for such phenomena should be readily apparent.  

 Linear correlation provides no information on the relative amplitudes of two time series. 

For example, the linear correlation between the two time series on the right below is 1.0, 

yet the amplitude of one of the time series is 3 times that of the other. The normalization 

by the standard deviation of each variable removes the relative amplitude information.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4. The linear correlation between the two time series on the left is 0 while that between the two 

time series on the right is 1.  
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b. Multivariate Linear Correlations 

 

As an extension to exploratory tools for pairs of data, it is straightforward to simultaneously 

examine the association between many simultaneous observations. I‟ll use as an example the 

seasonal totals of precipitation from the 7 SNOTEL sites. If all the observations are loaded into a 

single matrix as shown in the demo code chapter_4_2.m, then plotmatrix can be used to view 

scatter diagrams between all pairs of simultaneous observations as shown in Fig. 4.5. The 

diagonal subplots are histograms while the scatter subplots below the diagonal are simply 

inverted from those above the diagonal. There are obviously some strong associations (e.g., the 

strongest linear relationship appears to be the one already examined in the previous section 

between Ben Lomond Peak (1
st
 row and column) and Ben Lomond Trail (2

nd
 column and 2

nd
 

row). One of the weaker ones is between Tony Grove Lake (3
rd

 column and row) and Payson (6
th

 

column and row).  

As shown in the 

sample code, we 

have computed 

the average and 

sample standard 

deviation for 

each of the 7 

stations over all 

eighteen years 

and thereby 

computed the 

standardized 

anomalies for 

each station as a 

function of time. 

Then, we can 

define the n x 7 

two-

dimensional 

array of 

standardized 

anomalies as 

*X


 where n is 

the total number 

of years and 7 is 

the number of 

stations. In other 

words, 

 





















721

272221

171211

*...**

............

*...**

*...**

*

nnn xxx

xxx

xxx

X
 (4.b.1) 

Figure 4.5. Histograms of the 7 seasonal precipitation records (diagonal) and scatter 

plots between each pair of records. 
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A Hovmuller diagram (time vs. 

location) is simply a plot of the 

matrix defined in 4.b.1. For 

example, all the stations had large 

standardized precipitation 

anomalies during the 2005 season 

but the positive standardized 

anomaly at Tony Grove (column 3) 

was smaller than that at all the 

other locations during that year. 

Tony Grove had its largest 

precipitation anomaly during 1997. 

 

Then, we can compute the linear 

correlation coefficients between 

every pair of stations (pairs of 

columns) from  

 nXXR T /**


 , (4.b.2) 

 

where R


 is a 7 x 7 matrix. This 

computation is trivial in matlab: 

corr(x) or corrcoef(x), i.e., those 

functions handle computing the 

standardized anomalies and the 

other intermediate steps. However, 

the sample code also shows how to compute the linear correlation matrix using matrix algebra. 

The resulting matrix for this example is shown graphically in Fig. 4.6. Also, look at the values 

after running the sample code. The correlation between each time series and itself is 1 (the 

diagonals). In addition, the correlation matrix is symmetric, i.e., the columns and rows are 

interchangeable for a given index value. 

The matlab contouring routine doesn‟t do a 

particularly good job of indicating that the values on 

the diagonal are 1. The lowest correlations (less than 

0.7) are between Tony Grove Lake (column or row 3) 

and Timpanogos and Payson (column or row 5 or 6). 

This result shouldn‟t be too surprising, since they are 

the ones separated by the largest distance and there 

are some differences in the temporal evolution of the 

precipitation anomalies over time evident in the 

Hovmuller diagram of Fig. 4.6. We could use the 

Spearman correlation (corr(x,’type’,’Spearman’)) to 

reduce the sensitivity of the correlation matrix to 

outliers. 

Figure 4.67. Correlations between every 

possible pair of seasonal precipitation totals.  

