Assignments

- Class Notes 2 review questions due today
- Additional assignment: due Feb. 8
 - Read AMS draft policy statement on communicating science
 - <u>http://www.ametsoc.org/policy/draftstatements/comm</u> <u>unicating_science_draftstatement.pdf</u>
 - Summarize and critique the draft statement in a couple paragraphs
 - Comment in a couple paragraphs on the role of appropriate use of statistics for communicating science

2010 Climate

<u>http://www.ncdc.noaa.gov/sotc</u>

111

•

Changes in Climate Normals

Figure 1. The difference between the decade-averaged maximum temperatures in July

Changes in Climate Normals

Figure 2. Same as Figure 1, but for January minimum temperatures.

Probability Definitions

- Event- possible uncertain outcomes
- Null event- can't happen
- Elementary event- can't be decomposed into other events
- Compound event- decomposable into 2 or more elementary events
- S- sample or event space- all possible elementary events
- Mutually exclusive- two events that can't occur at same time
- MECE- Mutually exclusive and collectively exhaustiveno more than 1 event can occur and at least one event will occur

dobe Acrobat						
it Comments Forms Tools Advanced Window Help 🗙						
ine 🔹 🄬 Collaborate 🔹 🔒 Secure 👻 Sign 👻 📄 Forms 👻 ờ Comment 🔹						
A 4 2 / 11 I 10 100 Find						
lity of each event ation and location.	Temperature below Precipitation below	Temperature above Precipitation below				
aticians involved, oms", lemmas, etc. iny event is n English: an event or else it is not an	Temperature below Precipitation above	Temperature above Precipitation above				
Figure 4.2. MECE possibilities for seasonal forecasts temperature and precpitation anomalies for a specific location. will happen is 1. tone or the other of two mutually exclusive events is the sum of their						

Ш

.

÷

More Definitions

- E- Event
- $Pr{E}$ probability of Event E; $0 \le Pr{E} \le 1$
- Pr{E} = 0, event does not occur
- Pr{E} = 1 event occurs

Storm Reports: Salt Lake County 1993-2005

Number of Opportunities: 2340 (180 days * 13 years)

Two Statistical Frameworks: Frequency vs. Bayesian

- Frequency- probability of an event is its relative frequency after many trials
- a- number of occurrences of E
- n-number of opportunities for E to take place
- a/n- relative frequency of E occurring
- $Pr{E} \rightarrow a/n \text{ as } n \rightarrow \infty$

Two Statistical Frameworks: Frequency vs. Bayesian

- Bayesian- probability represents the degree of belief of an individual about an outcome of an uncertain event
- Some events occur so rarely that there is no long-term relevant probability
- Two individuals can have different probabilities for same outcome
- Bookies are Bayesian

Live Lines

Choose Your Line NFL Football -Over& Teams Spread Money Under 2011-02-06 18:25 Over +2.5 + 100+130Pittsburgh Steelers 44.5 -110 Under Green Bay Packers -2.5 -120 -150 44.5 -110

More concepts

- {E}^c- complement of {E}, event does not occur
- $Pr{E}^{c} = 1-{E}$
- $Pr{E_1 \cap E_2}$ joint probability that $E_1 \& E_2$ occur
- $Pr{E_1 \cap E_2} = 0$ if $E_1 \& E_2$ are mutually exclusive
- Pr{E₁ U E₂}- probability that E₁ OR E₂ occur
- $Pr{E_1 \cup E_2} = Pr{E_1} + Pr{E_2} Pr{E_1 \cap E_2}$

Conditional Probability

- Conditional probability: probability of $\{E_2\}$ given that $\{E_1\}$ has occurred
- $\Pr{\{E_2 \mid E_1\}} = \Pr{\{E_1 \cap E_2\}} / \Pr{\{E_1\}}$
- E₁ is the conditioning event
- If E_1 and E_2 are independent of each other, then $Pr\{E_2 | E_1\} = Pr\{E_2\}$ and $Pr\{E_1 | E_2\} = Pr\{E_1\}$
- Fair coin- Pr{heads} = 0.5
- chance of getting heads on second toss is independent of the first

Pr{heads | heads} = 0.5

 $Pr{heads} twice = 0.5 * 0.5 = 025$

Bayes Theorem

- $\Pr\{E_2 \mid E_1\} = \Pr\{E_1 \cap E_2\} / \Pr\{E_1\}$ or
- $Pr{E_1 \cap E_2} = Pr{E_2 \mid E_1} * Pr{E_1}$
- $Pr{E_1 \cap E_2} = Pr{E_1 | E_2} * Pr{E_2}$ then
- $Pr{E_1 | E_2} = Pr{E_2 | E_1} * Pr{E_1} / Pr{E_2}$
- What is the advantage? Probability of conditioning event E₂ only computed once

Bayesian Application: how a rational person responds to evidence

	Pos Test	Neg Test	TOTAL
DRUG USER	0.495%	0.005%	0.5%
NOT DRUG USER	.995%	98.505%	99.5%
TOTAL	1.49%	98.51%	1

What are odds of falsely accusing non drug user? E_1 – not drug user E_2 - positive test $Pr{E_1} - 99.5\%$ $Pr{E_2} - 1.49\%$ $Pr{E_2 | E_1} - .995\%$

```
Pr{E_1 | E_2} = Pr{E_2 | E_1} * Pr{E_1} / Pr{E_2} = 0.995 * 99.5 / 1.49 = 68\%
```

Conclusion: always ask for second opinion if clean and test positive

Bayesian Application:

	COLD	WARM	TOTAL
DRY	20	60	80
WET	20	0	20
TOTAL	40	60	100

 $E_1 - cold$ $E_2 - dry$ $Pr\{E_1\} - 0.4$ $Pr\{E_2\} - 0.8$ $Pr\{E_2 \mid E_1\} - 0.5$

We can't tell if it is cold or warm But we know it is dry $Pr{E_1 | E_2} = Pr{E_2 | E_1} * Pr{E_1} / Pr{E_2} = 0.5 * 0.4 / 0.8 = 0.25$

What is the probability of getting blackjack twice: $Pr\{ace \cap 10-K\} * Pr\{ace \cap 10-K\} =$

Now, play at least 20 hands of blackjack with 3 other people Summarize in a table below your own relative frequencies (a/n) of getting an ace, 10-K, 2-9, blackjack, and two blackjacks. Who in your group was really lucky?

	n	ð	a/n
ace			
10-K			
2-9			
blackjack			
Two blackjacks			