Figure 4.6. Hovmuller diagram (time increasing down the page and 

location advancing across the page) of standarized seasonal 

precipitation anomalies. 
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The above exploration of the data 

centers on the question: how do 

seasonal precipitation departures 

from the eighteen year temporal 

mean at one location compare to 

those at another location when 

considered over all 18 years?  

Linear correlations of this sort are 

commonplace in the environmental 

field. A time series of one variable 

is often correlated with time series 

of variables at every location on a 

grid result. That results in a 

temporal anomaly correlation map. 

As shown in Fig. 4.8 from Horel 

and Wallace (1981, Mon. Wea. 

Rev., 813-829), time series of 700 

mb height at grid points poleward 

of 20N are related to various 

indices. “Teleconnection” maps are 

where the time series at each gridpoint of a 

variable is related to the time series of that same variable at every point and then this procedure 

is repeated for every possible gridpoint. Then, the largest correlation values for each gridpoint 

for locations beyond a specified range are tabulated and displayed on a single figure.   

 

Anomaly correlation maps with many different climate indices can be computed from the CDC 

web site: 

http://www.cdc.noaa.gov/Correlation/. For example, 

Fig. 4.9 shows the correlation between the January 

Multivariate ENSO Index (one of the better El Nino 

indices 

(http://www.cdc.noaa.gov/people/klaus.wolter/MEI/in

dex.html) with 500 mb January monthly height 

anomalies. Positive correlations imply that when the 

SST in the equatorial Pacific is above (below) normal 

then 500 mb heights are above (below) normal. The 

tendency during El Nino winters for enhanced 

troughing (lower than normal 500 mb heights) in the 

Gulf of Alaska and over the southern U.S. combined 

with above normal heights in western Canada is 

evident. 

 

The above analysis has focused on how the 

Figure 4.8. Examples of correlation maps. 

Figure 4.9. Correlation between the MEI index 

during January with 500 mb height anomalies in the 

Northern Hemisphere.  

http://www.cdc.noaa.gov/Correlation/
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/index.html
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/index.html
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year-to-year variations in precipitation (rows) at locations (columns) relate to similar variations 

at other locations. Alternatively, we could transpose the original matrix and view the data as 

maps (rows) at specific times (columns):  

 

 





















18,72,71,7

18,22,21,2

18,12,11,1

ˆ...ˆˆ

............

ˆ...ˆˆ

ˆ...ˆˆ

ˆ

xxx

xxx

xxx

X
 (4.b.3) 

 

We can then compute the spatial average over the 7 locations and the variability about that 

spatial average for a specific year.  

We can compute the linear correlation coefficients between every pair of maps from  

 7/*
ˆ

*
ˆ

XXS T


 , (4.b.4) 

 

Linear correlations between pairs of anomaly maps are commonly used to verify model forecast 

fields vs. analysis grids. Usually, the long-term daily mean is removed at each grid point and 

then the departures from the spatial mean are computed for the forecast and analysis grids. Such 

spatial anomaly correlations have been computed for forecast grids by the operational centers for 

years as shown in Fig. 4.8 (in this case for the 5-day 500 mb height forecast grids in the Northern 

and Southern Hemisphere). If the spatial anomaly correlation was equal to one, then the forecast 

and the analysis would exhibit the same spatial anomaly patterns. If the correlation is 0, then the 

model forecast and analysis fields are completely unrelated in a linear sense. 

 

These spatial anomaly correlations between two fields are computed as follows. Let the analysis 

grids at m locations (rows) and n times (columns) be X 
̂

 and the forecast grids for one specific 

model at m locations 

and n times be Y 
̂

. 

Then we can compute 

the spatial anomaly 

correlations between 

every matched pair of 

forecast and verifying 

analysis maps and 

generate a figure like 

that above from  

 mYXS T /
ˆ

'
ˆ




, 

(4.b.5) 

 

Besides the information 

on the relative accuracy 

of the various models 

shown in Fig. 4.10, the 

magnitude of the 
Figure 4.10. Anomaly correlations between model forecasts and analyses computed each 

day. 
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anomaly correlations indicates greater accuracy in the Northern Hemisphere than Southern 

Hemisphere as well as an improving trend over time. All of the caveats regarding linear 

correlation apply to the spatial anomaly correlations. Hence, for this type of forecast verification, 

we are unable to assess if the forecasts have large errors in amplitude. In addition, a relatively 

good forecast with a slight phasing error (i.e., ridges and troughs captured properly but shifted in 

longitude) will be counted as a relatively poor forecast. For many other examples of the uses of 

spatial anomaly correlations and other accuracy measures, browse around 

http://www.emc.ncep.noaa.gov/gmb/STATS/STATS.html. 

 

c. Compositing 

 

Compositing (or superposed epoch analysis) is frequently used to assess the common 

environmental features associated with a sample of events. For example, the occurrences of some 

relatively rare event are identified (e.g., local floods or warm sea surface temperature in the 

equatorial Pacific). The goal is to identify the average conditions within some large data set 

before, during, and after those rare events.  The availability of the NCEP/NCAR reanalysis grids 

and the CDC web software available at  http://www.cdc.noaa.gov/Composites/Day/  and 

http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl has helped to spawn a cottage 

industry of compositing applications.  

 

The steps in the compositing process can be summarized as follows (Hartmann 2005): 

 select the basis for compositing and define the categories on which the compositing will 

be defined. It is preferable to have some physical reasoning for the categories or else the 

results may have limited usefulness. 

 compute the means and statistics for each category 

 organize and display the results 

 validate the results (the methods for which we will discuss later) either in terms of: 

significance tests;  breaking the data record into parts and showing that the results are 

reproducible in smaller samples; examining the relationship on an independent data set; 

show consistency in space and time; or verify consistency with a well-founded theory. 

 

Relating environmental phenomena to ENSO variability is of interest in many fields. The 

multivariate ENSO index (Fig. 4.11) is one of the better indicators of ENSO variability 

(http://www.cdc.noaa.gov/people/klaus.wolter/MEI/index.html).  

From the page http://www.cdc.noaa.gov/people/klaus.wolter/MEI/rank.html it is possible to 

identify when the biggest El Nino and La Nina events have occurred. For this example, I‟ll limit 

it to just the top 6 years during Jan-Feb during the available period of record: 1958, 1973, 1983, , 

1992, 1998, and 2010. Using http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl it is 

very straightforward to develop the composite 500 mb height anomaly map shown in Fig. 4.12 

for those 6 January‟s. While the basic information obtained from this simple composite is similar 

to that obtained from the linear correlation shown in Fig. 4.9 between the MEI and 500 mb 

height anomalies (i.e., below normal heights in the Gulf of Alaska and over the southern United 

States), the composite analysis provides information on the amplitude of the anomalies as well.  

 

http://www.emc.ncep.noaa.gov/gmb/STATS/STATS.html
http://www.cdc.noaa.gov/Composites/Day/
http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/index.html
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/rank.html
http://www.cdc.noaa.gov/cgi-bin/data/composites/printpage.pl
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One of the principal strengths of composite analysis 

relative to linear correlation analysis is that no 

assumption about the linearity of the system is made in 

the composite analysis. As will be discussed later, the 

primary limitation on composite analysis is the extent 

to which the sample mean can be judged to differ from 

the population mean. That will depend on the sample 

size and how much variability is present within the 

members of the sample.  

 

As summarized by Hartmann (2005), compositing 

studies need to be carefully evaluated: 

 was there a reason before the analysis 

started to expect the relationship found in the study? We will discuss the advantage of a 

priori expectations in greater detail later. 

 what is the basis for choosing the compositing categories? How arbitrary was the 

selection or is it based on physical reasoning? 

 was there an opportunity for subjective judgment or bias to enter the composite analysis? 

 do the composite results make sense logically and physically? Are there simpler 

explanations possible? 

 

d. Check Your Understanding 

 

1. Go to the NRCS web page (http://www.wcc.nrcs.usda.gov/snow/) and learn more about how 

the precipitation data set used in this chapter was created. The data we‟re using are from the 

precipitation sensor. What are some of the differences between how the precipitation is measured 

compared to snow water equivalent?  

 

2. Estimate the number of degrees of freedom in the seasonal total precipitation records at Ben 

Lomond Peak and Trail.  

 

3. Using the information obtained from the chapter_4_1.m code, write out the regression 

equation between Ben Lomond Trail and Ben Lomond Peak (i.e., 4.a.1). Imagine that a drought 

hits the Wasatch Front and the seasonal total precipitation at Ben Lomond Trail was only 10 

Figure 4.11. Multivariate ENSO index 

Figure 4.12. Composite 500 mb height anomaly for the 6 

January’s with the highest MEI index. 

http://www.wcc.nrcs.usda.gov/snow/
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inches. What would be the estimated precipitation at Ben Lomond Peak? Write out the 

regression equation for precipitation at Ben Lomond Trail estimated from that at Ben Lomond 

Peak. It‟s even a worse drought year and the precipitation at Ben Lomond Peak is only 10 inches. 

What would be the precipitation estimated at Ben Lomond Trail? 

 

4. Experiment with the polytool command as used in the demo code chapter_4_1.m (but ignore 

the red dashed lines for now). What does robust regression mean as opposed to least squares 

regression? How does the regression equation change for Ben Lomond Peak precipitation 

estimated from Ben Lomond Trail precipitation if the regression estimate is changed from least 

squares to robust?  

 

5. Consider the two vectors x = (-1, -5, 4, 3, -2, 2, 2) and y = (5, -1,  0, 0, -1, -1,  0). Both are 

temperature records, so the relevant units are 
o
C. Create a scatter plot of x vs. y. Compute the 

following and be sure to include the units where appropriate : a) median of x and y; b) mean of x 

and y; c) sample standard deviation of x and y; d) sample variance of x and y; e) standardized 

anomaly vectors of x and y; f) covariance between x and y; g) .linear regression coefficient b 

used to estimate y from x. h) regression equation to estimate y from x; i) linear correlation 

coefficient between x and y; j) percent of variance in common between x and y; k) percent of y‟s 

total variance that is not explained by x. 

 

6. Consider the set of 4 scatter plots between variable „x‟ and variable „e‟.   

(1)                                 (2)                                              (3)                                (4) 

Select the scatter plots (1-4) that best describe 

the following. There may be more than one scatter plot that is appropriate for each answer. 

a) linear correlation that may be affected by a single large outlier. b) positive linear correlation. 

c) nonlinear relationship between x and e. d) near zero linear correlation; e) negative linear 

correlation; f) large fraction of the variability of e can be explained by the variability of x.  

 

7. Explain what the matlab function mldivide does. 

 

8. The temperature at one location is completely defined by a daily sinusoid with a peak at 3PM. 

The daily range of temperature at this location is 10
o
C. The temperature at another location is 

completely defined by a daily sinusoid with a peak at 2 PM and a daily range of 1
o
C. a) Write 

analytic expressions for the temperature T in each case where time t is defined in hours. b) 

Compute the mean and standard deviation for each of the two time series over an entire year 

analytically. c) Determine analytically the linear correlation between the two time series over an 

entire year. d) Defining a time array of length 24x365 hours, verify your answers in (b) and (c) 

using matlab. e) The temperature at a third location is completely defined by a yearly sinusoid 

with a peak on Julian day 225 and a yearly range of 10
o
C (it has no diurnal cycle). Repeat the 

appropriate parts of (a)-(d). 
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9. Compute the composite 500 mb height anomaly for La Nina‟s during January for the top 5, 

top 10, top 15 January-February months.  How sensitive are your results to the number of months 

used in the composite? Composite similarly and discuss another atmospheric field of interest to 

you for the January-March period. 

 

 


